A Solution Manual For

DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R.

 Hall. 4th edition. Brooks/Cole. Boston, USA. 2012

Nasser M. Abbasi

May 15, 2024

Contents

1 Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33

2 Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47

3 Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61

4 Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71

5 Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

6 Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121

7 Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133

8 Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136

9 Chapter 3. Linear Systems. Exercises section 3.1. page 258
10 Chapter 3. Linear Systems. Exercises section 3.2. page 277
11 Chapter 3. Linear Systems. Exercises section 3.4 page 310
12 Chapter 3. Linear Systems. Exercises section 3.5 page 327
13 Chapter 3. Linear Systems. Exercises section 3.6 page 342
14 Chapter 3. Linear Systems. Exercises section 3.8 page 371
15 Chapter 3. Linear Systems. Review Exercises for chapter 3. page 3239
16 Chapter 4. Forcing and Resonance. Section 4.1 page 399
17 Chapter 4. Forcing and Resonance. Section 4.2 page 412

18 Chapter 4. Forcing and Resonance. Section 4.3 page 424
3307
19 Chapter 6. Laplace transform. Section 6.3 page 600 3363

20 Chapter 6. Laplace transform. Section 6.4. page 608 3414

21 Chapter 6. Laplace transform. Section 6.6. page 624 3439
1 Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
1.1 problem 1 4
1.2 problem 5 22
1.3 problem 6 36
1.4 problem 7 51
1.5 problem 8 54
1.6 problem 9 57
1.7 problem 10 60
1.8 problem 11 63
1.9 problem 12 77
1.10 problem 13 92
1.11 problem 14 104
1.12 problem 15 116
1.13 problem 16 119
1.14 problem 17 135
1.15 problem 18 138
1.16 problem 19 158
1.17 problem 20 172
1.18 problem 21 184
1.19 problem 22 196
1.20 problem 23 200
1.21 problem 24 214
1.22 problem 25 217
1.23 problem 26 234
1.24 problem 27 249
1.25 problem 28 253
1.26 problem 29 267
1.27 problem 30 271
1.28 problem 31 283
1.29 problem 32 287
1.30 problem 33 303
1.31 problem 34 317
1.32 problem 35 320
1.33 problem 36 336
1.34 problem 37 341
1.35 problem 38 357

1.1 problem 1

1.1.1 Solving as separable ode 4
1.1.2 Solving as linear ode 6
1.1.3 Solving as homogeneousTypeD2 ode 8
1.1.4 Solving as homogeneousTypeMapleC ode 9
1.1.5 Solving as first order ode lie symmetry lookup ode 12
1.1.6 Solving as exact ode 16
1.1.7 Maple step by step solution 20

Internal problem ID [12865]
Internal file name [OUTPUT/11517_Monday_November_06_2023_01_31_14_PM_10179086/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "homogeneousTypeMapleC", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{y+1}{1+t}=0
$$

1.1.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =\frac{y+1}{1+t}
\end{aligned}
$$

Where $f(t)=\frac{1}{1+t}$ and $g(y)=y+1$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y+1} d y & =\frac{1}{1+t} d t \\
\int \frac{1}{y+1} d y & =\int \frac{1}{1+t} d t \\
\ln (y+1) & =\ln (1+t)+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
y+1=\mathrm{e}^{\ln (1+t)+c_{1}}
$$

Which simplifies to

$$
y+1=c_{2}(1+t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} \mathrm{e}^{\ln (1+t)+c_{1}}-1 \tag{1}
\end{equation*}
$$

Figure 1: Slope field plot

Verification of solutions

$$
y=c_{2} \mathrm{e}^{\ln (1+t)+c_{1}}-1
$$

Verified OK.

1.1.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-\frac{1}{1+t} \\
q(t) & =\frac{1}{1+t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{1+t}=\frac{1}{1+t}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{1+t} d t} \\
& =\frac{1}{1+t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{1}{1+t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{y}{1+t}\right) & =\left(\frac{1}{1+t}\right)\left(\frac{1}{1+t}\right) \\
\mathrm{d}\left(\frac{y}{1+t}\right) & =\frac{1}{(1+t)^{2}} \mathrm{~d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{1+t}=\int \frac{1}{(1+t)^{2}} \mathrm{~d} t \\
& \frac{y}{1+t}=-\frac{1}{1+t}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{1+t}$ results in

$$
y=-1+c_{1}(1+t)
$$

which simplifies to

$$
y=c_{1} t+c_{1}-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} t+c_{1}-1 \tag{1}
\end{equation*}
$$

Figure 2: Slope field plot

Verification of solutions

$$
y=c_{1} t+c_{1}-1
$$

Verified OK.

1.1.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(t) t$ on the above ode results in new ode in $u(t)$

$$
u^{\prime}(t) t+u(t)-\frac{u(t) t+1}{1+t}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =\frac{-u+1}{t(1+t)}
\end{aligned}
$$

Where $f(t)=\frac{1}{t(1+t)}$ and $g(u)=-u+1$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{-u+1} d u & =\frac{1}{t(1+t)} d t \\
\int \frac{1}{-u+1} d u & =\int \frac{1}{t(1+t)} d t \\
-\ln (u-1) & =-\ln (1+t)+\ln (t)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{u-1}=\mathrm{e}^{-\ln (1+t)+\ln (t)+c_{2}}
$$

Which simplifies to

$$
\frac{1}{u-1}=c_{3} \mathrm{e}^{-\ln (1+t)+\ln (t)}
$$

Which simplifies to

$$
u(t)=\frac{\left(\frac{c_{3} e^{c_{2}} t}{1+t}+1\right)(1+t) \mathrm{e}^{-c_{2}}}{c_{3} t}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u t \\
& =\frac{\left(\frac{c_{3} e^{c_{2}} t}{1+t}+1\right)(1+t) \mathrm{e}^{-c_{2}}}{c_{3}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\frac{c_{3} \mathrm{e}^{c_{2} t}}{1+t}+1\right)(1+t) \mathrm{e}^{-c_{2}}}{c_{3}} \tag{1}
\end{equation*}
$$

Figure 3: Slope field plot

Verification of solutions

$$
y=\frac{\left(\frac{c_{3} \mathrm{e}^{c_{2} t}}{1+t}+1\right)(1+t) \mathrm{e}^{-c_{2}}}{c_{3}}
$$

Verified OK.

1.1.4 Solving as homogeneousTypeMapleC ode

Let $Y=y+y_{0}$ and $X=t+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=\frac{Y(X)+y_{0}+1}{1+X+x_{0}}
$$

Solving for possible values of x_{0} and y_{0} which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
x_{0} & =-1 \\
y_{0} & =-1
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=\frac{Y(X)}{X}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =\frac{Y}{X} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order n if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=Y$ and $N=X$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =u \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =0
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. Integrating both sides gives

$$
\begin{aligned}
u(X) & =\int 0 \mathrm{~d} X \\
& =c_{2}
\end{aligned}
$$

Now u in the above solution is replaced back by Y using $u=\frac{Y}{X}$ which results in the solution

$$
Y(X)=X c_{2}
$$

Using the solution for $Y(X)$

$$
Y(X)=X c_{2}
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
& Y=y+y_{0} \\
& X=t+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
& Y=y-1 \\
& X=t-1
\end{aligned}
$$

Then the solution in y becomes

$$
y+1=c_{2}(1+t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y+1=c_{2}(1+t) \tag{1}
\end{equation*}
$$

Figure 4: Slope field plot

Verification of solutions

$$
y+1=c_{2}(1+t)
$$

Verified OK.

1.1.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y+1}{1+t} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 1: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	1	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=1+t \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{1+t} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{1+t}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{y+1}{1+t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-\frac{y}{(1+t)^{2}} \\
S_{y} & =\frac{1}{1+t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{(1+t)^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{(1+R)^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{1+R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\frac{y}{1+t}=-\frac{1}{1+t}+c_{1}
$$

Which simplifies to

$$
\frac{y}{1+t}=-\frac{1}{1+t}+c_{1}
$$

Which gives

$$
y=c_{1} t+c_{1}-1
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{y+1}{1+t}$		$\frac{d S}{d R}=\frac{1}{(1+R)^{2}}$
		$\xrightarrow[\rightarrow+\infty]{ }$
		9 4
		$\xrightarrow[\rightarrow \rightarrow \rightarrow+]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow+\infty]{ }{ }_{\text {l }}$
	$R=t$	$\xrightarrow[\rightarrow \rightarrow \rightarrow+\infty]{ }$
	$S=\frac{y}{1+t}$	$\xrightarrow{\rightarrow \rightarrow- \pm \pm \pm 0}$
$\xrightarrow[\rightarrow \rightarrow+\infty]{ }$	$S=\frac{}{1+t}$	$\xrightarrow{\rightarrow \rightarrow+\infty}$
-		,
,		
		$\xrightarrow{\rightarrow \rightarrow+\infty} \xrightarrow{\rightarrow+\infty}$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} t+c_{1}-1 \tag{1}
\end{equation*}
$$

Figure 5: Slope field plot

Verification of solutions

$$
y=c_{1} t+c_{1}-1
$$

Verified OK.

1.1.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y+1}\right) \mathrm{d} y & =\left(\frac{1}{1+t}\right) \mathrm{d} t \\
\left(-\frac{1}{1+t}\right) \mathrm{d} t+\left(\frac{1}{y+1}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-\frac{1}{1+t} \\
N(t, y) & =\frac{1}{y+1}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{1+t}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\frac{1}{y+1}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\frac{1}{1+t} \mathrm{~d} t \\
\phi & =-\ln (1+t)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y+1}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y+1}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y+1}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y+1}\right) \mathrm{d} y \\
f(y) & =\ln (y+1)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (1+t)+\ln (y+1)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (1+t)+\ln (y+1)
$$

The solution becomes

$$
y=t \mathrm{e}^{c_{1}}+\mathrm{e}^{c_{1}}-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t \mathrm{e}^{c_{1}}+\mathrm{e}^{c_{1}}-1 \tag{1}
\end{equation*}
$$

Figure 6: Slope field plot
Verification of solutions

$$
y=t \mathrm{e}^{c_{1}}+\mathrm{e}^{c_{1}}-1
$$

Verified OK.

1.1.7 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{y+1}{1+t}=0
$$

- Highest derivative means the order of the ODE is 1

y^{\prime}

- Separate variables

$$
\frac{y^{\prime}}{y+1}=\frac{1}{1+t}
$$

- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y+1} d t=\int \frac{1}{1+t} d t+c_{1}$
- Evaluate integral
$\ln (y+1)=\ln (1+t)+c_{1}$
- \quad Solve for y

$$
y=t \mathrm{e}^{c_{1}}+\mathrm{e}^{c_{1}}-1
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

```
dsolve(diff(y(t),t)=(y(t)+1)/(t+1),y(t), singsol=all)
```

$$
y(t)=c_{1} t+c_{1}-1
$$

\checkmark Solution by Mathematica
Time used: 0.045 (sec). Leaf size: 18
DSolve[y' $[t]==(y[t]+1) /(t+1), y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(t) \rightarrow-1+c_{1}(t+1) \\
& y(t) \rightarrow-1
\end{aligned}
$$

1.2 problem 5

1.2.1 Solving as separable ode . 22
1.2.2 Solving as first order ode lie symmetry lookup ode 24
1.2.3 Solving as exact ode . 28
1.2.4 Solving as riccati ode . 32
1.2.5 Maple step by step solution . 34

Internal problem ID [12866]
Internal file name [OUTPUT/11518_Monday_November_06_2023_01_31_15_PM_71617828/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 5 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-t^{2} y^{2}=0
$$

1.2.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =y^{2} t^{2}
\end{aligned}
$$

Where $f(t)=t^{2}$ and $g(y)=y^{2}$. Integrating both sides gives

$$
\begin{gathered}
\frac{1}{y^{2}} d y=t^{2} d t \\
\int \frac{1}{y^{2}} d y=\int t^{2} d t
\end{gathered}
$$

$$
-\frac{1}{y}=\frac{t^{3}}{3}+c_{1}
$$

Which results in

$$
y=-\frac{3}{t^{3}+3 c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{3}{t^{3}+3 c_{1}} \tag{1}
\end{equation*}
$$

Figure 7: Slope field plot

Verification of solutions

$$
y=-\frac{3}{t^{3}+3 c_{1}}
$$

Verified OK.

1.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =y^{2} t^{2} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 4: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=\frac{1}{t^{2}} \\
& \eta(t, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{\frac{1}{t^{2}}} d t
\end{aligned}
$$

Which results in

$$
S=\frac{t^{3}}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=y^{2} t^{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{y} & =1 \\
S_{t} & =t^{2} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\frac{t^{3}}{3}=-\frac{1}{y}+c_{1}
$$

Which simplifies to

$$
\frac{t^{3}}{3}=-\frac{1}{y}+c_{1}
$$

Which gives

$$
y=\frac{3}{-t^{3}+3 c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=y^{2} t^{2}$		$\frac{d S}{d R}=\frac{1}{R^{2}}$
		$\rightarrow \rightarrow \rightarrow \rightarrow$ 仰 $\uparrow \uparrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-]{ }$
	$R=y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
$\xrightarrow{\text { H }}$		
	$S=\frac{t^{3}}{0}$	$\xrightarrow{\rightarrow \rightarrow-4 \rightarrow \rightarrow- \pm}$
	3	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3}{-t^{3}+3 c_{1}} \tag{1}
\end{equation*}
$$

Figure 8: Slope field plot

Verification of solutions

$$
y=\frac{3}{-t^{3}+3 c_{1}}
$$

Verified OK.

1.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y^{2}}\right) \mathrm{d} y & =\left(t^{2}\right) \mathrm{d} t \\
\left(-t^{2}\right) \mathrm{d} t+\left(\frac{1}{y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-t^{2} \\
& N(t, y)=\frac{1}{y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-t^{2}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\frac{1}{y^{2}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-t^{2} \mathrm{~d} t \\
\phi & =-\frac{t^{3}}{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y^{2}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y^{2}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y^{2}}\right) \mathrm{d} y \\
f(y) & =-\frac{1}{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{t^{3}}{3}-\frac{1}{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{t^{3}}{3}-\frac{1}{y}
$$

The solution becomes

$$
y=-\frac{3}{t^{3}+3 c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{3}{t^{3}+3 c_{1}} \tag{1}
\end{equation*}
$$

Figure 9: Slope field plot

Verification of solutions

$$
y=-\frac{3}{t^{3}+3 c_{1}}
$$

Verified OK.

1.2.4 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =y^{2} t^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2} t^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(t)+f_{1}(t) y+f_{2}(t) y^{2}
$$

Shows that $f_{0}(t)=0, f_{1}(t)=0$ and $f_{2}(t)=t^{2}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{t^{2} u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(t)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(t)+f_{2}^{2} f_{0} u(t)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =2 t \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
t^{2} u^{\prime \prime}(t)-2 t u^{\prime}(t)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(t)=c_{2} t^{3}+c_{1}
$$

The above shows that

$$
u^{\prime}(t)=3 c_{2} t^{2}
$$

Using the above in (1) gives the solution

$$
y=-\frac{3 c_{2}}{c_{2} t^{3}+c_{1}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{3}{t^{3}+c_{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{3}{t^{3}+c_{3}} \tag{1}
\end{equation*}
$$

Figure 10: Slope field plot

Verification of solutions

$$
y=-\frac{3}{t^{3}+c_{3}}
$$

Verified OK.

1.2.5 Maple step by step solution

Let's solve

$$
y^{\prime}-t^{2} y^{2}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y^{2}}=t^{2}
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{y^{2}} d t=\int t^{2} d t+c_{1}
$$

- Evaluate integral

$$
-\frac{1}{y}=\frac{t^{3}}{3}+c_{1}
$$

- \quad Solve for y

$$
y=-\frac{3}{t^{3}+3 c_{1}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve(diff(y(t),t)=(t*y(t))^2,y(t), singsol=all)
```

$$
y(t)=-\frac{3}{t^{3}-3 c_{1}}
$$

Solution by Mathematica
Time used: 0.214 (sec). Leaf size: 22

```
DSolve[y'[t]==(t*y[t])^2,y[t],t,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(t) \rightarrow-\frac{3}{t^{3}+3 c_{1}} \\
& y(t) \rightarrow 0
\end{aligned}
$$

1.3 problem 6

1.3.1 Solving as separable ode
 36

1.3.2 Solving as linear ode 38
1.3.3 Solving as homogeneousTypeD2 ode 39
1.3.4 Solving as first order ode lie symmetry lookup ode 41
1.3.5 Solving as exact ode 45
1.3.6 Maple step by step solution 49

Internal problem ID [12867]
Internal file name [OUTPUT/11519_Monday_November_06_2023_01_31_16_PM_12392343/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-t^{4} y=0
$$

1.3.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =t^{4} y
\end{aligned}
$$

Where $f(t)=t^{4}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =t^{4} d t \\
\int \frac{1}{y} d y & =\int t^{4} d t \\
\ln (y) & =\frac{t^{5}}{5}+c_{1} \\
y & =\mathrm{e}^{\frac{t^{5}}{5}+c_{1}} \\
& =c_{1} \mathrm{e}^{\frac{t^{5}}{5}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{t^{5}} \tag{1}
\end{equation*}
$$

Figure 11: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{t^{5}}
$$

Verified OK.

1.3.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-t^{4} \\
q(t) & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-t^{4} y=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-t^{4} d t} \\
& =\mathrm{e}^{-\frac{t^{5}}{5}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} t}\left(\mathrm{e}^{-\frac{t^{5}}{5}} y\right) & =0
\end{aligned}
$$

Integrating gives

$$
\mathrm{e}^{-\frac{t^{5}}{5}} y=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-\frac{t^{5}}{5}}$ results in

$$
y=c_{1} \mathrm{e}^{t^{5}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{t^{5}} \tag{1}
\end{equation*}
$$

Figure 12: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{5^{5}}{5}}
$$

Verified OK.

1.3.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(t) t$ on the above ode results in new ode in $u(t)$

$$
u^{\prime}(t) t+u(t)-t^{5} u(t)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =\frac{u\left(t^{5}-1\right)}{t}
\end{aligned}
$$

Where $f(t)=\frac{t^{5}-1}{t}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{t^{5}-1}{t} d t \\
\int \frac{1}{u} d u & =\int \frac{t^{5}-1}{t} d t \\
\ln (u) & =\frac{t^{5}}{5}-\ln (t)+c_{2} \\
u & =\mathrm{e}^{\frac{t^{5}}{5}-\ln (t)+c_{2}} \\
& =c_{2} \mathrm{e}^{\frac{t^{5}}{5}-\ln (t)}
\end{aligned}
$$

Which simplifies to

$$
u(t)=\frac{c_{2} \mathrm{e}^{t^{5}}}{t}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =t u \\
& =c_{2} \mathrm{e}^{\frac{t^{5}}{5}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} \mathrm{e}^{\mathrm{t}^{5}} \tag{1}
\end{equation*}
$$

Figure 13: Slope field plot
Verification of solutions

$$
y=c_{2} \mathrm{e}^{\frac{t^{5}}{5}}
$$

Verified OK.

1.3.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=t^{4} y \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 7: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	1	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{\frac{t^{5}}{5}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\frac{t^{5}}{5}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-\frac{t^{5}}{5}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=t^{4} y
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-t^{4} \mathrm{e}^{-\frac{t^{5}}{5}} y \\
S_{y} & =\mathrm{e}^{-\frac{t^{5}}{5}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-\frac{t^{5}}{5}} y=c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-\frac{t^{5}}{5}} y=c_{1}
$$

Which gives

$$
y=c_{1} \mathrm{e}^{t^{5}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=t^{4} y$		$\frac{d S}{d R}=0$
		$\rightarrow \rightarrow$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 40 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\xrightarrow{\rightarrow \rightarrow \longrightarrow \rightarrow \longrightarrow \rightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+29 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
	$R=t$,
	$S=\mathrm{e}^{-\frac{t^{5}}{5}}$	
$\xrightarrow{1} \rightarrow$	$S=\mathrm{e}^{-\frac{5}{5}} y$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+R^{2} \rightarrow \rightarrow \rightarrow \rightarrow}$
,		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-2}+{ }^{2} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
\rightarrow		
		$\xrightarrow[\rightarrow \rightarrow 0]{ }$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{t^{5}} \tag{1}
\end{equation*}
$$

Figure 14: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{t^{\frac{5}{5}}}
$$

Verified OK.

1.3.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =\left(t^{4}\right) \mathrm{d} t \\
\left(-t^{4}\right) \mathrm{d} t+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-t^{4} \\
N(t, y) & =\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-t^{4}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-t^{4} \mathrm{~d} t \\
\phi & =-\frac{t^{5}}{5}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{t^{5}}{5}+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{t^{5}}{5}+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{\frac{t}{5}^{5}+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{t^{5}+c_{1}} \tag{1}
\end{equation*}
$$

Figure 15: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{t^{5}}+c_{1}
$$

Verified OK.

1.3.6 Maple step by step solution

Let's solve

$$
y^{\prime}-t^{4} y=0
$$

- Highest derivative means the order of the ODE is 1
- \quad Separate variables

$$
\frac{y^{\prime}}{y}=t^{4}
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{y} d t=\int t^{4} d t+c_{1}
$$

- Evaluate integral
$\ln (y)=\frac{t^{5}}{5}+c_{1}$
- \quad Solve for y

$$
y=\mathrm{e}^{t^{5}}+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(diff(y(t),t)=t^4*y(t),y(t), singsol=all)
```

$$
y(t)=c_{1} \mathrm{e}^{\frac{t^{5}}{5}}
$$

\checkmark Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 22
DSolve[y'[t]==t^4*y[t],y[t],t,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(t) \rightarrow c_{1} e^{t^{5}} \\
& y(t) \rightarrow 0
\end{aligned}
$$

1.4 problem 7

1.4.1 Solving as quadrature ode . 51
1.4.2 Maple step by step solution . 52

Internal problem ID [12868]
Internal file name [OUTPUT/11520_Monday_November_06_2023_01_31_17_PM_96256138/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 7.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
y^{\prime}-2 y=1
$$

1.4.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{2 y+1} d y & =\int d t \\
\frac{\ln (2 y+1)}{2} & =t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{2 y+1}=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
\sqrt{2 y+1}=c_{2} \mathrm{e}^{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{2}^{2} \mathrm{e}^{2 t}}{2}-\frac{1}{2} \tag{1}
\end{equation*}
$$

Figure 16: Slope field plot
Verification of solutions

$$
y=\frac{c_{2}^{2} \mathrm{e}^{2 t}}{2}-\frac{1}{2}
$$

Verified OK.

1.4.2 Maple step by step solution

Let's solve
$y^{\prime}-2 y=1$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{2 y+1}=1
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{2 y+1} d t=\int 1 d t+c_{1}
$$

- Evaluate integral

$$
\frac{\ln (2 y+1)}{2}=t+c_{1}
$$

- \quad Solve for y

$$
y=-\frac{1}{2}+\frac{\mathrm{e}^{2 t+2 c_{1}}}{2}
$$

Maple trace

```
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(diff(y(t),t)=2*y(t)+1,y(t), singsol=all)
```

$$
y(t)=-\frac{1}{2}+c_{1} \mathrm{e}^{2 t}
$$

\checkmark Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 24

```
DSolve[y'[t]==2*y[t] +1,y[t],t,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(t) \rightarrow-\frac{1}{2}+c_{1} e^{2 t} \\
& y(t) \rightarrow-\frac{1}{2}
\end{aligned}
$$

1.5 problem 8

1.5.1 Solving as quadrature ode . 54
1.5.2 Maple step by step solution . 55

Internal problem ID [12869]
Internal file name [OUTPUT/11521_Monday_November_06_2023_01_31_17_PM_12857361/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
y^{\prime}+y=2
$$

1.5.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-y+2} d y & =\int d t \\
-\ln (-y+2) & =t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{-y+2}=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
\frac{1}{-y+2}=c_{2} \mathrm{e}^{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-t}}{c_{2}}+2 \tag{1}
\end{equation*}
$$

Figure 17: Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-t}}{c_{2}}+2
$$

Verified OK.

1.5.2 Maple step by step solution

Let's solve

$$
y^{\prime}+y=2
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables
$\frac{y^{\prime}}{2-y}=1$
- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{2-y} d t=\int 1 d t+c_{1}
$$

- Evaluate integral

$$
-\ln (2-y)=t+c_{1}
$$

- \quad Solve for y

$$
y=-\mathrm{e}^{-t-c_{1}}+2
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12
dsolve(diff $(y(t), t)=2-y(t), y(t)$, singsol=all)

$$
y(t)=2+\mathrm{e}^{-t} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 20
DSolve[y' $[\mathrm{t}]==2-\mathrm{y}[\mathrm{t}], \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(t) \rightarrow 2+c_{1} e^{-t} \\
& y(t) \rightarrow 2
\end{aligned}
$$

1.6 problem 9

1.6.1 Solving as quadrature ode . 57
1.6.2 Maple step by step solution . 58

Internal problem ID [12870]
Internal file name [OUTPUT/11522_Monday_November_06_2023_01_31_17_PM_23065635/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-\mathrm{e}^{-y}=0
$$

1.6.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \mathrm{e}^{y} d y & =t+c_{1} \\
\mathrm{e}^{y} & =t+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=\ln \left(t+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln \left(t+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 18: Slope field plot
Verification of solutions

$$
y=\ln \left(t+c_{1}\right)
$$

Verified OK.

1.6.2 Maple step by step solution

Let's solve

$$
y^{\prime}-\mathrm{e}^{-y}=0
$$

- Highest derivative means the order of the ODE is 1
- \quad Separate variables
$\frac{y^{\prime}}{\mathrm{e}^{-y}}=1$
- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{\mathrm{e}^{-y}} d t=\int 1 d t+c_{1}
$$

- Evaluate integral

$$
\frac{1}{\mathrm{e}^{-y}}=t+c_{1}
$$

- \quad Solve for y

$$
y=\ln \left(t+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 8

```
dsolve(diff(y(t),t)=exp(-y(t)),y(t), singsol=all)
```

$$
y(t)=\ln \left(t+c_{1}\right)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.369 (sec). Leaf size: 10
DSolve[y'[t] ==Exp[-y[t]],y[t],t,IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \log \left(t+c_{1}\right)
$$

1.7 problem 10

1.7.1 Solving as quadrature ode . 60
1.7.2 Maple step by step solution . 61

Internal problem ID [12871]
Internal file name [OUTPUT/11523_Monday_November_06_2023_01_31_18_PM_88496519/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
x^{\prime}-x^{2}=1
$$

1.7.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{x^{2}+1} d x & =t+c_{1} \\
\arctan (x) & =t+c_{1}
\end{aligned}
$$

Solving for x gives these solutions

$$
x_{1}=\tan \left(t+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\tan \left(t+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 19: Slope field plot

Verification of solutions

$$
x=\tan \left(t+c_{1}\right)
$$

Verified OK.

1.7.2 Maple step by step solution

Let's solve

$$
x^{\prime}-x^{2}=1
$$

- Highest derivative means the order of the ODE is 1

$$
x^{\prime}
$$

- Separate variables

$$
\frac{x^{\prime}}{1+x^{2}}=1
$$

- Integrate both sides with respect to t

$$
\int \frac{x^{\prime}}{1+x^{2}} d t=\int 1 d t+c_{1}
$$

- Evaluate integral

$$
\arctan (x)=t+c_{1}
$$

- \quad Solve for x

$$
x=\tan \left(t+c_{1}\right)
$$

Maple trace

```
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 8

```
dsolve(diff(x(t),t)=1+x(t)^2,x(t), singsol=all)
```

$$
x(t)=\tan \left(t+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.222 (sec). Leaf size: 24
DSolve[$x^{\prime}[t]==1+x[t] \wedge 2, x[t], t$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& x(t) \rightarrow \tan \left(t+c_{1}\right) \\
& x(t) \rightarrow-i \\
& x(t) \rightarrow i
\end{aligned}
$$

1.8 problem 11

1.8.1 Solving as separable ode . 63
1.8.2 Solving as first order ode lie symmetry lookup ode 65
1.8.3 Solving as exact ode . 69
1.8.4 Solving as riccati ode . 77
1.8.5 Maple step by step solution . 75

Internal problem ID [12872]
Internal file name [OUTPUT/11524_Monday_November_06_2023_01_31_18_PM_1173136/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-2 t y^{2}-3 y^{2}=0
$$

1.8.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =y^{2}(2 t+3)
\end{aligned}
$$

Where $f(t)=2 t+3$ and $g(y)=y^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{2}} d y & =2 t+3 d t \\
\int \frac{1}{y^{2}} d y & =\int 2 t+3 d t
\end{aligned}
$$

$$
-\frac{1}{y}=t^{2}+c_{1}+3 t
$$

Which results in

$$
y=-\frac{1}{t^{2}+c_{1}+3 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{t^{2}+c_{1}+3 t} \tag{1}
\end{equation*}
$$

Figure 20: Slope field plot

Verification of solutions

$$
y=-\frac{1}{t^{2}+c_{1}+3 t}
$$

Verified OK.

1.8.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =2 t y^{2}+3 y^{2} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 14: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(t, y) & =\frac{1}{2 t+3} \\
\eta(t, y) & =0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{\frac{1}{2 t+3}} d t
\end{aligned}
$$

Which results in

$$
S=t^{2}+3 t
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=2 t y^{2}+3 y^{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{y} & =1 \\
S_{t} & =2 t+3 \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
t^{2}+3 t=-\frac{1}{y}+c_{1}
$$

Which simplifies to

$$
t^{2}+3 t=-\frac{1}{y}+c_{1}
$$

Which gives

$$
y=\frac{1}{-t^{2}+c_{1}-3 t}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=2 t y^{2}+3 y^{2}$		$\frac{d S}{d R}=\frac{1}{R^{2}}$
14		
(t) $9+$		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-]{ }(\underline{R})$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \infty}$
$\xrightarrow[\rightarrow-\rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$	$R=y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
	$S=t^{2}+3 t$	
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow>]{ }$ (

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{-t^{2}+c_{1}-3 t} \tag{1}
\end{equation*}
$$

Figure 21: Slope field plot

Verification of solutions

$$
y=\frac{1}{-t^{2}+c_{1}-3 t}
$$

Verified OK.

1.8.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y^{2}}\right) \mathrm{d} y & =(2 t+3) \mathrm{d} t \\
(-2 t-3) \mathrm{d} t+\left(\frac{1}{y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-2 t-3 \\
& N(t, y)=\frac{1}{y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-2 t-3) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\frac{1}{y^{2}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-2 t-3 \mathrm{~d} t \\
\phi & =-t^{2}-3 t+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y^{2}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y^{2}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y^{2}}\right) \mathrm{d} y \\
f(y) & =-\frac{1}{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-t^{2}-3 t-\frac{1}{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-t^{2}-3 t-\frac{1}{y}
$$

The solution becomes

$$
y=-\frac{1}{t^{2}+c_{1}+3 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{t^{2}+c_{1}+3 t} \tag{1}
\end{equation*}
$$

Figure 22: Slope field plot

Verification of solutions

$$
y=-\frac{1}{t^{2}+c_{1}+3 t}
$$

Verified OK.

1.8.4 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =2 t y^{2}+3 y^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=2 t y^{2}+3 y^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(t)+f_{1}(t) y+f_{2}(t) y^{2}
$$

Shows that $f_{0}(t)=0, f_{1}(t)=0$ and $f_{2}(t)=2 t+3$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{(2 t+3) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(t)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(t)+f_{2}^{2} f_{0} u(t)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =2 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
(2 t+3) u^{\prime \prime}(t)-2 u^{\prime}(t)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(t)=c_{1}+c_{2}\left(t+\frac{3}{2}\right)^{2}
$$

The above shows that

$$
u^{\prime}(t)=c_{2}(2 t+3)
$$

Using the above in (1) gives the solution

$$
y=-\frac{c_{2}}{c_{1}+c_{2}\left(t+\frac{3}{2}\right)^{2}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{4}{4 t^{2}+4 c_{3}+12 t+9}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{4}{4 t^{2}+4 c_{3}+12 t+9} \tag{1}
\end{equation*}
$$

Figure 23: Slope field plot

Verification of solutions

$$
y=-\frac{4}{4 t^{2}+4 c_{3}+12 t+9}
$$

Verified OK.

1.8.5 Maple step by step solution

Let's solve

$$
y^{\prime}-2 t y^{2}-3 y^{2}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables

$$
\frac{y^{\prime}}{y^{2}}=2 t+3
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{y^{2}} d t=\int(2 t+3) d t+c_{1}
$$

- Evaluate integral

$$
-\frac{1}{y}=t^{2}+c_{1}+3 t
$$

- \quad Solve for y

$$
y=-\frac{1}{t^{2}+c_{1}+3 t}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16
dsolve(diff($y(t), t)=2 * t * y(t) \wedge 2+3 * y(t) \wedge 2, y(t)$, singsol=all)

$$
y(t)=\frac{1}{-t^{2}+c_{1}-3 t}
$$

\checkmark Solution by Mathematica
Time used: 0.218 (sec). Leaf size: 23
DSolve[y' $[t]==2 * t * y[t] \wedge 2+3 * y[t] \wedge 2, y[t], t$, IncludeSingularSolutions $->$ True $]$

$$
\begin{aligned}
& y(t) \rightarrow-\frac{1}{t^{2}+3 t+c_{1}} \\
& y(t) \rightarrow 0
\end{aligned}
$$

1.9 problem 12

1.9.1 Solving as separable ode . 77
1.9.2 Solving as homogeneousTypeD2 ode 79
1.9.3 Solving as differentialType ode 81
1.9.4 Solving as first order ode lie symmetry lookup ode 82
1.9.5 Solving as exact ode . 86
1.9.6 Maple step by step solution . 90

Internal problem ID [12873]
Internal file name [OUTPUT/11525_Monday_November_06_2023_01_31_19_PM_50875666/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{t}{y}=0
$$

1.9.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =\frac{t}{y}
\end{aligned}
$$

Where $f(t)=t$ and $g(y)=\frac{1}{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{y}} d y & =t d t \\
\int \frac{1}{\frac{1}{y}} d y & =\int t d t \\
\frac{y^{2}}{2} & =\frac{t^{2}}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\sqrt{t^{2}+2 c_{1}} \\
& y=-\sqrt{t^{2}+2 c_{1}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{t^{2}+2 c_{1}} \tag{1}\\
& y=-\sqrt{t^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Figure 24: Slope field plot

Verification of solutions

$$
y=\sqrt{t^{2}+2 c_{1}}
$$

Verified OK.

$$
y=-\sqrt{t^{2}+2 c_{1}}
$$

Verified OK.

1.9.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(t) t$ on the above ode results in new ode in $u(t)$

$$
u^{\prime}(t) t+u(t)-\frac{1}{u(t)}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =-\frac{u^{2}-1}{t u}
\end{aligned}
$$

Where $f(t)=-\frac{1}{t}$ and $g(u)=\frac{u^{2}-1}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}-1}{u}} d u & =-\frac{1}{t} d t \\
\int \frac{1}{\frac{u^{2}-1}{u}} d u & =\int-\frac{1}{t} d t \\
\frac{\ln (u-1)}{2}+\frac{\ln (u+1)}{2} & =-\ln (t)+c_{2}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{2}\right)(\ln (u-1)+\ln (u+1)) & =-\ln (t)+2 c_{2} \\
\ln (u-1)+\ln (u+1) & =(2)\left(-\ln (t)+2 c_{2}\right) \\
& =-2 \ln (t)+4 c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (u-1)+\ln (u+1)}=\mathrm{e}^{-2 \ln (t)+2 c_{2}}
$$

Which simplifies to

$$
\begin{aligned}
u^{2}-1 & =\frac{2 c_{2}}{t^{2}} \\
& =\frac{c_{3}}{t^{2}}
\end{aligned}
$$

The solution is

$$
u(t)^{2}-1=\frac{c_{3}}{t^{2}}
$$

Replacing $u(t)$ in the above solution by $\frac{y}{t}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \frac{y^{2}}{t^{2}}-1=\frac{c_{3}}{t^{2}} \\
& \frac{y^{2}}{t^{2}}-1=\frac{c_{3}}{t^{2}}
\end{aligned}
$$

Which simplifies to

$$
-(t-y)(y+t)=c_{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-(t-y)(y+t)=c_{3} \tag{1}
\end{equation*}
$$

Figure 25: Slope field plot

Verification of solutions

$$
-(t-y)(y+t)=c_{3}
$$

Verified OK.

1.9.3 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{t}{y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(y) d y=(t) d t \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(t) d t=d\left(\frac{t^{2}}{2}\right)
$$

Hence (2) becomes

$$
(y) d y=d\left(\frac{t^{2}}{2}\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\sqrt{t^{2}+2 c_{1}}+c_{1} \\
& y=-\sqrt{t^{2}+2 c_{1}}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{t^{2}+2 c_{1}}+c_{1} \tag{1}\\
& y=-\sqrt{t^{2}+2 c_{1}}+c_{1} \tag{2}
\end{align*}
$$

Figure 26: Slope field plot
Verification of solutions

$$
y=\sqrt{t^{2}+2 c_{1}}+c_{1}
$$

Verified OK.

$$
y=-\sqrt{t^{2}+2 c_{1}}+c_{1}
$$

Verified OK.

1.9.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{t}{y} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 17: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=\frac{1}{t} \\
& \eta(t, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{\frac{1}{t}} d t
\end{aligned}
$$

Which results in

$$
S=\frac{t^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{t}{y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{y} & =1 \\
S_{t} & =t \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\frac{t^{2}}{2}=\frac{y^{2}}{2}+c_{1}
$$

Which simplifies to

$$
\frac{t^{2}}{2}=\frac{y^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{t}{y}$		$\frac{d S}{d R}=R$
为		

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{t^{2}}{2}=\frac{y^{2}}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 27: Slope field plot
Verification of solutions

$$
\frac{t^{2}}{2}=\frac{y^{2}}{2}+c_{1}
$$

Verified OK.

1.9.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(y) \mathrm{d} y & =(t) \mathrm{d} t \\
(-t) \mathrm{d} t+(y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-t \\
N(t, y) & =y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-t) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(y) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-t \mathrm{~d} t \\
\phi & =-\frac{t^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y$. Therefore equation (4) becomes

$$
\begin{equation*}
y=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(y) \mathrm{d} y \\
f(y) & =\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{t^{2}}{2}+\frac{y^{2}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{t^{2}}{2}+\frac{y^{2}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{t^{2}}{2}+\frac{y^{2}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 28: Slope field plot
Verification of solutions

$$
-\frac{t^{2}}{2}+\frac{y^{2}}{2}=c_{1}
$$

Verified OK.

1.9.6 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{t}{y}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables

$$
y^{\prime} y=t
$$

- Integrate both sides with respect to t

$$
\int y^{\prime} y d t=\int t d t+c_{1}
$$

- Evaluate integral

$$
\frac{y^{2}}{2}=\frac{t^{2}}{2}+c_{1}
$$

- \quad Solve for y

$$
\left\{y=\sqrt{t^{2}+2 c_{1}}, y=-\sqrt{t^{2}+2 c_{1}}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(diff(y(t),t)=t/y(t),y(t), singsol=all)
```

$$
\begin{aligned}
& y(t)=\sqrt{t^{2}+c_{1}} \\
& y(t)=-\sqrt{t^{2}+c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.14 (sec). Leaf size: 35
DSolve[y' $[\mathrm{t}]==\mathrm{t} / \mathrm{y}[\mathrm{t}], \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(t) \rightarrow-\sqrt{t^{2}+2 c_{1}} \\
& y(t) \rightarrow \sqrt{t^{2}+2 c_{1}}
\end{aligned}
$$

1.10 problem 13

$$
\text { 1.10.1 Solving as separable ode . } 92
$$

1.10.2 Solving as first order ode lie symmetry lookup ode 94
1.10.3 Solving as exact ode . 98
1.10.4 Maple step by step solution . 102

Internal problem ID [12874]
Internal file name [OUTPUT/11526_Monday_November_06_2023_01_31_20_PM_81990854/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{t}{t^{2} y+y}=0
$$

1.10.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =\frac{t}{y\left(t^{2}+1\right)}
\end{aligned}
$$

Where $f(t)=\frac{t}{t^{2}+1}$ and $g(y)=\frac{1}{y}$. Integrating both sides gives

$$
\frac{1}{\frac{1}{y}} d y=\frac{t}{t^{2}+1} d t
$$

$$
\begin{aligned}
\int \frac{1}{\frac{1}{y}} d y & =\int \frac{t}{t^{2}+1} d t \\
\frac{y^{2}}{2} & =\frac{\ln \left(t^{2}+1\right)}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\sqrt{\ln \left(t^{2}+1\right)+2 c_{1}} \\
& y=-\sqrt{\ln \left(t^{2}+1\right)+2 c_{1}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{\ln \left(t^{2}+1\right)+2 c_{1}} \tag{1}\\
& y=-\sqrt{\ln \left(t^{2}+1\right)+2 c_{1}} \tag{2}
\end{align*}
$$

Figure 29: Slope field plot

Verification of solutions

$$
y=\sqrt{\ln \left(t^{2}+1\right)+2 c_{1}}
$$

Verified OK.

$$
y=-\sqrt{\ln \left(t^{2}+1\right)+2 c_{1}}
$$

Verified OK.

1.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{t}{y\left(t^{2}+1\right)} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 20: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=\frac{t^{2}+1}{t} \\
& \eta(t, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{\frac{t^{2}+1}{t}} d t
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(t^{2}+1\right)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{t}{y\left(t^{2}+1\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{y} & =1 \\
S_{t} & =\frac{t}{t^{2}+1} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\frac{\ln \left(t^{2}+1\right)}{2}=\frac{y^{2}}{2}+c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(t^{2}+1\right)}{2}=\frac{y^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

| Original ode in t, y coordinates |
| :---: | :---: | :---: | \left\lvert\, | Canonical
 coordinates
 transformation |
| :---: | | ODE in canonical coordinates |
| :---: |
| (R, S) |\right.

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(t^{2}+1\right)}{2}=\frac{y^{2}}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 30: Slope field plot

Verification of solutions

$$
\frac{\ln \left(t^{2}+1\right)}{2}=\frac{y^{2}}{2}+c_{1}
$$

Verified OK.

1.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(y) \mathrm{d} y & =\left(\frac{t}{t^{2}+1}\right) \mathrm{d} t \\
\left(-\frac{t}{t^{2}+1}\right) \mathrm{d} t+(y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-\frac{t}{t^{2}+1} \\
& N(t, y)=y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{t}{t^{2}+1}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(y) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\frac{t}{t^{2}+1} \mathrm{~d} t \\
\phi & =-\frac{\ln \left(t^{2}+1\right)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y$. Therefore equation (4) becomes

$$
\begin{equation*}
y=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(y) \mathrm{d} y \\
f(y) & =\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\ln \left(t^{2}+1\right)}{2}+\frac{y^{2}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\ln \left(t^{2}+1\right)}{2}+\frac{y^{2}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{\ln \left(t^{2}+1\right)}{2}+\frac{y^{2}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 31: Slope field plot

Verification of solutions

$$
-\frac{\ln \left(t^{2}+1\right)}{2}+\frac{y^{2}}{2}=c_{1}
$$

Verified OK.

1.10.4 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{t}{t^{2} y+y}=0
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- Separate variables

$$
y^{\prime} y=\frac{t}{t^{2}+1}
$$

- Integrate both sides with respect to t

$$
\int y^{\prime} y d t=\int \frac{t}{t^{2}+1} d t+c_{1}
$$

- Evaluate integral

$$
\frac{y^{2}}{2}=\frac{\ln \left(t^{2}+1\right)}{2}+c_{1}
$$

- \quad Solve for y

$$
\left\{y=\sqrt{\ln \left(t^{2}+1\right)+2 c_{1}}, y=-\sqrt{\ln \left(t^{2}+1\right)+2 c_{1}}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 29

```
dsolve(diff(y(t),t)=t/(t^2*y(t)+y(t)),y(t), singsol=all)
```

$$
\begin{aligned}
& y(t)=\sqrt{\ln \left(t^{2}+1\right)+c_{1}} \\
& y(t)=-\sqrt{\ln \left(t^{2}+1\right)+c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.162 (sec). Leaf size: 41
DSolve[y' $[t]==t /(t \wedge 2 * y[t]+y[t]), y[t], t$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(t) \rightarrow-\sqrt{\log \left(t^{2}+1\right)+2 c_{1}} \\
& y(t) \rightarrow \sqrt{\log \left(t^{2}+1\right)+2 c_{1}}
\end{aligned}
$$

1.11 problem 14

$$
\text { 1.11.1 Solving as separable ode . } 104
$$

1.11.2 Solving as first order ode lie symmetry lookup ode 106
1.11.3 Solving as exact ode . 110
1.11.4 Maple step by step solution . 114

Internal problem ID [12875]
Internal file name [OUTPUT/11527_Monday_November_06_2023_01_31_20_PM_17276630/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-t y^{\frac{1}{3}}=0
$$

1.11.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =t y^{\frac{1}{3}}
\end{aligned}
$$

Where $f(t)=t$ and $g(y)=y^{\frac{1}{3}}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{\frac{1}{3}}} d y & =t d t \\
\int \frac{1}{y^{\frac{1}{3}}} d y & =\int t d t \\
\frac{3 y^{\frac{2}{3}}}{2} & =\frac{t^{2}}{2}+c_{1}
\end{aligned}
$$

The solution is

$$
\frac{3 y^{\frac{2}{3}}}{2}-\frac{t^{2}}{2}-c_{1}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{3 y^{\frac{2}{3}}}{2}-\frac{t^{2}}{2}-c_{1}=0 \tag{1}
\end{equation*}
$$

Figure 32: Slope field plot

Verification of solutions

$$
\frac{3 y^{\frac{2}{3}}}{2}-\frac{t^{2}}{2}-c_{1}=0
$$

Verified OK.

1.11.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =t y^{\frac{1}{3}} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 23: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=\frac{1}{t} \\
& \eta(t, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{\frac{1}{t}} d t
\end{aligned}
$$

Which results in

$$
S=\frac{t^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=t y^{\frac{1}{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{y} & =1 \\
S_{t} & =t \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{\frac{1}{3}}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{\frac{1}{3}}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{3 R^{\frac{2}{3}}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\frac{t^{2}}{2}=\frac{3 y^{\frac{2}{3}}}{2}+c_{1}
$$

Which simplifies to

$$
\frac{t^{2}}{2}=\frac{3 y^{\frac{2}{3}}}{2}+c_{1}
$$

Which gives

$$
y=\frac{\left(3 t^{2}-6 c_{1}\right)^{\frac{3}{2}}}{27}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=t y^{\frac{1}{3}}$	$\begin{aligned} & R=y \\ & S=\frac{t^{2}}{2} \end{aligned}$	

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(3 t^{2}-6 c_{1}\right)^{\frac{3}{2}}}{27} \tag{1}
\end{equation*}
$$

Figure 33: Slope field plot

Verification of solutions

$$
y=\frac{\left(3 t^{2}-6 c_{1}\right)^{\frac{3}{2}}}{27}
$$

Verified OK.

1.11.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y^{\frac{1}{3}}}\right) \mathrm{d} y & =(t) \mathrm{d} t \\
(-t) \mathrm{d} t+\left(\frac{1}{y^{\frac{1}{3}}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-t \\
& N(t, y)=\frac{1}{y^{\frac{1}{3}}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-t) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\frac{1}{y^{\frac{1}{3}}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-t \mathrm{~d} t \\
\phi & =-\frac{t^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y^{\frac{1}{3}}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y^{\frac{1}{3}}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y^{\frac{1}{3}}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y^{\frac{1}{3}}}\right) \mathrm{d} y \\
f(y) & =\frac{3 y^{\frac{2}{3}}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{t^{2}}{2}+\frac{3 y^{\frac{2}{3}}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{t^{2}}{2}+\frac{3 y^{\frac{2}{3}}}{2}
$$

The solution becomes

$$
y=\frac{\left(3 t^{2}+6 c_{1}\right)^{\frac{3}{2}}}{27}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(3 t^{2}+6 c_{1}\right)^{\frac{3}{2}}}{27} \tag{1}
\end{equation*}
$$

Figure 34: Slope field plot
Verification of solutions

$$
y=\frac{\left(3 t^{2}+6 c_{1}\right)^{\frac{3}{2}}}{27}
$$

Verified OK.

1.11.4 Maple step by step solution

Let's solve

$$
y^{\prime}-t y^{\frac{1}{3}}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{y^{\frac{1}{3}}}=t
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{y^{\frac{1}{3}}} d t=\int t d t+c_{1}
$$

- Evaluate integral

$$
\frac{3 y^{\frac{2}{3}}}{2}=\frac{t^{2}}{2}+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\left(3 t^{2}+6 c_{1}\right)^{\frac{3}{2}}}{27}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16
dsolve(diff($y(t), t)=t * y(t)^{\wedge}(1 / 3), y(t)$, singsol=all)

$$
y(t)^{\frac{2}{3}}-\frac{t^{2}}{3}-c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 0.346 (sec). Leaf size: 31
DSolve[y' $[\mathrm{t}]==\mathrm{t} * \mathrm{y}[\mathrm{t}]$ ~ $(1 / 3), \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(t) \rightarrow \frac{\left(t^{2}+2 c_{1}\right)^{3 / 2}}{3 \sqrt{3}} \\
& y(t) \rightarrow 0
\end{aligned}
$$

1.12 problem 15

> 1.12.1 Solving as quadrature ode
1.12.2 Maple step by step solution . 117

Internal problem ID [12876]
Internal file name [OUTPUT/11528_Monday_November_06_2023_01_31_21_PM_43900639/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-\frac{1}{2 y+1}=0
$$

1.12.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{array}{r}
\int(2 y+1) d y=t+c_{1} \\
y^{2}+y=t+c_{1}
\end{array}
$$

Solving for y gives these solutions

$$
\begin{aligned}
& y_{1}=-\frac{1}{2}-\frac{\sqrt{1+4 c_{1}+4 t}}{2} \\
& y_{2}=-\frac{1}{2}+\frac{\sqrt{1+4 c_{1}+4 t}}{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-\frac{1}{2}-\frac{\sqrt{1+4 c_{1}+4 t}}{2} \tag{1}\\
& y=-\frac{1}{2}+\frac{\sqrt{1+4 c_{1}+4 t}}{2} \tag{2}
\end{align*}
$$

Figure 35: Slope field plot
Verification of solutions

$$
y=-\frac{1}{2}-\frac{\sqrt{1+4 c_{1}+4 t}}{2}
$$

Verified OK.

$$
y=-\frac{1}{2}+\frac{\sqrt{1+4 c_{1}+4 t}}{2}
$$

Verified OK.

1.12.2 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{1}{2 y+1}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables

$$
(2 y+1) y^{\prime}=1
$$

- Integrate both sides with respect to t

$$
\int(2 y+1) y^{\prime} d t=\int 1 d t+c_{1}
$$

- Evaluate integral

$$
y^{2}+y=t+c_{1}
$$

- \quad Solve for y

$$
\left\{y=-\frac{1}{2}-\frac{\sqrt{1+4 c_{1}+4 t}}{2}, y=-\frac{1}{2}+\frac{\sqrt{1+4 c_{1}+4 t}}{2}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 35

```
dsolve(diff(y(t),t)=1/(2*y(t)+1),y(t), singsol=all)
```

$$
\begin{aligned}
& y(t)=-\frac{1}{2}-\frac{\sqrt{1+4 c_{1}+4 t}}{2} \\
& y(t)=-\frac{1}{2}+\frac{\sqrt{1+4 c_{1}+4 t}}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.14 (sec). Leaf size: 49
DSolve[y'[t]==1/(2*y[t]+1),y[t],t,IncludeSingularSolutions -> True]

$$
\begin{aligned}
y(t) & \rightarrow \frac{1}{2}\left(-1-\sqrt{4 t+1+4 c_{1}}\right) \\
y(t) & \rightarrow \frac{1}{2}\left(-1+\sqrt{4 t+1+4 c_{1}}\right)
\end{aligned}
$$

1.13 problem 16

$$
\text { 1.13.1 Solving as separable ode . } 119
$$

1.13.2 Solving as linear ode . 121
1.13.3 Solving as homogeneousTypeMapleC ode 122
1.13.4 Solving as first order ode lie symmetry lookup ode 125
1.13.5 Solving as exact ode . 129
1.13.6 Maple step by step solution . 133

Internal problem ID [12877]
Internal file name [OUTPUT/11529_Monday_November_06_2023_01_31_21_PM_97717993/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeMapleC", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{2 y+1}{t}=0
$$

1.13.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =\frac{2 y+1}{t}
\end{aligned}
$$

Where $f(t)=\frac{1}{t}$ and $g(y)=2 y+1$. Integrating both sides gives

$$
\frac{1}{2 y+1} d y=\frac{1}{t} d t
$$

$$
\begin{aligned}
\int \frac{1}{2 y+1} d y & =\int \frac{1}{t} d t \\
\frac{\ln (2 y+1)}{2} & =\ln (t)+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{2 y+1}=\mathrm{e}^{\ln (t)+c_{1}}
$$

Which simplifies to

$$
\sqrt{2 y+1}=c_{2} t
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{2}^{2} t^{2} \mathrm{e}^{2 c_{1}}}{2}-\frac{1}{2} \tag{1}
\end{equation*}
$$

Figure 36: Slope field plot
Verification of solutions

$$
y=\frac{c_{2}^{2} t^{2} \mathrm{e}^{2 c_{1}}}{2}-\frac{1}{2}
$$

Verified OK.

1.13.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-\frac{2}{t} \\
& q(t)=\frac{1}{t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 y}{t}=\frac{1}{t}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{t} d t} \\
& =\frac{1}{t^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{1}{t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{y}{t^{2}}\right) & =\left(\frac{1}{t^{2}}\right)\left(\frac{1}{t}\right) \\
\mathrm{d}\left(\frac{y}{t^{2}}\right) & =\frac{1}{t^{3}} \mathrm{~d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{t^{2}} & =\int \frac{1}{t^{3}} \mathrm{~d} t \\
\frac{y}{t^{2}} & =-\frac{1}{2 t^{2}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{t^{2}}$ results in

$$
y=-\frac{1}{2}+t^{2} c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{2}+t^{2} c_{1} \tag{1}
\end{equation*}
$$

Figure 37: Slope field plot
Verification of solutions

$$
y=-\frac{1}{2}+t^{2} c_{1}
$$

Verified OK.

1.13.3 Solving as homogeneousTypeMapleC ode

Let $Y=y+y_{0}$ and $X=t+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=\frac{2 Y(X)+2 y_{0}+1}{X+x_{0}}
$$

Solving for possible values of x_{0} and y_{0} which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
& x_{0}=0 \\
& y_{0}=-\frac{1}{2}
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=\frac{2 Y(X)}{X}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =\frac{2 Y}{X} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order n if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=2 Y$ and $N=X$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =2 u \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{u(X)}{X}
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)-\frac{u(X)}{X}=0
$$

Or

$$
\left(\frac{d}{d X} u(X)\right) X-u(X)=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =\frac{u}{X}
\end{aligned}
$$

Where $f(X)=\frac{1}{X}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{1}{X} d X \\
\int \frac{1}{u} d u & =\int \frac{1}{X} d X \\
\ln (u) & =\ln (X)+c_{2} \\
u & =\mathrm{e}^{\ln (X)+c_{2}} \\
& =c_{2} X
\end{aligned}
$$

Now u in the above solution is replaced back by Y using $u=\frac{Y}{X}$ which results in the solution

$$
Y(X)=X^{2} c_{2}
$$

Using the solution for $Y(X)$

$$
Y(X)=X^{2} c_{2}
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
& Y=y+y_{0} \\
& X=t+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
& Y=y-\frac{1}{2} \\
& X=t
\end{aligned}
$$

Then the solution in y becomes

$$
y+\frac{1}{2}=c_{2} t^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y+\frac{1}{2}=c_{2} t^{2} \tag{1}
\end{equation*}
$$

Figure 38: Slope field plot

Verification of solutions

$$
y+\frac{1}{2}=c_{2} t^{2}
$$

Verified OK.

1.13.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{2 y+1}{t} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 27: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=t^{2} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{t^{2}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{t^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{2 y+1}{t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-\frac{2 y}{t^{3}} \\
S_{y} & =\frac{1}{t^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{t^{3}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{3}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{2 R^{2}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\frac{y}{t^{2}}=-\frac{1}{2 t^{2}}+c_{1}
$$

Which simplifies to

$$
\frac{y}{t^{2}}=-\frac{1}{2 t^{2}}+c_{1}
$$

Which gives

$$
y=-\frac{1}{2}+t^{2} c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{2 y+1}{t}$		$\frac{d S}{d R}=\frac{1}{R^{3}}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
L-		
	$R=t$	
$\xrightarrow[\rightarrow-4 \rightarrow \rightarrow \pm]{ }$	$S=\frac{y}{t^{2}}$	
		$\xrightarrow[\rightarrow \rightarrow \rightarrow 0]{ }$
		$\xrightarrow{\text { a }} \rightarrow \rightarrow \rightarrow+{ }_{\text {d }}$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{2}+t^{2} c_{1} \tag{1}
\end{equation*}
$$

Figure 39: Slope field plot
Verification of solutions

$$
y=-\frac{1}{2}+t^{2} c_{1}
$$

Verified OK.

1.13.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{2 y+1}\right) \mathrm{d} y & =\left(\frac{1}{t}\right) \mathrm{d} t \\
\left(-\frac{1}{t}\right) \mathrm{d} t+\left(\frac{1}{2 y+1}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-\frac{1}{t} \\
N(t, y) & =\frac{1}{2 y+1}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{t}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\frac{1}{2 y+1}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\frac{1}{t} \mathrm{~d} t \\
\phi & =-\ln (t)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{2 y+1}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{2 y+1}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{2 y+1}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{2 y+1}\right) \mathrm{d} y \\
f(y) & =\frac{\ln (2 y+1)}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (t)+\frac{\ln (2 y+1)}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (t)+\frac{\ln (2 y+1)}{2}
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{2 c_{1}} t^{2}}{2}-\frac{1}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{2 c_{1}} t^{2}}{2}-\frac{1}{2} \tag{1}
\end{equation*}
$$

Figure 40: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{2 c_{1}} t^{2}}{2}-\frac{1}{2}
$$

Verified OK.

1.13.6 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{2 y+1}{t}=0
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{2 y+1}=\frac{1}{t}$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{2 y+1} d t=\int \frac{1}{t} d t+c_{1}$
- Evaluate integral
$\frac{\ln (2 y+1)}{2}=\ln (t)+c_{1}$
- \quad Solve for y
$y=\frac{\mathrm{e}^{2 c_{1}} t^{2}}{2}-\frac{1}{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

```
dsolve(diff(y(t),t)=(2*y(t)+1)/t,y(t), singsol=all)
```

$$
y(t)=-\frac{1}{2}+t^{2} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 22
DSolve[y'[t]==(2*y[t]+1)/t,y[t],t,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(t) \rightarrow-\frac{1}{2}+c_{1} t^{2} \\
& y(t) \rightarrow-\frac{1}{2}
\end{aligned}
$$

1.14 problem 17

1.14.1 Solving as quadrature ode . 135
1.14.2 Maple step by step solution . 136

Internal problem ID [12878]
Internal file name [OUTPUT/11530_Monday_November_06_2023_01_31_22_PM_26690807/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
y^{\prime}-y(-y+1)=0
$$

1.14.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{y(y-1)} d y & =\int d t \\
-\ln (y-1)+\ln (y) & =t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\ln (y-1)+\ln (y)}=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
\frac{y}{y-1}=c_{2} \mathrm{e}^{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{2} \mathrm{e}^{t}}{-1+c_{2} \mathrm{e}^{t}} \tag{1}
\end{equation*}
$$

Figure 41: Slope field plot

Verification of solutions

$$
y=\frac{c_{2} \mathrm{e}^{t}}{-1+c_{2} \mathrm{e}^{t}}
$$

Verified OK.

1.14.2 Maple step by step solution

Let's solve

$$
y^{\prime}-y(-y+1)=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y(-y+1)}=1
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{y(-y+1)} d t=\int 1 d t+c_{1}
$$

- Evaluate integral

$$
-\ln (y-1)+\ln (y)=t+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\mathrm{e}^{t+c_{1}}}{-1+\mathrm{e}^{t+c_{1}}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve(diff(y(t),t)=y(t)*(1-y(t)),y(t), singsol=all)
```

$$
y(t)=\frac{1}{1+\mathrm{e}^{-t} c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 0.394 (sec). Leaf size: 29
DSolve[y'[t]==y[t]*(1-y[t]),y[t],t,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(t) \rightarrow \frac{e^{t}}{e^{t}+e^{c_{1}}} \\
& y(t) \rightarrow 0 \\
& y(t) \rightarrow 1
\end{aligned}
$$

1.15 problem 18

1.15.1 Solving as separable ode . 138
1.15.2 Solving as differentialType ode 142
1.15.3 Solving as first order ode lie symmetry lookup ode 147
1.15.4 Solving as exact ode . 151
1.15.5 Maple step by step solution . 155

Internal problem ID [12879]
Internal file name [OUTPUT/11531_Monday_November_06_2023_01_31_23_PM_37223931/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{4 t}{1+3 y^{2}}=0
$$

1.15.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =\frac{4 t}{3 y^{2}+1}
\end{aligned}
$$

Where $f(t)=4 t$ and $g(y)=\frac{1}{3 y^{2}+1}$. Integrating both sides gives

$$
\frac{1}{\frac{1}{3 y^{2}+1}} d y=4 t d t
$$

$$
\begin{aligned}
\int \frac{1}{\frac{1}{3 y^{2}+1}} d y & =\int 4 t d t \\
y^{3}+y & =2 t^{2}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
y= & \frac{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}{6} \\
& -\frac{2}{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}} \\
y= & -\frac{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}{12} \\
& +\frac{1}{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}} \\
& +\frac{i \sqrt{3}\left(\frac{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}{6}+\frac{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}{2}\right)}{2} \\
y= & -\frac{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}{12} \\
& +\frac{1}{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}} \\
& i \sqrt{3} \\
& \left.-\frac{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}{6}+\frac{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}{2}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \frac{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}{6} \tag{1}\\
& -\frac{2}{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}} \tag{2}\\
y= & -\frac{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}{12} \\
& +\frac{1}{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}} \\
& +\frac{i \sqrt{3}\left(\frac{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}{6}+\frac{2}{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}\right)}{2} \tag{3}\\
y= & -\frac{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}{12} \\
& +\frac{1}{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}} \\
& i \sqrt{3}\left(\frac{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}{6}+\frac{2}{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}\right) \\
& -\frac{2}{2}
\end{align*}
$$

Figure 42: Slope field plot

Verification of solutions

$$
\begin{aligned}
y= & \frac{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}{6} \\
& -\frac{2}{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}
\end{aligned}
$$

Verified OK.

$$
\begin{aligned}
y= & -\frac{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}{12} \\
& +\frac{1}{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}} \\
& +\frac{i \sqrt{3}\left(\frac{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}{6}+\frac{2}{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}\right)}{2}
\end{aligned}
$$

Verified OK.

$$
\begin{aligned}
y= & -\frac{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}{12} \\
& +\frac{1}{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}} \\
& -\frac{i \sqrt{3}\left(\frac{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}{6}+\frac{2}{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}\right)}{2}
\end{aligned}
$$

Verified OK.

1.15.2 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{4 t}{1+3 y^{2}} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
\left(3 y^{2}+1\right) d y=(4 t) d t \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(4 t) d t=d\left(2 t^{2}\right)
$$

Hence (2) becomes

$$
\left(3 y^{2}+1\right) d y=d\left(2 t^{2}\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\frac{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}{6}-\frac{2}{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81}\right.} \\
& y=-\frac{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}{12}+\frac{1}{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+8}\right.} \\
& y=-\frac{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}{12}+\frac{1}{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+8}\right.}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
y= & \frac{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}{6} \\
& -\frac{2}{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}+c_{1} \\
y= & -\frac{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}{12} \\
& +\frac{1}{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}} \\
& i \sqrt{3\left(\frac{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}{6}+\frac{2}{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}\right)} \\
& +c_{1} \\
y= & -\frac{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}{12} \\
& +\frac{1}{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}} \\
& i \sqrt{3}\left(\frac{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}{6}+\frac{2}{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}\right) \\
& -\frac{2}{2} \\
& +c_{1}
\end{aligned}
$$

Figure 43: Slope field plot

Verification of solutions

$$
\begin{aligned}
y= & \frac{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}{6} \\
& -\frac{2}{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}+c_{1}
\end{aligned}
$$

Verified OK.

$$
\begin{aligned}
y= & -\frac{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}{12} \\
& +\frac{1}{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}} \\
& i \sqrt{3}\left(\frac{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}{6}+\frac{2}{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}\right) \\
& +\frac{c_{1}}{2}
\end{aligned}
$$

Verified OK.

$$
\begin{aligned}
y & =-\frac{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}{12} \\
& +\frac{1}{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}} \\
& i \sqrt{3}\left(\frac{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}{6}+\frac{2}{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}\right) \\
& -\frac{c_{1}}{2}
\end{aligned}
$$

Verified OK.

1.15.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{4 t}{3 y^{2}+1} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 31: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=\frac{1}{4 t} \\
& \eta(t, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{\frac{1}{4 t}} d t
\end{aligned}
$$

Which results in

$$
S=2 t^{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{4 t}{3 y^{2}+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{y} & =1 \\
S_{t} & =4 t \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=3 y^{2}+1 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=3 R^{2}+1
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R^{3}+R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
2 t^{2}=y^{3}+c_{1}+y
$$

Which simplifies to

$$
2 t^{2}=y^{3}+c_{1}+y
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{4 t}{3 y^{2}+1}$		$\frac{d S}{d R}=3 R^{2}+1$
$\xrightarrow{\text { l }} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty$		
成		
$\cdots{ }_{\text {did }}$		
	$R=y$	
	$S=2 t^{2}$	
为		
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty}$		

Summary

The solution(s) found are the following

$$
\begin{equation*}
2 t^{2}=y^{3}+c_{1}+y \tag{1}
\end{equation*}
$$

Figure 44: Slope field plot

Verification of solutions

$$
2 t^{2}=y^{3}+c_{1}+y
$$

Verified OK.

1.15.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{4}+\frac{3 y^{2}}{4}\right) \mathrm{d} y & =(t) \mathrm{d} t \\
(-t) \mathrm{d} t+\left(\frac{1}{4}+\frac{3 y^{2}}{4}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-t \\
& N(t, y)=\frac{1}{4}+\frac{3 y^{2}}{4}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-t) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\frac{1}{4}+\frac{3 y^{2}}{4}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-t \mathrm{~d} t \\
\phi & =-\frac{t^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{4}+\frac{3 y^{2}}{4}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{4}+\frac{3 y^{2}}{4}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{4}+\frac{3 y^{2}}{4}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{4}+\frac{3 y^{2}}{4}\right) \mathrm{d} y \\
f(y) & =\frac{1}{4} y+\frac{1}{4} y^{3}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{1}{2} t^{2}+\frac{1}{4} y+\frac{1}{4} y^{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{1}{2} t^{2}+\frac{1}{4} y+\frac{1}{4} y^{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{t^{2}}{2}+\frac{y}{4}+\frac{y^{3}}{4}=c_{1} \tag{1}
\end{equation*}
$$

Figure 45: Slope field plot

Verification of solutions

$$
-\frac{t^{2}}{2}+\frac{y}{4}+\frac{y^{3}}{4}=c_{1}
$$

Verified OK.

1.15.5 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{4 t}{1+3 y^{2}}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- \quad Separate variables

$$
\left(1+3 y^{2}\right) y^{\prime}=4 t
$$

- Integrate both sides with respect to t

$$
\int\left(1+3 y^{2}\right) y^{\prime} d t=\int 4 t d t+c_{1}
$$

- Evaluate integral

$$
y^{3}+y=2 t^{2}+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}{6}-\frac{2}{\left(216 t^{2}+108 c_{1}+12 \sqrt{324 t^{4}+324 t^{2} c_{1}+81 c_{1}^{2}+12}\right)^{\frac{1}{3}}}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 282

```
dsolve(diff(y(t),t)=4*t/(1+3*y(t)^2),y(t), singsol=all)
```

$y(t)=\frac{\left(27 t^{2}+54 c_{1}+3 \sqrt{81 t^{4}+324 t^{2} c_{1}+324 c_{1}^{2}+3}\right)^{\frac{2}{3}}-3}{3\left(27 t^{2}+54 c_{1}+3 \sqrt{81 t^{4}+324 t^{2} c_{1}+324 c_{1}^{2}+3}\right)^{\frac{1}{3}}}$
$y(t)=-\frac{(1+i \sqrt{3})\left(27 t^{2}+54 c_{1}+3 \sqrt{81 t^{4}+324 t^{2} c_{1}+324 c_{1}^{2}+3}\right)^{\frac{2}{3}}+3 i \sqrt{3}-3}{6\left(27 t^{2}+54 c_{1}+3 \sqrt{81 t^{4}+324 t^{2} c_{1}+324 c_{1}^{2}+3}\right)^{\frac{1}{3}}}$
$y(t)$
$=\frac{i\left(27 t^{2}+54 c_{1}+3 \sqrt{81 t^{4}+324 t^{2} c_{1}+324 c_{1}^{2}+3}\right)^{\frac{2}{3}} \sqrt{3}-\left(27 t^{2}+54 c_{1}+3 \sqrt{81 t^{4}+324 t^{2} c_{1}+324 c_{1}^{2}+3}\right)}{6\left(27 t^{2}+54 c_{1}+3 \sqrt{81 t^{4}+324 t^{2} c_{1}+324 c_{1}^{2}+3}\right)^{\frac{1}{3}}}$
\checkmark Solution by Mathematica
Time used: 3.132 (sec). Leaf size: 298
DSolve[y' [t] ==4*t/(1+3*y[t]~2),y[t],t,IncludeSingularSolutions -> True]

$$
\begin{aligned}
y(t) & \rightarrow \frac{\sqrt[3]{54 t^{2}+\sqrt{108+729\left(2 t^{2}+c_{1}\right)^{2}}+27 c_{1}}}{3 \sqrt[3]{2}}-\frac{\sqrt[3]{2}}{\sqrt[3]{54 t^{2}+\sqrt{108+729\left(2 t^{2}+c_{1}\right)^{2}+27 c_{1}}}} \\
y(t) & \rightarrow \frac{(-1+i \sqrt{3}) \sqrt[3]{54 t^{2}+\sqrt{108+729\left(2 t^{2}+c_{1}\right)^{2}}+27 c_{1}}}{6 \sqrt[3]{2}} \\
& +\frac{1+i \sqrt{3}}{2^{2 / 3} \sqrt[3]{54 t^{2}+\sqrt{108+729\left(2 t^{2}+c_{1}\right)^{2}}+27 c_{1}}} \\
y(t) \rightarrow & \frac{1-i \sqrt{3}}{2^{2 / 3} \sqrt[3]{54 t^{2}+\sqrt{108+729\left(2 t^{2}+c_{1}\right)^{2}+27 c_{1}}}} \\
& -\frac{(1+i \sqrt{3}) \sqrt[3]{54 t^{2}+\sqrt{108+729\left(2 t^{2}+c_{1}\right)^{2}}+27 c_{1}}}{6 \sqrt[3]{2}}
\end{aligned}
$$

1.16 problem 19

1.16.1 Solving as separable ode . 158
1.16.2 Solving as linear ode . 160
1.16.3 Solving as first order ode lie symmetry lookup ode 162
1.16.4 Solving as exact ode . 166
1.16.5 Maple step by step solution . 170

Internal problem ID [12880]
Internal file name [OUTPUT/11532_Monday_November_06_2023_01_33_04_PM_52114133/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 19.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
v^{\prime}-t^{2} v+2 v=t^{2}-2
$$

1.16.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
v^{\prime} & =F(t, v) \\
& =f(t) g(v) \\
& =\left(t^{2}-2\right)(v+1)
\end{aligned}
$$

Where $f(t)=t^{2}-2$ and $g(v)=v+1$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{v+1} d v & =t^{2}-2 d t \\
\int \frac{1}{v+1} d v & =\int t^{2}-2 d t \\
\ln (v+1) & =\frac{1}{3} t^{3}-2 t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
v+1=\mathrm{e}^{\frac{1}{t^{3}}-2 t+c_{1}}
$$

Which simplifies to

$$
v+1=c_{2} \mathrm{e}^{\frac{1}{3} t^{3}-2 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
v=c_{2} \mathrm{e}^{\frac{1}{3} t^{3}-2 t+c_{1}}-1 \tag{1}
\end{equation*}
$$

Figure 46: Slope field plot

Verification of solutions

$$
v=c_{2} \mathrm{e}^{\frac{1}{3} t^{3}-2 t+c_{1}}-1
$$

Verified OK.

1.16.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
v^{\prime}+p(t) v=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-t^{2}+2 \\
& q(t)=t^{2}-2
\end{aligned}
$$

Hence the ode is

$$
v^{\prime}+\left(-t^{2}+2\right) v=t^{2}-2
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int\left(-t^{2}+2\right) d t} \\
& =\mathrm{e}^{-\frac{1}{3} t^{3}+2 t}
\end{aligned}
$$

Which simplifies to

$$
\mu=\mathrm{e}^{-\frac{t\left(t^{2}-6\right)}{3}}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu v) & =(\mu)\left(t^{2}-2\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-\frac{t\left(t^{2}-6\right)}{3}} v\right) & =\left(\mathrm{e}^{-\frac{t\left(t^{2}-6\right)}{3}}\right)\left(t^{2}-2\right) \\
\mathrm{d}\left(\mathrm{e}^{-\frac{t\left(t^{2}-6\right)}{3}} v\right) & =\left(\left(t^{2}-2\right) \mathrm{e}^{-\frac{t\left(t^{2}-6\right)}{3}}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-\frac{t\left(t^{2}-6\right)}{3}} v=\int\left(t^{2}-2\right) \mathrm{e}^{-\frac{t\left(t^{2}-6\right)}{3}} \mathrm{~d} t \\
& \mathrm{e}^{-\frac{t\left(t^{2}-6\right)}{3}} v=-\mathrm{e}^{-\frac{t\left(t^{2}-6\right)}{3}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-\frac{t\left(t^{2}-6\right)}{3}}$ results in

$$
v=-\mathrm{e}^{\frac{t\left(t^{2}-6\right)}{3}} \mathrm{e}^{-\frac{t\left(t^{2}-6\right)}{3}}+c_{1} \mathrm{e}^{\frac{t\left(t^{2}-6\right)}{3}}
$$

which simplifies to

$$
v=-1+c_{1} \mathrm{e}^{\frac{t\left(t^{2}-6\right)}{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
v=-1+c_{1} \mathrm{e}^{\frac{t\left(t^{2}-6\right)}{3}} \tag{1}
\end{equation*}
$$

Figure 47: Slope field plot

Verification of solutions

$$
v=-1+c_{1} \mathrm{e}^{\frac{t\left(t^{2}-6\right)}{3}}
$$

Verified OK.

1.16.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
v^{\prime} & =t^{2} v+t^{2}-2 v-2 \\
v^{\prime} & =\omega(t, v)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{v}-\xi_{t}\right)-\omega^{2} \xi_{v}-\omega_{t} \xi-\omega_{v} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 34: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$\underline{a}_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, v)=0 \\
& \eta(t, v)=\mathrm{e}^{\frac{1}{3} t^{3}-2 t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, v) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d v}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial v}\right) S(t, v)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\frac{1}{3} t^{3}-2 t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-\frac{1}{3} t^{3}+2 t} v
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, v) S_{v}}{R_{t}+\omega(t, v) R_{v}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{v}, S_{t}, S_{v}$ are all partial derivatives and $\omega(t, v)$ is the right hand side of the original ode given by

$$
\omega(t, v)=t^{2} v+t^{2}-2 v-2
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{v} & =0 \\
S_{t} & =-\left(t^{2}-2\right) \mathrm{e}^{-\frac{t\left(t^{2}-6\right)}{3}} v \\
S_{v} & =\mathrm{e}^{-\frac{t\left(t^{2}-6\right)}{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\left(t^{2}-2\right) \mathrm{e}^{-\frac{t\left(t^{2}-6\right)}{3}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, v in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\left(R^{2}-2\right) \mathrm{e}^{-\frac{R\left(R^{2}-6\right)}{3}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\mathrm{e}^{-\frac{R\left(R^{2}-6\right)}{3}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, v coordinates. This results in

$$
\mathrm{e}^{-\frac{t\left(t^{2}-6\right)}{3}} v=-\mathrm{e}^{-\frac{t\left(t^{2}-6\right)}{3}}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-\frac{t\left(t^{2}-6\right)}{3}} v=-\mathrm{e}^{-\frac{t\left(t^{2}-6\right)}{3}}+c_{1}
$$

Which gives

$$
v=-\left(\mathrm{e}^{-\frac{t\left(t^{2}-6\right)}{3}}-c_{1}\right) \mathrm{e}^{\frac{t\left(t^{2}-6\right)}{3}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, v coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d v}{d t}=t^{2} v+t^{2}-2 v-2$		$\frac{d S}{d R}=\left(R^{2}-2\right) \mathrm{e}^{-\frac{R\left(R^{2}-6\right)}{3}}$
4 1		
边		${ }_{\substack{ \\\rightarrow \rightarrow-\infty}}$
	$R=t$	
	$t\left(t^{2}-6\right)$	
	$S=\mathrm{e}^{-\frac{(2)}{3}} v$	
! ! ! ! ! ! ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ! ! ! ! !		

Summary

The solution(s) found are the following

$$
\begin{equation*}
v=-\left(\mathrm{e}^{-\frac{t\left(t^{2}-6\right)}{3}}-c_{1}\right) \mathrm{e}^{\frac{t\left(t^{2}-6\right)}{3}} \tag{1}
\end{equation*}
$$

Figure 48: Slope field plot

Verification of solutions

$$
v=-\left(\mathrm{e}^{-\frac{t\left(t^{2}-6\right)}{3}}-c_{1}\right) \mathrm{e}^{\frac{t\left(t^{2}-6\right)}{3}}
$$

Verified OK.

1.16.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} d y=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, v) \mathrm{d} t+N(t, v) \mathrm{d} v=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{v+1}\right) \mathrm{d} v & =\left(t^{2}-2\right) \mathrm{d} t \\
\left(-t^{2}+2\right) \mathrm{d} t+\left(\frac{1}{v+1}\right) \mathrm{d} v & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, v) & =-t^{2}+2 \\
N(t, v) & =\frac{1}{v+1}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial v}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial v} & =\frac{\partial}{\partial v}\left(-t^{2}+2\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\frac{1}{v+1}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial v}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, v)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial v}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-t^{2}+2 \mathrm{~d} t \\
\phi & =-\frac{1}{3} t^{3}+2 t+f(v) \tag{3}
\end{align*}
$$

Where $f(v)$ is used for the constant of integration since ϕ is a function of both t and v. Taking derivative of equation (3) w.r.t v gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial v}=0+f^{\prime}(v) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial v}=\frac{1}{v+1}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{v+1}=0+f^{\prime}(v) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(v)$ gives

$$
f^{\prime}(v)=\frac{1}{v+1}
$$

Integrating the above w.r.t v gives

$$
\begin{aligned}
\int f^{\prime}(v) \mathrm{d} v & =\int\left(\frac{1}{v+1}\right) \mathrm{d} v \\
f(v) & =\ln (v+1)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(v)$ into equation (3) gives ϕ

$$
\phi=-\frac{t^{3}}{3}+2 t+\ln (v+1)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{t^{3}}{3}+2 t+\ln (v+1)
$$

The solution becomes

$$
v=\mathrm{e}^{\frac{1}{3} t^{3}-2 t+c_{1}}-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
v=\mathrm{e}^{\frac{1}{3} t^{3}-2 t+c_{1}}-1 \tag{1}
\end{equation*}
$$

Figure 49: Slope field plot

Verification of solutions

$$
v=\mathrm{e}^{\frac{1}{3} t^{3}-2 t+c_{1}}-1
$$

Verified OK.

1.16.5 Maple step by step solution

Let's solve
$v^{\prime}-t^{2} v+2 v=t^{2}-2$

- Highest derivative means the order of the ODE is 1
v^{\prime}
- Separate variables
$\frac{v^{\prime}}{v+1}=t^{2}-2$
- Integrate both sides with respect to t
$\int \frac{v^{\prime}}{v+1} d t=\int\left(t^{2}-2\right) d t+c_{1}$
- Evaluate integral
$\ln (v+1)=\frac{1}{3} t^{3}-2 t+c_{1}$
- \quad Solve for v
$v=\mathrm{e}^{\frac{1}{3} t^{3}-2 t+c_{1}}-1$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(diff(v(t),t)=t^2*v(t)-2-2*v(t)+t^2,v(t), singsol=all)
```

$$
v(t)=-1+\mathrm{e}^{\frac{t\left(t^{2}-6\right)}{3}} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.086 (sec). Leaf size: 27
DSolve[v'[t]==t^2*v[t]-2-2*v[t]+t^2,v[t],t,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& v(t) \rightarrow-1+c_{1} e^{\frac{1}{3} t\left(t^{2}-6\right)} \\
& v(t) \rightarrow-1
\end{aligned}
$$

1.17 problem 20

1.17.1 Solving as separable ode . 172
1.17.2 Solving as first order ode lie symmetry lookup ode 174
1.17.3 Solving as exact ode . 178
1.17.4 Maple step by step solution . 182

Internal problem ID [12881]
Internal file name [OUTPUT/11533_Monday_November_06_2023_01_33_05_PM_95096190/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{1}{1+t y+y+t}=0
$$

1.17.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =\frac{1}{(y+1)(1+t)}
\end{aligned}
$$

Where $f(t)=\frac{1}{1+t}$ and $g(y)=\frac{1}{y+1}$. Integrating both sides gives

$$
\frac{1}{\frac{1}{y+1}} d y=\frac{1}{1+t} d t
$$

$$
\begin{aligned}
\int \frac{1}{\frac{1}{y+1}} d y & =\int \frac{1}{1+t} d t \\
\frac{1}{2} y^{2}+y & =\ln (1+t)+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=-1+\sqrt{1+2 \ln (1+t)+2 c_{1}} \\
& y=-1-\sqrt{1+2 \ln (1+t)+2 c_{1}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-1+\sqrt{1+2 \ln (1+t)+2 c_{1}} \tag{1}\\
& y=-1-\sqrt{1+2 \ln (1+t)+2 c_{1}} \tag{2}
\end{align*}
$$

Figure 50: Slope field plot

Verification of solutions

$$
y=-1+\sqrt{1+2 \ln (1+t)+2 c_{1}}
$$

Verified OK.

$$
y=-1-\sqrt{1+2 \ln (1+t)+2 c_{1}}
$$

Verified OK.

1.17.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{1}{t y+t+y+1} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 37: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=1+t \\
& \eta(t, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{1+t} d t
\end{aligned}
$$

Which results in

$$
S=\ln (1+t)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{1}{t y+t+y+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{y} & =1 \\
S_{t} & =\frac{1}{1+t} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y+1 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R+1
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{1}{2} R^{2}+R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\ln (1+t)=\frac{y^{2}}{2}+y+c_{1}
$$

Which simplifies to

$$
\ln (1+t)=\frac{y^{2}}{2}+y+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{1}{t y+t+y+1}$		$\frac{d S}{d R}=R+1$
$\xrightarrow{+1}$		
- $1 \times+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty$		
	$R=y$	
	$S=\ln (1+t)$	$\mathrm{b}^{-4.1}$
$\rightarrow \rightarrow \rightarrow$ -		
$\rightarrow \rightarrow \infty$		
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow->]{ }$		
$\because \rightarrow \rightarrow$ 为		

Summary

The solution(s) found are the following

$$
\begin{equation*}
\ln (1+t)=\frac{y^{2}}{2}+y+c_{1} \tag{1}
\end{equation*}
$$

Figure 51: Slope field plot

Verification of solutions

$$
\ln (1+t)=\frac{y^{2}}{2}+y+c_{1}
$$

Verified OK.

1.17.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(y+1) \mathrm{d} y & =\left(\frac{1}{1+t}\right) \mathrm{d} t \\
\left(-\frac{1}{1+t}\right) \mathrm{d} t+(y+1) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-\frac{1}{1+t} \\
& N(t, y)=y+1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{1+t}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(y+1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\frac{1}{1+t} \mathrm{~d} t \\
\phi & =-\ln (1+t)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y+1$. Therefore equation (4) becomes

$$
\begin{equation*}
y+1=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y+1
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(y+1) \mathrm{d} y \\
f(y) & =\frac{1}{2} y^{2}+y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (1+t)+\frac{y^{2}}{2}+y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (1+t)+\frac{y^{2}}{2}+y
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{2}}{2}+y-\ln (1+t)=c_{1} \tag{1}
\end{equation*}
$$

Figure 52: Slope field plot

Verification of solutions

$$
\frac{y^{2}}{2}+y-\ln (1+t)=c_{1}
$$

Verified OK.

1.17.4 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{1}{1+t y+y+t}=0
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables

$$
y^{\prime}(y+1)=\frac{1}{1+t}
$$

- Integrate both sides with respect to t

$$
\int y^{\prime}(y+1) d t=\int \frac{1}{1+t} d t+c_{1}
$$

- Evaluate integral

$$
\frac{y^{2}}{2}+y=\ln (1+t)+c_{1}
$$

- \quad Solve for y

$$
\left\{y=-1-\sqrt{1+2 \ln (1+t)+2 c_{1}}, y=-1+\sqrt{1+2 \ln (1+t)+2 c_{1}}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 39

```
dsolve(diff(y(t),t)=1/(t*y(t)+t+y(t)+1),y(t), singsol=all)
```

$$
\begin{aligned}
& y(t)=-1-\sqrt{1+2 \ln (t+1)+2 c_{1}} \\
& y(t)=-1+\sqrt{1+2 \ln (t+1)+2 c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.217 (sec). Leaf size: 47
DSolve[y' $[\mathrm{t}]==1 /(\mathrm{t} * \mathrm{y}[\mathrm{t}]+\mathrm{t}+\mathrm{y}[\mathrm{t}]+1), \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(t) \rightarrow-1-\sqrt{2 \log (t+1)+1+2 c_{1}} \\
& y(t) \rightarrow-1+\sqrt{2 \log (t+1)+1+2 c_{1}}
\end{aligned}
$$

1.18 problem 21

1.18.1 Solving as separable ode . 184
1.18.2 Solving as first order ode lie symmetry lookup ode 186
1.18.3 Solving as exact ode . 190
1.18.4 Maple step by step solution . 194

Internal problem ID [12882]
Internal file name [OUTPUT/11534_Monday_November_06_2023_01_33_05_PM_35639577/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{\mathrm{e}^{t} y}{1+y^{2}}=0
$$

1.18.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =\frac{\mathrm{e}^{t} y}{y^{2}+1}
\end{aligned}
$$

Where $f(t)=\mathrm{e}^{t}$ and $g(y)=\frac{y}{y^{2}+1}$. Integrating both sides gives

$$
\frac{1}{\frac{y}{y^{2}+1}} d y=\mathrm{e}^{t} d t
$$

$$
\begin{gathered}
\int \frac{1}{\frac{y}{y^{2}+1}} d y=\int \mathrm{e}^{t} d t \\
\frac{y^{2}}{2}+\ln (y)=\mathrm{e}^{t}+c_{1}
\end{gathered}
$$

Which results in

$$
y=\mathrm{e}^{-\frac{\operatorname{LambertW}\left(\mathrm{e}^{2 c_{1}+2 \mathrm{e}^{t}}\right)}{2}+c_{1}+\mathrm{e}^{t}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{\operatorname{Lambertw}\left(\mathrm{e}^{2 c_{1}+2 \mathrm{e}^{t}}\right)}{2}+c_{1}+\mathrm{e}^{t}} \tag{1}
\end{equation*}
$$

Figure 53: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\frac{\operatorname{Lambertw}\left(\mathrm{e}^{2 c_{1}+2 \mathrm{e}^{t}}\right)}{2}+c_{1}+\mathrm{e}^{t}}
$$

Verified OK.

1.18.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{\mathrm{e}^{t} y}{y^{2}+1} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 40: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x y^{n}}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=\mathrm{e}^{-t} \\
& \eta(t, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{\mathrm{e}^{-t}} d t
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{t}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{\mathrm{e}^{t} y}{y^{2}+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{y} & =1 \\
S_{t} & =\mathrm{e}^{t} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{y^{2}+1}{y} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{R^{2}+1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{t}=\frac{y^{2}}{2}+\ln (y)+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{t}=\frac{y^{2}}{2}+\ln (y)+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{-\frac{\operatorname{Lambertw}\left(\mathrm{e}^{-2 c_{1}+2 \mathrm{e}^{t}}\right)}{2}-c_{1}+\mathrm{e}^{t}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{e^{t} y}{y^{2}+1}$		$\frac{d S}{d R}=\frac{R^{2}+1}{R}$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-]{ }$		
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow}$		
$\xrightarrow{\rightarrow} \rightarrow \rightarrow$ 佰		
$\rightarrow \rightarrow+$		
$\xrightarrow{-4} \rightarrow \rightarrow$	$S=\mathrm{e}^{t}$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{\operatorname{LambertW}\left(\mathrm{e}^{-2 c_{1}+2 \mathrm{e}^{t}}\right)}{2}-c_{1}+\mathrm{e}^{t}} \tag{1}
\end{equation*}
$$

Figure 54: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\frac{\operatorname{Lambertw}\left(\mathrm{e}^{\left.-2 c_{1}+2 \mathrm{e}^{t}\right)}\right)}{2}-c_{1}+\mathrm{e}^{t}}
$$

Verified OK.

1.18.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{y^{2}+1}{y}\right) \mathrm{d} y & =\left(\mathrm{e}^{t}\right) \mathrm{d} t \\
\left(-\mathrm{e}^{t}\right) \mathrm{d} t+\left(\frac{y^{2}+1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-\mathrm{e}^{t} \\
& N(t, y)=\frac{y^{2}+1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\mathrm{e}^{t}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\frac{y^{2}+1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\mathrm{e}^{t} \mathrm{~d} t \\
\phi & =-\mathrm{e}^{t}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{y^{2}+1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{y^{2}+1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{y^{2}+1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{y^{2}+1}{y}\right) \mathrm{d} y \\
f(y) & =\frac{y^{2}}{2}+\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\mathrm{e}^{t}+\frac{y^{2}}{2}+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\mathrm{e}^{t}+\frac{y^{2}}{2}+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{-\frac{\operatorname{Lambertw}\left(\mathrm{e}^{2 c_{1}+2 \mathrm{e}^{t}}\right)}{2}+c_{1}+\mathrm{e}^{t}}
$$

Summary

The solution(s) found are the following

Figure 55: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\frac{\operatorname{Lambertw}\left(\mathrm{e}^{2 c_{1}+2 \mathrm{e}^{t}}\right)}{2}+c_{1}+\mathrm{e}^{t}}
$$

Verified OK.

1.18.4 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{\mathrm{e}^{t} y}{1+y^{2}}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- \quad Separate variables
$\frac{y^{\prime}\left(1+y^{2}\right)}{y}=\mathrm{e}^{t}$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}\left(1+y^{2}\right)}{y} d t=\int \mathrm{e}^{t} d t+c_{1}$
- Evaluate integral
$\ln (y)+\frac{y^{2}}{2}=\mathrm{e}^{t}+c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{-\frac{\operatorname{Lambert} t\left(\mathrm{e}^{\left.2 c_{1}+2 \mathrm{e}^{t}\right)}\right.}{2}+c_{1}+\mathrm{e}^{t}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.046 (sec). Leaf size: 34
dsolve(diff $(y(t), t)=\exp (t) * y(t) /(1+y(t) \sim 2), y(t), \quad$ singsol=all)

$$
y(t)=\frac{\mathrm{e}^{\mathrm{e}^{t}+c_{1}}}{\sqrt{\frac{\mathrm{e}^{2 c_{1}+2 \mathrm{e}^{t}}}{\operatorname{LambertW}\left(\mathrm{e}^{2 c_{1}+2 \mathrm{e}^{t}}\right)}}}
$$

\checkmark Solution by Mathematica
Time used: 33.022 (sec). Leaf size: 46
DSolve [y' $[\mathrm{t}]==\operatorname{Exp}[\mathrm{t}] * \mathrm{y}[\mathrm{t}] /(1+\mathrm{y}[\mathrm{t}] \sim 2), \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
y(t) & \rightarrow-\sqrt{W\left(e^{2\left(e^{t}+c_{1}\right)}\right)} \\
y(t) & \rightarrow \sqrt{W\left(e^{2\left(e^{t}+c_{1}\right)}\right)} \\
y(t) & \rightarrow 0
\end{aligned}
$$

1.19 problem 22

1.19.1 Solving as quadrature ode . 196
1.19.2 Maple step by step solution . 198

Internal problem ID [12883]
Internal file name [OUTPUT/11535_Monday_November_06_2023_01_33_06_PM_70014499/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 22.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y^{2}=-4
$$

1.19.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{2}-4} d y & =\int d t \\
\frac{\ln (y-2)}{4}-\frac{\ln (y+2)}{4} & =t+c_{1}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{4}\right)(\ln (y-2)-\ln (y+2)) & =t+c_{1} \\
\ln (y-2)-\ln (y+2) & =(4)\left(t+c_{1}\right) \\
& =4 t+4 c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (y-2)-\ln (y+2)}=4 c_{1} \mathrm{e}^{4 t}
$$

Which simplifies to

$$
\frac{y-2}{y+2}=c_{2} \mathrm{e}^{4 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2\left(c_{2} \mathrm{e}^{4 t}+1\right)}{-1+c_{2} \mathrm{e}^{4 t}} \tag{1}
\end{equation*}
$$

Figure 56: Slope field plot

Verification of solutions

$$
y=-\frac{2\left(c_{2} \mathrm{e}^{4 t}+1\right)}{-1+c_{2} \mathrm{e}^{4 t}}
$$

Verified OK.

1.19.2 Maple step by step solution

Let's solve

$$
y^{\prime}-y^{2}=-4
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y^{2}-4}=1
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{y^{2}-4} d t=\int 1 d t+c_{1}
$$

- Evaluate integral

$$
\frac{\ln (y-2)}{4}-\frac{\ln (y+2)}{4}=t+c_{1}
$$

- \quad Solve for y

$$
y=-\frac{2\left(\mathrm{e}^{4 t+4 c_{1}}+1\right)}{\mathrm{e}^{4 t+4 c_{1}}-1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 24
dsolve(diff $(y(t), t)=y(t) \sim 2-4, y(t)$, singsol=all)

$$
y(t)=\frac{-2 c_{1} \mathrm{e}^{4 t}-2}{-1+c_{1} \mathrm{e}^{4 t}}
$$

\checkmark Solution by Mathematica
Time used: 1.053 (sec). Leaf size: 40
DSolve $[y$ ' $[t]==y[t] \sim 2-4, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(t) \rightarrow \frac{2-2 e^{4\left(t+c_{1}\right)}}{1+e^{4\left(t+c_{1}\right)}} \\
& y(t) \rightarrow-2 \\
& y(t) \rightarrow 2
\end{aligned}
$$

1.20 problem 23

1.20.1 Solving as separable ode . 200
1.20.2 Solving as linear ode . 202
1.20.3 Solving as homogeneousTypeD2 ode 203
1.20.4 Solving as first order ode lie symmetry lookup ode 204
1.20.5 Solving as exact ode . 208
1.20.6 Maple step by step solution . 212

Internal problem ID [12884]
Internal file name [OUTPUT/11536_Monday_November_06_2023_01_33_06_PM_6700595/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 23.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
w^{\prime}-\frac{w}{t}=0
$$

1.20.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
w^{\prime} & =F(t, w) \\
& =f(t) g(w) \\
& =\frac{w}{t}
\end{aligned}
$$

Where $f(t)=\frac{1}{t}$ and $g(w)=w$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{w} d w & =\frac{1}{t} d t \\
\int \frac{1}{w} d w & =\int \frac{1}{t} d t \\
\ln (w) & =\ln (t)+c_{1} \\
w & =\mathrm{e}^{\ln (t)+c_{1}} \\
& =c_{1} t
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
w=c_{1} t \tag{1}
\end{equation*}
$$

Figure 57: Slope field plot

Verification of solutions

$$
w=c_{1} t
$$

Verified OK.

1.20.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}+p(t) w=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-\frac{1}{t} \\
& q(t)=0
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}-\frac{w}{t}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{t} d t} \\
& =\frac{1}{t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mu w & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{w}{t}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{w}{t}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{t}$ results in

$$
w=c_{1} t
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
w=c_{1} t \tag{1}
\end{equation*}
$$

Figure 58: Slope field plot
Verification of solutions

$$
w=c_{1} t
$$

Verified OK.

1.20.3 Solving as homogeneousTypeD2 ode

Using the change of variables $w=u(t) t$ on the above ode results in new ode in $u(t)$

$$
u^{\prime}(t) t=0
$$

Integrating both sides gives

$$
\begin{aligned}
u(t) & =\int 0 \mathrm{~d} t \\
& =c_{2}
\end{aligned}
$$

Therefore the solution w is

$$
\begin{aligned}
w & =t u \\
& =c_{2} t
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
w=c_{2} t \tag{1}
\end{equation*}
$$

Figure 59: Slope field plot
Verification of solutions

$$
w=c_{2} t
$$

Verified OK.

1.20.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
w^{\prime} & =\frac{w}{t} \\
w^{\prime} & =\omega(t, w)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{w}-\xi_{t}\right)-\omega^{2} \xi_{w}-\omega_{t} \xi-\omega_{w} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 44: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, w)=0 \\
& \eta(t, w)=t \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, w) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d w}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial w}\right) S(t, w)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{t} d y
\end{aligned}
$$

Which results in

$$
S=\frac{w}{t}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, w) S_{w}}{R_{t}+\omega(t, w) R_{w}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{w}, S_{t}, S_{w}$ are all partial derivatives and $\omega(t, w)$ is the right hand side of the original ode given by

$$
\omega(t, w)=\frac{w}{t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{w} & =0 \\
S_{t} & =-\frac{w}{t^{2}} \\
S_{w} & =\frac{1}{t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, w in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, w coordinates. This results in

$$
\frac{w}{t}=c_{1}
$$

Which simplifies to

$$
\frac{w}{t}=c_{1}
$$

Which gives

$$
w=c_{1} t
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, w coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d w}{d t}=\frac{w}{t}$		$\frac{d S}{d R}=0$
\triangle -		
	$R=t$	
$\xrightarrow[\rightarrow+m \rightarrow \pm \pm \pm]{ }$	$S=\frac{w}{t}$	
	\bar{t}	$\xrightarrow{\rightarrow \rightarrow \rightarrow \longrightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \longrightarrow \longrightarrow \longrightarrow}$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow$

Summary
The solution(s) found are the following

$$
\begin{equation*}
w=c_{1} t \tag{1}
\end{equation*}
$$

Figure 60: Slope field plot

Verification of solutions

$$
w=c_{1} t
$$

Verified OK.

1.20.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, w) \mathrm{d} t+N(t, w) \mathrm{d} w=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{w}\right) \mathrm{d} w & =\left(\frac{1}{t}\right) \mathrm{d} t \\
\left(-\frac{1}{t}\right) \mathrm{d} t+\left(\frac{1}{w}\right) \mathrm{d} w & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, w)=-\frac{1}{t} \\
& N(t, w)=\frac{1}{w}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial w}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial w} & =\frac{\partial}{\partial w}\left(-\frac{1}{t}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\frac{1}{w}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial w}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, w)$

$$
\begin{align*}
\frac{\partial \phi}{\partial t} & =M \tag{1}\\
\frac{\partial \phi}{\partial w} & =N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\frac{1}{t} \mathrm{~d} t \\
\phi & =-\ln (t)+f(w) \tag{3}
\end{align*}
$$

Where $f(w)$ is used for the constant of integration since ϕ is a function of both t and w. Taking derivative of equation (3) w.r.t w gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial w}=0+f^{\prime}(w) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial w}=\frac{1}{w}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{w}=0+f^{\prime}(w) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(w)$ gives

$$
f^{\prime}(w)=\frac{1}{w}
$$

Integrating the above w.r.t w gives

$$
\begin{aligned}
\int f^{\prime}(w) \mathrm{d} w & =\int\left(\frac{1}{w}\right) \mathrm{d} w \\
f(w) & =\ln (w)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(w)$ into equation (3) gives ϕ

$$
\phi=-\ln (t)+\ln (w)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (t)+\ln (w)
$$

The solution becomes

$$
w=t \mathrm{e}^{c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
w=t \mathrm{e}^{c_{1}} \tag{1}
\end{equation*}
$$

Figure 61: Slope field plot
Verification of solutions

$$
w=t \mathrm{e}^{c_{1}}
$$

Verified OK.

1.20.6 Maple step by step solution

Let's solve

$$
w^{\prime}-\frac{w}{t}=0
$$

- Highest derivative means the order of the ODE is 1

$$
w^{\prime}
$$

- \quad Separate variables

$$
\frac{w^{\prime}}{w}=\frac{1}{t}
$$

- Integrate both sides with respect to t

$$
\int \frac{w^{\prime}}{w} d t=\int \frac{1}{t} d t+c_{1}
$$

- Evaluate integral

$$
\ln (w)=\ln (t)+c_{1}
$$

- \quad Solve for w

$$
w=t \mathrm{e}^{c_{1}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 7

```
dsolve(diff(w(t),t)=w(t)/t,w(t), singsol=all)
```

$$
w(t)=c_{1} t
$$

\checkmark Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 14
DSolve[w' $[t]==\mathrm{w}[\mathrm{t}] / \mathrm{t}, \mathrm{w}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& w(t) \rightarrow c_{1} t \\
& w(t) \rightarrow 0
\end{aligned}
$$

1.21 problem 24

1.21.1 Solving as quadrature ode . 214
1.21.2 Maple step by step solution . 215

Internal problem ID [12885]
Internal file name [OUTPUT/11537_Monday_November_06_2023_01_33_07_PM_3482729/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 24.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-\sec (y)=0
$$

1.21.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sec (y)} d y & =x+c_{1} \\
\sin (y) & =x+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=\arcsin \left(x+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\arcsin \left(x+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 62: Slope field plot
Verification of solutions

$$
y=\arcsin \left(x+c_{1}\right)
$$

Verified OK.

1.21.2 Maple step by step solution

Let's solve
$y^{\prime}-\sec (y)=0$

- Highest derivative means the order of the ODE is 1

```
y'
```

- Separate variables

$$
\frac{y^{\prime}}{\sec (y)}=1
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\sec (y)} d x=\int 1 d x+c_{1}$
- Evaluate integral

$$
\sin (y)=x+c_{1}
$$

- \quad Solve for y

$$
y=\arcsin \left(x+c_{1}\right)
$$

Maple trace

```
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 8

```
dsolve(diff(y(x),x)=sec(y(x)),y(x), singsol=all)
```

$$
y(x)=\arcsin \left(c_{1}+x\right)
$$

\checkmark Solution by Mathematica
Time used: 0.35 (sec). Leaf size: 10
DSolve[y'[x]==Sec[y[x]],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \arcsin \left(x+c_{1}\right)
$$

1.22 problem 25

$$
\text { 1.22.1 Existence and uniqueness analysis } 218
$$

1.22.2 Solving as separable ode 218
1.22.3 Solving as linear ode 220
1.22.4 Solving as homogeneousTypeD2 ode 221
1.22.5 Solving as first order ode lie symmetry lookup ode 223
1.22.6 Solving as exact ode 228
1.22.7 Maple step by step solution 232

Internal problem ID [12886]
Internal file name [OUTPUT/11538_Monday_November_06_2023_01_33_07_PM_97603790/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 25.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[_separable]
```

$$
x^{\prime}+x t=0
$$

With initial conditions

$$
\left[x(0)=\frac{1}{\sqrt{\pi}}\right]
$$

1.22.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
x^{\prime}+p(t) x=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =t \\
q(t) & =0
\end{aligned}
$$

Hence the ode is

$$
x^{\prime}+x t=0
$$

The domain of $p(t)=t$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. Hence solution exists and is unique.

1.22.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
x^{\prime} & =F(t, x) \\
& =f(t) g(x) \\
& =-t x
\end{aligned}
$$

Where $f(t)=-t$ and $g(x)=x$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{x} d x & =-t d t \\
\int \frac{1}{x} d x & =\int-t d t \\
\ln (x) & =-\frac{t^{2}}{2}+c_{1} \\
x & =\mathrm{e}^{-\frac{t^{2}}{2}+c_{1}} \\
& =\mathrm{e}^{-\frac{t^{2}}{2}} c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $x=\frac{1}{\sqrt{\pi}}$ in the above solution gives an equation to solve for the constant of integration.

$$
\frac{1}{\sqrt{\pi}}=c_{1}
$$

$$
c_{1}=\frac{1}{\sqrt{\pi}}
$$

Substituting c_{1} found above in the general solution gives

$$
x=\frac{\mathrm{e}^{-\frac{t^{2}}{2}}}{\sqrt{\pi}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\frac{\mathrm{e}^{-\frac{t^{2}}{2}}}{\sqrt{\pi}} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
x=\frac{\mathrm{e}^{-\frac{t^{2}}{2}}}{\sqrt{\pi}}
$$

Verified OK.

1.22.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int t d t} \\
=\mathrm{e}^{t^{2}}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mu x & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} t}\left(\mathrm{e}^{t^{2}} x\right) & =0
\end{aligned}
$$

Integrating gives

$$
\mathrm{e}^{\frac{t^{2}}{2}} x=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\frac{t^{2}}{2}}$ results in

$$
x=\mathrm{e}^{-\frac{t^{2}}{2}} c_{1}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $x=\frac{1}{\sqrt{\pi}}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{1}{\sqrt{\pi}}=c_{1} \\
& c_{1}=\frac{1}{\sqrt{\pi}}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
x=\frac{\mathrm{e}^{-\frac{t^{2}}{2}}}{\sqrt{\pi}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\frac{\mathrm{e}^{-\frac{t^{2}}{2}}}{\sqrt{\pi}} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
x=\frac{\mathrm{e}^{-\frac{t^{2}}{2}}}{\sqrt{\pi}}
$$

Verified OK.

1.22.4 Solving as homogeneousTypeD2 ode

Using the change of variables $x=u(t) t$ on the above ode results in new ode in $u(t)$

$$
u^{\prime}(t) t+u(t)+u(t) t^{2}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =-\frac{u\left(t^{2}+1\right)}{t}
\end{aligned}
$$

Where $f(t)=-\frac{t^{2}+1}{t}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{t^{2}+1}{t} d t \\
\int \frac{1}{u} d u & =\int-\frac{t^{2}+1}{t} d t \\
\ln (u) & =-\frac{t^{2}}{2}-\ln (t)+c_{2} \\
u & =\mathrm{e}^{-\frac{t^{2}}{2}-\ln (t)+c_{2}} \\
& =c_{2} \mathrm{e}^{-\frac{t^{2}}{2}-\ln (t)}
\end{aligned}
$$

Which simplifies to

$$
u(t)=\frac{c_{2} \mathrm{e}^{-\frac{t^{2}}{2}}}{t}
$$

Therefore the solution x is

$$
\begin{aligned}
x & =t u \\
& =c_{2} \mathrm{e}^{-\frac{t^{2}}{2}}
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=0$ and $x=\frac{1}{\sqrt{\pi}}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{1}{\sqrt{\pi}}=c_{2} \\
& c_{2}=\frac{1}{\sqrt{\pi}}
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
x=\frac{\mathrm{e}^{-\frac{t^{2}}{2}}}{\sqrt{\pi}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\frac{\mathrm{e}^{-\frac{t^{2}}{2}}}{\sqrt{\pi}} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
x=\frac{\mathrm{e}^{-\frac{t^{2}}{2}}}{\sqrt{\pi}}
$$

Verified OK.

1.22.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& x^{\prime}=-t x \\
& x^{\prime}=\omega(t, x)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{x}-\xi_{t}\right)-\omega^{2} \xi_{x}-\omega_{t} \xi-\omega_{x} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 48: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, x)=0 \\
& \eta(t, x)=\mathrm{e}^{-\frac{t^{2}}{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, x) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d x}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial x}\right) S(t, x)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\frac{t^{2}}{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\frac{t^{2}}{2}} x
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, x) S_{x}}{R_{t}+\omega(t, x) R_{x}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{x}, S_{t}, S_{x}$ are all partial derivatives and $\omega(t, x)$ is the right hand side of the original ode given by

$$
\omega(t, x)=-t x
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{x} & =0 \\
S_{t} & =t \mathrm{e}^{\frac{t^{2}}{2}} x \\
S_{x} & =\mathrm{e}^{\frac{t^{2}}{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, x in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, x coordinates. This results in

$$
\mathrm{e}^{\frac{t^{2}}{2}} x=c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{\frac{t^{2}}{2}} x=c_{1}
$$

Which gives

$$
x=\mathrm{e}^{-\frac{t^{2}}{2}} c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, x coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d x}{d t}=-t x$		$\frac{d S}{d R}=0$
		\rightarrow
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 29 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
	$R=t$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow}$
	$S=\mathrm{e}^{\frac{2}{2}} x$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
		$\xrightarrow{-2 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow}$
,		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{\text { a }}$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $x=\frac{1}{\sqrt{\pi}}$ in the above solution gives an equation to solve for the constant of integration.

$$
\frac{1}{\sqrt{\pi}}=c_{1}
$$

$$
c_{1}=\frac{1}{\sqrt{\pi}}
$$

Substituting c_{1} found above in the general solution gives

$$
x=\frac{\mathrm{e}^{-\frac{t^{2}}{2}}}{\sqrt{\pi}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\frac{\mathrm{e}^{-\frac{t^{2}}{2}}}{\sqrt{\pi}} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
x=\frac{\mathrm{e}^{-\frac{t^{2}}{2}}}{\sqrt{\pi}}
$$

Verified OK.

1.22.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, x) \mathrm{d} t+N(t, x) \mathrm{d} x=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{1}{x}\right) \mathrm{d} x & =(t) \mathrm{d} t \\
(-t) \mathrm{d} t+\left(-\frac{1}{x}\right) \mathrm{d} x & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, x)=-t \\
& N(t, x)=-\frac{1}{x}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial x}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial x} & =\frac{\partial}{\partial x}(-t) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial x}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, x)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial x}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-t \mathrm{~d} t \\
\phi & =-\frac{t^{2}}{2}+f(x) \tag{3}
\end{align*}
$$

Where $f(x)$ is used for the constant of integration since ϕ is a function of both t and x. Taking derivative of equation (3) w.r.t x gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}=0+f^{\prime}(x) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial x}=-\frac{1}{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{x}=0+f^{\prime}(x) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(x)$ gives

$$
f^{\prime}(x)=-\frac{1}{x}
$$

Integrating the above w.r.t x gives

$$
\begin{aligned}
\int f^{\prime}(x) \mathrm{d} x & =\int\left(-\frac{1}{x}\right) \mathrm{d} x \\
f(x) & =-\ln (x)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(x)$ into equation (3) gives ϕ

$$
\phi=-\frac{t^{2}}{2}-\ln (x)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{t^{2}}{2}-\ln (x)
$$

The solution becomes

$$
x=\mathrm{e}^{-\frac{t^{2}}{2}-c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $x=\frac{1}{\sqrt{\pi}}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{1}{\sqrt{\pi}}=\mathrm{e}^{-c_{1}} \\
& c_{1}=\frac{\ln (\pi)}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
x=\frac{\mathrm{e}^{-\frac{t^{2}}{2}}}{\sqrt{\pi}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
x=\frac{\mathrm{e}^{-\frac{t^{2}}{2}}}{\sqrt{\pi}} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
x=\frac{\mathrm{e}^{-\frac{t^{2}}{2}}}{\sqrt{\pi}}
$$

Verified OK.

1.22.7 Maple step by step solution

Let's solve
$\left[x^{\prime}+x t=0, x(0)=\frac{1}{\sqrt{\pi}}\right]$

- Highest derivative means the order of the ODE is 1
x^{\prime}
- Separate variables
$\frac{x^{\prime}}{x}=-t$
- Integrate both sides with respect to t
$\int \frac{x^{\prime}}{x} d t=\int-t d t+c_{1}$
- Evaluate integral
$\ln (x)=-\frac{t^{2}}{2}+c_{1}$
- \quad Solve for x
$x=\mathrm{e}^{-\frac{t^{2}}{2}+c_{1}}$
- Use initial condition $x(0)=\frac{1}{\sqrt{\pi}}$
$\frac{1}{\sqrt{\pi}}=\mathrm{e}^{c_{1}}$
- \quad Solve for c_{1}
$c_{1}=-\frac{\ln (\pi)}{2}$
- Substitute $c_{1}=-\frac{\ln (\pi)}{2}$ into general solution and simplify
$x=\frac{\mathrm{e}^{-\frac{t^{2}}{2}}}{\sqrt{\pi}}$
- Solution to the IVP
$x=\frac{\mathrm{e}^{-\frac{t^{2}}{2}}}{\sqrt{\pi}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
dsolve([diff($x(t), t)=-x(t) * t, x(0)=1 / \operatorname{sqrt}(P i)], x(t)$, singsol=all)

$$
x(t)=\frac{\mathrm{e}^{-\frac{t^{2}}{2}}}{\sqrt{\pi}}
$$

\checkmark Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 20
DSolve[\{x' $[t]==-x[t] * t,\{x[0]==1 /$ Sqrt $[P i]\}\}, x[t], t$, IncludeSingularSolutions $->$ True $]$

$$
x(t) \rightarrow \frac{e^{-\frac{t^{2}}{2}}}{\sqrt{\pi}}
$$

1.23 problem 26

1.23.1 Existence and uniqueness analysis 235
1.23.2 Solving as separable ode . 235
1.23.3 Solving as linear ode . 236
1.23.4 Solving as homogeneousTypeD2 ode 238
1.23.5 Solving as first order ode lie symmetry lookup ode 239
1.23.6 Solving as exact ode . 243
1.23.7 Maple step by step solution . 247

Internal problem ID [12887]
Internal file name [OUTPUT/11539_Monday_November_06_2023_01_33_08_PM_2720085/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 26.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type

```
[_separable]
```

$$
y^{\prime}-t y=0
$$

With initial conditions

$$
[y(0)=3]
$$

1.23.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-t \\
& q(t)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-t y=0
$$

The domain of $p(t)=-t$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. Hence solution exists and is unique.

1.23.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =t y
\end{aligned}
$$

Where $f(t)=t$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =t d t \\
\int \frac{1}{y} d y & =\int t d t \\
\ln (y) & =\frac{t^{2}}{2}+c_{1} \\
y & =\mathrm{e}^{\frac{t^{2}}{2}+c_{1}} \\
& =c_{1} \mathrm{e}^{\frac{t^{2}}{2}}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
3=c_{1}
$$

$$
c_{1}=3
$$

Substituting c_{1} found above in the general solution gives

$$
y=3 \mathrm{e}^{\frac{t^{2}}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 \mathrm{e}^{\frac{t^{2}}{2}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=3 \mathrm{e}^{t^{2}}
$$

Verified OK.

1.23.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int-t d t} \\
=\mathrm{e}^{-\frac{t^{2}}{2}}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} t}\left(\mathrm{e}^{-\frac{t^{2}}{2}} y\right) & =0
\end{aligned}
$$

Integrating gives

$$
\mathrm{e}^{-\frac{t^{2}}{2}} y=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-\frac{t^{2}}{2}}$ results in

$$
y=c_{1} \mathrm{e}^{\frac{t^{2}}{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 3=c_{1} \\
& c_{1}=3
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=3 \mathrm{e}^{\frac{t^{2}}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 \mathrm{e}^{\frac{t^{2}}{2}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=3 \mathrm{e}^{\frac{t^{2}}{2}}
$$

Verified OK.

1.23.4 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(t) t$ on the above ode results in new ode in $u(t)$

$$
u^{\prime}(t) t+u(t)-t^{2} u(t)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =\frac{u\left(t^{2}-1\right)}{t}
\end{aligned}
$$

Where $f(t)=\frac{t^{2}-1}{t}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{t^{2}-1}{t} d t \\
\int \frac{1}{u} d u & =\int \frac{t^{2}-1}{t} d t \\
\ln (u) & =\frac{t^{2}}{2}-\ln (t)+c_{2} \\
u & =\mathrm{e}^{\frac{t^{2}}{2}-\ln (t)+c_{2}} \\
& =c_{2} \mathrm{e}^{\frac{t^{2}}{2}-\ln (t)}
\end{aligned}
$$

Which simplifies to

$$
u(t)=\frac{c_{2} \mathrm{e}^{\frac{t^{2}}{2}}}{t}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =t u \\
& =\mathrm{e}^{\frac{t^{2}}{2}} c_{2}
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=0$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
3=c_{2}
$$

$$
c_{2}=3
$$

Substituting c_{2} found above in the general solution gives

$$
y=3 \mathrm{e}^{t^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 \mathrm{e}^{\frac{t^{2}}{2}} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=3 \mathrm{e}^{\frac{t^{2}}{2}}
$$

Verified OK.

1.23.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =t y \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 51: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	1	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\underline{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}} \frac{a_{1} b_{2}-a_{2} b_{1}}{}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{\frac{t^{2}}{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\frac{t^{2}}{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-\frac{t^{2}}{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=t y
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-t \mathrm{e}^{-\frac{t^{2}}{2}} y \\
S_{y} & =\mathrm{e}^{-\frac{t^{2}}{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-\frac{t^{2}}{2}} y=c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-\frac{t^{2}}{2}} y=c_{1}
$$

Which gives

$$
y=c_{1} \mathrm{e}^{t^{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=t y$		$\frac{d S}{d R}=0$
		$\rightarrow \rightarrow \rightarrow$
		$\rightarrow \rightarrow$
blable		
	$R=t$	$\rightarrow \rightarrow$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
	$S=\mathrm{e}^{-\frac{t^{2}}{2}} y$	
		$\rightarrow \pm 2^{2}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
3=c_{1}
$$

$$
c_{1}=3
$$

Substituting c_{1} found above in the general solution gives

$$
y=3 \mathrm{e}^{\frac{t^{2}}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 \mathrm{e}^{\frac{t^{2}}{2}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=3 \mathrm{e}^{\frac{t^{2}}{2}}
$$

Verified OK.

1.23.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =(t) \mathrm{d} t \\
(-t) \mathrm{d} t+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-t \\
N(t, y) & =\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-t) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-t \mathrm{~d} t \\
\phi & =-\frac{t^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{t^{2}}{2}+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{t^{2}}{2}+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{\frac{t^{2}}{2}+c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
3=\mathrm{e}^{c_{1}} \\
c_{1}=\ln (3)
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=3 \mathrm{e}^{\frac{t^{2}}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 \mathrm{e}^{\frac{t^{2}}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=3 \mathrm{e}^{\frac{t^{2}}{2}}
$$

Verified OK.

1.23.7 Maple step by step solution

Let's solve
$\left[y^{\prime}-t y=0, y(0)=3\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y}=t$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y} d t=\int t d t+c_{1}$
- Evaluate integral
$\ln (y)=\frac{t^{2}}{2}+c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{\frac{t^{2}}{2}+c_{1}}$
- Use initial condition $y(0)=3$
$3=\mathrm{e}^{c_{1}}$
- \quad Solve for c_{1}
$c_{1}=\ln (3)$
- \quad Substitute $c_{1}=\ln$ (3) into general solution and simplify $y=3 \mathrm{e}^{t^{2}}$
- \quad Solution to the IVP
$y=3 \mathrm{e}^{t^{2}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 12

```
dsolve([diff(y(t),t)=t*y(t),y(0) = 3],y(t), singsol=all)
```

$$
y(t)=3 \mathrm{e}^{\frac{t^{2}}{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 16

```
DSolve[{y'[t]==t*y[t],{y[0]==3}},y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow 3 e^{\frac{t^{2}}{2}}
$$

1.24 problem 27

1.24.1 Existence and uniqueness analysis 249
1.24.2 Solving as quadrature ode . 250
1.24.3 Maple step by step solution . 251

Internal problem ID [12888]
Internal file name [OUTPUT/11540_Monday_November_06_2023_01_33_09_PM_56463063/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 27.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}+y^{2}=0
$$

With initial conditions

$$
\left[y(0)=\frac{1}{2}\right]
$$

1.24.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =-y^{2}
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=\frac{1}{2}$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-y^{2}\right) \\
& =-2 y
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=\frac{1}{2}$ is inside this domain. Therefore solution exists and is unique.

1.24.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{y^{2}} d y & =t+c_{1} \\
\frac{1}{y} & =t+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=\frac{1}{t+c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{1}{2}=\frac{1}{c_{1}} \\
& c_{1}=2
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{1}{t+2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{t+2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{1}{t+2}
$$

Verified OK.

1.24.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}+y^{2}=0, y(0)=\frac{1}{2}\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y^{2}}=-1$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y^{2}} d t=\int(-1) d t+c_{1}$
- Evaluate integral
$-\frac{1}{y}=-t+c_{1}$
- \quad Solve for y

$$
y=-\frac{1}{-t+c_{1}}
$$

- Use initial condition $y(0)=\frac{1}{2}$
$\frac{1}{2}=-\frac{1}{c_{1}}$
- \quad Solve for c_{1}
$c_{1}=-2$
- Substitute $c_{1}=-2$ into general solution and simplify $y=\frac{1}{t+2}$
- Solution to the IVP

$$
y=\frac{1}{t+2}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 9

```
dsolve([diff(y(t),t)=-y(t)~2,y(0) = 1/2],y(t), singsol=all)
```

$$
y(t)=\frac{1}{t+2}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 10
DSolve[\{y' $[t]==-y[t] \wedge 2,\{y[0]==1 / 2\}\}, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{1}{t+2}
$$

1.25 problem 28

1.25.1 Existence and uniqueness analysis253
1.25.2 Solving as separable ode 254
1.25.3 Solving as first order ode lie symmetry lookup ode 256
1.25.4 Solving as exact ode 261
1.25.5 Maple step by step solution 265

Internal problem ID [12889]
Internal file name [OUTPUT/11541_Monday_November_06_2023_01_33_09_PM_42758481/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 28.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-t^{2} y^{3}=0
$$

With initial conditions

$$
[y(0)=-1]
$$

1.25.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =y^{3} t^{2}
\end{aligned}
$$

The t domain of $f(t, y)$ when $y=-1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(y^{3} t^{2}\right) \\
& =3 y^{2} t^{2}
\end{aligned}
$$

The t domain of $\frac{\partial f}{\partial y}$ when $y=-1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-1$ is inside this domain. Therefore solution exists and is unique.

1.25.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =y^{3} t^{2}
\end{aligned}
$$

Where $f(t)=t^{2}$ and $g(y)=y^{3}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{3}} d y & =t^{2} d t \\
\int \frac{1}{y^{3}} d y & =\int t^{2} d t \\
-\frac{1}{2 y^{2}} & =\frac{t^{3}}{3}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=-\frac{3}{\sqrt{-6 t^{3}-18 c_{1}}} \\
& y=\frac{3}{\sqrt{-6 t^{3}-18 c_{1}}}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
-1=\frac{1}{\sqrt{-2 c_{1}}}
$$

Warning: Unable to solve for c_{1}. No particular solution can be found using given initial conditions for this solution. removing this solution as not valid. Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=-\frac{1}{\sqrt{-2 c_{1}}} \\
c_{1}=-\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{3}{\sqrt{-6 t^{3}+9}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{3}{\sqrt{-6 t^{3}+9}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{3}{\sqrt{-6 t^{3}+9}}
$$

Verified OK.

1.25.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =y^{3} t^{2} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 55: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=\frac{1}{t^{2}} \\
& \eta(t, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{\frac{1}{t^{2}}} d t
\end{aligned}
$$

Which results in

$$
S=\frac{t^{3}}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=y^{3} t^{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{y} & =1 \\
S_{t} & =t^{2} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{3}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{3}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{2 R^{2}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\frac{t^{3}}{3}=-\frac{1}{2 y^{2}}+c_{1}
$$

Which simplifies to

$$
\frac{t^{3}}{3}=-\frac{1}{2 y^{2}}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=y^{3} t^{2}$		$\frac{d S}{d R}=\frac{1}{R^{3}}$
		$\rightarrow \rightarrow \rightarrow$ 鹉
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-]{ }$
	$R=y$	
,	$S=\overline{3}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ } \rightarrow \rightarrow+\infty$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=c_{1}-\frac{1}{2} \\
c_{1}=\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{t^{3}}{3}=\frac{y^{2}-1}{2 y^{2}}
$$

The above simplifies to

$$
2 y^{2} t^{3}-3 y^{2}+3=0
$$

Solving for y from the above gives

$$
y=-\frac{3}{\sqrt{-6 t^{3}+9}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{3}{\sqrt{-6 t^{3}+9}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{3}{\sqrt{-6 t^{3}+9}}
$$

Verified OK.

1.25.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y^{3}}\right) \mathrm{d} y & =\left(t^{2}\right) \mathrm{d} t \\
\left(-t^{2}\right) \mathrm{d} t+\left(\frac{1}{y^{3}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-t^{2} \\
& N(t, y)=\frac{1}{y^{3}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-t^{2}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\frac{1}{y^{3}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-t^{2} \mathrm{~d} t \\
\phi & =-\frac{t^{3}}{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y^{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y^{3}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y^{3}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y^{3}}\right) \mathrm{d} y \\
f(y) & =-\frac{1}{2 y^{2}}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{t^{3}}{3}-\frac{1}{2 y^{2}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{t^{3}}{3}-\frac{1}{2 y^{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -\frac{1}{2}=c_{1} \\
& c_{1}=-\frac{1}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{t^{3}}{3}-\frac{1}{2 y^{2}}=-\frac{1}{2}
$$

The above simplifies to

$$
-2 y^{2} t^{3}+3 y^{2}-3=0
$$

Solving for y from the above gives

$$
y=-\frac{3}{\sqrt{-6 t^{3}+9}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{3}{\sqrt{-6 t^{3}+9}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{3}{\sqrt{-6 t^{3}+9}}
$$

Verified OK.

1.25.5 Maple step by step solution

Let's solve
$\left[y^{\prime}-t^{2} y^{3}=0, y(0)=-1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y^{3}}=t^{2}$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y^{3}} d t=\int t^{2} d t+c_{1}$
- Evaluate integral
$-\frac{1}{2 y^{2}}=\frac{t^{3}}{3}+c_{1}$
- \quad Solve for y
$\left\{y=-\frac{3}{\sqrt{-6 t^{3}-18 c_{1}}}, y=\frac{3}{\sqrt{-6 t^{3}-18 c_{1}}}\right\}$
- Use initial condition $y(0)=-1$
$-1=-\frac{3}{\sqrt{-18 c_{1}}}$
- \quad Solve for c_{1}
$c_{1}=-\frac{1}{2}$
- Substitute $c_{1}=-\frac{1}{2}$ into general solution and simplify
$y=-\frac{3}{\sqrt{-6 t^{3}+9}}$
- Use initial condition $y(0)=-1$
$-1=\frac{3}{\sqrt{-18 c_{1}}}$
- Solution does not satisfy initial condition
- Solution to the IVP
$y=-\frac{3}{\sqrt{-6 t^{3}+9}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.109 (sec). Leaf size: 15

```
dsolve([diff(y(t),t)=t^2*y(t)^3,y(0) = -1],y(t), singsol=all)
```

$$
y(t)=-\frac{3}{\sqrt{-6 t^{3}+9}}
$$

\checkmark Solution by Mathematica
Time used: 0.285 (sec). Leaf size: 20
DSolve[\{y' $\left.[t]==t^{\wedge} 2 * y[t] \wedge 3,\{y[0]==-1\}\right\}, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow-\frac{1}{\sqrt{1-\frac{2 t^{3}}{3}}}
$$

1.26 problem 29

1.26.1 Existence and uniqueness analysis 267
1.26.2 Solving as quadrature ode . 268
1.26.3 Maple step by step solution . 269

Internal problem ID [12890]
Internal file name [OUTPUT/11542_Monday_November_06_2023_01_33_10_PM_85978894/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 29.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}+y^{2}=0
$$

With initial conditions

$$
[y(0)=0]
$$

1.26.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =-y^{2}
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-y^{2}\right) \\
& =-2 y
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Therefore solution exists and is unique.

1.26.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{y^{2}} d y & =t+c_{1} \\
\frac{1}{y} & =t+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=\frac{1}{t+c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=\frac{1}{c_{1}}
$$

Unable to solve for constant of integration. Since $\lim _{c_{1} \rightarrow \infty}$ gives $y=\frac{1}{t+c_{1}}=y=0$ and Summary
this result satisfies the given initial condition. The solution(s) found are the following

$$
y=0
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=0
$$

Verified OK.

1.26.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}+y^{2}=0, y(0)=0\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{y^{2}}=-1
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{y^{2}} d t=\int(-1) d t+c_{1}
$$

- Evaluate integral

$$
-\frac{1}{y}=-t+c_{1}
$$

- \quad Solve for y

$$
y=-\frac{1}{-t+c_{1}}
$$

- Use initial condition $y(0)=0$

$$
0=-\frac{1}{c_{1}}
$$

- Solution does not satisfy initial condition

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 5
dsolve([diff $(y(t), t)=-y(t) \wedge 2, y(0)=0], y(t)$, singsol=all)

$$
y(t)=0
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 6
DSolve[\{y' $[t]==-y[t] \sim 2,\{y[0]==0\}\}, y[t], t$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow 0
$$

1.27 problem 30

$$
\text { 1.27.1 Existence and uniqueness analysis } 271
$$

1.27.2 Solving as separable ode 272
1.27.3 Solving as first order ode lie symmetry lookup ode 273
1.27.4 Solving as exact ode 277
1.27.5 Maple step by step solution 281

Internal problem ID [12891]
Internal file name [OUTPUT/11543_Monday_November_06_2023_01_33_11_PM_4857332/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 30.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{t}{y-t^{2} y}=0
$$

With initial conditions

$$
[y(0)=4]
$$

1.27.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =-\frac{t}{y\left(t^{2}-1\right)}
\end{aligned}
$$

The t domain of $f(t, y)$ when $y=4$ is

$$
\{-\infty \leq t<-1,-1<t<1,1<t \leq \infty\}
$$

And the point $t_{0}=0$ is inside this domain. The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=4$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{t}{y\left(t^{2}-1\right)}\right) \\
& =\frac{t}{y^{2}\left(t^{2}-1\right)}
\end{aligned}
$$

The t domain of $\frac{\partial f}{\partial y}$ when $y=4$ is

$$
\{-\infty \leq t<-1,-1<t<1,1<t \leq \infty\}
$$

And the point $t_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=4$ is inside this domain. Therefore solution exists and is unique.

1.27.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =-\frac{t}{y\left(t^{2}-1\right)}
\end{aligned}
$$

Where $f(t)=-\frac{t}{t^{2}-1}$ and $g(y)=\frac{1}{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{y}} d y & =-\frac{t}{t^{2}-1} d t \\
\int \frac{1}{\frac{1}{y}} d y & =\int-\frac{t}{t^{2}-1} d t \\
\frac{y^{2}}{2} & =-\frac{\ln (t-1)}{2}-\frac{\ln (1+t)}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\sqrt{-\ln (t-1)-\ln (1+t)+2 c_{1}} \\
& y=-\sqrt{-\ln (t-1)-\ln (1+t)+2 c_{1}}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=4$ in the above solution gives an equation to solve for the constant of integration.

$$
4=-\sqrt{-i \pi+2 c_{1}}
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=4$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
4=\sqrt{-i \pi+2 c_{1}} \\
c_{1}=\frac{i \pi}{2}+8
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\sqrt{-\ln (t-1)-\ln (1+t)+i \pi+16}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{-\ln (t-1)-\ln (1+t)+i \pi+16} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\sqrt{-\ln (t-1)-\ln (1+t)+i \pi+16}
$$

Verified OK.

1.27.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{t}{y\left(t^{2}-1\right)} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 59: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\underline{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}} \frac{a_{1} b_{1}-a_{2} b_{1}}{}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=-\frac{t^{2}-1}{t} \\
& \eta(t, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{-\frac{t^{2}-1}{t}} d t
\end{aligned}
$$

Which results in

$$
S=-\frac{\ln (t-1)}{2}-\frac{\ln (1+t)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-\frac{t}{y\left(t^{2}-1\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{y} & =1 \\
S_{t} & =-\frac{t}{t^{2}-1} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
-\frac{\ln (t-1)}{2}-\frac{\ln (1+t)}{2}=\frac{y^{2}}{2}+c_{1}
$$

Which simplifies to

$$
-\frac{\ln (t-1)}{2}-\frac{\ln (1+t)}{2}=\frac{y^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

| Original ode in t, y coordinates |
| :---: | :---: | :---: | | Canonical
 coordinates
 transformation |
| :---: | | ODE in canonical coordinates |
| :---: |
| (R, S) |

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=4$ in the above solution gives an equation to solve for the constant of integration.

$$
-\frac{i \pi}{2}=8+c_{1}
$$

$$
c_{1}=-\frac{i \pi}{2}-8
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{\ln (t-1)}{2}-\frac{\ln (1+t)}{2}=\frac{y^{2}}{2}-\frac{i \pi}{2}-8
$$

Solving for y from the above gives

$$
y=\sqrt{-\ln (t-1)-\ln (1+t)+i \pi+16}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{-\ln (t-1)-\ln (1+t)+i \pi+16} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\sqrt{-\ln (t-1)-\ln (1+t)+i \pi+16}
$$

Verified OK. \{positive\}

1.27.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(-y) \mathrm{d} y & =\left(\frac{t}{t^{2}-1}\right) \mathrm{d} t \\
\left(-\frac{t}{t^{2}-1}\right) \mathrm{d} t+(-y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-\frac{t}{t^{2}-1} \\
N(t, y) & =-y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{t}{t^{2}-1}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(-y) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\frac{t}{t^{2}-1} \mathrm{~d} t \\
\phi & =-\frac{\ln (t-1)}{2}-\frac{\ln (1+t)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-y$. Therefore equation (4) becomes

$$
\begin{equation*}
-y=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-y) \mathrm{d} y \\
f(y) & =-\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\ln (t-1)}{2}-\frac{\ln (1+t)}{2}-\frac{y^{2}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\ln (t-1)}{2}-\frac{\ln (1+t)}{2}-\frac{y^{2}}{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=4$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -\frac{i \pi}{2}-8=c_{1} \\
& c_{1}=-\frac{i \pi}{2}-8
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{\ln (t-1)}{2}-\frac{\ln (1+t)}{2}-\frac{y^{2}}{2}=-\frac{i \pi}{2}-8
$$

Solving for y from the above gives

$$
y=\sqrt{-\ln (t-1)-\ln (1+t)+i \pi+16}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{-\ln (t-1)-\ln (1+t)+i \pi+16} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\sqrt{-\ln (t-1)-\ln (1+t)+i \pi+16}
$$

Verified OK. \{positive\}

1.27.5 Maple step by step solution

Let's solve
$\left[y^{\prime}-\frac{t}{y-t^{2} y}=0, y(0)=4\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$y^{\prime} y=-\frac{t}{(t-1)(1+t)}$
- Integrate both sides with respect to t
$\int y^{\prime} y d t=\int-\frac{t}{(t-1)(1+t)} d t+c_{1}$
- Evaluate integral
$\frac{y^{2}}{2}=-\frac{\ln ((t-1)(1+t))}{2}+c_{1}$
- \quad Solve for y
$\left\{y=\sqrt{-\ln ((t-1)(1+t))+2 c_{1}}, y=-\sqrt{-\ln ((t-1)(1+t))+2 c_{1}}\right\}$
- Use initial condition $y(0)=4$
$4=\sqrt{-\mathrm{I} \pi+2 c_{1}}$
- \quad Solve for c_{1}
$c_{1}=\frac{\mathrm{I} \pi}{2}+8$
- \quad Substitute $c_{1}=\frac{\mathrm{I} \pi}{2}+8$ into general solution and simplify
$y=\sqrt{-\ln \left(t^{2}-1\right)+\mathrm{I} \pi+16}$
- Use initial condition $y(0)=4$
$4=-\sqrt{-\mathrm{I} \pi+2 c_{1}}$
- Solution does not satisfy initial condition
- Solution to the IVP

$$
y=\sqrt{-\ln \left(t^{2}-1\right)+\mathrm{I} \pi+16}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.328 (sec). Leaf size: 24

```
dsolve([diff(y(t),t)=t/(y(t)-t^2*y(t)),y(0) = 4],y(t), singsol=all)
```

$$
y(t)=\sqrt{i \pi-\ln (t-1)-\ln (t+1)+16}
$$

\checkmark Solution by Mathematica
Time used: 0.15 (sec). Leaf size: 24
DSolve $\left[\left\{y^{\prime}[t]==t /\left(y[t]-t^{\wedge} 2 * y[t]\right),\{y[0]==4\}\right\}, y[t], t\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \sqrt{-\log \left(t^{2}-1\right)+i \pi+16}
$$

1.28 problem 31

1.28.1 Existence and uniqueness analysis 283
1.28.2 Solving as quadrature ode . 284
1.28.3 Maple step by step solution . 285

Internal problem ID [12892]
Internal file name [OUTPUT/11544_Monday_November_06_2023_01_33_12_PM_92578670/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 31.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-2 y=1
$$

With initial conditions

$$
[y(0)=3]
$$

1.28.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-2 \\
& q(t)=1
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-2 y=1
$$

The domain of $p(t)=-2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

1.28.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
& \int \frac{1}{2 y+1} d y=\int d t \\
& \frac{\ln (2 y+1)}{2}=t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{2 y+1}=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
\sqrt{2 y+1}=c_{2} \mathrm{e}^{t}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=0$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 3=\frac{c_{2}^{2}}{2}-\frac{1}{2} \\
& c_{2}=-\sqrt{7}
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\frac{7 \mathrm{e}^{2 t}}{2}-\frac{1}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{7 \mathrm{e}^{2 t}}{2}-\frac{1}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{7 \mathrm{e}^{2 t}}{2}-\frac{1}{2}
$$

Verified OK.

1.28.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-2 y=1, y(0)=3\right]
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- \quad Separate variables

$$
\frac{y^{\prime}}{2 y+1}=1
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{2 y+1} d t=\int 1 d t+c_{1}
$$

- Evaluate integral
$\frac{\ln (2 y+1)}{2}=t+c_{1}$
- \quad Solve for y

$$
y=-\frac{1}{2}+\frac{\mathrm{e}^{2 t+2 c_{1}}}{2}
$$

- Use initial condition $y(0)=3$

$$
3=-\frac{1}{2}+\frac{\mathrm{e}^{2 c_{1}}}{2}
$$

- \quad Solve for c_{1}
$c_{1}=\frac{\ln (7)}{2}$
- Substitute $c_{1}=\frac{\ln (7)}{2}$ into general solution and simplify

$$
y=\frac{7 \mathrm{e}^{2 t}}{2}-\frac{1}{2}
$$

- \quad Solution to the IVP

$$
y=\frac{7 \mathrm{e}^{2 t}}{2}-\frac{1}{2}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 12

```
dsolve([diff(y(t),t)=2*y(t)+1,y(0) = 3],y(t), singsol=all)
```

$$
y(t)=-\frac{1}{2}+\frac{7 \mathrm{e}^{2 t}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.045 (sec). Leaf size: 18

```
DSolve[{y'[t]==2*y[t]+1,{y[0]==3}},y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow \frac{1}{2}\left(7 e^{2 t}-1\right)
$$

1.29 problem 32

$$
\text { 1.29.1 Existence and uniqueness analysis } 287
$$

1.29.2 Solving as separable ode 288
1.29.3 Solving as first order ode lie symmetry lookup ode 290
1.29.4 Solving as exact ode 294
1.29.5 Solving as riccati ode 298
1.29.6 Maple step by step solution 300

Internal problem ID [12893]
Internal file name [OUTPUT/11545_Monday_November_06_2023_01_33_12_PM_41829624/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 32 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-t y^{2}-2 y^{2}=0
$$

With initial conditions

$$
[y(0)=1]
$$

1.29.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =t y^{2}+2 y^{2}
\end{aligned}
$$

The t domain of $f(t, y)$ when $y=1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(t y^{2}+2 y^{2}\right) \\
& =2 t y+4 y
\end{aligned}
$$

The t domain of $\frac{\partial f}{\partial y}$ when $y=1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

1.29.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =y^{2}(t+2)
\end{aligned}
$$

Where $f(t)=t+2$ and $g(y)=y^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{2}} d y & =t+2 d t \\
\int \frac{1}{y^{2}} d y & =\int t+2 d t \\
-\frac{1}{y} & =\frac{1}{2} t^{2}+2 t+c_{1}
\end{aligned}
$$

Which results in

$$
y=-\frac{2}{t^{2}+2 c_{1}+4 t}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=-\frac{1}{c_{1}} \\
& c_{1}=-1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{2}{t^{2}+4 t-2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2}{t^{2}+4 t-2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{2}{t^{2}+4 t-2}
$$

Verified OK.

1.29.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=t y^{2}+2 y^{2} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 63: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=\frac{1}{t+2} \\
& \eta(t, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{\frac{1}{t+2}} d t
\end{aligned}
$$

Which results in

$$
S=\frac{1}{2} t^{2}+2 t
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=t y^{2}+2 y^{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{y} & =1 \\
S_{t} & =t+2 \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\frac{1}{2} t^{2}+2 t=-\frac{1}{y}+c_{1}
$$

Which simplifies to

$$
\frac{1}{2} t^{2}+2 t=-\frac{1}{y}+c_{1}
$$

Which gives

$$
y=\frac{2}{-t^{2}+2 c_{1}-4 t}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=t y^{2}+2 y^{2}$		$\frac{d S}{d R}=\frac{1}{R^{2}}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }$
	$R=y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
$\rightarrow-4 \rightarrow \rightarrow-2 \rightarrow \rightarrow 0 \rightarrow \rightarrow-\rightarrow \rightarrow \rightarrow+⿻ \rightarrow 𠃋$		
	$S=\frac{1}{2} t^{2}+2 t$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=\frac{1}{c_{1}} \\
& c_{1}=1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{2}{t^{2}+4 t-2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2}{t^{2}+4 t-2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{2}{t^{2}+4 t-2}
$$

Verified OK.

1.29.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y^{2}}\right) \mathrm{d} y & =(t+2) \mathrm{d} t \\
(-t-2) \mathrm{d} t+\left(\frac{1}{y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-t-2 \\
& N(t, y)=\frac{1}{y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-t-2) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\frac{1}{y^{2}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-t-2 \mathrm{~d} t \\
\phi & =-\frac{1}{2} t^{2}-2 t+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y^{2}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y^{2}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y^{2}}\right) \mathrm{d} y \\
f(y) & =-\frac{1}{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{t^{2}}{2}-2 t-\frac{1}{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{t^{2}}{2}-2 t-\frac{1}{y}
$$

The solution becomes

$$
y=-\frac{2}{t^{2}+2 c_{1}+4 t}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=-\frac{1}{c_{1}} \\
& c_{1}=-1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{2}{t^{2}+4 t-2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2}{t^{2}+4 t-2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{2}{t^{2}+4 t-2}
$$

Verified OK.

1.29.5 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =t y^{2}+2 y^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=t y^{2}+2 y^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(t)+f_{1}(t) y+f_{2}(t) y^{2}
$$

Shows that $f_{0}(t)=0, f_{1}(t)=0$ and $f_{2}(t)=t+2$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{(t+2) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(t)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(t)+f_{2}^{2} f_{0} u(t)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =1 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
(t+2) u^{\prime \prime}(t)-u^{\prime}(t)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(t)=c_{1}+c_{2}(t+2)^{2}
$$

The above shows that

$$
u^{\prime}(t)=2 c_{2}(t+2)
$$

Using the above in (1) gives the solution

$$
y=-\frac{2 c_{2}}{c_{1}+c_{2}(t+2)^{2}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{2}{t^{2}+c_{3}+4 t+4}
$$

Initial conditions are used to solve for c_{3}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\frac{2}{c_{3}+4} \\
c_{3}=-6
\end{gathered}
$$

Substituting c_{3} found above in the general solution gives

$$
y=-\frac{2}{t^{2}+4 t-2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2}{t^{2}+4 t-2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{2}{t^{2}+4 t-2}
$$

Verified OK.

1.29.6 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-t y^{2}-2 y^{2}=0, y(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{y^{2}}=t+2
$$

- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y^{2}} d t=\int(t+2) d t+c_{1}$
- Evaluate integral
$-\frac{1}{y}=\frac{1}{2} t^{2}+2 t+c_{1}$
- \quad Solve for y
$y=-\frac{2}{t^{2}+2 c_{1}+4 t}$
- Use initial condition $y(0)=1$
$1=-\frac{1}{c_{1}}$
- \quad Solve for c_{1}
$c_{1}=-1$
- \quad Substitute $c_{1}=-1$ into general solution and simplify $y=-\frac{2}{t^{2}+4 t-2}$
- \quad Solution to the IVP
$y=-\frac{2}{t^{2}+4 t-2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.094 (sec). Leaf size: 16

```
dsolve([diff(y(t),t)=t*y(t)~ 2+2*y(t)~2,y(0) = 1],y(t), singsol=all)
```

$$
y(t)=-\frac{2}{t^{2}+4 t-2}
$$

\checkmark Solution by Mathematica
Time used: 0.219 (sec). Leaf size: 17
DSolve $\left[\left\{y^{\prime}[t]==t * y[t] \sim 2+2 * y[t] \sim 2,\{y[0]==1\}\right\}, y[t], t\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow-\frac{2}{t^{2}+4 t-2}
$$

1.30 problem 33

1.30.1 Existence and uniqueness analysis 303
1.30.2 Solving as separable ode . 304
1.30.3 Solving as first order ode lie symmetry lookup ode 306
1.30.4 Solving as exact ode . 311
1.30.5 Maple step by step solution . 314

Internal problem ID [12894]
Internal file name [OUTPUT/11546_Monday_November_06_2023_01_33_13_PM_3073111/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 33 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
x^{\prime}-\frac{t^{2}}{x+t^{3} x}=0
$$

With initial conditions

$$
[x(0)=-2]
$$

1.30.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
x^{\prime} & =f(t, x) \\
& =\frac{t^{2}}{x\left(t^{3}+1\right)}
\end{aligned}
$$

The t domain of $f(t, x)$ when $x=-2$ is

$$
\{t<-1 \vee-1<t\}
$$

And the point $t_{0}=0$ is inside this domain. The x domain of $f(t, x)$ when $t=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{t^{2}}{x\left(t^{3}+1\right)}\right) \\
& =-\frac{t^{2}}{x^{2}\left(t^{3}+1\right)}
\end{aligned}
$$

The t domain of $\frac{\partial f}{\partial x}$ when $x=-2$ is

$$
\{t<-1 \vee-1<t\}
$$

And the point $t_{0}=0$ is inside this domain. The x domain of $\frac{\partial f}{\partial x}$ when $t=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-2$ is inside this domain. Therefore solution exists and is unique.

1.30.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
x^{\prime} & =F(t, x) \\
& =f(t) g(x) \\
& =\frac{t^{2}}{x\left(t^{3}+1\right)}
\end{aligned}
$$

Where $f(t)=\frac{t^{2}}{t^{3}+1}$ and $g(x)=\frac{1}{x}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{x}} d x & =\frac{t^{2}}{t^{3}+1} d t \\
\int \frac{1}{\frac{1}{x}} d x & =\int \frac{t^{2}}{t^{3}+1} d t \\
\frac{x^{2}}{2} & =\frac{\ln \left(t^{3}+1\right)}{3}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& x=\frac{\sqrt{6 \ln \left(t^{3}+1\right)+18 c_{1}}}{3} \\
& x=-\frac{\sqrt{6 \ln \left(t^{3}+1\right)+18 c_{1}}}{3}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $x=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-2=-\sqrt{c_{1}} \sqrt{2} \\
c_{1}=2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
x=-\frac{\sqrt{6 \ln \left(t^{3}+1\right)+36}}{3}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $x=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
-2=\sqrt{c_{1}} \sqrt{2}
$$

Summary
The solution(s) found are the following
Warning: Unable to solve for constant of integration.

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
x=-\frac{\sqrt{6 \ln \left(t^{3}+1\right)+36}}{3}
$$

Verified OK.

1.30.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
x^{\prime} & =\frac{t^{2}}{x\left(t^{3}+1\right)} \\
x^{\prime} & =\omega(t, x)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{x}-\xi_{t}\right)-\omega^{2} \xi_{x}-\omega_{t} \xi-\omega_{x} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 66: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, x)=\frac{t^{3}+1}{t^{2}} \\
& \eta(t, x)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, x) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d x}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial x}\right) S(t, x)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{\frac{t^{3}+1}{t^{2}}} d t
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(t^{3}+1\right)}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, x) S_{x}}{R_{t}+\omega(t, x) R_{x}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{x}, S_{t}, S_{x}$ are all partial derivatives and $\omega(t, x)$ is the right hand side of the original ode given by

$$
\omega(t, x)=\frac{t^{2}}{x\left(t^{3}+1\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{x} & =1 \\
S_{t} & =\frac{t^{2}}{\left(t^{2}-t+1\right)(1+t)} \\
S_{x} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=x \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, x in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, x coordinates. This results in

$$
\frac{\ln (1+t)}{3}+\frac{\ln \left(t^{2}-t+1\right)}{3}=\frac{x^{2}}{2}+c_{1}
$$

Which simplifies to

$$
\frac{\ln (1+t)}{3}+\frac{\ln \left(t^{2}-t+1\right)}{3}=\frac{x^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

| Original ode in t, x coordinates |
| :--- | :--- | :--- | \left\lvert\, | Canonical
 coordinates
 transformation |
| :---: |
| $\frac{d x}{d t}=\frac{t^{2}}{x\left(t^{3}+1\right)}$ | | ODE in canonical coordinates |
| :---: |
| (R, S) |\right.

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $x=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
0=c_{1}+2
$$

$$
c_{1}=-2
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{\ln (1+t)}{3}+\frac{\ln \left(t^{2}-t+1\right)}{3}=\frac{x^{2}}{2}-2
$$

Solving for x from the above gives

$$
x=-\frac{\sqrt{36+6 \ln (1+t)+6 \ln \left(t^{2}-t+1\right)}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=-\frac{\sqrt{36+6 \ln (1+t)+6 \ln \left(t^{2}-t+1\right)}}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
x=-\frac{\sqrt{36+6 \ln (1+t)+6 \ln \left(t^{2}-t+1\right)}}{3}
$$

Verified OK.

1.30.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, x) \mathrm{d} t+N(t, x) \mathrm{d} x=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} x & =\left(\frac{t^{2}}{t^{3}+1}\right) \mathrm{d} t \\
\left(-\frac{t^{2}}{t^{3}+1}\right) \mathrm{d} t+(x) \mathrm{d} x & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, x)=-\frac{t^{2}}{t^{3}+1} \\
& N(t, x)=x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial x}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{t^{2}}{t^{3}+1}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(x) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial x}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, x)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial x}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\frac{t^{2}}{t^{3}+1} \mathrm{~d} t \\
\phi & =-\frac{\ln \left(t^{3}+1\right)}{3}+f(x) \tag{3}
\end{align*}
$$

Where $f(x)$ is used for the constant of integration since ϕ is a function of both t and x. Taking derivative of equation (3) w.r.t x gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}=0+f^{\prime}(x) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial x}=x$. Therefore equation (4) becomes

$$
\begin{equation*}
x=0+f^{\prime}(x) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(x)$ gives

$$
f^{\prime}(x)=x
$$

Integrating the above w.r.t x gives

$$
\begin{aligned}
\int f^{\prime}(x) \mathrm{d} x & =\int(x) \mathrm{d} x \\
f(x) & =\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(x)$ into equation (3) gives ϕ

$$
\phi=-\frac{\ln \left(t^{3}+1\right)}{3}+\frac{x^{2}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\ln \left(t^{3}+1\right)}{3}+\frac{x^{2}}{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $x=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2=c_{1} \\
& c_{1}=2
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{\ln \left(t^{3}+1\right)}{3}+\frac{x^{2}}{2}=2
$$

Solving for x from the above gives

$$
x=-\frac{\sqrt{6 \ln \left(t^{3}+1\right)+36}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=-\frac{\sqrt{6 \ln \left(t^{3}+1\right)+36}}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
x=-\frac{\sqrt{6 \ln \left(t^{3}+1\right)+36}}{3}
$$

Verified OK.

1.30.5 Maple step by step solution

Let's solve

$$
\left[x^{\prime}-\frac{t^{2}}{x+t^{3} x}=0, x(0)=-2\right]
$$

- Highest derivative means the order of the ODE is 1
x^{\prime}
- Separate variables

$$
x^{\prime} x=\frac{t^{2}}{\left(t^{2}-t+1\right)(1+t)}
$$

- Integrate both sides with respect to t

$$
\int x^{\prime} x d t=\int \frac{t^{2}}{\left(t^{2}-t+1\right)(1+t)} d t+c_{1}
$$

- Evaluate integral

$$
\frac{x^{2}}{2}=\frac{\ln \left((1+t)\left(t^{2}-t+1\right)\right)}{3}+c_{1}
$$

- \quad Solve for x
$\left\{x=-\frac{\sqrt{6 \ln \left((1+t)\left(t^{2}-t+1\right)\right)+18 c_{1}}}{3}, x=\frac{\sqrt{6 \ln \left((1+t)\left(t^{2}-t+1\right)\right)+18 c_{1}}}{3}\right\}$
- Use initial condition $x(0)=-2$
$-2=-\frac{\sqrt{18} \sqrt{c_{1}}}{3}$
- \quad Solve for c_{1}
$c_{1}=2$
- \quad Substitute $c_{1}=2$ into general solution and simplify
$x=-\frac{\sqrt{6 \ln \left((1+t)\left(t^{2}-t+1\right)\right)+36}}{3}$
- Use initial condition $x(0)=-2$
$-2=\frac{\sqrt{18} \sqrt{c_{1}}}{3}$
- Solution does not satisfy initial condition
- Solution to the IVP
$x=-\frac{\sqrt{6 \ln \left((1+t)\left(t^{2}-t+1\right)\right)+36}}{3}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.063 (sec). Leaf size: 18
dsolve([diff(x $\left.(t), t)=t \wedge 2 /\left(x(t)+t^{\wedge} 3 * x(t)\right), x(0)=-2\right], x(t)$, singsol=all)

$$
x(t)=-\frac{\sqrt{36+6 \ln \left(t^{3}+1\right)}}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.202 (sec). Leaf size: 26
DSolve[\{x'[t]==t^2/(x[t]+t^3*x[t]),\{x[0]==-2\}\},x[t],t,IncludeSingularSolutions \rightarrow True]

$$
x(t) \rightarrow-\sqrt{\frac{2}{3}} \sqrt{\log \left(t^{3}+1\right)+6}
$$

1.31 problem 34

1.31.1 Existence and uniqueness analysis 317
1.31.2 Solving as quadrature ode . 318

Internal problem ID [12895]
Internal file name [OUTPUT/11547_Monday_November_06_2023_01_33_14_PM_20960949/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 34 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-\frac{1-y^{2}}{y}=0
$$

With initial conditions

$$
[y(0)=-2]
$$

1.31.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =-\frac{y^{2}-1}{y}
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=-2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{y^{2}-1}{y}\right) \\
& =-2+\frac{y^{2}-1}{y^{2}}
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=-2$ is inside this domain. Therefore solution exists and is unique.

1.31.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int-\frac{y}{y^{2}-1} d y & =\int d t \\
-\frac{\ln (y-1)}{2}-\frac{\ln (y+1)}{2} & =t+c_{1}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(-\frac{1}{2}\right)(\ln (y-1)+\ln (y+1)) & =t+c_{1} \\
\ln (y-1)+\ln (y+1) & =(-2)\left(t+c_{1}\right) \\
& =-2 t-2 c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (y-1)+\ln (y+1)}=-2 c_{1} \mathrm{e}^{-2 t}
$$

Which simplifies to

$$
y^{2}-1=c_{2} \mathrm{e}^{-2 t}
$$

Unable to solve for constant of integration due to RootOf in solution.
Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\operatorname{RootOf}\left(_Z^{2}-c_{2} \mathrm{e}^{-2 t}-1\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\operatorname{RootOf}\left(_Z^{2}-c_{2} \mathrm{e}^{-2 t}-1\right)
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.094 (sec). Leaf size: 16
dsolve([diff(y(t),t)=(1-y(t)~2)/y(t),y(0)=-2],y(t), singsol=all)

$$
y(t)=-\sqrt{3 \mathrm{e}^{-2 t}+1}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 20
DSolve[\{y' $[t]==(1-y[t] \sim 2) / y[t],\{y[0]==-2\}\}, y[t], t$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow-\sqrt{3 e^{-2 t}+1}
$$

1.32 problem 35

1.32.1 Existence and uniqueness analysis 320
1.32.2 Solving as separable ode . 321
1.32.3 Solving as first order ode lie symmetry lookup ode 323
1.32.4 Solving as exact ode . 327
1.32.5 Solving as riccati ode . 331
1.32.6 Maple step by step solution . 334

Internal problem ID [12896]
Internal file name [OUTPUT/11548_Monday_November_06_2023_01_33_16_PM_76225116/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 35.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\left(1+y^{2}\right) t=0
$$

With initial conditions

$$
[y(0)=1]
$$

1.32.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =\left(y^{2}+1\right) t
\end{aligned}
$$

The t domain of $f(t, y)$ when $y=1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\left(y^{2}+1\right) t\right) \\
& =2 t y
\end{aligned}
$$

The t domain of $\frac{\partial f}{\partial y}$ when $y=1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

1.32.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =\left(y^{2}+1\right) t
\end{aligned}
$$

Where $f(t)=t$ and $g(y)=y^{2}+1$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{2}+1} d y & =t d t \\
\int \frac{1}{y^{2}+1} d y & =\int t d t \\
\arctan (y) & =\frac{t^{2}}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
y=\tan \left(\frac{t^{2}}{2}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\tan \left(c_{1}\right) \\
c_{1}=\frac{\pi}{4}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\tan \left(\frac{t^{2}}{2}+\frac{\pi}{4}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\tan \left(\frac{t^{2}}{2}+\frac{\pi}{4}\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\tan \left(\frac{t^{2}}{2}+\frac{\pi}{4}\right)
$$

Verified OK.

1.32.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\left(y^{2}+1\right) t \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 69: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=\frac{1}{t} \\
& \eta(t, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{\frac{1}{t}} d t
\end{aligned}
$$

Which results in

$$
S=\frac{t^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\left(y^{2}+1\right) t
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{y} & =1 \\
S_{t} & =t \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{2}+1} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{2}+1}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\arctan (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\frac{t^{2}}{2}=\arctan (y)+c_{1}
$$

Which simplifies to

$$
\frac{t^{2}}{2}=\arctan (y)+c_{1}
$$

Which gives

$$
y=-\tan \left(-\frac{t^{2}}{2}+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\tan \left(c_{1}\right) \\
c_{1}=-\frac{\pi}{4}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\tan \left(\frac{t^{2}}{2}+\frac{\pi}{4}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\tan \left(\frac{t^{2}}{2}+\frac{\pi}{4}\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\tan \left(\frac{t^{2}}{2}+\frac{\pi}{4}\right)
$$

Verified OK.

1.32.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y^{2}+1}\right) \mathrm{d} y & =(t) \mathrm{d} t \\
(-t) \mathrm{d} t+\left(\frac{1}{y^{2}+1}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-t \\
N(t, y) & =\frac{1}{y^{2}+1}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-t) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\frac{1}{y^{2}+1}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-t \mathrm{~d} t \\
\phi & =-\frac{t^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y^{2}+1}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y^{2}+1}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y^{2}+1}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y^{2}+1}\right) \mathrm{d} y \\
f(y) & =\arctan (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{t^{2}}{2}+\arctan (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{t^{2}}{2}+\arctan (y)
$$

The solution becomes

$$
y=\tan \left(\frac{t^{2}}{2}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\tan \left(c_{1}\right) \\
c_{1}=\frac{\pi}{4}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\tan \left(\frac{t^{2}}{2}+\frac{\pi}{4}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\tan \left(\frac{t^{2}}{2}+\frac{\pi}{4}\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\tan \left(\frac{t^{2}}{2}+\frac{\pi}{4}\right)
$$

Verified OK.

1.32.5 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =\left(y^{2}+1\right) t
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=t y^{2}+t
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(t)+f_{1}(t) y+f_{2}(t) y^{2}
$$

Shows that $f_{0}(t)=t, f_{1}(t)=0$ and $f_{2}(t)=t$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{t u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(t)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(t)+f_{2}^{2} f_{0} u(t)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =1 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =t^{3}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
t u^{\prime \prime}(t)-u^{\prime}(t)+t^{3} u(t)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(t)=c_{1} \sin \left(\frac{t^{2}}{2}\right)+c_{2} \cos \left(\frac{t^{2}}{2}\right)
$$

The above shows that

$$
u^{\prime}(t)=t\left(c_{1} \cos \left(\frac{t^{2}}{2}\right)-c_{2} \sin \left(\frac{t^{2}}{2}\right)\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{c_{1} \cos \left(\frac{t^{2}}{2}\right)-c_{2} \sin \left(\frac{t^{2}}{2}\right)}{c_{1} \sin \left(\frac{t^{2}}{2}\right)+c_{2} \cos \left(\frac{t^{2}}{2}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{-c_{3} \cos \left(\frac{t^{2}}{2}\right)+\sin \left(\frac{t^{2}}{2}\right)}{c_{3} \sin \left(\frac{t^{2}}{2}\right)+\cos \left(\frac{t^{2}}{2}\right)}
$$

Initial conditions are used to solve for c_{3}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=-c_{3}
$$

$$
c_{3}=-1
$$

Substituting c_{3} found above in the general solution gives

$$
y=\frac{-\sin \left(\frac{t^{2}}{2}\right)-\cos \left(\frac{t^{2}}{2}\right)}{\sin \left(\frac{t^{2}}{2}\right)-\cos \left(\frac{t^{2}}{2}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-\sin \left(\frac{t^{2}}{2}\right)-\cos \left(\frac{t^{2}}{2}\right)}{\sin \left(\frac{t^{2}}{2}\right)-\cos \left(\frac{t^{2}}{2}\right)} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=\frac{-\sin \left(\frac{t^{2}}{2}\right)-\cos \left(\frac{t^{2}}{2}\right)}{\sin \left(\frac{t^{2}}{2}\right)-\cos \left(\frac{t^{2}}{2}\right)}
$$

Verified OK.

1.32.6 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\left(1+y^{2}\right) t=0, y(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{1+y^{2}}=t
$$

- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{1+y^{2}} d t=\int t d t+c_{1}$
- Evaluate integral
$\arctan (y)=\frac{t^{2}}{2}+c_{1}$
- \quad Solve for y
$y=\tan \left(\frac{t^{2}}{2}+c_{1}\right)$
- Use initial condition $y(0)=1$
$1=\tan \left(c_{1}\right)$
- \quad Solve for c_{1}
$c_{1}=\frac{\pi}{4}$
- \quad Substitute $c_{1}=\frac{\pi}{4}$ into general solution and simplify
$y=\tan \left(\frac{t^{2}}{2}+\frac{\pi}{4}\right)$
- Solution to the IVP
$y=\tan \left(\frac{t^{2}}{2}+\frac{\pi}{4}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 14

```
dsolve([diff(y(t),t)=(y(t)^2+1)*t,y(0) = 1],y(t), singsol=all)
```

$$
y(t)=\tan \left(\frac{t^{2}}{2}+\frac{\pi}{4}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.29 (sec). Leaf size: 17
DSolve[\{y' $[t]==(y[t] \sim 2+1) * t,\{y[0]==1\}\}, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \tan \left(\frac{1}{4}\left(2 t^{2}+\pi\right)\right)
$$

1.33 problem 36

1.33.1 Existence and uniqueness analysis 336
1.33.2 Solving as quadrature ode . 337]
1.33.3 Maple step by step solution . 338

Internal problem ID [12897]
Internal file name [OUTPUT/11549_Monday_November_06_2023_01_33_17_PM_75412810/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 36 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-\frac{1}{2 y+3}=0
$$

With initial conditions

$$
[y(0)=1]
$$

1.33.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =\frac{1}{2 y+3}
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\left\{y<-\frac{3}{2} \vee-\frac{3}{2}<y\right\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{1}{2 y+3}\right) \\
& =-\frac{2}{(2 y+3)^{2}}
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\left\{y<-\frac{3}{2} \vee-\frac{3}{2}<y\right\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

1.33.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int(2 y+3) d y & =t+c_{1} \\
y^{2}+3 y & =t+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
\begin{aligned}
& y_{1}=-\frac{3}{2}-\frac{\sqrt{9+4 t+4 c_{1}}}{2} \\
& y_{2}=-\frac{3}{2}+\frac{\sqrt{9+4 t+4 c_{1}}}{2}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\frac{3}{2}+\frac{\sqrt{9+4 c_{1}}}{2} \\
c_{1}=4
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{3}{2}+\frac{\sqrt{25+4 t}}{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=-\frac{3}{2}-\frac{\sqrt{9+4 c_{1}}}{2}
$$

Summary

The solution(s) found are the following
Warning: Unable to solve for constant of integration.

$$
y=-\frac{3}{2}+\frac{\sqrt{25+4}}{2}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=-\frac{3}{2}+\frac{\sqrt{25+4 t}}{2}
$$

Verified OK.

1.33.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-\frac{1}{2 y+3}=0, y(0)=1\right]$

- Highest derivative means the order of the ODE is 1

```
y'
```

- Separate variables

$$
y^{\prime}(2 y+3)=1
$$

- Integrate both sides with respect to t

$$
\int y^{\prime}(2 y+3) d t=\int 1 d t+c_{1}
$$

- Evaluate integral
$y^{2}+3 y=t+c_{1}$
- \quad Solve for y
$\left\{y=-\frac{3}{2}-\frac{\sqrt{9+4 t+4 c_{1}}}{2}, y=-\frac{3}{2}+\frac{\sqrt{9+4 t+4 c_{1}}}{2}\right\}$
- Use initial condition $y(0)=1$
$1=-\frac{3}{2}-\frac{\sqrt{9+4 c_{1}}}{2}$
- Solution does not satisfy initial condition
- Use initial condition $y(0)=1$
$1=-\frac{3}{2}+\frac{\sqrt{9+4 c_{1}}}{2}$
- \quad Solve for c_{1}
$c_{1}=4$
- \quad Substitute $c_{1}=4$ into general solution and simplify $y=-\frac{3}{2}+\frac{\sqrt{25+4 t}}{2}$
- \quad Solution to the IVP
$y=-\frac{3}{2}+\frac{\sqrt{25+4 t}}{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 15
dsolve([diff $(y(t), t)=1 /(2 * y(t)+3), y(0)=1], y(t)$, singsol=all)

$$
y(t)=-\frac{3}{2}+\frac{\sqrt{25+4 t}}{2}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 20
DSolve $\left[\left\{y^{\prime}[t]==1 /(2 * y[t]+3),\{y[0]==1\}\right\}, y[t], t\right.$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow \frac{1}{2}(\sqrt{4 t+25}-3)
$$

1.34 problem 37

1.34.1 Existence and uniqueness analysis 341
1.34.2 Solving as separable ode 342
1.34.3 Solving as first order ode lie symmetry lookup ode 344
1.34.4 Solving as exact ode 348
1.34.5 Solving as riccati ode 352
1.34.6 Maple step by step solution 354
Internal problem ID [12898]
Internal file name [OUTPUT/11550_Monday_November_06_2023_01_33_17_PM_86722850/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.4th edition. Brooks/Cole. Boston, USA. 2012Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33Problem number: 37.

ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-2 t y^{2}-3 t^{2} y^{2}=0
$$

With initial conditions

$$
[y(1)=-1]
$$

1.34.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =3 y^{2} t^{2}+2 t y^{2}
\end{aligned}
$$

The t domain of $f(t, y)$ when $y=-1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=1$ is inside this domain. The y domain of $f(t, y)$ when $t=1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(3 y^{2} t^{2}+2 t y^{2}\right) \\
& =6 y t^{2}+4 t y
\end{aligned}
$$

The t domain of $\frac{\partial f}{\partial y}$ when $y=-1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $t=1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-1$ is inside this domain. Therefore solution exists and is unique.

1.34.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =\left(3 t^{2}+2 t\right) y^{2}
\end{aligned}
$$

Where $f(t)=3 t^{2}+2 t$ and $g(y)=y^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{2}} d y & =3 t^{2}+2 t d t \\
\int \frac{1}{y^{2}} d y & =\int 3 t^{2}+2 t d t \\
-\frac{1}{y} & =t^{3}+t^{2}+c_{1}
\end{aligned}
$$

Which results in

$$
y=-\frac{1}{t^{3}+t^{2}+c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=-\frac{1}{c_{1}+2} \\
c_{1}=-1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{1}{t^{3}+t^{2}-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{t^{3}+t^{2}-1} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{1}{t^{3}+t^{2}-1}
$$

Verified OK.

1.34.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =3 y^{2} t^{2}+2 t y^{2} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 73: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=\frac{1}{3 t^{2}+2 t} \\
& \eta(t, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{3 t^{2}+2 t} d t
\end{aligned}
$$

Which results in

$$
S=t^{3}+t^{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=3 y^{2} t^{2}+2 t y^{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{y} & =1 \\
S_{t} & =3 t^{2}+2 t \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
t^{2}(1+t)=-\frac{1}{y}+c_{1}
$$

Which simplifies to

$$
t^{2}(1+t)=-\frac{1}{y}+c_{1}
$$

Which gives

$$
y=\frac{1}{-t^{3}-t^{2}+c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=3 y^{2} t^{2}+2 t y^{2}$		$\frac{d S}{d R}=\frac{1}{R^{2}}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }$
		$\rightarrow \rightarrow \rightarrow-5(R)$ ¢ $+\uparrow+\rightarrow \rightarrow$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
	R	
	$S=t^{2}(1+t)$	
A 是边		$\rightarrow \rightarrow \rightarrow \rightarrow+1$
14		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
- 4		

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=\frac{1}{-2+c_{1}} \\
c_{1}=1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{1}{t^{3}+t^{2}-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{t^{3}+t^{2}-1} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{1}{t^{3}+t^{2}-1}
$$

Verified OK.

1.34.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y^{2}}\right) \mathrm{d} y & =\left(3 t^{2}+2 t\right) \mathrm{d} t \\
\left(-3 t^{2}-2 t\right) \mathrm{d} t+\left(\frac{1}{y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-3 t^{2}-2 t \\
& N(t, y)=\frac{1}{y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-3 t^{2}-2 t\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\frac{1}{y^{2}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-3 t^{2}-2 t \mathrm{~d} t \\
\phi & =-t^{3}-t^{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y^{2}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y^{2}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y^{2}}\right) \mathrm{d} y \\
f(y) & =-\frac{1}{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-t^{3}-t^{2}-\frac{1}{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-t^{3}-t^{2}-\frac{1}{y}
$$

The solution becomes

$$
y=-\frac{1}{t^{3}+t^{2}+c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=-\frac{1}{c_{1}+2} \\
c_{1}=-1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{1}{t^{3}+t^{2}-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{t^{3}+t^{2}-1} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{1}{t^{3}+t^{2}-1}
$$

Verified OK.

1.34.5 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =3 y^{2} t^{2}+2 t y^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=3 y^{2} t^{2}+2 t y^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(t)+f_{1}(t) y+f_{2}(t) y^{2}
$$

Shows that $f_{0}(t)=0, f_{1}(t)=0$ and $f_{2}(t)=3 t^{2}+2 t$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\left(3 t^{2}+2 t\right) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(t)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(t)+f_{2}^{2} f_{0} u(t)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =6 t+2 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\left(3 t^{2}+2 t\right) u^{\prime \prime}(t)-(6 t+2) u^{\prime}(t)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(t)=c_{1}+t^{2}(1+t) c_{2}
$$

The above shows that

$$
u^{\prime}(t)=c_{2} t(3 t+2)
$$

Using the above in (1) gives the solution

$$
y=-\frac{c_{2} t(3 t+2)}{\left(3 t^{2}+2 t\right)\left(c_{1}+t^{2}(1+t) c_{2}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{1}{t^{3}+t^{2}+c_{3}}
$$

Initial conditions are used to solve for c_{3}. Substituting $t=1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=-\frac{1}{c_{3}+2} \\
c_{3}=-1
\end{gathered}
$$

Substituting c_{3} found above in the general solution gives

$$
y=-\frac{1}{t^{3}+t^{2}-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{t^{3}+t^{2}-1} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{1}{t^{3}+t^{2}-1}
$$

Verified OK.

1.34.6 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-2 t y^{2}-3 t^{2} y^{2}=0, y(1)=-1\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y^{2}}=t(3 t+2)
$$

- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y^{2}} d t=\int t(3 t+2) d t+c_{1}$
- Evaluate integral
$-\frac{1}{y}=t^{3}+t^{2}+c_{1}$
- \quad Solve for y
$y=-\frac{1}{t^{3}+t^{2}+c_{1}}$
- Use initial condition $y(1)=-1$
$-1=-\frac{1}{c_{1}+2}$
- \quad Solve for c_{1}
$c_{1}=-1$
- Substitute $c_{1}=-1$ into general solution and simplify $y=-\frac{1}{t^{3}+t^{2}-1}$
- \quad Solution to the IVP
$y=-\frac{1}{t^{3}+t^{2}-1}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 16

```
dsolve([diff(y(t),t)=2*t*y(t)^2+3*t^2*y(t)^2,y(1) = -1],y(t), singsol=all)
```

$$
y(t)=-\frac{1}{t^{3}+t^{2}-1}
$$

\checkmark Solution by Mathematica
Time used: 0.222 (sec). Leaf size: 17
DSolve[\{y' $[t]==2 * t * y[t] \wedge 2+3 * t \wedge 2 * y[t] \wedge 2,\{y[1]==-1\}\}, y[t], t$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow-\frac{1}{t^{3}+t^{2}-1}
$$

1.35 problem 38

1.35.1 Existence and uniqueness analysis 357
1.35.2 Solving as quadrature ode . 358
1.35.3 Maple step by step solution . 359

Internal problem ID [12899]
Internal file name [OUTPUT/11551_Monday_November_06_2023_01_33_18_PM_36492103/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number: 38.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-\frac{y^{2}+5}{y}=0
$$

With initial conditions

$$
[y(0)=-2]
$$

1.35.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =\frac{y^{2}+5}{y}
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=-2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{y^{2}+5}{y}\right) \\
& =2-\frac{y^{2}+5}{y^{2}}
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=-2$ is inside this domain. Therefore solution exists and is unique.

1.35.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
& \int \frac{y}{y^{2}+5} d y=\int d t \\
& \frac{\ln \left(y^{2}+5\right)}{2}=t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{y^{2}+5}=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
\sqrt{y^{2}+5}=c_{2} \mathrm{e}^{t}
$$

Unable to solve for constant of integration due to RootOf in solution.
Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\operatorname{RootOf}\left(_Z^{2}-c_{2}^{2} \mathrm{e}^{2 t}+5\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\operatorname{RootOf}\left(_Z^{2}-c_{2}^{2} \mathrm{e}^{2 t}+5\right)
$$

Verified OK.

1.35.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-\frac{y^{2}+5}{y}=0, y(0)=-2\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime} y}{y^{2}+5}=1$
- Integrate both sides with respect to t
$\int \frac{y^{\prime} y}{y^{2}+5} d t=\int 1 d t+c_{1}$
- Evaluate integral
$\frac{\ln \left(y^{2}+5\right)}{2}=t+c_{1}$
- \quad Solve for y
$\left\{y=\sqrt{-5+\mathrm{e}^{2 t+2 c_{1}}}, y=-\sqrt{-5+\mathrm{e}^{2 t+2 c_{1}}}\right\}$
- Use initial condition $y(0)=-2$

$$
-2=\sqrt{-5+\mathrm{e}^{2 c_{1}}}
$$

- Solution does not satisfy initial condition
- Use initial condition $y(0)=-2$

$$
-2=-\sqrt{-5+\mathrm{e}^{2 c_{1}}}
$$

- \quad Solve for c_{1}
$c_{1}=\ln (3)$
- \quad Substitute $c_{1}=\ln (3)$ into general solution and simplify
$y=-\sqrt{-5+9 \mathrm{e}^{2 t}}$
- Solution to the IVP
$y=-\sqrt{-5+9 \mathrm{e}^{2 t}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.078 (sec). Leaf size: 16

```
dsolve([diff(y(t),t)=(y(t)^2+5)/y(t),y(0) = -2],y(t), singsol=all)
```

$$
y(t)=-\sqrt{9 \mathrm{e}^{2 t}-5}
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 20
DSolve[\{y' $[t]==(y[t] \sim 2+5) / y[t],\{y[0]==-2\}\}, y[t], t$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow-\sqrt{9 e^{2 t}-5}
$$

2 Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
2.1 problem 1 362
2.2 problem 2 365
2.3 problem 3 368
2.4 problem 4 371
2.5 problem 5 374
2.6 problem 6 378
2.7 problem 7 391
2.8 problem 8 396
2.9 problem 9 410
2.10 problem 10 415
2.11 problem $15 \mathrm{~b}(1)$ 432
2.12 problem $15 \mathrm{~b}(2)$ 436
2.13 problem $15 \mathrm{~b}(3)$ 440
2.14 problem $15 \mathrm{~b}(4)$ 443
2.15 problem $15 \mathrm{~b}(5)$ 447
2.16 problem 16 (i) 451
2.17 problem 16 (ii) 454
2.18 problem 16 (iii) 457
2.19 problem 16 (iv) 460
2.20 problem 16 (v) 463
2.21 problem 16 (vi) 481
2.22 problem 16 (vii) 494
2.23 problem 16 (viii) 507
2.24 problem 19 a(i) 510
2.25 problem 19 a(ii) 514
2.26 problem 19 a(iii) 517
2.27 problem 20 521
2.28 problem 21 524
2.29 problem 22 527

2.1 problem 1

2.1.1 Solving as quadrature ode . 362
2.1.2 Maple step by step solution . 363

Internal problem ID [12900]
Internal file name [OUTPUT/11552_Monday_November_06_2023_01_33_19_PM_34935870/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=t^{2}+t
$$

2.1.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int t^{2}+t \mathrm{~d} t \\
& =\frac{1}{3} t^{3}+\frac{1}{2} t^{2}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{3} t^{3}+\frac{1}{2} t^{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 95: Slope field plot

Verification of solutions

$$
y=\frac{1}{3} t^{3}+\frac{1}{2} t^{2}+c_{1}
$$

Verified OK.

2.1.2 Maple step by step solution

Let's solve

$$
y^{\prime}=t^{2}+t
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to t
$\int y^{\prime} d t=\int\left(t^{2}+t\right) d t+c_{1}$
- Evaluate integral

$$
y=\frac{1}{3} t^{3}+\frac{1}{2} t^{2}+c_{1}
$$

- \quad Solve for y

$$
y=\frac{1}{3} t^{3}+\frac{1}{2} t^{2}+c_{1}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve(diff(y(t),t)=t^2+t,y(t), singsol=all)
```

$$
y(t)=\frac{1}{3} t^{3}+\frac{1}{2} t^{2}+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 22
DSolve[y'[t]==t^2+t,y[t],t,IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{t^{3}}{3}+\frac{t^{2}}{2}+c_{1}
$$

2.2 problem 2

2.2.1 Solving as quadrature ode . 365
2.2.2 Maple step by step solution . 366

Internal problem ID [12901]
Internal file name [OUTPUT/11553_Tuesday_November_07_2023_11_26_56_PM_64086885/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=t^{2}+1
$$

2.2.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int t^{2}+1 \mathrm{~d} t \\
& =\frac{1}{3} t^{3}+t+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{3} t^{3}+t+c_{1} \tag{1}
\end{equation*}
$$

Figure 96: Slope field plot

Verification of solutions

$$
y=\frac{1}{3} t^{3}+t+c_{1}
$$

Verified OK.

2.2.2 Maple step by step solution

Let's solve

$$
y^{\prime}=t^{2}+1
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to t
$\int y^{\prime} d t=\int\left(t^{2}+1\right) d t+c_{1}$
- Evaluate integral
$y=\frac{1}{3} t^{3}+t+c_{1}$
- \quad Solve for y

$$
y=\frac{1}{3} t^{3}+t+c_{1}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(diff(y(t),t)=t^2+1,y(t), singsol=all)
```

$$
y(t)=\frac{1}{3} t^{3}+t+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 16

$$
\text { DSolve[y' }[\mathrm{t}]==\mathrm{t}^{\wedge} 2+1, \mathrm{y}[\mathrm{t}], \mathrm{t} \text {, IncludeSingularSolutions } \rightarrow \text { True] }
$$

$$
y(t) \rightarrow \frac{t^{3}}{3}+t+c_{1}
$$

2.3 problem 3

$$
\text { 2.3.1 Solving as quadrature ode . } 368
$$

2.3.2 Maple step by step solution . 369

Internal problem ID [12902]
Internal file name [OUTPUT/11554_Tuesday_November_07_2023_11_26_59_PM_59055855/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}+2 y=1
$$

2.3.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{1-2 y} d y & =\int d t \\
-\frac{\ln (1-2 y)}{2} & =t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\sqrt{1-2 y}}=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
\frac{1}{\sqrt{1-2 y}}=c_{2} \mathrm{e}^{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-2 t}}{2 c_{2}^{2}}+\frac{1}{2} \tag{1}
\end{equation*}
$$

Figure 97: Slope field plot
Verification of solutions

$$
y=-\frac{\mathrm{e}^{-2 t}}{2 c_{2}^{2}}+\frac{1}{2}
$$

Verified OK.

2.3.2 Maple step by step solution

Let's solve

$$
y^{\prime}+2 y=1
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{1-2 y}=1$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{1-2 y} d t=\int 1 d t+c_{1}$
- Evaluate integral

$$
-\frac{\ln (1-2 y)}{2}=t+c_{1}
$$

- \quad Solve for y

$$
y=-\frac{\mathrm{e}^{-2 t-2 c_{1}}}{2}+\frac{1}{2}
$$

Maple trace

```
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(diff(y(t),t)=1-2*y(t),y(t), singsol=all)
```

$$
y(t)=\mathrm{e}^{-2 t} c_{1}+\frac{1}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 24
DSolve[y' $[t]==1-2 * y[t], y[t], t$, IncludeSingularSolutions $->$ True $]$

$$
\begin{aligned}
y(t) & \rightarrow \frac{1}{2}+c_{1} e^{-2 t} \\
y(t) & \rightarrow \frac{1}{2}
\end{aligned}
$$

2.4 problem 4

$$
\text { 2.4.1 Solving as quadrature ode . } 371
$$

2.4.2 Maple step by step solution . 372

Internal problem ID [12903]
Internal file name [OUTPUT/11555_Tuesday_November_07_2023_11_27_00_PM_5441983/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-4 y^{2}=0
$$

2.4.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{4 y^{2}} d y & =t+c_{1} \\
-\frac{1}{4 y} & =t+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=-\frac{1}{4\left(t+c_{1}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{4\left(t+c_{1}\right)} \tag{1}
\end{equation*}
$$

Figure 98: Slope field plot
Verification of solutions

$$
y=-\frac{1}{4\left(t+c_{1}\right)}
$$

Verified OK.

2.4.2 Maple step by step solution

Let's solve

$$
y^{\prime}-4 y^{2}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y^{2}}=4
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{y^{2}} d t=\int 4 d t+c_{1}
$$

- Evaluate integral

$$
-\frac{1}{y}=4 t+c_{1}
$$

- \quad Solve for y

$$
y=-\frac{1}{4 t+c_{1}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

```
dsolve(diff(y(t),t)=4*y(t)^2,y(t), singsol=all)
```

$$
y(t)=\frac{1}{-4 t+c_{1}}
$$

Solution by Mathematica
Time used: 0.157 (sec). Leaf size: 20
DSolve[y'[t]==4*y[t]^2,y[t],t,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(t) \rightarrow-\frac{1}{4 t+c_{1}} \\
& y(t) \rightarrow 0
\end{aligned}
$$

2.5 problem 5

2.5.1 Solving as quadrature ode . 374
2.5.2 Maple step by step solution . 376

Internal problem ID [12904]
Internal file name [OUTPUT/11556_Tuesday_November_07_2023_11_27_01_PM_72649872/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
Problem number: 5 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-2 y(-y+1)=0
$$

2.5.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{2 y(y-1)} d y & =\int d t \\
-\frac{\ln (y-1)}{2}+\frac{\ln (y)}{2} & =t+c_{1}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(-\frac{1}{2}\right)(\ln (y-1)-\ln (y)) & =t+c_{1} \\
\ln (y-1)-\ln (y) & =(-2)\left(t+c_{1}\right) \\
& =-2 t-2 c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (y-1)-\ln (y)}=-2 c_{1} \mathrm{e}^{-2 t}
$$

Which simplifies to

$$
\frac{y-1}{y}=c_{2} \mathrm{e}^{-2 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{-1+c_{2} \mathrm{e}^{-2 t}} \tag{1}
\end{equation*}
$$

Figure 99: Slope field plot

Verification of solutions

$$
y=-\frac{1}{-1+c_{2} \mathrm{e}^{-2 t}}
$$

Verified OK.

2.5.2 Maple step by step solution

Let's solve

$$
y^{\prime}-2 y(-y+1)=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y(-y+1)}=2
$$

- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y(-y+1)} d t=\int 2 d t+c_{1}$
- Evaluate integral
$-\ln (y-1)+\ln (y)=2 t+c_{1}$
- \quad Solve for y
$y=\frac{\mathrm{e}^{2 t+c_{1}}}{-1+\mathrm{e}^{2 t+c_{1}}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
dsolve(diff $(y(t), t)=2 * y(t) *(1-y(t)), y(t), \quad$ singsol $=a l l)$

$$
y(t)=\frac{1}{\mathrm{e}^{-2 t} c_{1}+1}
$$

\checkmark Solution by Mathematica
Time used: 0.404 (sec). Leaf size: 33
DSolve[y' $[t]==2 * y[t] *(1-y[t]), y[t], t$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(t) \rightarrow \frac{e^{2 t}}{e^{2 t}+e^{c_{1}}} \\
& y(t) \rightarrow 0 \\
& y(t) \rightarrow 1
\end{aligned}
$$

2.6 problem 6

2.6.1 Solving as linear ode . 378
2.6.2 Solving as first order ode lie symmetry lookup ode 380
2.6.3 Solving as exact ode . 384
2.6.4 Maple step by step solution . 388

Internal problem ID [12905]
Internal file name [OUTPUT/11557_Tuesday_November_07_2023_11_27_01_PM_98842774/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-y=1+t
$$

2.6.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-1 \\
& q(t)=1+t
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-y=1+t
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-1) d t} \\
& =\mathrm{e}^{-t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)(1+t) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-t} y\right) & =\left(\mathrm{e}^{-t}\right)(1+t) \\
\mathrm{d}\left(\mathrm{e}^{-t} y\right) & =\left((1+t) \mathrm{e}^{-t}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-t} y=\int(1+t) \mathrm{e}^{-t} \mathrm{~d} t \\
& \mathrm{e}^{-t} y=-(t+2) \mathrm{e}^{-t}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-t}$ results in

$$
y=-\mathrm{e}^{t}(t+2) \mathrm{e}^{-t}+c_{1} \mathrm{e}^{t}
$$

which simplifies to

$$
y=-t-2+c_{1} \mathrm{e}^{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-t-2+c_{1} \mathrm{e}^{t} \tag{1}
\end{equation*}
$$

Figure 100: Slope field plot
Verification of solutions

$$
y=-t-2+c_{1} \mathrm{e}^{t}
$$

Verified OK.

2.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =y+t+1 \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 82: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=y+t+1
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-\mathrm{e}^{-t} y \\
S_{y} & =\mathrm{e}^{-t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=(1+t) \mathrm{e}^{-t} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=(1+R) \mathrm{e}^{-R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=-(R+2) \mathrm{e}^{-R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to t, y coordinates．This results in

$$
\mathrm{e}^{-t} y=-(t+2) \mathrm{e}^{-t}+c_{1}
$$

Which simplifies to

$$
(t+y+2) \mathrm{e}^{-t}-c_{1}=0
$$

Which gives

$$
y=-\left(t \mathrm{e}^{-t}+2 \mathrm{e}^{-t}-c_{1}\right) \mathrm{e}^{t}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=y+t+1$		$\frac{d S}{d R}=(1+R) \mathrm{e}^{-R}$
		（ P P
		S $S(R) \rightarrow 习 习 习 习 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
\＆		
	$S=\mathrm{e}^{-t} y$	－4．\cdot ．-2×8
		2r
		为牙牙 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$－
		$\xrightarrow{\rightarrow}$

Summary

The solution（s）found are the following

$$
\begin{equation*}
y=-\left(t \mathrm{e}^{-t}+2 \mathrm{e}^{-t}-c_{1}\right) \mathrm{e}^{t} \tag{1}
\end{equation*}
$$

Figure 101: Slope field plot

Verification of solutions

$$
y=-\left(t \mathrm{e}^{-t}+2 \mathrm{e}^{-t}-c_{1}\right) \mathrm{e}^{t}
$$

Verified OK.

2.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(y+t+1) \mathrm{d} t \\
(-y-t-1) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-y-t-1 \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-y-t-1) \\
& =-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((-1)-(0)) \\
& =-1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-1 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-t} \\
& =\mathrm{e}^{-t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-t}(-y-t-1) \\
& =-\mathrm{e}^{-t}(y+t+1)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-t}(1) \\
& =\mathrm{e}^{-t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(-\mathrm{e}^{-t}(y+t+1)\right)+\left(\mathrm{e}^{-t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\mathrm{e}^{-t}(y+t+1) \mathrm{d} t \\
\phi & =(t+y+2) \mathrm{e}^{-t}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-t}=\mathrm{e}^{-t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=(t+y+2) \mathrm{e}^{-t}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=(t+y+2) \mathrm{e}^{-t}
$$

The solution becomes

$$
y=-\left(t \mathrm{e}^{-t}+2 \mathrm{e}^{-t}-c_{1}\right) \mathrm{e}^{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\left(t \mathrm{e}^{-t}+2 \mathrm{e}^{-t}-c_{1}\right) \mathrm{e}^{t} \tag{1}
\end{equation*}
$$

Figure 102: Slope field plot

Verification of solutions

$$
y=-\left(t \mathrm{e}^{-t}+2 \mathrm{e}^{-t}-c_{1}\right) \mathrm{e}^{t}
$$

Verified OK.

2.6.4 Maple step by step solution

Let's solve
$y^{\prime}-y=1+t$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=y+t+1$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

$$
y^{\prime}-y=1+t
$$

- The ODE is linear; multiply by an integrating factor $\mu(t)$

$$
\mu(t)\left(y^{\prime}-y\right)=\mu(t)(1+t)
$$

- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\mu(t)$
- \quad Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t)(1+t) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t)(1+t) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(t)(1+t) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-t}$
$y=\frac{\int(1+t) \mathrm{e}^{-t} d t+c_{1}}{\mathrm{e}^{-t}}$
- Evaluate the integrals on the rhs
$y=\frac{-(t+2) \mathrm{e}^{-t}+c_{1}}{\mathrm{e}^{-t}}$
- Simplify

$$
y=-t-2+c_{1} \mathrm{e}^{t}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve(diff(y(t),t)=y(t)+t+1,y(t), singsol=all)
```

$$
y(t)=-t-2+c_{1} \mathrm{e}^{t}
$$

\checkmark Solution by Mathematica
Time used: 0.1 (sec). Leaf size: 16
DSolve[y' $[t]==y[t]+t+1, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow-t+c_{1} e^{t}-2
$$

2.7 problem 7

2.7.1 Existence and uniqueness analysis 391
2.7.2 Solving as quadrature ode . 392
2.7.3 Maple step by step solution . 393

Internal problem ID [12906]
Internal file name [OUTPUT/11558_Tuesday_November_07_2023_11_27_02_PM_74390849/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

$$
y^{\prime}-3 y(-y+1)=0
$$

With initial conditions

$$
\left[y(0)=\frac{1}{2}\right]
$$

2.7.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =-3 y(y-1)
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=\frac{1}{2}$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}(-3 y(y-1)) \\
& =3-6 y
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=\frac{1}{2}$ is inside this domain. Therefore solution exists and is unique.

2.7.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{3 y(y-1)} d y & =\int d t \\
-\frac{\ln (y-1)}{3}+\frac{\ln (y)}{3} & =t+c_{1}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(-\frac{1}{3}\right)(\ln (y-1)-\ln (y)) & =t+c_{1} \\
\ln (y-1)-\ln (y) & =(-3)\left(t+c_{1}\right) \\
& =-3 t-3 c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (y-1)-\ln (y)}=-3 \mathrm{e}^{-3 t} c_{1}
$$

Which simplifies to

$$
\frac{y-1}{y}=c_{2} \mathrm{e}^{-3 t}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=0$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{1}{2}=-\frac{1}{-1+c_{2}} \\
c_{2}=-1
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\frac{1}{1+\mathrm{e}^{-3 t}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{1+\mathrm{e}^{-3 t}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{1}{1+\mathrm{e}^{-3 t}}
$$

Verified OK.

2.7.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-3 y(-y+1)=0, y(0)=\frac{1}{2}\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{y(-y+1)}=3
$$

- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y(-y+1)} d t=\int 3 d t+c_{1}$
- Evaluate integral
$-\ln (y-1)+\ln (y)=3 t+c_{1}$
- \quad Solve for y
$y=\frac{\mathrm{e}^{3 t+c_{1}}}{-1+\mathrm{e}^{3 t+c_{1}}}$
- Use initial condition $y(0)=\frac{1}{2}$
$\frac{1}{2}=\frac{\mathrm{e}^{c_{1}}}{-1+\mathrm{e}^{c_{1}}}$
- \quad Solve for c_{1}
$c_{1}=\mathrm{I} \pi$
- \quad Substitute $c_{1}=\mathrm{I} \pi$ into general solution and simplify $y=\frac{\mathrm{e}^{3 t}}{1+\mathrm{e}^{3 t}}$
- \quad Solution to the IVP

$$
y=\frac{\mathrm{e}^{3 t}}{1+\mathrm{e}^{3 t}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 12
dsolve([diff($y(t), t)=3 * y(t) *(1-y(t)), y(0)=1 / 2], y(t)$, singsol=all)

$$
y(t)=\frac{1}{1+\mathrm{e}^{-3 t}}
$$

\checkmark Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 20
DSolve $\left[\left\{y^{\prime}[t]==3 * y[t] *(1-y[t]),\{y[0]==1 / 2\}\right\}, y[t], t\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{e^{3 t}}{e^{3 t}+1}
$$

2.8 problem 8

2.8.1 Existence and uniqueness analysis 396
2.8.2 Solving as linear ode . 397]
2.8.3 Solving as first order ode lie symmetry lookup ode 399
2.8.4 Solving as exact ode . 403
2.8.5 Maple step by step solution . 407

Internal problem ID [12907]
Internal file name [OUTPUT/11559_Tuesday_November_07_2023_11_27_03_PM_30439987/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-2 y=-t
$$

With initial conditions

$$
\left[y(0)=\frac{1}{2}\right]
$$

2.8.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-2 \\
q(t) & =-t
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-2 y=-t
$$

The domain of $p(t)=-2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=-t$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

2.8.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-2) d t} \\
& =\mathrm{e}^{-2 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)(-t) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-2 t} y\right) & =\left(\mathrm{e}^{-2 t}\right)(-t) \\
\mathrm{d}\left(\mathrm{e}^{-2 t} y\right) & =\left(-t \mathrm{e}^{-2 t}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-2 t} y=\int-t \mathrm{e}^{-2 t} \mathrm{~d} t \\
& \mathrm{e}^{-2 t} y=\frac{(2 t+1) \mathrm{e}^{-2 t}}{4}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-2 t}$ results in

$$
y=\frac{\mathrm{e}^{2 t}(2 t+1) \mathrm{e}^{-2 t}}{4}+c_{1} \mathrm{e}^{2 t}
$$

which simplifies to

$$
y=\frac{t}{2}+\frac{1}{4}+c_{1} \mathrm{e}^{2 t}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{1}{2}=\frac{1}{4}+c_{1} \\
c_{1}=\frac{1}{4}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{t}{2}+\frac{1}{4}+\frac{\mathrm{e}^{2 t}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{t}{2}+\frac{1}{4}+\frac{\mathrm{e}^{2 t}}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{t}{2}+\frac{1}{4}+\frac{\mathrm{e}^{2 t}}{4}
$$

Verified OK.

2.8.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =2 y-t \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 86: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{2 t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{2 t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-2 t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=2 y-t
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-2 \mathrm{e}^{-2 t} y \\
S_{y} & =\mathrm{e}^{-2 t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-t \mathrm{e}^{-2 t} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-R \mathrm{e}^{-2 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{(2 R+1) \mathrm{e}^{-2 R}}{4}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-2 t} y=\frac{(2 t+1) \mathrm{e}^{-2 t}}{4}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-2 t} y=\frac{(2 t+1) \mathrm{e}^{-2 t}}{4}+c_{1}
$$

Which gives

$$
y=\frac{\left(2 t \mathrm{e}^{-2 t}+\mathrm{e}^{-2 t}+4 c_{1}\right) \mathrm{e}^{2 t}}{4}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=2 y-t$		$\frac{d S}{d R}=-R \mathrm{e}^{-2 R}$
¢ P P P P P P P P A P P P P P P P P P P		
		+1+1+430
	$R=t$	
	$S=\mathrm{e}^{-2 t} y$	
		$\xrightarrow{+} \xrightarrow{\text { L }} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ R
-		(table
		$\xrightarrow{-1+4 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow}$
		¢949+9ッ

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{1}{2}=\frac{1}{4}+c_{1} \\
c_{1}=\frac{1}{4}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{t}{2}+\frac{1}{4}+\frac{\mathrm{e}^{2 t}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{t}{2}+\frac{1}{4}+\frac{\mathrm{e}^{2 t}}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{t}{2}+\frac{1}{4}+\frac{\mathrm{e}^{2 t}}{4}
$$

Verified OK.

2.8.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(2 y-t) \mathrm{d} t \\
(-2 y+t) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-2 y+t \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-2 y+t) \\
& =-2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((-2)-(0)) \\
& =-2
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-2 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 t} \\
& =\mathrm{e}^{-2 t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-2 t}(-2 y+t) \\
& =(-2 y+t) \mathrm{e}^{-2 t}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-2 t}(1) \\
& =\mathrm{e}^{-2 t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t}=0 \\
\left((-2 y+t) \mathrm{e}^{-2 t}\right)+\left(\mathrm{e}^{-2 t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int(-2 y+t) \mathrm{e}^{-2 t} \mathrm{~d} t \\
\phi & =-\frac{(2 t-4 y+1) \mathrm{e}^{-2 t}}{4}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-2 t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-2 t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-2 t}=\mathrm{e}^{-2 t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{(2 t-4 y+1) \mathrm{e}^{-2 t}}{4}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{(2 t-4 y+1) \mathrm{e}^{-2 t}}{4}
$$

The solution becomes

$$
y=\frac{\left(2 t \mathrm{e}^{-2 t}+\mathrm{e}^{-2 t}+4 c_{1}\right) \mathrm{e}^{2 t}}{4}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{1}{2}=\frac{1}{4}+c_{1} \\
c_{1}=\frac{1}{4}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{t}{2}+\frac{1}{4}+\frac{\mathrm{e}^{2 t}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{t}{2}+\frac{1}{4}+\frac{\mathrm{e}^{2 t}}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{t}{2}+\frac{1}{4}+\frac{\mathrm{e}^{2 t}}{4}
$$

Verified OK.

2.8.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-2 y=-t, y(0)=\frac{1}{2}\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=2 y-t$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-2 y=-t$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-2 y\right)=-\mu(t) t$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-2 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-2 \mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-2 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int-\mu(t) t d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int-\mu(t) t d t+c_{1}$
- \quad Solve for y
$y=\frac{\int-\mu(t) t d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-2 t}$
$y=\frac{\int-t \mathrm{e}^{-2 t} d t+c_{1}}{\mathrm{e}^{-2 t}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{(2 t+1) \mathrm{e}^{-2 t}}{4}+c_{1}}{\mathrm{e}^{-2 t}}$
- Simplify
$y=\frac{t}{2}+\frac{1}{4}+c_{1} \mathrm{e}^{2 t}$
- Use initial condition $y(0)=\frac{1}{2}$
$\frac{1}{2}=\frac{1}{4}+c_{1}$
- \quad Solve for c_{1}
$c_{1}=\frac{1}{4}$
- \quad Substitute $c_{1}=\frac{1}{4}$ into general solution and simplify
$y=\frac{t}{2}+\frac{1}{4}+\frac{\mathrm{e}^{2 t}}{4}$
- \quad Solution to the IVP

$$
y=\frac{t}{2}+\frac{1}{4}+\frac{\mathrm{e}^{2 t}}{4}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 15

```
dsolve([diff(y(t),t)=2*y(t)-t,y(0) = 1/2],y(t), singsol=all)
```

$$
y(t)=\frac{t}{2}+\frac{1}{4}+\frac{\mathrm{e}^{2 t}}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 19
DSolve[\{y' $[t]==2 * y[t]-t,\{y[0]==1 / 2\}\}, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{1}{4}\left(2 t+e^{2 t}+1\right)
$$

2.9 problem 9

2.9.1 Existence and uniqueness analysis 410
2.9.2 Solving as riccati ode . 411

Internal problem ID [12908]
Internal file name [OUTPUT/11560_Tuesday_November_07_2023_11_27_03_PM_52077065/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
Problem number: 9.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-\left(y+\frac{1}{2}\right)(y+t)=0
$$

With initial conditions

$$
\left[y(0)=\frac{1}{2}\right]
$$

2.9.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =\frac{(2 y+1)(t+y)}{2}
\end{aligned}
$$

The t domain of $f(t, y)$ when $y=\frac{1}{2}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=\frac{1}{2}$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{(2 y+1)(t+y)}{2}\right) \\
& =t+2 y+\frac{1}{2}
\end{aligned}
$$

The t domain of $\frac{\partial f}{\partial y}$ when $y=\frac{1}{2}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=\frac{1}{2}$ is inside this domain. Therefore solution exists and is unique.

2.9.2 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =\frac{(2 y+1)(t+y)}{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=t y+y^{2}+\frac{1}{2} t+\frac{1}{2} y
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(t)+f_{1}(t) y+f_{2}(t) y^{2}
$$

Shows that $f_{0}(t)=\frac{t}{2}, f_{1}(t)=t+\frac{1}{2}$ and $f_{2}(t)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(t)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(t)+f_{2}^{2} f_{0} u(t)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =t+\frac{1}{2} \\
f_{2}^{2} f_{0} & =\frac{t}{2}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(t)-\left(t+\frac{1}{2}\right) u^{\prime}(t)+\frac{t u(t)}{2}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(t)=\mathrm{e}^{\frac{t}{2}}\left(c_{1}+\operatorname{erf}\left(\frac{i \sqrt{2}(2 t-1)}{4}\right) c_{2}\right)
$$

The above shows that

$$
u^{\prime}(t)=\frac{\mathrm{e}^{\frac{t}{2}\left(i \mathrm{e}^{\frac{(2 t-1)^{2}}{8}} \sqrt{2} c_{2}+\frac{\left(c_{1}+\operatorname{erf}\left(\frac{i \sqrt{2}(2 t-1)}{4}\right) c_{2}\right) \sqrt{\pi}}{2}\right)}}{\sqrt{\pi}}
$$

Using the above in (1) gives the solution

$$
y=-\frac{i \mathrm{e}^{\frac{(2 t-1)^{2}}{8}} \sqrt{2} c_{2}+\frac{\left(c_{1}+\operatorname{erf}\left(\frac{i \sqrt{2}(2 t-1)}{4}\right) c_{2}\right) \sqrt{\pi}}{2}}{\sqrt{\pi}\left(c_{1}+\operatorname{erf}\left(\frac{i \sqrt{2}(2 t-1)}{4}\right) c_{2}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{2\left(i \mathrm{e}^{\frac{(2 t-1)^{2}}{8}} \sqrt{2}+\frac{\left(c_{3}+\operatorname{erf}\left(\frac{i \sqrt{2}(2 t-1)}{4}\right)\right) \sqrt{\pi}}{2}\right)}{\sqrt{\pi}\left(2 c_{3}+2 \operatorname{erf}\left(\frac{i \sqrt{2}(2 t-1)}{4}\right)\right)}
$$

Initial conditions are used to solve for c_{3}. Substituting $t=0$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\frac{1}{2}=\frac{2 i \mathrm{e}^{\frac{1}{8}} \sqrt{2}-\sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}}{4}\right)+\sqrt{\pi} c_{3}}{-2 \sqrt{\pi} c_{3}+2 \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}}{4}\right)}
$$

$$
c_{3}=\frac{-i \mathrm{e}^{\frac{1}{8}} \sqrt{2}+\sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}}{4}\right)}{\sqrt{\pi}}
$$

Substituting c_{3} found above in the general solution gives

$$
y=\frac{i \mathrm{e}^{\frac{1}{8}} \sqrt{2}-2 i \mathrm{e}^{\frac{(2 t-1)^{2}}{8}} \sqrt{2}-\sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}}{4}\right)-\sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(2 t-1)}{4}\right)}{-2 i \mathrm{e}^{\frac{1}{8}} \sqrt{2}+2 \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}}{4}\right)+2 \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(2 t-1)}{4}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{i \mathrm{e}^{\frac{1}{8}} \sqrt{2}-2 i \mathrm{e}^{\frac{(2 t-1)^{2}}{8}} \sqrt{2}-\sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}}{4}\right)-\sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(2 t-1)}{4}\right)}{-2 i \mathrm{e}^{\frac{1}{8}} \sqrt{2}+2 \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}}{4}\right)+2 \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(2 t-1)}{4}\right)} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{i \mathrm{e}^{\frac{1}{8}} \sqrt{2}-2 i \mathrm{e}^{\frac{(2 t-1)^{2}}{8}} \sqrt{2}-\sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}}{4}\right)-\sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(2 t-1)}{4}\right)}{-2 i \mathrm{e}^{\frac{1}{8}} \sqrt{2}+2 \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}}{4}\right)+2 \sqrt{\pi} \operatorname{erf}\left(\frac{i \sqrt{2}(2 t-1)}{4}\right)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    <- Riccati particular polynomial solution successful`
```

\checkmark Solution by Maple
Time used: 0.188 (sec). Leaf size: 65
dsolve([diff $(y(t), t)=(y(t)+1 / 2) *(y(t)+t), y(0)=1 / 2], y(t)$, singsol=all)

$$
y(t)=\frac{\sqrt{\pi} \mathrm{e}^{-\frac{1}{8}} \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}}{4}\right)+\sqrt{\pi} \mathrm{e}^{-\frac{1}{8}} \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(2 t-1)}{4}\right)+4 i \mathrm{e}^{\frac{t(t-1)}{2}}-2 i}{-2 \sqrt{\pi} \mathrm{e}^{-\frac{1}{8}} \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}}{4}\right)-2 \sqrt{\pi} \mathrm{e}^{-\frac{1}{8}} \sqrt{2} \operatorname{erf}\left(\frac{i \sqrt{2}(2 t-1)}{4}\right)+4 i}
$$

\checkmark Solution by Mathematica
Time used: 0.332 (sec). Leaf size: 124
DSolve[\{y' $[t]==(y[t]+1 / 2) *(y[t]+t),\{y[0]==1 / 2\}\}, y[t], t$, IncludeSingularSolutions $->$ True $]$

$$
y(t) \rightarrow \frac{-\sqrt{2 \pi} \operatorname{erfi}\left(\frac{1-2 t}{2 \sqrt{2}}\right)+\sqrt{2 \pi} \operatorname{erfi}\left(\frac{1}{2 \sqrt{2}}\right)+4 e^{\frac{1}{8}(1-2 t)^{2}}-2 \sqrt[8]{e}}{2 \sqrt{2 \pi} \operatorname{erfi}\left(\frac{1-2 t}{2 \sqrt{2}}\right)-2 \sqrt{2 \pi} \operatorname{erfi}\left(\frac{1}{2 \sqrt{2}}\right)+4 \sqrt[8]{e}}
$$

2.10 problem 10

2.10.1 Existence and uniqueness analysis 416
2.10.2 Solving as separable ode . 416
2.10.3 Solving as linear ode . 418
2.10.4 Solving as homogeneousTypeD2 ode 419
2.10.5 Solving as first order ode lie symmetry lookup ode 421
2.10.6 Solving as exact ode . 426
2.10.7 Maple step by step solution . 429

Internal problem ID [12909]
Internal file name [OUTPUT/11561_Tuesday_November_07_2023_11_27_05_PM_54658325/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-(1+t) y=0
$$

With initial conditions

$$
\left[y(0)=\frac{1}{2}\right]
$$

2.10.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-1-t \\
q(t) & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+(-1-t) y=0
$$

The domain of $p(t)=-1-t$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. Hence solution exists and is unique.

2.10.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =(1+t) y
\end{aligned}
$$

Where $f(t)=1+t$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =1+t d t \\
\int \frac{1}{y} d y & =\int 1+t d t \\
\ln (y) & =\frac{1}{2} t^{2}+t+c_{1} \\
y & =\mathrm{e}^{\frac{1}{2} t^{2}+t+c_{1}} \\
& =c_{1} \mathrm{e}^{t+\frac{1}{2} t^{2}}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\frac{1}{2}=c_{1}
$$

$$
c_{1}=\frac{1}{2}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\mathrm{e}^{t+\frac{1}{2} t^{2}}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{t+\frac{1}{2} t^{2}}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{t+\frac{1}{2} t^{2}}}{2}
$$

Verified OK.

2.10.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-1-t) d t} \\
& =\mathrm{e}^{-t-\frac{1}{2} t^{2}}
\end{aligned}
$$

Which simplifies to

$$
\mu=\mathrm{e}^{-\frac{t(t+2)}{2}}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} t}\left(\mathrm{e}^{-\frac{t(t+2)}{2}} y\right) & =0
\end{aligned}
$$

Integrating gives

$$
\mathrm{e}^{-\frac{t(t+2)}{2}} y=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-\frac{t(t+2)}{2}}$ results in

$$
y=c_{1} \mathrm{e}^{\frac{t(t+2)}{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{1}{2}=c_{1} \\
& c_{1}=\frac{1}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\mathrm{e}^{\frac{t(t+2)}{2}}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{\frac{t(t+2)}{2}}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\mathrm{e}^{\frac{t(t+2)}{2}}}{2}
$$

Verified OK.

2.10.4 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(t) t$ on the above ode results in new ode in $u(t)$

$$
u^{\prime}(t) t+u(t)-(1+t) u(t) t=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =\frac{u\left(t^{2}+t-1\right)}{t}
\end{aligned}
$$

Where $f(t)=\frac{t^{2}+t-1}{t}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{t^{2}+t-1}{t} d t \\
\int \frac{1}{u} d u & =\int \frac{t^{2}+t-1}{t} d t \\
\ln (u) & =\frac{t^{2}}{2}+t-\ln (t)+c_{2} \\
u & =\mathrm{e}^{\frac{t^{2}}{2}+t-\ln (t)+c_{2}} \\
& =c_{2} \mathrm{e}^{\frac{t^{2}}{2}+t-\ln (t)}
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u t \\
& =t c_{2} \mathrm{e}^{\frac{t^{2}}{2}+t-\ln (t)}
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=0$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{1}{2}=c_{2} \\
& c_{2}=\frac{1}{2}
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\frac{\mathrm{e}^{\frac{t(t+2)}{2}}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{\frac{t(t+2)}{2}}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\mathrm{e}^{\frac{t(t+2)}{2}}}{2}
$$

Verified OK.

2.10.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =(1+t) y \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 89: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{t+\frac{1}{2} t^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{t+\frac{1}{2} t^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-t-\frac{1}{2} t^{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=(1+t) y
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-(1+t) \mathrm{e}^{-\frac{t(t+2)}{2}} y \\
S_{y} & =\mathrm{e}^{-\frac{t(t+2)}{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-\frac{t(t+2)}{2}} y=c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-\frac{t(t+2)}{2}} y=c_{1}
$$

Which gives

$$
y=c_{1} \mathrm{e}^{\frac{t(t+2)}{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=(1+t) y$		

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\frac{1}{2}=c_{1}
$$

$$
c_{1}=\frac{1}{2}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\mathrm{e}^{\frac{t(t+2)}{2}}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{\frac{t(t+2)}{2}}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{\frac{t(t+2)}{2}}}{2}
$$

Verified OK.

2.10.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =(1+t) \mathrm{d} t \\
(-1-t) \mathrm{d} t+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-1-t \\
& N(t, y)=\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-1-t) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-1-t \mathrm{~d} t \\
\phi & =-t-\frac{1}{2} t^{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-t-\frac{t^{2}}{2}+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-t-\frac{t^{2}}{2}+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{\frac{1}{2} t^{2}+t+c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{1}{2}=\mathrm{e}^{c_{1}} \\
c_{1}=-\ln (2)
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\mathrm{e}^{\frac{t(t+2)}{2}}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{\frac{t(t+2)}{2}}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{\frac{t(t+2)}{2}}}{2}
$$

Verified OK.

2.10.7 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-(1+t) y=0, y(0)=\frac{1}{2}\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=1+t
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{y} d t=\int(1+t) d t+c_{1}
$$

- Evaluate integral
$\ln (y)=\frac{1}{2} t^{2}+t+c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{\frac{1}{2} t^{2}+t+c_{1}}$
- Use initial condition $y(0)=\frac{1}{2}$

$$
\frac{1}{2}=\mathrm{e}^{c_{1}}
$$

- Solve for c_{1}
$c_{1}=-\ln (2)$
- Substitute $c_{1}=-\ln (2)$ into general solution and simplify $y=\frac{\mathrm{e}^{\frac{t(t+2)}{}}}{2}$
- Solution to the IVP
$y=\frac{\mathrm{e}^{\frac{t(t+2)}{2}}}{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve([diff(y(t),t)=(t+1)*y(t),y(0)=1/2],y(t), singsol=all)
```

$$
y(t)=\frac{\mathrm{e}^{\frac{t(t+2)}{2}}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 19
DSolve[\{y' $[t]==(t+1) * y[t],\{y[0]==1 / 2\}\}, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{1}{2} e^{\frac{1}{2} t(t+2)}
$$

2.11 problem $15 \mathrm{~b}(1)$

2.11.1 Existence and uniqueness analysis 432
2.11.2 Solving as quadrature ode . 433
2.11.3 Maple step by step solution . 434

Internal problem ID [12910]
Internal file name [OUTPUT/11562_Tuesday_November_07_2023_11_27_05_PM_28153444/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
Problem number: $15 \mathrm{~b}(1)$.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
S^{\prime}-S^{3}+2 S^{2}-S=0
$$

With initial conditions

$$
\left[S(0)=\frac{1}{2}\right]
$$

2.11.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
S^{\prime} & =f(t, S) \\
& =S^{3}-2 S^{2}+S
\end{aligned}
$$

The S domain of $f(t, S)$ when $t=0$ is

$$
\{-\infty<S<\infty\}
$$

And the point $S_{0}=\frac{1}{2}$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial S} & =\frac{\partial}{\partial S}\left(S^{3}-2 S^{2}+S\right) \\
& =3 S^{2}-4 S+1
\end{aligned}
$$

The S domain of $\frac{\partial f}{\partial S}$ when $t=0$ is

$$
\{-\infty<S<\infty\}
$$

And the point $S_{0}=\frac{1}{2}$ is inside this domain. Therefore solution exists and is unique.

2.11.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{S^{3}-2 S^{2}+S} d S & =\int d t \\
\int^{S} \frac{1}{-a^{3}-2 _a^{2}+_a} d _a & =t+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $S=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\int^{\frac{1}{2}} \frac{1}{-a\left(_a^{2}-2 _a+1\right)} d _a=c_{1} \\
c_{1}=\int^{\frac{1}{2}} \frac{1}{-a\left(_a-1\right)^{2}} d _a
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\int^{S} \frac{1}{-a^{3}-2 _a^{2}+_a} d _a=t+\int^{\frac{1}{2}} \frac{1}{-a\left(_a-1\right)^{2}} d _a
$$

Solving for S from the above gives

$$
S=\operatorname{RootOf}\left(-\left(\int^{-^{Z}} \frac{1}{-a\left(_a-1\right)^{2}} d _a\right)+t+\int^{\frac{1}{2}} \frac{1}{-a\left(_a-1\right)^{2}} d _a\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
S=\operatorname{RootOf}\left(-\left(\int^{-^{Z}} \frac{1}{-a\left(_a-1\right)^{2}} d _a\right)+t+\int^{\frac{1}{2}} \frac{1}{-a\left(_a-1\right)^{2}} d _a\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
S=\operatorname{RootOf}\left(-\left(\int^{-^{Z}} \frac{1}{-^{a\left(_a-1\right)^{2}}} d _a\right)+t+\int^{\frac{1}{2}} \frac{1}{-_{a\left(_a-1\right)^{2}}} d _a\right)
$$

Verified OK.

2.11.3 Maple step by step solution

Let's solve

$$
\left[S^{\prime}-S^{3}+2 S^{2}-S=0, S(0)=\frac{1}{2}\right]
$$

- Highest derivative means the order of the ODE is 1 S^{\prime}
- \quad Separate variables

$$
\frac{S^{\prime}}{S^{3}-2 S^{2}+S}=1
$$

- Integrate both sides with respect to t
$\int \frac{S^{\prime}}{S^{3}-2 S^{2}+S} d t=\int 1 d t+c_{1}$
- Evaluate integral
$-\frac{1}{S-1}-\ln (S-1)+\ln (S)=t+c_{1}$
- Use initial condition $S(0)=\frac{1}{2}$

$$
2-\mathrm{I} \pi=c_{1}
$$

- \quad Solve for c_{1}

$$
c_{1}=2-\mathrm{I} \pi
$$

- \quad Substitute $c_{1}=2-\mathrm{I} \pi$ into general solution and simplify
$-\frac{1}{S-1}-\ln (S-1)+\ln (S)=t+2-\mathrm{I} \pi$
- \quad Solution to the IVP

$$
-\frac{1}{S-1}-\ln (S-1)+\ln (S)=t+2-\mathrm{I} \pi
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 1.39 (sec). Leaf size: 37
dsolve([diff(S $(t), t)=S(t) \wedge 3-2 * S(t) \wedge 2+S(t), S(0)=1 / 2], S(t)$, singsol=all)

$$
S(t)=\mathrm{e}^{\operatorname{RootOf}\left(-i \pi \mathrm{e}^{Z}-\ln \left(\mathrm{e}^{Z}+1\right) \mathrm{e}^{Z}+-Z \mathrm{e}^{Z}+t \mathrm{e}^{Z}+2 \mathrm{e}^{Z}+1\right)}+1
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[\{S'[t]==S[t]^3-2*S[t]^2+S[t],\{S[0]==1/2\}\},S[t],t,IncludeSingularSolutions \rightarrow True]
\{\}

2.12 problem $15 \mathrm{~b}(2)$

2.12.1 Existence and uniqueness analysis 436
2.12.2 Solving as quadrature ode . 437
2.12.3 Maple step by step solution . 438

Internal problem ID [12911]
Internal file name [OUTPUT/11563_Tuesday_November_07_2023_11_27_07_PM_54585174/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
Problem number: $15 \mathrm{~b}(2)$.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
S^{\prime}-S^{3}+2 S^{2}-S=0
$$

With initial conditions

$$
\left[S(1)=\frac{1}{2}\right]
$$

2.12.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
S^{\prime} & =f(t, S) \\
& =S^{3}-2 S^{2}+S
\end{aligned}
$$

The S domain of $f(t, S)$ when $t=1$ is

$$
\{-\infty<S<\infty\}
$$

And the point $S_{0}=\frac{1}{2}$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial S} & =\frac{\partial}{\partial S}\left(S^{3}-2 S^{2}+S\right) \\
& =3 S^{2}-4 S+1
\end{aligned}
$$

The S domain of $\frac{\partial f}{\partial S}$ when $t=1$ is

$$
\{-\infty<S<\infty\}
$$

And the point $S_{0}=\frac{1}{2}$ is inside this domain. Therefore solution exists and is unique.

2.12.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{S^{3}-2 S^{2}+S} d S & =\int d t \\
\int^{S} \frac{1}{-a^{3}-2 _a^{2}+_a} d _a & =t+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $S=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\int^{\frac{1}{2}} \frac{1}{-a\left(_a^{2}-2 _a+1\right)} d _a=1+c_{1} \\
c_{1}=-1+\int^{\frac{1}{2}} \frac{1}{-a\left(_a-1\right)^{2}} d _a
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\int^{S} \frac{1}{-a^{3}-2 _a^{2}+_a} d _a=t-1+\int^{\frac{1}{2}} \frac{1}{-a\left(_a-1\right)^{2}} d _a
$$

Solving for S from the above gives

$$
S=\operatorname{RootOf}\left(-\left(\int^{-Z} \frac{1}{-a\left(_a-1\right)^{2}} d _a\right)+t-1+\int^{\frac{1}{2}} \frac{1}{-a\left(_a-1\right)^{2}} d _a\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
S=\operatorname{RootOf}\left(-\left(\int^{-Z} \frac{1}{-a\left(_a-1\right)^{2}} d _a\right)+t-1+\int^{\frac{1}{2}} \frac{1}{-a\left(_a-1\right)^{2}} d _a\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
S=\operatorname{RootOf}\left(-\left(\int^{-Z} \frac{1}{-a\left(_a-1\right)^{2}} d _a\right)+t-1+\int^{\frac{1}{2}} \frac{1}{-a\left(_a-1\right)^{2}} d _a\right)
$$

Verified OK.

2.12.3 Maple step by step solution

Let's solve

$$
\left[S^{\prime}-S^{3}+2 S^{2}-S=0, S(1)=\frac{1}{2}\right]
$$

- Highest derivative means the order of the ODE is 1 S^{\prime}
- \quad Separate variables

$$
\frac{S^{\prime}}{S^{3}-2 S^{2}+S}=1
$$

- Integrate both sides with respect to t
$\int \frac{S^{\prime}}{S^{3}-2 S^{2}+S} d t=\int 1 d t+c_{1}$
- Evaluate integral
$-\frac{1}{S-1}-\ln (S-1)+\ln (S)=t+c_{1}$
- Use initial condition $S(1)=\frac{1}{2}$

$$
2-\mathrm{I} \pi=1+c_{1}
$$

- \quad Solve for c_{1}

$$
c_{1}=1-\mathrm{I} \pi
$$

- \quad Substitute $c_{1}=1-\mathrm{I} \pi$ into general solution and simplify

$$
-\frac{1}{S-1}-\ln (S-1)+\ln (S)=t+1-\mathrm{I} \pi
$$

- \quad Solution to the IVP

$$
-\frac{1}{S-1}-\ln (S-1)+\ln (S)=t+1-\mathrm{I} \pi
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.735 (sec). Leaf size: 35
dsolve([diff(S (t), $\left.t)=S(t) \wedge 3-2 * S(t)^{\wedge} 2+S(t), S(1)=1 / 2\right], S(t)$, singsol=all)

$$
S(t)=\mathrm{e}^{\operatorname{RootOf}\left(-i \pi \mathrm{e}^{Z}-\ln \left(\mathrm{e}^{Z}+1\right) \mathrm{e}^{Z}+_Z \mathrm{e}^{Z}+t \mathrm{e}^{Z}+\mathrm{e}^{Z}+1\right)}+1
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[\{S'[t]==S[t]^3-2*S[t]^2+S[t],\{S[1]==1/2\}\},S[t],t,IncludeSingularSolutions $->$ True]
\{\}

2.13 problem $15 \mathrm{~b}(3)$

$$
\text { 2.13.1 Existence and uniqueness analysis } 440
$$

2.13.2 Solving as quadrature ode 441

Internal problem ID [12912]
Internal file name [OUTPUT/11564_Tuesday_November_07_2023_11_27_08_PM_32998932/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
Problem number: $15 \mathrm{~b}(3)$.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
S^{\prime}-S^{3}+2 S^{2}-S=0
$$

With initial conditions

$$
[S(0)=1]
$$

2.13.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
S^{\prime} & =f(t, S) \\
& =S^{3}-2 S^{2}+S
\end{aligned}
$$

The S domain of $f(t, S)$ when $t=0$ is

$$
\{-\infty<S<\infty\}
$$

And the point $S_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial S} & =\frac{\partial}{\partial S}\left(S^{3}-2 S^{2}+S\right) \\
& =3 S^{2}-4 S+1
\end{aligned}
$$

The S domain of $\frac{\partial f}{\partial S}$ when $t=0$ is

$$
\{-\infty<S<\infty\}
$$

And the point $S_{0}=1$ is inside this domain. Therefore solution exists and is unique.

2.13.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{S^{3}-2 S^{2}+S} d S & =\int d t \\
\int^{S} \frac{1}{-a^{3}-2 _a^{2}+_a} d _a & =t+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $S=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\int^{1} \frac{1}{-a\left(_a^{2}-2 _a+1\right)} d _a=c_{1} \\
c_{1}=\int^{1} \frac{1}{-a\left(_a-1\right)^{2}} d _a
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\int^{S} \frac{1}{-a^{3}-2 _a^{2}+_a} d _a=t+\int^{1} \frac{1}{-a\left(_a-1\right)^{2}} d _a
$$

Solving for S from the above gives

$$
S=\operatorname{RootOf}\left(-\left(\int^{-^{Z}} \frac{1}{-a\left(_a-1\right)^{2}} d _a\right)+t+\int^{1} \frac{1}{-a\left(_a-1\right)^{2}} d _a\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
S=\operatorname{RootOf}\left(-\left(\int^{Z^{Z}} \frac{1}{-a\left(_a-1\right)^{2}} d _a\right)+t+\int^{1} \frac{1}{-a\left(_a-1\right)^{2}} d _a\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
S=\operatorname{RootOf}\left(-\left(\int^{-^{Z}} \frac{1}{_^{a\left(_a-1\right)^{2}}} d _a\right)+t+\int^{1} \frac{1}{-a\left(_a-1\right)^{2}} d _a\right)
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

```
dsolve([diff(S(t),t)=S(t)^3-2*S(t)^2+S(t),S(0) = 1],S(t), singsol=all)
```

$$
S(t)=1
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 6
DSolve[\{S'[t]==S[t]^3-2*S[t]~2+S[t],\{S[0]==1\}\},S[t],t,IncludeSingularSolutions $->$ True]

$$
S(t) \rightarrow 1
$$

2.14 problem $15 \mathrm{~b}(4)$

2.14.1 Existence and uniqueness analysis 443
2.14.2 Solving as quadrature ode . 444
2.14.3 Maple step by step solution . 445

Internal problem ID [12913]
Internal file name [OUTPUT/11565_Tuesday_November_07_2023_11_27_09_PM_69487583/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
Problem number: $15 \mathrm{~b}(4)$.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
S^{\prime}-S^{3}+2 S^{2}-S=0
$$

With initial conditions

$$
\left[S(0)=\frac{3}{2}\right]
$$

2.14.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
S^{\prime} & =f(t, S) \\
& =S^{3}-2 S^{2}+S
\end{aligned}
$$

The S domain of $f(t, S)$ when $t=0$ is

$$
\{-\infty<S<\infty\}
$$

And the point $S_{0}=\frac{3}{2}$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial S} & =\frac{\partial}{\partial S}\left(S^{3}-2 S^{2}+S\right) \\
& =3 S^{2}-4 S+1
\end{aligned}
$$

The S domain of $\frac{\partial f}{\partial S}$ when $t=0$ is

$$
\{-\infty<S<\infty\}
$$

And the point $S_{0}=\frac{3}{2}$ is inside this domain. Therefore solution exists and is unique.

2.14.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{S^{3}-2 S^{2}+S} d S & =\int d t \\
\int^{S} \frac{1}{-a^{3}-2 _a^{2}+_a} d _a & =t+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $S=\frac{3}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\int^{\frac{3}{2}} \frac{1}{-a\left(_a^{2}-2 _a+1\right)} d _a=c_{1} \\
c_{1}=\int^{\frac{3}{2}} \frac{1}{-a\left(_a-1\right)^{2}} d _a
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\int^{S} \frac{1}{-a^{3}-2 _a^{2}+_a} d _a=t+\int^{\frac{3}{2}} \frac{1}{-a\left(_a-1\right)^{2}} d _a
$$

Solving for S from the above gives

$$
S=\operatorname{RootOf}\left(-\left(\int^{-^{Z}} \frac{1}{-^{a\left(_a-1\right)^{2}}} d _a\right)+t+\int^{\frac{3}{2}} \frac{1}{-_{a\left(_a-1\right)^{2}}} d _a\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
S=\operatorname{RootOf}\left(-\left(\int^{-^{Z}} \frac{1}{-a\left(_a-1\right)^{2}} d _a\right)+t+\int^{\frac{3}{2}} \frac{1}{-a\left(_a-1\right)^{2}} d _a\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
S=\operatorname{RootOf}\left(-\left(\int^{-^{Z}} \frac{1}{-^{a\left(_a-1\right)^{2}}} d _a\right)+t+\int^{\frac{3}{2}} \frac{1}{-_{a\left(_a-1\right)^{2}}} d _a\right)
$$

Verified OK.

2.14.3 Maple step by step solution

Let's solve
$\left[S^{\prime}-S^{3}+2 S^{2}-S=0, S(0)=\frac{3}{2}\right]$

- Highest derivative means the order of the ODE is 1
S^{\prime}
- Separate variables

$$
\frac{S^{\prime}}{S^{3}-2 S^{2}+S}=1
$$

- Integrate both sides with respect to t
$\int \frac{S^{\prime}}{S^{3}-2 S^{2}+S} d t=\int 1 d t+c_{1}$
- Evaluate integral

$$
-\frac{1}{S-1}-\ln (S-1)+\ln (S)=t+c_{1}
$$

- Use initial condition $S(0)=\frac{3}{2}$

$$
-2+\ln (2)+\ln \left(\frac{3}{2}\right)=c_{1}
$$

- \quad Solve for c_{1}

$$
c_{1}=-2+\ln (2)+\ln \left(\frac{3}{2}\right)
$$

- \quad Substitute $c_{1}=-2+\ln (2)+\ln \left(\frac{3}{2}\right)$ into general solution and simplify

$$
-\frac{1}{S-1}-\ln (S-1)+\ln (S)=t-2+\ln (3)
$$

- Solution to the IVP
$-\frac{1}{S-1}-\ln (S-1)+\ln (S)=t-2+\ln (3)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 11.64 (sec). Leaf size: 41
dsolve([diff(S $\left.(t), t)=S(t)^{\wedge} 3-2 * S(t) \sim 2+S(t), S(0)=3 / 2\right], S(t)$, singsol=all)

$$
S(t)=\mathrm{e}^{\operatorname{RootOf}\left(-\ln \left(\mathrm{e}^{Z}+1\right) \mathrm{e}^{Z}+\mathrm{e}^{Z} \ln (3)+-Z \mathrm{e}^{Z}+t \mathrm{e}^{Z}-2 \mathrm{e}^{Z}+1\right)}+1
$$

\checkmark Solution by Mathematica
Time used: 0.885 (sec). Leaf size: 31
DSolve $\left[\left\{S^{\prime}[t]==S[t] \sim 3-2 * S[t] \sim 2+S[t],\{S[0]==3 / 2\}\right\}, S[t], t\right.$, IncludeSingularSolutions \rightarrow True]

$$
S(t) \rightarrow \text { InverseFunction }\left[-\frac{1}{\# 1-1}-\log (\# 1-1)+\log (\# 1) \&\right][t-2+\log (3)]
$$

2.15 problem $15 \mathrm{~b}(5)$

2.15.1 Existence and uniqueness analysis 447
2.15.2 Solving as quadrature ode . 448
2.15.3 Maple step by step solution . 449

Internal problem ID [12914]
Internal file name [OUTPUT/11566_Tuesday_November_07_2023_11_27_10_PM_73851375/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
Problem number: $15 \mathrm{~b}(5)$.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

$$
S^{\prime}-S^{3}+2 S^{2}-S=0
$$

With initial conditions

$$
\left[S(0)=-\frac{1}{2}\right]
$$

2.15.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
S^{\prime} & =f(t, S) \\
& =S^{3}-2 S^{2}+S
\end{aligned}
$$

The S domain of $f(t, S)$ when $t=0$ is

$$
\{-\infty<S<\infty\}
$$

And the point $S_{0}=-\frac{1}{2}$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial S} & =\frac{\partial}{\partial S}\left(S^{3}-2 S^{2}+S\right) \\
& =3 S^{2}-4 S+1
\end{aligned}
$$

The S domain of $\frac{\partial f}{\partial S}$ when $t=0$ is

$$
\{-\infty<S<\infty\}
$$

And the point $S_{0}=-\frac{1}{2}$ is inside this domain. Therefore solution exists and is unique.

2.15.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{S^{3}-2 S^{2}+S} d S & =\int d t \\
\int^{S} \frac{1}{-a^{3}-2 _a^{2}+_a} d _a & =t+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $S=-\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\int^{-\frac{1}{2}} \frac{1}{-a\left(_a^{2}-2 _a+1\right)} d _a=c_{1} \\
c_{1}=\int^{-\frac{1}{2}} \frac{1}{-a\left(_a-1\right)^{2}} d _a
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\int^{S} \frac{1}{-a^{3}-2 _a^{2}+_a} d _a=t+\int^{-\frac{1}{2}} \frac{1}{_^{a\left(_a-1\right)^{2}}} d _a
$$

Solving for S from the above gives

$$
S=\operatorname{RootOf}\left(-\left(\int^{Z} \frac{1}{-^{a\left(_a-1\right)^{2}}} d _a\right)+t+\int^{-\frac{1}{2}} \frac{1}{-^{a\left(_a-1\right)^{2}}} d _a\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
S=\operatorname{RootOf}\left(-\left(\int^{-Z} \frac{1}{-a\left(_a-1\right)^{2}} d _a\right)+t+\int^{-\frac{1}{2}} \frac{1}{-a\left(_a-1\right)^{2}} d _a\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
S=\operatorname{RootOf}\left(-\left(\int^{-Z} \frac{1}{-a\left(_a-1\right)^{2}} d _a\right)+t+\int^{-\frac{1}{2}} \frac{1}{-a\left(_a-1\right)^{2}} d _a\right)
$$

Verified OK.

2.15.3 Maple step by step solution

Let's solve

$$
\left[S^{\prime}-S^{3}+2 S^{2}-S=0, S(0)=-\frac{1}{2}\right]
$$

- Highest derivative means the order of the ODE is 1

S^{\prime}

- \quad Separate variables

$$
\frac{S^{\prime}}{S^{3}-2 S^{2}+S}=1
$$

- Integrate both sides with respect to t
$\int \frac{S^{\prime}}{S^{3}-2 S^{2}+S} d t=\int 1 d t+c_{1}$
- Evaluate integral

$$
-\frac{1}{S-1}-\ln (S-1)+\ln (S)=t+c_{1}
$$

- Use initial condition $S(0)=-\frac{1}{2}$

$$
\frac{2}{3}-\ln \left(\frac{3}{2}\right)-\ln (2)=c_{1}
$$

- \quad Solve for c_{1}

$$
c_{1}=\frac{2}{3}-\ln \left(\frac{3}{2}\right)-\ln (2)
$$

- \quad Substitute $c_{1}=\frac{2}{3}-\ln \left(\frac{3}{2}\right)-\ln (2)$ into general solution and simplify

$$
-\frac{1}{S-1}-\ln (S-1)+\ln (S)=t+\frac{2}{3}-\ln (3)
$$

- \quad Solution to the IVP

$$
-\frac{1}{S-1}-\ln (S-1)+\ln (S)=t+\frac{2}{3}-\ln (3)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.61 (sec). Leaf size: 45
dsolve([diff(S $(t), t)=S(t) \wedge 3-2 * S(t) \wedge 2+S(t), S(0)=-1 / 2], S(t)$, singsol=all)

$$
S(t)=\mathrm{e}^{\operatorname{RootOf}\left(-3 \ln \left(\mathrm{e}^{Z}+1\right) \mathrm{e}^{Z}-3 \mathrm{e}^{Z} \ln (3)+3 _Z \mathrm{e}^{Z}+3 t \mathrm{e}^{Z}+2 \mathrm{e}^{Z}+3\right)}+1
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\left\{S^{\prime}[t]==S[t] \wedge 3-2 * S[t] \sim 2+S[t],\{S[0]==-1 / 2\}\right\}, S[t], t\right.$, IncludeSingularSolutions \rightarrow True $]$
\{\}

2.16 problem 16 (i)

2.16.1 Solving as quadrature ode . 451
2.16.2 Maple step by step solution . 452

Internal problem ID [12915]
Internal file name [OUTPUT/11567_Tuesday_November_07_2023_11_27_11_PM_31375570/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
Problem number: 16 (i).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

$$
y^{\prime}-y^{2}-y=0
$$

2.16.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{2}+y} d y & =\int d t \\
-\ln (y+1)+\ln (y) & =t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\ln (y+1)+\ln (y)}=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
\frac{y}{y+1}=c_{2} \mathrm{e}^{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{2} \mathrm{e}^{t}}{-1+c_{2} \mathrm{e}^{t}} \tag{1}
\end{equation*}
$$

Figure 112: Slope field plot

Verification of solutions

$$
y=-\frac{c_{2} \mathrm{e}^{t}}{-1+c_{2} \mathrm{e}^{t}}
$$

Verified OK.

2.16.2 Maple step by step solution

Let's solve

$$
y^{\prime}-y^{2}-y=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y^{2}+y}=1
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{y^{2}+y} d t=\int 1 d t+c_{1}
$$

- Evaluate integral

$$
-\ln (y+1)+\ln (y)=t+c_{1}
$$

- \quad Solve for y

$$
y=-\frac{\mathrm{e}^{t+c_{1}}}{-1+\mathrm{e}^{t+c_{1}}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

```
dsolve(diff(y(t),t)=y(t)^2+y(t),y(t), singsol=all)
```

$$
y(t)=\frac{1}{-1+\mathrm{e}^{-t} c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 0.384 (sec). Leaf size: 33
DSolve[y'[t]==y[t]^2+y[t],y[t],t,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(t) \rightarrow-\frac{e^{t+c_{1}}}{-1+e^{t+c_{1}}} \\
& y(t) \rightarrow-1 \\
& y(t) \rightarrow 0
\end{aligned}
$$

2.17 problem 16 (ii)

2.17.1 Solving as quadrature ode . 454
2.17.2 Maple step by step solution . 455

Internal problem ID [12916]
Internal file name [OUTPUT/11568_Tuesday_November_07_2023_11_27_12_PM_13855943/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
Problem number: 16 (ii).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
y^{\prime}-y^{2}+y=0
$$

2.17.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{2}-y} d y & =\int d t \\
\ln (y-1)-\ln (y) & =t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (y-1)-\ln (y)}=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
\frac{y-1}{y}=c_{2} \mathrm{e}^{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{-1+c_{2} \mathrm{e}^{t}} \tag{1}
\end{equation*}
$$

Figure 113: Slope field plot

Verification of solutions

$$
y=-\frac{1}{-1+c_{2} \mathrm{e}^{t}}
$$

Verified OK.

2.17.2 Maple step by step solution

Let's solve
$y^{\prime}-y^{2}+y=0$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y^{2}-y}=1$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y^{2}-y} d t=\int 1 d t+c_{1}$
- Evaluate integral

$$
\ln (y-1)-\ln (y)=t+c_{1}
$$

- \quad Solve for y

$$
y=-\frac{1}{-1+\mathrm{e}^{t+c_{1}}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(diff(y(t),t)=y(t)^2-y(t),y(t), singsol=all)
```

$$
y(t)=\frac{1}{1+c_{1} \mathrm{e}^{t}}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.294 (sec). Leaf size: 25
DSolve[y'[t]==y[t]^2-y[t],y[t],t,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(t) \rightarrow \frac{1}{1+e^{t+c_{1}}} \\
& y(t) \rightarrow 0 \\
& y(t) \rightarrow 1
\end{aligned}
$$

2.18 problem 16 (iii)

2.18.1 Solving as quadrature ode . 457
2.18.2 Maple step by step solution . 458

Internal problem ID [12917]
Internal file name [OUTPUT/11569_Tuesday_November_07_2023_11_27_12_PM_89430785/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
Problem number: 16 (iii).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y^{3}-y^{2}=0
$$

2.18.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{3}+y^{2}} d y & =\int d t \\
\int^{y} \frac{1}{a^{3}+_a^{2}} d _a & =t+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{y} \frac{1}{-a^{3}+_a^{2}} d _a=t+c_{1} \tag{1}
\end{equation*}
$$

Figure 114: Slope field plot

Verification of solutions

$$
\int^{y} \frac{1}{-a^{3}+_a^{2}} d _a=t+c_{1}
$$

Verified OK.

2.18.2 Maple step by step solution

Let's solve

$$
y^{\prime}-y^{3}-y^{2}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{y^{3}+y^{2}}=1
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{y^{3}+y^{2}} d t=\int 1 d t+c_{1}
$$

- Evaluate integral

$$
\ln (y+1)-\frac{1}{y}-\ln (y)=t+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.172 (sec). Leaf size: 18

```
dsolve(diff(y(t),t)=y(t)^3+y(t)^2,y(t), singsol=all)
```

$$
y(t)=-\frac{1}{\text { LambertW }\left(-c_{1} \mathrm{e}^{t-1}\right)+1}
$$

\checkmark Solution by Mathematica
Time used: 0.318 (sec). Leaf size: 38

```
DSolve[y'[t]==y[t]^ 3+y[t]^2,y[t],t,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(t) \rightarrow \text { InverseFunction }\left[-\frac{1}{\# 1}-\log (\# 1)+\log (\# 1+1) \&\right]\left[t+c_{1}\right] \\
& y(t) \rightarrow-1 \\
& y(t) \rightarrow 0
\end{aligned}
$$

2.19 problem 16 (iv)

2.19.1 Solving as quadrature ode . 460
2.19.2 Maple step by step solution . 461

Internal problem ID [12918]
Internal file name [OUTPUT/11570_Tuesday_November_07_2023_11_27_13_PM_2375291/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
Problem number: 16 (iv).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=-t^{2}+2
$$

2.19.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int-t^{2}+2 \mathrm{~d} t \\
& =-\frac{1}{3} t^{3}+2 t+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{3} t^{3}+2 t+c_{1} \tag{1}
\end{equation*}
$$

Figure 115: Slope field plot

Verification of solutions

$$
y=-\frac{1}{3} t^{3}+2 t+c_{1}
$$

Verified OK.

2.19.2 Maple step by step solution

Let's solve

$$
y^{\prime}=-t^{2}+2
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to t
$\int y^{\prime} d t=\int\left(-t^{2}+2\right) d t+c_{1}$
- Evaluate integral

$$
y=-\frac{1}{3} t^{3}+2 t+c_{1}
$$

- \quad Solve for y

$$
y=-\frac{1}{3} t^{3}+2 t+c_{1}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve(diff(y(t),t)=2-t^2,y(t), singsol=all)
```

$$
y(t)=-\frac{1}{3} t^{3}+2 t+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 18

```
DSolve[y'[t]==2-t^2,y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow-\frac{t^{3}}{3}+2 t+c_{1}
$$

2.20 problem 16 (v)

2.20.1 Solving as separable ode 463
2.20.2 Solving as first order ode lie symmetry lookup ode 465
2.20.3 Solving as bernoulli ode 469
2.20.4 Solving as exact ode 472
2.20.5 Solving as riccati ode 476
2.20.6 Maple step by step solution 478

Internal problem ID [12919]

Internal file name [OUTPUT/11571_Tuesday_November_07_2023_11_27_14_PM_88612694/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
Problem number: 16 (v).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "bernoulli", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-t y-t y^{2}=0
$$

2.20.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =t y(y+1)
\end{aligned}
$$

Where $f(t)=t$ and $g(y)=y(y+1)$. Integrating both sides gives

$$
\frac{1}{y(y+1)} d y=t d t
$$

$$
\begin{aligned}
\int \frac{1}{y(y+1)} d y & =\int t d t \\
-\ln (y+1)+\ln (y) & =\frac{t^{2}}{2}+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\ln (y+1)+\ln (y)}=\mathrm{e}^{\frac{t^{2}}{2}+c_{1}}
$$

Which simplifies to

$$
\frac{y}{y+1}=\mathrm{e}^{\frac{t^{2}}{2}} c_{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{\frac{t^{2}}{2}} c_{2}}{-1+\mathrm{e}^{\frac{t^{2}}{2}} c_{2}} \tag{1}
\end{equation*}
$$

Figure 116: Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{\frac{t^{2}}{2}} c_{2}}{-1+\mathrm{e}^{\frac{t^{2}}{2}} c_{2}}
$$

Verified OK.

2.20.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=t y^{2}+t y \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 100: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=\frac{1}{t} \\
& \eta(t, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{\frac{1}{t}} d t
\end{aligned}
$$

Which results in

$$
S=\frac{t^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=t y^{2}+t y
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{y} & =1 \\
S_{t} & =t \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y(y+1)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R(R+1)}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (R+1)+\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\frac{t^{2}}{2}=-\ln (y+1)+\ln (y)+c_{1}
$$

Which simplifies to

$$
\frac{t^{2}}{2}=-\ln (y+1)+\ln (y)+c_{1}
$$

Which gives

$$
y=\frac{1}{\mathrm{e}^{-\frac{t^{2}}{2}+c_{1}}-1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=t y^{2}+t y$		$\frac{d S}{d R}=\frac{1}{R(R+1)}$
19 ¢ 1		他
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }+{ }_{\text {d }}$
$\pm \times 1$	$R=y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
	$S=\frac{}{2}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-\infty 1]{ }$
- ${ }^{\text {a }}$ + ${ }^{+1}+$		
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }+{ }_{\text {a }}$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{\mathrm{e}^{-\frac{t^{2}}{2}+c_{1}}-1} \tag{1}
\end{equation*}
$$

Figure 117: Slope field plot

Verification of solutions

$$
y=\frac{1}{\mathrm{e}^{-\frac{t^{2}}{2}+c_{1}}-1}
$$

Verified OK.

2.20.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =t y^{2}+t y
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=t y+t y^{2} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(t) y+f_{1}(t) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(t) y^{1-n}+f_{1}(t) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(t)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(t)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(t) & =t \\
f_{1}(t) & =t \\
n & =2
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{2}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{2}}=\frac{t}{y}+t \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t t gives

$$
\begin{equation*}
w^{\prime}=-\frac{1}{y^{2}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-w^{\prime}(t) & =w(t) t+t \\
w^{\prime} & =-w t-t \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(t)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(t)+p(t) w(t)=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =t \\
q(t) & =-t
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(t)+w(t) t=-t
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int t d t} \\
& =\mathrm{e}^{\frac{t^{2}}{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu w) & =(\mu)(-t) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{\frac{t^{2}}{2}} w\right) & =\left(\mathrm{e}^{\frac{t^{2}}{2}}\right)(-t) \\
\mathrm{d}\left(\mathrm{e}^{t^{2}} w\right) & =\left(-t \mathrm{e}^{\frac{t^{2}}{2}}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{t^{t^{2}}} w=\int-t \mathrm{e}^{\frac{t^{2}}{2}} \mathrm{~d} t \\
& \mathrm{e}^{\frac{t^{2}}{2}} w=-\mathrm{e}^{\frac{t^{2}}{2}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\frac{t}{}_{2}^{2}}$ results in

$$
w(t)=-\mathrm{e}^{-\frac{t^{2}}{2}} \mathrm{e}^{\frac{t^{2}}{2}}+\mathrm{e}^{-\frac{t^{2}}{2}} c_{1}
$$

which simplifies to

$$
w(t)=-1+\mathrm{e}^{-\frac{t^{2}}{2}} c_{1}
$$

Replacing w in the above by $\frac{1}{y}$ using equation (5) gives the final solution.

$$
\frac{1}{y}=-1+\mathrm{e}^{-\frac{t^{2}}{2}} c_{1}
$$

Or

$$
y=\frac{1}{-1+\mathrm{e}^{-\frac{t^{2}}{2}} c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{-1+\mathrm{e}^{-\frac{t^{2}}{2}} c_{1}} \tag{1}
\end{equation*}
$$

Figure 118: Slope field plot

Verification of solutions

$$
y=\frac{1}{-1+\mathrm{e}^{-\frac{t^{2}}{2}} c_{1}}
$$

Verified OK.

2.20.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the
ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y(y+1)}\right) \mathrm{d} y & =(t) \mathrm{d} t \\
(-t) \mathrm{d} t+\left(\frac{1}{y(y+1)}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-t \\
N(t, y) & =\frac{1}{y(y+1)}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-t) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\frac{1}{y(y+1)}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-t \mathrm{~d} t \\
\phi & =-\frac{t^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y(y+1)}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y(y+1)}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y(y+1)}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y(y+1)}\right) \mathrm{d} y \\
f(y) & =-\ln (y+1)+\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{t^{2}}{2}-\ln (y+1)+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{t^{2}}{2}-\ln (y+1)+\ln (y)
$$

The solution becomes

$$
y=-\frac{\mathrm{e}^{\frac{t^{2}}{2}+c_{1}}}{-1+\mathrm{e}^{\frac{t^{2}}{2}+c_{1}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{\frac{t^{2}}{2}+c_{1}}}{-1+\mathrm{e}^{\frac{t^{2}}{2}+c_{1}}} \tag{1}
\end{equation*}
$$

Figure 119: Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{\frac{t^{2}}{2}+c_{1}}}{-1+\mathrm{e}^{\frac{t^{2}}{2}+c_{1}}}
$$

Verified OK.

2.20.5 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =t y^{2}+t y
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=t y^{2}+t y
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(t)+f_{1}(t) y+f_{2}(t) y^{2}
$$

Shows that $f_{0}(t)=0, f_{1}(t)=t$ and $f_{2}(t)=t$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{t u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(t)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(t)+f_{2}^{2} f_{0} u(t)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =1 \\
f_{1} f_{2} & =t^{2} \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
t u^{\prime \prime}(t)-\left(t^{2}+1\right) u^{\prime}(t)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(t)=c_{1}+\mathrm{e}^{\frac{t^{2}}{2}} c_{2}
$$

The above shows that

$$
u^{\prime}(t)=t \mathrm{e}^{\frac{t^{2}}{2}} c_{2}
$$

Using the above in (1) gives the solution

$$
y=-\frac{\mathrm{e}^{\frac{t^{2}}{2}} c_{2}}{c_{1}+\mathrm{e}^{\frac{t^{2}}{2}} c_{2}}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{\mathrm{e}^{\frac{t^{2}}{2}}}{c_{3}+\mathrm{e}^{\frac{t^{2}}{2}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{\frac{t^{2}}{2}}}{c_{3}+\mathrm{e}^{\frac{t^{2}}{2}}} \tag{1}
\end{equation*}
$$

Figure 120: Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{\frac{t^{2}}{2}}}{c_{3}+\mathrm{e}^{\frac{t^{2}}{2}}}
$$

Verified OK.

2.20.6 Maple step by step solution

Let's solve

$$
y^{\prime}-t y-t y^{2}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y(y+1)}=t
$$

- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y(y+1)} d t=\int t d t+c_{1}$
- Evaluate integral
$-\ln (y+1)+\ln (y)=\frac{t^{2}}{2}+c_{1}$
- \quad Solve for y

$$
y=-\frac{e^{\frac{t^{2}}{2}+c_{1}}}{-1+\mathrm{e}^{\frac{t^{2}}{2}+c_{1}}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

$$
\begin{aligned}
& \text { dsolve }\left(\operatorname{diff}(\mathrm{y}(\mathrm{t}), \mathrm{t})=\mathrm{t} * \mathrm{y}(\mathrm{t})+\mathrm{t} * \mathrm{y}(\mathrm{t})^{\wedge} 2, \mathrm{y}(\mathrm{t}),\right. \text { singsol=all) } \\
& y(t)=\frac{1}{-1+\mathrm{e}^{-\frac{t^{2}}{2}} c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.396 (sec). Leaf size: 45
DSolve[y' [t$]==\mathrm{t} * \mathrm{y}[\mathrm{t}]+\mathrm{t} * \mathrm{y}[\mathrm{t}] \sim 2, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(t) \rightarrow-\frac{e^{\frac{t^{2}}{2}+c_{1}}}{-1+e^{\frac{t^{2}}{2}+c_{1}}} \\
& y(t) \rightarrow-1 \\
& y(t) \rightarrow 0
\end{aligned}
$$

2.21 problem 16 ($\mathbf{v i}$)

2.21.1 Solving as separable ode . 481
2.21.2 Solving as linear ode . 483
2.21.3 Solving as first order ode lie symmetry lookup ode 484
2.21.4 Solving as exact ode . 488
2.21.5 Maple step by step solution . 492

Internal problem ID [12920]
Internal file name [OUTPUT/11572_Tuesday_November_07_2023_11_27_15_PM_80067051/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
Problem number: 16 (vi).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-t^{2} y=t^{2}
$$

2.21.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =t^{2}(y+1)
\end{aligned}
$$

Where $f(t)=t^{2}$ and $g(y)=y+1$. Integrating both sides gives

$$
\begin{gathered}
\frac{1}{y+1} d y=t^{2} d t \\
\int \frac{1}{y+1} d y=\int t^{2} d t
\end{gathered}
$$

$$
\ln (y+1)=\frac{t^{3}}{3}+c_{1}
$$

Raising both side to exponential gives

$$
y+1=\mathrm{e}^{\frac{t^{3}}{3}+c_{1}}
$$

Which simplifies to

$$
y+1=c_{2} \mathrm{e}^{t^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} \mathrm{e}^{t^{3} 3}+c_{1}-1 \tag{1}
\end{equation*}
$$

Figure 121: Slope field plot

Verification of solutions

$$
y=c_{2} \mathrm{e}^{t^{3} 3}+c_{1}-1
$$

Verified OK.

2.21.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-t^{2} \\
& q(t)=t^{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-t^{2} y=t^{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-t^{2} d t} \\
& =\mathrm{e}^{-\frac{t^{3}}{3}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(t^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{t^{\frac{t^{3}}{3}}} y\right) & =\left(\mathrm{e}^{-\frac{t^{3}}{3}}\right)\left(t^{2}\right) \\
\mathrm{d}\left(\mathrm{e}^{-\frac{t^{3}}{3}} y\right) & =\left(t^{2} \mathrm{e}^{-\frac{t^{3}}{3}}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-\frac{t^{3}}{3}} y=\int t^{2} \mathrm{e}^{-\frac{t^{3}}{3}} \mathrm{~d} t \\
& \mathrm{e}^{-\frac{t^{3}}{3}} y=-\mathrm{e}^{-\frac{t^{3}}{3}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-\frac{t^{3}}{3}}$ results in

$$
y=-\mathrm{e}^{\frac{t^{3}}{3}} \mathrm{e}^{-\frac{t^{3}}{3}}+c_{1} \mathrm{e}^{\frac{t^{3}}{3}}
$$

which simplifies to

$$
y=-1+c_{1} \mathrm{e}^{\frac{t}{3}_{3}^{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-1+c_{1} \mathrm{e}^{t^{3}} \tag{1}
\end{equation*}
$$

Figure 122: Slope field plot
Verification of solutions

$$
y=-1+c_{1} \mathrm{e}^{\frac{t^{3}}{3}}
$$

Verified OK.

2.21.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=y t^{2}+t^{2} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 103: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{\frac{t^{3}}{3}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{t^{3}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-\frac{t^{3}}{3}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=y t^{2}+t^{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-t^{2} \mathrm{e}^{-\frac{t^{3}}{3}} y \\
S_{y} & =\mathrm{e}^{-\frac{t^{3}}{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=t^{2} \mathrm{e}^{-\frac{t^{3}}{3}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R^{2} \mathrm{e}^{-\frac{R^{3}}{3}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\mathrm{e}^{-\frac{R^{3}}{3}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-\frac{t^{3}}{3}} y=-\mathrm{e}^{-\frac{t^{3}}{3}}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-\frac{t^{3}}{3}} y=-\mathrm{e}^{-\frac{t^{3}}{3}}+c_{1}
$$

Which gives

$$
y=-\left(\mathrm{e}^{-\frac{t^{3}}{3}}-c_{1}\right) \mathrm{e}^{\frac{t^{3}}{3}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=y t^{2}+t^{2}$		$\frac{d S}{d R}=R^{2} \mathrm{e}^{-\frac{R^{3}}{3}}$
		$\wedge_{1+1} \uparrow \uparrow \uparrow \uparrow \uparrow \xrightarrow{\text { a }}$
$1+1+4{ }^{+}$	$R=t$	
	$S=\mathrm{e}^{-\frac{t^{3}}{3}} y$	
	$S=\mathrm{e}{ }^{3} y$	
! ${ }^{\text {d }}$		
! ${ }^{1}$		
\ldots		

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\left(\mathrm{e}^{-\frac{t^{3}}{3}}-c_{1}\right) \mathrm{e}^{\frac{t^{3}}{3}} \tag{1}
\end{equation*}
$$

Figure 123: Slope field plot

Verification of solutions

$$
y=-\left(\mathrm{e}^{-\frac{t^{3}}{3}}-c_{1}\right) \mathrm{e}^{\frac{t^{3}}{3}}
$$

Verified OK.

2.21.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y+1}\right) \mathrm{d} y & =\left(t^{2}\right) \mathrm{d} t \\
\left(-t^{2}\right) \mathrm{d} t+\left(\frac{1}{y+1}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-t^{2} \\
N(t, y) & =\frac{1}{y+1}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-t^{2}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\frac{1}{y+1}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-t^{2} \mathrm{~d} t \\
\phi & =-\frac{t^{3}}{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y+1}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y+1}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y+1}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y+1}\right) \mathrm{d} y \\
f(y) & =\ln (y+1)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{t^{3}}{3}+\ln (y+1)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{t^{3}}{3}+\ln (y+1)
$$

The solution becomes

$$
y=\mathrm{e}^{\frac{t}{3}_{3}^{3}+c_{1}}-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{t}{}_{3}^{3}+c_{1}}-1 \tag{1}
\end{equation*}
$$

Figure 124: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{t^{3}+c_{1}}-1
$$

Verified OK.

2.21.5 Maple step by step solution

Let's solve

$$
y^{\prime}-t^{2} y=t^{2}
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{y+1}=t^{2}
$$

- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y+1} d t=\int t^{2} d t+c_{1}$
- Evaluate integral
$\ln (y+1)=\frac{t^{3}}{3}+c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{\mathrm{t}^{3}+c_{1}}-1$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve(diff(y(t),t)=t^2+t^2*y(t),y(t), singsol=all)
```

$$
y(t)=-1+c_{1} \mathrm{e}^{\frac{t^{3}}{3}}
$$

\checkmark Solution by Mathematica
Time used: 0.064 (sec). Leaf size: 24
DSolve[y'[t]==t^2+t^2*y[t],y[t],t,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(t) \rightarrow-1+c_{1} e^{t^{3}} \\
& y(t) \rightarrow-1
\end{aligned}
$$

2.22 problem 16 (vii)

2.22.1 Solving as separable ode . 494
2.22.2 Solving as linear ode . 496
2.22.3 Solving as first order ode lie symmetry lookup ode 497
2.22.4 Solving as exact ode . 501
2.22.5 Maple step by step solution . 505

Internal problem ID [12921]
Internal file name [OUTPUT/11573_Tuesday_November_07_2023_11_27_15_PM_89745885/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
Problem number: 16 (vii).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-t y=t
$$

2.22.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =t(y+1)
\end{aligned}
$$

Where $f(t)=t$ and $g(y)=y+1$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y+1} d y & =t d t \\
\int \frac{1}{y+1} d y & =\int t d t
\end{aligned}
$$

$$
\ln (y+1)=\frac{t^{2}}{2}+c_{1}
$$

Raising both side to exponential gives

$$
y+1=\mathrm{e}^{\frac{t^{2}}{2}+c_{1}}
$$

Which simplifies to

$$
y+1=\mathrm{e}^{\frac{t^{2}}{2}} c_{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} \mathrm{e}^{\mathrm{t}^{2}+c_{1}}-1 \tag{1}
\end{equation*}
$$

Figure 125: Slope field plot

Verification of solutions

$$
y=c_{2} \mathrm{e}^{t^{2}+c_{1}}-1
$$

Verified OK.

2.22.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-t \\
& q(t)=t
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-t y=t
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int-t d t} \\
=\mathrm{e}^{-\frac{t^{2}}{2}}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)(t) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-\frac{t^{2}}{2}} y\right) & =\left(\mathrm{e}^{-\frac{t^{2}}{2}}\right)(t) \\
\mathrm{d}\left(\mathrm{e}^{-\frac{t^{2}}{2}} y\right) & =\left(t \mathrm{e}^{-\frac{t^{2}}{2}}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-\frac{t^{2}}{2}} y=\int t \mathrm{e}^{-\frac{t^{2}}{2}} \mathrm{~d} t \\
& \mathrm{e}^{-\frac{t^{2}}{2}} y=-\mathrm{e}^{-\frac{t^{2}}{2}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-\frac{t^{2}}{2}}$ results in

$$
y=-\mathrm{e}^{-\frac{t^{2}}{2}} \mathrm{e}^{\frac{t^{2}}{2}}+c_{1} \mathrm{e}^{\frac{t^{2}}{2}}
$$

which simplifies to

$$
y=-1+c_{1} \mathrm{e}^{\frac{t^{2}}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-1+c_{1} \mathrm{e}^{t^{2}} \tag{1}
\end{equation*}
$$

Figure 126: Slope field plot

Verification of solutions

$$
y=-1+c_{1} \mathrm{e}^{\frac{t^{2}}{2}}
$$

Verified OK.

2.22.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =t y+t \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 106: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{\frac{t^{2}}{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\frac{t^{2}}{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-\frac{t^{2}}{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=t y+t
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-t \mathrm{e}^{-\frac{t^{2}}{2}} y \\
S_{y} & =\mathrm{e}^{-\frac{t^{2}}{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=t \mathrm{e}^{-\frac{t^{2}}{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R \mathrm{e}^{-\frac{R^{2}}{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\mathrm{e}^{-\frac{R^{2}}{2}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-\frac{t^{2}}{2}} y=-\mathrm{e}^{-\frac{t^{2}}{2}}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-\frac{t^{2}}{2}} y=-\mathrm{e}^{-\frac{t^{2}}{2}}+c_{1}
$$

Which gives

$$
y=-\left(\mathrm{e}^{-\frac{t^{2}}{2}}-c_{1}\right) \mathrm{e}^{\frac{t^{2}}{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=t y+t$		$\frac{d S}{d R}=R \mathrm{e}^{-\frac{R^{2}}{2}}$
		$\rightarrow \rightarrow$
		$\rightarrow+$
		Ster
		S
	$R=t$	$\rightarrow \rightarrow \rightarrow$ 边
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-4 v}$
	$S=\mathrm{e}^{-\frac{t^{2}}{2}} y$	
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\rightarrow \rightarrow+$ -
		-

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\left(\mathrm{e}^{-\frac{t^{2}}{2}}-c_{1}\right) \mathrm{e}^{\frac{t^{2}}{2}} \tag{1}
\end{equation*}
$$

Figure 127: Slope field plot

Verification of solutions

$$
y=-\left(\mathrm{e}^{-\frac{t^{2}}{2}}-c_{1}\right) \mathrm{e}^{\frac{t^{2}}{2}}
$$

Verified OK.

2.22.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y+1}\right) \mathrm{d} y & =(t) \mathrm{d} t \\
(-t) \mathrm{d} t+\left(\frac{1}{y+1}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-t \\
N(t, y) & =\frac{1}{y+1}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-t) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\frac{1}{y+1}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-t \mathrm{~d} t \\
\phi & =-\frac{t^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y+1}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y+1}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y+1}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y+1}\right) \mathrm{d} y \\
f(y) & =\ln (y+1)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{t^{2}}{2}+\ln (y+1)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{t^{2}}{2}+\ln (y+1)
$$

The solution becomes

$$
y=-1+\mathrm{e}^{\frac{t^{2}}{2}+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-1+\mathrm{e}^{\frac{t^{2}}{2}+c_{1}} \tag{1}
\end{equation*}
$$

Figure 128: Slope field plot

Verification of solutions

$$
y=-1+\mathrm{e}^{\frac{t^{2}}{2}+c_{1}}
$$

Verified OK.

2.22.5 Maple step by step solution

Let's solve

$$
y^{\prime}-t y=t
$$

- Highest derivative means the order of the ODE is 1
- \quad Separate variables

$$
\frac{y^{\prime}}{y+1}=t
$$

- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y+1} d t=\int t d t+c_{1}$
- Evaluate integral
$\ln (y+1)=\frac{t^{2}}{2}+c_{1}$
- \quad Solve for y
$y=-1+\mathrm{e}^{\frac{t^{2}}{2}+c_{1}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve(diff(y(t),t)=t+t*y(t),y(t), singsol=all)
```

$$
y(t)=-1+\mathrm{e}^{t^{2}} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.072 (sec). Leaf size: 24
DSolve[y'[t]==t+t*y[t],y[t],t,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(t) \rightarrow-1+c_{1} e^{t^{2}} \\
& y(t) \rightarrow-1
\end{aligned}
$$

2.23 problem 16 (viii)

2.23.1 Solving as quadrature ode . 507
2.23.2 Maple step by step solution . 508

Internal problem ID [12922]
Internal file name [OUTPUT/11574_Tuesday_November_07_2023_11_27_16_PM_16944620/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
Problem number: 16 (viii).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=t^{2}-2
$$

2.23.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int t^{2}-2 \mathrm{~d} t \\
& =\frac{1}{3} t^{3}-2 t+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{3} t^{3}-2 t+c_{1} \tag{1}
\end{equation*}
$$

Figure 129: Slope field plot

Verification of solutions

$$
y=\frac{1}{3} t^{3}-2 t+c_{1}
$$

Verified OK.

2.23.2 Maple step by step solution

$$
\begin{aligned}
& \text { Let's solve } \\
& y^{\prime}=t^{2}-2
\end{aligned}
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to t
$\int y^{\prime} d t=\int\left(t^{2}-2\right) d t+c_{1}$
- Evaluate integral

$$
y=\frac{1}{3} t^{3}-2 t+c_{1}
$$

- \quad Solve for y

$$
y=\frac{1}{3} t^{3}-2 t+c_{1}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve(diff(y(t),t)=t^2-2,y(t), singsol=all)
```

$$
y(t)=\frac{1}{3} t^{3}-2 t+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 18
DSolve[y'[t]==t^2-2,y[t],t,IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{t^{3}}{3}-2 t+c_{1}
$$

2.24 problem 19 a(i)

2.24.1 Solving as quadrature ode . 510
2.24.2 Maple step by step solution . 511

Internal problem ID [12923]
Internal file name [OUTPUT/11575_Tuesday_November_07_2023_11_27_16_PM_12198609/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
Problem number: 19 a(i).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
\theta^{\prime}+\frac{11 \cos (\theta)}{10}=\frac{9}{10}
$$

2.24.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\frac{9}{10}-\frac{11 \cos (\theta)}{10}} d \theta & =t+c_{1} \\
-\sqrt{10} \operatorname{arctanh}\left(\sqrt{10} \tan \left(\frac{\theta}{2}\right)\right) & =t+c_{1}
\end{aligned}
$$

Solving for θ gives these solutions

$$
\theta_{1}=-2 \arctan \left(\frac{\tanh \left(\frac{\left(t+c_{1}\right) \sqrt{10}}{10}\right) \sqrt{10}}{10}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\theta=-2 \arctan \left(\frac{\tanh \left(\frac{\left(t+c_{1}\right) \sqrt{10}}{10}\right) \sqrt{10}}{10}\right) \tag{1}
\end{equation*}
$$

Figure 130: Slope field plot
Verification of solutions

$$
\theta=-2 \arctan \left(\frac{\tanh \left(\frac{\left(t+c_{1}\right) \sqrt{10}}{10}\right) \sqrt{10}}{10}\right)
$$

Verified OK.

2.24.2 Maple step by step solution

Let's solve

$$
\theta^{\prime}+\frac{11 \cos (\theta)}{10}=\frac{9}{10}
$$

- Highest derivative means the order of the ODE is 1

θ^{\prime}

- \quad Separate variables

$$
\frac{\theta^{\prime}}{\frac{9}{10}-\frac{11 \cos (\theta)}{10}}=1
$$

- Integrate both sides with respect to t

$$
\int \frac{\theta^{\prime}}{\frac{9}{10}-\frac{\theta^{12} \cos (\theta)}{10}} d t=\int 1 d t+c_{1}
$$

- Evaluate integral
$-\sqrt{10} \operatorname{arctanh}\left(\tan \left(\frac{\theta}{2}\right) \sqrt{10}\right)=t+c_{1}$
- \quad Solve for θ

$$
\theta=-2 \arctan \left(\frac{\tanh \left(\frac{\left(t+c_{1}\right) \sqrt{10}}{10}\right) \sqrt{10}}{10}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21
dsolve $(\operatorname{diff}(\operatorname{theta}(t), t)=1-\cos (\operatorname{theta}(t))+(1+\cos (\operatorname{theta}(t))) *(-1 / 10)$, theta (t), singsol=all)

$$
\theta(t)=-2 \arctan \left(\frac{\tanh \left(\frac{\left(t+c_{1}\right) \sqrt{10}}{10}\right) \sqrt{10}}{10}\right)
$$

\checkmark Solution by Mathematica
Time used: 1.026 (sec). Leaf size: 69
DSolve [theta' $[t]==1-\operatorname{Cos}[\operatorname{theta}[t]]+(1+\operatorname{Cos}[\operatorname{theta}[t]]) *(-1 / 10)$, theta $[t], t$, IncludeSingularSoluti

$$
\begin{aligned}
\theta(t) & \rightarrow-2 \arctan \left(\frac{\tanh \left(\frac{t-10 c_{1}}{\sqrt{10}}\right)}{\sqrt{10}}\right) \\
\theta(t) & \rightarrow-\arccos \left(\frac{9}{11}\right) \\
\theta(t) & \rightarrow \arccos \left(\frac{9}{11}\right) \\
\theta(t) & \rightarrow-2 \arctan \left(\frac{1}{\sqrt{10}}\right) \\
\theta(t) & \rightarrow 2 \arctan \left(\frac{1}{\sqrt{10}}\right)
\end{aligned}
$$

2.25 problem 19 a(ii)

2.25.1 Solving as quadrature ode . 514
2.25.2 Maple step by step solution . 515

Internal problem ID [12924]
Internal file name [OUTPUT/11576_Tuesday_November_07_2023_11_27_16_PM_37495739/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
Problem number: 19 a(ii).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
\theta^{\prime}=2
$$

2.25.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\theta & =\int 2 \mathrm{~d} t \\
& =2 t+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\theta=2 t+c_{1} \tag{1}
\end{equation*}
$$

Figure 131: Slope field plot

Verification of solutions

$$
\theta=2 t+c_{1}
$$

Verified OK.

2.25.2 Maple step by step solution

Let's solve

$$
\theta^{\prime}=2
$$

- Highest derivative means the order of the ODE is 1

$$
\theta^{\prime}
$$

- Integrate both sides with respect to t

$$
\int \theta^{\prime} d t=\int 2 d t+c_{1}
$$

- Evaluate integral

$$
\theta=2 t+c_{1}
$$

- \quad Solve for θ

$$
\theta=2 t+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

```
dsolve(diff(theta(t),t)=1-cos(theta(t))+(1+\operatorname{cos}(theta(t))),theta(t), singsol=all)
```

$$
\theta(t)=2 t+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 11
DSolve [theta' $[\mathrm{t}]==1-\operatorname{Cos}[$ theta $[\mathrm{t}]]+(1+\operatorname{Cos}[$ theta $[\mathrm{t}]])$, theta $[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow I

$$
\theta(t) \rightarrow 2 t+c_{1}
$$

2.26 problem 19 a(iii)

2.26.1 Solving as quadrature ode . 517
2.26.2 Maple step by step solution . 518

Internal problem ID [12925]
Internal file name [OUTPUT/11577_Tuesday_November_07_2023_11_27_17_PM_45474179/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
Problem number: 19 a(iii).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
\theta^{\prime}+\frac{9 \cos (\theta)}{10}=\frac{11}{10}
$$

2.26.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\frac{11}{10}-\frac{9 \cos (\theta)}{10}} d \theta & =t+c_{1} \\
\sqrt{10} \arctan \left(\sqrt{10} \tan \left(\frac{\theta}{2}\right)\right) & =t+c_{1}
\end{aligned}
$$

Solving for θ gives these solutions

$$
\theta_{1}=2 \arctan \left(\frac{\tan \left(\frac{\left(t+c_{1}\right) \sqrt{10}}{10}\right) \sqrt{10}}{10}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\theta=2 \arctan \left(\frac{\tan \left(\frac{\left(t+c_{1}\right) \sqrt{10}}{10}\right) \sqrt{10}}{10}\right) \tag{1}
\end{equation*}
$$

Figure 132: Slope field plot
Verification of solutions

$$
\theta=2 \arctan \left(\frac{\tan \left(\frac{\left(t+c_{1}\right) \sqrt{10}}{10}\right) \sqrt{10}}{10}\right)
$$

Verified OK.

2.26.2 Maple step by step solution

Let's solve

$$
\theta^{\prime}+\frac{9 \cos (\theta)}{10}=\frac{11}{10}
$$

- Highest derivative means the order of the ODE is 1 θ^{\prime}
- Separate variables

$$
\frac{\theta^{\prime}}{\frac{11}{10}-\frac{9 \cos (\theta)}{10}}=1
$$

- Integrate both sides with respect to t

$$
\int \frac{\theta^{\prime}}{\frac{11}{10}-\frac{9 \cos (\theta)}{10}} d t=\int 1 d t+c_{1}
$$

- Evaluate integral
$\sqrt{10} \arctan \left(\tan \left(\frac{\theta}{2}\right) \sqrt{10}\right)=t+c_{1}$
- Solve for θ

$$
\theta=2 \arctan \left(\frac{\tan \left(\frac{\left(t+c_{1}\right) \sqrt{10}}{10}\right) \sqrt{10}}{10}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21
dsolve $(\operatorname{diff}(\operatorname{theta}(t), t)=1-\cos (\operatorname{theta}(t))+(1+\cos (\operatorname{theta}(t))) *(1 / 10)$, theta (t), singsol=all)

$$
\theta(t)=2 \arctan \left(\frac{\tan \left(\frac{\left(t+c_{1}\right) \sqrt{10}}{10}\right) \sqrt{10}}{10}\right)
$$

\checkmark Solution by Mathematica
Time used: 10.277 (sec). Leaf size: 55
DSolve [theta' $[t]==1-\operatorname{Cos}[$ theta $[t]]+(1+\operatorname{Cos}[\operatorname{theta}[t]]) *(1 / 10)$, theta $[t], t$, IncludeSingularSolutio

$$
\begin{aligned}
\theta(t) & \rightarrow 2 \arctan \left(\frac{\tan \left(\frac{t-10 c_{1}}{\sqrt{10}}\right)}{\sqrt{10}}\right) \\
\theta(t) & \rightarrow-\arccos \left(\frac{11}{9}\right) \\
\theta(t) & \rightarrow \arccos \left(\frac{11}{9}\right) \\
\theta(t) & \rightarrow \operatorname{Interval}[\{-\pi, \pi\}]
\end{aligned}
$$

2.27 problem 20

2.27.1 Solving as quadrature ode . 521
2.27.2 Maple step by step solution . 522

Internal problem ID [12926]
Internal file name [OUTPUT/11578_Tuesday_November_07_2023_11_27_17_PM_9986808/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
Problem number: 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
v^{\prime}+\frac{v}{R C}=0
$$

2.27.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int-\frac{R C}{v} d v & =\int d t \\
-R C \ln (v) & =t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-R C \ln (v)}=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
v^{-R C}=c_{2} \mathrm{e}^{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
v=\left(c_{2} \mathrm{e}^{t}\right)^{-\frac{1}{R C}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
v=\left(c_{2} \mathrm{e}^{t}\right)^{-\frac{1}{R C}}
$$

Verified OK.

2.27.2 Maple step by step solution

Let's solve

$$
v^{\prime}+\frac{v}{R C}=0
$$

- Highest derivative means the order of the ODE is 1 v^{\prime}
- \quad Separate variables
$\frac{v^{\prime}}{v}=-\frac{1}{R C}$
- Integrate both sides with respect to t
$\int \frac{v^{\prime}}{v} d t=\int-\frac{1}{R C} d t+c_{1}$
- Evaluate integral
$\ln (v)=-\frac{t}{R C}+c_{1}$
- \quad Solve for v
$v=\mathrm{e}^{\frac{c_{1} R C-t}{R C}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16
dsolve(diff(v(t), $t)=-v(t) /(R * C), v(t), \quad$ singsol=all)

$$
v(t)=c_{1} \mathrm{e}^{-\frac{t}{R C}}
$$

\checkmark Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 24
DSolve[v'[t]==-v[t]/(r*c),v[t],t,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& v(t) \rightarrow c_{1} e^{-\frac{t}{c r}} \\
& v(t) \rightarrow 0
\end{aligned}
$$

2.28 problem 21

2.28.1 Solving as quadrature ode . 524
2.28.2 Maple step by step solution . 525

Internal problem ID [12927]
Internal file name [OUTPUT/11579_Tuesday_November_07_2023_11_27_18_PM_8602688/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
Problem number: 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

$$
v^{\prime}-\frac{K-v}{R C}=0
$$

2.28.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{R C}{K-v} d v & =\int d t \\
-R C \ln (K-v) & =t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-R C \ln (K-v)}=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
(K-v)^{-R C}=c_{2} \mathrm{e}^{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
v=-\left(c_{2} \mathrm{e}^{t}\right)^{-\frac{1}{R C}}+K \tag{1}
\end{equation*}
$$

Verification of solutions

$$
v=-\left(c_{2} \mathrm{e}^{t}\right)^{-\frac{1}{R C}}+K
$$

Verified OK.

2.28.2 Maple step by step solution

Let's solve

$$
v^{\prime}-\frac{K-v}{R C}=0
$$

- Highest derivative means the order of the ODE is 1

$$
v^{\prime}
$$

- \quad Separate variables

$$
\frac{v^{\prime}}{K-v}=\frac{1}{R C}
$$

- Integrate both sides with respect to t
$\int \frac{v^{\prime}}{K-v} d t=\int \frac{1}{R C} d t+c_{1}$
- Evaluate integral
$-\ln (K-v)=\frac{t}{R C}+c_{1}$
- \quad Solve for v
$v=-\mathrm{e}^{-\frac{c_{1} R C+t}{R C}}+K$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18
dsolve(diff(v(t),t)=(K-v(t))/(R*C),v(t), singsol=all)

$$
v(t)=K+c_{1} \mathrm{e}^{-\frac{t}{R C}}
$$

\checkmark Solution by Mathematica
Time used: 0.068 (sec). Leaf size: 26
DSolve[v'[t]==(k-v[t])/(r*c),v[t],t,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& v(t) \rightarrow k+c_{1} e^{-\frac{t}{c r}} \\
& v(t) \rightarrow k
\end{aligned}
$$

2.29 problem 22

2.29.1 Solving as linear ode 527
2.29.2 Solving as first order ode lie symmetry lookup ode 529
2.29.3 Solving as exact ode 532
2.29.4 Maple step by step solution 535

Internal problem ID [12928]
Internal file name [OUTPUT/11580_Tuesday_November_07_2023_11_27_18_PM_28378280/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.3 page 47
Problem number: 22.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, 'class A`]]

$$
v^{\prime}+2 v=2 V(t)
$$

2.29.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
v^{\prime}+p(t) v=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =2 \\
q(t) & =2 V(t)
\end{aligned}
$$

Hence the ode is

$$
v^{\prime}+2 v=2 V(t)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 2 d t} \\
& =\mathrm{e}^{2 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu v) & =(\mu)(2 V(t)) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{2 t} v\right) & =\left(\mathrm{e}^{2 t}\right)(2 V(t)) \\
\mathrm{d}\left(\mathrm{e}^{2 t} v\right) & =\left(2 V(t) \mathrm{e}^{2 t}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{2 t} v=\int 2 V(t) \mathrm{e}^{2 t} \mathrm{~d} t \\
& \mathrm{e}^{2 t} v=\int 2 V(t) \mathrm{e}^{2 t} d t+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{2 t}$ results in

$$
v=\mathrm{e}^{-2 t}\left(\int 2 V(t) \mathrm{e}^{2 t} d t\right)+c_{1} \mathrm{e}^{-2 t}
$$

which simplifies to

$$
v=\mathrm{e}^{-2 t}\left(2\left(\int V(t) \mathrm{e}^{2 t} d t\right)+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
v=\mathrm{e}^{-2 t}\left(2\left(\int V(t) \mathrm{e}^{2 t} d t\right)+c_{1}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
v=\mathrm{e}^{-2 t}\left(2\left(\int V(t) \mathrm{e}^{2 t} d t\right)+c_{1}\right)
$$

Verified OK.

2.29.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
v^{\prime} & =2 V(t)-2 v \\
v^{\prime} & =\omega(t, v)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{v}-\xi_{t}\right)-\omega^{2} \xi_{v}-\omega_{t} \xi-\omega_{v} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 115: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, v)=0 \\
& \eta(t, v)=\mathrm{e}^{-2 t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, v) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d v}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial v}\right) S(t, v)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-2 t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{2 t} v
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, v) S_{v}}{R_{t}+\omega(t, v) R_{v}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{v}, S_{t}, S_{v}$ are all partial derivatives and $\omega(t, v)$ is the right hand side of the original ode given by

$$
\omega(t, v)=2 V(t)-2 v
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{v} & =0 \\
S_{t} & =2 \mathrm{e}^{2 t} v \\
S_{v} & =\mathrm{e}^{2 t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=2 V(t) \mathrm{e}^{2 t} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, v in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=2 V(R) \mathrm{e}^{2 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\int 2 V(R) \mathrm{e}^{2 R} d R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, v coordinates. This results in

$$
\mathrm{e}^{2 t} v=\int 2 V(t) \mathrm{e}^{2 t} d t+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{2 t} v=\int 2 V(t) \mathrm{e}^{2 t} d t+c_{1}
$$

Which gives

$$
v=\left(\int 2 V(t) \mathrm{e}^{2 t} d t+c_{1}\right) \mathrm{e}^{-2 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
v=\left(\int 2 V(t) \mathrm{e}^{2 t} d t+c_{1}\right) \mathrm{e}^{-2 t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
v=\left(\int 2 V(t) \mathrm{e}^{2 t} d t+c_{1}\right) \mathrm{e}^{-2 t}
$$

Verified OK.

2.29.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, v) \mathrm{d} t+N(t, v) \mathrm{d} v=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} v & =(2 V(t)-2 v) \mathrm{d} t \\
(-2 V(t)+2 v) \mathrm{d} t+\mathrm{d} v & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, v) & =-2 V(t)+2 v \\
N(t, v) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial v}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial v} & =\frac{\partial}{\partial v}(-2 V(t)+2 v) \\
& =2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial v} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial v}-\frac{\partial N}{\partial t}\right) \\
& =1((2)-(0)) \\
& =2
\end{aligned}
$$

Since A does not depend on v, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int 2 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{2 t} \\
& =\mathrm{e}^{2 t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{2 t}(-2 V(t)+2 v) \\
& =-2(V(t)-v) \mathrm{e}^{2 t}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{2 t}(1) \\
& =\mathrm{e}^{2 t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} v}{\mathrm{~d} t} & =0 \\
\left(-2(V(t)-v) \mathrm{e}^{2 t}\right)+\left(\mathrm{e}^{2 t}\right) \frac{\mathrm{d} v}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, v)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial v}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-2(V(t)-v) \mathrm{e}^{2 t} \mathrm{~d} t \\
\phi & =\int^{t}-2\left(V\left(_a\right)-v\right) \mathrm{e}^{2 _a} d _a+f(v) \tag{3}
\end{align*}
$$

Where $f(v)$ is used for the constant of integration since ϕ is a function of both t and v. Taking derivative of equation (3) w.r.t v gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial v}=\mathrm{e}^{2 t}+f^{\prime}(v) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial v}=\mathrm{e}^{2 t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{2 t}=\mathrm{e}^{2 t}+f^{\prime}(v) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(v)$ gives

$$
f^{\prime}(v)=0
$$

Therefore

$$
f(v)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(v)$ into equation (3) gives ϕ

$$
\phi=\int^{t}-2\left(V\left(_a\right)-v\right) \mathrm{e}^{2 _a} d _a+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\int^{t}-2\left(V\left(_a\right)-v\right) \mathrm{e}^{2 _a} d _a
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{t}-2\left(V\left(_a\right)-v\right) \mathrm{e}^{2 _a} d _a=c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\int^{t}-2\left(V\left(_a\right)-v\right) \mathrm{e}^{2 _a} d _a=c_{1}
$$

Verified OK.

2.29.4 Maple step by step solution

Let's solve
$v^{\prime}+2 v=2 V(t)$

- Highest derivative means the order of the ODE is 1
v^{\prime}
- Isolate the derivative

$$
v^{\prime}=2 V(t)-2 v
$$

- Group terms with v on the lhs of the ODE and the rest on the rhs of the ODE
$v^{\prime}+2 v=2 V(t)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(v^{\prime}+2 v\right)=2 \mu(t) V(t)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) v)$
$\mu(t)\left(v^{\prime}+2 v\right)=\mu^{\prime}(t) v+\mu(t) v^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=2 \mu(t)$
- \quad Solve to find the integrating factor

$$
\mu(t)=\mathrm{e}^{2 t}
$$

- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) v)\right) d t=\int 2 \mu(t) V(t) d t+c_{1}$
- Evaluate the integral on the lhs

$$
\mu(t) v=\int 2 \mu(t) V(t) d t+c_{1}
$$

- \quad Solve for v
$v=\frac{\int 2 \mu(t) V(t) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{2 t}$
$v=\frac{\int 2 V(t) \mathrm{e}^{2 t} d t+c_{1}}{\mathrm{e}^{2 t}}$
- Simplify

$$
v=\mathrm{e}^{-2 t}\left(2\left(\int V(t) \mathrm{e}^{2 t} d t\right)+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 22

```
dsolve(diff(v(t),t)=(V(t)-v(t))/(1/2*1),v(t), singsol=all)
```

$$
v(t)=\left(2\left(\int V(t) \mathrm{e}^{2 t} d t\right)+c_{1}\right) \mathrm{e}^{-2 t}
$$

\checkmark Solution by Mathematica
Time used: 0.082 (sec). Leaf size: 32
DSolve[v' $[\mathrm{t}]==(\mathrm{V}[\mathrm{t}]-\mathrm{v}[\mathrm{t}]) /(1 / 2 * 1), \mathrm{v}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions $->$ True]

$$
v(t) \rightarrow e^{-2 t}\left(\int_{1}^{t} 2 e^{2 K[1]} V(K[1]) d K[1]+c_{1}\right)
$$

3 Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61
3.1 problem 1 539
3.2 problem 2 543
3.3 problem 3 548
3.4 problem 4 553
3.5 problem 5 557
3.6 problem 6 562
3.7 problem 7 567
3.8 problem 8 571
3.9 problem 9 575
3.10 problem 10 579
3.11 problem 15 583
3.12 problem 16 587
3.13 problem 17 591

3.1 problem 1

3.1.1 Existence and uniqueness analysis 539
3.1.2 Solving as quadrature ode . 540
3.1.3 Maple step by step solution . 541

Internal problem ID [12929]
Internal file name [OUTPUT/11581_Tuesday_November_07_2023_11_27_19_PM_97849223/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-2 y=1
$$

With initial conditions

$$
[y(0)=3]
$$

3.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-2 \\
& q(t)=1
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-2 y=1
$$

The domain of $p(t)=-2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

3.1.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
& \int \frac{1}{2 y+1} d y=\int d t \\
& \frac{\ln (2 y+1)}{2}=t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{2 y+1}=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
\sqrt{2 y+1}=c_{2} \mathrm{e}^{t}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=0$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 3=\frac{c_{2}^{2}}{2}-\frac{1}{2} \\
& c_{2}=-\sqrt{7}
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\frac{7 \mathrm{e}^{2 t}}{2}-\frac{1}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{7 \mathrm{e}^{2 t}}{2}-\frac{1}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{7 \mathrm{e}^{2 t}}{2}-\frac{1}{2}
$$

Verified OK.

3.1.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-2 y=1, y(0)=3\right]
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- \quad Separate variables

$$
\frac{y^{\prime}}{2 y+1}=1
$$

- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{2 y+1} d t=\int 1 d t+c_{1}$
- Evaluate integral
$\frac{\ln (2 y+1)}{2}=t+c_{1}$
- \quad Solve for y

$$
y=-\frac{1}{2}+\frac{\mathrm{e}^{2 t+2 c_{1}}}{2}
$$

- Use initial condition $y(0)=3$

$$
3=-\frac{1}{2}+\frac{\mathrm{e}^{2 c_{1}}}{2}
$$

- \quad Solve for c_{1}
$c_{1}=\frac{\ln (7)}{2}$
- Substitute $c_{1}=\frac{\ln (7)}{2}$ into general solution and simplify

$$
y=\frac{7 \mathrm{e}^{2 t}}{2}-\frac{1}{2}
$$

- \quad Solution to the IVP

$$
y=\frac{7 \mathrm{e}^{2 t}}{2}-\frac{1}{2}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 12

```
dsolve([diff(y(t),t)=2*y(t)+1,y(0) = 3],y(t), singsol=all)
```

$$
y(t)=-\frac{1}{2}+\frac{7 \mathrm{e}^{2 t}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 18

```
DSolve[{y'[t]==2*y[t]+1,{y[0]==3}},y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow \frac{1}{2}\left(7 e^{2 t}-1\right)
$$

3.2 problem 2

3.2.1 Existence and uniqueness analysis 543
3.2.2 Solving as riccati ode . [544]

Internal problem ID [12930]
Internal file name [OUTPUT/11582_Tuesday_November_07_2023_11_27_20_PM_36050666/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[[_Riccati, _special]]

$$
y^{\prime}+y^{2}=t
$$

With initial conditions

$$
[y(0)=1]
$$

3.2.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =-y^{2}+t
\end{aligned}
$$

The t domain of $f(t, y)$ when $y=1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-y^{2}+t\right) \\
& =-2 y
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

3.2.2 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =-y^{2}+t
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-y^{2}+t
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(t)+f_{1}(t) y+f_{2}(t) y^{2}
$$

Shows that $f_{0}(t)=t, f_{1}(t)=0$ and $f_{2}(t)=-1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(t)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(t)+f_{2}^{2} f_{0} u(t)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =t
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-u^{\prime \prime}(t)+t u(t)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(t)=c_{1} \operatorname{AiryAi}(t)+c_{2} \operatorname{AiryBi}(t)
$$

The above shows that

$$
u^{\prime}(t)=c_{1} \operatorname{AiryAi}(1, t)+c_{2} \operatorname{AiryBi}(1, t)
$$

Using the above in (1) gives the solution

$$
y=\frac{c_{1} \operatorname{Airy} \operatorname{Ai}(1, t)+c_{2} \operatorname{AiryBi}(1, t)}{c_{1} \operatorname{Airy} \operatorname{Ai}(t)+c_{2} \operatorname{AiryBi}(t)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{c_{3} \operatorname{Airy} \operatorname{Ai}(1, t)+\operatorname{AiryBi}(1, t)}{c_{3} \operatorname{Airy} \operatorname{Ai}(t)+\operatorname{AiryBi}(t)}
$$

Initial conditions are used to solve for c_{3}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{3 \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}}-3 \Gamma\left(\frac{2}{3}\right)^{2} c_{3} 3^{\frac{1}{6}}}{23^{\frac{5}{6}} \pi+2 \pi c_{3} 3^{\frac{1}{3}}} \\
c_{3}=\frac{-23^{\frac{5}{6}} \pi+3 \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}}}{3 \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{1}{6}}+2 \pi 3^{\frac{1}{3}}}
\end{gathered}
$$

Substituting c_{3} found above in the general solution gives
$y=\frac{-2 \operatorname{AiryAi}(1, t) \pi 3^{\frac{5}{6}}+3 \operatorname{AiryAi}(1, t) \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}}+3 \operatorname{AiryBi}(1, t) \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{1}{6}}+2 \operatorname{AiryBi}(1, t) \pi 3^{\frac{1}{3}}}{-2 \operatorname{AiryAi}(t) \pi 3^{\frac{5}{6}}+3 \operatorname{AiryAi}(t) \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}}+3 \operatorname{AiryBi}(t) \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{1}{6}}+2 \operatorname{AiryBi}(t) \pi 3^{\frac{1}{3}}}$

Summary

The solution(s) found are the following

$$
=\frac{-2 \operatorname{AiryAi}(1, t) \pi 3^{\frac{5}{6}}+3 \operatorname{AiryAi}(1, t) \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}}+3 \operatorname{AiryBi}(1, t) \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{1}{6}}+2 \operatorname{AiryBi}(1, t) \pi 3^{\frac{1}{3}}}{-2 \operatorname{Airy} \operatorname{Ai}(t) \pi 3^{\frac{5}{6}}+3 \operatorname{AiryAi}(t) \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}}+3 \operatorname{AiryBi}(t) \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{1}{6}}+2 \operatorname{AiryBi}(t) \pi 3^{\frac{1}{3}}}
$$

Verification of solutions

$$
=\frac{-2 \operatorname{AiryAi}(1, t) \pi 3^{\frac{5}{6}}+3 \operatorname{AiryAi}(1, t) \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}}+3 \operatorname{AiryBi}(1, t) \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{1}{6}}+2 \operatorname{AiryBi}(1, t) \pi 3^{\frac{1}{3}}}{-2 \operatorname{Airy} \operatorname{Ai}(t) \pi 3^{\frac{5}{6}}+3 \operatorname{AiryAi}(t) \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}}+3 \operatorname{AiryBi}(t) \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{1}{6}}+2 \operatorname{AiryBi}(t) \pi 3^{\frac{1}{3}}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful`
```

\checkmark Solution by Maple
Time used: 0.094 (sec). Leaf size: 89

```
dsolve([diff(y(t),t)=t-y(t)~2,y(0) = 1],y(t), singsol=all)
```

$y(t)$
$=\frac{2 \operatorname{AiryAi}(1, t) \pi 3^{\frac{5}{6}}-3 \operatorname{AiryAi}(1, t) \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}}-3 \operatorname{AiryBi}(1, t) 3^{\frac{1}{6}} \Gamma\left(\frac{2}{3}\right)^{2}-2 \operatorname{AiryBi}(1, t) \pi 3^{\frac{1}{3}}}{2 \operatorname{Airy} \operatorname{Ai}(t) \pi 3^{\frac{5}{6}}-3 \operatorname{AiryAi}(t) \Gamma\left(\frac{2}{3}\right)^{2} 3^{\frac{2}{3}}-3 \operatorname{AiryBi}(t) 3^{\frac{1}{6}} \Gamma\left(\frac{2}{3}\right)^{2}-2 \operatorname{AiryBi}(t) \pi 3^{\frac{1}{3}}}$
\checkmark Solution by Mathematica
Time used: 11.27 (sec). Leaf size: 163

```
DSolve[{y'[t]==t-y[t]~2,{y[0]==1}},y[t],t,IncludeSingularSolutions -> True]
y(t)
->\frac{2it\mp@subsup{t}{}{3/2}\operatorname{Gamma (\frac{1}{3})\operatorname{BesselJ}(-\frac{2}{3},\frac{2}{3}i\mp@subsup{t}{}{3/2})+\sqrt{3}{-3}\operatorname{Gamma}(\frac{2}{3})(i\mp@subsup{t}{}{3/2}\operatorname{BesselJ}(-\frac{4}{3},\frac{2}{3}i\mp@subsup{t}{}{3/2})-i\mp@subsup{t}{}{3/2}\operatorname{BesselJ}(\frac{2}{3}}}{2t(\sqrt{3}{-3}\operatorname{Gamma}(\frac{2}{3})\operatorname{BesselJ}(-\frac{1}{3},\frac{2}{3}i\mp@subsup{t}{}{3/2})+\operatorname{Gamma}(\frac{1}{3})\operatorname{BesselJ}(\frac{1}{3},\frac{2}{3}it3/}
```


3.3 problem 3

3.3.1 Existence and uniqueness analysis 548
3.3.2 Solving as riccati ode . 549

Internal problem ID [12931]
Internal file name [OUTPUT/11583_Tuesday_November_07_2023_11_27_21_PM_53982265/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[[_Riccati, _special]]

$$
y^{\prime}-y^{2}=-4 t
$$

With initial conditions

$$
\left[y(0)=\frac{1}{2}\right]
$$

3.3.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =y^{2}-4 t
\end{aligned}
$$

The t domain of $f(t, y)$ when $y=\frac{1}{2}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=\frac{1}{2}$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2}-4 t\right) \\
& =2 y
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=\frac{1}{2}$ is inside this domain. Therefore solution exists and is unique.

3.3.2 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =y^{2}-4 t
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}-4 t
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(t)+f_{1}(t) y+f_{2}(t) y^{2}
$$

Shows that $f_{0}(t)=-4 t, f_{1}(t)=0$ and $f_{2}(t)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(t)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(t)+f_{2}^{2} f_{0} u(t)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-4 t
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(t)-4 t u(t)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(t)=c_{1} \operatorname{Airy} \operatorname{Ai}\left(2^{\frac{2}{3}} t\right)+c_{2} \operatorname{AiryBi}\left(2^{\frac{2}{3}} t\right)
$$

The above shows that

$$
u^{\prime}(t)=2^{\frac{2}{3}}\left(\operatorname{AiryBi}\left(1,2^{\frac{2}{3}} t\right) c_{2}+\operatorname{AiryAi}\left(1,2^{\frac{2}{3}} t\right) c_{1}\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{2^{\frac{2}{3}}\left(\operatorname{AiryBi}\left(1,2^{\frac{2}{3}} t\right) c_{2}+\operatorname{AiryAi}\left(1,2^{\frac{2}{3}} t\right) c_{1}\right)}{c_{1} \operatorname{AiryAi}\left(2^{\frac{2}{3}} t\right)+c_{2} \operatorname{AiryBi}\left(2^{\frac{2}{3}} t\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{2^{\frac{2}{3}}\left(\operatorname{AiryBi}\left(1,2^{\frac{2}{3}} t\right)+\operatorname{AiryAi}\left(1,2^{\frac{2}{3}} t\right) c_{3}\right)}{c_{3} \operatorname{AiryAi}\left(2^{\frac{2}{3}} t\right)+\operatorname{AiryBi}\left(2^{\frac{2}{3}} t\right)}
$$

Initial conditions are used to solve for c_{3}. Substituting $t=0$ and $y=\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{1}{2}=\frac{-3 \Gamma\left(\frac{2}{3}\right)^{2} 2^{\frac{2}{3}} 3^{\frac{2}{3}}+3 \Gamma\left(\frac{2}{3}\right)^{2} 2^{\frac{2}{3}} c_{3} 3^{\frac{1}{6}}}{23^{\frac{5}{6}} \pi+2 \pi c_{3} 3^{\frac{1}{3}}} \\
c_{3}=-\frac{3 \Gamma\left(\frac{2}{3}\right)^{2} 2^{\frac{2}{3}} 3^{\frac{2}{3}}+3^{\frac{5}{6}} \pi}{-33^{\frac{1}{6}} 2^{\frac{2}{3}} \Gamma\left(\frac{2}{3}\right)^{2}+\pi 3^{\frac{1}{3}}}
\end{gathered}
$$

Substituting c_{3} found above in the general solution gives
$y=\frac{-2^{\frac{2}{3}} 3^{\frac{5}{6}} \operatorname{AiryAi}\left(1,2^{\frac{2}{3}} t\right) \pi-32^{\frac{2}{3}} \operatorname{AiryAi}\left(1,2^{\frac{2}{3}} t\right) 6^{\frac{2}{3}} \Gamma\left(\frac{2}{3}\right)^{2}+2^{\frac{2}{3}} \operatorname{AiryBi}\left(1,2^{\frac{2}{3}} t\right) 3^{\frac{1}{3}} \pi-62^{\frac{1}{3}} \operatorname{AiryBi}(1,}{\operatorname{AiryAi}\left(2^{\frac{2}{3}} t\right) 3^{\frac{5}{6}} \pi+3 \operatorname{AiryBi}\left(2^{\frac{2}{3}} t\right) 3^{\frac{1}{6}} 2^{\frac{2}{3}} \Gamma\left(\frac{2}{3}\right)^{2}+3 \operatorname{AiryAi}\left(2^{\frac{2}{3}} t\right) 6^{\frac{2}{3}} \Gamma\left(\frac{2}{3}\right)^{2}-\operatorname{AiryBi}\left(2^{\frac{2}{3}} t\right)}$

Summary

The solution(s) found are the following
y
(1)
$=\frac{-2^{\frac{2}{3}} 3^{\frac{5}{6}} \operatorname{AiryAi}\left(1,2^{\frac{2}{3}} t\right) \pi-32^{\frac{2}{3}} \operatorname{AiryAi}\left(1,2^{\frac{2}{3}} t\right) 6^{\frac{2}{3}} \Gamma\left(\frac{2}{3}\right)^{2}+2^{\frac{2}{3}} \operatorname{AiryBi}\left(1,2^{\frac{2}{3}} t\right) 3^{\frac{1}{3}} \pi-62^{\frac{1}{3}} \operatorname{AiryBi}\left(1,2^{\frac{2}{3}}\right.}{\operatorname{AiryAi}\left(2^{\frac{2}{3}} t\right) 3^{\frac{5}{6}} \pi+3 \operatorname{AiryBi}\left(2^{\frac{2}{3}} t\right) 3^{\frac{1}{6}} 2^{\frac{2}{3}} \Gamma\left(\frac{2}{3}\right)^{2}+3 \operatorname{AiryAi}\left(2^{\frac{2}{3}} t\right) 6^{\frac{2}{3}} \Gamma\left(\frac{2}{3}\right)^{2}-\operatorname{AiryBi}\left(2^{\frac{2}{3}} t\right) 3^{\frac{1}{3}}}$

Verification of solutions

$$
=\frac{-2^{\frac{2}{3}} 3^{\frac{5}{6}} \operatorname{AiryAi}\left(1,2^{\frac{2}{3}} t\right) \pi-32^{\frac{2}{3}} \operatorname{AiryAi}\left(1,2^{\frac{2}{3}} t\right) 6^{\frac{2}{3}} \Gamma\left(\frac{2}{3}\right)^{2}+2^{\frac{2}{3}} \operatorname{AiryBi}\left(1,2^{\frac{2}{3}} t\right) 3^{\frac{1}{3}} \pi-62^{\frac{1}{3}} \operatorname{AiryBi}\left(1,2^{\frac{2}{3}}\right.}{\operatorname{AiryAi}\left(2^{\frac{2}{3}} t\right) 3^{\frac{5}{6}} \pi+3 \operatorname{AiryBi}\left(2^{\frac{2}{3}} t\right) 3^{\frac{1}{6}} 2^{\frac{2}{3}} \Gamma\left(\frac{2}{3}\right)^{2}+3 \operatorname{AiryAi}\left(2^{\frac{2}{3}} t\right) 6^{\frac{2}{3}} \Gamma\left(\frac{2}{3}\right)^{2}-\operatorname{AiryBi}\left(2^{\frac{2}{3}} t\right) 3^{\frac{1}{3}}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati Special
<- Riccati Special successful`
```

\checkmark Solution by Maple
Time used: 0.109 (sec). Leaf size: 115

```
dsolve([diff(y(t),t)=y(t)~ 2-4*t,y(0) = 1/2],y(t), singsol=all)
```

$$
\begin{aligned}
& y(t) \\
& =\frac{2^{\frac{2}{3}}\left(\left(32^{\frac{2}{3}} 3^{\frac{1}{6}} \Gamma\left(\frac{2}{3}\right)^{2}-\pi 3^{\frac{1}{3}}\right) \operatorname{AiryBi}\left(1,2^{\frac{2}{3}} t\right)+\operatorname{AiryAi}\left(1,2^{\frac{2}{3}} t\right)\left(3 \Gamma\left(\frac{2}{3}\right)^{2} 6^{\frac{2}{3}}+3^{\frac{5}{6}} \pi\right)\right)}{\left(-3 \Gamma\left(\frac{2}{3}\right)^{2} 6^{\frac{2}{3}}-3^{\frac{5}{6}} \pi\right) \operatorname{AiryAi}\left(2^{\frac{2}{3}} t\right)+\operatorname{AiryBi}\left(2^{\frac{2}{3}} t\right)\left(-32^{\frac{2}{3}} 3^{\frac{1}{6}} \Gamma\left(\frac{2}{3}\right)^{2}+\pi 3^{\frac{1}{3}}\right)}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 10.151 (sec). Leaf size: 193

```
DSolve[{y'[t]==y[t]^2-4*t,{y[0]==1/2}},y[t],t,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(t) \rightarrow \\
& \quad-\frac{4 i t^{3 / 2} \text { Gamma }\left(\frac{1}{3}\right) \text { BesselJ }\left(-\frac{2}{3}, \frac{4}{3} i t^{3 / 2}\right)+2^{2 / 3} \sqrt[3]{3}(\sqrt{3}-i) \text { Gamma }\left(\frac{2}{3}\right)\left(2 t^{3 / 2} \operatorname{BesselJ}\left(-\frac{4}{3}, \frac{4}{3} i t^{3 / 2}\right)-2\right.}{2 t\left(2^{2 / 3} \sqrt[3]{3}(-1-i \sqrt{3}) \text { Gamma }\left(\frac{2}{3}\right) \operatorname{BesselJ}\left(-\frac{1}{3}, \frac{4}{3} i t^{3 / 2}\right)+\operatorname{Gamma}\left(\frac{1}{3}\right)\right. \text { I }}
\end{aligned}
$$

3.4 problem 4

3.4.1 Existence and uniqueness analysis 553
3.4.2 Solving as quadrature ode . 554
3.4.3 Maple step by step solution . 555

Internal problem ID [12932]
Internal file name [OUTPUT/11584_Tuesday_November_07_2023_11_27_22_PM_23130949/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
y^{\prime}-\sin (y)=0
$$

With initial conditions

$$
[y(0)=1]
$$

3.4.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =\sin (y)
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}(\sin (y)) \\
& =\cos (y)
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

3.4.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sin (y)} d y & =\int d t \\
\ln (\csc (y)-\cot (y)) & =t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\csc (y)-\cot (y)=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
\csc (y)-\cot (y)=c_{2} \mathrm{e}^{t}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{-\cot (1) \sin (1)+1}{\sin (1)}=c_{2} \\
& c_{2}=-\cot (1)+\csc (1)
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
\csc (y)-\cot (y)=\mathrm{e}^{t} \csc (1)-\mathrm{e}^{t} \cot (1)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\csc (y)-\cot (y)=(-\cot (1)+\csc (1)) \mathrm{e}^{t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\csc (y)-\cot (y)=(-\cot (1)+\csc (1)) \mathrm{e}^{t}
$$

Verified OK.

3.4.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\sin (y)=0, y(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{\sin (y)}=1
$$

- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{\sin (y)} d t=\int 1 d t+c_{1}$
- Evaluate integral
$\ln (\csc (y)-\cot (y))=t+c_{1}$
- \quad Solve for y
$y=\arctan \left(\frac{2 \mathrm{e}^{t+c_{1}}}{\left(\mathrm{e}^{t+c_{1}}\right)^{2}+1},-\frac{\left(\mathrm{e}^{t+c_{1}}\right)^{2}-1}{\left(\mathrm{e}^{t+c_{1}}\right)^{2}+1}\right)$
- Use initial condition $y(0)=1$
$1=\arctan \left(\frac{2 \mathrm{e}^{c_{1}}}{\left(\mathrm{e}^{c_{1}}\right)^{2}+1},-\frac{\left(\mathrm{e}^{c_{1}}\right)^{2}-1}{\left(\mathrm{e}^{c_{1}}\right)^{2}+1}\right)$
- Solution does not satisfy initial condition

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 1.594 (sec). Leaf size: 63
dsolve([diff $(y(t), t)=\sin (y(t)), y(0)=1], y(t)$, singsol=all)

$$
y(t)=\arctan \left(-\frac{2 \mathrm{e}^{t} \sin (1)}{(-1+\cos (1)) \mathrm{e}^{2 t}-\cos (1)-1}, \frac{(1-\cos (1)) \mathrm{e}^{2 t}-\cos (1)-1}{(-1+\cos (1)) \mathrm{e}^{2 t}-\cos (1)-1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 16
DSolve[\{y' $[t]==\operatorname{Sin}[y[t]],\{y[0]==1\}\}, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \arccos (-\tanh (t-\operatorname{arctanh}(\cos (1))))
$$

3.5 problem 5

3.5.1 Existence and uniqueness analysis 557
3.5.2 Solving as quadrature ode . 558
3.5.3 Maple step by step solution . 559

Internal problem ID [12933]
Internal file name [OUTPUT/11585_Tuesday_November_07_2023_11_27_29_PM_60020797/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
w^{\prime}-(3-w)(w+1)=0
$$

With initial conditions

$$
[w(0)=4]
$$

3.5.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
w^{\prime} & =f(t, w) \\
& =-(1+w)(w-3)
\end{aligned}
$$

The w domain of $f(t, w)$ when $t=0$ is

$$
\{-\infty<w<\infty\}
$$

And the point $w_{0}=4$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial w} & =\frac{\partial}{\partial w}(-(1+w)(w-3)) \\
& =2-2 w
\end{aligned}
$$

The w domain of $\frac{\partial f}{\partial w}$ when $t=0$ is

$$
\{-\infty<w<\infty\}
$$

And the point $w_{0}=4$ is inside this domain. Therefore solution exists and is unique.

3.5.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{(1+w)(w-3)} d w & =\int d t \\
-\frac{\ln (w-3)}{4}+\frac{\ln (1+w)}{4} & =t+c_{1}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(-\frac{1}{4}\right)(\ln (w-3)-\ln (1+w)) & =t+c_{1} \\
\ln (w-3)-\ln (1+w) & =(-4)\left(t+c_{1}\right) \\
& =-4 t-4 c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (w-3)-\ln (1+w)}=-4 c_{1} \mathrm{e}^{-4 t}
$$

Which simplifies to

$$
\frac{w-3}{1+w}=c_{2} \mathrm{e}^{-4 t}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=0$ and $w=4$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
4=\frac{-c_{2}-3}{-1+c_{2}} \\
c_{2}=\frac{1}{5}
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
w=\frac{-\mathrm{e}^{-4 t}-15}{\mathrm{e}^{-4 t}-5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
w=\frac{-\mathrm{e}^{-4 t}-15}{\mathrm{e}^{-4 t}-5} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
w=\frac{-\mathrm{e}^{-4 t}-15}{\mathrm{e}^{-4 t}-5}
$$

Verified OK.

3.5.3 Maple step by step solution

Let's solve
$\left[w^{\prime}-(3-w)(w+1)=0, w(0)=4\right]$

- Highest derivative means the order of the ODE is 1
w^{\prime}
- Separate variables
$\frac{w^{\prime}}{(3-w)(w+1)}=1$
- Integrate both sides with respect to t

$$
\int \frac{w^{\prime}}{(3-w)(w+1)} d t=\int 1 d t+c_{1}
$$

- Evaluate integral
$-\frac{\ln (w-3)}{4}+\frac{\ln (w+1)}{4}=t+c_{1}$
- \quad Solve for w
$w=\frac{3 \mathrm{e}^{4 t+4 c_{1}}+1}{\mathrm{e}^{4 t+4 c_{1}}-1}$
- Use initial condition $w(0)=4$
$4=\frac{3 e^{4 c_{1}}+1}{\mathrm{e}^{4 c_{1}}-1}$
- \quad Solve for c_{1}
$c_{1}=\frac{\ln (5)}{4}$
- Substitute $c_{1}=\frac{\ln (5)}{4}$ into general solution and simplify $w=\frac{15 e^{4 t}+1}{5 \mathrm{e}^{4 t}-1}$
- \quad Solution to the IVP
$w=\frac{15 \mathrm{e}^{4 t}+1}{5 \mathrm{e}^{4 t}-1}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.11 (sec). Leaf size: 23
dsolve([diff(w(t),t)=(3-w(t))*(w(t)+1),w(0)=4],w(t), singsol=all)

$$
w(t)=\frac{15 \mathrm{e}^{4 t}+1}{-1+5 \mathrm{e}^{4 t}}
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 26
DSolve[\{w' $[t]==(3-w[t]) *(w[t]+1),\{w[0]==4\}\}, w[t], t$, IncludeSingularSolutions \rightarrow True]

$$
w(t) \rightarrow \frac{15 e^{4 t}+1}{5 e^{4 t}-1}
$$

3.6 problem 6

3.6.1 Existence and uniqueness analysis 562
3.6.2 Solving as quadrature ode . 563
3.6.3 Maple step by step solution . 564

Internal problem ID [12934]
Internal file name [OUTPUT/11586_Tuesday_November_07_2023_11_27_30_PM_64553380/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
w^{\prime}-(3-w)(w+1)=0
$$

With initial conditions

$$
[w(0)=0]
$$

3.6.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
w^{\prime} & =f(t, w) \\
& =-(1+w)(w-3)
\end{aligned}
$$

The w domain of $f(t, w)$ when $t=0$ is

$$
\{-\infty<w<\infty\}
$$

And the point $w_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial w} & =\frac{\partial}{\partial w}(-(1+w)(w-3)) \\
& =2-2 w
\end{aligned}
$$

The w domain of $\frac{\partial f}{\partial w}$ when $t=0$ is

$$
\{-\infty<w<\infty\}
$$

And the point $w_{0}=0$ is inside this domain. Therefore solution exists and is unique.

3.6.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{(1+w)(w-3)} d w & =\int d t \\
-\frac{\ln (w-3)}{4}+\frac{\ln (1+w)}{4} & =t+c_{1}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(-\frac{1}{4}\right)(\ln (w-3)-\ln (1+w)) & =t+c_{1} \\
\ln (w-3)-\ln (1+w) & =(-4)\left(t+c_{1}\right) \\
& =-4 t-4 c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (w-3)-\ln (1+w)}=-4 c_{1} \mathrm{e}^{-4 t}
$$

Which simplifies to

$$
\frac{w-3}{1+w}=c_{2} \mathrm{e}^{-4 t}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=0$ and $w=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{-c_{2}-3}{-1+c_{2}} \\
c_{2}=-3
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
w=\frac{-3 \mathrm{e}^{-4 t}+3}{3 \mathrm{e}^{-4 t}+1}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
w=\frac{-3 \mathrm{e}^{-4 t}+3}{3 \mathrm{e}^{-4 t}+1} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
w=\frac{-3 \mathrm{e}^{-4 t}+3}{3 \mathrm{e}^{-4 t}+1}
$$

Verified OK.

3.6.3 Maple step by step solution

Let's solve

$$
\left[w^{\prime}-(3-w)(w+1)=0, w(0)=0\right]
$$

- Highest derivative means the order of the ODE is 1
w^{\prime}
- \quad Separate variables
$\frac{w^{\prime}}{(3-w)(w+1)}=1$
- Integrate both sides with respect to t

$$
\int \frac{w^{\prime}}{(3-w)(w+1)} d t=\int 1 d t+c_{1}
$$

- Evaluate integral
$-\frac{\ln (w-3)}{4}+\frac{\ln (w+1)}{4}=t+c_{1}$
- \quad Solve for w
$w=\frac{3 \mathrm{e}^{4 t+4 c_{1}+1}}{\mathrm{e}^{4 t+4 c_{1}-1}}$
- Use initial condition $w(0)=0$

$$
0=\frac{3 \mathrm{e}^{4 c_{1}+1}}{\mathrm{e}^{4 c_{1}}-1}
$$

- \quad Solve for c_{1}

$$
c_{1}=-\frac{\ln (3)}{4}+\frac{\mathrm{I} \pi}{4}
$$

- Substitute $c_{1}=-\frac{\ln (3)}{4}+\frac{\mathrm{I} \pi}{4}$ into general solution and simplify

$$
w=\frac{3 \mathrm{e}^{4 t}-3}{\mathrm{e}^{4 t}+3}
$$

- Solution to the IVP

$$
w=\frac{3 \mathrm{e}^{4 t}-3}{\mathrm{e}^{4 t}+3}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.094 (sec). Leaf size: 21
dsolve([diff(w(t), $t)=(3-w(t)) *(w(t)+1), w(0)=0], w(t)$, singsol=all)

$$
w(t)=\frac{3 \mathrm{e}^{4 t}-3}{3+\mathrm{e}^{4 t}}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 23
DSolve $\left[\left\{w^{\prime}[t]==(3-w[t]) *(w[t]+1),\{w[0]==0\}\right\}, w[t], t\right.$, IncludeSingularSolutions \rightarrow True]

$$
w(t) \rightarrow \frac{3\left(e^{4 t}-1\right)}{e^{4 t}+3}
$$

3.7 problem 7

3.7.1 Existence and uniqueness analysis 567
3.7.2 Solving as quadrature ode . 568
3.7.3 Maple step by step solution . 569

Internal problem ID [12935]
Internal file name [OUTPUT/11587_Tuesday_November_07_2023_11_27_31_PM_81315994/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-\mathrm{e}^{\frac{2}{y}}=0
$$

With initial conditions

$$
[y(0)=2]
$$

3.7.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =\mathrm{e}^{\frac{2}{y}}
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\mathrm{e}^{\frac{2}{y}}\right) \\
& =-\frac{2 \mathrm{e}^{\frac{2}{y}}}{y^{2}}
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=2$ is inside this domain. Therefore solution exists and is unique.

3.7.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \mathrm{e}^{-\frac{2}{y}} d y & =\int d t \\
\int^{y} \mathrm{e}^{-\frac{2}{-a}} d _a & =t+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\int^{2} \mathrm{e}^{-\frac{2}{-a}} d _a=c_{1} \\
c_{1}=\int^{2} \mathrm{e}^{-\frac{2}{-a}} d _a
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\int^{y} \mathrm{e}^{-\frac{2}{-a}} d _a=t+\int^{2} \mathrm{e}^{-\frac{2}{-a}} d _a
$$

Solving for y from the above gives

$$
y=\operatorname{RootOf}\left(-\left(\int^{-Z} \mathrm{e}^{-\frac{2}{-a}} d _a\right)+t+\int^{2} \mathrm{e}^{-\frac{2}{-a}} d _a\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\operatorname{RootOf}\left(-\left(\int^{-Z} \mathrm{e}^{-\frac{2}{-a}} d _a\right)+t+\int^{2} \mathrm{e}^{-\frac{2}{-a}} d _a\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\operatorname{RootOf}\left(-\left(\int^{-Z} \mathrm{e}^{-\frac{2}{-a}} d _a\right)+t+\int^{2} \mathrm{e}^{-\frac{2}{-a}} d _a\right)
$$

Verified OK.

3.7.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\mathrm{e}^{\frac{2}{y}}=0, y(0)=2\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{e^{\frac{2}{y}}}=1
$$

- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{\mathrm{e}^{\frac{2}{y}}} d t=\int 1 d t+c_{1}$
- Evaluate integral
$\frac{y}{\mathrm{e}^{\frac{2}{y}}}-2 \operatorname{Ei}_{1}\left(\frac{2}{y}\right)=t+c_{1}$
- Use initial condition $y(0)=2$
$\frac{2}{\mathrm{e}}-2 \mathrm{Ei}_{1}(1)=c_{1}$
- \quad Solve for c_{1}
$c_{1}=-\frac{2(\mathrm{eEi}(1)-1)}{\mathrm{e}}$
- Substitute $c_{1}=-\frac{2\left(\mathrm{eEi}_{1}(1)-1\right)}{\mathrm{e}}$ into general solution and simplify $y \mathrm{e}^{-\frac{2}{y}}-2 \mathrm{Ei}_{1}\left(\frac{2}{y}\right)=-2 \mathrm{Ei}_{1}(1)+2 \mathrm{e}^{-1}+t$
- \quad Solution to the IVP
$y \mathrm{e}^{-\frac{2}{y}}-2 \mathrm{Ei}_{1}\left(\frac{2}{y}\right)=-2 \mathrm{Ei}_{1}(1)+2 \mathrm{e}^{-1}+t$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.281 (sec). Leaf size: 37

```
dsolve([diff(y(t),t)=exp(2/y(t)),y(0) = 2],y(t), singsol=all)
```

$y(t)=$
$\left.\left.\frac{2}{\text { RootOf (2_Z expIntegral }}{ }_{1}(1)-2 _Z \exp \operatorname{Integral}_{1}\left(-_Z\right)-2 _Z \mathrm{e}^{-1}-t _Z-2 \mathrm{e}^{Z}\right)\right)$
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

```
DSolve[{y'[t]==Exp[2/y[t]],{y[0]==2}},y[t],t,IncludeSingularSolutions -> True]
```

\{\}

3.8 problem 8

3.8.1 Existence and uniqueness analysis 571
3.8.2 Solving as quadrature ode . 572
3.8.3 Maple step by step solution . 573

Internal problem ID [12936]
Internal file name [OUTPUT/11588_Tuesday_November_07_2023_11_27_32_PM_34093401/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-\mathrm{e}^{\frac{2}{y}}=0
$$

With initial conditions

$$
[y(1)=2]
$$

3.8.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =\mathrm{e}^{\frac{2}{y}}
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=1$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\mathrm{e}^{\frac{2}{y}}\right) \\
& =-\frac{2 \mathrm{e}^{\frac{2}{y}}}{y^{2}}
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=1$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=2$ is inside this domain. Therefore solution exists and is unique.

3.8.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \mathrm{e}^{-\frac{2}{y}} d y & =\int d t \\
\int^{y} \mathrm{e}^{-\frac{2}{-a}} d _a & =t+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\int^{2} \mathrm{e}^{-\frac{2}{-a}} d _a=1+c_{1} \\
c_{1}=-1+\int^{2} \mathrm{e}^{-\frac{2}{-a}} d _a
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\int^{y} \mathrm{e}^{-\frac{2}{-a}} d _a=t-1+\int^{2} \mathrm{e}^{-\frac{2}{-a}} d _a
$$

Solving for y from the above gives

$$
y=\operatorname{RootOf}\left(-\left(\int^{Z} \mathrm{e}^{-\frac{2}{-a}} d _a\right)+t-1+\int^{2} \mathrm{e}^{-\frac{2}{-a}} d _a\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\operatorname{RootOf}\left(-\left(\int^{-Z} \mathrm{e}^{-\frac{2}{-a}} d _a\right)+t-1+\int^{2} \mathrm{e}^{-\frac{2}{-a}} d _a\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\operatorname{RootOf}\left(-\left(\int^{-Z} \mathrm{e}^{-\frac{2}{-a}} d _a\right)+t-1+\int^{2} \mathrm{e}^{-\frac{2}{-a}} d _a\right)
$$

Verified OK.

3.8.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-\mathrm{e}^{\frac{2}{y}}=0, y(1)=2\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{e^{\frac{2}{y}}}=1
$$

- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{\mathrm{e}^{\frac{2}{y}}} d t=\int 1 d t+c_{1}$
- Evaluate integral
$\frac{y}{\mathrm{e}^{\frac{2}{y}}}-2 \mathrm{Ei}_{1}\left(\frac{2}{y}\right)=t+c_{1}$
- Use initial condition $y(1)=2$
$\frac{2}{\mathrm{e}}-2 \mathrm{Ei}_{1}(1)=1+c_{1}$
- \quad Solve for c_{1}
$c_{1}=-\frac{2 \mathrm{e} \mathrm{Ei}_{1}(1)+\mathrm{e}-2}{\mathrm{e}}$
- Substitute $c_{1}=-\frac{2 \mathrm{eEi}(1)+\mathrm{e}-2}{\mathrm{e}}$ into general solution and simplify $y \mathrm{e}^{-\frac{2}{y}}-2 \operatorname{Ei}_{1}\left(\frac{2}{y}\right)=-2 \operatorname{Ei}_{1}(1)-1+2 \mathrm{e}^{-1}+t$
- \quad Solution to the IVP
$y \mathrm{e}^{-\frac{2}{y}}-2 \mathrm{Ei}_{1}\left(\frac{2}{y}\right)=-2 \operatorname{Ei}_{1}(1)-1+2 \mathrm{e}^{-1}+t$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.172 (sec). Leaf size: 38

```
dsolve([diff(y(t),t)=exp(2/y(t)),y(1) = 2],y(t), singsol=all)
```

$y(t)=$

$$
2
$$

RootOf (2_Z expIntegral $\left.1(1)-2 _Z \exp \operatorname{Integral}_{1}\left(-_Z\right)-2 _Z \mathrm{e}^{-1}-t _Z-2 \mathrm{e}^{Z}+_Z\right)$
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

```
DSolve[{y'[t]==Exp[2/y[t]],{y[1]==2}},y[t],t,IncludeSingularSolutions -> True]
```

\{\}

3.9 problem 9

3.9.1 Existence and uniqueness analysis 575
3.9.2 Solving as quadrature ode . 576
3.9.3 Maple step by step solution . 577

Internal problem ID [12937]
Internal file name [OUTPUT/11589_Tuesday_November_07_2023_11_27_33_PM_74052029/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61
Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
y^{\prime}-y^{2}+y^{3}=0
$$

With initial conditions

$$
\left[y(0)=\frac{1}{5}\right]
$$

3.9.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =-y^{3}+y^{2}
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=\frac{1}{5}$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-y^{3}+y^{2}\right) \\
& =-3 y^{2}+2 y
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=\frac{1}{5}$ is inside this domain. Therefore solution exists and is unique.

3.9.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-y^{3}+y^{2}} d y & =\int d t \\
\int^{y} \frac{1}{-_a^{3}+_a^{2}} d _a & =t+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=\frac{1}{5}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\int^{\frac{1}{5}}-\frac{1}{-a^{2}\left(_a-1\right)} d _a=c_{1} \\
c_{1}=-\left(\int^{\frac{1}{5}} \frac{1}{-a^{2}\left(_a-1\right)} d _a\right)
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\int^{y} \frac{1}{-_a^{3}+_a^{2}} d _a=t-\left(\int^{\frac{1}{5}} \frac{1}{-a^{2}\left(_a-1\right)} d _a\right)
$$

Solving for y from the above gives

$$
y=\operatorname{RootOf}\left(\int^{-Z} \frac{1}{-a^{2}\left(_a-1\right)} d _a+t-\left(\int^{\frac{1}{5}} \frac{1}{-a^{2}\left(_a-1\right)} d _a\right)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\operatorname{RootOf}\left(\int^{-Z} \frac{1}{-a^{2}\left(_a-1\right)} d _a+t-\left(\int^{\frac{1}{5}} \frac{1}{-a^{2}\left(_a-1\right)} d _a\right)\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\operatorname{RootOf}\left(\int^{-Z} \frac{1}{-^{2}\left(_a-1\right)} d _a+t-\left(\int^{\frac{1}{5}} \frac{1}{-^{2}\left(_a-1\right)} d _a\right)\right)
$$

Verified OK.

3.9.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-y^{2}+y^{3}=0, y(0)=\frac{1}{5}\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{y^{2}-y^{3}}=1
$$

- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y^{2}-y^{3}} d t=\int 1 d t+c_{1}$
- Evaluate integral
$-\ln (y-1)-\frac{1}{y}+\ln (y)=t+c_{1}$
- Use initial condition $y(0)=\frac{1}{5}$
$-\ln \left(\frac{4}{5}\right)-\mathrm{I} \pi-5-\ln (5)=c_{1}$
- \quad Solve for c_{1}
$c_{1}=-\ln \left(\frac{4}{5}\right)-\mathrm{I} \pi-5-\ln (5)$
- Substitute $c_{1}=-\ln \left(\frac{4}{5}\right)-\mathrm{I} \pi-5-\ln (5)$ into general solution and simplify
$-\ln (y-1)-\frac{1}{y}+\ln (y)=t-2 \ln (2)-\mathrm{I} \pi-5$
- \quad Solution to the IVP
$-\ln (y-1)-\frac{1}{y}+\ln (y)=t-2 \ln (2)-\mathrm{I} \pi-5$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 1.594 (sec). Leaf size: 21
dsolve([diff $(y(t), t)=y(t) \wedge 2-y(t) \wedge 3, y(0)=1 / 5], y(t)$, singsol=all)

$$
y(t)=\frac{1}{\text { LambertW }\left(4 \mathrm{e}^{4-t}\right)+1}
$$

\checkmark Solution by Mathematica
Time used: 0.495 (sec). Leaf size: 31
DSolve[\{y' $[\mathrm{t}]==\mathrm{y}[\mathrm{t}] \sim 2-\mathrm{y}[\mathrm{t}] \wedge 3,\{\mathrm{y}[0]==2 / 10\}\}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \text { InverseFunction }\left[\frac{1}{\# 1}+\log (1-\# 1)-\log (\# 1) \&\right][-t+5+\log (4)]
$$

3.10 problem 10

3.10.1 Existence and uniqueness analysis 579
3.10.2 Solving as abelFirstKind ode 580

Internal problem ID [12938]
Internal file name [OUTPUT/11590_Tuesday_November_07_2023_11_27_34_PM_29147239/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "abelFirstKind"
Maple gives the following as the ode type
[_Abel]
Unable to solve or complete the solution.

$$
y^{\prime}-2 y^{3}=t^{2}
$$

With initial conditions

$$
\left[y(0)=-\frac{1}{2}\right]
$$

3.10.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =2 y^{3}+t^{2}
\end{aligned}
$$

The t domain of $f(t, y)$ when $y=-\frac{1}{2}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-\frac{1}{2}$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(2 y^{3}+t^{2}\right) \\
& =6 y^{2}
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-\frac{1}{2}$ is inside this domain. Therefore solution exists and is unique.

3.10.2 Solving as abelFirstKind ode

This is Abel first kind ODE, it has the form

$$
y^{\prime}=f_{0}(t)+f_{1}(t) y+f_{2}(t) y^{2}+f_{3}(t) y^{3}
$$

Comparing the above to given ODE which is

$$
\begin{equation*}
y^{\prime}=2 y^{3}+t^{2} \tag{1}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
f_{0}(t) & =t^{2} \\
f_{1}(t) & =0 \\
f_{2}(t) & =0 \\
f_{3}(t) & =2
\end{aligned}
$$

Since $f_{2}(t)=0$ then we check the Abel invariant to see if it depends on t or not. The Abel invariant is given by

$$
-\frac{f_{1}^{3}}{f_{0}^{2} f_{3}}
$$

Which when evaluating gives

$$
\frac{4}{27 t^{7}}
$$

Since the Abel invariant depends on t then unable to solve this ode at this time.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`
```

X Solution by Maple
dsolve([diff $(y(t), t)=2 * y(t) \wedge 3+t \wedge 2, y(0)=-1 / 2], y(t)$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[\{y' $[t]==2 * y[t] \wedge 3+t \wedge 2,\{y[0]==-1 / 2\}\}, y[t], t$, IncludeSingularSolutions $->$ True]
Not solved

3.11 problem 15

3.11.1 Existence and uniqueness analysis 583
3.11.2 Solving as quadrature ode . 584
3.11.3 Maple step by step solution . 585

Internal problem ID [12939]
Internal file name [OUTPUT/11591_Tuesday_November_07_2023_11_27_34_PM_56039897/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61
Problem number: 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
y^{\prime}-\sqrt{y}=0
$$

With initial conditions

$$
[y(0)=1]
$$

3.11.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =\sqrt{y}
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{0 \leq y\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}(\sqrt{y}) \\
& =\frac{1}{2 \sqrt{y}}
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{0<y\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

3.11.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{y}} d y & =\int d t \\
2 \sqrt{y} & =t+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2=c_{1} \\
& c_{1}=2
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
2 \sqrt{y}=t+2
$$

Solving for y from the above gives

$$
y=\frac{(t+2)^{2}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(t+2)^{2}}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{(t+2)^{2}}{4}
$$

Verified OK.

3.11.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\sqrt{y}=0, y(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{\sqrt{y}}=1$
- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{\sqrt{y}} d t=\int 1 d t+c_{1}
$$

- Evaluate integral

$$
2 \sqrt{y}=t+c_{1}
$$

- \quad Solve for y

$$
y=\frac{1}{4} t^{2}+\frac{1}{2} c_{1} t+\frac{1}{4} c_{1}^{2}
$$

- Use initial condition $y(0)=1$
$1=\frac{c_{1}^{2}}{4}$
- \quad Solve for c_{1}
$c_{1}=(-2,2)$
- \quad Substitute $c_{1}=(-2,2)$ into general solution and simplify
$y=\frac{(-2+t)^{2}}{4}$
- Solution to the IVP
$y=\frac{(-2+t)^{2}}{4}$

Maple trace

```
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 11

```
dsolve([diff(y(t),t)=sqrt( y(t)),y(0) = 1],y(t), singsol=all)
```

$$
y(t)=\frac{(t+2)^{2}}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 14
DSolve[\{y'[t]==Sqrt[y[t]],\{y[0]==1\}\},y[t],t,IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow \frac{1}{4}(t+2)^{2}
$$

3.12 problem 16

3.12.1 Existence and uniqueness analysis 587
3.12.2 Solving as quadrature ode . 588
3.12.3 Maple step by step solution . 589

Internal problem ID [12940]
Internal file name [OUTPUT/11592_Tuesday_November_07_2023_11_27_35_PM_70610284/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61
Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}+y=2
$$

With initial conditions

$$
[y(0)=1]
$$

3.12.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =1 \\
q(t) & =2
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y=2
$$

The domain of $p(t)=1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

3.12.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-y+2} d y & =\int d t \\
-\ln (-y+2) & =t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{-y+2}=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
\frac{1}{-y+2}=c_{2} \mathrm{e}^{t}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{-1+2 c_{2}}{c_{2}} \\
c_{2}=1
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=-\mathrm{e}^{-t}+2
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\mathrm{e}^{-t}+2 \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\mathrm{e}^{-t}+2
$$

Verified OK.

3.12.3 Maple step by step solution

Let's solve
$\left[y^{\prime}+y=2, y(0)=1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables
$\frac{y^{\prime}}{2-y}=1$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{2-y} d t=\int 1 d t+c_{1}$
- Evaluate integral
$-\ln (2-y)=t+c_{1}$
- \quad Solve for y

$$
y=-\mathrm{e}^{-t-c_{1}}+2
$$

- Use initial condition $y(0)=1$

$$
1=-\mathrm{e}^{-c_{1}}+2
$$

- \quad Solve for c_{1}

$$
c_{1}=0
$$

- \quad Substitute $c_{1}=0$ into general solution and simplify

$$
y=-\mathrm{e}^{-t}+2
$$

- \quad Solution to the IVP

$$
y=-\mathrm{e}^{-t}+2
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 12

```
dsolve([diff(y(t),t)=2-y(t),y(0) = 1],y(t), singsol=all)
```

$$
y(t)=2-\mathrm{e}^{-t}
$$

\checkmark Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 14
DSolve[\{y' [t] ==2-y[t],\{y[0]==1\}\},y[t],t,IncludeSingularSolutions -> True]

$$
y(t) \rightarrow 2-e^{-t}
$$

3.13 problem 17

3.13.1 Existence and uniqueness analysis 591
3.13.2 Solving as quadrature ode . 592
3.13.3 Maple step by step solution . 593

Internal problem ID [12941]
Internal file name [OUTPUT/11593_Tuesday_November_07_2023_11_27_36_PM_36577844/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.4 page 61
Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
\theta^{\prime}+\frac{11 \cos (\theta)}{10}=\frac{9}{10}
$$

With initial conditions

$$
[\theta(0)=1]
$$

3.13.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
\theta^{\prime} & =f(t, \theta) \\
& =\frac{9}{10}-\frac{11 \cos (\theta)}{10}
\end{aligned}
$$

The θ domain of $f(t, \theta)$ when $t=0$ is

$$
\{-\infty<\theta<\infty\}
$$

And the point $\theta_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial \theta} & =\frac{\partial}{\partial \theta}\left(\frac{9}{10}-\frac{11 \cos (\theta)}{10}\right) \\
& =\frac{11 \sin (\theta)}{10}
\end{aligned}
$$

The θ domain of $\frac{\partial f}{\partial \theta}$ when $t=0$ is

$$
\{-\infty<\theta<\infty\}
$$

And the point $\theta_{0}=1$ is inside this domain. Therefore solution exists and is unique.

3.13.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\frac{9}{10}-\frac{11 \cos (\theta)}{10}} d \theta & =t+c_{1} \\
-\sqrt{10} \operatorname{arctanh}\left(\sqrt{10} \tan \left(\frac{\theta}{2}\right)\right) & =t+c_{1}
\end{aligned}
$$

Solving for θ gives these solutions

$$
\theta_{1}=-2 \arctan \left(\frac{\tanh \left(\frac{\left(t+c_{1}\right) \sqrt{10}}{10}\right) \sqrt{10}}{10}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $\theta=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-2 \arctan \left(\frac{\left(\mathrm{e}^{\frac{c_{1} \sqrt{10}}{5}}-1\right) \sqrt{10}}{10+10 \mathrm{e}^{\frac{c_{1} \sqrt{10}}{5}}}\right) \\
c_{1}=\frac{\sqrt{10} \ln \left(\frac{\sqrt{10}-10 \tan \left(\frac{1}{2}\right)}{\sqrt{10}+10 \tan \left(\frac{1}{2}\right)}\right)}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\theta=-2 \arctan \left(\frac{\left(\mathrm{e}^{\frac{\sqrt{10} t}{5}} \sqrt{10}-10 \mathrm{e}^{\frac{\sqrt{10} t}{5}} \tan \left(\frac{1}{2}\right)-\sqrt{10}-10 \tan \left(\frac{1}{2}\right)\right) \sqrt{10}}{10 \mathrm{e}^{\frac{\sqrt{10}}{5} t} \sqrt{10}-100 \mathrm{e}^{\frac{\sqrt{10}}{5} t} \tan \left(\frac{1}{2}\right)+10 \sqrt{10}+100 \tan \left(\frac{1}{2}\right)}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\theta=-2 \arctan \left(\frac{\left(\mathrm{e}^{\frac{\sqrt{10} t}{5}} \sqrt{10}-10 \mathrm{e}^{\frac{\sqrt{10} t}{5}} \tan \left(\frac{1}{2}\right)-\sqrt{10}-10 \tan \left(\frac{1}{2}\right)\right) \sqrt{10}}{10 \mathrm{e}^{\frac{\sqrt{10} t}{5}} \sqrt{10}-100 \mathrm{e}^{\frac{\sqrt{10} t}{5} t} \tan \left(\frac{1}{2}\right)+10 \sqrt{10}+100 \tan \left(\frac{1}{2}\right)}\right) \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
\theta=-2 \arctan \left(\frac{\left(\mathrm{e}^{\frac{\sqrt{10} t}{5}} \sqrt{10}-10 \mathrm{e}^{\frac{\sqrt{10} t}{5}} \tan \left(\frac{1}{2}\right)-\sqrt{10}-10 \tan \left(\frac{1}{2}\right)\right) \sqrt{10}}{10 \mathrm{e}^{\frac{\sqrt{10} t}{5}} \sqrt{10}-100 \mathrm{e}^{\frac{\sqrt{10} t}{5}} \tan \left(\frac{1}{2}\right)+10 \sqrt{10}+100 \tan \left(\frac{1}{2}\right)}\right)
$$

Verified OK.

3.13.3 Maple step by step solution

Let's solve

$$
\left[\theta^{\prime}+\frac{11 \cos (\theta)}{10}=\frac{9}{10}, \theta(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1 θ^{\prime}
- Separate variables

$$
\frac{\theta^{\prime}}{\frac{9}{10}-\frac{11 \cos (\theta)}{10}}=1
$$

- Integrate both sides with respect to t
$\int \frac{\theta^{\prime}}{\frac{9}{10}-\frac{11 \cos (\theta)}{10}} d t=\int 1 d t+c_{1}$
- Evaluate integral
$-\sqrt{10} \operatorname{arctanh}\left(\tan \left(\frac{\theta}{2}\right) \sqrt{10}\right)=t+c_{1}$
- \quad Solve for θ
$\theta=-2 \arctan \left(\frac{\tanh \left(\frac{\left(t+c_{1}\right) \sqrt{10}}{10}\right) \sqrt{10}}{10}\right)$
- Use initial condition $\theta(0)=1$
$1=-2 \arctan \left(\frac{\tanh \left(\frac{c_{1} \sqrt{10}}{10}\right) \sqrt{10}}{10}\right)$
- \quad Solve for c_{1}
$c_{1}=-\operatorname{arctanh}\left(\sqrt{10} \tan \left(\frac{1}{2}\right)\right) \sqrt{10}$
- Substitute $c_{1}=-\operatorname{arctanh}\left(\sqrt{10} \tan \left(\frac{1}{2}\right)\right) \sqrt{10}$ into general solution and simplify $\theta=-2 \arctan \left(\frac{\tanh \left(\frac{\sqrt{10} t}{10}-\operatorname{arctanh}\left(\sqrt{10} \tan \left(\frac{1}{2}\right)\right)\right) \sqrt{10}}{10}\right)$
- Solution to the IVP
$\theta=-2 \arctan \left(\frac{\tanh \left(\frac{\sqrt{10} t}{10}-\operatorname{arctanh}\left(\sqrt{10} \tan \left(\frac{1}{2}\right)\right)\right) \sqrt{10}}{10}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.344 (sec). Leaf size: 29
dsolve $([\operatorname{diff}(\operatorname{theta}(t), t)=1-\cos (\operatorname{theta}(t))+(1+\cos (\operatorname{theta}(t))) *(-1 / 10)$, theta $(0)=1]$, theta (t)

$$
\theta(t)=-2 \arctan \left(\frac{\tanh \left(-\operatorname{arctanh}\left(\tan \left(\frac{1}{2}\right) \sqrt{10}\right)+\frac{\sqrt{10} t}{10}\right) \sqrt{10}}{10}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.061 (sec). Leaf size: 36
DSolve [\{theta' $[\mathrm{t}]==1-\operatorname{Cos}[\operatorname{theta}[\mathrm{t}]]+(1+\operatorname{Cos}[\operatorname{theta}[\mathrm{t}]]) *(-1 / 10),\{\operatorname{theta}[0]==1\}\}, \operatorname{theta}[\mathrm{t}], \mathrm{t}, \mathrm{In}$

$$
\theta(t) \rightarrow-2 \arctan \left(\frac{\tanh \left(\frac{t}{\sqrt{10}}-\operatorname{arctanh}\left(\sqrt{10} \tan \left(\frac{1}{2}\right)\right)\right)}{\sqrt{10}}\right)
$$

4 Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71
4.1 problem 5 597
4.2 problem 6 601
4.3 problem 7 605
4.4 problem 8 609
4.5 problem 12 613
4.6 problem 13 616
4.7 problem 14 621
4.8 problem 15 633
4.9 problem 16 638

4.1 problem 5

4.1.1 Existence and uniqueness analysis 597
4.1.2 Solving as quadrature ode . 598
4.1.3 Maple step by step solution . 599

Internal problem ID [12942]
Internal file name [OUTPUT/11594_Tuesday_November_07_2023_11_27_52_PM_60285105/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y(y-1)(y-3)=0
$$

With initial conditions

$$
[y(0)=4]
$$

4.1.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =y(y-1)(y-3)
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=4$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}(y(y-1)(y-3)) \\
& =(y-1)(y-3)+y(y-3)+y(y-1)
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=4$ is inside this domain. Therefore solution exists and is unique.

4.1.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y(y-1)(y-3)} d y & =\int d t \\
\frac{\ln (y-3)}{6}-\frac{\ln (y-1)}{2}+\frac{\ln (y)}{3} & =t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\frac{\ln (y-3)}{6}-\frac{\ln (y-1)}{2}+\frac{\ln (y)}{3}}=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
\frac{(y-3)^{\frac{1}{6}} y^{\frac{1}{3}}}{\sqrt{y-1}}=c_{2} \mathrm{e}^{t}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=0$ and $y=4$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{\sqrt{3} 4^{\frac{1}{3}}}{3}=c_{2} \\
& c_{2}=\frac{2^{\frac{2}{3}} \sqrt{3}}{3}
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
\frac{(y-3)^{\frac{1}{6}} y^{\frac{1}{3}}}{\sqrt{y-1}}=\frac{2^{\frac{2}{3}} \sqrt{3} \mathrm{e}^{t}}{3}
$$

The above simplifies to

$$
-2^{\frac{2}{3}} \sqrt{3} \mathrm{e}^{t} \sqrt{y-1}+3(y-3)^{\frac{1}{6}} y^{\frac{1}{3}}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-2^{\frac{2}{3}} \sqrt{3} \mathrm{e}^{t} \sqrt{y-1}+3(y-3)^{\frac{1}{6}} y^{\frac{1}{3}}=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-2^{\frac{2}{3}} \sqrt{3} \mathrm{e}^{t} \sqrt{y-1}+3(y-3)^{\frac{1}{6}} y^{\frac{1}{3}}=0
$$

Verified OK.

4.1.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-y(y-1)(y-3)=0, y(0)=4\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y(y-1)(y-3)}=1$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y(y-1)(y-3)} d t=\int 1 d t+c_{1}$
- Evaluate integral
$\frac{\ln (y-3)}{6}-\frac{\ln (y-1)}{2}+\frac{\ln (y)}{3}=t+c_{1}$
- \quad Solve for y
$y=-\frac{2\left(\frac{\left(1-2 e^{6 t+6 c_{1}+2} \sqrt{-\mathrm{e}^{6 t+6 c_{1}}+\left(\mathrm{e}^{6 t+6 c_{1}}\right)^{2}}\right)^{\frac{1}{3}}}{2}+\frac{1}{2\left(1-2 \mathrm{e}^{6 t+6 c_{1}+2} \sqrt{-\mathrm{e}^{6 t+6 c_{1}}+\left(\mathrm{e}^{6 t+6 c_{1}}\right)^{2}}\right)^{\frac{1}{3}}}+\frac{1}{2}\right)^{2}-\frac{\left(1-2 \mathrm{e}^{6 t+6 c_{1}+2} \sqrt{-e^{6 t+6 c_{1}}}\right.}{2}}{\mathrm{e}^{6 t+6 c_{1}}-1}$
- Use initial condition $y(0)=4$
$4=-\frac{\left.2\left(\frac{\left(1-2 \mathrm{e}^{6 c_{1}}+2 \sqrt{-\mathrm{e}^{6 c_{1}}+\left(\mathrm{e}^{6 c_{1}}\right)^{2}}\right)^{\frac{1}{3}}}{2}+\frac{1}{2\left(1-2 \mathrm{e}^{6 c_{1}}+2 \sqrt{-e^{6 c_{1}}+\left(\mathrm{e}^{6 c_{1}}\right)^{2}}\right)^{\frac{1}{3}}+\frac{1}{2}}\right)^{2}-\frac{\left(1-2 \mathrm{e}^{6 c_{1}+2} \sqrt{-\mathrm{e}^{6 c_{1}}+\left(\mathrm{e}^{6 c_{1}}\right)^{2}}\right)^{\frac{1}{3}}}{2}-\frac{}{2\left(1-2 \mathrm{e}^{6 c_{1}}-\right.}\right)}{\mathrm{e}^{6 c_{1}}-1}$
- \quad Solve for c_{1}

$$
\begin{aligned}
& c_{1}=\frac{\ln \left(\operatorname { R o o t O f } \left(\left(1-2 _Z+2 \sqrt{Z^{2}-_Z}\right)^{\frac{4}{3}}+2-2 _Z+2 \sqrt{Z^{2}-_}+6 _Z\left(1-2 _Z+2 \sqrt{Z^{2}-_Z}\right)^{\frac{2}{3}-6\left(1-2 _Z+2 \sqrt{2}\right.}\right.\right.}{6} \\
& \text { Substitute } c_{1}=\frac{\ln \left(\operatorname { R o o t O f } \left(\left(1-2 _Z+2 \sqrt{Z^{2}-_Z}\right)^{\frac{4}{3}}+2-2 _Z+2 \sqrt{Z^{2}-\ldots Z}+6 _Z\left(1-2 _Z+2 \sqrt{Z^{2} Z^{2}-_Z}\right)^{\frac{2}{3}}-6\right.\right.}{6}
\end{aligned}
$$

- Solution to the IVP

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 1.828 (sec). Leaf size: 133

```
dsolve([diff(y(t),t)=y(t)*(y(t)-1)*(y(t)-3),y(0) = 4],y(t), singsol=all)
```

$y(t)$

$$
=\frac{48\left(\frac{\mathrm{e}^{6 t}}{3}-\frac{9}{16}\right)\left(27-32 \mathrm{e}^{6 t}+8 \sqrt{\left.16 \mathrm{e}^{12 t}-27 \mathrm{e}^{6 t}\right)^{\frac{2}{3}}+48\left(\left(27-32 \mathrm{e}^{6 t}+8 \sqrt{16 \mathrm{e}^{12 t}-27 \mathrm{e}^{6 t}}\right)^{\frac{1}{3}}+3\right)\left(\mathrm{e}^{6 t}-\frac{1}{2}\right.}\left(27-32 \mathrm{e}^{6 t}+8 \sqrt{16 \mathrm{e}^{12 t}-27 \mathrm{e}^{6 t}}\right)^{\frac{2}{3}}\left(16 \mathrm{e}^{6 t}-27\right)\right.}{(27}
$$

Solution by Mathematica
Time used: 0.172 (sec). Leaf size: 132
DSolve[\{y' $[t]==y[t] *(y[t]-1) *(y[t]-3),\{y[0]==4\}\}, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
y(t) \rightarrow & \frac{3 i(\sqrt{3}+i) \sqrt[3]{4 \sqrt{e^{6 t}\left(16 e^{6 t}-27\right)^{3}}+864 e^{6 t}-256 e^{12 t}-729}}{32 e^{6 t}-54} \\
& +\frac{9(1+i \sqrt{3})}{2 \sqrt[3]{4 \sqrt{e^{6 t}\left(16 e^{6 t}-27\right)^{3}}+864 e^{6 t}-256 e^{12 t}-729}}+1
\end{aligned}
$$

4.2 problem 6

4.2.1 Existence and uniqueness analysis 601
4.2.2 Solving as quadrature ode . 602
4.2.3 Maple step by step solution . 603

Internal problem ID [12943]
Internal file name [OUTPUT/11595_Tuesday_November_07_2023_11_31_55_PM_94325409/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y(y-1)(y-3)=0
$$

With initial conditions

$$
[y(0)=0]
$$

4.2.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =y(y-1)(y-3)
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}(y(y-1)(y-3)) \\
& =(y-1)(y-3)+y(y-3)+y(y-1)
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Therefore solution exists and is unique.

4.2.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y(y-1)(y-3)} d y & =\int d t \\
\frac{\ln (y-3)}{6}-\frac{\ln (y-1)}{2}+\frac{\ln (y)}{3} & =t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\frac{\ln (y-3)}{6}-\frac{\ln (y-1)}{2}+\frac{\ln (y)}{3}}=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
\frac{(y-3)^{\frac{1}{6}} y^{\frac{1}{3}}}{\sqrt{y-1}}=c_{2} \mathrm{e}^{t}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=c_{2} \\
& c_{2}=0
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
\frac{(y-3)^{\frac{1}{6}} y^{\frac{1}{3}}}{\sqrt{y-1}}=0
$$

The above simplifies to

$$
(y-3)^{\frac{1}{6}} y^{\frac{1}{3}}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
(y-3)^{\frac{1}{6}} y^{\frac{1}{3}}=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
(y-3)^{\frac{1}{6}} y^{\frac{1}{3}}=0
$$

Verified OK.

4.2.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-y(y-1)(y-3)=0, y(0)=0\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y(y-1)(y-3)}=1$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y(y-1)(y-3)} d t=\int 1 d t+c_{1}$
- Evaluate integral
$\frac{\ln (y-3)}{6}-\frac{\ln (y-1)}{2}+\frac{\ln (y)}{3}=t+c_{1}$
- \quad Solve for y
- Use initial condition $y(0)=0$

$$
0=\frac{-2\left(\frac{\left(1-2 e^{6 c_{1}}+2 \sqrt{-e^{6 c_{1}}+\left(e^{6 c_{1}}\right)^{2}}\right)^{\frac{1}{3}}}{2}+\frac{1}{2\left(1-2 e^{6 c_{1}}+2 \sqrt{-e^{6 c_{1}}+\left(e^{6 c_{1}}\right)^{2}}\right)^{\frac{1}{3}}}+\frac{1}{2}\right)^{2}+\mathrm{e}^{6 c_{1}}+\frac{\left(1-2 e^{6 c_{1}}+2 \sqrt{-\mathrm{e}^{6 c_{1}}+\left(\mathrm{e}^{6 c_{1}}\right)^{2}}\right)^{\frac{1}{3}}}{2}+\frac{}{2(1-2)} \mathrm{e}^{6 c_{1}-1}}{2}
$$

- \quad Solve for c_{1}

$$
\begin{aligned}
& c_{1}=\frac{\ln \left(\operatorname { R o o t O f } \left(-\left(1-2 _Z+2 \sqrt{Z^{2}-_Z}\right)^{\frac{4}{3}}-2+2 _Z-2 \sqrt{Z^{2}-_} Z^{2}+Z\left(1-2 _Z+2 \sqrt{Z^{2}-_Z}\right)^{\frac{2}{3}-2\left(1-2 _Z+2\right.}\right.\right.}{6} \\
& \text { Substitute } c_{1}=\frac{\ln \left(\operatorname { R o o t O f } \left(-\left(1-2 _Z+2 \sqrt{Z^{2}-_Z}\right)^{\frac{4}{3}}-2+2 _Z-2 \sqrt{Z^{2}-Z^{2}}+2 _Z\left(1-2 _Z+2 \sqrt{Z^{2}-Z^{2}}\right)^{\frac{2}{3}}\right.\right.}{6}
\end{aligned}
$$

- Solution to the IVP

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

```
dsolve([diff(y(t),t)=y(t)*(y(t)-1)*(y(t)-3),y(0) = 0],y(t), singsol=all)
```

$$
y(t)=0
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 6
DSolve[\{y' $[t]==y[t] *(y[t]-1) *(y[t]-3),\{y[0]==0\}\}, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow 0
$$

4.3 problem 7

4.3.1 Existence and uniqueness analysis 605
4.3.2 Solving as quadrature ode . 606
4.3.3 Maple step by step solution . 607

Internal problem ID [12944]
Internal file name [OUTPUT/11596_Tuesday_November_07_2023_11_32_27_PM_640812/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y(y-1)(y-3)=0
$$

With initial conditions

$$
[y(0)=2]
$$

4.3.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =y(y-1)(y-3)
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}(y(y-1)(y-3)) \\
& =(y-1)(y-3)+y(y-3)+y(y-1)
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=2$ is inside this domain. Therefore solution exists and is unique.

4.3.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y(y-1)(y-3)} d y & =\int d t \\
\frac{\ln (y-3)}{6}-\frac{\ln (y-1)}{2}+\frac{\ln (y)}{3} & =t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\frac{\ln (y-3)}{6}-\frac{\ln (y-1)}{2}+\frac{\ln (y)}{3}}=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
\frac{(y-3)^{\frac{1}{6}} y^{\frac{1}{3}}}{\sqrt{y-1}}=c_{2} \mathrm{e}^{t}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=0$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{2^{\frac{1}{3}} \sqrt{3}}{2}+\frac{i 2^{\frac{1}{3}}}{2}=c_{2} \\
& c_{2}=\frac{2^{\frac{1}{3}} \sqrt{3}}{2}+\frac{i 2^{\frac{1}{3}}}{2}
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
\frac{(y-3)^{\frac{1}{6}} y^{\frac{1}{3}}}{\sqrt{y-1}}=\frac{2^{\frac{1}{3}} \mathrm{e}^{t} \sqrt{3}}{2}+\frac{i 2^{\frac{1}{3}} \mathrm{e}^{t}}{2}
$$

The above simplifies to

$$
-2^{\frac{1}{3}} \mathrm{e}^{t} \sqrt{3} \sqrt{y-1}-i 2^{\frac{1}{3}} \mathrm{e}^{t} \sqrt{y-1}+2(y-3)^{\frac{1}{6}} y^{\frac{1}{3}}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-(\sqrt{3}+i) \mathrm{e}^{t} 2^{\frac{1}{3}} \sqrt{y-1}+2(y-3)^{\frac{1}{6}} y^{\frac{1}{3}}=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-(\sqrt{3}+i) \mathrm{e}^{t} 2^{\frac{1}{3}} \sqrt{y-1}+2(y-3)^{\frac{1}{6}} y^{\frac{1}{3}}=0
$$

Verified OK.

4.3.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-y(y-1)(y-3)=0, y(0)=2\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y(y-1)(y-3)}=1$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y(y-1)(y-3)} d t=\int 1 d t+c_{1}$
- Evaluate integral
$\frac{\ln (y-3)}{6}-\frac{\ln (y-1)}{2}+\frac{\ln (y)}{3}=t+c_{1}$
- \quad Solve for y
$y=-\frac{2\left(\frac{\left(1-2 e^{6 t+6 c_{1}+2} \sqrt{-\mathrm{e}^{6 t+6 c_{1}}+\left(\mathrm{e}^{6 t+6 c_{1}}\right)^{2}}\right)^{\frac{1}{3}}}{2}+\frac{1}{2\left(1-2 \mathrm{e}^{6 t+6 c_{1}+2} \sqrt{-\mathrm{e}^{6 t+6 c_{1}}+\left(\mathrm{e}^{6 t+6 c_{1}}\right)^{2}}\right)^{\frac{1}{3}}}+\frac{1}{2}\right)^{2}-\frac{\left(1-2 \mathrm{e}^{6 t+6 c_{1}+2} \sqrt{-e^{6 t+6 c_{1}}}\right.}{2}}{\mathrm{e}^{6 t+6 c_{1}}-1}$
- Use initial condition $y(0)=2$
$2=-\frac{\left.2\left(\frac{\left(1-2 \mathrm{e}^{6 c_{1}}+2 \sqrt{-\mathrm{e}^{6 c_{1}}+\left(\mathrm{e}^{6 c_{1}}\right)^{2}}\right)^{\frac{1}{3}}}{2}+\frac{1}{2\left(1-2 \mathrm{e}^{6 c_{1}}+2 \sqrt{-e^{6 c_{1}}+\left(\mathrm{e}^{6 c_{1}}\right)^{2}}\right)^{\frac{1}{3}}+\frac{1}{2}}\right)^{2}-\frac{\left(1-2 \mathrm{e}^{6 c_{1}+2} \sqrt{-\mathrm{e}^{6 c_{1}}+\left(\mathrm{e}^{6 c_{1}}\right)^{2}}\right)^{\frac{1}{3}}}{2}-\frac{}{2\left(1-2 \mathrm{e}^{6 c_{1}}\right.}\right)}{\mathrm{e}^{6 c_{1}}-1}$
- \quad Solve for c_{1}

$$
\begin{aligned}
& c_{1}=\frac{\ln \left(\operatorname { R o o t O f } \left(\left(1-2 _Z+2 \sqrt{Z^{2}-_Z}\right)^{\frac{4}{3}}+2-2 _Z+2 \sqrt{Z^{2}-_}+2 _Z\left(1-2 _Z+2 \sqrt{Z^{2}-_Z}\right)^{\frac{2}{3}-2\left(1-2 _Z+2 \sqrt{2}\right.}\right.\right.}{6} \\
& \text { Substitute } c_{1}=\frac{\ln \left(\operatorname { R o o t O f } \left(\left(1-2 _Z+2 \sqrt{Z^{2}-_Z}\right)^{\frac{4}{3}}+2-2 _Z+2 \sqrt{Z^{2}-\ldots Z}+2 _Z\left(1-2 _Z+2 \sqrt{Z^{2} Z^{2}-_Z}\right)^{\frac{2}{3}}-2\right.\right.}{6}
\end{aligned}
$$

- Solution to the IVP

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 4.344 (sec). Leaf size: 147

```
dsolve([diff(y(t),t)=y(t)*(y(t)-1)*(y(t)-3),y(0) = 2],y(t), singsol=all)
```

$y(t)$
$=\frac{\left(16 \mathrm{e}^{6 t}+9\right)\left(1+8 \mathrm{e}^{6 t}+4 \sqrt{\mathrm{e}^{6 t}+4 \mathrm{e}^{12 t}}\right)^{\frac{2}{3}}+\left(24 \mathrm{e}^{6 t}+12 \sqrt{\mathrm{e}^{6 t}+4 \mathrm{e}^{12 t}}+9\right)\left(1+8 \mathrm{e}^{6 t}+4 \sqrt{\mathrm{e}^{6 t}+4 \mathrm{e}^{12 t}}\right)^{\frac{1}{3}}+}{\left(16 \mathrm{e}^{6 t}+3\right)\left(1+8 \mathrm{e}^{6 t}+4 \sqrt{\mathrm{e}^{6 t}+4 \mathrm{e}^{12 t}}\right)^{\frac{2}{3}}+\left(8 \mathrm{e}^{6 t}+4 \sqrt{\mathrm{e}^{6 t}+4 \mathrm{e}^{12 t}}+3\right)\left(1+8 \mathrm{e}^{6 t}+4 \sqrt{\mathrm{e}^{6 t}+4 \mathrm{e}^{12 t}}\right)^{\frac{1}{3}}+}$
\checkmark Solution by Mathematica
Time used: 0.091 (sec). Leaf size: 105

DSolve [\{y' [t] ==y[t]*(y[t]-1)*(y[t]-3),\{y[0]==2\}\},y[t],t,IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
y(t) \rightarrow & \frac{\sqrt[3]{2 \sqrt{e^{6 t}\left(4 e^{6 t}+1\right)^{3}}+8 e^{6 t}+16 e^{12 t}+1}}{4 e^{6 t}+1} \\
& +\frac{1}{\sqrt[3]{2 \sqrt{e^{6 t}\left(4 e^{6 t}+1\right)^{3}}+8 e^{6 t}+16 e^{12 t}+1}}+1
\end{aligned}
$$

4.4 problem 8

4.4.1 Existence and uniqueness analysis 609
4.4.2 Solving as quadrature ode . 610
4.4.3 Maple step by step solution . 611

Internal problem ID [12945]
Internal file name [OUTPUT/11597_Tuesday_November_07_2023_11_34_05_PM_68301495/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y(y-1)(y-3)=0
$$

With initial conditions

$$
[y(0)=-1]
$$

4.4.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =y(y-1)(y-3)
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}(y(y-1)(y-3)) \\
& =(y-1)(y-3)+y(y-3)+y(y-1)
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-1$ is inside this domain. Therefore solution exists and is unique.

4.4.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y(y-1)(y-3)} d y & =\int d t \\
\frac{\ln (y-3)}{6}-\frac{\ln (y-1)}{2}+\frac{\ln (y)}{3} & =t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\frac{\ln (y-3)}{6}-\frac{\ln (y-1)}{2}+\frac{\ln (y)}{3}}=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
\frac{(y-3)^{\frac{1}{6}} y^{\frac{1}{3}}}{\sqrt{y-1}}=c_{2} \mathrm{e}^{t}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=0$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{2^{\frac{5}{6}}}{2}=c_{2} \\
& c_{2}=\frac{2^{\frac{5}{6}}}{2}
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
\frac{(y-3)^{\frac{1}{6}} y^{\frac{1}{3}}}{\sqrt{y-1}}=\frac{2^{\frac{5}{6}} \mathrm{e}^{t}}{2}
$$

The above simplifies to

$$
-2^{\frac{5}{6}} \mathrm{e}^{t} \sqrt{y-1}+2(y-3)^{\frac{1}{6}} y^{\frac{1}{3}}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-2^{\frac{5}{6}} \mathrm{e}^{t} \sqrt{y-1}+2(y-3)^{\frac{1}{6}} y^{\frac{1}{3}}=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-2^{\frac{5}{6}} e^{t} \sqrt{y-1}+2(y-3)^{\frac{1}{6}} y^{\frac{1}{3}}=0
$$

Verified OK.

4.4.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-y(y-1)(y-3)=0, y(0)=-1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y(y-1)(y-3)}=1$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y(y-1)(y-3)} d t=\int 1 d t+c_{1}$
- Evaluate integral
$\frac{\ln (y-3)}{6}-\frac{\ln (y-1)}{2}+\frac{\ln (y)}{3}=t+c_{1}$
- \quad Solve for y

$$
y=-\frac{2\left(\frac{\left(1-2 \mathrm{e}^{6 t+6 c_{1}}+2 \sqrt{\left.-\mathrm{e}^{6 t+6 c_{1}+\left(\mathrm{e}^{6 t+6 c_{1}}\right)^{2}}\right)^{\frac{1}{3}}}\right.}{2}+\frac{1}{2\left(1-2 \mathrm{e}^{6 t+6 c_{1}+2 \sqrt{\left.-\mathrm{e}^{6 t+6 c_{1}+\left(\mathrm{e}^{6 t+6 c_{1}}\right)^{2}}\right)^{\frac{1}{3}}}+\frac{1}{2}}\right)^{2}-\frac{\left(1-2 \mathrm{e}^{6 t+6 c_{1}+2 \sqrt{-\mathrm{e}^{6 t+6 c_{1}}}}\right.}{2}} \mathrm{e}^{6 t+6 c_{1}-1}\right.}{2}
$$

- Use initial condition $y(0)=-1$

$$
-1=-\frac{2\left(\frac{\left(1-2 \mathrm{e}^{6 c_{1}}+2 \sqrt{-e^{6 c_{1}}+\left(\mathrm{e}^{6 c_{1}}\right)^{2}}\right)^{\frac{1}{3}}}{2}+\frac{1}{2\left(1-2 \mathrm{e}^{6 c_{1}}+2 \sqrt{-\mathrm{e}^{6 c_{1}}+\left(\mathrm{e}^{6 c_{1}}\right)^{2}}\right)^{\frac{1}{3}}}+\frac{1}{2}\right)^{2}-\frac{\left(1-2 \mathrm{e}^{6 c_{1}+2} \sqrt{\left.-\mathrm{e}^{6 c_{1}+\left(\mathrm{e}^{6 c_{1}}\right)^{2}}\right)^{\frac{1}{3}}}\right.}{2}-\frac{}{2\left(1-2 \mathrm{e}^{6 c}\right.}}{\mathrm{e}^{6 c_{1}-1}}
$$

- \quad Solve for c_{1}

$$
\begin{aligned}
& c_{1}=\frac{\ln \left(\operatorname { R o o t O f } \left(-\left(1-2 _Z+2 \sqrt{Z^{2}-_Z}\right)^{\frac{4}{3}}-2+2 _Z-2 \sqrt{Z^{2}-_}{ }^{2}+4 _Z\left(1-2 _Z+2 \sqrt{Z^{2}-_Z}\right)^{\frac{2}{3}-4\left(1-2 _Z+2\right.}\right.\right.}{6} \\
& \text { Substitute } c_{1}=\frac{\ln \left(\operatorname { R o o t O f } \left(-\left(1-2 _Z+2 \sqrt{Z^{2}-_Z}\right)^{\frac{4}{3}}-2+2 _Z-2 \sqrt{Z^{2}-Z^{2}}+4 _Z\left(1-2 _Z+2 \sqrt{-Z^{2}-_Z}\right)^{\frac{2}{3}}\right.\right.}{6}
\end{aligned}
$$

- Solution to the IVP

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 1.703 (sec). Leaf size: 133

```
dsolve([diff(y(t),t)=y(t)*(y(t)-1)*(y(t)-3),y(0) = -1],y(t), singsol=all)
```

$y(t)$

$$
=\frac{\left(2 \mathrm{e}^{6 t}-4\right)\left(1-\mathrm{e}^{6 t}+\sqrt{\mathrm{e}^{6 t}\left(\mathrm{e}^{6 t}-2\right)}\right)^{\frac{2}{3}}+\left((i \sqrt{3}-1)\left(1-\mathrm{e}^{6 t}+\sqrt{\mathrm{e}^{6 t}\left(\mathrm{e}^{6 t}-2\right)}\right)^{\frac{1}{3}}-i \sqrt{3}-1\right)\left(\mathrm{e}^{6 t}-v\right.}{\left(1-\mathrm{e}^{6 t}+\sqrt{\mathrm{e}^{6 t}\left(\mathrm{e}^{6 t}-2\right)}\right)^{\frac{2}{3}}\left(2 \mathrm{e}^{6 t}-4\right)}
$$

Solution by Mathematica
Time used: 0.068 (sec). Leaf size: 104
DSolve $\left[\left\{y^{\prime}[t]==y[t] *(y[t]-1) *(y[t]-3),\{y[0]==-1\}\right\}, y[t], t\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{\sqrt[3]{2 \sqrt{e^{6 t}\left(e^{6 t}-2\right)^{3}}+8 e^{6 t}-2 e^{12 t}-8}}{e^{6 t}-2}-\frac{2^{2 / 3}}{\sqrt[3]{\sqrt{e^{6 t}\left(e^{6 t}-2\right)^{3}}+4 e^{6 t}-e^{12 t}-4}}+1
$$

4.5 problem 12

4.5.1 Solving as quadrature ode . 613
4.5.2 Maple step by step solution . 614

Internal problem ID [12946]
Internal file name [OUTPUT/11598_Tuesday_November_07_2023_11_51_50_PM_63682322/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}+y^{2}=0
$$

4.5.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{y^{2}} d y & =t+c_{1} \\
\frac{1}{y} & =t+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=\frac{1}{t+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{t+c_{1}} \tag{1}
\end{equation*}
$$

Figure 141: Slope field plot
Verification of solutions

$$
y=\frac{1}{t+c_{1}}
$$

Verified OK.

4.5.2 Maple step by step solution

Let's solve
$y^{\prime}+y^{2}=0$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y^{2}}=-1$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y^{2}} d t=\int(-1) d t+c_{1}$
- Evaluate integral

$$
-\frac{1}{y}=-t+c_{1}
$$

- \quad Solve for y

$$
y=-\frac{1}{-t+c_{1}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 9

```
dsolve(diff(y(t),t)=-y(t)^2,y(t), singsol=all)
```

$$
y(t)=\frac{1}{t+c_{1}}
$$

Solution by Mathematica
Time used: 0.156 (sec). Leaf size: 18
DSolve[y'[t]==-y[t]~2,y[t],t,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(t) \rightarrow \frac{1}{t-c_{1}} \\
& y(t) \rightarrow 0
\end{aligned}
$$

4.6 problem 13

4.6.1 Existence and uniqueness analysis 616
4.6.2 Solving as quadrature ode . 617
4.6.3 Maple step by step solution . 618

Internal problem ID [12947]
Internal file name [OUTPUT/11599_Tuesday_November_07_2023_11_51_50_PM_48642611/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y^{3}=0
$$

With initial conditions

$$
[y(0)=1]
$$

4.6.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =y^{3}
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(y^{3}\right) \\
& =3 y^{2}
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

4.6.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{gathered}
\int \frac{1}{y^{3}} d y=t+c_{1} \\
-\frac{1}{2 y^{2}}=t+c_{1}
\end{gathered}
$$

Solving for y gives these solutions

$$
\begin{aligned}
& y_{1}=\frac{1}{\sqrt{-2 t-2 c_{1}}} \\
& y_{2}=-\frac{1}{\sqrt{-2 t-2 c_{1}}}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=-\frac{1}{\sqrt{-2 c_{1}}}
$$

Warning: Unable to solve for c_{1}. No particular solution can be found using given initial conditions for this solution. removing this solution as not valid. Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{1}{\sqrt{-2 c_{1}}} \\
c_{1}=-\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{1}{\sqrt{1-2 t}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{\sqrt{1-2 t}} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=\frac{1}{\sqrt{1-2 t}}
$$

Verified OK.

4.6.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-y^{3}=0, y(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y^{3}}=1$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y^{3}} d t=\int 1 d t+c_{1}$
- Evaluate integral
$-\frac{1}{2 y^{2}}=t+c_{1}$
- \quad Solve for y
$\left\{y=\frac{1}{\sqrt{-2 t-2 c_{1}}}, y=-\frac{1}{\sqrt{-2 t-2 c_{1}}}\right\}$
- Use initial condition $y(0)=1$
$1=\frac{1}{\sqrt{-2 c_{1}}}$
- Solve for c_{1}
$c_{1}=-\frac{1}{2}$
- Substitute $c_{1}=-\frac{1}{2}$ into general solution and simplify
$y=\frac{1}{\sqrt{1-2 t}}$
- Use initial condition $y(0)=1$
$1=-\frac{1}{\sqrt{-2 c_{1}}}$
- Solution does not satisfy initial condition
- Solution to the IVP
$y=\frac{1}{\sqrt{1-2 t}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 11
dsolve([diff($y(t), t)=y(t) \wedge 3, y(0)=1], y(t)$, singsol=all)

$$
y(t)=\frac{1}{\sqrt{-2 t+1}}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 14
DSolve $\left[\left\{y^{\prime}[\mathrm{t}]==\mathrm{y}[\mathrm{t}] \wedge 3,\{\mathrm{y}[0]==1\}\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{1}{\sqrt{1-2 t}}
$$

4.7 problem 14

4.7.1 Existence and uniqueness analysis 621
4.7.2 Solving as separable ode . 622
4.7.3 Solving as first order ode lie symmetry lookup ode 623
4.7.4 Solving as exact ode . 627
4.7.5 Maple step by step solution . 630

Internal problem ID [12948]
Internal file name [OUTPUT/11600_Tuesday_November_07_2023_11_51_51_PM_51908698/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{1}{(y+1)(-2+t)}=0
$$

With initial conditions

$$
[y(0)=0]
$$

4.7.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =\frac{1}{(y+1)(-2+t)}
\end{aligned}
$$

The t domain of $f(t, y)$ when $y=0$ is

$$
\{t<2 \vee 2<t\}
$$

And the point $t_{0}=0$ is inside this domain. The y domain of $f(t, y)$ when $t=0$ is

$$
\{y<-1 \vee-1<y\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{1}{(y+1)(-2+t)}\right) \\
& =-\frac{1}{(y+1)^{2}(-2+t)}
\end{aligned}
$$

The t domain of $\frac{\partial f}{\partial y}$ when $y=0$ is

$$
\{t<2 \vee 2<t\}
$$

And the point $t_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{y<-1 \vee-1<y\}
$$

And the point $y_{0}=0$ is inside this domain. Therefore solution exists and is unique.

4.7.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =\frac{1}{(y+1)(-2+t)}
\end{aligned}
$$

Where $f(t)=\frac{1}{-2+t}$ and $g(y)=\frac{1}{y+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{y+1}} d y & =\frac{1}{-2+t} d t \\
\int \frac{1}{\frac{1}{y+1}} d y & =\int \frac{1}{-2+t} d t \\
\frac{1}{2} y^{2}+y & =\ln (-2+t)+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=-1+\sqrt{1+2 \ln (-2+t)+2 c_{1}} \\
& y=-1-\sqrt{1+2 \ln (-2+t)+2 c_{1}}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=-1-\sqrt{1+2 \ln (2)+2 i \pi+2 c_{1}}
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=-1+\sqrt{1+2 \ln (2)+2 i \pi+2 c_{1}} \\
c_{1}=-\ln (2)-i \pi
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-1+\sqrt{1+2 \ln (-2+t)-2 \ln (2)-2 i \pi}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-1+\sqrt{1+2 \ln (-2+t)-2 \ln (2)-2 i \pi} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-1+\sqrt{1+2 \ln (-2+t)-2 \ln (2)-2 i \pi}
$$

Verified OK.

4.7.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{1}{(y+1)(-2+t)} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 134: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=-2+t \\
& \eta(t, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{-2+t} d t
\end{aligned}
$$

Which results in

$$
S=\ln (-2+t)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{1}{(y+1)(-2+t)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{y} & =1 \\
S_{t} & =\frac{1}{-2+t} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y+1 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R+1
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{1}{2} R^{2}+R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\ln (-2+t)=\frac{y^{2}}{2}+y+c_{1}
$$

Which simplifies to

$$
\ln (-2+t)=\frac{y^{2}}{2}+y+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{1}{(y+1)(-2+t)}$		$\frac{d S}{d R}=R+1$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$		
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+4]{ }$		
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$		
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$	$R=y$	
	$S=\ln (-2+t)$	
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$		
\rightarrow		
$\rightarrow \rightarrow \rightarrow$ 伿		

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\ln (2)+i \pi=c_{1}
$$

$$
c_{1}=\ln (2)+i \pi
$$

Substituting c_{1} found above in the general solution gives

$$
\ln (-2+t)=\frac{y^{2}}{2}+y+\ln (2)+i \pi
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\ln (-2+t)=\frac{y^{2}}{2}+y+\ln (2)+i \pi \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\ln (-2+t)=\frac{y^{2}}{2}+y+\ln (2)+i \pi
$$

Verified OK.

4.7.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(y+1) \mathrm{d} y & =\left(\frac{1}{-2+t}\right) \mathrm{d} t \\
\left(-\frac{1}{-2+t}\right) \mathrm{d} t+(y+1) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-\frac{1}{-2+t} \\
N(t, y) & =y+1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{-2+t}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(y+1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\frac{1}{-2+t} \mathrm{~d} t \\
\phi & =-\ln (-2+t)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y+1$. Therefore equation (4) becomes

$$
\begin{equation*}
y+1=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y+1
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(y+1) \mathrm{d} y \\
f(y) & =\frac{1}{2} y^{2}+y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{y^{2}}{2}-\ln (-2+t)+y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{y^{2}}{2}-\ln (-2+t)+y
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -\ln (2)-i \pi=c_{1} \\
& c_{1}=-\ln (2)-i \pi
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{y^{2}}{2}-\ln (-2+t)+y=-\ln (2)-i \pi
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{2}}{2}-\ln (-2+t)+y=-\ln (2)-i \pi \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{y^{2}}{2}-\ln (-2+t)+y=-\ln (2)-i \pi
$$

Verified OK.

4.7.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{1}{(y+1)(-2+t)}=0, y(0)=0\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables
$y^{\prime}(y+1)=\frac{1}{-2+t}$
- Integrate both sides with respect to t
$\int y^{\prime}(y+1) d t=\int \frac{1}{-2+t} d t+c_{1}$
- Evaluate integral $\frac{y^{2}}{2}+y=\ln (-2+t)+c_{1}$
- \quad Solve for y

$$
\left\{y=-1-\sqrt{1+2 \ln (-2+t)+2 c_{1}}, y=-1+\sqrt{1+2 \ln (-2+t)+2 c_{1}}\right\}
$$

- Use initial condition $y(0)=0$

$$
0=-1-\sqrt{1+2 \ln (2)+2 \mathrm{I} \pi+2 c_{1}}
$$

- Solution does not satisfy initial condition
- Use initial condition $y(0)=0$
$0=-1+\sqrt{1+2 \ln (2)+2 \mathrm{I} \pi+2 c_{1}}$
- \quad Solve for c_{1}
$c_{1}=-\ln (2)-\mathrm{I} \pi$
- \quad Substitute $c_{1}=-\ln (2)-\mathrm{I} \pi$ into general solution and simplify

$$
y=-1+\sqrt{1+2 \ln (-2+t)-2 \ln (2)-2 \mathrm{I} \pi}
$$

- \quad Solution to the IVP

$$
y=-1+\sqrt{1+2 \ln (-2+t)-2 \ln (2)-2 \mathrm{I} \pi}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.172 (sec). Leaf size: 24

```
dsolve([diff(y(t),t)=1/( (y(t)+1)*(t-2)),y(0) = 0],y(t), singsol=all)
```

$$
y(t)=-1+\sqrt{1-2 i \pi+2 \ln (t-2)-2 \ln (2)}
$$

\checkmark Solution by Mathematica
Time used: 0.188 (sec). Leaf size: 28
DSolve $\left[\left\{y^{\prime}[t]==1 /((y[t]+1) *(t-2)),\{y[0]==0\}\right\}, y[t], t\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow-1+\sqrt{2 \log (t-2)-2 i \pi+1-\log (4)}
$$

4.8 problem 15

4.8.1 Existence and uniqueness analysis 633
4.8.2 Solving as quadrature ode . 634
4.8.3 Maple step by step solution . 636

Internal problem ID [12949]
Internal file name [OUTPUT/11601_Tuesday_November_07_2023_11_51_52_PM_90524771/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71
Problem number: 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-\frac{1}{(y+2)^{2}}=0
$$

With initial conditions

$$
[y(0)=1]
$$

4.8.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =\frac{1}{(y+2)^{2}}
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{y<-2 \vee-2<y\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{1}{(y+2)^{2}}\right) \\
& =-\frac{2}{(y+2)^{3}}
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{y<-2 \vee-2<y\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

4.8.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int(y+2)^{2} d y & =t+c_{1} \\
\frac{(y+2)^{3}}{3} & =t+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
\begin{aligned}
& y_{1}=\left(3 t+3 c_{1}\right)^{\frac{1}{3}}-2 \\
& y_{2}=-\frac{\left(3 t+3 c_{1}\right)^{\frac{1}{3}}}{2}-\frac{i \sqrt{3}\left(3 t+3 c_{1}\right)^{\frac{1}{3}}}{2}-2 \\
& y_{3}=-\frac{\left(3 t+3 c_{1}\right)^{\frac{1}{3}}}{2}+\frac{i \sqrt{3}\left(3 t+3 c_{1}\right)^{\frac{1}{3}}}{2}-2
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=-\frac{c_{1}^{\frac{1}{3}} 3^{\frac{1}{3}}}{2}+\frac{i 3^{\frac{5}{6}} c_{1}^{\frac{1}{3}}}{2}-2
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=-\frac{c_{1}^{\frac{1}{3}} 3^{\frac{1}{3}}}{2}-\frac{i 3^{\frac{5}{6}} c_{1}^{\frac{1}{3}}}{2}-2
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=c_{1}^{\frac{1}{3}} 3^{\frac{1}{3}}-2 \\
c_{1}=9
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=(3 t+27)^{\frac{1}{3}}-2
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(3 t+27)^{\frac{1}{3}}-2 \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=(3 t+27)^{\frac{1}{3}}-2
$$

Verified OK.

4.8.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{1}{(y+2)^{2}}=0, y(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables
$y^{\prime}(y+2)^{2}=1$
- Integrate both sides with respect to t
$\int y^{\prime}(y+2)^{2} d t=\int 1 d t+c_{1}$
- Evaluate integral
$\frac{(y+2)^{3}}{3}=t+c_{1}$
- \quad Solve for y
$y=\left(3 t+3 c_{1}\right)^{\frac{1}{3}}-2$
- Use initial condition $y(0)=1$
$1=c_{1}^{\frac{1}{3}} 3^{\frac{1}{3}}-2$
- \quad Solve for c_{1}
$c_{1}=9$
- \quad Substitute $c_{1}=9$ into general solution and simplify
$y=(3 t+27)^{\frac{1}{3}}-2$
- \quad Solution to the IVP
$y=(3 t+27)^{\frac{1}{3}}-2$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 13

```
dsolve([diff(y(t),t)=1/(y(t)+2)^2,y(0) = 1],y(t), singsol=all)
```

$$
y(t)=(3 t+27)^{\frac{1}{3}}-2
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 20
DSolve[\{y' $[t]==1 /(y[t]+2) \sim 2,\{y[0]==1\}\}, y[t], t$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow \sqrt[3]{3} \sqrt[3]{t+9}-2
$$

4.9 problem 16

4.9.1 Existence and uniqueness analysis 639
4.9.2 Solving as separable ode . 639
4.9.3 Solving as differentialType ode 641
4.9.4 Solving as homogeneousTypeMapleC ode 643
4.9.5 Solving as first order ode lie symmetry lookup ode 646
4.9.6 Solving as exact ode . 650
4.9.7 Maple step by step solution . 653

Internal problem ID [12950]
Internal file name [OUTPUT/11602_Tuesday_November_07_2023_11_51_53_PM_77268850/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.5 page 71
Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "homogeneousTypeMapleC", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{t}{y-2}=0
$$

With initial conditions

$$
[y(-1)=0]
$$

4.9.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =\frac{t}{y-2}
\end{aligned}
$$

The t domain of $f(t, y)$ when $y=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=-1$ is inside this domain. The y domain of $f(t, y)$ when $t=-1$ is

$$
\{y<2 \vee 2<y\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{t}{y-2}\right) \\
& =-\frac{t}{(y-2)^{2}}
\end{aligned}
$$

The t domain of $\frac{\partial f}{\partial y}$ when $y=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=-1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $t=-1$ is

$$
\{y<2 \vee 2<y\}
$$

And the point $y_{0}=0$ is inside this domain. Therefore solution exists and is unique.

4.9.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =\frac{t}{y-2}
\end{aligned}
$$

Where $f(t)=t$ and $g(y)=\frac{1}{y-2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{y-2}} d y & =t d t \\
\int \frac{1}{\frac{1}{y-2}} d y & =\int t d t \\
\frac{1}{2} y^{2}-2 y & =\frac{t^{2}}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=2+\sqrt{t^{2}+2 c_{1}+4} \\
& y=2-\sqrt{t^{2}+2 c_{1}+4}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=-1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=2-\sqrt{5+2 c_{1}} \\
c_{1}=-\frac{1}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=2-\sqrt{t^{2}+3}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=-1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=2+\sqrt{5+2 c_{1}}
$$

Summary
Warning: Unable to solve for constant of integration.
The solution(s) found are the following

$$
y=2-\sqrt{t^{2}+3}
$$

(b) Slope field plot

Verification of solutions

$$
y=2-\sqrt{t^{2}+3}
$$

Verified OK.

4.9.3 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{t}{y-2} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(y-2) d y=(t) d t \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(t) d t=d\left(\frac{t^{2}}{2}\right)
$$

Hence (2) becomes

$$
(y-2) d y=d\left(\frac{t^{2}}{2}\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=2+\sqrt{t^{2}+2 c_{1}+4}+c_{1} \\
& y=2-\sqrt{t^{2}+2 c_{1}+4}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=-1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=2-\sqrt{5+2 c_{1}}+c_{1} \\
c_{1}=\sqrt{2}-1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=1-\sqrt{t^{2}+2 \sqrt{2}+2}+\sqrt{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=-1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=2+\sqrt{5+2 c_{1}}+c_{1} \\
c_{1}=-\sqrt{2}-1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=1+\sqrt{t^{2}-2 \sqrt{2}+2}-\sqrt{2}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=1+\sqrt{t^{2}-2 \sqrt{2}+2}-\sqrt{2} \tag{1}\\
& y=1-\sqrt{t^{2}+2 \sqrt{2}+2}+\sqrt{2} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=1+\sqrt{t^{2}-2 \sqrt{2}+2}-\sqrt{2}
$$

Verified OK.

$$
y=1-\sqrt{t^{2}+2 \sqrt{2}+2}+\sqrt{2}
$$

Verified OK.

4.9.4 Solving as homogeneousTypeMapleC ode

Let $Y=y+y_{0}$ and $X=t+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=\frac{X+x_{0}}{Y(X)+y_{0}-2}
$$

Solving for possible values of x_{0} and y_{0} which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
x_{0} & =0 \\
y_{0} & =2
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=\frac{X}{Y(X)}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =\frac{X}{Y} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order n if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=X$ and $N=Y$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =\frac{1}{u} \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{\frac{1}{u(X)}-u(X)}{X}
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)-\frac{\frac{1}{u(X)}-u(X)}{X}=0
$$

Or

$$
\left(\frac{d}{d X} u(X)\right) u(X) X+u(X)^{2}-1=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =-\frac{u^{2}-1}{u X}
\end{aligned}
$$

Where $f(X)=-\frac{1}{X}$ and $g(u)=\frac{u^{2}-1}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}-1}{u}} d u & =-\frac{1}{X} d X \\
\int \frac{1}{\frac{u^{2}-1}{u}} d u & =\int-\frac{1}{X} d X \\
\frac{\ln (u-1)}{2}+\frac{\ln (u+1)}{2} & =-\ln (X)+c_{2}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{2}\right)(\ln (u-1)+\ln (u+1)) & =-\ln (X)+2 c_{2} \\
\ln (u-1)+\ln (u+1) & =(2)\left(-\ln (X)+2 c_{2}\right) \\
& =-2 \ln (X)+4 c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (u-1)+\ln (u+1)}=\mathrm{e}^{-2 \ln (X)+2 c_{2}}
$$

Which simplifies to

$$
\begin{aligned}
u^{2}-1 & =\frac{2 c_{2}}{X^{2}} \\
& =\frac{c_{3}}{X^{2}}
\end{aligned}
$$

The solution is

$$
u(X)^{2}-1=\frac{c_{3}}{X^{2}}
$$

Now u in the above solution is replaced back by Y using $u=\frac{Y}{X}$ which results in the solution

$$
\frac{Y(X)^{2}}{X^{2}}-1=\frac{c_{3}}{X^{2}}
$$

Which simplifies to

$$
-(X-Y(X))(X+Y(X))=c_{3}
$$

Using the solution for $Y(X)$

$$
-(X-Y(X))(X+Y(X))=c_{3}
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
& Y=y+y_{0} \\
& X=t+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
& Y=y+2 \\
& X=t
\end{aligned}
$$

Then the solution in y becomes

$$
-(t-y+2)(t+y-2)=c_{3}
$$

Initial conditions are used to solve for c_{3}. Substituting $t=-1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 3=c_{3} \\
& c_{3}=3
\end{aligned}
$$

Substituting c_{3} found above in the general solution gives

$$
-(t-y+2)(t+y-2)=3
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-(t-y+2)(t+y-2)=3 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-(t-y+2)(t+y-2)=3
$$

Verified OK.

4.9.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{t}{y-2} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 138: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=\frac{1}{t} \\
& \eta(t, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{\frac{1}{t}} d t
\end{aligned}
$$

Which results in

$$
S=\frac{t^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{t}{y-2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{y} & =1 \\
S_{t} & =t \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y-2 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R-2
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{1}{2} R^{2}-2 R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\frac{t^{2}}{2}=\frac{y^{2}}{2}-2 y+c_{1}
$$

Which simplifies to

$$
\frac{t^{2}}{2}=\frac{y^{2}}{2}-2 y+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{t}{y-2}$		$\frac{d S}{d R}=R-2$
	$R=y$	
	$S=\underline{t^{2}}$	
$\operatorname{lom}_{\text {a }}$		

Initial conditions are used to solve for c_{1}. Substituting $t=-1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \frac{1}{2}=c_{1} \\
& c_{1}=\frac{1}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{t^{2}}{2}=\frac{1}{2} y^{2}-2 y+\frac{1}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{t^{2}}{2}=\frac{y^{2}}{2}-2 y+\frac{1}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{t^{2}}{2}=\frac{y^{2}}{2}-2 y+\frac{1}{2}
$$

Verified OK.

4.9.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(y-2) \mathrm{d} y & =(t) \mathrm{d} t \\
(-t) \mathrm{d} t+(y-2) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-t \\
N(t, y) & =y-2
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-t) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(y-2) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-t \mathrm{~d} t \\
\phi & =-\frac{t^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y-2$. Therefore equation (4) becomes

$$
\begin{equation*}
y-2=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y-2
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(y-2) \mathrm{d} y \\
f(y) & =\frac{1}{2} y^{2}-2 y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{1}{2} t^{2}+\frac{1}{2} y^{2}-2 y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{1}{2} t^{2}+\frac{1}{2} y^{2}-2 y
$$

Initial conditions are used to solve for c_{1}. Substituting $t=-1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -\frac{1}{2}=c_{1} \\
& c_{1}=-\frac{1}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{1}{2} t^{2}+\frac{1}{2} y^{2}-2 y=-\frac{1}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{t^{2}}{2}+\frac{y^{2}}{2}-2 y=-\frac{1}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\frac{t^{2}}{2}+\frac{y^{2}}{2}-2 y=-\frac{1}{2}
$$

Verified OK.

4.9.7 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{t}{y-2}=0, y(-1)=0\right]
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables

$$
y^{\prime}(y-2)=t
$$

- Integrate both sides with respect to t

$$
\int y^{\prime}(y-2) d t=\int t d t+c_{1}
$$

- Evaluate integral

$$
\frac{y^{2}}{2}-2 y=\frac{t^{2}}{2}+c_{1}
$$

- \quad Solve for y

$$
\left\{y=2-\sqrt{t^{2}+2 c_{1}+4}, y=2+\sqrt{t^{2}+2 c_{1}+4}\right\}
$$

- Use initial condition $y(-1)=0$
$0=2-\sqrt{5+2 c_{1}}$
- \quad Solve for c_{1}
$c_{1}=-\frac{1}{2}$
- \quad Substitute $c_{1}=-\frac{1}{2}$ into general solution and simplify
$y=2-\sqrt{t^{2}+3}$
- Use initial condition $y(-1)=0$

$$
0=2+\sqrt{5+2 c_{1}}
$$

- Solution does not satisfy initial condition
- Solution to the IVP
$y=2-\sqrt{t^{2}+3}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 15

```
dsolve([diff(y(t),t)=t/(y(t)-2),y(-1) = 0],y(t), singsol=all)
```

$$
y(t)=2-\sqrt{t^{2}+3}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 21
DSolve[\{y' $[\mathrm{t}]==1 /(\mathrm{y}[\mathrm{t}]-2),\{\mathrm{y}[-1]==0\}\}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow 2-\sqrt{2} \sqrt{t+3}
$$

5 Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89

5.1 problem 1 and 13 (i) . 658
5.2 problem 1 and 13 (ii) . 663
5.3 problem 1 and 13 (iii) . 668
5.4 problem 1 and 13 (iv) . 673
5.5 problem 2 and 14(i) . 677
5.6 problem 2 and 14(ii) . 682
5.7 problem 2 and 14(iii) . 687
5.8 problem 2 and 14(iv) . 691
5.9 problem 3 and 15(i) . 696
5.10 problem 3 and $15(\mathrm{ii})$. 700
5.11 problem 3 and 15(iii) . 704
5.12 problem 3 and 15(iv) . 708
5.13 problem 4 . 712
5.14 problem 4 and 16(i) . 715
5.15 problem 4 and 16(ii) . 718
5.16 problem 4 and 16(iii) . 721
5.17 problem 4 and 16(iv) . 7724
5.18 problem 5 . 727
5.19 problem 6 . 730
5.20 problem 7 . 733
5.21 problem 8 . 736
5.22 problem 9 . 739
5.23 problem 10 . 7742
5.24 problem 11 . 745
5.25 problem 12 . 748
5.26 problem 22 . 751
5.27 problem 23 . 756
5.28 problem 24 . 760
5.29 problem 25 . 765
5.30 problem 26 . 770
5.31 problem 27 . 7774
5.32 problem 37 (i) . 7779
5.33 problem 37 (ii) . 782
5.34 problem 37 (iii) . 785
5.35 problem 37 (iv) . 788
5.36 problem 37 (v) . 791
5.37 problem 37 (vi) . 795
5.38 problem 37 (vii) . 798
5.39 problem 37 (viii) . 801

5.1 problem 1 and 13 (i)

5.1.1 Existence and uniqueness analysis 658
5.1.2 Solving as quadrature ode . 659
5.1.3 Maple step by step solution . 660

Internal problem ID [12951]
Internal file name [OUTPUT/11603_Tuesday_November_07_2023_11_51_54_PM_78927745/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 1 and 13 (i).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-3 y(y-2)=0
$$

With initial conditions

$$
[y(0)=1]
$$

5.1.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =3 y(y-2)
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}(3 y(y-2)) \\
& =6 y-6
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

5.1.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{3 y(y-2)} d y & =\int d t \\
\frac{\ln (y-2)}{6}-\frac{\ln (y)}{6} & =t+c_{1}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{6}\right)(\ln (y-2)-\ln (y)) & =t+c_{1} \\
\ln (y-2)-\ln (y) & =(6)\left(t+c_{1}\right) \\
& =6 t+6 c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (y-2)-\ln (y)}=6 c_{1} \mathrm{e}^{6 t}
$$

Which simplifies to

$$
\frac{y-2}{y}=c_{2} \mathrm{e}^{6 t}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=-\frac{2}{-1+c_{2}} \\
c_{2}=-1
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\frac{2}{\mathrm{e}^{6 t}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2}{\mathrm{e}^{6 t}+1} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{2}{\mathrm{e}^{6 t}+1}
$$

Verified OK.

5.1.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-3 y(y-2)=0, y(0)=1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables
$\frac{y^{\prime}}{y(y-2)}=3$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y(y-2)} d t=\int 3 d t+c_{1}$
- Evaluate integral
$\frac{\ln (y-2)}{2}-\frac{\ln (y)}{2}=3 t+c_{1}$
- \quad Solve for y
$y=-\frac{2}{\mathrm{e}^{6 t+2 c_{1}}-1}$
- Use initial condition $y(0)=1$
$1=-\frac{2}{\mathrm{e}^{2 c_{1}-1}}$
- \quad Solve for c_{1}

$$
c_{1}=\frac{\mathrm{I}}{2} \pi
$$

- \quad Substitute $c_{1}=\frac{\mathrm{I}}{2} \pi$ into general solution and simplify

$$
y=\frac{2}{\mathrm{e}^{6 t}+1}
$$

- Solution to the IVP
$y=\frac{2}{\mathrm{e}^{\mathrm{e}^{t}+1}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 14
dsolve([diff $(y(t), t)=3 * y(t) *(y(t)-2), y(0)=1], y(t)$, singsol=all)

$$
y(t)=\frac{2}{1+\mathrm{e}^{6 t}}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 16
DSolve $\left[\left\{y^{\prime}[t]==3 * y[t] *(y[t]-2),\{y[0]==1\}\right\}, y[t], t\right.$, IncludeSingularSolutions \rightarrow True $]$

$$
y(t) \rightarrow \frac{2}{e^{6 t}+1}
$$

5.2 problem 1 and 13 (ii)

5.2.1 Existence and uniqueness analysis 663
5.2.2 Solving as quadrature ode . 664
5.2.3 Maple step by step solution . 665

Internal problem ID [12952]
Internal file name [OUTPUT/11604_Tuesday_November_07_2023_11_51_55_PM_71168806/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 1 and 13 (ii).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-3 y(y-2)=0
$$

With initial conditions

$$
[y(-2)=-1]
$$

5.2.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =3 y(y-2)
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=-2$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}(3 y(y-2)) \\
& =6 y-6
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=-2$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-1$ is inside this domain. Therefore solution exists and is unique.

5.2.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{3 y(y-2)} d y & =\int d t \\
\frac{\ln (y-2)}{6}-\frac{\ln (y)}{6} & =t+c_{1}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{6}\right)(\ln (y-2)-\ln (y)) & =t+c_{1} \\
\ln (y-2)-\ln (y) & =(6)\left(t+c_{1}\right) \\
& =6 t+6 c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (y-2)-\ln (y)}=6 c_{1} \mathrm{e}^{6 t}
$$

Which simplifies to

$$
\frac{y-2}{y}=c_{2} \mathrm{e}^{6 t}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=-2$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=-\frac{2}{-1+c_{2} \mathrm{e}^{-12}} \\
c_{2}=3 \mathrm{e}^{12}
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=-\frac{2}{-1+3 \mathrm{e}^{12+6 t}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2}{-1+3 \mathrm{e}^{12+6 t}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{2}{-1+3 \mathrm{e}^{12+6 t}}
$$

Verified OK.

5.2.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-3 y(y-2)=0, y(-2)=-1\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables
$\frac{y^{\prime}}{y(y-2)}=3$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y(y-2)} d t=\int 3 d t+c_{1}$
- Evaluate integral
$\frac{\ln (y-2)}{2}-\frac{\ln (y)}{2}=3 t+c_{1}$
- \quad Solve for y
$y=-\frac{2}{e^{6 t+2 c_{1}-1}}$
- Use initial condition $y(-2)=-1$
$-1=-\frac{2}{e^{-12+2 c_{1}}-1}$
- \quad Solve for c_{1}
$c_{1}=6+\frac{\ln (3)}{2}$
- Substitute $c_{1}=6+\frac{\ln (3)}{2}$ into general solution and simplify
$y=-\frac{2}{-1+3 \mathrm{e}^{12+6 t}}$
- Solution to the IVP
$y=-\frac{2}{-1+3 \mathrm{e}^{12+6 t}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 18
dsolve([diff($y(t), t)=3 * y(t) *(y(t)-2), y(-2)=-1], y(t)$, singsol=all)

$$
y(t)=-\frac{2}{3 \mathrm{e}^{6 t+12}-1}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 20
DSolve[\{y' $[\mathrm{t}]==3 * y[\mathrm{t}] *(\mathrm{y}[\mathrm{t}]-2),\{\mathrm{y}[-2]==-1\}\}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{2}{1-3 e^{6(t+2)}}
$$

5.3 problem 1 and 13 (iii)

5.3.1 Existence and uniqueness analysis 668
5.3.2 Solving as quadrature ode . 669
5.3.3 Maple step by step solution . 670

Internal problem ID [12953]
Internal file name [OUTPUT/11605_Tuesday_November_07_2023_11_51_56_PM_10796876/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 1 and 13 (iii).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-3 y(y-2)=0
$$

With initial conditions

$$
[y(0)=3]
$$

5.3.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =3 y(y-2)
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=3$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}(3 y(y-2)) \\
& =6 y-6
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=3$ is inside this domain. Therefore solution exists and is unique.

5.3.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{3 y(y-2)} d y & =\int d t \\
\frac{\ln (y-2)}{6}-\frac{\ln (y)}{6} & =t+c_{1}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{6}\right)(\ln (y-2)-\ln (y)) & =t+c_{1} \\
\ln (y-2)-\ln (y) & =(6)\left(t+c_{1}\right) \\
& =6 t+6 c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (y-2)-\ln (y)}=6 c_{1} \mathrm{e}^{6 t}
$$

Which simplifies to

$$
\frac{y-2}{y}=c_{2} \mathrm{e}^{6 t}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=0$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
3=-\frac{2}{-1+c_{2}} \\
c_{2}=\frac{1}{3}
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=-\frac{6}{\mathrm{e}^{6 t}-3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{6}{\mathrm{e}^{6 t}-3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{6}{\mathrm{e}^{6 t}-3}
$$

Verified OK.

5.3.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-3 y(y-2)=0, y(0)=3\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables
$\frac{y^{\prime}}{y(y-2)}=3$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y(y-2)} d t=\int 3 d t+c_{1}$
- Evaluate integral

$$
\frac{\ln (y-2)}{2}-\frac{\ln (y)}{2}=3 t+c_{1}
$$

- \quad Solve for y
$y=-\frac{2}{e^{6 t+2 c_{1}-1}}$
- Use initial condition $y(0)=3$
$3=-\frac{2}{\mathrm{e}^{2 c_{1}-1}}$
- \quad Solve for c_{1}
$c_{1}=-\frac{\ln (3)}{2}$
- Substitute $c_{1}=-\frac{\ln (3)}{2}$ into general solution and simplify

$$
y=-\frac{6}{\mathrm{e}^{6 t}-3}
$$

- \quad Solution to the IVP

$$
y=-\frac{6}{\mathrm{e}^{6 t}-3}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
dsolve([diff $(y(t), t)=3 * y(t) *(y(t)-2), y(0)=3], y(t)$, singsol=all)

$$
y(t)=-\frac{6}{\mathrm{e}^{6 t}-3}
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 16
DSolve[\{y' $[t]==3 * y[t] *(y[t]-2),\{y[0]==3\}\}, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow-\frac{6}{e^{6 t}-3}
$$

5.4 problem 1 and 13 (iv)

5.4.1 Existence and uniqueness analysis 673
5.4.2 Solving as quadrature ode . 674
5.4.3 Maple step by step solution . 675

Internal problem ID [12954]
Internal file name [OUTPUT/11606_Tuesday_November_07_2023_11_51_56_PM_11603891/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 1 and 13 (iv).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-3 y(y-2)=0
$$

With initial conditions

$$
[y(0)=2]
$$

5.4.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =3 y(y-2)
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}(3 y(y-2)) \\
& =6 y-6
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=2$ is inside this domain. Therefore solution exists and is unique.

5.4.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{3 y(y-2)} d y & =\int d t \\
\frac{\ln (y-2)}{6}-\frac{\ln (y)}{6} & =t+c_{1}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{6}\right)(\ln (y-2)-\ln (y)) & =t+c_{1} \\
\ln (y-2)-\ln (y) & =(6)\left(t+c_{1}\right) \\
& =6 t+6 c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (y-2)-\ln (y)}=6 c_{1} \mathrm{e}^{6 t}
$$

Which simplifies to

$$
\frac{y-2}{y}=c_{2} \mathrm{e}^{6 t}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=0$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2=-\frac{2}{-1+c_{2}} \\
c_{2}=0
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=2
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=2 \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2
$$

Verified OK.

5.4.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-3 y(y-2)=0, y(0)=2\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y(y-2)}=3$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y(y-2)} d t=\int 3 d t+c_{1}$
- Evaluate integral

$$
\frac{\ln (y-2)}{2}-\frac{\ln (y)}{2}=3 t+c_{1}
$$

- \quad Solve for y

$$
y=-\frac{2}{\mathrm{e}^{6 t+2 c_{1}-1}}
$$

- Use initial condition $y(0)=2$
$2=-\frac{2}{\mathrm{e}^{2 c_{1}-1}}$
- Solution does not satisfy initial condition

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

```
dsolve([diff(y(t),t)=3*y(t)*(y(t)-2),y(0) = 2],y(t), singsol=all)
```

$$
y(t)=2
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 6
DSolve [\{y' $[\mathrm{t}]==3 * y[\mathrm{t}] *(\mathrm{y}[\mathrm{t}]-2),\{\mathrm{y}[0]==2\}\}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow 2
$$

5.5 problem 2 and 14(i)

5.5.1 Existence and uniqueness analysis 677
5.5.2 Solving as quadrature ode . 678
5.5.3 Maple step by step solution . 679

Internal problem ID [12955]
Internal file name [OUTPUT/11607_Tuesday_November_07_2023_11_51_57_PM_65364348/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 2 and 14(i).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y^{2}+4 y=-12
$$

With initial conditions

$$
[y(0)=1]
$$

5.5.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =y^{2}-4 y-12
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2}-4 y-12\right) \\
& =2 y-4
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

5.5.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{2}-4 y-12} d y & =\int d t \\
\frac{\ln (y-6)}{8}-\frac{\ln (y+2)}{8} & =t+c_{1}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{8}\right)(\ln (y-6)-\ln (y+2)) & =t+c_{1} \\
\ln (y-6)-\ln (y+2) & =(8)\left(t+c_{1}\right) \\
& =8 t+8 c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (y-6)-\ln (y+2)}=8 c_{1} \mathrm{e}^{8 t}
$$

Which simplifies to

$$
\frac{y-6}{y+2}=c_{2} \mathrm{e}^{8 t}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{-2 c_{2}-6}{-1+c_{2}} \\
c_{2}=-\frac{5}{3}
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\frac{-10 \mathrm{e}^{8 t}+18}{5 \mathrm{e}^{8 t}+3}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-10 \mathrm{e}^{8 t}+18}{5 \mathrm{e}^{8 t}+3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{-10 \mathrm{e}^{8 t}+18}{5 \mathrm{e}^{8 t}+3}
$$

Verified OK.

5.5.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-y^{2}+4 y=-12, y(0)=1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables
$\frac{y^{\prime}}{y^{2}-4 y-12}=1$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y^{2}-4 y-12} d t=\int 1 d t+c_{1}$
- Evaluate integral
$\frac{\ln (y-6)}{8}-\frac{\ln (y+2)}{8}=t+c_{1}$
- \quad Solve for y
$y=-\frac{2\left(3+\mathrm{e}^{8 t+8 c_{1}}\right)}{\mathrm{e}^{8 t+8 c_{1}-1}}$
- Use initial condition $y(0)=1$
$1=-\frac{2\left(3+e^{8 c_{1}}\right)}{e^{8 c_{1}}-1}$
- \quad Solve for c_{1}
$c_{1}=\frac{\ln \left(\frac{5}{3}\right)}{8}+\frac{\mathrm{I} \pi}{8}$
- Substitute $c_{1}=\frac{\ln \left(\frac{5}{3}\right)}{8}+\frac{\mathrm{I} \pi}{8}$ into general solution and simplify $y=\frac{-10 e^{8 t}+18}{5 e^{8 t}+3}$
- Solution to the IVP
$y=\frac{-10 e^{8 t}+18}{5 \mathrm{e}^{8 t}+3}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.094 (sec). Leaf size: 23
dsolve([diff $\left.(y(t), t)=y(t)^{\sim} 2-4 * y(t)-12, y(0)=1\right], y(t)$, singsol=all)

$$
y(t)=\frac{18-10 \mathrm{e}^{8 t}}{5 \mathrm{e}^{8 t}+3}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 26
DSolve[\{y' $[t]==y[t] \sim 2-4 * y[t]-12,\{y[0]==1\}\}, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{18-10 e^{8 t}}{5 e^{8 t}+3}
$$

5.6 problem 2 and 14(ii)

5.6.1 Existence and uniqueness analysis 682
5.6.2 Solving as quadrature ode . 683
5.6.3 Maple step by step solution . 684

Internal problem ID [12956]
Internal file name [OUTPUT/11608_Tuesday_November_07_2023_11_51_58_PM_29876747/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 2 and 14(ii).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y^{2}+4 y=-12
$$

With initial conditions

$$
[y(1)=0]
$$

5.6.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =y^{2}-4 y-12
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2}-4 y-12\right) \\
& =2 y-4
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Therefore solution exists and is unique.

5.6.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{2}-4 y-12} d y & =\int d t \\
\frac{\ln (y-6)}{8}-\frac{\ln (y+2)}{8} & =t+c_{1}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{8}\right)(\ln (y-6)-\ln (y+2)) & =t+c_{1} \\
\ln (y-6)-\ln (y+2) & =(8)\left(t+c_{1}\right) \\
& =8 t+8 c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (y-6)-\ln (y+2)}=8 c_{1} \mathrm{e}^{8 t}
$$

Which simplifies to

$$
\frac{y-6}{y+2}=c_{2} \mathrm{e}^{8 t}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{-2 c_{2} \mathrm{e}^{8}-6}{-1+c_{2} \mathrm{e}^{8}} \\
c_{2}=-3 \mathrm{e}^{-8}
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\frac{-6 \mathrm{e}^{-8+8 t}+6}{3 \mathrm{e}^{-8+8 t}+1}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-6 \mathrm{e}^{-8+8 t}+6}{3 \mathrm{e}^{-8+8 t}+1} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{-6 \mathrm{e}^{-8+8 t}+6}{3 \mathrm{e}^{-8+8 t}+1}
$$

Verified OK.

5.6.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-y^{2}+4 y=-12, y(1)=0\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y^{2}-4 y-12}=1$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y^{2}-4 y-12} d t=\int 1 d t+c_{1}$
- Evaluate integral
$\frac{\ln (y-6)}{8}-\frac{\ln (y+2)}{8}=t+c_{1}$
- \quad Solve for y
$y=-\frac{2\left(3+\mathrm{e}^{8 t+8 c_{1}}\right)}{\mathrm{e}^{8 t+8 c_{1}-1}}$
- Use initial condition $y(1)=0$
$0=-\frac{2\left(3+\mathrm{e}^{8+8 c_{1}}\right)}{\mathrm{e}^{8+8 c_{1}-1}}$
- \quad Solve for c_{1}
$c_{1}=-1+\frac{\ln (3)}{8}+\frac{\mathrm{I} \pi}{8}$
- Substitute $c_{1}=-1+\frac{\ln (3)}{8}+\frac{\mathrm{I} \pi}{8}$ into general solution and simplify $y=\frac{-6 \mathrm{e}^{-8+8 t}+6}{3 \mathrm{e}^{-8+8 t}+1}$
- Solution to the IVP

$$
y=\frac{-6 \mathrm{e}^{-8+8 t}+6}{3 \mathrm{e}^{-8+8 t}+1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.125 (sec). Leaf size: 26
dsolve([diff $(y(t), t)=y(t) \sim 2-4 * y(t)-12, y(1)=0], y(t)$, singsol=all)

$$
y(t)=\frac{6-6 \mathrm{e}^{-8+8 t}}{3 \mathrm{e}^{-8+8 t}+1}
$$

\checkmark Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 32
DSolve[\{y' $[t]==y[t] \sim 2-4 * y[t]-12,\{y[1]==0\}\}, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{6 e^{8}-6 e^{8 t}}{3 e^{8 t}+e^{8}}
$$

5.7 problem 2 and 14(iii)

5.7.1 Existence and uniqueness analysis 687
5.7.2 Solving as quadrature ode . 688
5.7.3 Maple step by step solution . 689

Internal problem ID [12957]
Internal file name [OUTPUT/11609_Tuesday_November_07_2023_11_51_59_PM_96989353/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 2 and 14(iii).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y^{2}+4 y=-12
$$

With initial conditions

$$
[y(0)=6]
$$

5.7.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =y^{2}-4 y-12
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=6$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2}-4 y-12\right) \\
& =2 y-4
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=6$ is inside this domain. Therefore solution exists and is unique.

5.7.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{2}-4 y-12} d y & =\int d t \\
\frac{\ln (y-6)}{8}-\frac{\ln (y+2)}{8} & =t+c_{1}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{8}\right)(\ln (y-6)-\ln (y+2)) & =t+c_{1} \\
\ln (y-6)-\ln (y+2) & =(8)\left(t+c_{1}\right) \\
& =8 t+8 c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (y-6)-\ln (y+2)}=8 c_{1} \mathrm{e}^{8 t}
$$

Which simplifies to

$$
\frac{y-6}{y+2}=c_{2} \mathrm{e}^{8 t}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=0$ and $y=6$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
6=\frac{-2 c_{2}-6}{-1+c_{2}} \\
c_{2}=0
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=6
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=6 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=6
$$

Verified OK.

5.7.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-y^{2}+4 y=-12, y(0)=6\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y^{2}-4 y-12}=1$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y^{2}-4 y-12} d t=\int 1 d t+c_{1}$
- Evaluate integral

$$
\frac{\ln (y-6)}{8}-\frac{\ln (y+2)}{8}=t+c_{1}
$$

- \quad Solve for y
$y=-\frac{2\left(3+\mathrm{e}^{8 t+8 c_{1}}\right)}{\mathrm{e}^{8 t+8 c_{1}}-1}$
- Use initial condition $y(0)=6$
$6=-\frac{2\left(3+e^{8 c_{1}}\right)}{\mathrm{e}^{8 c_{1}}-1}$
- Solution does not satisfy initial condition

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 5

```
dsolve([diff(y(t),t)=y(t)^2-4*y(t)-12,y(0) = 6],y(t), singsol=all)
```

$$
y(t)=6
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 6

```
DSolve [\{y' \([\mathrm{t}]==\mathrm{y}[\mathrm{t}] \sim 2-4 * \mathrm{y}[\mathrm{t}]-12,\{\mathrm{y}[0]==6\}\}, \mathrm{y}[\mathrm{t}], \mathrm{t}\), IncludeSingularSolutions \(\rightarrow\) True \(]\)
```

$$
y(t) \rightarrow 6
$$

5.8 problem 2 and 14(iv)

5.8.1 Existence and uniqueness analysis 691
5.8.2 Solving as quadrature ode . 692
5.8.3 Maple step by step solution . 693

Internal problem ID [12958]
Internal file name [OUTPUT/11610_Tuesday_November_07_2023_11_52_00_PM_8019104/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 2 and 14(iv).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y^{2}+4 y=-12
$$

With initial conditions

$$
[y(0)=5]
$$

5.8.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =y^{2}-4 y-12
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=5$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2}-4 y-12\right) \\
& =2 y-4
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=5$ is inside this domain. Therefore solution exists and is unique.

5.8.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{2}-4 y-12} d y & =\int d t \\
\frac{\ln (y-6)}{8}-\frac{\ln (y+2)}{8} & =t+c_{1}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{8}\right)(\ln (y-6)-\ln (y+2)) & =t+c_{1} \\
\ln (y-6)-\ln (y+2) & =(8)\left(t+c_{1}\right) \\
& =8 t+8 c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (y-6)-\ln (y+2)}=8 c_{1} \mathrm{e}^{8 t}
$$

Which simplifies to

$$
\frac{y-6}{y+2}=c_{2} \mathrm{e}^{8 t}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=0$ and $y=5$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
5=\frac{-2 c_{2}-6}{-1+c_{2}} \\
c_{2}=-\frac{1}{7}
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\frac{-2 \mathrm{e}^{8 t}+42}{\mathrm{e}^{8 t}+7}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-2 \mathrm{e}^{8 t}+42}{\mathrm{e}^{8 t}+7} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=\frac{-2 \mathrm{e}^{8 t}+42}{\mathrm{e}^{8 t}+7}
$$

Verified OK.

5.8.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-y^{2}+4 y=-12, y(0)=5\right]
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables

$$
\frac{y^{\prime}}{y^{2}-4 y-12}=1
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{y^{2}-4 y-12} d t=\int 1 d t+c_{1}
$$

- Evaluate integral

$$
\frac{\ln (y-6)}{8}-\frac{\ln (y+2)}{8}=t+c_{1}
$$

- \quad Solve for y
$y=-\frac{2\left(3+\mathrm{e}^{8 t+8 c_{1}}\right)}{\mathrm{e}^{8 t+8 c_{1}-1}}$
- Use initial condition $y(0)=5$
$5=-\frac{2\left(3+\mathrm{e}^{8 c_{1}}\right)}{\mathrm{e}^{8 c_{1}}-1}$
- \quad Solve for c_{1}
$c_{1}=-\frac{\ln (7)}{8}+\frac{\mathrm{I} \pi}{8}$
- Substitute $c_{1}=-\frac{\ln (7)}{8}+\frac{\mathrm{I} \pi}{8}$ into general solution and simplify $y=\frac{-2 \mathrm{e}^{8 t}+42}{\mathrm{e}^{t t}+7}$
- Solution to the IVP
$y=\frac{-2 \mathrm{e}^{8 t}+42}{\mathrm{e}^{8 t}+7}$

Maple trace

```
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.109 (sec). Leaf size: 20
dsolve([diff $\left.(y(t), t)=y(t)^{\sim} 2-4 * y(t)-12, y(0)=5\right], y(t)$, singsol=all)

$$
y(t)=\frac{42-2 \mathrm{e}^{8 t}}{\mathrm{e}^{8 t}+7}
$$

\checkmark Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 24
DSolve[\{y' $[\mathrm{t}]==\mathrm{y}[\mathrm{t}] \sim 2-4 * \mathrm{y}[\mathrm{t}]-12,\{\mathrm{y}[0]==5\}\}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{42-2 e^{8 t}}{e^{8 t}+7}
$$

5.9 problem 3 and 15(i)

5.9.1 Existence and uniqueness analysis 696
5.9.2 Solving as quadrature ode . 697
5.9.3 Maple step by step solution . 698

Internal problem ID [12959]
Internal file name [OUTPUT/11611_Tuesday_November_07_2023_11_52_01_PM_45048317/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 3 and 15(i).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-\cos (y)=0
$$

With initial conditions

$$
[y(0)=0]
$$

5.9.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =\cos (y)
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}(\cos (y)) \\
& =-\sin (y)
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Therefore solution exists and is unique.

5.9.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\cos (y)} d y & =\int d t \\
\ln (\sec (y)+\tan (y)) & =t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sec (y)+\tan (y)=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
\sec (y)+\tan (y)=c_{2} \mathrm{e}^{t}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=c_{2} \\
& c_{2}=1
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
\sec (y)+\tan (y)=\mathrm{e}^{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sec (y)+\tan (y)=\mathrm{e}^{t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\sec (y)+\tan (y)=\mathrm{e}^{t}
$$

Verified OK.

5.9.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\cos (y)=0, y(0)=0\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{\cos (y)}=1
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{\cos (y)} d t=\int 1 d t+c_{1}
$$

- Evaluate integral
$\ln (\sec (y)+\tan (y))=t+c_{1}$
- \quad Solve for y
$y=\arctan \left(\frac{\left(\mathrm{e}^{t+c_{1}}\right)^{2}-1}{\left(\mathrm{e}^{t+c_{1}}\right)^{2}+1}, \frac{2 \mathrm{e}^{t+c_{1}}}{\left(\mathrm{e}^{\mathrm{t}+c_{1}}\right)^{2}+1}\right)$
- Use initial condition $y(0)=0$
$0=\arctan \left(\frac{\left(\mathrm{e}^{c_{1}}\right)^{2}-1}{\left(\mathrm{e}^{c_{1}}\right)^{2}+1}, \frac{2 \mathrm{e}^{c_{1}}}{\left(\mathrm{e}^{c_{1}}\right)^{2}+1}\right)$
- Solution does not satisfy initial condition

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.093 (sec). Leaf size: 32
dsolve([diff $(y(t), t)=\cos (y(t)), y(0)=0], y(t)$, singsol=all)

$$
y(t)=\arctan \left(\frac{\mathrm{e}^{2 t}-1}{\mathrm{e}^{2 t}+1}, \frac{2 \mathrm{e}^{t}}{\mathrm{e}^{2 t}+1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 8
DSolve[\{y' $[t]==\operatorname{Cos}[y[t]],\{y[0]==0\}\}, y[t], t$, IncludeSingularSolutions $->$ True $]$

$$
y(t) \rightarrow \arcsin (\tanh (t))
$$

5.10 problem 3 and 15(ii)

5.10.1 Existence and uniqueness analysis 700
5.10.2 Solving as quadrature ode . 701
5.10.3 Maple step by step solution . 702

Internal problem ID [12960]
Internal file name [OUTPUT/11612_Tuesday_November_07_2023_11_52_02_PM_74617560/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 3 and 15(ii).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-\cos (y)=0
$$

With initial conditions

$$
[y(-1)=1]
$$

5.10.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =\cos (y)
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=-1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}(\cos (y)) \\
& =-\sin (y)
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=-1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

5.10.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\cos (y)} d y & =\int d t \\
\ln (\sec (y)+\tan (y)) & =t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sec (y)+\tan (y)=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
\sec (y)+\tan (y)=c_{2} \mathrm{e}^{t}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=-1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \sec (1)+\tan (1)=c_{2} \mathrm{e}^{-1} \\
& c_{2}=(\sec (1)+\tan (1)) \mathrm{e}
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
\sec (y)+\tan (y)=\sec (1) \mathrm{e}^{1+t}+\tan (1) \mathrm{e}^{1+t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sec (y)+\tan (y)=\mathrm{e}^{1+t}(\sec (1)+\tan (1)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\sec (y)+\tan (y)=\mathrm{e}^{1+t}(\sec (1)+\tan (1))
$$

Verified OK.

5.10.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\cos (y)=0, y(-1)=1\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{\cos (y)}=1
$$

- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{\cos (y)} d t=\int 1 d t+c_{1}$
- Evaluate integral
$\ln (\sec (y)+\tan (y))=t+c_{1}$
- \quad Solve for y
$y=\arctan \left(\frac{\left(\mathrm{e}^{t+c_{1}}\right)^{2}-1}{\left(\mathrm{e}^{t+c_{1}}\right)^{2}+1}, \frac{2 \mathrm{e}^{t+c_{1}}}{\left(\mathrm{e}^{\mathrm{t}+c_{1}}\right)^{2}+1}\right)$
- Use initial condition $y(-1)=1$
$1=\arctan \left(\frac{\left(\mathrm{e}^{-1+c_{1}}\right)^{2}-1}{\left(\mathrm{e}^{-1+c_{1}}\right)^{2}+1}, \frac{2 \mathrm{e}^{-1+c_{1}}}{\left(\mathrm{e}^{-1+c_{1}}\right)^{2}+1}\right)$
- Solution does not satisfy initial condition

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 1.672 (sec). Leaf size: 79
dsolve([diff $(y(t), t)=\cos (y(t)), y(-1)=1], y(t)$, singsol=all)
$y(t)=\arctan \left(\frac{\sin (1) \mathrm{e}^{2+2 t}+\mathrm{e}^{2+2 t}+\sin (1)-1}{\sin (1) \mathrm{e}^{2+2 t}+\mathrm{e}^{2+2 t}-\sin (1)+1}, \frac{2 \mathrm{e}^{t+1} \cos (1)}{\sin (1) \mathrm{e}^{2+2 t}+\mathrm{e}^{2+2 t}-\sin (1)+1}\right)$
\checkmark Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 13
DSolve[\{y' $[t]==\operatorname{Cos}[y[t]],\{y[-1]==1\}\}, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \arcsin \left(\operatorname{coth}\left(t+1+\operatorname{coth}^{-1}(\sin (1))\right)\right)
$$

5.11 problem 3 and 15(iii)

5.11.1 Existence and uniqueness analysis 704
5.11.2 Solving as quadrature ode . 705
5.11.3 Maple step by step solution . 706

Internal problem ID [12961]
Internal file name [OUTPUT/11613_Tuesday_November_07_2023_11_52_04_PM_67352258/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 3 and 15(iii).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-\cos (y)=0
$$

With initial conditions

$$
\left[y(0)=-\frac{\pi}{2}\right]
$$

5.11.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =\cos (y)
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-\frac{\pi}{2}$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}(\cos (y)) \\
& =-\sin (y)
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-\frac{\pi}{2}$ is inside this domain. Therefore solution exists and is unique.

5.11.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\cos (y)} d y & =\int d t \\
\ln (\sec (y)+\tan (y)) & =t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sec (y)+\tan (y)=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
\sec (y)+\tan (y)=c_{2} \mathrm{e}^{t}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=0$ and $y=-\frac{\pi}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=c_{2} \\
& c_{2}=0
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
\sec (y)+\tan (y)=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sec (y)+\tan (y)=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\sec (y)+\tan (y)=0
$$

Verified OK.

5.11.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\cos (y)=0, y(0)=-\frac{\pi}{2}\right]
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- \quad Separate variables

$$
\frac{y^{\prime}}{\cos (y)}=1
$$

- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{\cos (y)} d t=\int 1 d t+c_{1}$
- Evaluate integral
$\ln (\sec (y)+\tan (y))=t+c_{1}$
- \quad Solve for y
$y=\arctan \left(\frac{\left(\mathrm{e}^{t+c_{1}}\right)^{2}-1}{\left(\mathrm{e}^{t+c_{1}}\right)^{2}+1}, \frac{2 \mathrm{e}^{t+c_{1}}}{\left(\mathrm{e}^{t+c_{1}}\right)^{2}+1}\right)$
- Use initial condition $y(0)=-\frac{\pi}{2}$
$-\frac{\pi}{2}=\arctan \left(\frac{\left(\mathrm{e}^{c_{1}}\right)^{2}-1}{\left(\mathrm{e}^{c_{1}}\right)^{2}+1}, \frac{2 \mathrm{e}^{c_{1}}}{\left(\mathrm{e}^{c_{1}}\right)^{2}+1}\right)$
- Solution does not satisfy initial condition

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 7
dsolve([diff $(y(t), t)=\cos (y(t)), y(0)=-1 / 2 * P i], y(t)$, singsol=all)

$$
y(t)=-\frac{\pi}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 10
DSolve[\{y' $[t]==\operatorname{Cos}[y[t]],\{y[0]==-\mathrm{Pi} / 2\}\}, y[t], t$, IncludeSingularSolutions \rightarrow True $]$

$$
y(t) \rightarrow-\frac{\pi}{2}
$$

5.12 problem 3 and 15(iv)

5.12.1 Existence and uniqueness analysis 708
5.12.2 Solving as quadrature ode . 709
5.12.3 Maple step by step solution . 710

Internal problem ID [12962]
Internal file name [OUTPUT/11614_Tuesday_November_07_2023_11_52_05_PM_58954603/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 3 and 15(iv).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-\cos (y)=0
$$

With initial conditions

$$
[y(0)=\pi]
$$

5.12.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =\cos (y)
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=\pi$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}(\cos (y)) \\
& =-\sin (y)
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=\pi$ is inside this domain. Therefore solution exists and is unique.

5.12.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\cos (y)} d y & =\int d t \\
\ln (\sec (y)+\tan (y)) & =t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sec (y)+\tan (y)=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
\sec (y)+\tan (y)=c_{2} \mathrm{e}^{t}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=0$ and $y=\pi$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -1=c_{2} \\
& c_{2}=-1
\end{aligned}
$$

Substituting c_{2} found above in the general solution gives

$$
\sec (y)+\tan (y)=-\mathrm{e}^{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sec (y)+\tan (y)=-\mathrm{e}^{t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\sec (y)+\tan (y)=-\mathrm{e}^{t}
$$

Verified OK.

5.12.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\cos (y)=0, y(0)=\pi\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{\cos (y)}=1
$$

- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{\cos (y)} d t=\int 1 d t+c_{1}$
- Evaluate integral
$\ln (\sec (y)+\tan (y))=t+c_{1}$
- \quad Solve for y
$y=\arctan \left(\frac{\left(\mathrm{e}^{t+c_{1}}\right)^{2}-1}{\left(\mathrm{e}^{t+c_{1}}\right)^{2}+1}, \frac{2 \mathrm{e}^{t+c_{1}}}{\left(\mathrm{e}^{\mathrm{t}+c_{1}}\right)^{2}+1}\right)$
- Use initial condition $y(0)=\pi$
$\pi=\arctan \left(\frac{\left(\mathrm{e}^{c_{1}}\right)^{2}-1}{\left(\mathrm{e}^{c_{1}}\right)^{2}+1}, \frac{2 \mathrm{e}^{c_{1}}}{\left(\mathrm{e}^{c_{1}}\right)^{2}+1}\right)$
- Solution does not satisfy initial condition

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 32
dsolve([diff($y(t), t)=\cos (y(t)), y(0)=P i], y(t)$, singsol=all)

$$
y(t)=\arctan \left(\frac{\mathrm{e}^{2 t}-1}{\mathrm{e}^{2 t}+1},-\frac{2 \mathrm{e}^{t}}{\mathrm{e}^{2 t}+1}\right)
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[\{y' $[t]==\operatorname{Cos}[y[t]],\{y[0]==P i\}\}, y[t], t$, IncludeSingularSolutions \rightarrow True]
\{\}

5.13 problem 4

5.13.1 Solving as quadrature ode . 712
5.13.2 Maple step by step solution . 713

Internal problem ID [12963]
Internal file name [OUTPUT/11615_Tuesday_November_07_2023_11_52_06_PM_48665625/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
w^{\prime}-w \cos (w)=0
$$

5.13.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{w \cos (w)} d w & =\int d t \\
\int^{w} \frac{1}{-a \cos \left(_a\right)} d _a & =t+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{w} \frac{1}{-a \cos \left(_a\right)} d _a=t+c_{1} \tag{1}
\end{equation*}
$$

Figure 154: Slope field plot

Verification of solutions

$$
\int^{w} \frac{1}{-a \cos \left(_a\right)} d _a=t+c_{1}
$$

Verified OK.

5.13.2 Maple step by step solution

Let's solve

$$
w^{\prime}-w \cos (w)=0
$$

- Highest derivative means the order of the ODE is 1 w^{\prime}
- \quad Separate variables

$$
\frac{w^{\prime}}{w \cos (w)}=1
$$

- Integrate both sides with respect to t
$\int \frac{w^{\prime}}{w \cos (w)} d t=\int 1 d t+c_{1}$
- Cannot compute integral

$$
\int \frac{w^{\prime}}{w \cos (w)} d t=t+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 19

```
dsolve(diff(w(t),t)=w(t)*\operatorname{cos}( w(t)),w(t), singsol=all)
```

$$
t-\left(\int^{w(t)} \frac{\sec \left(_a\right)}{_a} d _a\right)+c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 7.857 (sec). Leaf size: 50

```
DSolve[w'[t]==w[t]*Cos[ w[t]],w[t],t,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& w(t) \rightarrow \text { InverseFunction }\left[\int_{1}^{\# 1} \frac{\sec (K[1])}{K[1]} d K[1] \&\right]\left[t+c_{1}\right] \\
& w(t) \rightarrow 0 \\
& w(t) \rightarrow-\frac{\pi}{2} \\
& w(t) \rightarrow \frac{\pi}{2}
\end{aligned}
$$

5.14 problem 4 and 16(i)

5.14.1 Existence and uniqueness analysis 715
5.14.2 Solving as quadrature ode . 716

Internal problem ID [12964]
Internal file name [OUTPUT/11616_Tuesday_November_07_2023_11_52_06_PM_51224347/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 4 and 16(i).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
w^{\prime}-w \cos (w)=0
$$

With initial conditions

$$
[w(0)=0]
$$

5.14.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
w^{\prime} & =f(t, w) \\
& =w \cos (w)
\end{aligned}
$$

The w domain of $f(t, w)$ when $t=0$ is

$$
\{-\infty<w<\infty\}
$$

And the point $w_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial w} & =\frac{\partial}{\partial w}(w \cos (w)) \\
& =\cos (w)-w \sin (w)
\end{aligned}
$$

The w domain of $\frac{\partial f}{\partial w}$ when $t=0$ is

$$
\{-\infty<w<\infty\}
$$

And the point $w_{0}=0$ is inside this domain. Therefore solution exists and is unique.

5.14.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{w \cos (w)} d w & =\int d t \\
\int^{w} \frac{1}{-a \cos \left(_a\right)} d _a & =t+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $w=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \int^{0} \frac{1}{-a \cos \left(_a\right)} d _a=c_{1} \\
& c_{1}=\int^{0} \frac{\sec \left(_a\right)}{_a} d _a
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
\int^{w} \frac{1}{-a \cos \left(_a\right)} d _a=t+\int^{0} \frac{\sec \left(_a\right)}{_^{a}} d _a
$$

Solving for w from the above gives

$$
w=\operatorname{RootOf}\left(-\left(\int^{-^{Z}} \frac{\sec \left(_a\right)}{-^{a}} d _a\right)+t+\int^{0} \frac{\sec \left(_a\right)}{-^{a}} d _a\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
w=\operatorname{RootOf}\left(-\left(\int^{{ }^{Z}} \frac{\sec \left(_a\right)}{-^{a}} d _a\right)+t+\int^{0} \frac{\sec \left(_a\right)}{_^{a}} d _a\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
w=\operatorname{RootOf}\left(-\left(\int^{-^{Z}} \frac{\sec \left(_a\right)}{-a} d _a\right)+t+\int^{0} \frac{\sec \left(_a\right)}{-a} d _a\right)
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

```
dsolve([diff(w(t),t)=w(t)*\operatorname{cos}(w(t)),w(0) = 0],w(t), singsol=all)
```

$$
w(t)=0
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 6
DSolve[\{ $\left.\mathrm{w}^{\prime}[\mathrm{t}]==\mathrm{w}[\mathrm{t}] * \operatorname{Cos}[\mathrm{w}[\mathrm{t}]],\{\mathrm{w}[0]==0\}\right\}, \mathrm{w}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
w(t) \rightarrow 0
$$

5.15 problem 4 and 16(ii)

5.15.1 Existence and uniqueness analysis 718
5.15.2 Solving as quadrature ode . 719

Internal problem ID [12965]
Internal file name [OUTPUT/11617_Tuesday_November_07_2023_11_52_07_PM_93951882/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 4 and 16(ii).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
w^{\prime}-w \cos (w)=0
$$

With initial conditions

$$
[w(3)=1]
$$

5.15.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
w^{\prime} & =f(t, w) \\
& =w \cos (w)
\end{aligned}
$$

The w domain of $f(t, w)$ when $t=3$ is

$$
\{-\infty<w<\infty\}
$$

And the point $w_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial w} & =\frac{\partial}{\partial w}(w \cos (w)) \\
& =\cos (w)-w \sin (w)
\end{aligned}
$$

The w domain of $\frac{\partial f}{\partial w}$ when $t=3$ is

$$
\{-\infty<w<\infty\}
$$

And the point $w_{0}=1$ is inside this domain. Therefore solution exists and is unique.

5.15.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{w \cos (w)} d w & =\int d t \\
\int^{w} \frac{1}{-a \cos \left(_a\right)} d _a & =t+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=3$ and $w=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \int^{1} \frac{1}{-a \cos \left(_a\right)} d _a=3+c_{1} \\
& c_{1}=-3+\int^{1} \frac{\sec \left(_a\right)}{_^{a}} d _a
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
\int^{w} \frac{1}{-a \cos \left(_a\right)} d _a=t-3+\int^{1} \frac{\sec \left(_a\right)}{-a} d _a
$$

Solving for w from the above gives

$$
w=\operatorname{RootOf}\left(-\left(\int^{-^{Z}} \frac{\sec \left(_a\right)}{-^{a}} d _a\right)+t-3+\int^{1} \frac{\sec \left(_a\right)}{_^{a}} d _a\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
w=\operatorname{RootOf}\left(-\left(\int^{-^{Z}} \frac{\sec \left(_a\right)}{-^{a}} d _a\right)+t-3+\int^{1} \frac{\sec \left(_a\right)}{_^{a}} d _a\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
w=\operatorname{RootOf}\left(-\left(\int^{-^{Z}} \frac{\sec \left(_a\right)}{_^{a}} d _a\right)+t-3+\int^{1} \frac{\sec \left(_a\right)}{_^{a}} d _a\right)
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.407 (sec). Leaf size: 20

```
dsolve([diff(w(t),t)=w(t)*\operatorname{cos}(w(t)),w(3) = 1],w(t), singsol=all)
```

$$
w(t)=\operatorname{RootOf}\left(\int_{-Z}^{1} \frac{\sec \left(_a\right)}{_^{a}} d _a+t-3\right)
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[\{w' $[t]==w[t] * \operatorname{Cos}[w[t]],\{w[3]==1\}\}, w[t], t$, IncludeSingularSolutions $->$ True]
\{\}

5.16 problem 4 and 16(iii)

5.16.1 Existence and uniqueness analysis 7721
5.16.2 Solving as quadrature ode . 772

Internal problem ID [12966]
Internal file name [OUTPUT/11618_Tuesday_November_07_2023_11_52_08_PM_34366214/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 4 and 16(iii).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
w^{\prime}-w \cos (w)=0
$$

With initial conditions

$$
[w(0)=2]
$$

5.16.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
w^{\prime} & =f(t, w) \\
& =w \cos (w)
\end{aligned}
$$

The w domain of $f(t, w)$ when $t=0$ is

$$
\{-\infty<w<\infty\}
$$

And the point $w_{0}=2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial w} & =\frac{\partial}{\partial w}(w \cos (w)) \\
& =\cos (w)-w \sin (w)
\end{aligned}
$$

The w domain of $\frac{\partial f}{\partial w}$ when $t=0$ is

$$
\{-\infty<w<\infty\}
$$

And the point $w_{0}=2$ is inside this domain. Therefore solution exists and is unique.

5.16.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{w \cos (w)} d w & =\int d t \\
\int^{w} \frac{1}{-a \cos \left(_a\right)} d _a & =t+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $w=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\int^{2} \frac{1}{-a \cos \left(_a\right)} d _a=c_{1} \\
c_{1}=\int^{2} \frac{\sec \left(_a\right)}{_a} d _a
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\int^{w} \frac{1}{-a \cos \left(_a\right)} d _a=t+\int^{2} \frac{\sec \left(_a\right)}{_^{a}} d _a
$$

Solving for w from the above gives

$$
w=\operatorname{RootOf}\left(-\left(\int^{-^{Z}} \frac{\sec \left(_a\right)}{-^{a}} d _a\right)+t+\int^{2} \frac{\sec \left(_a\right)}{_^{a}} d _a\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
w=\operatorname{RootOf}\left(-\left(\int^{{ }^{Z}} \frac{\sec \left(_a\right)}{-^{a}} d _a\right)+t+\int^{2} \frac{\sec \left(_a\right)}{_^{a}} d _a\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
w=\operatorname{RootOf}\left(-\left(\int^{-^{Z}} \frac{\sec \left(_a\right)}{-a} d _a\right)+t+\int^{2} \frac{\sec \left(_a\right)}{-^{a}} d _a\right)
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.11 (sec). Leaf size: 19

```
dsolve([diff(w(t),t)=w(t)*\operatorname{cos}(w(t)),w(0) = 2],w(t), singsol=all)
```

$$
w(t)=\operatorname{RootOf}\left(\int_{-Z}^{2} \frac{\sec \left(_a\right)}{-^{a}} d _a+t\right)
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[\{w' $[t]==w[t] * \operatorname{Cos}[w[t]],\{w[0]==2\}\}, w[t], t$, IncludeSingularSolutions $->$ True]
\{\}

5.17 problem 4 and 16(iv)

5.17.1 Existence and uniqueness analysis 724
5.17.2 Solving as quadrature ode . 725

Internal problem ID [12967]
Internal file name [OUTPUT/11619_Tuesday_November_07_2023_11_52_09_PM_98692280/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 4 and 16(iv).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
w^{\prime}-w \cos (w)=0
$$

With initial conditions

$$
[w(0)=-1]
$$

5.17.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
w^{\prime} & =f(t, w) \\
& =w \cos (w)
\end{aligned}
$$

The w domain of $f(t, w)$ when $t=0$ is

$$
\{-\infty<w<\infty\}
$$

And the point $w_{0}=-1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial w} & =\frac{\partial}{\partial w}(w \cos (w)) \\
& =\cos (w)-w \sin (w)
\end{aligned}
$$

The w domain of $\frac{\partial f}{\partial w}$ when $t=0$ is

$$
\{-\infty<w<\infty\}
$$

And the point $w_{0}=-1$ is inside this domain. Therefore solution exists and is unique.

5.17.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{w \cos (w)} d w & =\int d t \\
\int^{w} \frac{1}{-a \cos \left(_a\right)} d _a & =t+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $w=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\int^{-1} \frac{1}{-a \cos \left(_a\right)} d _a=c_{1} \\
c_{1}=\int^{-1} \frac{\sec \left(_a\right)}{_a} d _a
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\int^{w} \frac{1}{_^{a \cos \left(_a\right)}} d _a=t+\int^{-1} \frac{\sec \left(_a\right)}{_^{a}} d _a
$$

Solving for w from the above gives

$$
w=\operatorname{RootOf}\left(-\left(\int^{-Z} \frac{\sec \left(_a\right)}{_^{a}} d _a\right)+t+\int^{-1} \frac{\sec \left(_a\right)}{_^{a}} d _a\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
w=\operatorname{RootOf}\left(-\left(\int^{-} \frac{\sec \left(_a\right)}{-^{a}} d _a\right)+t+\int^{-1} \frac{\sec \left(_a\right)}{-^{a}} d _a\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
w=\operatorname{RootOf}\left(-\left(\int^{-Z} \frac{\sec \left(_a\right)}{-^{a}} d _a\right)+t+\int^{-1} \frac{\sec \left(_a\right)}{-^{a}} d _a\right)
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.109 (sec). Leaf size: 19

```
dsolve([diff(w(t),t)=w(t)*\operatorname{cos}(\textrm{w}(\textrm{t})),\textrm{w}(0)=-1],w(t), singsol=all)
```

$$
w(t)=\operatorname{RootOf}\left(\int_{Z}^{-1} \frac{\sec \left(_a\right)}{_^{a}} d _a+t\right)
$$

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[\{w' $[t]==w[t] * \operatorname{Cos}[w[t]],\{w[0]==-1\}\}, w[t], t$, IncludeSingularSolutions \rightarrow True]
\{\}

5.18 problem 5

$$
\text { 5.18.1 Solving as quadrature ode . } 727
$$

5.18.2 Maple step by step solution . 728

Internal problem ID [12968]
Internal file name [OUTPUT/11620_Tuesday_November_07_2023_11_52_11_PM_7664455/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 5 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
w^{\prime}-(1-w) \sin (w)=0
$$

5.18.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{(-1+w) \sin (w)} d w & =\int d t \\
\int^{w}-\frac{1}{\left(-1+_a\right) \sin \left(_a\right)} d _a & =t+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{w}-\frac{1}{\left(-1+_a\right) \sin \left(_a\right)} d _a=t+c_{1} \tag{1}
\end{equation*}
$$

Figure 155: Slope field plot

Verification of solutions

$$
\int^{w}-\frac{1}{\left(-1+_a\right) \sin \left(_a\right)} d _a=t+c_{1}
$$

Verified OK.

5.18.2 Maple step by step solution

Let's solve

$$
w^{\prime}-(1-w) \sin (w)=0
$$

- Highest derivative means the order of the ODE is 1 w^{\prime}
- \quad Separate variables

$$
\frac{w^{\prime}}{(1-w) \sin (w)}=1
$$

- Integrate both sides with respect to t
$\int \frac{w^{\prime}}{(1-w) \sin (w)} d t=\int 1 d t+c_{1}$
- Cannot compute integral

$$
\int \frac{w^{\prime}}{(1-w) \sin (w)} d t=t+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(diff(w(t),t)=(1-w(t))*sin( w(t)),w(t), singsol=all)
```

$$
t+\int^{w(t)} \frac{\csc \left(_a\right)}{-a-1} d _a+c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 12.825 (sec). Leaf size: 41

```
DSolve[w'[t]==(1-w[t])*Sin[w[t]],w[t],t,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& w(t) \rightarrow \text { InverseFunction }\left[\int_{1}^{\# 1} \frac{\csc (K[1])}{K[1]-1} d K[1] \&\right]\left[-t+c_{1}\right] \\
& w(t) \rightarrow 0 \\
& w(t) \rightarrow 1
\end{aligned}
$$

5.19 problem 6

> 5.19.1 Solving as quadrature ode
5.19.2 Maple step by step solution . 731

Internal problem ID [12969]
Internal file name [OUTPUT/11621_Tuesday_November_07_2023_11_52_12_PM_45223112/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-\frac{1}{y-2}=0
$$

5.19.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int(y-2) d y & =t+c_{1} \\
\frac{1}{2} y^{2}-2 y & =t+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
\begin{aligned}
& y_{1}=2-\sqrt{4+2 t+2 c_{1}} \\
& y_{2}=2+\sqrt{4+2 t+2 c_{1}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=2-\sqrt{4+2 t+2 c_{1}} \tag{1}\\
& y=2+\sqrt{4+2 t+2 c_{1}} \tag{2}
\end{align*}
$$

Figure 156: Slope field plot

Verification of solutions

$$
y=2-\sqrt{4+2 t+2 c_{1}}
$$

Verified OK.

$$
y=2+\sqrt{4+2 t+2 c_{1}}
$$

Verified OK.

5.19.2 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{1}{y-2}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables

$$
y^{\prime}(y-2)=1
$$

- Integrate both sides with respect to t

$$
\int y^{\prime}(y-2) d t=\int 1 d t+c_{1}
$$

- Evaluate integral

$$
\frac{y^{2}}{2}-2 y=t+c_{1}
$$

- \quad Solve for y

$$
\left\{y=2-\sqrt{4+2 t+2 c_{1}}, y=2+\sqrt{4+2 t+2 c_{1}}\right\}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 33

```
dsolve(diff(y(t),t)=1/(y(t)-2),y(t), singsol=all)
```

$$
\begin{aligned}
& y(t)=2-\sqrt{4+2 t+2 c_{1}} \\
& y(t)=2+\sqrt{4+2 t+2 c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.145 (sec). Leaf size: 44
DSolve[y'[t]==1/(y[t]-2),y[t],t,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(t) \rightarrow 2-\sqrt{2} \sqrt{t+2+c_{1}} \\
& y(t) \rightarrow 2+\sqrt{2} \sqrt{t+2+c_{1}}
\end{aligned}
$$

5.20 problem 7

5.20.1 Solving as quadrature ode . 733
5.20.2 Maple step by step solution . 734

Internal problem ID [12970]
Internal file name [OUTPUT/11622_Tuesday_November_07_2023_11_52_13_PM_76106352/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
v^{\prime}+v^{2}+2 v=-2
$$

5.20.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-v^{2}-2 v-2} d v & =t+c_{1} \\
-\arctan (v+1) & =t+c_{1}
\end{aligned}
$$

Solving for v gives these solutions

$$
v_{1}=-1-\tan \left(t+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
v=-1-\tan \left(t+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 157: Slope field plot

Verification of solutions

$$
v=-1-\tan \left(t+c_{1}\right)
$$

Verified OK.

5.20.2 Maple step by step solution

Let's solve

$$
v^{\prime}+v^{2}+2 v=-2
$$

- Highest derivative means the order of the ODE is 1 v^{\prime}
- Separate variables

$$
\frac{v^{\prime}}{-v^{2}-2 v-2}=1
$$

- Integrate both sides with respect to t

$$
\int \frac{v^{\prime}}{-v^{2}-2 v-2} d t=\int 1 d t+c_{1}
$$

- Evaluate integral

$$
-\arctan (v+1)=t+c_{1}
$$

- \quad Solve for v

$$
v=-1-\tan \left(t+c_{1}\right)
$$

Maple trace

```
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(diff(v(t),t)=-v(t)~2-2*v(t)-2,v(t), singsol=all)
```

$$
v(t)=-1-\tan \left(t+c_{1}\right)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.699 (sec). Leaf size: 30
DSolve[v'[t]==-v[t]~2-2*v[t]-2,v[t],t,IncludeSingularSolutions -> True]

$$
\begin{aligned}
v(t) & \rightarrow-1-\tan \left(t-c_{1}\right) \\
v(t) & \rightarrow-1-i \\
v(t) & \rightarrow-1+i
\end{aligned}
$$

5.21 problem 8

$$
\text { 5.21.1 Solving as quadrature ode . } 736
$$

5.21.2 Maple step by step solution . 737

Internal problem ID [12971]
Internal file name [OUTPUT/11623_Tuesday_November_07_2023_11_52_14_PM_25586871/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 8 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
w^{\prime}-3 w^{3}+12 w^{2}=0
$$

5.21.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{3 w^{3}-12 w^{2}} d w & =\int d t \\
\int^{w} \frac{1}{3 _a^{3}-12 _a^{2}} d _a & =t+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{w} \frac{1}{3 _a^{3}-12 _a^{2}} d _a=t+c_{1} \tag{1}
\end{equation*}
$$

Figure 158: Slope field plot

Verification of solutions

$$
\int^{w} \frac{1}{3 _a^{3}-12 _a^{2}} d _a=t+c_{1}
$$

Verified OK.

5.21.2 Maple step by step solution

Let's solve

$$
w^{\prime}-3 w^{3}+12 w^{2}=0
$$

- Highest derivative means the order of the ODE is 1
w^{\prime}
- \quad Separate variables
$\frac{w^{\prime}}{3 w^{3}-12 w^{2}}=1$
- Integrate both sides with respect to t

$$
\int \frac{w^{\prime}}{3 w^{3}-12 w^{2}} d t=\int 1 d t+c_{1}
$$

- Evaluate integral

$$
\frac{\ln (w-4)}{48}+\frac{1}{12 w}-\frac{\ln (w)}{48}=t+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
    Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.094 (sec). Leaf size: 49

```
dsolve(diff(w(t),t)=3*w(t)^3-12*w(t)^2,w(t), singsol=all)
```

$$
w(t)=\mathrm{e}^{\operatorname{RootOf}\left(\ln \left(\mathrm{e}^{Z}+4\right) \mathrm{e}^{Z}+48 c_{1} \mathrm{e}^{Z}--Z \mathrm{e}^{Z}+48 t \mathrm{e}^{Z}+4 \ln \left(\mathrm{e}^{Z}+4\right)+192 c_{1}-4 _Z+192 t-4\right)}+4
$$

\checkmark Solution by Mathematica
Time used: 0.392 (sec). Leaf size: 50

```
DSolve[w'[t]==3*w[t]^ 3-12*w[t]^2,w[t],t,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& w(t) \rightarrow \text { InverseFunction }\left[\frac{1}{4 \# 1}+\frac{1}{16} \log (4-\# 1)-\frac{\log (\# 1)}{16} \&\right]\left[3 t+c_{1}\right] \\
& w(t) \rightarrow 0 \\
& w(t) \rightarrow 4
\end{aligned}
$$

5.22 problem 9

5.22.1 Solving as quadrature ode . 739
5.22.2 Maple step by step solution . 740

Internal problem ID [12972]
Internal file name [OUTPUT/11624_Tuesday_November_07_2023_11_52_15_PM_92452613/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-\cos (y)=1
$$

5.22.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{1+\cos (y)} d y & =t+c_{1} \\
\tan \left(\frac{y}{2}\right) & =t+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=2 \arctan \left(t+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \arctan \left(t+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 159: Slope field plot
Verification of solutions

$$
y=2 \arctan \left(t+c_{1}\right)
$$

Verified OK.

5.22.2 Maple step by step solution

Let's solve

$$
y^{\prime}-\cos (y)=1
$$

- Highest derivative means the order of the ODE is 1
- \quad Separate variables

$$
\frac{y^{\prime}}{1+\cos (y)}=1
$$

- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{1+\cos (y)} d t=\int 1 d t+c_{1}$
- Evaluate integral

$$
\tan \left(\frac{y}{2}\right)=t+c_{1}
$$

- \quad Solve for y

$$
y=2 \arctan \left(t+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 10

```
dsolve(diff(y(t),t)=1+\operatorname{cos}(y(t)),y(t), singsol=all)
```

$$
y(t)=2 \arctan \left(t+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.462 (sec). Leaf size: 35
DSolve[y'[t]==1+cos[y[t]],y[t],t,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(t) \rightarrow \text { InverseFunction }\left[\int_{1}^{\# 1} \frac{1}{\cos (K[1])+1} d K[1] \&\right]\left[t+c_{1}\right] \\
& y(t) \rightarrow \cos ^{(-1)}(-1)
\end{aligned}
$$

5.23 problem 10

5.23.1 Solving as quadrature ode . 742
5.23.2 Maple step by step solution [743]

Internal problem ID [12973]
Internal file name [OUTPUT/11625_Tuesday_November_07_2023_11_52_15_PM_5645639/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-\tan (y)=0
$$

5.23.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\tan (y)} d y & =\int d t \\
\ln (\sin (y)) & =t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sin (y)=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
\sin (y)=c_{2} \mathrm{e}^{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\arcsin \left(c_{2} \mathrm{e}^{t}\right) \tag{1}
\end{equation*}
$$

Figure 160: Slope field plot
Verification of solutions

$$
y=\arcsin \left(c_{2} \mathrm{e}^{t}\right)
$$

Verified OK.

5.23.2 Maple step by step solution

Let's solve

$$
y^{\prime}-\tan (y)=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{\tan (y)}=1
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{\tan (y)} d t=\int 1 d t+c_{1}
$$

- Evaluate integral

$$
\ln (\sin (y))=t+c_{1}
$$

- \quad Solve for y

$$
y=\arcsin \left(\mathrm{e}^{t+c_{1}}\right)
$$

Maple trace
-Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 9

```
dsolve(diff(y(t),t)=tan( y (t)),y(t), singsol=all)
```

$$
y(t)=\arcsin \left(c_{1} \mathrm{e}^{t}\right)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 50.012 (sec). Leaf size: 17
DSolve[y'[t]==Tan[y[t]],y[t],t,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(t) \rightarrow \arcsin \left(e^{t+c_{1}}\right) \\
& y(t) \rightarrow 0
\end{aligned}
$$

5.24 problem 11

5.24.1 Solving as quadrature ode . 745
5.24.2 Maple step by step solution . 746

Internal problem ID [12974]
Internal file name [OUTPUT/11626_Tuesday_November_07_2023_11_52_16_PM_91685053/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
y^{\prime}-y \ln (|y|)=0
$$

5.24.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{gathered}
\int \frac{1}{y \ln (|y|)} d y=t+c_{1} \\
\left\{\begin{array}{cl}
\ln (-\ln (-y)) & y<0 \\
\text { undefined } & y=0 \\
\ln (-\ln (y)) & 0<y
\end{array}\right.
\end{gathered}
$$

Solving for y gives these solutions

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\mathrm{e}^{-\mathrm{e}^{t+c_{1}}} \tag{1}\\
& y=-\mathrm{e}^{-\mathrm{e}^{t+c_{1}}} \tag{2}
\end{align*}
$$

Figure 161: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{-\mathrm{e}^{t+c_{1}}}
$$

Verified OK.

$$
y=-\mathrm{e}^{-\mathrm{e}^{t+c_{1}}}
$$

Verified OK.

5.24.2 Maple step by step solution

Let's solve

$$
y^{\prime}-y \ln (|y|)=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y \ln (|y|)}=1
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{y \ln (|y|)} d t=\int 1 d t+c_{1}
$$

- Cannot compute integral

$$
\int \frac{y^{\prime}}{y \ln (|y|)} d t=t+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.125 (sec). Leaf size: 21

```
dsolve(diff(y(t),t)=y(t)*\operatorname{ln}(abs(y(t))),y(t), singsol=all)
```

$$
\begin{aligned}
& y(t)=\mathrm{e}^{-c_{1} \mathrm{e}^{t}} \\
& y(t)=-\mathrm{e}^{-c_{1} \mathrm{e}^{t}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.321 (sec). Leaf size: 35
DSolve[y'[t]==y[t]*Log[Abs[y[t]]],y[t],t,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(t) \rightarrow \text { InverseFunction }\left[\int_{1}^{\# 1} \frac{1}{K[1] \log (|K[1]|)} d K[1] \&\right]\left[t+c_{1}\right] \\
& y(t) \rightarrow 1
\end{aligned}
$$

5.25 problem 12

5.25.1 Solving as quadrature ode . 748
5.25.2 Maple step by step solution . 749

Internal problem ID [12975]
Internal file name [OUTPUT/11627_Tuesday_November_07_2023_11_52_33_PM_86942080/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
w^{\prime}-\left(w^{2}-2\right) \arctan (w)=0
$$

5.25.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\left(w^{2}-2\right) \arctan (w)} d w & =\int d t \\
\int^{w} \frac{1}{\left(_a^{2}-2\right) \arctan \left(_a\right)} d _a & =t+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{w} \frac{1}{\left(_a^{2}-2\right) \arctan \left(_a\right)} d _a=t+c_{1} \tag{1}
\end{equation*}
$$

Figure 162: Slope field plot

Verification of solutions

$$
\int^{w} \frac{1}{\left(_a^{2}-2\right) \arctan \left(_a\right)} d _a=t+c_{1}
$$

Verified OK.

5.25.2 Maple step by step solution

Let's solve

$$
w^{\prime}-\left(w^{2}-2\right) \arctan (w)=0
$$

- Highest derivative means the order of the ODE is 1 w^{\prime}
- \quad Separate variables

$$
\frac{w^{\prime}}{\left(w^{2}-2\right) \arctan (w)}=1
$$

- Integrate both sides with respect to t
$\int \frac{w^{\prime}}{\left(w^{2}-2\right) \arctan (w)} d t=\int 1 d t+c_{1}$
- Cannot compute integral

$$
\int \frac{w^{\prime}}{\left(w^{2}-2\right) \arctan (w)} d t=t+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 25

```
dsolve(diff(w(t),t)=(w(t)^2-2)*arctan( w(t) ),w(t), singsol=all)
```

$$
t-\left(\int^{w(t)} \frac{1}{\left(_a^{2}-2\right) \arctan \left(_a\right)} d _a\right)+c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 0.909 (sec). Leaf size: 62
DSolve[w' [t$]==(\mathrm{w}[\mathrm{t}] \sim 2-2) * \operatorname{Arctan}[\mathrm{w}[\mathrm{t}] \mathrm{]}$, $\mathrm{w}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
w(t) & \rightarrow \text { InverseFunction }\left[\int_{1}^{\# 1} \frac{1}{\operatorname{Arctan}(K[1])\left(K[1]^{2}-2\right)} d K[1] \&\right]\left[t+c_{1}\right] \\
w(t) & \rightarrow-\sqrt{2} \\
w(t) & \rightarrow \sqrt{2} \\
w(t) & \rightarrow \operatorname{Arctan}^{(-1)}(0)
\end{aligned}
$$

5.26 problem 22

5.26.1 Existence and uniqueness analysis 751
5.26.2 Solving as quadrature ode . 752
5.26.3 Maple step by step solution . 753

Internal problem ID [12976]
Internal file name [OUTPUT/11628_Tuesday_November_07_2023_11_52_34_PM_74422193/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 22.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y^{2}+4 y=2
$$

With initial conditions

$$
[y(0)=-1]
$$

5.26.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =y^{2}-4 y+2
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2}-4 y+2\right) \\
& =2 y-4
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-1$ is inside this domain. Therefore solution exists and is unique.

5.26.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{2}-4 y+2} d y & =t+c_{1} \\
-\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{(2 y-4) \sqrt{2}}{4}\right)}{2} & =t+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=-\left(-\sqrt{2}+\tanh \left(\left(t+c_{1}\right) \sqrt{2}\right)\right) \sqrt{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=\frac{-\sqrt{2} \mathrm{e}^{2 \sqrt{2} c_{1}}+\sqrt{2}+2 \mathrm{e}^{2 \sqrt{2} c_{1}}+2}{\mathrm{e}^{2 \sqrt{2} c_{1}}+1} \\
c_{1}=\frac{\ln \left(\frac{3+\sqrt{2}}{\sqrt{2}-3}\right) \sqrt{2}}{4}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\sqrt{2} \mathrm{e}^{2 \sqrt{2} t}+10 \mathrm{e}^{2 \sqrt{2} t}-7 \sqrt{2}-14}{6 \sqrt{2} \mathrm{e}^{2 \sqrt{2} t}+11 \mathrm{e}^{2 \sqrt{2} t}-7}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{2} \mathrm{e}^{2 \sqrt{2} t}+10 \mathrm{e}^{2 \sqrt{2} t}-7 \sqrt{2}-14}{6 \sqrt{2} \mathrm{e}^{2 \sqrt{2} t}+11 \mathrm{e}^{2 \sqrt{2} t}-7} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sqrt{2} \mathrm{e}^{2 \sqrt{2} t}+10 \mathrm{e}^{2 \sqrt{2} t}-7 \sqrt{2}-14}{6 \sqrt{2} \mathrm{e}^{2 \sqrt{2} t}+11 \mathrm{e}^{2 \sqrt{2} t}-7}
$$

Verified OK.

5.26.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-y^{2}+4 y=2, y(0)=-1\right]$

- Highest derivative means the order of the ODE is 1

y^{\prime}

- Separate variables

$$
\frac{y^{\prime}}{y^{2}-4 y+2}=1
$$

- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y^{2}-4 y+2} d t=\int 1 d t+c_{1}$
- Evaluate integral

$$
-\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{(2 y-4) \sqrt{2}}{4}\right)}{2}=t+c_{1}
$$

- \quad Solve for y

$$
y=-\left(-\sqrt{2}+\tanh \left(\left(t+c_{1}\right) \sqrt{2}\right)\right) \sqrt{2}
$$

- Use initial condition $y(0)=-1$

$$
-1=-\left(-\sqrt{2}+\tanh \left(\sqrt{2} c_{1}\right)\right) \sqrt{2}
$$

- \quad Solve for c_{1}
$c_{1}=\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{3 \sqrt{2}}{2}\right)}{2}$
- Substitute $c_{1}=\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{3 \sqrt{2}}{2}\right)}{2}$ into general solution and simplify $y=2-\sqrt{2} \tanh \left(\operatorname{arctanh}\left(\frac{3 \sqrt{2}}{2}\right)+\sqrt{2} t\right)$
- \quad Solution to the IVP

$$
y=2-\sqrt{2} \tanh \left(\operatorname{arctanh}\left(\frac{3 \sqrt{2}}{2}\right)+\sqrt{2} t\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.125 (sec). Leaf size: 24
dsolve([diff $\left.(y(t), t)=y(t)^{\sim} 2-4 * y(t)+2, y(0)=-1\right], y(t)$, singsol=all)

$$
y(t)=-\sqrt{2} \tanh \left(\operatorname{arctanh}\left(\frac{3 \sqrt{2}}{2}\right)+\sqrt{2} t\right)+2
$$

\checkmark Solution by Mathematica
Time used: 0.083 (sec). Leaf size: 59
DSolve[\{y' $[t]==y[t] \sim 2-4 * y[t]+2,\{y[0]==-1\}\}, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow-\frac{(\sqrt{2}-4) e^{2 \sqrt{2} t}+4+\sqrt{2}}{(3+\sqrt{2}) e^{2 \sqrt{2} t}-3+\sqrt{2}}
$$

5.27 problem 23

5.27.1 Existence and uniqueness analysis 756
5.27.2 Solving as quadrature ode . 757
5.27.3 Maple step by step solution . 758

Internal problem ID [12977]
Internal file name [OUTPUT/11629_Tuesday_November_07_2023_11_52_50_PM_18408871/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 23.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y^{2}+4 y=2
$$

With initial conditions

$$
[y(0)=2]
$$

5.27.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =y^{2}-4 y+2
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2}-4 y+2\right) \\
& =2 y-4
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=2$ is inside this domain. Therefore solution exists and is unique.

5.27.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{2}-4 y+2} d y & =t+c_{1} \\
-\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{(2 y-4) \sqrt{2}}{4}\right)}{2} & =t+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=-\left(-\sqrt{2}+\tanh \left(\left(t+c_{1}\right) \sqrt{2}\right)\right) \sqrt{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2=\frac{-\sqrt{2} \mathrm{e}^{2 \sqrt{2} c_{1}}+\sqrt{2}+2 \mathrm{e}^{2 \sqrt{2} c_{1}}+2}{\mathrm{e}^{2 \sqrt{2} c_{1}}+1} \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\lim _{c_{1} \rightarrow 0}\left(-\left(-\sqrt{2}+\tanh \left(\left(t+c_{1}\right) \sqrt{2}\right)\right) \sqrt{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\lim _{c_{1} \rightarrow 0}\left(-\left(-\sqrt{2}+\tanh \left(\left(t+c_{1}\right) \sqrt{2}\right)\right) \sqrt{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\lim _{c_{1} \rightarrow 0}\left(-\left(-\sqrt{2}+\tanh \left(\left(t+c_{1}\right) \sqrt{2}\right)\right) \sqrt{2}\right)
$$

Verified OK.

5.27.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-y^{2}+4 y=2, y(0)=2\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y^{2}-4 y+2}=1$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y^{2}-4 y+2} d t=\int 1 d t+c_{1}$
- Evaluate integral
$-\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{(2 y-4) \sqrt{2}}{4}\right)}{2}=t+c_{1}$
- \quad Solve for y
$y=-\left(-\sqrt{2}+\tanh \left(\left(t+c_{1}\right) \sqrt{2}\right)\right) \sqrt{2}$
- Use initial condition $y(0)=2$
$2=-\left(-\sqrt{2}+\tanh \left(\sqrt{2} c_{1}\right)\right) \sqrt{2}$
- \quad Solve for c_{1}
$c_{1}=0$
- Substitute $c_{1}=0$ into general solution and simplify
$y=2-\sqrt{2} \tanh (\sqrt{2} t)$
- Solution to the IVP
$y=2-\sqrt{2} \tanh (\sqrt{2} t)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 17

```
dsolve([diff(y(t),t)=y(t)~2-4*y(t)+2,y(0) = 2],y(t), singsol=all)
```

$$
y(t)=-\sqrt{2} \tanh (\sqrt{2} t)+2
$$

\checkmark Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 46
DSolve[\{y' $[t]==y[t] \sim 2-4 * y[t]+2,\{y[0]==2\}\}, y[t], t$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow \frac{-(\sqrt{2}-2) e^{2 \sqrt{2} t}+2+\sqrt{2}}{e^{2 \sqrt{2} t}+1}
$$

5.28 problem 24

5.28.1 Existence and uniqueness analysis 760
5.28.2 Solving as quadrature ode . 761
5.28.3 Maple step by step solution . 762

Internal problem ID [12978]
Internal file name [OUTPUT/11630_Tuesday_November_07_2023_11_52_51_PM_41929186/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 24.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y^{2}+4 y=2
$$

With initial conditions

$$
[y(0)=-2]
$$

5.28.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =y^{2}-4 y+2
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2}-4 y+2\right) \\
& =2 y-4
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-2$ is inside this domain. Therefore solution exists and is unique.

5.28.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{2}-4 y+2} d y & =t+c_{1} \\
-\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{(2 y-4) \sqrt{2}}{4}\right)}{2} & =t+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=-\left(-\sqrt{2}+\tanh \left(\left(t+c_{1}\right) \sqrt{2}\right)\right) \sqrt{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-2=\frac{-\sqrt{2} \mathrm{e}^{2 \sqrt{2} c_{1}}+\sqrt{2}+2 \mathrm{e}^{2 \sqrt{2} c_{1}}+2}{\mathrm{e}^{2 \sqrt{2} c_{1}}+1} \\
c_{1}=\frac{\ln \left(\frac{4+\sqrt{2}}{\sqrt{2}-4}\right) \sqrt{2}}{4}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{10 \mathrm{e}^{2 \sqrt{2} t}-\sqrt{2} \mathrm{e}^{2 \sqrt{2} t}-7 \sqrt{2}-14}{4 \sqrt{2} \mathrm{e}^{2 \sqrt{2} t}+9 \mathrm{e}^{2 \sqrt{2} t}-7}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{10 \mathrm{e}^{2 \sqrt{2} t}-\sqrt{2} \mathrm{e}^{2 \sqrt{2} t}-7 \sqrt{2}-14}{4 \sqrt{2} \mathrm{e}^{2 \sqrt{2} t}+9 \mathrm{e}^{2 \sqrt{2} t}-7} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{10 \mathrm{e}^{2 \sqrt{2} t}-\sqrt{2} \mathrm{e}^{2 \sqrt{2} t}-7 \sqrt{2}-14}{4 \sqrt{2} \mathrm{e}^{2 \sqrt{2} t}+9 \mathrm{e}^{2 \sqrt{2} t}-7}
$$

Verified OK.

5.28.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-y^{2}+4 y=2, y(0)=-2\right]$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables

$$
\frac{y^{\prime}}{y^{2}-4 y+2}=1
$$

- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y^{2}-4 y+2} d t=\int 1 d t+c_{1}$
- Evaluate integral

$$
-\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{(2 y-4) \sqrt{2}}{4}\right)}{2}=t+c_{1}
$$

- \quad Solve for y

$$
y=-\left(-\sqrt{2}+\tanh \left(\left(t+c_{1}\right) \sqrt{2}\right)\right) \sqrt{2}
$$

- Use initial condition $y(0)=-2$

$$
-2=-\left(-\sqrt{2}+\tanh \left(\sqrt{2} c_{1}\right)\right) \sqrt{2}
$$

- \quad Solve for c_{1}
$c_{1}=\frac{\sqrt{2} \operatorname{arctanh}(2 \sqrt{2})}{2}$
- Substitute $c_{1}=\frac{\sqrt{2} \operatorname{arctanh}(2 \sqrt{2})}{2}$ into general solution and simplify $y=2-\sqrt{2} \tanh (\operatorname{arctanh}(2 \sqrt{2})+\sqrt{2} t)$
- Solution to the IVP

$$
y=2-\sqrt{2} \tanh (\operatorname{arctanh}(2 \sqrt{2})+\sqrt{2} t)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.109 (sec). Leaf size: 24
dsolve([diff $\left.(y(t), t)=y(t)^{\sim} 2-4 * y(t)+2, y(0)=-2\right], y(t)$, singsol=all)

$$
y(t)=-\sqrt{2} \tanh (\operatorname{arctanh}(2 \sqrt{2})+\sqrt{2} t)+2
$$

\checkmark Solution by Mathematica
Time used: 0.07 (sec). Leaf size: 59
DSolve $\left[\left\{y^{\prime}[t]==y[t] \sim 2-4 * y[t]+2,\{y[0]==-2\}\right\}, y[t], t\right.$, IncludeSingularSolutions $\rightarrow>$ True]

$$
y(t) \rightarrow-\frac{2\left((\sqrt{2}-3) e^{2 \sqrt{2} t}+3+\sqrt{2}\right)}{(4+\sqrt{2}) e^{2 \sqrt{2} t}-4+\sqrt{2}}
$$

5.29 problem 25

5.29.1 Existence and uniqueness analysis 765
5.29.2 Solving as quadrature ode . 766
5.29.3 Maple step by step solution . 767

Internal problem ID [12979]
Internal file name [OUTPUT/11631_Tuesday_November_07_2023_11_53_08_PM_97639020/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 25.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y^{2}+4 y=2
$$

With initial conditions

$$
[y(0)=-4]
$$

5.29.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =y^{2}-4 y+2
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-4$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2}-4 y+2\right) \\
& =2 y-4
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-4$ is inside this domain. Therefore solution exists and is unique.

5.29.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{2}-4 y+2} d y & =t+c_{1} \\
-\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{(2 y-4) \sqrt{2}}{4}\right)}{2} & =t+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=-\left(-\sqrt{2}+\tanh \left(\left(t+c_{1}\right) \sqrt{2}\right)\right) \sqrt{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=-4$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-4=\frac{-\sqrt{2} \mathrm{e}^{2 \sqrt{2} c_{1}}+\sqrt{2}+2 \mathrm{e}^{2 \sqrt{2} c_{1}}+2}{\mathrm{e}^{2 \sqrt{2} c_{1}}+1} \\
c_{1}=\frac{\ln \left(\frac{6+\sqrt{2}}{\sqrt{2}-6}\right) \sqrt{2}}{4}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{26 \mathrm{e}^{2 \sqrt{2} t}-7 \sqrt{2} \mathrm{e}^{2 \sqrt{2} t}-17 \sqrt{2}-34}{6 \sqrt{2} \mathrm{e}^{2 \sqrt{2} t}+19 \mathrm{e}^{2 \sqrt{2} t}-17}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{26 \mathrm{e}^{2 \sqrt{2} t}-7 \sqrt{2} \mathrm{e}^{2 \sqrt{2} t}-17 \sqrt{2}-34}{6 \sqrt{2} \mathrm{e}^{2 \sqrt{2} t}+19 \mathrm{e}^{2 \sqrt{2} t}-17} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{26 \mathrm{e}^{2 \sqrt{2} t}-7 \sqrt{2} \mathrm{e}^{2 \sqrt{2} t}-17 \sqrt{2}-34}{6 \sqrt{2} \mathrm{e}^{2 \sqrt{2} t}+19 \mathrm{e}^{2 \sqrt{2} t}-17}
$$

Verified OK.

5.29.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-y^{2}+4 y=2, y(0)=-4\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables
$\frac{y^{\prime}}{y^{2}-4 y+2}=1$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y^{2}-4 y+2} d t=\int 1 d t+c_{1}$
- Evaluate integral
$-\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{(2 y-4) \sqrt{2}}{4}\right)}{2}=t+c_{1}$
- \quad Solve for y

$$
y=-\left(-\sqrt{2}+\tanh \left(\left(t+c_{1}\right) \sqrt{2}\right)\right) \sqrt{2}
$$

- Use initial condition $y(0)=-4$

$$
-4=-\left(-\sqrt{2}+\tanh \left(\sqrt{2} c_{1}\right)\right) \sqrt{2}
$$

- \quad Solve for c_{1}
$c_{1}=\frac{\sqrt{2} \operatorname{arctanh}(3 \sqrt{2})}{2}$
- Substitute $c_{1}=\frac{\sqrt{2} \operatorname{arctanh}(3 \sqrt{2})}{2}$ into general solution and simplify $y=2-\sqrt{2} \tanh (\operatorname{arctanh}(3 \sqrt{2})+\sqrt{2} t)$
- Solution to the IVP

$$
y=2-\sqrt{2} \tanh (\operatorname{arctanh}(3 \sqrt{2})+\sqrt{2} t)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.125 (sec). Leaf size: 24
dsolve([diff $\left.(y(t), t)=y(t)^{\sim} 2-4 * y(t)+2, y(0)=-4\right], y(t)$, singsol=all)

$$
y(t)=-\sqrt{2} \tanh (\operatorname{arctanh}(3 \sqrt{2})+\sqrt{2} t)+2
$$

\checkmark Solution by Mathematica
Time used: 0.069 (sec). Leaf size: 63
DSolve[\{y' $[t]==y[t] \sim 2-4 * y[t]+2,\{y[0]==-4\}\}, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow-\frac{2\left((2 \sqrt{2}-5) e^{2 \sqrt{2} t}+5+2 \sqrt{2}\right)}{(6+\sqrt{2}) e^{2 \sqrt{2} t}-6+\sqrt{2}}
$$

5.30 problem 26

5.30.1 Existence and uniqueness analysis 770
5.30.2 Solving as quadrature ode . 777
5.30.3 Maple step by step solution . 772

Internal problem ID [12980]
Internal file name [OUTPUT/11632_Tuesday_November_07_2023_11_53_25_PM_2702011/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 26.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y^{2}+4 y=2
$$

With initial conditions

$$
[y(0)=4]
$$

5.30.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =y^{2}-4 y+2
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=4$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2}-4 y+2\right) \\
& =2 y-4
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=4$ is inside this domain. Therefore solution exists and is unique.

5.30.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{2}-4 y+2} d y & =t+c_{1} \\
-\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{(2 y-4) \sqrt{2}}{4}\right)}{2} & =t+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=-\left(-\sqrt{2}+\tanh \left(\left(t+c_{1}\right) \sqrt{2}\right)\right) \sqrt{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=4$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
4=\frac{-\sqrt{2} \mathrm{e}^{2 \sqrt{2} c_{1}}+\sqrt{2}+2 \mathrm{e}^{2 \sqrt{2} c_{1}}+2}{\mathrm{e}^{2 \sqrt{2} c_{1}}+1} \\
c_{1}=\frac{\ln \left(\frac{\sqrt{2}-2}{2+\sqrt{2}}\right) \sqrt{2}}{4}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{7 \sqrt{2} \mathrm{e}^{2 \sqrt{2} t}+\sqrt{2}-10 \mathrm{e}^{2 \sqrt{2} t}+2}{2 \sqrt{2} \mathrm{e}^{2 \sqrt{2}} t-3 \mathrm{e}^{2 \sqrt{2} t}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{7 \sqrt{2} \mathrm{e}^{2 \sqrt{2} t}+\sqrt{2}-10 \mathrm{e}^{2 \sqrt{2} t}+2}{2 \sqrt{2} \mathrm{e}^{2 \sqrt{2} t}-3 \mathrm{e}^{2 \sqrt{2} t}+1} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=\frac{7 \sqrt{2} \mathrm{e}^{2 \sqrt{2} t}+\sqrt{2}-10 \mathrm{e}^{2 \sqrt{2} t}+2}{2 \sqrt{2} \mathrm{e}^{2 \sqrt{2} t}-3 \mathrm{e}^{2 \sqrt{2} t}+1}
$$

Verified OK.

5.30.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-y^{2}+4 y=2, y(0)=4\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y^{2}-4 y+2}=1
$$

- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y^{2}-4 y+2} d t=\int 1 d t+c_{1}$
- Evaluate integral

$$
-\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{(2 y-4) \sqrt{2}}{4}\right)}{2}=t+c_{1}
$$

- \quad Solve for y

$$
y=-\left(-\sqrt{2}+\tanh \left(\left(t+c_{1}\right) \sqrt{2}\right)\right) \sqrt{2}
$$

- Use initial condition $y(0)=4$

$$
4=-\left(-\sqrt{2}+\tanh \left(\sqrt{2} c_{1}\right)\right) \sqrt{2}
$$

- \quad Solve for c_{1}

$$
c_{1}=-\frac{\sqrt{2} \operatorname{arctanh}(\sqrt{2})}{2}
$$

- Substitute $c_{1}=-\frac{\sqrt{2} \operatorname{arctanh}(\sqrt{2})}{2}$ into general solution and simplify $y=2-\sqrt{2} \tanh (-\operatorname{arctanh}(\sqrt{2})+\sqrt{2} t)$
- \quad Solution to the IVP

$$
y=2-\sqrt{2} \tanh (-\operatorname{arctanh}(\sqrt{2})+\sqrt{2} t)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.11 (sec). Leaf size: 24

```
dsolve([diff(y(t),t)=y(t)~ 2-4*y(t)+2,y(0) = 4],y(t), singsol=all)
```

$$
y(t)=-\sqrt{2} \tanh (-\operatorname{arctanh}(\sqrt{2})+\sqrt{2} t)+2
$$

\checkmark Solution by Mathematica
Time used: 0.068 (sec). Leaf size: 62

```
DSolve[{y'[t]==y[t]~2-4*y[t]+2,{y[0]==4}},y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow \frac{(4 \sqrt{2}-6) e^{2 \sqrt{2} t}+6+4 \sqrt{2}}{(\sqrt{2}-2) e^{2 \sqrt{2} t}+2+\sqrt{2}}
$$

5.31 problem 27

5.31.1 Existence and uniqueness analysis 774
5.31.2 Solving as quadrature ode . 775
5.31.3 Maple step by step solution . 776

Internal problem ID [12981]
Internal file name [OUTPUT/11633_Tuesday_November_07_2023_11_53_44_PM_62460508/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 27.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y^{2}+4 y=2
$$

With initial conditions

$$
[y(3)=1]
$$

5.31.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =y^{2}-4 y+2
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=3$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2}-4 y+2\right) \\
& =2 y-4
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=3$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

5.31.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{2}-4 y+2} d y & =t+c_{1} \\
-\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{(2 y-4) \sqrt{2}}{4}\right)}{2} & =t+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=-\left(-\sqrt{2}+\tanh \left(\left(t+c_{1}\right) \sqrt{2}\right)\right) \sqrt{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=3$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{-\sqrt{2} \mathrm{e}^{2\left(3+c_{1}\right) \sqrt{2}}+\sqrt{2}+2 \mathrm{e}^{2\left(3+c_{1}\right) \sqrt{2}}+2}{\mathrm{e}^{2\left(3+c_{1}\right) \sqrt{2}}+1} \\
c_{1}=\frac{\left(-6 \sqrt{2}+\ln \left(\frac{1+\sqrt{2}}{\sqrt{2}-1}\right)\right) \sqrt{2}}{4}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\mathrm{e}^{2 \sqrt{2}(-3+t)} \sqrt{2}+2 \mathrm{e}^{2 \sqrt{2}(-3+t)}+\sqrt{2}+2}{3 \mathrm{e}^{2 \sqrt{2}(-3+t)}+2 \mathrm{e}^{2 \sqrt{2}(-3+t)} \sqrt{2}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{2 \sqrt{2}(-3+t)} \sqrt{2}+2 \mathrm{e}^{2 \sqrt{2}(-3+t)}+\sqrt{2}+2}{3 \mathrm{e}^{2 \sqrt{2}(-3+t)}+2 \mathrm{e}^{2 \sqrt{2}(-3+t)} \sqrt{2}+1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\mathrm{e}^{2 \sqrt{2}(-3+t)} \sqrt{2}+2 \mathrm{e}^{2 \sqrt{2}(-3+t)}+\sqrt{2}+2}{3 \mathrm{e}^{2 \sqrt{2}(-3+t)}+2 \mathrm{e}^{2 \sqrt{2}(-3+t)} \sqrt{2}+1}
$$

Verified OK.

5.31.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-y^{2}+4 y=2, y(3)=1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y^{2}-4 y+2}=1$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y^{2}-4 y+2} d t=\int 1 d t+c_{1}$
- Evaluate integral
$-\frac{\sqrt{2} \operatorname{arctanh}\left(\frac{(2 y-4) \sqrt{2}}{4}\right)}{2}=t+c_{1}$
- \quad Solve for y
$y=-\left(-\sqrt{2}+\tanh \left(\left(t+c_{1}\right) \sqrt{2}\right)\right) \sqrt{2}$
- Use initial condition $y(3)=1$
$1=-\left(-\sqrt{2}+\tanh \left(\left(3+c_{1}\right) \sqrt{2}\right)\right) \sqrt{2}$
- \quad Solve for c_{1}

$$
c_{1}=-\frac{\left(3 \sqrt{2}-\operatorname{arctanh}\left(\frac{\sqrt{2}}{2}\right)\right) \sqrt{2}}{2}
$$

- Substitute $c_{1}=-\frac{\left(3 \sqrt{2}-\operatorname{arctanh}\left(\frac{\sqrt{2}}{2}\right)\right) \sqrt{2}}{2}$ into general solution and simplify $y=2-\sqrt{2} \tanh \left(\frac{\left(\sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{2}}{2}\right)+2 t-6\right) \sqrt{2}}{2}\right)$
- \quad Solution to the IVP

$$
y=2-\sqrt{2} \tanh \left(\frac{\left(\sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{2}}{2}\right)+2 t-6\right) \sqrt{2}}{2}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.094 (sec). Leaf size: 32
dsolve([diff $(y(t), t)=y(t) \sim 2-4 * y(t)+2, y(3)=1], y(t)$, singsol=all)

$$
y(t)=-\sqrt{2} \tanh \left(\frac{\left(\sqrt{2} \operatorname{arctanh}\left(\frac{\sqrt{2}}{2}\right)+2 t-6\right) \sqrt{2}}{2}\right)+2
$$

\checkmark Solution by Mathematica
Time used: 0.098 (sec). Leaf size: 69
DSolve[\{y' $[t]==y[t] \sim 2-4 * y[t]+2,\{y[3]==1\}\}, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{\sqrt{2}\left(e^{2 \sqrt{2} t}+e^{6 \sqrt{2}}\right)}{(1+\sqrt{2}) e^{2 \sqrt{2} t}+(\sqrt{2}-1) e^{6 \sqrt{2}}}
$$

5.32 problem 37 (i)

5.32.1 Solving as quadrature ode . 779
5.32.2 Maple step by step solution . 780

Internal problem ID [12982]
Internal file name [OUTPUT/11634_Tuesday_November_07_2023_11_53_45_PM_77175554/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 37 (i).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y \cos \left(\frac{\pi y}{2}\right)=0
$$

5.32.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y \cos \left(\frac{\pi y}{2}\right)} d y & =\int d t \\
\int_{-}^{y} \frac{1}{-a \cos \left(\frac{\pi-a}{2}\right)} d _a & =t+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{y} \frac{1}{-a \cos \left(\frac{\pi_{-} a}{2}\right)} d _a=t+c_{1} \tag{1}
\end{equation*}
$$

Figure 168: Slope field plot

Verification of solutions

$$
\int^{y} \frac{1}{-a \cos \left(\frac{\pi-a}{2}\right)} d _a=t+c_{1}
$$

Verified OK.

5.32.2 Maple step by step solution

Let's solve

$$
y^{\prime}-y \cos \left(\frac{\pi y}{2}\right)=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y \cos \left(\frac{\pi y}{2}\right)}=1
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{y \cos \left(\frac{\pi y}{2}\right)} d t=\int 1 d t+c_{1}
$$

- Cannot compute integral

$$
\int \frac{y^{\prime}}{y \cos \left(\frac{\pi y}{2}\right)} d t=t+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 22

```
dsolve(diff(y(t),t)=y(t)*\operatorname{cos}(Pi/2*y(t)),y(t), singsol=all)
```

$$
t-\left(\int^{y(t)} \frac{\sec \left(\frac{\pi-}{2} a\right)}{-a} d _a\right)+c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 4.801 (sec). Leaf size: 47

```
DSolve[y'[t]==y[t]*Cos[Pi/2*y[t]],y[t],t,IncludeSingularSolutions -> True]
```

$y(t) \rightarrow$ InverseFunction $\left[\int_{1}^{\# 1} \frac{\sec \left(\frac{1}{2} \pi K[1]\right)}{K[1]} d K[1] \&\right]\left[t+c_{1}\right]$
$y(t) \rightarrow-1$
$y(t) \rightarrow 0$
$y(t) \rightarrow 1$

5.33 problem 37 (ii)

5.33.1 Solving as quadrature ode . 782
5.33.2 Maple step by step solution . 783

Internal problem ID [12983]
Internal file name [OUTPUT/11635_Tuesday_November_07_2023_11_53_46_PM_83788516/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 37 (ii).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
y^{\prime}-y+y^{2}=0
$$

5.33.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-y^{2}+y} d y & =\int d t \\
-\ln (y-1)+\ln (y) & =t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\ln (y-1)+\ln (y)}=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
\frac{y}{y-1}=c_{2} \mathrm{e}^{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{2} \mathrm{e}^{t}}{-1+c_{2} \mathrm{e}^{t}} \tag{1}
\end{equation*}
$$

Figure 169: Slope field plot
Verification of solutions

$$
y=\frac{c_{2} \mathrm{e}^{t}}{-1+c_{2} \mathrm{e}^{t}}
$$

Verified OK.

5.33.2 Maple step by step solution

Let's solve

$$
y^{\prime}-y+y^{2}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables

$$
\frac{y^{\prime}}{y-y^{2}}=1
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{y-y^{2}} d t=\int 1 d t+c_{1}
$$

- Evaluate integral

$$
-\ln (y-1)+\ln (y)=t+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\mathrm{e}^{t+c_{1}}}{-1+\mathrm{e}^{t+c_{1}}}
$$

Maple trace

```
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

```
dsolve(diff(y(t),t)=y(t)-y(t)^2,y(t), singsol=all)
```

$$
y(t)=\frac{1}{1+\mathrm{e}^{-t} c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 0.42 (sec). Leaf size: 29
DSolve [y' $[t]==y[t]-y[t] \sim 2, y[t], t$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(t) \rightarrow \frac{e^{t}}{e^{t}+e^{c_{1}}} \\
& y(t) \rightarrow 0 \\
& y(t) \rightarrow 1
\end{aligned}
$$

5.34 problem 37 (iii)

5.34.1 Solving as quadrature ode . 785
5.34.2 Maple step by step solution . 786

Internal problem ID [12984]
Internal file name [OUTPUT/11636_Tuesday_November_07_2023_11_53_48_PM_13625784/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 37 (iii).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y \sin \left(\frac{\pi y}{2}\right)=0
$$

5.34.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y \sin \left(\frac{\pi y}{2}\right)} d y & =\int d t \\
\int^{y} \frac{1}{-a \sin \left(\frac{\pi-}{2}\right)} d-a & =t+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{y} \frac{1}{-a \sin \left(\frac{\pi_{-} a}{2}\right)} d _a=t+c_{1} \tag{1}
\end{equation*}
$$

Figure 170: Slope field plot

Verification of solutions

$$
\int^{y} \frac{1}{-a \sin \left(\frac{\pi_{-}}{2}\right)} d _a=t+c_{1}
$$

Verified OK.

5.34.2 Maple step by step solution

Let's solve

$$
y^{\prime}-y \sin \left(\frac{\pi y}{2}\right)=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y \sin \left(\frac{\pi y}{2}\right)}=1
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{y \sin \left(\frac{\pi y}{2}\right)} d t=\int 1 d t+c_{1}
$$

- Cannot compute integral

$$
\int \frac{y^{\prime}}{y \sin \left(\frac{\pi y}{2}\right)} d t=t+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 22

```
dsolve(diff(y(t),t)=y(t)*sin(Pi/2*y(t)),y(t), singsol=all)
```

$$
t-\left(\int^{y(t)} \frac{\csc \left(\frac{\pi-}{2} a\right.}{-a} d _a\right)+c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 7.222 (sec). Leaf size: 37

```
DSolve[y'[t]==y[t]*Sin[Pi/2*y[t]],y[t],t,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(t) \rightarrow \text { InverseFunction }\left[\int_{1}^{\# 1} \frac{\csc \left(\frac{1}{2} \pi K[1]\right)}{K[1]} d K[1] \&\right]\left[t+c_{1}\right] \\
& y(t) \rightarrow 0
\end{aligned}
$$

5.35 problem 37 (iv)

5.35.1 Solving as quadrature ode . 788
5.35.2 Maple step by step solution . 789

Internal problem ID [12985]
Internal file name [OUTPUT/11637_Tuesday_November_07_2023_11_53_49_PM_40171703/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 37 (iv).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y^{3}+y^{2}=0
$$

5.35.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{3}-y^{2}} d y & =\int d t \\
\int^{y} \frac{1}{a^{3}-_a^{2}} d _a & =t+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{y} \frac{1}{-a^{3}-_a^{2}} d _a=t+c_{1} \tag{1}
\end{equation*}
$$

Figure 171: Slope field plot

Verification of solutions

$$
\int^{y} \frac{1}{-a^{3}-_a^{2}} d _a=t+c_{1}
$$

Verified OK.

5.35.2 Maple step by step solution

Let's solve

$$
y^{\prime}-y^{3}+y^{2}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{y^{3}-y^{2}}=1
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{y^{3}-y^{2}} d t=\int 1 d t+c_{1}
$$

- Evaluate integral

$$
\ln (y-1)+\frac{1}{y}-\ln (y)=t+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.172 (sec). Leaf size: 16

```
dsolve(diff(y(t),t)=y(t)^3-y(t)^2,y(t), singsol=all)
```

$$
y(t)=\frac{1}{\text { LambertW }\left(-c_{1} \mathrm{e}^{t-1}\right)+1}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.374 (sec). Leaf size: 38

```
DSolve[y'[t]==y[t]^3-y[t]^2,y[t],t,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(t) \rightarrow \text { InverseFunction }\left[\frac{1}{\# 1}+\log (1-\# 1)-\log (\# 1) \&\right]\left[t+c_{1}\right] \\
& y(t) \rightarrow 0 \\
& y(t) \rightarrow 1
\end{aligned}
$$

5.36 problem 37 (v)

5.36.1 Solving as quadrature ode . 791
5.36.2 Maple step by step solution . 793

Internal problem ID [12986]
Internal file name [OUTPUT/11638_Tuesday_November_07_2023_11_53_52_PM_77068426/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 37 (v).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-\cos \left(\frac{\pi y}{2}\right)=0
$$

5.36.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\cos \left(\frac{\pi y}{2}\right)} d y & =\int d t \\
\frac{2 \ln \left(\sec \left(\frac{\pi y}{2}\right)+\tan \left(\frac{\pi y}{2}\right)\right)}{\pi} & =t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\frac{2 \ln \left(\sec \left(\frac{\pi y}{2}\right)+\tan \left(\frac{\pi y}{2}\right)\right)}{\pi}}=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
\left(\sec \left(\frac{\pi y}{2}\right)+\tan \left(\frac{\pi y}{2}\right)\right)^{\frac{2}{\pi}}=c_{2} \mathrm{e}^{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 \arctan \left(\frac{\left(c_{2} e^{t}\right)^{\pi}-1}{\left(c_{2} e^{t}\right)^{\pi}+1}, \frac{2\left(c_{2} e^{t}\right)^{\frac{\pi}{2}}}{\left(c_{2} e^{t}\right)^{\pi}+1}\right)}{\pi} \tag{1}
\end{equation*}
$$

Figure 172: Slope field plot

Verification of solutions

$$
y=\frac{2 \arctan \left(\frac{\left(c_{2} e^{t}\right)^{\pi}-1}{\left(c_{2} e^{t}\right)^{\pi}+1}, \frac{2\left(c_{2} e^{t}\right)^{\frac{\pi}{2}}}{\left(c_{2} e^{t}\right)^{\pi}+1}\right)}{\pi}
$$

Verified OK.

5.36.2 Maple step by step solution

Let's solve

$$
y^{\prime}-\cos \left(\frac{\pi y}{2}\right)=0
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- Separate variables

$$
\frac{y^{\prime}}{\cos \left(\frac{\pi y}{2}\right)}=1
$$

- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{\cos \left(\frac{\pi y}{2}\right)} d t=\int 1 d t+c_{1}$
- Evaluate integral

$$
\frac{2 \ln \left(\sec \left(\frac{\pi y}{2}\right)+\tan \left(\frac{\pi y}{2}\right)\right)}{\pi}=t+c_{1}
$$

- \quad Solve for y

$$
y=\frac{2 \arctan \left(\frac{\left(\mathrm{e}^{\frac{1}{2} \pi c_{1}+\frac{1}{2} \pi t}\right)^{2}-1}{\left(\mathrm{e}^{\frac{1}{2} \pi c_{1}+\frac{1}{2} \pi t}\right)^{2}+1}, \frac{2^{\frac{1}{2} \pi c_{1}+\frac{1}{2} \pi t}}{\left(\mathrm{e}^{\frac{1}{2} c_{1}+\frac{1}{2} \pi t}\right)^{2}+1}\right)}{\pi}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 48
dsolve(diff $(y(t), t)=\cos (P i / 2 * y(t)), y(t)$, singsol=all)

$$
y(t)=\frac{2 \arctan \left(\frac{\mathrm{e}^{\pi\left(t+c_{1}\right)}-1}{\mathrm{e}^{\pi\left(t+c_{1}\right)}+1}, \frac{2 \mathrm{e}^{\frac{\pi\left(t+c_{1}\right)}{2}}}{\mathrm{e}^{\pi\left(t+c_{1}\right)+1}}\right)}{\pi}
$$

\checkmark Solution by Mathematica
Time used: 0.846 (sec). Leaf size: 31
DSolve[y'[t]==Cos[Pi/2*y[t]],y[t],t,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(t) \rightarrow \frac{2 \arcsin \left(\operatorname{coth}\left(\frac{1}{2} \pi\left(t+c_{1}\right)\right)\right)}{\pi} \\
& y(t) \rightarrow-1 \\
& y(t) \rightarrow 1
\end{aligned}
$$

5.37 problem 37 ($\mathbf{v i}$)

5.37.1 Solving as quadrature ode . 795
5.37.2 Maple step by step solution . 796

Internal problem ID [12987]
Internal file name [OUTPUT/11639_Tuesday_November_07_2023_11_53_53_PM_26533520/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 37 (vi).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
y^{\prime}-y^{2}+y=0
$$

5.37.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{2}-y} d y & =\int d t \\
\ln (y-1)-\ln (y) & =t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (y-1)-\ln (y)}=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
\frac{y-1}{y}=c_{2} \mathrm{e}^{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{-1+c_{2} \mathrm{e}^{t}} \tag{1}
\end{equation*}
$$

Figure 173: Slope field plot

Verification of solutions

$$
y=-\frac{1}{-1+c_{2} \mathrm{e}^{t}}
$$

Verified OK.

5.37.2 Maple step by step solution

Let's solve
$y^{\prime}-y^{2}+y=0$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y^{2}-y}=1$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y^{2}-y} d t=\int 1 d t+c_{1}$
- Evaluate integral

$$
\ln (y-1)-\ln (y)=t+c_{1}
$$

- \quad Solve for y

$$
y=-\frac{1}{-1+\mathrm{e}^{t+c_{1}}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(diff(y(t),t)=y(t)^2-y(t),y(t), singsol=all)
```

$$
y(t)=\frac{1}{1+c_{1} \mathrm{e}^{t}}
$$

\checkmark Solution by Mathematica
Time used: 0.336 (sec). Leaf size: 25
DSolve[y'[t]==y[t]^2-y[t],y[t],t,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(t) \rightarrow \frac{1}{1+e^{t+c_{1}}} \\
& y(t) \rightarrow 0 \\
& y(t) \rightarrow 1
\end{aligned}
$$

5.38 problem 37 (vii)

5.38.1 Solving as quadrature ode . 798
5.38.2 Maple step by step solution . 799

Internal problem ID [12988]
Internal file name [OUTPUT/11640_Tuesday_November_07_2023_11_53_55_PM_18805721/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 37 (vii).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y \sin \left(\frac{\pi y}{2}\right)=0
$$

5.38.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y \sin \left(\frac{\pi y}{2}\right)} d y & =\int d t \\
\int^{y} \frac{1}{-a \sin \left(\frac{\pi-}{2}\right)} d _a & =t+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{y} \frac{1}{-a \sin \left(\frac{\pi_{-} a}{2}\right)} d _a=t+c_{1} \tag{1}
\end{equation*}
$$

Figure 174: Slope field plot

Verification of solutions

$$
\int^{y} \frac{1}{-a \sin \left(\frac{\pi_{-}}{2}\right)} d _a=t+c_{1}
$$

Verified OK.

5.38.2 Maple step by step solution

Let's solve

$$
y^{\prime}-y \sin \left(\frac{\pi y}{2}\right)=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y \sin \left(\frac{\pi y}{2}\right)}=1
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{y \sin \left(\frac{\pi y}{2}\right)} d t=\int 1 d t+c_{1}
$$

- Cannot compute integral

$$
\int \frac{y^{\prime}}{y \sin \left(\frac{\pi y}{2}\right)} d t=t+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 22

```
dsolve(diff(y(t),t)=y(t)*sin(Pi/2*y(t)),y(t), singsol=all)
```

$$
t-\left(\int^{y(t)} \frac{\csc \left(\frac{\pi-}{2} a\right.}{-a} d _a\right)+c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 0.786 (sec). Leaf size: 37

```
DSolve[y'[t]==y[t]*Sin[Pi/2*y[t]],y[t],t,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(t) \rightarrow \text { InverseFunction }\left[\int_{1}^{\# 1} \frac{\csc \left(\frac{1}{2} \pi K[1]\right)}{K[1]} d K[1] \&\right]\left[t+c_{1}\right] \\
& y(t) \rightarrow 0
\end{aligned}
$$

5.39 problem 37 (viii)

5.39.1 Solving as quadrature ode . 801
5.39.2 Maple step by step solution . 802

Internal problem ID [12989]
Internal file name [OUTPUT/11641_Tuesday_November_07_2023_11_53_56_PM_58776703/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.6 page 89
Problem number: 37 (viii).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y^{2}+y^{3}=0
$$

5.39.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-y^{3}+y^{2}} d y & =\int d t \\
\int^{y} \frac{1}{-_a^{3}+_a^{2}} d _a & =t+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{y} \frac{1}{-_a^{3}+_a^{2}} d _a=t+c_{1} \tag{1}
\end{equation*}
$$

Figure 175: Slope field plot

Verification of solutions

$$
\int^{y} \frac{1}{-_a^{3}+_a^{2}} d _a=t+c_{1}
$$

Verified OK.

5.39.2 Maple step by step solution

Let's solve

$$
y^{\prime}-y^{2}+y^{3}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{y^{2}-y^{3}}=1
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{y^{2}-y^{3}} d t=\int 1 d t+c_{1}
$$

- Evaluate integral

$$
-\ln (y-1)-\frac{1}{y}+\ln (y)=t+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.109 (sec). Leaf size: 20

```
dsolve(diff(y(t),t)=y(t)~2-y(t)^3,y(t), singsol=all)
```

$$
y(t)=\frac{1}{\text { LambertW }\left(-\frac{\mathrm{e}^{-t-1}}{c_{1}}\right)+1}
$$

Solution by Mathematica
Time used: 0.408 (sec). Leaf size: 40

```
DSolve[y'[t]==y[t]^2-y[t]^3,y[t],t,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(t) \rightarrow \text { InverseFunction }\left[\frac{1}{\# 1}+\log (1-\# 1)-\log (\# 1) \&\right]\left[-t+c_{1}\right] \\
& y(t) \rightarrow 0 \\
& y(t) \rightarrow 1
\end{aligned}
$$

6 Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121
6.1 problem 1 805
6.2 problem 2 818
6.3 problem 3 831
6.4 problem 4 844
6.5 problem 5 857
6.6 problem 6 870
6.7 problem 7 883
6.8 problem 8 897
6.9 problem 9 911
6.10 problem 10 925
6.11 problem 11 939
6.12 problem 20 953
6.13 problem 21 966
6.14 problem 22 979
6.15 problem 23 992
6.16 problem 24 1005

6.1 problem 1

6.1.1 Solving as linear ode . 805
6.1.2 Solving as first order ode lie symmetry lookup ode 807
6.1.3 Solving as exact ode . 811
6.1.4 Maple step by step solution . 815

Internal problem ID [12990]
Internal file name [OUTPUT/11642_Tuesday_November_07_2023_11_53_58_PM_51670567/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+4 y=9 \mathrm{e}^{-t}
$$

6.1.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =4 \\
q(t) & =9 \mathrm{e}^{-t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+4 y=9 \mathrm{e}^{-t}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 4 d t} \\
& =\mathrm{e}^{4 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(9 \mathrm{e}^{-t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{4 t} y\right) & =\left(\mathrm{e}^{4 t}\right)\left(9 \mathrm{e}^{-t}\right) \\
\mathrm{d}\left(\mathrm{e}^{4 t} y\right) & =\left(9 \mathrm{e}^{3 t}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{4 t} y=\int 9 \mathrm{e}^{3 t} \mathrm{~d} t \\
& \mathrm{e}^{4 t} y=3 \mathrm{e}^{3 t}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{4 t}$ results in

$$
y=3 \mathrm{e}^{-4 t} \mathrm{e}^{3 t}+c_{1} \mathrm{e}^{-4 t}
$$

which simplifies to

$$
y=3 \mathrm{e}^{-t}+c_{1} \mathrm{e}^{-4 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 \mathrm{e}^{-t}+c_{1} \mathrm{e}^{-4 t} \tag{1}
\end{equation*}
$$

Figure 176: Slope field plot

Verification of solutions

$$
y=3 \mathrm{e}^{-t}+c_{1} \mathrm{e}^{-4 t}
$$

Verified OK.

6.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-4 y+9 \mathrm{e}^{-t} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 176: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-4 t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-4 t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{4 t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-4 y+9 \mathrm{e}^{-t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =4 \mathrm{e}^{4 t} y \\
S_{y} & =\mathrm{e}^{4 t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=9 \mathrm{e}^{3 t} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=9 \mathrm{e}^{3 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=3 \mathrm{e}^{3 R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{4 t} y=3 \mathrm{e}^{3 t}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{4 t} y=3 \mathrm{e}^{3 t}+c_{1}
$$

Which gives

$$
y=\left(3 \mathrm{e}^{3 t}+c_{1}\right) \mathrm{e}^{-4 t}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-4 y+9 \mathrm{e}^{-t}$		$\frac{d S}{d R}=9 \mathrm{e}^{3 R}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \text { 为 }]{+}$
	$R=t$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-]{ }{ }^{\text {a }}$
	$S=\mathrm{e}^{4 t} y$	
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(3 \mathrm{e}^{3 t}+c_{1}\right) \mathrm{e}^{-4 t} \tag{1}
\end{equation*}
$$

Figure 177: Slope field plot

Verification of solutions

$$
y=\left(3 \mathrm{e}^{3 t}+c_{1}\right) \mathrm{e}^{-4 t}
$$

Verified OK.

6.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-4 y+9 \mathrm{e}^{-t}\right) \mathrm{d} t \\
\left(4 y-9 \mathrm{e}^{-t}\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =4 y-9 \mathrm{e}^{-t} \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(4 y-9 \mathrm{e}^{-t}\right) \\
& =4
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((4)-(0)) \\
& =4
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int 4 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{4 t} \\
& =\mathrm{e}^{4 t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{4 t}\left(4 y-9 \mathrm{e}^{-t}\right) \\
& =\left(4 \mathrm{e}^{t} y-9\right) \mathrm{e}^{3 t}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{4 t}(1) \\
& =\mathrm{e}^{4 t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(\left(4 \mathrm{e}^{t} y-9\right) \mathrm{e}^{3 t}\right)+\left(\mathrm{e}^{4 t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int\left(4 \mathrm{e}^{t} y-9\right) \mathrm{e}^{3 t} \mathrm{~d} t \\
\phi & =-3 \mathrm{e}^{3 t}+\mathrm{e}^{4 t} y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{4 t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{4 t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{4 t}=\mathrm{e}^{4 t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-3 \mathrm{e}^{3 t}+\mathrm{e}^{4 t} y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-3 \mathrm{e}^{3 t}+\mathrm{e}^{4 t} y
$$

The solution becomes

$$
y=\left(3 \mathrm{e}^{3 t}+c_{1}\right) \mathrm{e}^{-4 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(3 \mathrm{e}^{3 t}+c_{1}\right) \mathrm{e}^{-4 t} \tag{1}
\end{equation*}
$$

Figure 178: Slope field plot

Verification of solutions

$$
y=\left(3 \mathrm{e}^{3 t}+c_{1}\right) \mathrm{e}^{-4 t}
$$

Verified OK.

6.1.4 Maple step by step solution

Let's solve
$y^{\prime}+4 y=9 \mathrm{e}^{-t}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-4 y+9 \mathrm{e}^{-t}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+4 y=9 \mathrm{e}^{-t}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+4 y\right)=9 \mu(t) \mathrm{e}^{-t}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+4 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=4 \mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{4 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 9 \mu(t) \mathrm{e}^{-t} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 9 \mu(t) \mathrm{e}^{-t} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 9 \mu(t) \mathrm{e}^{-t} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{4 t}$
$y=\frac{\int 9 \mathrm{e}^{-t} \mathrm{e}^{4 t} d t+c_{1}}{\mathrm{e}^{4 t}}$
- Evaluate the integrals on the rhs
$y=\frac{3 \mathrm{e}^{3 t}+c_{1}}{\mathrm{e}^{4 t}}$
- Simplify

$$
y=\left(3 \mathrm{e}^{3 t}+c_{1}\right) \mathrm{e}^{-4 t}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve(diff $(y(t), t)=-4 * y(t)+9 * \exp (-t), y(t), \quad$ singsol=all)

$$
y(t)=\left(3 \mathrm{e}^{3 t}+c_{1}\right) \mathrm{e}^{-4 t}
$$

\checkmark Solution by Mathematica
Time used: 0.088 (sec). Leaf size: 21
DSolve [y' $[\mathrm{t}]==-4 * \mathrm{y}[\mathrm{t}]+9 * \operatorname{Exp}[-\mathrm{t}], \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow e^{-4 t}\left(3 e^{3 t}+c_{1}\right)
$$

6.2 problem 2

6.2.1 Solving as linear ode . 818
6.2.2 Solving as first order ode lie symmetry lookup ode 820
6.2.3 Solving as exact ode . 824
6.2.4 Maple step by step solution . 828

Internal problem ID [12991]
Internal file name [OUTPUT/11643_Tuesday_November_07_2023_11_53_59_PM_82349565/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+4 y=3 \mathrm{e}^{-t}
$$

6.2.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =4 \\
q(t) & =3 \mathrm{e}^{-t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+4 y=3 \mathrm{e}^{-t}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 4 d t} \\
& =\mathrm{e}^{4 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(3 \mathrm{e}^{-t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{4 t} y\right) & =\left(\mathrm{e}^{4 t}\right)\left(3 \mathrm{e}^{-t}\right) \\
\mathrm{d}\left(\mathrm{e}^{4 t} y\right) & =\left(3 \mathrm{e}^{3 t}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{4 t} y=\int 3 \mathrm{e}^{3 t} \mathrm{~d} t \\
& \mathrm{e}^{4 t} y=\mathrm{e}^{3 t}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{4 t}$ results in

$$
y=\mathrm{e}^{-4 t} \mathrm{e}^{3 t}+c_{1} \mathrm{e}^{-4 t}
$$

which simplifies to

$$
y=\mathrm{e}^{-t}+c_{1} \mathrm{e}^{-4 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-t}+c_{1} \mathrm{e}^{-4 t} \tag{1}
\end{equation*}
$$

Figure 179: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-t}+c_{1} \mathrm{e}^{-4 t}
$$

Verified OK.

6.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-4 y+3 \mathrm{e}^{-t} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 179: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-4 t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-4 t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{4 t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-4 y+3 \mathrm{e}^{-t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =4 \mathrm{e}^{4 t} y \\
S_{y} & =\mathrm{e}^{4 t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=3 \mathrm{e}^{3 t} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=3 \mathrm{e}^{3 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\mathrm{e}^{3 R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{4 t} y=\mathrm{e}^{3 t}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{4 t} y=\mathrm{e}^{3 t}+c_{1}
$$

Which gives

$$
y=\left(\mathrm{e}^{3 t}+c_{1}\right) \mathrm{e}^{-4 t}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-4 y+3 \mathrm{e}^{-t}$		$\frac{d S}{d R}=3 \mathrm{e}^{3 R}$
1419 ¢ ¢ ¢ ¢ d d d d d d d d d d d		
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }$
	$R=t$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }$
	$S=\mathrm{e}^{4 t} y$	
	$S=\mathrm{e}^{4 t} y$	
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow- \pm]{ }$
¢ ¢		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(\mathrm{e}^{3 t}+c_{1}\right) \mathrm{e}^{-4 t} \tag{1}
\end{equation*}
$$

Figure 180: Slope field plot

Verification of solutions

$$
y=\left(\mathrm{e}^{3 t}+c_{1}\right) \mathrm{e}^{-4 t}
$$

Verified OK.

6.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-4 y+3 \mathrm{e}^{-t}\right) \mathrm{d} t \\
\left(4 y-3 \mathrm{e}^{-t}\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =4 y-3 \mathrm{e}^{-t} \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(4 y-3 \mathrm{e}^{-t}\right) \\
& =4
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((4)-(0)) \\
& =4
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int 4 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{4 t} \\
& =\mathrm{e}^{4 t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{4 t}\left(4 y-3 \mathrm{e}^{-t}\right) \\
& =\left(4 \mathrm{e}^{t} y-3\right) \mathrm{e}^{3 t}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{4 t}(1) \\
& =\mathrm{e}^{4 t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(\left(4 \mathrm{e}^{t} y-3\right) \mathrm{e}^{3 t}\right)+\left(\mathrm{e}^{4 t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int\left(4 \mathrm{e}^{t} y-3\right) \mathrm{e}^{3 t} \mathrm{~d} t \\
\phi & =-\mathrm{e}^{3 t}+\mathrm{e}^{4 t} y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{4 t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{4 t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{4 t}=\mathrm{e}^{4 t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\mathrm{e}^{3 t}+\mathrm{e}^{4 t} y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\mathrm{e}^{3 t}+\mathrm{e}^{4 t} y
$$

The solution becomes

$$
y=\left(\mathrm{e}^{3 t}+c_{1}\right) \mathrm{e}^{-4 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(\mathrm{e}^{3 t}+c_{1}\right) \mathrm{e}^{-4 t} \tag{1}
\end{equation*}
$$

Figure 181: Slope field plot

Verification of solutions

$$
y=\left(\mathrm{e}^{3 t}+c_{1}\right) \mathrm{e}^{-4 t}
$$

Verified OK.

6.2.4 Maple step by step solution

Let's solve
$y^{\prime}+4 y=3 \mathrm{e}^{-t}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-4 y+3 \mathrm{e}^{-t}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+4 y=3 \mathrm{e}^{-t}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+4 y\right)=3 \mu(t) \mathrm{e}^{-t}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+4 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=4 \mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{4 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 3 \mu(t) \mathrm{e}^{-t} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 3 \mu(t) \mathrm{e}^{-t} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 3 \mu(t) \mathrm{e}^{-t} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{4 t}$
$y=\frac{\int 3 \mathrm{e}^{-t} \mathrm{e}^{4 t} d t+c_{1}}{\mathrm{e}^{4 t}}$
- Evaluate the integrals on the rhs
$y=\frac{\mathrm{e}^{3 t}+c_{1}}{\mathrm{e}^{4 t}}$
- Simplify
$y=\left(\mathrm{e}^{3 t}+c_{1}\right) \mathrm{e}^{-4 t}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve(diff $(y(t), t)=-4 * y(t)+3 * \exp (-t), y(t), \quad$ singsol=all)

$$
y(t)=\left(\mathrm{e}^{3 t}+c_{1}\right) \mathrm{e}^{-4 t}
$$

\checkmark Solution by Mathematica
Time used: 0.087 (sec). Leaf size: 19
DSolve[y' $[\mathrm{t}]==-4 * y[\mathrm{t}]+3 * \operatorname{Exp}[-\mathrm{t}], \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow e^{-4 t}\left(e^{3 t}+c_{1}\right)
$$

6.3 problem 3

$$
\text { 6.3.1 Solving as linear ode . } 831
$$

6.3.2 Solving as first order ode lie symmetry lookup ode 833
6.3.3 Solving as exact ode 837
6.3.4 Maple step by step solution 841

Internal problem ID [12992]
Internal file name [OUTPUT/11644_Tuesday_November_07_2023_11_54_00_PM_44648510/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121
Problem number: 3 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+3 y=4 \cos (2 t)
$$

6.3.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =3 \\
q(t) & =4 \cos (2 t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+3 y=4 \cos (2 t)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 3 d t} \\
& =\mathrm{e}^{3 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)(4 \cos (2 t)) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{3 t} y\right) & =\left(\mathrm{e}^{3 t}\right)(4 \cos (2 t)) \\
\mathrm{d}\left(\mathrm{e}^{3 t} y\right) & =\left(4 \mathrm{e}^{3 t} \cos (2 t)\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{3 t} y=\int 4 \mathrm{e}^{3 t} \cos (2 t) \mathrm{d} t \\
& \mathrm{e}^{3 t} y=\frac{12 \mathrm{e}^{3 t} \cos (2 t)}{13}+\frac{8 \mathrm{e}^{3 t} \sin (2 t)}{13}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{3 t}$ results in

$$
y=\mathrm{e}^{-3 t}\left(\frac{12 \mathrm{e}^{3 t} \cos (2 t)}{13}+\frac{8 \mathrm{e}^{3 t} \sin (2 t)}{13}\right)+\mathrm{e}^{-3 t} c_{1}
$$

which simplifies to

$$
y=\frac{8 \sin (2 t)}{13}+\frac{12 \cos (2 t)}{13}+\mathrm{e}^{-3 t} c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{8 \sin (2 t)}{13}+\frac{12 \cos (2 t)}{13}+\mathrm{e}^{-3 t} c_{1} \tag{1}
\end{equation*}
$$

Figure 182: Slope field plot

Verification of solutions

$$
y=\frac{8 \sin (2 t)}{13}+\frac{12 \cos (2 t)}{13}+\mathrm{e}^{-3 t} c_{1}
$$

Verified OK.

6.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-3 y+4 \cos (2 t) \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 182: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-3 t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-3 t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{3 t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-3 y+4 \cos (2 t)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =3 \mathrm{e}^{3 t} y \\
S_{y} & =\mathrm{e}^{3 t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=4 \mathrm{e}^{3 t} \cos (2 t) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=4 \mathrm{e}^{3 R} \cos (2 R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1}+\frac{4 \mathrm{e}^{3 R}(3 \cos (2 R)+2 \sin (2 R))}{13} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to t, y coordinates．This results in

$$
\mathrm{e}^{3 t} y=\frac{4 \mathrm{e}^{3 t}(3 \cos (2 t)+2 \sin (2 t))}{13}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{3 t} y=\frac{4 \mathrm{e}^{3 t}(3 \cos (2 t)+2 \sin (2 t))}{13}+c_{1}
$$

Which gives

$$
y=\frac{\mathrm{e}^{-3 t}\left(12 \mathrm{e}^{3 t} \cos (2 t)+8 \mathrm{e}^{3 t} \sin (2 t)+13 c_{1}\right)}{13}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in t, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-3 y+4 \cos (2 t)$		$\frac{d S}{d R}=4 \mathrm{e}^{3 R} \cos (2 R)$
中 d $^{\text {d }}$ 中		
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 4}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$ ，
	$R=t$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$ 他
	$S=\mathrm{e}^{3 t} y$	
	$S=\mathrm{e}^{3} y$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
		－ 2
		\rightarrow
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty}$

Summary

The solution（s）found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-3 t}\left(12 \mathrm{e}^{3 t} \cos (2 t)+8 \mathrm{e}^{3 t} \sin (2 t)+13 c_{1}\right)}{13} \tag{1}
\end{equation*}
$$

Figure 183: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-3 t}\left(12 \mathrm{e}^{3 t} \cos (2 t)+8 \mathrm{e}^{3 t} \sin (2 t)+13 c_{1}\right)}{13}
$$

Verified OK.

6.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(-3 y+4 \cos (2 t)) \mathrm{d} t \\
(3 y-4 \cos (2 t)) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =3 y-4 \cos (2 t) \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(3 y-4 \cos (2 t)) \\
& =3
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((3)-(0)) \\
& =3
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int 3 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{3 t} \\
& =\mathrm{e}^{3 t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{3 t}(3 y-4 \cos (2 t)) \\
& =(3 y-4 \cos (2 t)) \mathrm{e}^{3 t}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{3 t}(1) \\
& =\mathrm{e}^{3 t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left((3 y-4 \cos (2 t)) \mathrm{e}^{3 t}\right)+\left(\mathrm{e}^{3 t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int(3 y-4 \cos (2 t)) \mathrm{e}^{3 t} \mathrm{~d} t \\
\phi & =-\frac{(-13 y+12 \cos (2 t)+8 \sin (2 t)) \mathrm{e}^{3 t}}{13}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{3 t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{3 t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{3 t}=\mathrm{e}^{3 t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{(-13 y+12 \cos (2 t)+8 \sin (2 t)) \mathrm{e}^{3 t}}{13}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{(-13 y+12 \cos (2 t)+8 \sin (2 t)) \mathrm{e}^{3 t}}{13}
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{-3 t}\left(12 \mathrm{e}^{3 t} \cos (2 t)+8 \mathrm{e}^{3 t} \sin (2 t)+13 c_{1}\right)}{13}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-3 t}\left(12 \mathrm{e}^{3 t} \cos (2 t)+8 \mathrm{e}^{3 t} \sin (2 t)+13 c_{1}\right)}{13} \tag{1}
\end{equation*}
$$

Figure 184: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-3 t}\left(12 \mathrm{e}^{3 t} \cos (2 t)+8 \mathrm{e}^{3 t} \sin (2 t)+13 c_{1}\right)}{13}
$$

Verified OK.

6.3.4 Maple step by step solution

Let's solve
$y^{\prime}+3 y=4 \cos (2 t)$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=-3 y+4 \cos (2 t)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+3 y=4 \cos (2 t)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+3 y\right)=4 \mu(t) \cos (2 t)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+3 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=3 \mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{3 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 4 \mu(t) \cos (2 t) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 4 \mu(t) \cos (2 t) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 4 \mu(t) \cos (2 t) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{3 t}$
$y=\frac{\int 4 \mathrm{e}^{3 t} \cos (2 t) d t+c_{1}}{\mathrm{e}^{3 t}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{12 e^{3 t} \cos (2 t)}{13}+\frac{8 \mathrm{e}^{3 t} \sin (2 t)}{13}+c_{1}}{\mathrm{e}^{3 t}}$
- Simplify
$y=\frac{8 \sin (2 t)}{13}+\frac{12 \cos (2 t)}{13}+\mathrm{e}^{-3 t} c_{1}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(diff(y(t),t)=-3*y(t)+4*\operatorname{cos}(2*t),y(t), singsol=all)
```

$$
y(t)=\frac{12 \cos (2 t)}{13}+\frac{8 \sin (2 t)}{13}+c_{1} \mathrm{e}^{-3 t}
$$

\checkmark Solution by Mathematica
Time used: 0.155 (sec). Leaf size: 31

```
DSolve[y'[t]==-3*y[t]+4*Cos[2*t],y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow \frac{4}{13}(2 \sin (2 t)+3 \cos (2 t))+c_{1} e^{-3 t}
$$

6.4 problem 4

> 6.4.1 Solving as linear ode
6.4.2 Solving as first order ode lie symmetry lookup ode 846
6.4.3 Solving as exact ode . 850
6.4.4 Maple step by step solution . 854

Internal problem ID [12993]
Internal file name [OUTPUT/11645_Tuesday_November_07_2023_11_54_01_PM_88644979/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-2 y=\sin (2 t)
$$

6.4.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-2 \\
q(t) & =\sin (2 t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-2 y=\sin (2 t)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-2) d t} \\
& =\mathrm{e}^{-2 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)(\sin (2 t)) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-2 t} y\right) & =\left(\mathrm{e}^{-2 t}\right)(\sin (2 t)) \\
\mathrm{d}\left(\mathrm{e}^{-2 t} y\right) & =\left(\mathrm{e}^{-2 t} \sin (2 t)\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-2 t} y=\int \mathrm{e}^{-2 t} \sin (2 t) \mathrm{d} t \\
& \mathrm{e}^{-2 t} y=-\frac{\mathrm{e}^{-2 t} \cos (2 t)}{4}-\frac{\mathrm{e}^{-2 t} \sin (2 t)}{4}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-2 t}$ results in

$$
y=\mathrm{e}^{2 t}\left(-\frac{\mathrm{e}^{-2 t} \cos (2 t)}{4}-\frac{\mathrm{e}^{-2 t} \sin (2 t)}{4}\right)+c_{1} \mathrm{e}^{2 t}
$$

which simplifies to

$$
y=c_{1} \mathrm{e}^{2 t}-\frac{\sin (2 t)}{4}-\frac{\cos (2 t)}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 t}-\frac{\sin (2 t)}{4}-\frac{\cos (2 t)}{4} \tag{1}
\end{equation*}
$$

Figure 185: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 t}-\frac{\sin (2 t)}{4}-\frac{\cos (2 t)}{4}
$$

Verified OK.

6.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =2 y+\sin (2 t) \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 185: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{2 t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{2 t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-2 t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=2 y+\sin (2 t)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-2 \mathrm{e}^{-2 t} y \\
S_{y} & =\mathrm{e}^{-2 t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{-2 t} \sin (2 t) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{-2 R} \sin (2 R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1}-\frac{\mathrm{e}^{-2 R}(\cos (2 R)+\sin (2 R))}{4} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-2 t} y=-\frac{(\sin (2 t)+\cos (2 t)) \mathrm{e}^{-2 t}}{4}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-2 t} y=-\frac{(\sin (2 t)+\cos (2 t)) \mathrm{e}^{-2 t}}{4}+c_{1}
$$

Which gives

$$
y=-\frac{\mathrm{e}^{2 t}\left(\mathrm{e}^{-2 t} \sin (2 t)+\mathrm{e}^{-2 t} \cos (2 t)-4 c_{1}\right)}{4}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=2 y+\sin (2 t)$		$\frac{d S}{d R}=\mathrm{e}^{-2 R} \sin (2 R)$
		$1 \mid+1 x_{0} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 0 \rightarrow 0$
	$R=t$	Hi $\rightarrow \rightarrow \rightarrow \rightarrow$
	$S=\mathrm{e}^{-2 t} y$	$\underline{-1}$
$11^{1} 1{ }^{1}+1.11$		
		$\xrightarrow{\text { L }} \xrightarrow{\text { a }}$
W1:1.		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{2 t}\left(\mathrm{e}^{-2 t} \sin (2 t)+\mathrm{e}^{-2 t} \cos (2 t)-4 c_{1}\right)}{4} \tag{1}
\end{equation*}
$$

Figure 186: Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{2 t}\left(\mathrm{e}^{-2 t} \sin (2 t)+\mathrm{e}^{-2 t} \cos (2 t)-4 c_{1}\right)}{4}
$$

Verified OK.

6.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(2 y+\sin (2 t)) \mathrm{d} t \\
(-2 y-\sin (2 t)) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-2 y-\sin (2 t) \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-2 y-\sin (2 t)) \\
& =-2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((-2)-(0)) \\
& =-2
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-2 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 t} \\
& =\mathrm{e}^{-2 t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-2 t}(-2 y-\sin (2 t)) \\
& =(-2 y-\sin (2 t)) \mathrm{e}^{-2 t}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-2 t}(1) \\
& =\mathrm{e}^{-2 t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left((-2 y-\sin (2 t)) \mathrm{e}^{-2 t}\right)+\left(\mathrm{e}^{-2 t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int(-2 y-\sin (2 t)) \mathrm{e}^{-2 t} \mathrm{~d} t \\
\phi & =\frac{(4 y+\cos (2 t)+\sin (2 t)) \mathrm{e}^{-2 t}}{4}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-2 t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-2 t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-2 t}=\mathrm{e}^{-2 t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{(4 y+\cos (2 t)+\sin (2 t)) \mathrm{e}^{-2 t}}{4}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{(4 y+\cos (2 t)+\sin (2 t)) \mathrm{e}^{-2 t}}{4}
$$

The solution becomes

$$
y=-\frac{\mathrm{e}^{2 t}\left(\mathrm{e}^{-2 t} \sin (2 t)+\mathrm{e}^{-2 t} \cos (2 t)-4 c_{1}\right)}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{2 t}\left(\mathrm{e}^{-2 t} \sin (2 t)+\mathrm{e}^{-2 t} \cos (2 t)-4 c_{1}\right)}{4} \tag{1}
\end{equation*}
$$

Figure 187: Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{2 t}\left(\mathrm{e}^{-2 t} \sin (2 t)+\mathrm{e}^{-2 t} \cos (2 t)-4 c_{1}\right)}{4}
$$

Verified OK.

6.4.4 Maple step by step solution

Let's solve
$y^{\prime}-2 y=\sin (2 t)$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=2 y+\sin (2 t)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-2 y=\sin (2 t)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-2 y\right)=\mu(t) \sin (2 t)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-2 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-2 \mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-2 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t) \sin (2 t) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t) \sin (2 t) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(t) \sin (2 t) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-2 t}$
$y=\frac{\int \mathrm{e}^{-2 t} \sin (2 t) d t+c_{1}}{\mathrm{e}^{-2 t}}$
- Evaluate the integrals on the rhs
$y=\frac{-\frac{\mathrm{e}^{-2 t} \sin (2 t)}{4}-e^{-2 t} \cos (2 t)}{4}+c_{1}$
- Simplify
$y=c_{1} \mathrm{e}^{2 t}-\frac{\sin (2 t)}{4}-\frac{\cos (2 t)}{4}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(diff(y(t),t)=2*y(t)+\operatorname{sin}(2*t),y(t), singsol=all)
```

$$
y(t)=-\frac{\cos (2 t)}{4}-\frac{\sin (2 t)}{4}+c_{1} \mathrm{e}^{2 t}
$$

\checkmark Solution by Mathematica
Time used: 0.15 (sec). Leaf size: 30
DSolve [y' $[\mathrm{t}]==2 * y[\mathrm{t}]+\operatorname{Sin}[2 * \mathrm{t}], \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow-\frac{1}{4} \sin (2 t)-\frac{1}{4} \cos (2 t)+c_{1} e^{2 t}
$$

6.5 problem 5

6.5.1 Solving as linear ode 857
6.5.2 Solving as first order ode lie symmetry lookup ode 859
6.5.3 Solving as exact ode 863
6.5.4 Maple step by step solution 867

Internal problem ID [12994]
Internal file name [OUTPUT/11646_Tuesday_November_07_2023_11_54_02_PM_16551769/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-3 y=-4 \mathrm{e}^{3 t}
$$

6.5.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-3 \\
q(t) & =-4 \mathrm{e}^{3 t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-3 y=-4 \mathrm{e}^{3 t}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-3) d t} \\
& =\mathrm{e}^{-3 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(-4 \mathrm{e}^{3 t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-3 t} y\right) & =\left(\mathrm{e}^{-3 t}\right)\left(-4 \mathrm{e}^{3 t}\right) \\
\mathrm{d}\left(\mathrm{e}^{-3 t} y\right) & =-4 \mathrm{~d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-3 t} y=\int-4 \mathrm{~d} t \\
& \mathrm{e}^{-3 t} y=-4 t+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-3 t}$ results in

$$
y=-4 t \mathrm{e}^{3 t}+c_{1} \mathrm{e}^{3 t}
$$

which simplifies to

$$
y=\mathrm{e}^{3 t}\left(-4 t+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{3 t}\left(-4 t+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 188: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{3 t}\left(-4 t+c_{1}\right)
$$

Verified OK.

6.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =3 y-4 \mathrm{e}^{3 t} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 188: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{3 t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{3 t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-3 t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=3 y-4 \mathrm{e}^{3 t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-3 \mathrm{e}^{-3 t} y \\
S_{y} & =\mathrm{e}^{-3 t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-4 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-4
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-4 R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-3 t} y=-4 t+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-3 t} y=-4 t+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{3 t}\left(-4 t+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=3 y-4 \mathrm{e}^{3 t}$		$\frac{d S}{d R}=-4$
		tytyty thtytytyt
		,
tapapapapay		
	$R=t$	
btot tot	$S=\mathrm{e}^{-3 t} y$	$15+1$
.		
1:1.: 1.10		
! ! ! ! ! ! ! ! ! ! ! ! ! !		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{3 t}\left(-4 t+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 189: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{3 t}\left(-4 t+c_{1}\right)
$$

Verified OK.

6.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(3 y-4 \mathrm{e}^{3 t}\right) \mathrm{d} t \\
\left(-3 y+4 \mathrm{e}^{3 t}\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-3 y+4 \mathrm{e}^{3 t} \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-3 y+4 \mathrm{e}^{3 t}\right) \\
& =-3
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((-3)-(0)) \\
& =-3
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-3 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-3 t} \\
& =\mathrm{e}^{-3 t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-3 t}\left(-3 y+4 \mathrm{e}^{3 t}\right) \\
& =-3 \mathrm{e}^{-3 t} y+4
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-3 t}(1) \\
& =\mathrm{e}^{-3 t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(-3 \mathrm{e}^{-3 t} y+4\right)+\left(\mathrm{e}^{-3 t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-3 \mathrm{e}^{-3 t} y+4 \mathrm{~d} t \\
\phi & =4 t+\mathrm{e}^{-3 t} y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-3 t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-3 t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-3 t}=\mathrm{e}^{-3 t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=4 t+\mathrm{e}^{-3 t} y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=4 t+\mathrm{e}^{-3 t} y
$$

The solution becomes

$$
y=\mathrm{e}^{3 t}\left(-4 t+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{3 t}\left(-4 t+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 190: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{3 t}\left(-4 t+c_{1}\right)
$$

Verified OK.

6.5.4 Maple step by step solution

Let's solve
$y^{\prime}-3 y=-4 \mathrm{e}^{3 t}$

- Highest derivative means the order of the ODE is 1

```
y'
```

- Isolate the derivative
$y^{\prime}=3 y-4 \mathrm{e}^{3 t}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

$$
y^{\prime}-3 y=-4 \mathrm{e}^{3 t}
$$

- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-3 y\right)=-4 \mu(t) \mathrm{e}^{3 t}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-3 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-3 \mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-3 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int-4 \mu(t) \mathrm{e}^{3 t} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int-4 \mu(t) \mathrm{e}^{3 t} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int-4 \mu(t) e^{3 t} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-3 t}$
$y=\frac{\int-4 \mathrm{e}^{3 t} \mathrm{e}^{-3 t} d t+c_{1}}{\mathrm{e}^{-3 t}}$
- Evaluate the integrals on the rhs
$y=\frac{-4 t+c_{1}}{\mathrm{e}^{-3 t}}$
- Simplify
$y=\mathrm{e}^{3 t}\left(-4 t+c_{1}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
dsolve(diff $(y(t), t)=3 * y(t)-4 * \exp (3 * t), y(t), \quad$ singsol $=a l l)$

$$
y(t)=\left(-4 t+c_{1}\right) \mathrm{e}^{3 t}
$$

\checkmark Solution by Mathematica
Time used: 0.072 (sec). Leaf size: 17
DSolve[y' $[t]==3 * y[t]-4 * \operatorname{Exp}[3 * t], y[t], t$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow e^{3 t}\left(-4 t+c_{1}\right)
$$

6.6 problem 6

$$
\text { 6.6.1 Solving as linear ode . } 870
$$

6.6.2 Solving as first order ode lie symmetry lookup ode 872
6.6.3 Solving as exact ode 876
6.6.4 Maple step by step solution 881

Internal problem ID [12995]
Internal file name [OUTPUT/11647_Tuesday_November_07_2023_11_54_02_PM_21596004/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-\frac{y}{2}=4 \mathrm{e}^{\frac{t}{2}}
$$

6.6.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-\frac{1}{2} \\
& q(t)=4 \mathrm{e}^{\frac{t}{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{2}=4 \mathrm{e}^{\frac{t}{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{2} d t} \\
& =\mathrm{e}^{-\frac{t}{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(4 \mathrm{e}^{\frac{t}{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-\frac{t}{2}} y\right) & =\left(\mathrm{e}^{-\frac{t}{2}}\right)\left(4 \mathrm{e}^{\frac{t}{2}}\right) \\
\mathrm{d}\left(\mathrm{e}^{-\frac{t}{2}} y\right) & =4 \mathrm{~d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-\frac{t}{2}} y=\int 4 \mathrm{~d} t \\
& \mathrm{e}^{-\frac{t}{2}} y=4 t+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-\frac{t}{2}}$ results in

$$
y=4 t \mathrm{e}^{\frac{t}{2}}+c_{1} \mathrm{e}^{\frac{t}{2}}
$$

which simplifies to

$$
y=\mathrm{e}^{\frac{t}{2}}\left(4 t+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{t}{2}}\left(4 t+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 191: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{t}{2}}\left(4 t+c_{1}\right)
$$

Verified OK.

6.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y}{2}+4 \mathrm{e}^{\frac{t}{2}} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 191: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	y	
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{\frac{t}{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\frac{t}{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-\frac{t}{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{y}{2}+4 \mathrm{e}^{\frac{t}{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-\frac{\mathrm{e}^{-\frac{t}{2}} y}{2} \\
S_{y} & =\mathrm{e}^{-\frac{t}{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=4 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=4
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=4 R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-\frac{t}{2}} y=4 t+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-\frac{t}{2}} y=4 t+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{\frac{t}{2}}\left(4 t+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{y}{2}+4 \mathrm{e}^{\frac{t}{2}}$		$\frac{d S}{d R}=4$
	$R=t$	
	$S=\mathrm{e}^{-\frac{t}{2}} y$	
		¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{t}{2}}\left(4 t+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 192: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{t}{2}}\left(4 t+c_{1}\right)
$$

Verified OK.

6.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(\frac{y}{2}+4 \mathrm{e}^{\frac{t}{2}}\right) \mathrm{d} t \\
\left(-\frac{y}{2}-4 \mathrm{e}^{\frac{t}{2}}\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-\frac{y}{2}-4 \mathrm{e}^{\frac{t}{2}} \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{y}{2}-4 \mathrm{e}^{\frac{t}{2}}\right) \\
& =-\frac{1}{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1\left(\left(-\frac{1}{2}\right)-(0)\right) \\
& =-\frac{1}{2}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-\frac{1}{2} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\frac{t}{2}} \\
& =\mathrm{e}^{-\frac{t}{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-\frac{t}{2}}\left(-\frac{y}{2}-4 \mathrm{e}^{\frac{t}{2}}\right) \\
& =-\frac{\mathrm{e}^{-\frac{t}{2}} y}{2}-4
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-\frac{t}{2}}(1) \\
& =\mathrm{e}^{-\frac{t}{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(-\frac{\mathrm{e}^{-\frac{t}{2}} y}{2}-4\right)+\left(\mathrm{e}^{-\frac{t}{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\frac{\mathrm{e}^{-\frac{t}{2}} y}{2}-4 \mathrm{~d} t \\
\phi & =-4 t+\mathrm{e}^{-\frac{t}{2}} y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-\frac{t}{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-\frac{t}{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-\frac{t}{2}}=\mathrm{e}^{-\frac{t}{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-4 t+\mathrm{e}^{-\frac{t}{2}} y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-4 t+\mathrm{e}^{-\frac{t}{2}} y
$$

The solution becomes

$$
y=\mathrm{e}^{\frac{t}{2}}\left(4 t+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{t}{2}}\left(4 t+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 193: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{t}{2}}\left(4 t+c_{1}\right)
$$

Verified OK.

6.6.4 Maple step by step solution

Let's solve
$y^{\prime}-\frac{y}{2}=4 \mathrm{e}^{\frac{t}{2}}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{y}{2}+4 \mathrm{e}^{\frac{t}{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{y}{2}=4 \mathrm{e}^{\frac{t}{2}}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-\frac{y}{2}\right)=4 \mu(t) \mathrm{e}^{\frac{t}{2}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-\frac{y}{2}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\frac{\mu(t)}{2}$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-\frac{t}{2}}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 4 \mu(t) \mathrm{e}^{\frac{t}{2}} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 4 \mu(t) \mathrm{e}^{\frac{t}{2}} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 4 \mu(t) \mathrm{e}^{\frac{t}{2}} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-\frac{t}{2}}$
$y=\frac{\int 4 \mathrm{e}^{\frac{t}{2}} \mathrm{e}^{-\frac{t}{2}} d t+c_{1}}{\mathrm{e}^{-\frac{t}{2}}}$
- Evaluate the integrals on the rhs
$y=\frac{4 t+c_{1}}{\mathrm{e}^{-\frac{t}{2}}}$
- Simplify

$$
y=\mathrm{e}^{\frac{t}{2}}\left(4 t+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve(diff(y(t),t)=y(t)/2+4*exp(t/2),y(t), singsol=all)
```

$$
y(t)=\left(4 t+c_{1}\right) \mathrm{e}^{\frac{t}{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.074 (sec). Leaf size: 19
DSolve[y' $[\mathrm{t}]==\mathrm{y}[\mathrm{t}] / 2+4 * \operatorname{Exp}[\mathrm{t} / 2], \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow e^{t / 2}\left(4 t+c_{1}\right)
$$

6.7 problem 7

6.7.1 Existence and uniqueness analysis 883
6.7.2 Solving as linear ode . 884
6.7.3 Solving as first order ode lie symmetry lookup ode 886
6.7.4 Solving as exact ode . 890
6.7.5 Maple step by step solution . 894

Internal problem ID [12996]
Internal file name [OUTPUT/11648_Tuesday_November_07_2023_11_54_03_PM_64080441/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121
Problem number: 7.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+2 y=\mathrm{e}^{\frac{t}{3}}
$$

With initial conditions

$$
[y(0)=1]
$$

6.7.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =2 \\
q(t) & =\mathrm{e}^{\frac{t}{3}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+2 y=\mathrm{e}^{\frac{t}{3}}
$$

The domain of $p(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=\mathrm{e}^{\frac{t}{3}}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

6.7.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 2 d t} \\
& =\mathrm{e}^{2 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\mathrm{e}^{\frac{t}{3}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{2 t} y\right) & =\left(\mathrm{e}^{2 t}\right)\left(\mathrm{e}^{\frac{t}{3}}\right) \\
\mathrm{d}\left(\mathrm{e}^{2 t} y\right) & =\mathrm{e}^{\frac{7 t}{3}} \mathrm{~d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{2 t} y=\int \mathrm{e}^{\frac{7 t}{3}} \mathrm{~d} t \\
& \mathrm{e}^{2 t} y=\frac{3 \mathrm{e}^{\frac{7 t}{3}}}{7}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{2 t}$ results in

$$
y=\frac{3 \mathrm{e}^{-2 t} \mathrm{e}^{\frac{7 t}{3}}}{7}+c_{1} \mathrm{e}^{-2 t}
$$

which simplifies to

$$
y=\frac{\left(3 \mathrm{e}^{\frac{7 t}{3}}+7 c_{1}\right) \mathrm{e}^{-2 t}}{7}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{3}{7}+c_{1} \\
c_{1}=\frac{4}{7}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\left(3 \mathrm{e}^{\frac{7 t}{3}}+4\right) \mathrm{e}^{-2 t}}{7}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(3 \mathrm{e}^{\frac{7 t}{3}}+4\right) \mathrm{e}^{-2 t}}{7} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\left(3 \mathrm{e}^{\frac{7 t}{3}}+4\right) \mathrm{e}^{-2 t}}{7}
$$

Verified OK.

6.7.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-2 y+\mathrm{e}^{\frac{t}{3}} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 194: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-2 t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-2 t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{2 t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-2 y+\mathrm{e}^{\frac{t}{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =2 \mathrm{e}^{2 t} y \\
S_{y} & =\mathrm{e}^{2 t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{\frac{7 t}{3}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{\frac{7 R}{3}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{3 \mathrm{e}^{\frac{7 R}{3}}}{7}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{2 t} y=\frac{3 \mathrm{e}^{\frac{7 t}{3}}}{7}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{2 t} y=\frac{3 \mathrm{e}^{\frac{7 t}{3}}}{7}+c_{1}
$$

Which gives

$$
y=\frac{\left(3 \mathrm{e}^{\frac{7 t}{3}}+7 c_{1}\right) \mathrm{e}^{-2 t}}{7}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-2 y+\mathrm{e}^{\frac{t}{3}}$		$\frac{d S}{d R}=\mathrm{e}^{\frac{7 R}{3}}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
$x_{\rightarrow x}$	$R=t$	
	$S=\mathrm{e}^{2 t} y$	
	$S=\mathrm{e}^{2 l} y$	$\rightarrow \rightarrow \rightarrow \rightarrow$
¢ ¢		

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{3}{7}+c_{1} \\
c_{1}=\frac{4}{7}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{3 \mathrm{e}^{\frac{t}{3}}}{7}+\frac{4 \mathrm{e}^{-2 t}}{7}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 \mathrm{e}^{\frac{t}{3}}}{7}+\frac{4 \mathrm{e}^{-2 t}}{7} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=\frac{3 \mathrm{e}^{\frac{t}{3}}}{7}+\frac{4 \mathrm{e}^{-2 t}}{7}
$$

Verified OK.

6.7.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-2 y+\mathrm{e}^{\frac{t}{3}}\right) \mathrm{d} t \\
\left(2 y-\mathrm{e}^{\frac{t}{3}}\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =2 y-\mathrm{e}^{\frac{t}{3}} \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 y-\mathrm{e}^{\frac{t}{3}}\right) \\
& =2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((2)-(0)) \\
& =2
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int 2 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{2 t} \\
& =\mathrm{e}^{2 t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{2 t}\left(2 y-\mathrm{e}^{\frac{t}{3}}\right) \\
& =\left(2 y-\mathrm{e}^{\frac{t}{3}}\right) \mathrm{e}^{2 t}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{2 t}(1) \\
& =\mathrm{e}^{2 t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(\left(2 y-\mathrm{e}^{\frac{t}{3}}\right) \mathrm{e}^{2 t}\right)+\left(\mathrm{e}^{2 t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int\left(2 y-\mathrm{e}^{\frac{t}{3}}\right) \mathrm{e}^{2 t} \mathrm{~d} t \\
\phi & =\mathrm{e}^{2 t} y-\frac{3 \mathrm{e}^{\frac{7 t}{3}}}{7}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{2 t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{2 t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{2 t}=\mathrm{e}^{2 t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\mathrm{e}^{2 t} y-\frac{3 \mathrm{e}^{\frac{7 t}{3}}}{7}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\mathrm{e}^{2 t} y-\frac{3 \mathrm{e}^{\frac{7 t}{3}}}{7}
$$

The solution becomes

$$
y=\frac{\left(3 \mathrm{e}^{\frac{7 t}{3}}+7 c_{1}\right) \mathrm{e}^{-2 t}}{7}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\frac{3}{7}+c_{1} \\
c_{1}=\frac{4}{7}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{3 \mathrm{e}^{\frac{t}{3}}}{7}+\frac{4 \mathrm{e}^{-2 t}}{7}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 \mathrm{e}^{\frac{t}{3}}}{7}+\frac{4 \mathrm{e}^{-2 t}}{7} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{3 \mathrm{e}^{\frac{t}{3}}}{7}+\frac{4 \mathrm{e}^{-2 t}}{7}
$$

Verified OK.

6.7.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}+2 y=\mathrm{e}^{\frac{t}{3}}, y(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-2 y+\mathrm{e}^{\frac{t}{3}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+2 y=\mathrm{e}^{\frac{t}{3}}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+2 y\right)=\mu(t) \mathrm{e}^{\frac{t}{3}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+2 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=2 \mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{2 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t) \mathrm{e}^{\frac{t}{3}} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t) \mathrm{e}^{\frac{t}{3}} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(t) e^{t} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{2 t}$
$y=\frac{\int \mathrm{e}^{t} \mathrm{e}^{2 t} d t+c_{1}}{\mathrm{e}^{2 t}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{3 e^{\frac{7 t}{3}}}{7}+c_{1}}{\mathrm{e}^{2 t}}$
- Simplify
$y=\frac{\left(3 \mathrm{e}^{\frac{7 t}{3}}+7 c_{1}\right) \mathrm{e}^{-2 t}}{7}$
- Use initial condition $y(0)=1$
$1=\frac{3}{7}+c_{1}$
- \quad Solve for c_{1}
$c_{1}=\frac{4}{7}$
- Substitute $c_{1}=\frac{4}{7}$ into general solution and simplify

$$
y=\frac{\left(3 \mathrm{e}^{\frac{7 t}{3}}+4\right) \mathrm{e}^{-2 t}}{7}
$$

- Solution to the IVP

$$
y=\frac{\left(3 \mathrm{e}^{\frac{7 \pi}{3}}+4\right) \mathrm{e}^{-2 t}}{7}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 18

```
dsolve([diff(y(t),t)+2*y(t)=exp(t/3),y(0) = 1],y(t), singsol=all)
```

$$
y(t)=\frac{\left(3 \mathrm{e}^{\frac{7 t}{3}}+4\right) \mathrm{e}^{-2 t}}{7}
$$

\checkmark Solution by Mathematica
Time used: 0.096 (sec). Leaf size: 25
DSolve $\left[\left\{y^{\prime}[t]+2 * y[t]==\operatorname{Exp}[t / 3],\{y[0]==1\}\right\}, y[t], t\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{1}{7} e^{-2 t}\left(3 e^{7 t / 3}+4\right)
$$

6.8 problem 8

6.8.1 Existence and uniqueness analysis 897
6.8.2 Solving as linear ode . 898
6.8.3 Solving as first order ode lie symmetry lookup ode 900
6.8.4 Solving as exact ode . 904
6.8.5 Maple step by step solution . 908

Internal problem ID [12997]
Internal file name [OUTPUT/11649_Tuesday_November_07_2023_11_54_04_PM_44735111/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-2 y=3 \mathrm{e}^{-2 t}
$$

With initial conditions

$$
[y(0)=10]
$$

6.8.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-2 \\
q(t) & =3 \mathrm{e}^{-2 t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-2 y=3 \mathrm{e}^{-2 t}
$$

The domain of $p(t)=-2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=3 \mathrm{e}^{-2 t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

6.8.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-2) d t} \\
& =\mathrm{e}^{-2 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(3 \mathrm{e}^{-2 t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-2 t} y\right) & =\left(\mathrm{e}^{-2 t}\right)\left(3 \mathrm{e}^{-2 t}\right) \\
\mathrm{d}\left(\mathrm{e}^{-2 t} y\right) & =\left(3 \mathrm{e}^{-4 t}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-2 t} y=\int 3 \mathrm{e}^{-4 t} \mathrm{~d} t \\
& \mathrm{e}^{-2 t} y=-\frac{3 \mathrm{e}^{-4 t}}{4}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-2 t}$ results in

$$
y=-\frac{3 \mathrm{e}^{2 t} \mathrm{e}^{-4 t}}{4}+c_{1} \mathrm{e}^{2 t}
$$

which simplifies to

$$
y=-\frac{3 \mathrm{e}^{-2 t}}{4}+c_{1} \mathrm{e}^{2 t}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=10$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
10=-\frac{3}{4}+c_{1} \\
c_{1}=\frac{43}{4}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{3 \mathrm{e}^{-2 t}}{4}+\frac{43 \mathrm{e}^{2 t}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{3 \mathrm{e}^{-2 t}}{4}+\frac{43 \mathrm{e}^{2 t}}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{3 \mathrm{e}^{-2 t}}{4}+\frac{43 \mathrm{e}^{2 t}}{4}
$$

Verified OK.

6.8.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=2 y+3 \mathrm{e}^{-2 t} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 197: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{2 t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{2 t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-2 t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=2 y+3 \mathrm{e}^{-2 t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-2 \mathrm{e}^{-2 t} y \\
S_{y} & =\mathrm{e}^{-2 t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=3 \mathrm{e}^{-4 t} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=3 \mathrm{e}^{-4 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{3 \mathrm{e}^{-4 R}}{4}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-2 t} y=-\frac{3 \mathrm{e}^{-4 t}}{4}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-2 t} y=-\frac{3 \mathrm{e}^{-4 t}}{4}+c_{1}
$$

Which gives

$$
y=-\frac{\left(3 \mathrm{e}^{-4 t}-4 c_{1}\right) \mathrm{e}^{2 t}}{4}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=2 y+3 \mathrm{e}^{-2 t}$		$\frac{d S}{d R}=3 \mathrm{e}^{-4 R}$
	$R=t$	\| $+\underset{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}{ }$
		${ }_{\text {d }}$
	$S=\mathrm{e}^{-2 t} y$	
		\& 4

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=10$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
10=-\frac{3}{4}+c_{1} \\
c_{1}=\frac{43}{4}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{3 \mathrm{e}^{-2 t}}{4}+\frac{43 \mathrm{e}^{2 t}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{3 \mathrm{e}^{-2 t}}{4}+\frac{43 \mathrm{e}^{2 t}}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{3 \mathrm{e}^{-2 t}}{4}+\frac{43 \mathrm{e}^{2 t}}{4}
$$

Verified OK.

6.8.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(2 y+3 \mathrm{e}^{-2 t}\right) \mathrm{d} t \\
\left(-2 y-3 \mathrm{e}^{-2 t}\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-2 y-3 \mathrm{e}^{-2 t} \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-2 y-3 \mathrm{e}^{-2 t}\right) \\
& =-2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((-2)-(0)) \\
& =-2
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-2 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 t} \\
& =\mathrm{e}^{-2 t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-2 t}\left(-2 y-3 \mathrm{e}^{-2 t}\right) \\
& =-2 \mathrm{e}^{-2 t} y-3 \mathrm{e}^{-4 t}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-2 t}(1) \\
& =\mathrm{e}^{-2 t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t}=0 \\
\left(-2 \mathrm{e}^{-2 t} y-3 \mathrm{e}^{-4 t}\right)+\left(\mathrm{e}^{-2 t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-2 \mathrm{e}^{-2 t} y-3 \mathrm{e}^{-4 t} \mathrm{~d} t \\
\phi & =\frac{3 \mathrm{e}^{-4 t}}{4}+\mathrm{e}^{-2 t} y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-2 t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-2 t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-2 t}=\mathrm{e}^{-2 t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{3 \mathrm{e}^{-4 t}}{4}+\mathrm{e}^{-2 t} y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{3 \mathrm{e}^{-4 t}}{4}+\mathrm{e}^{-2 t} y
$$

The solution becomes

$$
y=-\frac{\left(3 \mathrm{e}^{-4 t}-4 c_{1}\right) \mathrm{e}^{2 t}}{4}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=10$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
10=-\frac{3}{4}+c_{1} \\
c_{1}=\frac{43}{4}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{3 \mathrm{e}^{-2 t}}{4}+\frac{43 \mathrm{e}^{2 t}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{3 \mathrm{e}^{-2 t}}{4}+\frac{43 \mathrm{e}^{2 t}}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{3 \mathrm{e}^{-2 t}}{4}+\frac{43 \mathrm{e}^{2 t}}{4}
$$

Verified OK.

6.8.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-2 y=3 \mathrm{e}^{-2 t}, y(0)=10\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative

$$
y^{\prime}=2 y+3 \mathrm{e}^{-2 t}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-2 y=3 \mathrm{e}^{-2 t}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-2 y\right)=3 \mu(t) \mathrm{e}^{-2 t}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-2 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-2 \mu(t)$
- \quad Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-2 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 3 \mu(t) \mathrm{e}^{-2 t} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 3 \mu(t) \mathrm{e}^{-2 t} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 3 \mu(t) \mathrm{e}^{-2 t} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-2 t}$
$y=\frac{\int 3\left(\mathrm{e}^{-2 t}\right)^{2} d t+c_{1}}{\mathrm{e}^{-2 t}}$
- Evaluate the integrals on the rhs
$y=\frac{-\frac{3\left(\mathrm{e}^{-2 t}\right)^{2}}{4}+c_{1}}{\mathrm{e}^{-2 t}}$
- Simplify
$y=-\frac{3 \mathrm{e}^{-2 t}}{4}+c_{1} \mathrm{e}^{2 t}$
- Use initial condition $y(0)=10$

$$
10=-\frac{3}{4}+c_{1}
$$

- \quad Solve for c_{1}
$c_{1}=\frac{43}{4}$
- \quad Substitute $c_{1}=\frac{43}{4}$ into general solution and simplify

$$
y=-\frac{3 e^{-2 t}}{4}+\frac{43 \mathrm{e}^{2 t}}{4}
$$

- Solution to the IVP

$$
y=-\frac{3 \mathrm{e}^{-2 t}}{4}+\frac{43 \mathrm{e}^{2 t}}{4}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve([diff(y(t),t)-2*y(t)=3*exp(-2*t),y(0) = 10],y(t), singsol=all)
```

$$
y(t)=\frac{43 \mathrm{e}^{2 t}}{4}-\frac{3 \mathrm{e}^{-2 t}}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.096 (sec). Leaf size: 23
DSolve[\{y' $[t]-2 * y[t]==3 * \operatorname{Exp}[-2 * t],\{y[0]==10\}\}, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{1}{4} e^{-2 t}\left(43 e^{4 t}-3\right)
$$

6.9 problem 9

6.9.1 Existence and uniqueness analysis 911
6.9.2 Solving as linear ode . 912
6.9.3 Solving as first order ode lie symmetry lookup ode 914
6.9.4 Solving as exact ode . 918
6.9.5 Maple step by step solution . 922

Internal problem ID [12998]
Internal file name [OUTPUT/11650_Tuesday_November_07_2023_11_54_05_PM_64099950/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121
Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+y=\cos (2 t)
$$

With initial conditions

$$
[y(0)=5]
$$

6.9.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =1 \\
q(t) & =\cos (2 t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y=\cos (2 t)
$$

The domain of $p(t)=1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=\cos (2 t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

6.9.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 1 d t} \\
& =\mathrm{e}^{t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)(\cos (2 t)) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{t} y\right) & =\left(\mathrm{e}^{t}\right)(\cos (2 t)) \\
\mathrm{d}\left(\mathrm{e}^{t} y\right) & =\left(\mathrm{e}^{t} \cos (2 t)\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{t} y=\int \mathrm{e}^{t} \cos (2 t) \mathrm{d} t \\
& \mathrm{e}^{t} y=\frac{\mathrm{e}^{t} \cos (2 t)}{5}+\frac{2 \mathrm{e}^{t} \sin (2 t)}{5}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{t}$ results in

$$
y=\mathrm{e}^{-t}\left(\frac{\mathrm{e}^{t} \cos (2 t)}{5}+\frac{2 \mathrm{e}^{t} \sin (2 t)}{5}\right)+c_{1} \mathrm{e}^{-t}
$$

which simplifies to

$$
y=\frac{2 \sin (2 t)}{5}+\frac{\cos (2 t)}{5}+c_{1} \mathrm{e}^{-t}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=5$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
5=\frac{1}{5}+c_{1} \\
c_{1}=\frac{24}{5}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{2 \sin (2 t)}{5}+\frac{\cos (2 t)}{5}+\frac{24 \mathrm{e}^{-t}}{5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 \sin (2 t)}{5}+\frac{\cos (2 t)}{5}+\frac{24 \mathrm{e}^{-t}}{5} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{2 \sin (2 t)}{5}+\frac{\cos (2 t)}{5}+\frac{24 \mathrm{e}^{-t}}{5}
$$

Verified OK.

6.9.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-y+\cos (2 t) \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 200: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-y+\cos (2 t)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =\mathrm{e}^{t} y \\
S_{y} & =\mathrm{e}^{t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{t} \cos (2 t) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{R} \cos (2 R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1}+\frac{\mathrm{e}^{R}(\cos (2 R)+2 \sin (2 R))}{5} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{t} y=\frac{\mathrm{e}^{t}(2 \sin (2 t)+\cos (2 t))}{5}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{t} y=\frac{\mathrm{e}^{t}(2 \sin (2 t)+\cos (2 t))}{5}+c_{1}
$$

Which gives

$$
y=\frac{\mathrm{e}^{-t}\left(\mathrm{e}^{t} \cos (2 t)+2 \mathrm{e}^{t} \sin (2 t)+5 c_{1}\right)}{5}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-y+\cos (2 t)$		$\frac{d S}{d R}=\mathrm{e}^{R} \cos (2 R)$
bibibitibititi		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
	$R=t$	
	$S=\mathrm{e}^{t} y$	
¢papapafactapapapapap		

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=5$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
5=\frac{1}{5}+c_{1} \\
c_{1}=\frac{24}{5}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{2 \sin (2 t)}{5}+\frac{\cos (2 t)}{5}+\frac{24 \mathrm{e}^{-t}}{5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 \sin (2 t)}{5}+\frac{\cos (2 t)}{5}+\frac{24 \mathrm{e}^{-t}}{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{2 \sin (2 t)}{5}+\frac{\cos (2 t)}{5}+\frac{24 \mathrm{e}^{-t}}{5}
$$

Verified OK.

6.9.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(-y+\cos (2 t)) \mathrm{d} t \\
(y-\cos (2 t)) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =y-\cos (2 t) \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y-\cos (2 t)) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((1)-(0)) \\
& =1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int 1 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{t} \\
& =\mathrm{e}^{t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{t}(y-\cos (2 t)) \\
& =(y-\cos (2 t)) \mathrm{e}^{t}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{t}(1) \\
& =\mathrm{e}^{t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left((y-\cos (2 t)) \mathrm{e}^{t}\right)+\left(\mathrm{e}^{t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int(y-\cos (2 t)) \mathrm{e}^{t} \mathrm{~d} t \\
\phi & =-\frac{\mathrm{e}^{t}(-5 y+\cos (2 t)+2 \sin (2 t))}{5}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{t}=\mathrm{e}^{t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\mathrm{e}^{t}(-5 y+\cos (2 t)+2 \sin (2 t))}{5}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\mathrm{e}^{t}(-5 y+\cos (2 t)+2 \sin (2 t))}{5}
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{-t}\left(\mathrm{e}^{t} \cos (2 t)+2 \mathrm{e}^{t} \sin (2 t)+5 c_{1}\right)}{5}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=5$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
5=\frac{1}{5}+c_{1} \\
c_{1}=\frac{24}{5}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{2 \sin (2 t)}{5}+\frac{\cos (2 t)}{5}+\frac{24 \mathrm{e}^{-t}}{5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 \sin (2 t)}{5}+\frac{\cos (2 t)}{5}+\frac{24 \mathrm{e}^{-t}}{5} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{2 \sin (2 t)}{5}+\frac{\cos (2 t)}{5}+\frac{24 \mathrm{e}^{-t}}{5}
$$

Verified OK.

6.9.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}+y=\cos (2 t), y(0)=5\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-y+\cos (2 t)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+y=\cos (2 t)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+y\right)=\mu(t) \cos (2 t)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t) \cos (2 t) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t) \cos (2 t) d t+c_{1}$
- Solve for y
$y=\frac{\int \mu(t) \cos (2 t) d t+c_{1}}{\mu(t)}$
- Substitute $\mu(t)=\mathrm{e}^{t}$
$y=\frac{\int e^{t} \cos (2 t) d t+c_{1}}{\mathrm{e}^{t}}$
- Evaluate the integrals on the rhs
$y=\frac{{\frac{e^{t} \cos (2 t)}{5}+e^{2 e^{t} \sin (2 t)}+c_{1}}_{\mathrm{e}^{t}}^{5}}{5}$
- Simplify
$y=\frac{2 \sin (2 t)}{5}+\frac{\cos (2 t)}{5}+c_{1} \mathrm{e}^{-t}$
- Use initial condition $y(0)=5$
$5=\frac{1}{5}+c_{1}$
- \quad Solve for c_{1}
$c_{1}=\frac{24}{5}$
- Substitute $c_{1}=\frac{24}{5}$ into general solution and simplify
$y=\frac{2 \sin (2 t)}{5}+\frac{\cos (2 t)}{5}+\frac{24 \mathrm{e}^{-t}}{5}$
- \quad Solution to the IVP

$$
y=\frac{2 \sin (2 t)}{5}+\frac{\cos (2 t)}{5}+\frac{24 \mathrm{e}^{-t}}{5}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 23

$$
\begin{aligned}
& \text { dsolve }([\operatorname{diff}(\mathrm{y}(\mathrm{t}), \mathrm{t})+\mathrm{y}(\mathrm{t})=\cos (2 * \mathrm{t}), \mathrm{y}(0)=5], \mathrm{y}(\mathrm{t}), \text { singsol=all) } \\
& \qquad y(t)=\frac{\cos (2 t)}{5}+\frac{2 \sin (2 t)}{5}+\frac{24 \mathrm{e}^{-t}}{5}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.144 (sec). Leaf size: 27
DSolve $\left[\left\{y^{\prime}[t]+y[t]==\operatorname{Cos}[2 * t],\{y[0]==5\}\right\}, y[t], t\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{1}{5}\left(24 e^{-t}+2 \sin (2 t)+\cos (2 t)\right)
$$

6.10 problem 10

6.10.1 Existence and uniqueness analysis 925
6.10.2 Solving as linear ode . 926
6.10.3 Solving as first order ode lie symmetry lookup ode 928
6.10.4 Solving as exact ode . 932
6.10.5 Maple step by step solution . 936

Internal problem ID [12999]
Internal file name [OUTPUT/11651_Tuesday_November_07_2023_11_54_06_PM_33112791/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+3 y=\cos (2 t)
$$

With initial conditions

$$
[y(0)=-1]
$$

6.10.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =3 \\
q(t) & =\cos (2 t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+3 y=\cos (2 t)
$$

The domain of $p(t)=3$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=\cos (2 t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

6.10.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 3 d t} \\
& =\mathrm{e}^{3 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)(\cos (2 t)) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{3 t} y\right) & =\left(\mathrm{e}^{3 t}\right)(\cos (2 t)) \\
\mathrm{d}\left(\mathrm{e}^{3 t} y\right) & =\left(\mathrm{e}^{3 t} \cos (2 t)\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{3 t} y=\int \mathrm{e}^{3 t} \cos (2 t) \mathrm{d} t \\
& \mathrm{e}^{3 t} y=\frac{3 \mathrm{e}^{3 t} \cos (2 t)}{13}+\frac{2 \mathrm{e}^{3 t} \sin (2 t)}{13}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{3 t}$ results in

$$
y=\mathrm{e}^{-3 t}\left(\frac{3 \mathrm{e}^{3 t} \cos (2 t)}{13}+\frac{2 \mathrm{e}^{3 t} \sin (2 t)}{13}\right)+\mathrm{e}^{-3 t} c_{1}
$$

which simplifies to

$$
y=\frac{2 \sin (2 t)}{13}+\frac{3 \cos (2 t)}{13}+\mathrm{e}^{-3 t} c_{1}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=\frac{3}{13}+c_{1} \\
c_{1}=-\frac{16}{13}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{2 \sin (2 t)}{13}+\frac{3 \cos (2 t)}{13}-\frac{16 \mathrm{e}^{-3 t}}{13}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 \sin (2 t)}{13}+\frac{3 \cos (2 t)}{13}-\frac{16 \mathrm{e}^{-3 t}}{13} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{2 \sin (2 t)}{13}+\frac{3 \cos (2 t)}{13}-\frac{16 \mathrm{e}^{-3 t}}{13}
$$

Verified OK.

6.10.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-3 y+\cos (2 t) \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 203: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-3 t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-3 t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{3 t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-3 y+\cos (2 t)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =3 \mathrm{e}^{3 t} y \\
S_{y} & =\mathrm{e}^{3 t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{3 t} \cos (2 t) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{3 R} \cos (2 R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1}+\frac{\mathrm{e}^{3 R}(3 \cos (2 R)+2 \sin (2 R))}{13} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{3 t} y=\frac{\mathrm{e}^{3 t}(3 \cos (2 t)+2 \sin (2 t))}{13}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{3 t} y=\frac{\mathrm{e}^{3 t}(3 \cos (2 t)+2 \sin (2 t))}{13}+c_{1}
$$

Which gives

$$
y=\frac{\mathrm{e}^{-3 t}\left(3 \mathrm{e}^{3 t} \cos (2 t)+2 \mathrm{e}^{3 t} \sin (2 t)+13 c_{1}\right)}{13}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-3 y+\cos (2 t)$		$\frac{d S}{d R}=\mathrm{e}^{3 R} \cos (2 R)$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow+1]{ }$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow+}$
	$R=t$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-1}{ }^{\text {a }}$
	$S=\mathrm{e}^{3 t} y$	
	$S=\mathrm{e}^{3 l} y$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-2}$
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty}$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=\frac{3}{13}+c_{1} \\
c_{1}=-\frac{16}{13}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{2 \sin (2 t)}{13}+\frac{3 \cos (2 t)}{13}-\frac{16 \mathrm{e}^{-3 t}}{13}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 \sin (2 t)}{13}+\frac{3 \cos (2 t)}{13}-\frac{16 \mathrm{e}^{-3 t}}{13} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{2 \sin (2 t)}{13}+\frac{3 \cos (2 t)}{13}-\frac{16 \mathrm{e}^{-3 t}}{13}
$$

Verified OK.

6.10.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(-3 y+\cos (2 t)) \mathrm{d} t \\
(3 y-\cos (2 t)) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =3 y-\cos (2 t) \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(3 y-\cos (2 t)) \\
& =3
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((3)-(0)) \\
& =3
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int 3 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{3 t} \\
& =\mathrm{e}^{3 t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{3 t}(3 y-\cos (2 t)) \\
& =(3 y-\cos (2 t)) \mathrm{e}^{3 t}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{3 t}(1) \\
& =\mathrm{e}^{3 t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left((3 y-\cos (2 t)) \mathrm{e}^{3 t}\right)+\left(\mathrm{e}^{3 t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int(3 y-\cos (2 t)) \mathrm{e}^{3 t} \mathrm{~d} t \\
\phi & =-\frac{(-13 y+3 \cos (2 t)+2 \sin (2 t)) \mathrm{e}^{3 t}}{13}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{3 t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{3 t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{3 t}=\mathrm{e}^{3 t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{(-13 y+3 \cos (2 t)+2 \sin (2 t)) \mathrm{e}^{3 t}}{13}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{(-13 y+3 \cos (2 t)+2 \sin (2 t)) \mathrm{e}^{3 t}}{13}
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{-3 t}\left(3 \mathrm{e}^{3 t} \cos (2 t)+2 \mathrm{e}^{3 t} \sin (2 t)+13 c_{1}\right)}{13}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=\frac{3}{13}+c_{1} \\
c_{1}=-\frac{16}{13}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{2 \sin (2 t)}{13}+\frac{3 \cos (2 t)}{13}-\frac{16 \mathrm{e}^{-3 t}}{13}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 \sin (2 t)}{13}+\frac{3 \cos (2 t)}{13}-\frac{16 \mathrm{e}^{-3 t}}{13} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{2 \sin (2 t)}{13}+\frac{3 \cos (2 t)}{13}-\frac{16 \mathrm{e}^{-3 t}}{13}
$$

Verified OK.

6.10.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}+3 y=\cos (2 t), y(0)=-1\right]
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- Isolate the derivative
$y^{\prime}=-3 y+\cos (2 t)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+3 y=\cos (2 t)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+3 y\right)=\mu(t) \cos (2 t)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+3 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=3 \mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{3 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t) \cos (2 t) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t) \cos (2 t) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(t) \cos (2 t) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{3 t}$
$y=\frac{\int \mathrm{e}^{3 t} \cos (2 t) d t+c_{1}}{\mathrm{e}^{3 t}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{3 \mathrm{e}^{3 t} \cos (2 t)}{13}+\frac{2 \mathrm{e}^{3 t} \sin (2 t)}{13}+c_{1}}{\mathrm{e}^{3 t}}$
- Simplify
$y=\frac{2 \sin (2 t)}{13}+\frac{3 \cos (2 t)}{13}+\mathrm{e}^{-3 t} c_{1}$
- Use initial condition $y(0)=-1$

$$
-1=\frac{3}{13}+c_{1}
$$

- \quad Solve for c_{1}
$c_{1}=-\frac{16}{13}$
- Substitute $c_{1}=-\frac{16}{13}$ into general solution and simplify
$y=\frac{2 \sin (2 t)}{13}+\frac{3 \cos (2 t)}{13}-\frac{16 \mathrm{e}^{-3 t}}{13}$
- \quad Solution to the IVP

$$
y=\frac{2 \sin (2 t)}{13}+\frac{3 \cos (2 t)}{13}-\frac{16 \mathrm{e}^{-3 t}}{13}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 23

```
dsolve([diff(y(t),t)+3*y(t)=cos(2*t),y(0) = -1],y(t), singsol=all)
```

$$
y(t)=\frac{3 \cos (2 t)}{13}+\frac{2 \sin (2 t)}{13}-\frac{16 \mathrm{e}^{-3 t}}{13}
$$

\checkmark Solution by Mathematica
Time used: 0.067 (sec). Leaf size: 30
DSolve[\{y' $[\mathrm{t}]+3 * y[\mathrm{t}]==\operatorname{Cos}[2 * \mathrm{t}],\{\mathrm{y}[0]==-1\}\}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{1}{13}\left(2\left(\sin (2 t)-8 e^{-3 t}\right)+3 \cos (2 t)\right)
$$

6.11 problem 11

6.11.1 Existence and uniqueness analysis 939
6.11.2 Solving as linear ode . 940
6.11.3 Solving as first order ode lie symmetry lookup ode 942
6.11.4 Solving as exact ode . 946
6.11.5 Maple step by step solution . 950

Internal problem ID [13000]
Internal file name [OUTPUT/11652_Tuesday_November_07_2023_11_54_07_PM_17255973/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-2 y=7 \mathrm{e}^{2 t}
$$

With initial conditions

$$
[y(0)=3]
$$

6.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-2 \\
q(t) & =7 \mathrm{e}^{2 t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-2 y=7 \mathrm{e}^{2 t}
$$

The domain of $p(t)=-2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=7 \mathrm{e}^{2 t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

6.11.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-2) d t} \\
& =\mathrm{e}^{-2 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(7 \mathrm{e}^{2 t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-2 t} y\right) & =\left(\mathrm{e}^{-2 t}\right)\left(7 \mathrm{e}^{2 t}\right) \\
\mathrm{d}\left(\mathrm{e}^{-2 t} y\right) & =7 \mathrm{~d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-2 t} y=\int 7 \mathrm{~d} t \\
& \mathrm{e}^{-2 t} y=7 t+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-2 t}$ results in

$$
y=7 \mathrm{e}^{2 t} t+c_{1} \mathrm{e}^{2 t}
$$

which simplifies to

$$
y=\mathrm{e}^{2 t}\left(7 t+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 3=c_{1} \\
& c_{1}=3
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\mathrm{e}^{2 t}(3+7 t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 t}(3+7 t) \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 t}(3+7 t)
$$

Verified OK.

6.11.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=2 y+7 \mathrm{e}^{2 t} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 206: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{2 t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{2 t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-2 t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=2 y+7 \mathrm{e}^{2 t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-2 \mathrm{e}^{-2 t} y \\
S_{y} & =\mathrm{e}^{-2 t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=7 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=7
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=7 R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-2 t} y=7 t+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-2 t} y=7 t+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{2 t}\left(7 t+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=2 y+7 \mathrm{e}^{2 t}$		$\frac{d S}{d R}=7$
		+ 4 +
		A A A A A P A A A A A A A A
	$R=t$	
	$S=\mathrm{e}^{-2 t} y$	
	$S=\mathrm{e}^{-2 \iota} y$	
+ixtat		
,		

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 3=c_{1} \\
& c_{1}=3
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=7 \mathrm{e}^{2 t} t+3 \mathrm{e}^{2 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=7 \mathrm{e}^{2 t} t+3 \mathrm{e}^{2 t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=7 \mathrm{e}^{2 t} t+3 \mathrm{e}^{2 t}
$$

Verified OK.

6.11.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(2 y+7 \mathrm{e}^{2 t}\right) \mathrm{d} t \\
\left(-2 y-7 \mathrm{e}^{2 t}\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-2 y-7 \mathrm{e}^{2 t} \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-2 y-7 \mathrm{e}^{2 t}\right) \\
& =-2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((-2)-(0)) \\
& =-2
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-2 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 t} \\
& =\mathrm{e}^{-2 t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-2 t}\left(-2 y-7 \mathrm{e}^{2 t}\right) \\
& =-2 \mathrm{e}^{-2 t} y-7
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-2 t}(1) \\
& =\mathrm{e}^{-2 t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(-2 \mathrm{e}^{-2 t} y-7\right)+\left(\mathrm{e}^{-2 t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-2 \mathrm{e}^{-2 t} y-7 \mathrm{~d} t \\
\phi & =-7 t+\mathrm{e}^{-2 t} y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-2 t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-2 t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-2 t}=\mathrm{e}^{-2 t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-7 t+\mathrm{e}^{-2 t} y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-7 t+\mathrm{e}^{-2 t} y
$$

The solution becomes

$$
y=\mathrm{e}^{2 t}\left(7 t+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 3=c_{1} \\
& c_{1}=3
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=7 \mathrm{e}^{2 t} t+3 \mathrm{e}^{2 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=7 \mathrm{e}^{2 t} t+3 \mathrm{e}^{2 t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=7 \mathrm{e}^{2 t} t+3 \mathrm{e}^{2 t}
$$

Verified OK.

6.11.5 Maple step by step solution

Let's solve
$\left[y^{\prime}-2 y=7 \mathrm{e}^{2 t}, y(0)=3\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=2 y+7 \mathrm{e}^{2 t}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}-2 y=7 \mathrm{e}^{2 t}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$

$$
\mu(t)\left(y^{\prime}-2 y\right)=7 \mu(t) \mathrm{e}^{2 t}
$$

- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-2 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-2 \mu(t)$
- \quad Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-2 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 7 \mu(t) \mathrm{e}^{2 t} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 7 \mu(t) \mathrm{e}^{2 t} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 7 \mu(t) \mathrm{e}^{2 t} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-2 t}$
$y=\frac{\int 7 \mathrm{e}^{-2 t} \mathrm{e}^{2 t} d t+c_{1}}{\mathrm{e}^{-2 t}}$
- Evaluate the integrals on the rhs
$y=\frac{7 t+c_{1}}{\mathrm{e}^{-2 t}}$
- Simplify
$y=\mathrm{e}^{2 t}\left(7 t+c_{1}\right)$
- Use initial condition $y(0)=3$
$3=c_{1}$
- \quad Solve for c_{1}
$c_{1}=3$
- \quad Substitute $c_{1}=3$ into general solution and simplify
$y=\mathrm{e}^{2 t}(3+7 t)$
- \quad Solution to the IVP
$y=\mathrm{e}^{2 t}(3+7 t)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

```
dsolve([diff(y(t),t)-2*y(t)=7*exp(2*t),y(0) = 3],y(t), singsol=all)
```

$$
y(t)=(7 t+3) \mathrm{e}^{2 t}
$$

\checkmark Solution by Mathematica
Time used: 0.073 (sec). Leaf size: 16
DSolve[\{y' [t]-2*y[t]==7*Exp[2*t],\{y[0]==3\}\},y[t],t,IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow e^{2 t}(7 t+3)
$$

6.12 problem 20

6.12.1 Solving as linear ode
953
6.12.2 Solving as first order ode lie symmetry lookup ode 955
6.12.3 Solving as exact ode . 959
6.12.4 Maple step by step solution . 963

Internal problem ID [13001]
Internal file name [OUTPUT/11653_Tuesday_November_07_2023_11_54_08_PM_48347244/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121
Problem number: 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+2 y=3 t^{2}+2 t-1
$$

6.12.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =2 \\
q(t) & =3 t^{2}+2 t-1
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+2 y=3 t^{2}+2 t-1
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 2 d t} \\
& =\mathrm{e}^{2 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(3 t^{2}+2 t-1\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{2 t} y\right) & =\left(\mathrm{e}^{2 t}\right)\left(3 t^{2}+2 t-1\right) \\
\mathrm{d}\left(\mathrm{e}^{2 t} y\right) & =\left(\left(3 t^{2}+2 t-1\right) \mathrm{e}^{2 t}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{2 t} y=\int\left(3 t^{2}+2 t-1\right) \mathrm{e}^{2 t} \mathrm{~d} t \\
& \mathrm{e}^{2 t} y=\frac{\left(6 t^{2}-2 t-1\right) \mathrm{e}^{2 t}}{4}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{2 t}$ results in

$$
y=\frac{\mathrm{e}^{-2 t}\left(6 t^{2}-2 t-1\right) \mathrm{e}^{2 t}}{4}+c_{1} \mathrm{e}^{-2 t}
$$

which simplifies to

$$
y=\frac{3 t^{2}}{2}-\frac{t}{2}-\frac{1}{4}+c_{1} \mathrm{e}^{-2 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 t^{2}}{2}-\frac{t}{2}-\frac{1}{4}+c_{1} \mathrm{e}^{-2 t} \tag{1}
\end{equation*}
$$

Figure 209: Slope field plot

Verification of solutions

$$
y=\frac{3 t^{2}}{2}-\frac{t}{2}-\frac{1}{4}+c_{1} \mathrm{e}^{-2 t}
$$

Verified OK.

6.12.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =3 t^{2}+2 t-2 y-1 \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 209: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-2 t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-2 t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{2 t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=3 t^{2}+2 t-2 y-1
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =2 \mathrm{e}^{2 t} y \\
S_{y} & =\mathrm{e}^{2 t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\left(3 t^{2}+2 t-1\right) \mathrm{e}^{2 t} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\left(3 R^{2}+2 R-1\right) \mathrm{e}^{2 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\left(6 R^{2}-2 R-1\right) \mathrm{e}^{2 R}}{4}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{2 t} y=\frac{\left(6 t^{2}-2 t-1\right) \mathrm{e}^{2 t}}{4}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{2 t} y=\frac{\left(6 t^{2}-2 t-1\right) \mathrm{e}^{2 t}}{4}+c_{1}
$$

Which gives

$$
y=\frac{\left(6 \mathrm{e}^{2 t} t^{2}-2 \mathrm{e}^{2 t} t-\mathrm{e}^{2 t}+4 c_{1}\right) \mathrm{e}^{-2 t}}{4}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=3 t^{2}+2 t-2 y-1$		$\frac{d S}{d R}=\left(3 R^{2}+2 R-1\right) \mathrm{e}^{2 R}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+x_{0}+1]{ }$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$ (R)
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+]{ }$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty}$
	$S=\mathrm{e}^{2 t} y$	\rightarrow
		$\rightarrow \rightarrow$
		$\rightarrow \rightarrow$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }$
¢ ¢ ¢¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢		¢ + ¢ ¢ ¢ ¢ ¢ ¢

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(6 \mathrm{e}^{2 t} t^{2}-2 \mathrm{e}^{2 t} t-\mathrm{e}^{2 t}+4 c_{1}\right) \mathrm{e}^{-2 t}}{4} \tag{1}
\end{equation*}
$$

Figure 210: Slope field plot

Verification of solutions

$$
y=\frac{\left(6 \mathrm{e}^{2 t} t^{2}-2 \mathrm{e}^{2 t} t-\mathrm{e}^{2 t}+4 c_{1}\right) \mathrm{e}^{-2 t}}{4}
$$

Verified OK.

6.12.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(3 t^{2}+2 t-2 y-1\right) \mathrm{d} t \\
\left(-3 t^{2}-2 t+2 y+1\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-3 t^{2}-2 t+2 y+1 \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-3 t^{2}-2 t+2 y+1\right) \\
& =2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((2)-(0)) \\
& =2
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int 2 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{2 t} \\
& =\mathrm{e}^{2 t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{2 t}\left(-3 t^{2}-2 t+2 y+1\right) \\
& =\left(-3 t^{2}-2 t+2 y+1\right) \mathrm{e}^{2 t}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{2 t}(1) \\
& =\mathrm{e}^{2 t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t}=0 \\
\left(\left(-3 t^{2}-2 t+2 y+1\right) \mathrm{e}^{2 t}\right)+\left(\mathrm{e}^{2 t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int\left(-3 t^{2}-2 t+2 y+1\right) \mathrm{e}^{2 t} \mathrm{~d} t \\
\phi & =-\frac{\mathrm{e}^{2 t}\left(6 t^{2}-2 t-4 y-1\right)}{4}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{2 t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{2 t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{2 t}=\mathrm{e}^{2 t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\mathrm{e}^{2 t}\left(6 t^{2}-2 t-4 y-1\right)}{4}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\mathrm{e}^{2 t}\left(6 t^{2}-2 t-4 y-1\right)}{4}
$$

The solution becomes

$$
y=\frac{\left(6 \mathrm{e}^{2 t} t^{2}-2 \mathrm{e}^{2 t} t-\mathrm{e}^{2 t}+4 c_{1}\right) \mathrm{e}^{-2 t}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(6 \mathrm{e}^{2 t} t^{2}-2 \mathrm{e}^{2 t} t-\mathrm{e}^{2 t}+4 c_{1}\right) \mathrm{e}^{-2 t}}{4} \tag{1}
\end{equation*}
$$

Figure 211: Slope field plot

Verification of solutions

$$
y=\frac{\left(6 \mathrm{e}^{2 t} t^{2}-2 \mathrm{e}^{2 t} t-\mathrm{e}^{2 t}+4 c_{1}\right) \mathrm{e}^{-2 t}}{4}
$$

Verified OK.

6.12.4 Maple step by step solution

Let's solve
$y^{\prime}+2 y=3 t^{2}+2 t-1$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=-2 y+3 t^{2}+2 t-1$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+2 y=3 t^{2}+2 t-1$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+2 y\right)=\mu(t)\left(3 t^{2}+2 t-1\right)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+2 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=2 \mu(t)$
- \quad Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{2 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t)\left(3 t^{2}+2 t-1\right) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t)\left(3 t^{2}+2 t-1\right) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(t)\left(3 t^{2}+2 t-1\right) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{2 t}$
$y=\frac{\int\left(3 t^{2}+2 t-1\right) \mathrm{e}^{2 t} d t+c_{1}}{\mathrm{e}^{2 t}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{\left(6 t^{2}-2 t-1\right) \mathrm{e}^{2 t}}{4}+c_{1}}{\mathrm{e}^{2 t}}$
- Simplify
$y=\frac{3 t^{2}}{2}-\frac{t}{2}-\frac{1}{4}+c_{1} \mathrm{e}^{-2 t}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 20

```
dsolve(diff(y(t),t)+2*y(t)=3*t^2+2*t-1,y(t), singsol=all)
```

$$
y(t)=\frac{3 t^{2}}{2}-\frac{t}{2}-\frac{1}{4}+\mathrm{e}^{-2 t} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.193 (sec). Leaf size: 28
DSolve[y' $[t]+2 * y[t]==3 * t \wedge 2+2 * t-1, y[t], t$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow \frac{1}{4}\left(6 t^{2}-2 t-1\right)+c_{1} e^{-2 t}
$$

6.13 problem 21

> 6.13.1 Solving as linear ode
6.13.2 Solving as first order ode lie symmetry lookup ode 968
6.13.3 Solving as exact ode 972
6.13.4 Maple step by step solution 976

Internal problem ID [13002]
Internal file name [OUTPUT/11654_Tuesday_November_07_2023_11_54_09_PM_23375726/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121
Problem number: 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+2 y=t^{2}+2 t+1+\mathrm{e}^{4 t}
$$

6.13.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=2 \\
& q(t)=t^{2}+2 t+1+\mathrm{e}^{4 t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+2 y=t^{2}+2 t+1+\mathrm{e}^{4 t}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 2 d t} \\
& =\mathrm{e}^{2 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(t^{2}+2 t+1+\mathrm{e}^{4 t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{2 t} y\right) & =\left(\mathrm{e}^{2 t}\right)\left(t^{2}+2 t+1+\mathrm{e}^{4 t}\right) \\
\mathrm{d}\left(\mathrm{e}^{2 t} y\right) & =\left(\left(t^{2}+2 t+1+\mathrm{e}^{4 t}\right) \mathrm{e}^{2 t}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{2 t} y=\int\left(t^{2}+2 t+1+\mathrm{e}^{4 t}\right) \mathrm{e}^{2 t} \mathrm{~d} t \\
& \mathrm{e}^{2 t} y=\frac{\mathrm{e}^{2 t}}{4}+\frac{\mathrm{e}^{6 t}}{6}+\frac{\mathrm{e}^{2 t} t^{2}}{2}+\frac{\mathrm{e}^{2 t} t}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{2 t}$ results in

$$
y=\mathrm{e}^{-2 t}\left(\frac{\mathrm{e}^{2 t}}{4}+\frac{\mathrm{e}^{6 t}}{6}+\frac{\mathrm{e}^{2 t} t^{2}}{2}+\frac{\mathrm{e}^{2 t} t}{2}\right)+c_{1} \mathrm{e}^{-2 t}
$$

which simplifies to

$$
y=\frac{1}{4}+\frac{\mathrm{e}^{4 t}}{6}+\frac{t^{2}}{2}+\frac{t}{2}+c_{1} \mathrm{e}^{-2 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{4}+\frac{\mathrm{e}^{4 t}}{6}+\frac{t^{2}}{2}+\frac{t}{2}+c_{1} \mathrm{e}^{-2 t} \tag{1}
\end{equation*}
$$

Figure 212: Slope field plot

Verification of solutions

$$
y=\frac{1}{4}+\frac{\mathrm{e}^{4 t}}{6}+\frac{t^{2}}{2}+\frac{t}{2}+c_{1} \mathrm{e}^{-2 t}
$$

Verified OK.

6.13.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-2 y+t^{2}+2 t+1+\mathrm{e}^{4 t} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 212: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-2 t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-2 t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{2 t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-2 y+t^{2}+2 t+1+\mathrm{e}^{4 t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =2 \mathrm{e}^{2 t} y \\
S_{y} & =\mathrm{e}^{2 t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=(1+t)^{2} \mathrm{e}^{2 t}+\mathrm{e}^{6 t} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=(1+R)^{2} \mathrm{e}^{2 R}+\mathrm{e}^{6 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\mathrm{e}^{2 R} R^{2}}{2}+\frac{\mathrm{e}^{2 R} R}{2}+\frac{\mathrm{e}^{2 R}}{4}+\frac{\mathrm{e}^{6 R}}{6}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{2 t} y=\frac{\mathrm{e}^{2 t} t^{2}}{2}+\frac{\mathrm{e}^{2 t} t}{2}+\frac{\mathrm{e}^{2 t}}{4}+\frac{\mathrm{e}^{6 t}}{6}+c_{1}
$$

Which simplifies to

$$
\frac{\left(-2 t^{2}-2 t+4 y-1\right) \mathrm{e}^{2 t}}{4}-c_{1}-\frac{\mathrm{e}^{6 t}}{6}=0
$$

Which gives

$$
y=\frac{\left(6 \mathrm{e}^{2 t} t^{2}+6 \mathrm{e}^{2 t} t+2 \mathrm{e}^{6 t}+3 \mathrm{e}^{2 t}+12 c_{1}\right) \mathrm{e}^{-2 t}}{12}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-2 y+t^{2}+2 t+1+\mathrm{e}^{4 t}$		$\frac{d S}{d R}=(1+R)^{2} \mathrm{e}^{2 R}+\mathrm{e}^{6 R}$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-S(R)]{\rightarrow}$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
	$R=t$	\rightarrow
	$S=\mathrm{e}^{2 t} y$	
	$S=\mathrm{e}^{2 t} y$	\rightarrow
		\rightarrow
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢¢¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ${ }_{\text {¢ }}$		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(6 \mathrm{e}^{2 t} t^{2}+6 \mathrm{e}^{2 t} t+2 \mathrm{e}^{6 t}+3 \mathrm{e}^{2 t}+12 c_{1}\right) \mathrm{e}^{-2 t}}{12} \tag{1}
\end{equation*}
$$

Figure 213: Slope field plot

Verification of solutions

$$
y=\frac{\left(6 \mathrm{e}^{2 t} t^{2}+6 \mathrm{e}^{2 t} t+2 \mathrm{e}^{6 t}+3 \mathrm{e}^{2 t}+12 c_{1}\right) \mathrm{e}^{-2 t}}{12}
$$

Verified OK.

6.13.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-2 y+t^{2}+2 t+1+\mathrm{e}^{4 t}\right) \mathrm{d} t \\
\left(2 y-t^{2}-2 t-1-\mathrm{e}^{4 t}\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =2 y-t^{2}-2 t-1-\mathrm{e}^{4 t} \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 y-t^{2}-2 t-1-\mathrm{e}^{4 t}\right) \\
& =2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((2)-(0)) \\
& =2
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int 2 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{2 t} \\
& =\mathrm{e}^{2 t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{2 t}\left(2 y-t^{2}-2 t-1-\mathrm{e}^{4 t}\right) \\
& =-\mathrm{e}^{2 t}\left(-2 y+t^{2}+2 t+1+\mathrm{e}^{4 t}\right)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{2 t}(1) \\
& =\mathrm{e}^{2 t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(-\mathrm{e}^{2 t}\left(-2 y+t^{2}+2 t+1+\mathrm{e}^{4 t}\right)\right)+\left(\mathrm{e}^{2 t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\mathrm{e}^{2 t}\left(-2 y+t^{2}+2 t+1+\mathrm{e}^{4 t}\right) \mathrm{d} t \\
\phi & =\frac{\left(-2 t^{2}-2 t+4 y-1\right) \mathrm{e}^{2 t}}{4}-\frac{\mathrm{e}^{6 t}}{6}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{2 t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{2 t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{2 t}=\mathrm{e}^{2 t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{\left(-2 t^{2}-2 t+4 y-1\right) \mathrm{e}^{2 t}}{4}-\frac{\mathrm{e}^{6 t}}{6}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{\left(-2 t^{2}-2 t+4 y-1\right) \mathrm{e}^{2 t}}{4}-\frac{\mathrm{e}^{6 t}}{6}
$$

The solution becomes

$$
y=\frac{\left(6 \mathrm{e}^{2 t} t^{2}+6 \mathrm{e}^{2 t} t+2 \mathrm{e}^{6 t}+3 \mathrm{e}^{2 t}+12 c_{1}\right) \mathrm{e}^{-2 t}}{12}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(6 \mathrm{e}^{2 t} t^{2}+6 \mathrm{e}^{2 t} t+2 \mathrm{e}^{6 t}+3 \mathrm{e}^{2 t}+12 c_{1}\right) \mathrm{e}^{-2 t}}{12} \tag{1}
\end{equation*}
$$

Figure 214: Slope field plot

Verification of solutions

$$
y=\frac{\left(6 \mathrm{e}^{2 t} t^{2}+6 \mathrm{e}^{2 t} t+2 \mathrm{e}^{6 t}+3 \mathrm{e}^{2 t}+12 c_{1}\right) \mathrm{e}^{-2 t}}{12}
$$

Verified OK.

6.13.4 Maple step by step solution

Let's solve
$y^{\prime}+2 y=t^{2}+2 t+1+\mathrm{e}^{4 t}$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative

$$
y^{\prime}=-2 y+t^{2}+2 t+1+\mathrm{e}^{4 t}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+2 y=t^{2}+2 t+1+\mathrm{e}^{4 t}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+2 y\right)=\mu(t)\left(t^{2}+2 t+1+\mathrm{e}^{4 t}\right)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+2 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=2 \mu(t)$
- \quad Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{2 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t)\left(t^{2}+2 t+1+\mathrm{e}^{4 t}\right) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t)\left(t^{2}+2 t+1+\mathrm{e}^{4 t}\right) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(t)\left(t^{2}+2 t+1+\mathrm{e}^{4 t}\right) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{2 t}$
$y=\frac{\int\left(t^{2}+2 t+1+\mathrm{e}^{4 t}\right) \mathrm{e}^{2 t} d t+c_{1}}{\mathrm{e}^{2 t}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{\left(e^{t}\right)^{2}}{4}+\frac{\left(\mathrm{e}^{t}\right)^{6}}{6}+\frac{t^{2}\left(e^{t}\right)^{2}}{2}+\frac{\left(\mathrm{e}^{t}\right)^{2} t}{2}+c_{1}}{\mathrm{e}^{2 t}}$
- Simplify
$y=\frac{1}{4}+\frac{\mathrm{e}^{4 t}}{6}+\frac{t^{2}}{2}+\frac{t}{2}+c_{1} \mathrm{e}^{-2 t}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

```
dsolve(diff(y(t),t)+2*y(t)=t^2+2*t+1+exp(4*t),y(t), singsol=all)
```

$$
y(t)=\frac{t^{2}}{2}+\frac{t}{2}+\frac{1}{4}+\frac{\mathrm{e}^{4 t}}{6}+\mathrm{e}^{-2 t} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.557 (sec). Leaf size: 35
DSolve [y' $[\mathrm{t}]+2 * \mathrm{y}[\mathrm{t}]==\mathrm{t}^{\wedge} 2+2 * \mathrm{t}+1+\operatorname{Exp}[4 * \mathrm{t}], \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{1}{12}\left(6 t^{2}+6 t+2 e^{4 t}+3\right)+c_{1} e^{-2 t}
$$

6.14 problem 22

6.14.1 Solving as linear ode . 979
6.14.2 Solving as first order ode lie symmetry lookup ode 981
6.14.3 Solving as exact ode . 985
6.14.4 Maple step by step solution . 989

Internal problem ID [13003]
Internal file name [OUTPUT/11655_Tuesday_November_07_2023_11_54_09_PM_13578292/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121
Problem number: 22.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+y=t^{3}+\sin (3 t)
$$

6.14.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =1 \\
q(t) & =t^{3}+\sin (3 t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y=t^{3}+\sin (3 t)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 1 d t} \\
& =\mathrm{e}^{t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(t^{3}+\sin (3 t)\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{t} y\right) & =\left(\mathrm{e}^{t}\right)\left(t^{3}+\sin (3 t)\right) \\
\mathrm{d}\left(\mathrm{e}^{t} y\right) & =\left(\left(t^{3}+\sin (3 t)\right) \mathrm{e}^{t}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{t} y=\int\left(t^{3}+\sin (3 t)\right) \mathrm{e}^{t} \mathrm{~d} t \\
& \mathrm{e}^{t} y=\mathrm{e}^{t} t^{3}-3 t^{2} \mathrm{e}^{t}+6 t \mathrm{e}^{t}-6 \mathrm{e}^{t}-\frac{3 \mathrm{e}^{t} \cos (3 t)}{10}+\frac{\mathrm{e}^{t} \sin (3 t)}{10}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{t}$ results in

$$
y=\mathrm{e}^{-t}\left(\mathrm{e}^{t} t^{3}-3 t^{2} \mathrm{e}^{t}+6 t \mathrm{e}^{t}-6 \mathrm{e}^{t}-\frac{3 \mathrm{e}^{t} \cos (3 t)}{10}+\frac{\mathrm{e}^{t} \sin (3 t)}{10}\right)+c_{1} \mathrm{e}^{-t}
$$

which simplifies to

$$
y=t^{3}-3 t^{2}+6 t+\frac{\sin (3 t)}{10}-\frac{3 \cos (3 t)}{10}-6+c_{1} \mathrm{e}^{-t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t^{3}-3 t^{2}+6 t+\frac{\sin (3 t)}{10}-\frac{3 \cos (3 t)}{10}-6+c_{1} \mathrm{e}^{-t} \tag{1}
\end{equation*}
$$

Figure 215: Slope field plot

Verification of solutions

$$
y=t^{3}-3 t^{2}+6 t+\frac{\sin (3 t)}{10}-\frac{3 \cos (3 t)}{10}-6+c_{1} \mathrm{e}^{-t}
$$

Verified OK.

6.14.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-y+t^{3}+\sin (3 t) \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 215: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-y+t^{3}+\sin (3 t)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =\mathrm{e}^{t} y \\
S_{y} & =\mathrm{e}^{t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\left(t^{3}+\sin (3 t)\right) \mathrm{e}^{t} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\left(R^{3}+\sin (3 R)\right) \mathrm{e}^{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\mathrm{e}^{R} R^{3}-3 \mathrm{e}^{R} R^{2}+6 R \mathrm{e}^{R}-6 \mathrm{e}^{R}+c_{1}-\frac{\mathrm{e}^{R}(3 \cos (3 R)-\sin (3 R))}{10} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{t} y=\mathrm{e}^{t} t^{3}-3 t^{2} \mathrm{e}^{t}+6 t \mathrm{e}^{t}-6 \mathrm{e}^{t}+c_{1}-\frac{\mathrm{e}^{t}(3 \cos (3 t)-\sin (3 t))}{10}
$$

Which simplifies to

$$
\frac{3 \mathrm{e}^{t} \cos (3 t)}{10}-\frac{\mathrm{e}^{t} \sin (3 t)}{10}+\left(-t^{3}+3 t^{2}-6 t+y+6\right) \mathrm{e}^{t}-c_{1}=0
$$

Which gives

$$
y=\frac{\mathrm{e}^{-t}\left(10 \mathrm{e}^{t} t^{3}-30 t^{2} \mathrm{e}^{t}+\mathrm{e}^{t} \sin (3 t)-3 \mathrm{e}^{t} \cos (3 t)+60 t \mathrm{e}^{t}-60 \mathrm{e}^{t}+10 c_{1}\right)}{10}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-y+t^{3}+\sin (3 t)$		$\frac{d S}{d R}=\left(R^{3}+\sin (3 R)\right) \mathrm{e}^{R}$
		+
	$R=t$	
${ }^{4}{ }^{\text {a }}$	$S=\mathrm{e}^{t} y$	$x^{2}-4 x^{2} x+0 y^{4} 9$
$\rightarrow{ }_{-3}{ }^{+}$		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-t}\left(10 \mathrm{e}^{t} t^{3}-30 t^{2} \mathrm{e}^{t}+\mathrm{e}^{t} \sin (3 t)-3 \mathrm{e}^{t} \cos (3 t)+60 t \mathrm{e}^{t}-60 \mathrm{e}^{t}+10 c_{1}\right)}{10} \tag{1}
\end{equation*}
$$

Figure 216: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-t}\left(10 \mathrm{e}^{t} t^{3}-30 t^{2} \mathrm{e}^{t}+\mathrm{e}^{t} \sin (3 t)-3 \mathrm{e}^{t} \cos (3 t)+60 t \mathrm{e}^{t}-60 \mathrm{e}^{t}+10 c_{1}\right)}{10}
$$

Verified OK.

6.14.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-y+t^{3}+\sin (3 t)\right) \mathrm{d} t \\
\left(y-t^{3}-\sin (3 t)\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =y-t^{3}-\sin (3 t) \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y-t^{3}-\sin (3 t)\right) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((1)-(0)) \\
& =1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int 1 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{t} \\
& =\mathrm{e}^{t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{t}\left(y-t^{3}-\sin (3 t)\right) \\
& =-\mathrm{e}^{t}\left(-y+t^{3}+\sin (3 t)\right)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{t}(1) \\
& =\mathrm{e}^{t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t}=0 \\
\left(-\mathrm{e}^{t}\left(-y+t^{3}+\sin (3 t)\right)\right)+\left(\mathrm{e}^{t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\mathrm{e}^{t}\left(-y+t^{3}+\sin (3 t)\right) \mathrm{d} t \\
\phi & =-\frac{\mathrm{e}^{t}\left(10 t^{3}-30 t^{2}+\sin (3 t)-3 \cos (3 t)+60 t-10 y-60\right)}{10}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{t}=\mathrm{e}^{t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\mathrm{e}^{t}\left(10 t^{3}-30 t^{2}+\sin (3 t)-3 \cos (3 t)+60 t-10 y-60\right)}{10}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\mathrm{e}^{t}\left(10 t^{3}-30 t^{2}+\sin (3 t)-3 \cos (3 t)+60 t-10 y-60\right)}{10}
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{-t}\left(10 \mathrm{e}^{t} t^{3}-30 t^{2} \mathrm{e}^{t}+\mathrm{e}^{t} \sin (3 t)-3 \mathrm{e}^{t} \cos (3 t)+60 t \mathrm{e}^{t}-60 \mathrm{e}^{t}+10 c_{1}\right)}{10}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-t}\left(10 \mathrm{e}^{t} t^{3}-30 t^{2} \mathrm{e}^{t}+\mathrm{e}^{t} \sin (3 t)-3 \mathrm{e}^{t} \cos (3 t)+60 t \mathrm{e}^{t}-60 \mathrm{e}^{t}+10 c_{1}\right)}{10} \tag{1}
\end{equation*}
$$

Figure 217: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-t}\left(10 \mathrm{e}^{t} t^{3}-30 t^{2} \mathrm{e}^{t}+\mathrm{e}^{t} \sin (3 t)-3 \mathrm{e}^{t} \cos (3 t)+60 t \mathrm{e}^{t}-60 \mathrm{e}^{t}+10 c_{1}\right)}{10}
$$

Verified OK.

6.14.4 Maple step by step solution

Let's solve
$y^{\prime}+y=t^{3}+\sin (3 t)$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=-y+t^{3}+\sin (3 t)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+y=t^{3}+\sin (3 t)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+y\right)=\mu(t)\left(t^{3}+\sin (3 t)\right)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t)\left(t^{3}+\sin (3 t)\right) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t)\left(t^{3}+\sin (3 t)\right) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(t)\left(t^{3}+\sin (3 t)\right) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{t}$
$y=\frac{\int\left(t^{3}+\sin (3 t)\right) \mathrm{e}^{t} d t+c_{1}}{\mathrm{e}^{t}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{\mathrm{e}^{t} \sin (3 t)}{10}-\frac{3 \mathrm{e}^{t} \cos (3 t)}{10}+\mathrm{e}^{t} t^{3}-3 t^{2} \mathrm{e}^{t}+6 t \mathrm{e}^{t}-6 \mathrm{e}^{t}+c_{1}}{\mathrm{e}^{t}}$
- Simplify
$y=t^{3}-3 t^{2}+6 t+\frac{\sin (3 t)}{10}-\frac{3 \cos (3 t)}{10}-6+c_{1} \mathrm{e}^{-t}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 35

```
dsolve(diff(y(t),t)+y(t)=t^3+\operatorname{sin}(3*t),y(t), singsol=all)
```

$$
y(t)=t^{3}-3 t^{2}+6 t-6-\frac{3 \cos (3 t)}{10}+\frac{\sin (3 t)}{10}+\mathrm{e}^{-t} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.19 (sec). Leaf size: 42
DSolve[y'[t]+y[t]==t^3+Sin[3*t],y[t],t,IncludeSingularSolutions \rightarrow True]
$y(t) \rightarrow t^{3}-3 t^{2}+6 t+\frac{1}{10} \sin (3 t)-\frac{3}{10} \cos (3 t)+c_{1} e^{-t}-6$

6.15 problem 23

$$
\text { 6.15.1 Solving as linear ode . } 992
$$

6.15.2 Solving as first order ode lie symmetry lookup ode 994
6.15.3 Solving as exact ode 998
6.15.4 Maple step by step solution 1002

Internal problem ID [13004]
Internal file name [OUTPUT/11656_Tuesday_November_07_2023_11_54_10_PM_53582205/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121
Problem number: 23.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-3 y=2 t-\mathrm{e}^{4 t}
$$

6.15.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-3 \\
q(t) & =2 t-\mathrm{e}^{4 t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-3 y=2 t-\mathrm{e}^{4 t}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-3) d t} \\
& =\mathrm{e}^{-3 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(2 t-\mathrm{e}^{4 t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-3 t} y\right) & =\left(\mathrm{e}^{-3 t}\right)\left(2 t-\mathrm{e}^{4 t}\right) \\
\mathrm{d}\left(\mathrm{e}^{-3 t} y\right) & =\left(\left(2 t-\mathrm{e}^{4 t}\right) \mathrm{e}^{-3 t}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-3 t} y=\int\left(2 t-\mathrm{e}^{4 t}\right) \mathrm{e}^{-3 t} \mathrm{~d} t \\
& \mathrm{e}^{-3 t} y=-\frac{2 t \mathrm{e}^{-3 t}}{3}-\frac{2 \mathrm{e}^{-3 t}}{9}-\mathrm{e}^{t}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-3 t}$ results in

$$
y=\mathrm{e}^{3 t}\left(-\frac{2 t \mathrm{e}^{-3 t}}{3}-\frac{2 \mathrm{e}^{-3 t}}{9}-\mathrm{e}^{t}\right)+c_{1} \mathrm{e}^{3 t}
$$

which simplifies to

$$
y=-\frac{2 t}{3}-\frac{2}{9}-\mathrm{e}^{4 t}+c_{1} \mathrm{e}^{3 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2 t}{3}-\frac{2}{9}-\mathrm{e}^{4 t}+c_{1} \mathrm{e}^{3 t} \tag{1}
\end{equation*}
$$

Figure 218: Slope field plot
Verification of solutions

$$
y=-\frac{2 t}{3}-\frac{2}{9}-\mathrm{e}^{4 t}+c_{1} \mathrm{e}^{3 t}
$$

Verified OK.

6.15.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=3 y+2 t-\mathrm{e}^{4 t} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 218: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{3 t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{3 t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-3 t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=3 y+2 t-\mathrm{e}^{4 t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-3 \mathrm{e}^{-3 t} y \\
S_{y} & =\mathrm{e}^{-3 t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\left(2 t-\mathrm{e}^{4 t}\right) \mathrm{e}^{-3 t} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\left(2 R-\mathrm{e}^{4 R}\right) \mathrm{e}^{-3 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{2 \mathrm{e}^{-3 R} R}{3}-\frac{2 \mathrm{e}^{-3 R}}{9}-\mathrm{e}^{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-3 t} y=-\frac{2 t \mathrm{e}^{-3 t}}{3}-\frac{2 \mathrm{e}^{-3 t}}{9}-\mathrm{e}^{t}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-3 t} y=-\frac{2 t \mathrm{e}^{-3 t}}{3}-\frac{2 \mathrm{e}^{-3 t}}{9}-\mathrm{e}^{t}+c_{1}
$$

Which gives

$$
y=-\frac{\left(9 \mathrm{e}^{4 t}-9 c_{1} \mathrm{e}^{3 t}+6 t+2\right) \mathrm{e}^{3 t} \mathrm{e}^{-3 t}}{9}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=3 y+2 t-\mathrm{e}^{4 t}$		$\frac{d S}{d R}=\left(2 R-\mathrm{e}^{4 R}\right) \mathrm{e}^{-3 R}$
		d. ${ }^{2}$
		STR9
1. $1.1009 \rightarrow 1$	$R=t$	\ldots
		- ${ }^{4}$
	$S=\mathrm{e}^{-3 t} y$	dedy ${ }^{2}$
		databl! ! dad
		d, \%tady
,		
		! d d d d d dow

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(9 \mathrm{e}^{4 t}-9 c_{1} \mathrm{e}^{3 t}+6 t+2\right) \mathrm{e}^{3 t} \mathrm{e}^{-3 t}}{9} \tag{1}
\end{equation*}
$$

Figure 219: Slope field plot

Verification of solutions

$$
y=-\frac{\left(9 \mathrm{e}^{4 t}-9 c_{1} \mathrm{e}^{3 t}+6 t+2\right) \mathrm{e}^{3 t} \mathrm{e}^{-3 t}}{9}
$$

Verified OK.

6.15.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(3 y+2 t-\mathrm{e}^{4 t}\right) \mathrm{d} t \\
\left(-3 y-2 t+\mathrm{e}^{4 t}\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-3 y-2 t+\mathrm{e}^{4 t} \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-3 y-2 t+\mathrm{e}^{4 t}\right) \\
& =-3
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((-3)-(0)) \\
& =-3
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-3 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-3 t} \\
& =\mathrm{e}^{-3 t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-3 t}\left(-3 y-2 t+\mathrm{e}^{4 t}\right) \\
& =\left(-3 y-2 t+\mathrm{e}^{4 t}\right) \mathrm{e}^{-3 t}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-3 t}(1) \\
& =\mathrm{e}^{-3 t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(\left(-3 y-2 t+\mathrm{e}^{4 t}\right) \mathrm{e}^{-3 t}\right)+\left(\mathrm{e}^{-3 t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int\left(-3 y-2 t+\mathrm{e}^{4 t}\right) \mathrm{e}^{-3 t} \mathrm{~d} t \\
\phi & =\frac{\left(9 \mathrm{e}^{4 t}+6 t+9 y+2\right) \mathrm{e}^{-3 t}}{9}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-3 t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-3 t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-3 t}=\mathrm{e}^{-3 t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{\left(9 \mathrm{e}^{4 t}+6 t+9 y+2\right) \mathrm{e}^{-3 t}}{9}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{\left(9 \mathrm{e}^{4 t}+6 t+9 y+2\right) \mathrm{e}^{-3 t}}{9}
$$

The solution becomes

$$
y=-\frac{\left(9 \mathrm{e}^{-3 t} \mathrm{e}^{4 t}+6 t \mathrm{e}^{-3 t}+2 \mathrm{e}^{-3 t}-9 c_{1}\right) \mathrm{e}^{3 t}}{9}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(9 \mathrm{e}^{-3 t} \mathrm{e}^{4 t}+6 t \mathrm{e}^{-3 t}+2 \mathrm{e}^{-3 t}-9 c_{1}\right) \mathrm{e}^{3 t}}{9} \tag{1}
\end{equation*}
$$

Figure 220: Slope field plot

Verification of solutions

$$
y=-\frac{\left(9 \mathrm{e}^{-3 t} \mathrm{e}^{4 t}+6 t \mathrm{e}^{-3 t}+2 \mathrm{e}^{-3 t}-9 c_{1}\right) \mathrm{e}^{3 t}}{9}
$$

Verified OK.

6.15.4 Maple step by step solution

Let's solve
$y^{\prime}-3 y=2 t-\mathrm{e}^{4 t}$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=3 y+2 t-\mathrm{e}^{4 t}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-3 y=2 t-\mathrm{e}^{4 t}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-3 y\right)=\mu(t)\left(2 t-\mathrm{e}^{4 t}\right)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-3 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-3 \mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-3 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t)\left(2 t-\mathrm{e}^{4 t}\right) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t)\left(2 t-\mathrm{e}^{4 t}\right) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(t)\left(2 t-\mathrm{e}^{4 t}\right) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-3 t}$
$y=\frac{\int\left(2 t-\mathrm{e}^{4 t}\right) \mathrm{e}^{-3 t} d t+c_{1}}{\mathrm{e}^{-3 t}}$
- Evaluate the integrals on the rhs
$y=\frac{-\frac{2 t}{3\left(e^{t}\right)^{3}}-\frac{2}{9\left(e^{t}\right)^{3}}-\mathrm{e}^{t}+c_{1}}{\mathrm{e}^{-3 t}}$
- Simplify
$y=-\frac{2 t}{3}-\frac{2}{9}-\mathrm{e}^{4 t}+c_{1} \mathrm{e}^{3 t}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

```
dsolve(diff(y(t),t)-3*y(t)=2*t-exp(4*t),y(t), singsol=all)
```

$$
y(t)=-\frac{2 t}{3}-\frac{2}{9}-\mathrm{e}^{4 t}+c_{1} \mathrm{e}^{3 t}
$$

\checkmark Solution by Mathematica
Time used: 0.146 (sec). Leaf size: 30
DSolve [y' $[\mathrm{t}]-3 * y[\mathrm{t}]==2 * \mathrm{t}-\operatorname{Exp}[4 * \mathrm{t}], \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions $->$ True $]$

$$
y(t) \rightarrow-\frac{2}{9}(3 t+1)-e^{4 t}+c_{1} e^{3 t}
$$

6.16 problem 24

6.16.1 Solving as linear ode . 1005
6.16.2 Solving as first order ode lie symmetry lookup ode 1007
6.16.3 Solving as exact ode . 1011
6.16.4 Maple step by step solution . 1015

Internal problem ID [13005]
Internal file name [OUTPUT/11657_Tuesday_November_07_2023_11_54_11_PM_33710285/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.8 page 121
Problem number: 24.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+y=\cos (2 t)+3 \sin (2 t)+\mathrm{e}^{-t}
$$

6.16.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=1 \\
& q(t)=\cos (2 t)+3 \sin (2 t)+\mathrm{e}^{-t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y=\cos (2 t)+3 \sin (2 t)+\mathrm{e}^{-t}
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int 1 d t} \\
=\mathrm{e}^{t}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\cos (2 t)+3 \sin (2 t)+\mathrm{e}^{-t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{t} y\right) & =\left(\mathrm{e}^{t}\right)\left(\cos (2 t)+3 \sin (2 t)+\mathrm{e}^{-t}\right) \\
\mathrm{d}\left(\mathrm{e}^{t} y\right) & =\left(\mathrm{e}^{t} \cos (2 t)+3 \mathrm{e}^{t} \sin (2 t)+1\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{t} y=\int \mathrm{e}^{t} \cos (2 t)+3 \mathrm{e}^{t} \sin (2 t)+1 \mathrm{~d} t \\
& \mathrm{e}^{t} y=t-\mathrm{e}^{t} \cos (2 t)+\mathrm{e}^{t} \sin (2 t)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{t}$ results in

$$
y=\mathrm{e}^{-t}\left(t-\mathrm{e}^{t} \cos (2 t)+\mathrm{e}^{t} \sin (2 t)\right)+c_{1} \mathrm{e}^{-t}
$$

which simplifies to

$$
y=\left(t+c_{1}\right) \mathrm{e}^{-t}-\cos (2 t)+\sin (2 t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(t+c_{1}\right) \mathrm{e}^{-t}-\cos (2 t)+\sin (2 t) \tag{1}
\end{equation*}
$$

Figure 221: Slope field plot

Verification of solutions

$$
y=\left(t+c_{1}\right) \mathrm{e}^{-t}-\cos (2 t)+\sin (2 t)
$$

Verified OK.

6.16.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-y+\cos (2 t)+3 \sin (2 t)+\mathrm{e}^{-t} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 221: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-y+\cos (2 t)+3 \sin (2 t)+\mathrm{e}^{-t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =\mathrm{e}^{t} y \\
S_{y} & =\mathrm{e}^{t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{t} \cos (2 t)+3 \mathrm{e}^{t} \sin (2 t)+1 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{R} \cos (2 R)+3 \mathrm{e}^{R} \sin (2 R)+1
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R+c_{1}-\mathrm{e}^{R}(\cos (2 R)-\sin (2 R)) \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{t} y=t+c_{1}-\mathrm{e}^{t}(\cos (2 t)-\sin (2 t))
$$

Which simplifies to

$$
\mathrm{e}^{t} y=t+c_{1}-\mathrm{e}^{t}(\cos (2 t)-\sin (2 t))
$$

Which gives

$$
y=-\mathrm{e}^{-t}\left(\mathrm{e}^{t} \cos (2 t)-\mathrm{e}^{t} \sin (2 t)-c_{1}-t\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-y+\cos (2 t)+3 \sin (2 t)+\mathrm{e}^{-t}$		$\frac{d S}{d R}=\mathrm{e}^{R} \cos (2 R)+3 \mathrm{e}^{R} \sin (2 R)+1$
$1+140$		
	$S=\mathrm{e}^{t} y$	
+		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\mathrm{e}^{-t}\left(\mathrm{e}^{t} \cos (2 t)-\mathrm{e}^{t} \sin (2 t)-c_{1}-t\right) \tag{1}
\end{equation*}
$$

Figure 222: Slope field plot

Verification of solutions

$$
y=-\mathrm{e}^{-t}\left(\mathrm{e}^{t} \cos (2 t)-\mathrm{e}^{t} \sin (2 t)-c_{1}-t\right)
$$

Verified OK.

6.16.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-y+\cos (2 t)+3 \sin (2 t)+\mathrm{e}^{-t}\right) \mathrm{d} t \\
\left(y-\cos (2 t)-3 \sin (2 t)-\mathrm{e}^{-t}\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=y-\cos (2 t)-3 \sin (2 t)-\mathrm{e}^{-t} \\
& N(t, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y-\cos (2 t)-3 \sin (2 t)-\mathrm{e}^{-t}\right) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((1)-(0)) \\
& =1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int 1 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{t} \\
& =\mathrm{e}^{t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{t}\left(y-\cos (2 t)-3 \sin (2 t)-\mathrm{e}^{-t}\right) \\
& =-\mathrm{e}^{t} \cos (2 t)-3 \mathrm{e}^{t} \sin (2 t)+\mathrm{e}^{t} y-1
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{t}(1) \\
& =\mathrm{e}^{t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(-\mathrm{e}^{t} \cos (2 t)-3 \mathrm{e}^{t} \sin (2 t)+\mathrm{e}^{t} y-1\right)+\left(\mathrm{e}^{t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\mathrm{e}^{t} \cos (2 t)-3 \mathrm{e}^{t} \sin (2 t)+\mathrm{e}^{t} y-1 \mathrm{~d} t \\
\phi & =-t+\mathrm{e}^{t} y+\mathrm{e}^{t} \cos (2 t)-\mathrm{e}^{t} \sin (2 t)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{t}=\mathrm{e}^{t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-t+\mathrm{e}^{t} y+\mathrm{e}^{t} \cos (2 t)-\mathrm{e}^{t} \sin (2 t)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-t+\mathrm{e}^{t} y+\mathrm{e}^{t} \cos (2 t)-\mathrm{e}^{t} \sin (2 t)
$$

The solution becomes

$$
y=-\mathrm{e}^{-t}\left(\mathrm{e}^{t} \cos (2 t)-\mathrm{e}^{t} \sin (2 t)-c_{1}-t\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\mathrm{e}^{-t}\left(\mathrm{e}^{t} \cos (2 t)-\mathrm{e}^{t} \sin (2 t)-c_{1}-t\right) \tag{1}
\end{equation*}
$$

Figure 223: Slope field plot

Verification of solutions

$$
y=-\mathrm{e}^{-t}\left(\mathrm{e}^{t} \cos (2 t)-\mathrm{e}^{t} \sin (2 t)-c_{1}-t\right)
$$

Verified OK.

6.16.4 Maple step by step solution

Let's solve

$$
y^{\prime}+y=\cos (2 t)+3 \sin (2 t)+\mathrm{e}^{-t}
$$

- Highest derivative means the order of the ODE is 1

```
y
```

- Isolate the derivative

$$
y^{\prime}=-y+\cos (2 t)+3 \sin (2 t)+\mathrm{e}^{-t}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+y=\cos (2 t)+3 \sin (2 t)+\mathrm{e}^{-t}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+y\right)=\mu(t)\left(\cos (2 t)+3 \sin (2 t)+\mathrm{e}^{-t}\right)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t)\left(\cos (2 t)+3 \sin (2 t)+\mathrm{e}^{-t}\right) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t)\left(\cos (2 t)+3 \sin (2 t)+\mathrm{e}^{-t}\right) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(t)\left(\cos (2 t)+3 \sin (2 t)+\mathrm{e}^{-t}\right) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{t}$
$y=\frac{\int\left(\cos (2 t)+3 \sin (2 t)+\mathrm{e}^{-t}\right) \mathrm{e}^{t} d t+c_{1}}{\mathrm{e}^{t}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{2(\cos (t)+2 \sin (t)) \mathrm{e}^{t} \cos (t)}{5}-\frac{\mathrm{e}^{t}}{5}+\frac{3 \mathrm{e}^{t}(-2 \cos (2 t)+\sin (2 t))}{5}+t+c_{1}}{\mathrm{e}^{t}}$
- Simplify

$$
y=\left(t+c_{1}\right) \mathrm{e}^{-t}-\cos (2 t)+\sin (2 t)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23
dsolve(diff $(y(t), t)+y(t)=\cos (2 * t)+3 * \sin (2 * t)+\exp (-t), y(t)$, singsol=all)

$$
y(t)=\left(t+c_{1}\right) \mathrm{e}^{-t}-\cos (2 t)+\sin (2 t)
$$

\checkmark Solution by Mathematica
Time used: 0.239 (sec). Leaf size: 32
DSolve [y' $[\mathrm{t}]+\mathrm{y}[\mathrm{t}]==\operatorname{Cos}[2 * \mathrm{t}]+3 * \operatorname{Sin}[2 * \mathrm{t}]+\operatorname{Exp}[-\mathrm{t}], \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow e^{-t}\left(t+e^{t} \sin (2 t)-e^{t} \cos (2 t)+c_{1}\right)
$$

7 Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133
7.1 problem 1 1019
7.2 problem 2 1034
7.3 problem 3 1047
7.4 problem 4 1061
7.5 problem 5 1074
7.6 problem 6 1087
7.7 problem 7 1100
7.8 problem 8 1118
7.9 problem 9 1132
7.10 problem 10 1149
7.11 problem 11 1163
7.12 problem 12 1177
7.13 problem 13 1191
7.14 problem 14 1204
7.15 problem 15 1218
7.16 problem 16 1231
7.17 problem 17 1244
7.18 problem 18 1258
7.19 problem 19 1278
7.20 problem 20 1289
7.21 problem 21 1302
7.22 problem 22 (f) 1316
7.23 problem 23 1329

7.1 problem 1

7.1.1 Solving as linear ode . 1019
7.1.2 Solving as homogeneousTypeD2 ode 1021
7.1.3 Solving as differentialType ode 1023
7.1.4 Solving as first order ode lie symmetry lookup ode 1024
7.1.5 Solving as exact ode . 1028
7.1.6 Maple step by step solution . 1032

Internal problem ID [13006]
Internal file name [OUTPUT/11658_Tuesday_November_07_2023_11_54_12_PM_31871316/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.
4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "differentialType", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}+\frac{y}{t}=2
$$

7.1.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =\frac{1}{t} \\
q(t) & =2
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{t}=2
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{t} d t} \\
& =t
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)(2) \\
\frac{\mathrm{d}}{\mathrm{~d} t}(t y) & =(t)(2) \\
\mathrm{d}(t y) & =(2 t) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& t y=\int 2 t \mathrm{~d} t \\
& t y=t^{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=t$ results in

$$
y=t+\frac{c_{1}}{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t+\frac{c_{1}}{t} \tag{1}
\end{equation*}
$$

Figure 224: Slope field plot
Verification of solutions

$$
y=t+\frac{c_{1}}{t}
$$

Verified OK.

7.1.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(t) t$ on the above ode results in new ode in $u(t)$

$$
u^{\prime}(t) t+2 u(t)=2
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =\frac{-2 u+2}{t}
\end{aligned}
$$

Where $f(t)=\frac{1}{t}$ and $g(u)=-2 u+2$. Integrating both sides gives

$$
\frac{1}{-2 u+2} d u=\frac{1}{t} d t
$$

$$
\begin{aligned}
\int \frac{1}{-2 u+2} d u & =\int \frac{1}{t} d t \\
-\frac{\ln (u-1)}{2} & =\ln (t)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\sqrt{u-1}}=\mathrm{e}^{\ln (t)+c_{2}}
$$

Which simplifies to

$$
\frac{1}{\sqrt{u-1}}=c_{3} t
$$

Therefore the solution y is

$$
\begin{aligned}
y & =t u \\
& =\frac{\left(c_{3}^{2} \mathrm{e}^{2 c_{2}} t^{2}+1\right) \mathrm{e}^{-2 c_{2}}}{t c_{3}^{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(c_{3}^{2} \mathrm{e}^{2 c_{2}} t^{2}+1\right) \mathrm{e}^{-2 c_{2}}}{t c_{3}^{2}} \tag{1}
\end{equation*}
$$

Figure 225: Slope field plot

Verification of solutions

$$
y=\frac{\left(c_{3}^{2} \mathrm{e}^{2 c_{2}} t^{2}+1\right) \mathrm{e}^{-2 c_{2}}}{t c_{3}^{2}}
$$

Verified OK.

7.1.3 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=-\frac{y}{t}+2 \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
0=(-t) d y+(2 t-y) d t \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-t) d y+(2 t-y) d t=d\left(t^{2}-t y\right)
$$

Hence (2) becomes

$$
0=d\left(t^{2}-t y\right)
$$

Integrating both sides gives gives these solutions

$$
y=\frac{t^{2}+c_{1}}{t}+c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{t^{2}+c_{1}}{t}+c_{1} \tag{1}
\end{equation*}
$$

Figure 226: Slope field plot

Verification of solutions

$$
y=\frac{t^{2}+c_{1}}{t}+c_{1}
$$

Verified OK.

7.1.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{-2 t+y}{t} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 224: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
\xi(t, y) & =0 \\
\eta(t, y) & =\frac{1}{t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{t}} d y
\end{aligned}
$$

Which results in

$$
S=t y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-\frac{-2 t+y}{t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =y \\
S_{y} & =t
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=2 t \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=2 R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R^{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
t y=t^{2}+c_{1}
$$

Which simplifies to

$$
t y=t^{2}+c_{1}
$$

Which gives

$$
y=\frac{t^{2}+c_{1}}{t}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-\frac{-2 t+y}{t}$		$\frac{d S}{d R}=2 R$
		W1:
	$S=t y$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{t^{2}+c_{1}}{t} \tag{1}
\end{equation*}
$$

Figure 227: Slope field plot

Verification of solutions

$$
y=\frac{t^{2}+c_{1}}{t}
$$

Verified OK.

7.1.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(t) \mathrm{d} y & =(2 t-y) \mathrm{d} t \\
(-2 t+y) \mathrm{d} t+(t) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-2 t+y \\
N(t, y) & =t
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-2 t+y) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(t) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-2 t+y \mathrm{~d} t \\
\phi & =-t(t-y)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=t+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=t$. Therefore equation (4) becomes

$$
\begin{equation*}
t=t+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-t(t-y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-t(t-y)
$$

The solution becomes

$$
y=\frac{t^{2}+c_{1}}{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{t^{2}+c_{1}}{t} \tag{1}
\end{equation*}
$$

Figure 228: Slope field plot

Verification of solutions

$$
y=\frac{t^{2}+c_{1}}{t}
$$

Verified OK.

7.1.6 Maple step by step solution

Let's solve

$$
y^{\prime}+\frac{y}{t}=2
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{y}{t}+2$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{y}{t}=2$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+\frac{y}{t}\right)=2 \mu(t)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+\frac{y}{t}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\frac{\mu(t)}{t}$
- \quad Solve to find the integrating factor
$\mu(t)=t$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 2 \mu(t) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 2 \mu(t) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 2 \mu(t) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=t$
$y=\frac{\int 2 t d t+c_{1}}{t}$
- Evaluate the integrals on the rhs
$y=\frac{t^{2}+c_{1}}{t}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

```
dsolve(diff(y(t),t)=-y(t)/t+2,y(t), singsol=all)
```

$$
y(t)=t+\frac{c_{1}}{t}
$$

\checkmark Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 13
DSolve[y'[t]==-y[t]/t+2,y[t],t,IncludeSingularSolutions -> True]

$$
y(t) \rightarrow t+\frac{c_{1}}{t}
$$

7.2 problem 2

7.2.1 Solving as linear ode . 1034
7.2.2 Solving as first order ode lie symmetry lookup ode 1036
7.2.3 Solving as exact ode . 1040
7.2.4 Maple step by step solution . 1045

Internal problem ID [13007]
Internal file name [OUTPUT/11659_Wednesday_November_08_2023_03_28_11_AM_64086885/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-\frac{3 y}{t}=t^{5}
$$

7.2.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-\frac{3}{t} \\
& q(t)=t^{5}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{3 y}{t}=t^{5}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{t} d t} \\
& =\frac{1}{t^{3}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(t^{5}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{y}{t^{3}}\right) & =\left(\frac{1}{t^{3}}\right)\left(t^{5}\right) \\
\mathrm{d}\left(\frac{y}{t^{3}}\right) & =t^{2} \mathrm{~d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{t^{3}} & =\int t^{2} \mathrm{~d} t \\
\frac{y}{t^{3}} & =\frac{t^{3}}{3}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{t^{3}}$ results in

$$
y=\frac{1}{3} t^{6}+t^{3} c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{3} t^{6}+t^{3} c_{1} \tag{1}
\end{equation*}
$$

Figure 229: Slope field plot

Verification of solutions

$$
y=\frac{1}{3} t^{6}+t^{3} c_{1}
$$

Verified OK.

7.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{t^{6}+3 y}{t} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 227: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=t^{3} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{t^{3}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{t^{3}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{t^{6}+3 y}{t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-\frac{3 y}{t^{4}} \\
S_{y} & =\frac{1}{t^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=t^{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R^{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{3}}{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\frac{y}{t^{3}}=\frac{t^{3}}{3}+c_{1}
$$

Which simplifies to

$$
\frac{y}{t^{3}}=\frac{t^{3}}{3}+c_{1}
$$

Which gives

$$
y=\frac{t^{3}\left(t^{3}+3 c_{1}\right)}{3}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{t^{6}+3 y}{t}$		$\frac{d S}{d R}=R^{2}$
, ${ }_{\text {d }}$		
	$R=t$	
	$S=\underline{y}$	
	$S=\frac{y}{t^{3}}$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{t^{3}\left(t^{3}+3 c_{1}\right)}{3} \tag{1}
\end{equation*}
$$

Figure 230: Slope field plot

Verification of solutions

$$
y=\frac{t^{3}\left(t^{3}+3 c_{1}\right)}{3}
$$

Verified OK.

7.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(\frac{3 y}{t}+t^{5}\right) \mathrm{d} t \\
\left(-\frac{3 y}{t}-t^{5}\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-\frac{3 y}{t}-t^{5} \\
& N(t, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{3 y}{t}-t^{5}\right) \\
& =-\frac{3}{t}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1\left(\left(-\frac{3}{t}\right)-(0)\right) \\
& =-\frac{3}{t}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-\frac{3}{t} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-3 \ln (t)} \\
& =\frac{1}{t^{3}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{t^{3}}\left(-\frac{3 y}{t}-t^{5}\right) \\
& =\frac{-t^{6}-3 y}{t^{4}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{t^{3}}(1) \\
& =\frac{1}{t^{3}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(\frac{-t^{6}-3 y}{t^{4}}\right)+\left(\frac{1}{t^{3}}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \frac{-t^{6}-3 y}{t^{4}} \mathrm{~d} t \\
\phi & =\frac{-t^{6}+3 y}{3 t^{3}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{t^{3}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{t^{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{t^{3}}=\frac{1}{t^{3}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{-t^{6}+3 y}{3 t^{3}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{-t^{6}+3 y}{3 t^{3}}
$$

The solution becomes

$$
y=\frac{t^{3}\left(t^{3}+3 c_{1}\right)}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{t^{3}\left(t^{3}+3 c_{1}\right)}{3} \tag{1}
\end{equation*}
$$

Figure 231: Slope field plot

Verification of solutions

$$
y=\frac{t^{3}\left(t^{3}+3 c_{1}\right)}{3}
$$

Verified OK.

7.2.4 Maple step by step solution

Let's solve
$y^{\prime}-\frac{3 y}{t}=t^{5}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{3 y}{t}+t^{5}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{3 y}{t}=t^{5}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-\frac{3 y}{t}\right)=\mu(t) t^{5}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-\frac{3 y}{t}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\frac{3 \mu(t)}{t}$
- \quad Solve to find the integrating factor
$\mu(t)=\frac{1}{t^{3}}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t) t^{5} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t) t^{5} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(t) t^{5} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\frac{1}{t^{3}}$

$$
y=t^{3}\left(\int t^{2} d t+c_{1}\right)
$$

- Evaluate the integrals on the rhs
$y=t^{3}\left(\frac{t^{3}}{3}+c_{1}\right)$
- \quad Simplify
$y=\frac{t^{3}\left(t^{3}+3 c_{1}\right)}{3}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve(diff(y(t),t)=3/t*y(t)+t^5,y(t), singsol=all)
```

$$
y(t)=\frac{\left(t^{3}+3 c_{1}\right) t^{3}}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 19

```
DSolve[y'[t]==3/t*y[t]+t^5,y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow \frac{t^{6}}{3}+c_{1} t^{3}
$$

7.3 problem 3

$$
\text { 7.3.1 Solving as linear ode . } 1047
$$

7.3.2 Solving as differentialType ode 1049
7.3.3 Solving as first order ode lie symmetry lookup ode 1051
7.3.4 Solving as exact ode . 1055
7.3.5 Maple step by step solution . 1059

Internal problem ID [13008]
Internal file name [OUTPUT/11660_Wednesday_November_08_2023_03_28_14_AM_59055855/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133
Problem number: 3 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "differentialType", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}+\frac{y}{1+t}=t^{2}
$$

7.3.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=\frac{1}{1+t} \\
& q(t)=t^{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{1+t}=t^{2}
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \frac{1}{1+t} d t} \\
=1+t
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(t^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}((1+t) y) & =(1+t)\left(t^{2}\right) \\
\mathrm{d}((1+t) y) & =\left(t^{2}(1+t)\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& (1+t) y=\int t^{2}(1+t) \mathrm{d} t \\
& (1+t) y=\frac{1}{4} t^{4}+\frac{1}{3} t^{3}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=1+t$ results in

$$
y=\frac{\frac{1}{4} t^{4}+\frac{1}{3} t^{3}}{1+t}+\frac{c_{1}}{1+t}
$$

which simplifies to

$$
y=\frac{3 t^{4}+4 t^{3}+12 c_{1}}{12+12 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 t^{4}+4 t^{3}+12 c_{1}}{12+12 t} \tag{1}
\end{equation*}
$$

Figure 232: Slope field plot
Verification of solutions

$$
y=\frac{3 t^{4}+4 t^{3}+12 c_{1}}{12+12 t}
$$

Verified OK.

7.3.2 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=-\frac{y}{1+t}+t^{2} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
0=(-1-t) d y+\left(t^{3}+t^{2}-y\right) d t \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-1-t) d y+\left(t^{3}+t^{2}-y\right) d t=d\left(\frac{1}{4} t^{4}+\frac{1}{3} t^{3}-t y-y\right)
$$

Hence (2) becomes

$$
0=d\left(\frac{1}{4} t^{4}+\frac{1}{3} t^{3}-t y-y\right)
$$

Integrating both sides gives gives these solutions

$$
y=\frac{3 t^{4}+4 t^{3}+12 c_{1}}{12+12 t}+c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 t^{4}+4 t^{3}+12 c_{1}}{12+12 t}+c_{1} \tag{1}
\end{equation*}
$$

Figure 233: Slope field plot

Verification of solutions

$$
y=\frac{3 t^{4}+4 t^{3}+12 c_{1}}{12+12 t}+c_{1}
$$

Verified OK.

7.3.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{-t^{3}-t^{2}+y}{1+t} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 230: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\frac{1}{1+t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{1+t}} d y
\end{aligned}
$$

Which results in

$$
S=(1+t) y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-\frac{-t^{3}-t^{2}+y}{1+t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =y \\
S_{y} & =1+t
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=t^{2}(1+t) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R^{2}(R+1)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{1}{4} R^{4}+\frac{1}{3} R^{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
(1+t) y=\frac{1}{4} t^{4}+\frac{1}{3} t^{3}+c_{1}
$$

Which simplifies to

$$
(1+t) y=\frac{1}{4} t^{4}+\frac{1}{3} t^{3}+c_{1}
$$

Which gives

$$
y=\frac{3 t^{4}+4 t^{3}+12 c_{1}}{12+12 t}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-\frac{-t^{3}-t^{2}+y}{1+t}$		$\frac{d S}{d R}=R^{2}(R+1)$
		$\xrightarrow{+1}$
	$R=t$	
	$S=(1+t) y$	
	$S=(1+t) y$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 t^{4}+4 t^{3}+12 c_{1}}{12+12 t} \tag{1}
\end{equation*}
$$

Figure 234: Slope field plot

Verification of solutions

$$
y=\frac{3 t^{4}+4 t^{3}+12 c_{1}}{12+12 t}
$$

Verified OK.

7.3.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(1+t) \mathrm{d} y & =\left(t^{3}+t^{2}-y\right) \mathrm{d} t \\
\left(-t^{3}-t^{2}+y\right) \mathrm{d} t+(1+t) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-t^{3}-t^{2}+y \\
N(t, y) & =1+t
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-t^{3}-t^{2}+y\right) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1+t) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-t^{3}-t^{2}+y \mathrm{~d} t \\
\phi & =-\frac{1}{4} t^{4}-\frac{1}{3} t^{3}+t y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=t+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=1+t$. Therefore equation (4) becomes

$$
\begin{equation*}
1+t=t+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=1
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(1) \mathrm{d} y \\
f(y) & =y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{1}{4} t^{4}-\frac{1}{3} t^{3}+t y+y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{1}{4} t^{4}-\frac{1}{3} t^{3}+t y+y
$$

The solution becomes

$$
y=\frac{3 t^{4}+4 t^{3}+12 c_{1}}{12+12 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 t^{4}+4 t^{3}+12 c_{1}}{12+12 t} \tag{1}
\end{equation*}
$$

Figure 235: Slope field plot

Verification of solutions

$$
y=\frac{3 t^{4}+4 t^{3}+12 c_{1}}{12+12 t}
$$

Verified OK.

7.3.5 Maple step by step solution

Let's solve
$y^{\prime}+\frac{y}{1+t}=t^{2}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{y}{1+t}+t^{2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{y}{1+t}=t^{2}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+\frac{y}{1+t}\right)=\mu(t) t^{2}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+\frac{y}{1+t}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\frac{\mu(t)}{1+t}$
- Solve to find the integrating factor
$\mu(t)=1+t$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t) t^{2} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t) t^{2} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(t) t^{2} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=1+t$
$y=\frac{\int t^{2}(1+t) d t+c_{1}}{1+t}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{1}{4} t^{4}+\frac{1}{3} t^{3}+c_{1}}{1+t}$
- Simplify

$$
y=\frac{3 t^{4}+4 t^{3}+12 c_{1}}{12+12 t}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

```
dsolve(diff(y(t),t)=-y(t)/(1+t)+t^2,y(t), singsol=all)
```

$$
y(t)=\frac{3 t^{4}+4 t^{3}+12 c_{1}}{12 t+12}
$$

\checkmark Solution by Mathematica
Time used: 0.051 (sec). Leaf size: 28
DSolve[y' $[t]==-y[t] /(1+t)+t \wedge 2, y[t], t$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow \frac{3 t^{4}+4 t^{3}+12 c_{1}}{12 t+12}
$$

7.4 problem 4

7.4.1 Solving as linear ode . 1061
7.4.2 Solving as first order ode lie symmetry lookup ode 1063
7.4.3 Solving as exact ode . 1067
7.4.4 Maple step by step solution . 1072

Internal problem ID [13009]
Internal file name [OUTPUT/11661_Wednesday_November_08_2023_03_28_15_AM_27323432/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}+2 t y=4 \mathrm{e}^{-t^{2}}
$$

7.4.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =2 t \\
q(t) & =4 \mathrm{e}^{-t^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+2 t y=4 \mathrm{e}^{-t^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 2 t d t} \\
& =\mathrm{e}^{t^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(4 \mathrm{e}^{-t^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{t^{2}} y\right) & =\left(\mathrm{e}^{t^{2}}\right)\left(4 \mathrm{e}^{-t^{2}}\right) \\
\mathrm{d}\left(\mathrm{e}^{t^{2}} y\right) & =4 \mathrm{~d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{t^{2}} y=\int 4 \mathrm{~d} t \\
& \mathrm{e}^{t^{2}} y=4 t+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{t^{2}}$ results in

$$
y=4 \mathrm{e}^{-t^{2}} t+c_{1} \mathrm{e}^{-t^{2}}
$$

which simplifies to

$$
y=\mathrm{e}^{-t^{2}}\left(4 t+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-t^{2}}\left(4 t+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 236: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-t^{2}}\left(4 t+c_{1}\right)
$$

Verified OK.

7.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-2 t y+4 \mathrm{e}^{-t^{2}} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 233: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	y	
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-t^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-t^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{t^{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-2 t y+4 \mathrm{e}^{-t^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =2 t \mathrm{e}^{t^{2}} y \\
S_{y} & =\mathrm{e}^{t^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=4 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=4
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=4 R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
y \mathrm{e}^{t^{2}}=4 t+c_{1}
$$

Which simplifies to

$$
y \mathrm{e}^{t^{2}}=4 t+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{-t^{2}}\left(4 t+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-2 t y+4 \mathrm{e}^{-t^{2}}$		$\frac{d S}{d R}=4$
		¢ ¢ p p p p p p p p p p p p p p p
S_{4}	$S=\mathrm{e}^{t^{2}} y$	P ${ }_{\text {a }}$
,		
${ }^{2}$		
t		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-t^{2}}\left(4 t+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 237: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-t^{2}}\left(4 t+c_{1}\right)
$$

Verified OK.

7.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-2 t y+4 \mathrm{e}^{-t^{2}}\right) \mathrm{d} t \\
\left(2 t y-4 \mathrm{e}^{-t^{2}}\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =2 t y-4 \mathrm{e}^{-t^{2}} \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 t y-4 \mathrm{e}^{-t^{2}}\right) \\
& =2 t
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((2 t)-(0)) \\
& =2 t
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int 2 t \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{t^{2}} \\
& =\mathrm{e}^{t^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{t^{2}}\left(2 t y-4 \mathrm{e}^{-t^{2}}\right) \\
& =2 t \mathrm{e}^{t^{2}} y-4
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{t^{2}}(1) \\
& =\mathrm{e}^{t^{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(2 t \mathrm{e}^{t^{2}} y-4\right)+\left(\mathrm{e}^{t^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int 2 t \mathrm{e}^{t^{2}} y-4 \mathrm{~d} t \\
\phi & =-4 t+\mathrm{e}^{t^{2}} y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{t^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{t^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{t^{2}}=\mathrm{e}^{t^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-4 t+\mathrm{e}^{t^{2}} y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-4 t+\mathrm{e}^{t^{2}} y
$$

The solution becomes

$$
y=\mathrm{e}^{-t^{2}}\left(4 t+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-t^{2}}\left(4 t+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 238: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-t^{2}}\left(4 t+c_{1}\right)
$$

Verified OK.

7.4.4 Maple step by step solution

Let's solve
$y^{\prime}+2 t y=4 \mathrm{e}^{-t^{2}}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-2 t y+4 \mathrm{e}^{-t^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+2 t y=4 \mathrm{e}^{-t^{2}}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+2 t y\right)=4 \mu(t) \mathrm{e}^{-t^{2}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+2 t y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=2 \mu(t) t$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{t^{2}}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 4 \mu(t) \mathrm{e}^{-t^{2}} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 4 \mu(t) \mathrm{e}^{-t^{2}} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 4 \mu(t) \mathrm{e}^{-t^{2} d t+c_{1}}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{t^{2}}$
$y=\frac{\int 4 \mathrm{e}^{-t^{2}} \mathrm{e}^{t^{2}} d t+c_{1}}{\mathrm{e}^{\mathrm{t}^{2}}}$
- Evaluate the integrals on the rhs
$y=\frac{4 t+c_{1}}{\mathrm{e}^{t^{2}}}$
- Simplify

$$
y=\mathrm{e}^{-t^{2}}\left(4 t+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve(diff(y(t),t)=-2*t*y(t)+4*exp(-t^2),y(t), singsol=all)
```

$$
y(t)=\left(4 t+c_{1}\right) \mathrm{e}^{-t^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.098 (sec). Leaf size: 19
DSolve[y' $[t]==-2 * t * y[t]+4 * \operatorname{Exp}[-t \wedge 2], y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow e^{-t^{2}}\left(4 t+c_{1}\right)
$$

7.5 problem 5

> 7.5.1 Solving as linear ode
7.5.2 Solving as first order ode lie symmetry lookup ode 1076
7.5.3 Solving as exact ode . 1080
7.5.4 Maple step by step solution . 1085

Internal problem ID [13010]
Internal file name [OUTPUT/11662_Wednesday_November_08_2023_03_28_15_AM_27558722/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-\frac{2 t y}{t^{2}+1}=3
$$

7.5.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-\frac{2 t}{t^{2}+1} \\
& q(t)=3
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 t y}{t^{2}+1}=3
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2 t}{t^{2}+1} d t} \\
& =\frac{1}{t^{2}+1}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)(3) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{y}{t^{2}+1}\right) & =\left(\frac{1}{t^{2}+1}\right)(3) \\
\mathrm{d}\left(\frac{y}{t^{2}+1}\right) & =\left(\frac{3}{t^{2}+1}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{t^{2}+1}=\int \frac{3}{t^{2}+1} \mathrm{~d} t \\
& \frac{y}{t^{2}+1}=3 \arctan (t)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{t^{2}+1}$ results in

$$
y=3\left(t^{2}+1\right) \arctan (t)+c_{1}\left(t^{2}+1\right)
$$

which simplifies to

$$
y=\left(t^{2}+1\right)\left(3 \arctan (t)+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(t^{2}+1\right)\left(3 \arctan (t)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 239: Slope field plot

Verification of solutions

$$
y=\left(t^{2}+1\right)\left(3 \arctan (t)+c_{1}\right)
$$

Verified OK.

7.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{3 t^{2}+2 t y+3}{t^{2}+1} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 236: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=t^{2}+1 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{t^{2}+1} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{t^{2}+1}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{3 t^{2}+2 t y+3}{t^{2}+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-\frac{2 y t}{\left(t^{2}+1\right)^{2}} \\
S_{y} & =\frac{1}{t^{2}+1}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{3}{t^{2}+1} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{3}{R^{2}+1}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=3 \arctan (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\frac{y}{t^{2}+1}=3 \arctan (t)+c_{1}
$$

Which simplifies to

$$
\frac{y}{t^{2}+1}=3 \arctan (t)+c_{1}
$$

Which gives

$$
y=\left(t^{2}+1\right)\left(3 \arctan (t)+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{3 t^{2}+2 t y+3}{t^{2}+1}$		$\frac{d S}{d R}=\frac{3}{R^{2}+1}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
	$R=t$	
	$S=\frac{y}{t^{2}+1}$	$\xrightarrow{\rightarrow \rightarrow-4 \rightarrow \rightarrow-\infty}$
	$S=\frac{y}{t^{2}+1}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \infty]{ }$ -
¢ ${ }_{\text {a }}$		$\rightarrow \rightarrow \rightarrow \infty \rightarrow$ -

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(t^{2}+1\right)\left(3 \arctan (t)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 240: Slope field plot

Verification of solutions

$$
y=\left(t^{2}+1\right)\left(3 \arctan (t)+c_{1}\right)
$$

Verified OK.

7.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(\frac{2 t y}{t^{2}+1}+3\right) \mathrm{d} t \\
\left(-\frac{2 t y}{t^{2}+1}-3\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-\frac{2 t y}{t^{2}+1}-3 \\
& N(t, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{2 t y}{t^{2}+1}-3\right) \\
& =-\frac{2 t}{t^{2}+1}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1\left(\left(-\frac{2 t}{t^{2}+1}\right)-(0)\right) \\
& =-\frac{2 t}{t^{2}+1}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-\frac{2 t}{t^{2}+1} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\ln \left(t^{2}+1\right)} \\
& =\frac{1}{t^{2}+1}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{t^{2}+1}\left(-\frac{2 t y}{t^{2}+1}-3\right) \\
& =\frac{-3 t^{2}-2 t y-3}{\left(t^{2}+1\right)^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{t^{2}+1}(1) \\
& =\frac{1}{t^{2}+1}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(\frac{-3 t^{2}-2 t y-3}{\left(t^{2}+1\right)^{2}}\right)+\left(\frac{1}{t^{2}+1}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \frac{-3 t^{2}-2 t y-3}{\left(t^{2}+1\right)^{2}} \mathrm{~d} t \\
\phi & =\frac{y}{t^{2}+1}-3 \arctan (t)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{t^{2}+1}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{t^{2}+1}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{t^{2}+1}=\frac{1}{t^{2}+1}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{y}{t^{2}+1}-3 \arctan (t)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{y}{t^{2}+1}-3 \arctan (t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y}{t^{2}+1}-3 \arctan (t)=c_{1} \tag{1}
\end{equation*}
$$

Figure 241: Slope field plot

Verification of solutions

$$
\frac{y}{t^{2}+1}-3 \arctan (t)=c_{1}
$$

Verified OK.

7.5.4 Maple step by step solution

Let's solve
$y^{\prime}-\frac{2 t y}{t^{2}+1}=3$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{2 t y}{t^{2}+1}+3$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{2 t y}{t^{2}+1}=3$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-\frac{2 t y}{t^{2}+1}\right)=3 \mu(t)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-\frac{2 t y}{t^{2}+1}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\frac{2 \mu(t) t}{t^{2}+1}$
- Solve to find the integrating factor
$\mu(t)=\frac{1}{t^{2}+1}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 3 \mu(t) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 3 \mu(t) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 3 \mu(t) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\frac{1}{t^{2}+1}$
$y=\left(t^{2}+1\right)\left(\int \frac{3}{t^{2}+1} d t+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=\left(t^{2}+1\right)\left(3 \arctan (t)+c_{1}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve(diff(y(t),t)-2*t/(1+t^2)*y(t)=3,y(t), singsol=all)
```

$$
y(t)=\left(3 \arctan (t)+c_{1}\right)\left(t^{2}+1\right)
$$

\checkmark Solution by Mathematica
Time used: 0.059 (sec). Leaf size: 18
DSolve[y'[t]-2*t/(1+t~2)*y[t]==3,y[t],t,IncludeSingularSolutions -> True]

$$
y(t) \rightarrow\left(t^{2}+1\right)\left(3 \arctan (t)+c_{1}\right)
$$

7.6 problem 6

7.6.1 Solving as linear ode . 1087
7.6.2 Solving as first order ode lie symmetry lookup ode 1089
7.6.3 Solving as exact ode . 1093
7.6.4 Maple step by step solution . 1098

Internal problem ID [13011]
Internal file name [OUTPUT/11663_Wednesday_November_08_2023_03_28_16_AM_40367264/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-\frac{2 y}{t}=\mathrm{e}^{t} t^{3}
$$

7.6.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-\frac{2}{t} \\
& q(t)=\mathrm{e}^{t} t^{3}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 y}{t}=\mathrm{e}^{t} t^{3}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{t} d t} \\
& =\frac{1}{t^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\mathrm{e}^{t} t^{3}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{y}{t^{2}}\right) & =\left(\frac{1}{t^{2}}\right)\left(\mathrm{e}^{t} t^{3}\right) \\
\mathrm{d}\left(\frac{y}{t^{2}}\right) & =\left(t \mathrm{e}^{t}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{t^{2}} & =\int t \mathrm{e}^{t} \mathrm{~d} t \\
\frac{y}{t^{2}} & =\mathrm{e}^{t}(t-1)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{t^{2}}$ results in

$$
y=t^{2} \mathrm{e}^{t}(t-1)+t^{2} c_{1}
$$

which simplifies to

$$
y=t^{2}\left(\mathrm{e}^{t}(t-1)+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t^{2}\left(\mathrm{e}^{t}(t-1)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 242: Slope field plot

Verification of solutions

$$
y=t^{2}\left(\mathrm{e}^{t}(t-1)+c_{1}\right)
$$

Verified OK.

7.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{\mathrm{e}^{t} t^{4}+2 y}{t} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 239: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=t^{2} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{t^{2}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{t^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{\mathrm{e}^{t} t^{4}+2 y}{t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-\frac{2 y}{t^{3}} \\
S_{y} & =\frac{1}{t^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=t \mathrm{e}^{t} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R \mathrm{e}^{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=(R-1) \mathrm{e}^{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\frac{y}{t^{2}}=\mathrm{e}^{t}(t-1)+c_{1}
$$

Which simplifies to

$$
\frac{y}{t^{2}}=\mathrm{e}^{t}(t-1)+c_{1}
$$

Which gives

$$
y=t^{2}\left(t \mathrm{e}^{t}-\mathrm{e}^{t}+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{\mathrm{e}^{t} t^{4}+2 y}{t}$		$\frac{d S}{d R}=R \mathrm{e}^{R}$
		$\rightarrow \rightarrow \rightarrow \rightarrow-\cdots-\alpha \rightarrow 1 \uparrow$
bly		$\xrightarrow[{\rightarrow \rightarrow \rightarrow \rightarrow-\text { S[R] }}]{\rightarrow \rightarrow \rightarrow-\infty}$
	$R=t$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{\rightarrow \rightarrow-\infty}$
	$S=\underline{y}$	$\xrightarrow[\rightarrow \rightarrow- \pm \rightarrow \text { and }]{\rightarrow \rightarrow \rightarrow- \pm}$
	$S=\frac{t^{2}}{}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\rightarrow+$
		$\rightarrow \rightarrow$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=t^{2}\left(t \mathrm{e}^{t}-\mathrm{e}^{t}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 243: Slope field plot

Verification of solutions

$$
y=t^{2}\left(t \mathrm{e}^{t}-\mathrm{e}^{t}+c_{1}\right)
$$

Verified OK.

7.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(\frac{2 y}{t}+\mathrm{e}^{t} t^{3}\right) \mathrm{d} t \\
\left(-\frac{2 y}{t}-\mathrm{e}^{t} t^{3}\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-\frac{2 y}{t}-\mathrm{e}^{t} t^{3} \\
& N(t, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{2 y}{t}-\mathrm{e}^{t} t^{3}\right) \\
& =-\frac{2}{t}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1\left(\left(-\frac{2}{t}\right)-(0)\right) \\
& =-\frac{2}{t}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-\frac{2}{t} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (t)} \\
& =\frac{1}{t^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{t^{2}}\left(-\frac{2 y}{t}-\mathrm{e}^{t} t^{3}\right) \\
& =\frac{-\mathrm{e}^{t} t^{4}-2 y}{t^{3}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{t^{2}}(1) \\
& =\frac{1}{t^{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(\frac{-\mathrm{e}^{t} t^{4}-2 y}{t^{3}}\right)+\left(\frac{1}{t^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \frac{-\mathrm{e}^{t} t^{4}-2 y}{t^{3}} \mathrm{~d} t \\
\phi & =\frac{\left(-t^{3}+t^{2}\right) \mathrm{e}^{t}+y}{t^{2}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{t^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{t^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{t^{2}}=\frac{1}{t^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{\left(-t^{3}+t^{2}\right) \mathrm{e}^{t}+y}{t^{2}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{\left(-t^{3}+t^{2}\right) \mathrm{e}^{t}+y}{t^{2}}
$$

The solution becomes

$$
y=t^{2}\left(t \mathrm{e}^{t}-\mathrm{e}^{t}+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t^{2}\left(t \mathrm{e}^{t}-\mathrm{e}^{t}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 244: Slope field plot

Verification of solutions

$$
y=t^{2}\left(t \mathrm{e}^{t}-\mathrm{e}^{t}+c_{1}\right)
$$

Verified OK.

7.6.4 Maple step by step solution

Let's solve
$y^{\prime}-\frac{2 y}{t}=\mathrm{e}^{t} t^{3}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{2 y}{t}+\mathrm{e}^{t} t^{3}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{2 y}{t}=\mathrm{e}^{t} t^{3}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-\frac{2 y}{t}\right)=\mu(t) \mathrm{e}^{t} t^{3}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-\frac{2 y}{t}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\frac{2 \mu(t)}{t}$
- \quad Solve to find the integrating factor
$\mu(t)=\frac{1}{t^{2}}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t) \mathrm{e}^{t} t^{3} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t) \mathrm{e}^{t} t^{3} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(t) e^{t} t^{3} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\frac{1}{t^{2}}$
$y=t^{2}\left(\int t \mathrm{e}^{t} d t+c_{1}\right)$
- Evaluate the integrals on the rhs

$$
y=t^{2}\left(\mathrm{e}^{t}(t-1)+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve(diff(y(t),t)-2/t*y(t)=t^3*exp(t),y(t), singsol=all)
```

$$
y(t)=\left(\mathrm{e}^{t}(t-1)+c_{1}\right) t^{2}
$$

\checkmark Solution by Mathematica
Time used: 0.082 (sec). Leaf size: 19
DSolve[y'[t]-2/t*y[t]==t^3*Exp[t],y[t],t,IncludeSingularSolutions -> True]

$$
y(t) \rightarrow t^{2}\left(e^{t}(t-1)+c_{1}\right)
$$

7.7 problem 7

7.7.1 Existence and uniqueness analysis 1101
7.7.2 Solving as linear ode . 1101
7.7.3 Solving as differentialType ode 1103
7.7.4 Solving as homogeneousTypeMapleC ode 1104
7.7.5 Solving as first order ode lie symmetry lookup ode 1107
7.7.6 Solving as exact ode . 1112
7.7.7 Maple step by step solution . 1115

Internal problem ID [13012]
Internal file name [OUTPUT/11664_Wednesday_November_08_2023_03_28_17_AM_27176372/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "differentialType", "homogeneousTypeMapleC", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}+\frac{y}{1+t}=2
$$

With initial conditions

$$
[y(0)=3]
$$

7.7.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =\frac{1}{1+t} \\
q(t) & =2
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{1+t}=2
$$

The domain of $p(t)=\frac{1}{1+t}$ is

$$
\{t<-1 \vee-1<t\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

7.7.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \frac{1}{1+t} d t} \\
=1+t
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)(2) \\
\frac{\mathrm{d}}{\mathrm{~d} t}((1+t) y) & =(1+t)(2) \\
\mathrm{d}((1+t) y) & =(2 t+2) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& (1+t) y=\int 2 t+2 \mathrm{~d} t \\
& (1+t) y=t^{2}+2 t+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=1+t$ results in

$$
y=\frac{t^{2}+2 t}{1+t}+\frac{c_{1}}{1+t}
$$

which simplifies to

$$
y=\frac{t^{2}+c_{1}+2 t}{1+t}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 3=c_{1} \\
& c_{1}=3
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{t^{2}+2 t+3}{1+t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{t^{2}+2 t+3}{1+t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{t^{2}+2 t+3}{1+t}
$$

Verified OK.

7.7.3 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=-\frac{y}{1+t}+2 \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
0=(-1-t) d y+(-y+2 t+2) d t \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-1-t) d y+(-y+2 t+2) d t=d\left(t^{2}-t y+2 t-y\right)
$$

Hence (2) becomes

$$
0=d\left(t^{2}-t y+2 t-y\right)
$$

Integrating both sides gives gives these solutions

$$
y=\frac{t^{2}+c_{1}+2 t}{1+t}+c_{1}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 3=2 c_{1} \\
& c_{1}=\frac{3}{2}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{2 t^{2}+7 t+6}{2 t+2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 t^{2}+7 t+6}{2 t+2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{2 t^{2}+7 t+6}{2 t+2}
$$

Verified OK.

7.7.4 Solving as homogeneousTypeMapleC ode

Let $Y=y+y_{0}$ and $X=t+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=-\frac{-2 X-2 x_{0}-2+Y(X)+y_{0}}{1+X+x_{0}}
$$

Solving for possible values of x_{0} and y_{0} which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
& x_{0}=-1 \\
& y_{0}=0
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=-\frac{-2 X+Y(X)}{X}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =-\frac{-2 X+Y}{X} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order n if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=2 X-Y$ and $N=X$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =2-u \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{2-2 u(X)}{X}
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)-\frac{2-2 u(X)}{X}=0
$$

Or

$$
\left(\frac{d}{d X} u(X)\right) X+2 u(X)-2=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =\frac{2-2 u}{X}
\end{aligned}
$$

Where $f(X)=\frac{1}{X}$ and $g(u)=2-2 u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{2-2 u} d u & =\frac{1}{X} d X \\
\int \frac{1}{2-2 u} d u & =\int \frac{1}{X} d X \\
-\frac{\ln (-1+u)}{2} & =\ln (X)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\sqrt{-1+u}}=\mathrm{e}^{\ln (X)+c_{2}}
$$

Which simplifies to

$$
\frac{1}{\sqrt{-1+u}}=c_{3} X
$$

Now u in the above solution is replaced back by Y using $u=\frac{Y}{X}$ which results in the solution

$$
Y(X)=\frac{\left(c_{3}^{2} \mathrm{e}^{2 c_{2}} X^{2}+1\right) \mathrm{e}^{-2 c_{2}}}{X c_{3}^{2}}
$$

Using the solution for $Y(X)$

$$
Y(X)=\frac{\left(c_{3}^{2} \mathrm{e}^{2 c_{2}} X^{2}+1\right) \mathrm{e}^{-2 c_{2}}}{X c_{3}^{2}}
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
& Y=y+y_{0} \\
& X=t+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
& Y=y \\
& X=t-1
\end{aligned}
$$

Then the solution in y becomes

$$
y=\frac{\left(c_{3}^{2} \mathrm{e}^{2 c_{2}}(1+t)^{2}+1\right) \mathrm{e}^{-2 c_{2}}}{(1+t) c_{3}^{2}}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=0$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
3=\frac{\mathrm{e}^{-2 c_{2}} \mathrm{e}^{2 c_{2}} c_{3}^{2}+\mathrm{e}^{-2 c_{2}}}{c_{3}^{2}} \\
c_{2}=-\frac{\ln \left(2 c_{3}^{2}\right)}{2}
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\frac{t^{2}+2 t+3}{1+t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{t^{2}+2 t+3}{1+t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{t^{2}+2 t+3}{1+t}
$$

Verified OK.

7.7.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{y-2 t-2}{1+t} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 242: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\frac{1}{1+t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{1+t}} d y
\end{aligned}
$$

Which results in

$$
S=(1+t) y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-\frac{y-2 t-2}{1+t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =y \\
S_{y} & =1+t
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=2 t+2 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=2 R+2
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R^{2}+2 R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
(1+t) y=t^{2}+c_{1}+2 t
$$

Which simplifies to

$$
(1+t) y=t^{2}+c_{1}+2 t
$$

Which gives

$$
y=\frac{t^{2}+c_{1}+2 t}{1+t}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates		ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-\frac{y-2 t-2}{1+t}$		$\frac{d S}{d R}=2 R+2$
		发
	$S=(1+t) y$	
		! ! : - - - 4 + + 个

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
3=c_{1}
$$

$$
c_{1}=3
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{t^{2}+2 t+3}{1+t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{t^{2}+2 t+3}{1+t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{t^{2}+2 t+3}{1+t}
$$

Verified OK.

7.7.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(1+t) \mathrm{d} y & =(-y+2 t+2) \mathrm{d} t \\
(y-2 t-2) \mathrm{d} t+(1+t) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=y-2 t-2 \\
& N(t, y)=1+t
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y-2 t-2) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1+t) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int y-2 t-2 \mathrm{~d} t \\
\phi & =-t(t-y+2)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=t+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=1+t$. Therefore equation (4) becomes

$$
\begin{equation*}
1+t=t+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=1
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(1) \mathrm{d} y \\
f(y) & =y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-t(t-y+2)+y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-t(t-y+2)+y
$$

The solution becomes

$$
y=\frac{t^{2}+c_{1}+2 t}{1+t}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 3=c_{1} \\
& c_{1}=3
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{t^{2}+2 t+3}{1+t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{t^{2}+2 t+3}{1+t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{t^{2}+2 t+3}{1+t}
$$

Verified OK.

7.7.7 Maple step by step solution

Let's solve

$$
\left[y^{\prime}+\frac{y}{1+t}=2, y(0)=3\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{y}{1+t}+2$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{y}{1+t}=2$
- \quad The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+\frac{y}{1+t}\right)=2 \mu(t)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+\frac{y}{1+t}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\frac{\mu(t)}{1+t}$
- Solve to find the integrating factor
$\mu(t)=1+t$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 2 \mu(t) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 2 \mu(t) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 2 \mu(t) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=1+t$
$y=\frac{\int(2 t+2) d t+c_{1}}{1+t}$
- Evaluate the integrals on the rhs
$y=\frac{t^{2}+c_{1}+2 t}{1+t}$
- Use initial condition $y(0)=3$
$3=c_{1}$
- \quad Solve for c_{1}
$c_{1}=3$
- \quad Substitute $c_{1}=3$ into general solution and simplify
$y=\frac{t^{2}+2 t+3}{1+t}$
- Solution to the IVP
$y=\frac{t^{2}+2 t+3}{1+t}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

```
dsolve([diff(y(t),t)=-y(t)/(1+t)+2,y(0) = 3],y(t), singsol=all)
```

$$
y(t)=\frac{t^{2}+2 t+3}{t+1}
$$

\checkmark Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 19
DSolve[\{y' $[t]==-y[t] /(1+t)+2,\{y[0]==3\}\}, y[t], t$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow \frac{t^{2}+2 t+3}{t+1}
$$

7.8 problem 8

7.8.1 Existence and uniqueness analysis 1118
7.8.2 Solving as linear ode . 1119
7.8.3 Solving as first order ode lie symmetry lookup ode 1121
7.8.4 Solving as exact ode . 1125
7.8.5 Maple step by step solution . 1130

Internal problem ID [13013]
Internal file name [OUTPUT/11665_Wednesday_November_08_2023_03_28_18_AM_42393074/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first__order_ode_lie_symmetry__lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-\frac{y}{1+t}=4 t^{2}+4 t
$$

With initial conditions

$$
[y(1)=10]
$$

7.8.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-\frac{1}{1+t} \\
& q(t)=4(1+t) t
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{1+t}=4(1+t) t
$$

The domain of $p(t)=-\frac{1}{1+t}$ is

$$
\{t<-1 \vee-1<t\}
$$

And the point $t_{0}=1$ is inside this domain. The domain of $q(t)=4(1+t) t$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=1$ is also inside this domain. Hence solution exists and is unique.

7.8.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{1+t} d t} \\
& =\frac{1}{1+t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)(4(1+t) t) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{y}{1+t}\right) & =\left(\frac{1}{1+t}\right)(4(1+t) t) \\
\mathrm{d}\left(\frac{y}{1+t}\right) & =(4 t) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{1+t}=\int 4 t \mathrm{~d} t \\
& \frac{y}{1+t}=2 t^{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{1+t}$ results in

$$
y=2 t^{2}(1+t)+c_{1}(1+t)
$$

which simplifies to

$$
y=2\left(t^{2}+\frac{c_{1}}{2}\right)(1+t)
$$

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=10$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
10=2 c_{1}+4 \\
c_{1}=3
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\left(2 t^{2}+3\right)(1+t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(2 t^{2}+3\right)(1+t) \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=\left(2 t^{2}+3\right)(1+t)
$$

Verified OK.

7.8.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{4 t^{3}+8 t^{2}+4 t+y}{1+t} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 245: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=1+t \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{1+t} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{1+t}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{4 t^{3}+8 t^{2}+4 t+y}{1+t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-\frac{y}{(1+t)^{2}} \\
S_{y} & =\frac{1}{1+t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=4 t \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=4 R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=2 R^{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\frac{y}{1+t}=2 t^{2}+c_{1}
$$

Which simplifies to

$$
\frac{y}{1+t}=2 t^{2}+c_{1}
$$

Which gives

$$
y=\left(2 t^{2}+c_{1}\right)(1+t)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{4 t^{3}+8 t^{2}+4 t+y}{1+t}$		$\frac{d S}{d R}=4 R$
		${ }^{\text {S }}$ (R_{0}
	$R=t$	
	$S=\frac{y}{1+t}$	
	$S=\frac{1+t}{1+t}$	
$\xrightarrow{t} \rightarrow$		

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=10$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
10=2 c_{1}+4 \\
c_{1}=3
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\left(2 t^{2}+3\right)(1+t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(2 t^{2}+3\right)(1+t) \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=\left(2 t^{2}+3\right)(1+t)
$$

Verified OK.

7.8.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(\frac{y}{1+t}+4 t^{2}+4 t\right) \mathrm{d} t \\
\left(-\frac{y}{1+t}-4 t^{2}-4 t\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-\frac{y}{1+t}-4 t^{2}-4 t \\
& N(t, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{y}{1+t}-4 t^{2}-4 t\right) \\
& =-\frac{1}{1+t}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1\left(\left(-\frac{1}{1+t}\right)-(0)\right) \\
& =-\frac{1}{1+t}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-\frac{1}{1+t} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\ln (1+t)} \\
& =\frac{1}{1+t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{1+t}\left(-\frac{y}{1+t}-4 t^{2}-4 t\right) \\
& =\frac{-4 t^{3}-8 t^{2}-4 t-y}{(1+t)^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{1+t}(1) \\
& =\frac{1}{1+t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(\frac{-4 t^{3}-8 t^{2}-4 t-y}{(1+t)^{2}}\right)+\left(\frac{1}{1+t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \frac{-4 t^{3}-8 t^{2}-4 t-y}{(1+t)^{2}} \mathrm{~d} t \\
\phi & =-2 t^{2}+\frac{y}{1+t}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{1+t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{1+t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{1+t}=\frac{1}{1+t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-2 t^{2}+\frac{y}{1+t}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-2 t^{2}+\frac{y}{1+t}
$$

The solution becomes

$$
y=\left(2 t^{2}+c_{1}\right)(1+t)
$$

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=10$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
10=2 c_{1}+4 \\
c_{1}=3
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\left(2 t^{2}+3\right)(1+t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(2 t^{2}+3\right)(1+t) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\left(2 t^{2}+3\right)(1+t)
$$

Verified OK.

7.8.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{y}{1+t}=4 t^{2}+4 t, y(1)=10\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{y}{1+t}+4 t^{2}+4 t$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{y}{1+t}=4 t^{2}+4 t$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-\frac{y}{1+t}\right)=\mu(t)\left(4 t^{2}+4 t\right)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-\frac{y}{1+t}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\frac{\mu(t)}{1+t}$
- \quad Solve to find the integrating factor
$\mu(t)=\frac{1}{1+t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t)\left(4 t^{2}+4 t\right) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t)\left(4 t^{2}+4 t\right) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(t)\left(4 t^{2}+4 t\right) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\frac{1}{1+t}$
$y=(1+t)\left(\int \frac{4 t^{2}+4 t}{1+t} d t+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=\left(2 t^{2}+c_{1}\right)(1+t)$
- Use initial condition $y(1)=10$

$$
10=2 c_{1}+4
$$

- \quad Solve for c_{1}
$c_{1}=3$
- \quad Substitute $c_{1}=3$ into general solution and simplify
$y=2 t^{3}+2 t^{2}+3 t+3$
- Solution to the IVP

$$
y=2 t^{3}+2 t^{2}+3 t+3
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

```
dsolve([diff(y(t),t)=y(t)/(1+t)+4*t^2+4*t,y(1) = 10],y(t), singsol=all)
```

$$
y(t)=2 t^{3}+2 t^{2}+3 t+3
$$

\checkmark Solution by Mathematica
Time used: 0.052 (sec). Leaf size: 20
DSolve[\{y' $\left.[t]==y[t] /(1+t)+4 * t^{\wedge} 2+4 * t,\{y[1]==10\}\right\}, y[t], t$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow 2 t^{3}+2 t^{2}+3 t+3
$$

7.9 problem 9

7.9.1 Existence and uniqueness analysis 1133
7.9.2 Solving as linear ode . 1133
7.9.3 Solving as homogeneousTypeD2 ode 1135
7.9.4 Solving as differentialType ode 1137
7.9.5 Solving as first order ode lie symmetry lookup ode 1138
7.9.6 Solving as exact ode . 1143
7.9.7 Maple step by step solution . 1146

Internal problem ID [13014]
Internal file name [OUTPUT/11666_Wednesday_November_08_2023_03_28_18_AM_91064150/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133
Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "differentialType", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}+\frac{y}{t}=2
$$

With initial conditions

$$
[y(1)=3]
$$

7.9.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =\frac{1}{t} \\
q(t) & =2
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{t}=2
$$

The domain of $p(t)=\frac{1}{t}$ is

$$
\{t<0 \vee 0<t\}
$$

And the point $t_{0}=1$ is inside this domain. The domain of $q(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=1$ is also inside this domain. Hence solution exists and is unique.

7.9.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{t} d t} \\
& =t
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)(2) \\
\frac{\mathrm{d}}{\mathrm{~d} t}(t y) & =(t)(2) \\
\mathrm{d}(t y) & =(2 t) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& t y=\int 2 t \mathrm{~d} t \\
& t y=t^{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=t$ results in

$$
y=t+\frac{c_{1}}{t}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
3=1+c_{1} \\
c_{1}=2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{t^{2}+2}{t}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{t^{2}+2}{t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{t^{2}+2}{t}
$$

Verified OK.

7.9.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(t) t$ on the above ode results in new ode in $u(t)$

$$
u^{\prime}(t) t+2 u(t)=2
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =\frac{-2 u+2}{t}
\end{aligned}
$$

Where $f(t)=\frac{1}{t}$ and $g(u)=-2 u+2$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{-2 u+2} d u & =\frac{1}{t} d t \\
\int \frac{1}{-2 u+2} d u & =\int \frac{1}{t} d t \\
-\frac{\ln (u-1)}{2} & =\ln (t)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\sqrt{u-1}}=\mathrm{e}^{\ln (t)+c_{2}}
$$

Which simplifies to

$$
\frac{1}{\sqrt{u-1}}=c_{3} t
$$

Therefore the solution y is

$$
\begin{aligned}
y & =t u \\
& =\frac{\left(c_{3}^{2} \mathrm{e}^{2 c_{2}} t^{2}+1\right) \mathrm{e}^{-2 c_{2}}}{t c_{3}^{2}}
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=1$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
3=\frac{\mathrm{e}^{-2 c_{2}} \mathrm{e}^{2 c_{2}} c_{3}^{2}+\mathrm{e}^{-2 c_{2}}}{c_{3}^{2}}
$$

$$
c_{2}=-\frac{\ln \left(2 c_{3}^{2}\right)}{2}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\frac{t^{2}+2}{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{t^{2}+2}{t} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=\frac{t^{2}+2}{t}
$$

Verified OK.

7.9.4 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=-\frac{y}{t}+2 \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
0=(-t) d y+(2 t-y) d t \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-t) d y+(2 t-y) d t=d\left(t^{2}-t y\right)
$$

Hence (2) becomes

$$
0=d\left(t^{2}-t y\right)
$$

Integrating both sides gives gives these solutions

$$
y=\frac{t^{2}+c_{1}}{t}+c_{1}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
3=2 c_{1}+1 \\
c_{1}=1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{t^{2}+t+1}{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{t^{2}+t+1}{t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{t^{2}+t+1}{t}
$$

Verified OK.

7.9.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{-2 t+y}{t} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 248: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\frac{1}{t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{t}} d y
\end{aligned}
$$

Which results in

$$
S=t y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-\frac{-2 t+y}{t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =y \\
S_{y} & =t
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=2 t \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=2 R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R^{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
t y=t^{2}+c_{1}
$$

Which simplifies to

$$
t y=t^{2}+c_{1}
$$

Which gives

$$
y=\frac{t^{2}+c_{1}}{t}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-\frac{-2 t+y}{t}$		$\frac{d S}{d R}=2 R$
		d d d d d d d d - ¢ ¢ \uparrow
		$1+1+10 \pm 1$
	$R=t$	
overysso		
	$S=t y$	

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
3=1+c_{1}
$$

$$
c_{1}=2
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{t^{2}+2}{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{t^{2}+2}{t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{t^{2}+2}{t}
$$

Verified OK.

7.9.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(t) \mathrm{d} y & =(2 t-y) \mathrm{d} t \\
(-2 t+y) \mathrm{d} t+(t) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-2 t+y \\
N(t, y) & =t
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-2 t+y) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(t) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-2 t+y \mathrm{~d} t \\
\phi & =-t(t-y)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=t+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=t$. Therefore equation (4) becomes

$$
\begin{equation*}
t=t+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-t(t-y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-t(t-y)
$$

The solution becomes

$$
y=\frac{t^{2}+c_{1}}{t}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
3=1+c_{1} \\
c_{1}=2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{t^{2}+2}{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{t^{2}+2}{t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{t^{2}+2}{t}
$$

Verified OK.

7.9.7 Maple step by step solution

Let's solve

$$
\left[y^{\prime}+\frac{y}{t}=2, y(1)=3\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{y}{t}+2$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+\frac{y}{t}=2$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+\frac{y}{t}\right)=2 \mu(t)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+\frac{y}{t}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\frac{\mu(t)}{t}$
- Solve to find the integrating factor
$\mu(t)=t$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 2 \mu(t) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 2 \mu(t) d t+c_{1}$
- Solve for y
$y=\frac{\int 2 \mu(t) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=t$
$y=\frac{\int 2 t d t+c_{1}}{t}$
- Evaluate the integrals on the rhs
$y=\frac{t^{2}+c_{1}}{t}$
- Use initial condition $y(1)=3$
$3=1+c_{1}$
- \quad Solve for c_{1}
$c_{1}=2$
- Substitute $c_{1}=2$ into general solution and simplify
$y=\frac{t^{2}+2}{t}$
- Solution to the IVP
$y=\frac{t^{2}+2}{t}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 11
dsolve([diff($y(t), t)=-y(t) / t+2, y(1)=3], y(t)$, singsol=all)

$$
y(t)=t+\frac{2}{t}
$$

\checkmark Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 12
DSolve[\{y' $[t]==-y[t] / t+2,\{y[1]==3\}\}, y[t], t$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow t+\frac{2}{t}
$$

7.10 problem 10

7.10.1 Existence and uniqueness analysis 1149
7.10.2 Solving as linear ode . 1150
7.10.3 Solving as first order ode lie symmetry lookup ode 1152
7.10.4 Solving as exact ode . 1156
7.10.5 Maple step by step solution . 1160

Internal problem ID [13015]
Internal file name [OUTPUT/11667_Wednesday_November_08_2023_03_28_19_AM_11615872/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}+2 t y=4 \mathrm{e}^{-t^{2}}
$$

With initial conditions

$$
[y(0)=3]
$$

7.10.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=2 t \\
& q(t)=4 \mathrm{e}^{-t^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+2 t y=4 \mathrm{e}^{-t^{2}}
$$

The domain of $p(t)=2 t$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=4 \mathrm{e}^{-t^{2}}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

7.10.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 2 t d t} \\
& =\mathrm{e}^{t^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(4 \mathrm{e}^{-t^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{t^{2}} y\right) & =\left(\mathrm{e}^{t^{2}}\right)\left(4 \mathrm{e}^{-t^{2}}\right) \\
\mathrm{d}\left(\mathrm{e}^{t^{2}} y\right) & =4 \mathrm{~d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{t^{2}} y=\int 4 \mathrm{~d} t \\
& \mathrm{e}^{t^{2}} y=4 t+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{t^{2}}$ results in

$$
y=4 \mathrm{e}^{-t^{2}} t+c_{1} \mathrm{e}^{-t^{2}}
$$

which simplifies to

$$
y=\mathrm{e}^{-t^{2}}\left(4 t+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 3=c_{1} \\
& c_{1}=3
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\mathrm{e}^{-t^{2}}(3+4 t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-t^{2}}(3+4 t) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-t^{2}}(3+4 t)
$$

Verified OK.

7.10.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-2 t y+4 \mathrm{e}^{-t^{2}} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 251: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-t^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-t^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{t^{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-2 t y+4 \mathrm{e}^{-t^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =2 t \mathrm{e}^{t^{2}} y \\
S_{y} & =\mathrm{e}^{t^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=4 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=4
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=4 R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
y \mathrm{e}^{t^{2}}=4 t+c_{1}
$$

Which simplifies to

$$
y \mathrm{e}^{t^{2}}=4 t+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{-t^{2}}\left(4 t+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-2 t y+4 \mathrm{e}^{-t^{2}}$		$\frac{d S}{d R}=4$
		A
	$R=t$	
	$S=\mathrm{e}^{t^{2}} y$	
${ }^{4}$		¢ ¢ p p p p p plo p p p p p p p
1		

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 3=c_{1} \\
& c_{1}=3
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=4 \mathrm{e}^{-t^{2}} t+3 \mathrm{e}^{-t^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=4 \mathrm{e}^{-t^{2}} t+3 \mathrm{e}^{-t^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=4 \mathrm{e}^{-t^{2}} t+3 \mathrm{e}^{-t^{2}}
$$

Verified OK.

7.10.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-2 t y+4 \mathrm{e}^{-t^{2}}\right) \mathrm{d} t \\
\left(2 t y-4 \mathrm{e}^{-t^{2}}\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=2 t y-4 \mathrm{e}^{-t^{2}} \\
& N(t, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 t y-4 \mathrm{e}^{-t^{2}}\right) \\
& =2 t
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((2 t)-(0)) \\
& =2 t
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int 2 t \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{t^{2}} \\
& =\mathrm{e}^{t^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{t^{2}}\left(2 t y-4 \mathrm{e}^{-t^{2}}\right) \\
& =2 t \mathrm{e}^{t^{2}} y-4
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{t^{2}}(1) \\
& =\mathrm{e}^{t^{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(2 t \mathrm{e}^{t^{2}} y-4\right)+\left(\mathrm{e}^{t^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int 2 t \mathrm{e}^{t^{2}} y-4 \mathrm{~d} t \\
\phi & =-4 t+\mathrm{e}^{t^{2}} y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{t^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{t^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{t^{2}}=\mathrm{e}^{t^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-4 t+\mathrm{e}^{t^{2}} y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-4 t+\mathrm{e}^{t^{2}} y
$$

The solution becomes

$$
y=\mathrm{e}^{-t^{2}}\left(4 t+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 3=c_{1} \\
& c_{1}=3
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=4 \mathrm{e}^{-t^{2}} t+3 \mathrm{e}^{-t^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=4 \mathrm{e}^{-t^{2}} t+3 \mathrm{e}^{-t^{2}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=4 \mathrm{e}^{-t^{2}} t+3 \mathrm{e}^{-t^{2}}
$$

Verified OK.

7.10.5 Maple step by step solution

Let's solve
$\left[y^{\prime}+2 t y=4 \mathrm{e}^{-t^{2}}, y(0)=3\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-2 t y+4 \mathrm{e}^{-t^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+2 t y=4 \mathrm{e}^{-t^{2}}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+2 t y\right)=4 \mu(t) \mathrm{e}^{-t^{2}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+2 t y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=2 \mu(t) t$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{t^{2}}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 4 \mu(t) \mathrm{e}^{-t^{2}} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 4 \mu(t) \mathrm{e}^{-t^{2}} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 4 \mu(t) \mathrm{e}^{-t^{2}} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{t^{2}}$
$y=\frac{\int 4 \mathrm{e}^{-t^{2}} \mathrm{e}^{t^{2}} d t+c_{1}}{\mathrm{e}^{\mathrm{t}^{2}}}$
- Evaluate the integrals on the rhs
$y=\frac{4 t+c_{1}}{\mathrm{e}^{2}}$
- Simplify
$y=\mathrm{e}^{-t^{2}}\left(4 t+c_{1}\right)$
- Use initial condition $y(0)=3$
$3=c_{1}$
- \quad Solve for c_{1}
$c_{1}=3$
- \quad Substitute $c_{1}=3$ into general solution and simplify
$y=\mathrm{e}^{-t^{2}}(3+4 t)$
- Solution to the IVP
$y=\mathrm{e}^{-t^{2}}(3+4 t)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 16

```
dsolve([diff(y(t),t)=-2*t*y(t)+4*exp(-t^2),y(0) = 3],y(t), singsol=all)
```

$$
y(t)=(4 t+3) \mathrm{e}^{-t^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.09 (sec). Leaf size: 18
DSolve[\{y' [t]==-2*t*y[t]+4*Exp[-t^2],\{y[0]==3\}\},y[t],t,IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow e^{-t^{2}}(4 t+3)
$$

7.11 problem 11

7.11.1 Existence and uniqueness analysis 1163
7.11.2 Solving as linear ode . 1164
7.11.3 Solving as first order ode lie symmetry lookup ode 1166
7.11.4 Solving as exact ode . 1170
7.11.5 Maple step by step solution . 1175

Internal problem ID [13016]
Internal file name [OUTPUT/11668_Wednesday_November_08_2023_03_28_20_AM_39873401/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first__order_ode_lie_symmetry__lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-\frac{2 y}{t}=2 t^{2}
$$

With initial conditions

$$
[y(-2)=4]
$$

7.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-\frac{2}{t} \\
q(t) & =2 t^{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 y}{t}=2 t^{2}
$$

The domain of $p(t)=-\frac{2}{t}$ is

$$
\{t<0 \vee 0<t\}
$$

And the point $t_{0}=-2$ is inside this domain. The domain of $q(t)=2 t^{2}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=-2$ is also inside this domain. Hence solution exists and is unique.

7.11.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{t} d t} \\
& =\frac{1}{t^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(2 t^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{y}{t^{2}}\right) & =\left(\frac{1}{t^{2}}\right)\left(2 t^{2}\right) \\
\mathrm{d}\left(\frac{y}{t^{2}}\right) & =2 \mathrm{~d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{t^{2}} & =\int 2 \mathrm{~d} t \\
\frac{y}{t^{2}} & =2 t+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{t^{2}}$ results in

$$
y=c_{1} t^{2}+2 t^{3}
$$

which simplifies to

$$
y=t^{2}\left(2 t+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $t=-2$ and $y=4$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
4=-16+4 c_{1} \\
c_{1}=5
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=t^{2}(2 t+5)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t^{2}(2 t+5) \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=t^{2}(2 t+5)
$$

Verified OK.

7.11.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{2 t^{3}+2 y}{t} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 254: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=t^{2} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{t^{2}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{t^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{2 t^{3}+2 y}{t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-\frac{2 y}{t^{3}} \\
S_{y} & =\frac{1}{t^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=2 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=2
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=2 R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\frac{y}{t^{2}}=2 t+c_{1}
$$

Which simplifies to

$$
\frac{y}{t^{2}}=2 t+c_{1}
$$

Which gives

$$
y=t^{2}\left(2 t+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{2 t^{3}+2 y}{t}$		$\frac{d S}{d R}=2$
		¢ppopquppopoppopopt
+ $44 \begin{aligned} & \text { a } \\ & 1\end{aligned}$		
	$R=t$	
	$S=\frac{y}{t^{2}}$	
1.	t^{2}	
-		
.		

Initial conditions are used to solve for c_{1}. Substituting $t=-2$ and $y=4$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
4=-16+4 c_{1} \\
c_{1}=5
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=t^{2}(2 t+5)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t^{2}(2 t+5) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=t^{2}(2 t+5)
$$

Verified OK.

7.11.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(\frac{2 y}{t}+2 t^{2}\right) \mathrm{d} t \\
\left(-\frac{2 y}{t}-2 t^{2}\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-\frac{2 y}{t}-2 t^{2} \\
& N(t, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{2 y}{t}-2 t^{2}\right) \\
& =-\frac{2}{t}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1\left(\left(-\frac{2}{t}\right)-(0)\right) \\
& =-\frac{2}{t}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-\frac{2}{t} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (t)} \\
& =\frac{1}{t^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{t^{2}}\left(-\frac{2 y}{t}-2 t^{2}\right) \\
& =\frac{-2 t^{3}-2 y}{t^{3}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{t^{2}}(1) \\
& =\frac{1}{t^{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(\frac{-2 t^{3}-2 y}{t^{3}}\right)+\left(\frac{1}{t^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \frac{-2 t^{3}-2 y}{t^{3}} \mathrm{~d} t \\
\phi & =-2 t+\frac{y}{t^{2}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{t^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{t^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{t^{2}}=\frac{1}{t^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-2 t+\frac{y}{t^{2}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-2 t+\frac{y}{t^{2}}
$$

The solution becomes

$$
y=t^{2}\left(2 t+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $t=-2$ and $y=4$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
4=-16+4 c_{1} \\
c_{1}=5
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=t^{2}(2 t+5)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t^{2}(2 t+5) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=t^{2}(2 t+5)
$$

Verified OK.

7.11.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{2 y}{t}=2 t^{2}, y(-2)=4\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{2 y}{t}+2 t^{2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{2 y}{t}=2 t^{2}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-\frac{2 y}{t}\right)=2 \mu(t) t^{2}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-\frac{2 y}{t}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\frac{2 \mu(t)}{t}$
- \quad Solve to find the integrating factor
$\mu(t)=\frac{1}{t^{2}}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 2 \mu(t) t^{2} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 2 \mu(t) t^{2} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 2 \mu(t) t^{2} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\frac{1}{t^{2}}$
$y=t^{2}\left(\int 2 d t+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=t^{2}\left(2 t+c_{1}\right)$
- Use initial condition $y(-2)=4$
$4=-16+4 c_{1}$
- \quad Solve for c_{1}
$c_{1}=5$
- \quad Substitute $c_{1}=5$ into general solution and simplify
$y=2 t^{3}+5 t^{2}$
- \quad Solution to the IVP
$y=2 t^{3}+5 t^{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve([diff(y(t),t)-2*y(t)/t=2*t^2,y(-2) = 4],y(t), singsol=all)
```

$$
y(t)=2 t^{3}+5 t^{2}
$$

\checkmark Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 14
DSolve[\{y' [t]-2*y[t]/t==2*t^2,\{y[-2]==4\}\},y[t],t,IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow t^{2}(2 t+5)
$$

7.12 problem 12

7.12.1 Existence and uniqueness analysis 1177
7.12.2 Solving as linear ode . 1178
7.12.3 Solving as first order ode lie symmetry lookup ode 1180
7.12.4 Solving as exact ode . 1184
7.12.5 Maple step by step solution . 1189

Internal problem ID [13017]
Internal file name [OUTPUT/11669_Wednesday_November_08_2023_03_28_20_AM_47236562/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-\frac{3 y}{t}=2 \mathrm{e}^{2 t} t^{3}
$$

With initial conditions

$$
[y(1)=0]
$$

7.12.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-\frac{3}{t} \\
& q(t)=2 \mathrm{e}^{2 t} t^{3}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{3 y}{t}=2 \mathrm{e}^{2 t} t^{3}
$$

The domain of $p(t)=-\frac{3}{t}$ is

$$
\{t<0 \vee 0<t\}
$$

And the point $t_{0}=1$ is inside this domain. The domain of $q(t)=2 \mathrm{e}^{2 t} t^{3}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=1$ is also inside this domain. Hence solution exists and is unique.

7.12.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{t} d t} \\
& =\frac{1}{t^{3}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(2 \mathrm{e}^{2 t} t^{3}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{y}{t^{3}}\right) & =\left(\frac{1}{t^{3}}\right)\left(2 \mathrm{e}^{2 t} t^{3}\right) \\
\mathrm{d}\left(\frac{y}{t^{3}}\right) & =\left(2 \mathrm{e}^{2 t}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{t^{3}} & =\int 2 \mathrm{e}^{2 t} \mathrm{~d} t \\
\frac{y}{t^{3}} & =\mathrm{e}^{2 t}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{t^{3}}$ results in

$$
y=\mathrm{e}^{2 t} t^{3}+t^{3} c_{1}
$$

which simplifies to

$$
y=t^{3}\left(\mathrm{e}^{2 t}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\mathrm{e}^{2}+c_{1} \\
c_{1}=-\mathrm{e}^{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=t^{3}\left(\mathrm{e}^{2 t}-\mathrm{e}^{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t^{3}\left(\mathrm{e}^{2 t}-\mathrm{e}^{2}\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=t^{3}\left(\mathrm{e}^{2 t}-\mathrm{e}^{2}\right)
$$

Verified OK.

7.12.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{2 t^{4} \mathrm{e}^{2 t}+3 y}{t} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 257: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=t^{3} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{t^{3}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{t^{3}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{2 t^{4} \mathrm{e}^{2 t}+3 y}{t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-\frac{3 y}{t^{4}} \\
S_{y} & =\frac{1}{t^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=2 \mathrm{e}^{2 t} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=2 \mathrm{e}^{2 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\mathrm{e}^{2 R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\frac{y}{t^{3}}=\mathrm{e}^{2 t}+c_{1}
$$

Which simplifies to

$$
\frac{y}{t^{3}}=\mathrm{e}^{2 t}+c_{1}
$$

Which gives

$$
y=t^{3}\left(\mathrm{e}^{2 t}+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{2 t^{4} \mathrm{e}^{2 t}+3 y}{t}$		$\frac{d S}{d R}=2 \mathrm{e}^{2 R}$
		$\rightarrow \rightarrow \rightarrow \rightarrow$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-S(R)]{ }{ }^{\text {a }}$
-1.ty x_{1}		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow}$
	$R=t$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+}$
	$S=\frac{y}{t^{3}}$	
		$\rightarrow \pm \pm{ }^{\text {a }}$

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\mathrm{e}^{2}+c_{1} \\
c_{1}=-\mathrm{e}^{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=t^{3}\left(\mathrm{e}^{2 t}-\mathrm{e}^{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t^{3}\left(\mathrm{e}^{2 t}-\mathrm{e}^{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=t^{3}\left(\mathrm{e}^{2 t}-\mathrm{e}^{2}\right)
$$

Verified OK.

7.12.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(\frac{3 y}{t}+2 \mathrm{e}^{2 t} t^{3}\right) \mathrm{d} t \\
\left(-\frac{3 y}{t}-2 \mathrm{e}^{2 t} t^{3}\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-\frac{3 y}{t}-2 \mathrm{e}^{2 t} t^{3} \\
& N(t, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{3 y}{t}-2 \mathrm{e}^{2 t} t^{3}\right) \\
& =-\frac{3}{t}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1\left(\left(-\frac{3}{t}\right)-(0)\right) \\
& =-\frac{3}{t}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-\frac{3}{t} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-3 \ln (t)} \\
& =\frac{1}{t^{3}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{t^{3}}\left(-\frac{3 y}{t}-2 \mathrm{e}^{2 t} t^{3}\right) \\
& =\frac{-2 t^{4} \mathrm{e}^{2 t}-3 y}{t^{4}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{t^{3}}(1) \\
& =\frac{1}{t^{3}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(\frac{-2 t^{4} \mathrm{e}^{2 t}-3 y}{t^{4}}\right)+\left(\frac{1}{t^{3}}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \frac{-2 t^{4} \mathrm{e}^{2 t}-3 y}{t^{4}} \mathrm{~d} t \\
\phi & =\frac{-\mathrm{e}^{2 t} t^{3}+y}{t^{3}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{t^{3}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{t^{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{t^{3}}=\frac{1}{t^{3}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{-\mathrm{e}^{2 t} t^{3}+y}{t^{3}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{-\mathrm{e}^{2 t} t^{3}+y}{t^{3}}
$$

The solution becomes

$$
y=t^{3}\left(\mathrm{e}^{2 t}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\mathrm{e}^{2}+c_{1} \\
c_{1}=-\mathrm{e}^{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=t^{3}\left(\mathrm{e}^{2 t}-\mathrm{e}^{2}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t^{3}\left(\mathrm{e}^{2 t}-\mathrm{e}^{2}\right) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=t^{3}\left(\mathrm{e}^{2 t}-\mathrm{e}^{2}\right)
$$

Verified OK.

7.12.5 Maple step by step solution

Let's solve
$\left[y^{\prime}-\frac{3 y}{t}=2 \mathrm{e}^{2 t} t^{3}, y(1)=0\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{3 y}{t}+2 \mathrm{e}^{2 t} t^{3}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{3 y}{t}=2 \mathrm{e}^{2 t} t^{3}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-\frac{3 y}{t}\right)=2 \mu(t) \mathrm{e}^{2 t} t^{3}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-\frac{3 y}{t}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\frac{3 \mu(t)}{t}$
- Solve to find the integrating factor
$\mu(t)=\frac{1}{t^{3}}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 2 \mu(t) \mathrm{e}^{2 t} t^{3} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 2 \mu(t) \mathrm{e}^{2 t} t^{3} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 2 \mu(t) e^{2 t} t^{3} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\frac{1}{t^{3}}$
$y=t^{3}\left(\int 2 \mathrm{e}^{2 t} d t+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=t^{3}\left(\mathrm{e}^{2 t}+c_{1}\right)$
- Use initial condition $y(1)=0$
$0=\mathrm{e}^{2}+c_{1}$
- \quad Solve for c_{1}
$c_{1}=-\mathrm{e}^{2}$
- Substitute $c_{1}=-\mathrm{e}^{2}$ into general solution and simplify
$y=t^{3}\left(\mathrm{e}^{2 t}-\mathrm{e}^{2}\right)$
- \quad Solution to the IVP
$y=t^{3}\left(\mathrm{e}^{2 t}-\mathrm{e}^{2}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 17

```
dsolve([diff (y(t),t)-3/t*y(t)=2*t^3*exp (2*t),y(1) = 0],y(t), singsol=all)
```

$$
y(t)=-\left(-\mathrm{e}^{2 t}+\mathrm{e}^{2}\right) t^{3}
$$

Solution by Mathematica
Time used: 0.083 (sec). Leaf size: 20
DSolve [\{y' $[t]-3 / t * y[t]==2 * t \wedge 3 * \operatorname{Exp}[2 * t],\{y[1]==0\}\}, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow\left(e^{2 t}-e^{2}\right) t^{3}
$$

7.13 problem 13

7.13.1 Solving as linear ode . 1191
7.13.2 Solving as first order ode lie symmetry lookup ode 1193
7.13.3 Solving as exact ode . 1197
7.13.4 Maple step by step solution . 1201

Internal problem ID [13018]
Internal file name [OUTPUT/11670_Wednesday_November_08_2023_03_28_21_AM_66253612/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-\sin (t) y=4
$$

7.13.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-\sin (t) \\
& q(t)=4
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\sin (t) y=4
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\sin (t) d t} \\
& =\mathrm{e}^{\cos (t)}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)(4) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{\cos (t)} y\right) & =\left(\mathrm{e}^{\cos (t)}\right)(4) \\
\mathrm{d}\left(\mathrm{e}^{\cos (t)} y\right) & =\left(4 \mathrm{e}^{\cos (t)}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\cos (t)} y=\int 4 \mathrm{e}^{\cos (t)} \mathrm{d} t \\
& \mathrm{e}^{\cos (t)} y=\int 4 \mathrm{e}^{\cos (t)} d t+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\cos (t)}$ results in

$$
y=\mathrm{e}^{-\cos (t)}\left(\int 4 \mathrm{e}^{\cos (t)} d t\right)+c_{1} \mathrm{e}^{-\cos (t)}
$$

which simplifies to

$$
y=\mathrm{e}^{-\cos (t)}\left(4\left(\int \mathrm{e}^{\cos (t)} d t\right)+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\cos (t)}\left(4\left(\int \mathrm{e}^{\cos (t)} d t\right)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 267: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\cos (t)}\left(4\left(\int \mathrm{e}^{\cos (t)} d t\right)+c_{1}\right)
$$

Verified OK.

7.13.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\sin (t) y+4 \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 260: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-\cos (t)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\cos (t)}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\cos (t)} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\sin (t) y+4
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-\sin (t) \mathrm{e}^{\cos (t)} y \\
S_{y} & =\mathrm{e}^{\cos (t)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=4 \mathrm{e}^{\cos (t)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=4 \mathrm{e}^{\cos (R)}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\int 4 \mathrm{e}^{\cos (R)} d R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{\cos (t)} y=\int 4 \mathrm{e}^{\cos (t)} d t+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{\cos (t)} y=\int 4 \mathrm{e}^{\cos (t)} d t+c_{1}
$$

Which gives

$$
y=\left(\int 4 \mathrm{e}^{\cos (t)} d t+c_{1}\right) \mathrm{e}^{-\cos (t)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\sin (t) y+4$		$\frac{d S}{d R}=4 \mathrm{e}^{\cos (R)}$
		+
4		
	$R=t$	
	$S=\mathrm{e}^{\cos (t)} y$	
¢ ¢		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(\int 4 \mathrm{e}^{\cos (t)} d t+c_{1}\right) \mathrm{e}^{-\cos (t)} \tag{1}
\end{equation*}
$$

Figure 268: Slope field plot

Verification of solutions

$$
y=\left(\int 4 \mathrm{e}^{\cos (t)} d t+c_{1}\right) \mathrm{e}^{-\cos (t)}
$$

Verified OK.

7.13.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(\sin (t) y+4) \mathrm{d} t \\
(-\sin (t) y-4) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-\sin (t) y-4 \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-\sin (t) y-4) \\
& =-\sin (t)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((-\sin (t))-(0)) \\
& =-\sin (t)
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-\sin (t) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\cos (t)} \\
& =\mathrm{e}^{\cos (t)}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{\cos (t)}(-\sin (t) y-4) \\
& =-\mathrm{e}^{\cos (t)}(\sin (t) y+4)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{\cos (t)}(1) \\
& =\mathrm{e}^{\cos (t)}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t}=0 \\
\left(-\mathrm{e}^{\cos (t)}(\sin (t) y+4)\right)+\left(\mathrm{e}^{\cos (t)}\right) \frac{\mathrm{d} y}{\mathrm{~d} t}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\mathrm{e}^{\cos (t)}(\sin (t) y+4) \mathrm{d} t \\
\phi & =\int^{t}-\mathrm{e}^{\cos \left(_a\right)}\left(\sin \left(_a\right) y+4\right) d _a+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{\cos (t)}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{\cos (t)}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{\cos (t)}=\mathrm{e}^{\cos (t)}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\int^{t}-\mathrm{e}^{\cos \left(_a\right)}\left(\sin \left(_a\right) y+4\right) d _a+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\int^{t}-\mathrm{e}^{\cos \left(_a\right)}\left(\sin \left(_a\right) y+4\right) d _a
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{t}-\mathrm{e}^{\cos \left(_a\right)}\left(\sin \left(_a\right) y+4\right) d _a=c_{1} \tag{1}
\end{equation*}
$$

Figure 269: Slope field plot

Verification of solutions

$$
\int^{t}-\mathrm{e}^{\cos \left(_a\right)}\left(\sin \left(_a\right) y+4\right) d _a=c_{1}
$$

Verified OK.

7.13.4 Maple step by step solution

Let's solve

$$
y^{\prime}-\sin (t) y=4
$$

- Highest derivative means the order of the ODE is 1

y^{\prime}

- Isolate the derivative
$y^{\prime}=\sin (t) y+4$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

$$
y^{\prime}-\sin (t) y=4
$$

- The ODE is linear; multiply by an integrating factor $\mu(t)$

$$
\mu(t)\left(y^{\prime}-\sin (t) y\right)=4 \mu(t)
$$

- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-\sin (t) y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- \quad Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\mu(t) \sin (t)$
- \quad Solve to find the integrating factor

$$
\mu(t)=\mathrm{e}^{\cos (t)}
$$

- Integrate both sides with respect to t

$$
\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 4 \mu(t) d t+c_{1}
$$

- Evaluate the integral on the lhs
$\mu(t) y=\int 4 \mu(t) d t+c_{1}$
- \quad Solve for y

$$
y=\frac{\int 4 \mu(t) d t+c_{1}}{\mu(t)}
$$

- \quad Substitute $\mu(t)=\mathrm{e}^{\cos (t)}$

$$
y=\frac{\int 4 \mathrm{e}^{\cos (t)} d t+c_{1}}{\mathrm{e}^{\cos (t)}}
$$

- Simplify

$$
y=\left(4\left(\int \mathrm{e}^{\cos (t)} d t\right)+c_{1}\right) \mathrm{e}^{-\cos (t)}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(diff(y(t),t)=sin(t)*y(t)+4,y(t), singsol=all)
```

$$
y(t)=\left(4\left(\int \mathrm{e}^{\cos (t)} d t\right)+c_{1}\right) \mathrm{e}^{-\cos (t)}
$$

\checkmark Solution by Mathematica
Time used: 0.486 (sec). Leaf size: 29
DSolve [y' $[\mathrm{t}]==\operatorname{Sin}[\mathrm{t}] * \mathrm{y}[\mathrm{t}]+4, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow e^{-\cos (t)}\left(\int_{1}^{t} 4 e^{\cos (K[1])} d K[1]+c_{1}\right)
$$

7.14 problem 14

7.14.1 Solving as linear ode . 1204
7.14.2 Solving as first order ode lie symmetry lookup ode 1206
7.14.3 Solving as exact ode . 1210
7.14.4 Maple step by step solution . 1215

Internal problem ID [13019]
Internal file name [OUTPUT/11671_Wednesday_November_08_2023_03_28_22_AM_17103159/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-t^{2} y=4
$$

7.14.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-t^{2} \\
q(t) & =4
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-t^{2} y=4
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-t^{2} d t} \\
& =\mathrm{e}^{-\frac{t^{3}}{3}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)(4) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-\frac{t^{3}}{3}} y\right) & =\left(\mathrm{e}^{-\frac{t^{3}}{3}}\right)(4) \\
\mathrm{d}\left(\mathrm{e}^{-\frac{t^{3}}{3}} y\right) & =\left(4 \mathrm{e}^{-\frac{t^{3}}{3}}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\left.\begin{array}{l}
\mathrm{e}^{-\frac{t^{3}}{3}} y=\int 4 \mathrm{e}^{-\frac{t^{3}}{3}} \mathrm{~d} t \\
\left.\mathrm{e}^{-\frac{t^{3}}{3}} y=\frac{43^{\frac{1}{3}}\left(\frac{3 t 3^{\frac{5}{6}} \mathrm{e}^{-\frac{t^{3}}{6}} \operatorname{WhittakerM}\left(\frac{1}{6}, \frac{2}{3}, \frac{3^{3}}{3}\right.}{}\right.}{4\left(t^{3}\right)^{\frac{1}{6}}}+\frac{33^{\frac{5}{6}} \mathrm{e}^{-\frac{t^{3}}{6}} \operatorname{WhittakerM}\left(\frac{7}{6}, \frac{2}{3}, \frac{t^{3}}{3}\right.}{}\right) \\
t^{2}\left(t^{3}\right)^{\frac{1}{6}}
\end{array}\right)+c_{1}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-\frac{t^{3}}{3}}$ results in

$$
\left.y=\frac{4 \mathrm{e}^{\frac{t^{3}}{3}} 3^{\frac{1}{3}}\left(\frac{3 t 3^{\frac{5}{6}} \mathrm{e}^{-\frac{t^{3}}{6}} \operatorname{WhittakerM}\left(\frac{1}{6}, \frac{2}{3}, \frac{t^{3}}{3}\right.}{}\right)}{4\left(t^{3}\right)^{\frac{1}{6}}}+\frac{33^{\frac{5}{6}} \mathrm{e}^{-\frac{t^{3}}{6}} \operatorname{WhittakerM}\left(\frac{7}{6}, \frac{2}{3}, \frac{t^{3}}{3}\right.}{t^{2}\left(t^{3}\right)^{\frac{1}{6}}}\right) c_{1} \mathrm{e}^{t^{3}}
$$

which simplifies to

$$
y=\frac{33^{\frac{1}{6}} \text { WhittakerM }\left(\frac{1}{6}, \frac{2}{3}, \frac{t^{3}}{3}\right) t \mathrm{e}^{\frac{t^{3}}{6}}}{\left(t^{3}\right)^{\frac{1}{6}}}+c_{1} \mathrm{e}^{t^{3}}+4 t
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{33^{\frac{1}{6}} \text { WhittakerM }\left(\frac{1}{6}, \frac{2}{3}, \frac{t^{3}}{3}\right) t \mathrm{e}^{\frac{t}{}^{3}}}{\left(t^{3}\right)^{\frac{1}{6}}}+c_{1} \mathrm{e}^{t^{3}}+4 t \tag{1}
\end{equation*}
$$

Figure 270: Slope field plot

Verification of solutions

$$
y=\frac{33^{\frac{1}{6}} \text { WhittakerM }\left(\frac{1}{6}, \frac{2}{3}, \frac{t^{3}}{3}\right) t \mathrm{e}^{\frac{t^{3}}{6}}}{\left(t^{3}\right)^{\frac{1}{6}}}+c_{1} \mathrm{e}^{t^{3}}+4 t
$$

Verified OK.

7.14.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=y t^{2}+4 \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 263: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{\frac{t^{3}}{3}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{t^{3}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-\frac{t^{3}}{3}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=y t^{2}+4
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-t^{2} \mathrm{e}^{-\frac{t^{3}}{3}} y \\
S_{y} & =\mathrm{e}^{-\frac{t^{3}}{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=4 \mathrm{e}^{-\frac{t^{3}}{3}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=4 \mathrm{e}^{-\frac{R^{3}}{3}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R \mathrm{e}^{-\frac{R^{3}}{6}} \mathrm{WhittakerM}\left(\frac{1}{6}, \frac{2}{3}, \frac{R^{3}}{3}\right) 243^{\frac{5}{6}}}{27\left(R^{3}\right)^{\frac{1}{6}}}+\frac{4 \mathrm{e}^{-\frac{R^{3}}{6}} \mathrm{WhittakerM}\left(\frac{7}{6}, \frac{2}{3}, \frac{R^{3}}{3}\right) 243^{\frac{5}{6}}}{27 R^{2}\left(R^{3}\right)^{\frac{1}{6}}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-\frac{t^{3}}{3}} y=\frac{t \mathrm{e}^{-\frac{t^{3}}{6}} \mathrm{WhittakerM}\left(\frac{1}{6}, \frac{2}{3}, \frac{t^{3}}{3}\right) 243^{\frac{5}{6}}}{27\left(t^{3}\right)^{\frac{1}{6}}}+\frac{4 \mathrm{e}^{-\frac{t^{3}}{6}} \mathrm{WhittakerM}\left(\frac{7}{6}, \frac{2}{3}, \frac{t^{3}}{3}\right) 243^{\frac{5}{6}}}{27 t^{2}\left(t^{3}\right)^{\frac{1}{6}}}+c_{1}
$$

Which simplifies to

$$
\left(-33^{\frac{1}{6}} \sqrt{t} \text { WhittakerM }\left(\frac{1}{6}, \frac{2}{3}, \frac{t^{3}}{3}\right) \mathrm{e}^{\frac{t^{3}}{6}}-c_{1} \mathrm{e}^{\frac{t^{3}}{3}}-4 t+y\right) \mathrm{e}^{-\frac{t^{3}}{3}}=0
$$

Which gives

$$
y=33^{\frac{1}{6}} \sqrt{t} \text { WhittakerM }\left(\frac{1}{6}, \frac{2}{3}, \frac{t^{3}}{3}\right) \mathrm{e}^{\frac{t^{3}}{6}}+c_{1} \mathrm{e}^{\frac{t^{3}}{3}}+4 t
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=y t^{2}+4$		$\frac{d S}{d R}=4 \mathrm{e}^{-\frac{R^{3}}{3}}$
		${ }^{\text {d }}$
	$R=t$	
	$R=t$	
	$S=\mathrm{e}^{-\frac{1}{3}} y$	¢ ${ }_{\text {¢ }}$
!! ! ! : ¢ > ¢ ¢ ¢ > ! ! ! ! ! ! !		

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=33^{\frac{1}{6}} \sqrt{t} \text { WhittakerM }\left(\frac{1}{6}, \frac{2}{3}, \frac{t^{3}}{3}\right) \mathrm{e}^{\frac{t^{3}}{6}}+c_{1} \mathrm{e}^{\frac{t}{}_{3}^{3}}+4 t \tag{1}
\end{equation*}
$$

Figure 271: Slope field plot
Verification of solutions

$$
y=33^{\frac{1}{6}} \sqrt{t} \text { WhittakerM }\left(\frac{1}{6}, \frac{2}{3}, \frac{t^{3}}{3}\right) \mathrm{e}^{\frac{t^{3}}{6}}+c_{1} \mathrm{e}^{\frac{t}{3}^{3}}+4 t
$$

Verified OK.

7.14.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the
ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(y t^{2}+4\right) \mathrm{d} t \\
\left(-y t^{2}-4\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-y t^{2}-4 \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-y t^{2}-4\right) \\
& =-t^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1\left(\left(-t^{2}\right)-(0)\right) \\
& =-t^{2}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-t^{2} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\frac{t^{3}}{3}} \\
& =\mathrm{e}^{-\frac{t^{3}}{3}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-\frac{t^{3}}{3}}\left(-y t^{2}-4\right) \\
& =-\mathrm{e}^{-\frac{t^{3}}{3}}\left(y t^{2}+4\right)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-\frac{t^{3}}{3}}(1) \\
& =\mathrm{e}^{-\frac{t^{3}}{3}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(-\mathrm{e}^{-\frac{t^{3}}{3}}\left(y t^{2}+4\right)\right)+\left(\mathrm{e}^{-\frac{t^{3}}{3}}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives
$\int \frac{\partial \phi}{\partial t} \mathrm{~d} t=\int \bar{M} \mathrm{~d} t$
$\int \frac{\partial \phi}{\partial t} \mathrm{~d} t=\int-\mathrm{e}^{-\frac{t^{3}}{3}}\left(y t^{2}+4\right) \mathrm{d} t$
$\phi=\frac{-33^{\frac{1}{6}} \mathrm{e}^{-\frac{t^{3}}{6}} \text { WhittakerM }\left(\frac{1}{6}, \frac{2}{3}, \frac{t^{3}}{3}\right) t-4 \mathrm{e}^{-\frac{t^{3}}{3}}\left(t^{3}\right)^{\frac{1}{6}} t+\mathrm{e}^{-\frac{t^{3}}{3}} y\left(t^{3}\right)^{\frac{1}{6}}-\left(t^{3}\right)^{\frac{1}{6}} y}{\left(t^{3}\right)^{\frac{1}{6}}}+f(y)$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{\mathrm{e}^{-\frac{t^{3}}{3}}\left(t^{3}\right)^{\frac{1}{6}}-\left(t^{3}\right)^{\frac{1}{6}}}{\left(t^{3}\right)^{\frac{1}{6}}}+f^{\prime}(y) \tag{4}\\
& =-1+\mathrm{e}^{-\frac{t^{3}}{3}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-\frac{t^{3}}{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-\frac{t^{3}}{3}}=-1+\mathrm{e}^{-\frac{t^{3}}{3}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=1
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(1) \mathrm{d} y \\
f(y) & =y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{-33^{\frac{1}{6}} \mathrm{e}^{-\frac{t^{3}}{6}} \text { WhittakerM }\left(\frac{1}{6}, \frac{2}{3}, \frac{t^{3}}{3}\right) t-4 \mathrm{e}^{-\frac{t^{3}}{3}}\left(t^{3}\right)^{\frac{1}{6}} t+\mathrm{e}^{-\frac{t^{3}}{3}} y\left(t^{3}\right)^{\frac{1}{6}}-\left(t^{3}\right)^{\frac{1}{6}} y}{\left(t^{3}\right)^{\frac{1}{6}}}+y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{-33^{\frac{1}{6}} \mathrm{e}^{-\frac{t^{3}}{6}} \mathrm{WhittakerM}\left(\frac{1}{6}, \frac{2}{3}, \frac{t^{3}}{3}\right) t-4 \mathrm{e}^{-\frac{t^{3}}{3}}\left(t^{3}\right)^{\frac{1}{6}} t+\mathrm{e}^{-\frac{t^{3}}{3}} y\left(t^{3}\right)^{\frac{1}{6}}-\left(t^{3}\right)^{\frac{1}{6}} y}{\left(t^{3}\right)^{\frac{1}{6}}}+y
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{t^{3}}\left(33^{\frac{1}{6}} \mathrm{e}^{-\frac{t^{3}}{6}} \mathrm{WhittakerM}\left(\frac{1}{6}, \frac{2}{3} \frac{t^{3}}{3}\right) t+4 \mathrm{e}^{\mathrm{t}^{\frac{t^{3}}{3}}}\left(t^{3}\right)^{\frac{1}{6}} t+c_{1}\left(t^{3}\right)^{\frac{1}{6}}\right)}{\left(t^{3}\right)^{\frac{1}{6}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{\frac{t^{3}}{3}}\left(33^{\frac{1}{6}} \mathrm{e}^{-\frac{t^{3}}{6}} \text { WhittakerM }\left(\frac{1}{6}, \frac{2}{3}, \frac{t^{3}}{3}\right) t+4 \mathrm{e}^{-\frac{t^{3}}{3}}\left(t^{3}\right)^{\frac{1}{6}} t+c_{1}\left(t^{3}\right)^{\frac{1}{6}}\right)}{\left(t^{3}\right)^{\frac{1}{6}}} \tag{1}
\end{equation*}
$$

Figure 272: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{t^{3}}\left(33^{\frac{1}{6}} \mathrm{e}^{-\frac{t^{3}}{6}} \mathrm{WhittakerM}\left(\frac{1}{6}, \frac{2}{3}, \frac{t^{3}}{3}\right) t+4 \mathrm{e}^{-\frac{t^{3}}{3}}\left(t^{3}\right)^{\frac{1}{6}} t+c_{1}\left(t^{3}\right)^{\frac{1}{6}}\right)}{\left(t^{3}\right)^{\frac{1}{6}}}
$$

Verified OK.

7.14.4 Maple step by step solution

Let's solve

$$
y^{\prime}-t^{2} y=4
$$

- Highest derivative means the order of the ODE is 1

y^{\prime}

- Isolate the derivative
$y^{\prime}=t^{2} y+4$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-t^{2} y=4$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-t^{2} y\right)=4 \mu(t)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-t^{2} y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\mu(t) t^{2}$
- \quad Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-\frac{t^{3}}{3}}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 4 \mu(t) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 4 \mu(t) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 4 \mu(t) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-\frac{t^{3}}{3}}$
$y=\frac{\int 4 \mathrm{e}^{-\frac{t^{3}}{3}} d t+c_{1}}{\mathrm{e}^{-\frac{t^{3}}{3}}}$
- Evaluate the integrals on the rhs
- Simplify
$y=\frac{33^{\frac{1}{6}} \text { WhittakerM }\left(\frac{1}{6}, \frac{2}{3}, \frac{t^{3}}{3}\right) t \mathrm{e}^{\frac{t^{3}}{6}}}{\left(t^{3}\right)^{\frac{1}{6}}}+c_{1} \mathrm{e}^{t^{\frac{t^{3}}{3}}}+4 t$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 41

```
dsolve(diff(y(t),t)=t^2*y(t)+4,y(t), singsol=all)
```

$$
y(t)=\frac{33^{\frac{1}{6}} t \text { WhittakerM }\left(\frac{1}{6}, \frac{2}{3}, \frac{t^{3}}{3}\right) \mathrm{e}^{\frac{t^{3}}{6}}}{\left(t^{3}\right)^{\frac{1}{6}}}+c_{1} \mathrm{e}^{t^{3}}+4 t
$$

\checkmark Solution by Mathematica
Time used: 0.102 (sec). Leaf size: 49
DSolve[y' $[t]==t \wedge 2 * y[t]+4, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{1}{3} e^{\frac{t^{3}}{3}}\left(-\frac{4 \sqrt[3]{3} t \Gamma\left(\frac{1}{3}, \frac{t^{3}}{3}\right)}{\sqrt[3]{t^{3}}}+3 c_{1}\right)
$$

7.15 problem 15

7.15.1 Solving as linear ode . 1218
7.15.2 Solving as first order ode lie symmetry lookup ode 1220
7.15.3 Solving as exact ode . 1224
7.15.4 Maple step by step solution . 1229

Internal problem ID [13020]
Internal file name [OUTPUT/11672_Wednesday_November_08_2023_03_28_23_AM_61629781/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133
Problem number: 15 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-\frac{y}{t^{2}}=4 \cos (t)
$$

7.15.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-\frac{1}{t^{2}} \\
& q(t)=4 \cos (t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{t^{2}}=4 \cos (t)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{t^{2}} d t} \\
& =\mathrm{e}^{\frac{1}{t}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)(4 \cos (t)) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{\frac{1}{t}} y\right) & =\left(\mathrm{e}^{\frac{1}{t}}\right)(4 \cos (t)) \\
\mathrm{d}\left(\mathrm{e}^{\frac{1}{t}} y\right) & =\left(4 \cos (t) \mathrm{e}^{\frac{1}{t}}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\frac{1}{t}} y=\int 4 \cos (t) \mathrm{e}^{\frac{1}{t}} \mathrm{~d} t \\
& \mathrm{e}^{\frac{1}{t}} y=\int 4 \cos (t) \mathrm{e}^{\frac{1}{t}} d t+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\frac{1}{t}}$ results in

$$
y=\mathrm{e}^{-\frac{1}{t}}\left(\int 4 \cos (t) \mathrm{e}^{\frac{1}{t}} d t\right)+c_{1} \mathrm{e}^{-\frac{1}{t}}
$$

which simplifies to

$$
y=\mathrm{e}^{-\frac{1}{t}}\left(4\left(\int \cos (t) \mathrm{e}^{\frac{1}{t}} d t\right)+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{1}{t}}\left(4\left(\int \cos (t) \mathrm{e}^{\frac{1}{t}} d t\right)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 273: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{-\frac{1}{t}}\left(4\left(\int \cos (t) \mathrm{e}^{\frac{1}{t}} d t\right)+c_{1}\right)
$$

Verified OK.

7.15.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y+4 \cos (t) t^{2}}{t^{2}} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 266: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-\frac{1}{t}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\frac{1}{t}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\frac{1}{t}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{y+4 \cos (t) t^{2}}{t^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-\frac{\mathrm{e}^{\frac{1}{t}} y}{t^{2}} \\
S_{y} & =\mathrm{e}^{\frac{1}{t}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=4 \cos (t) \mathrm{e}^{\frac{1}{t}} \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=4 \cos (R) \mathrm{e}^{\frac{1}{R}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\int 4 \cos (R) \mathrm{e}^{\frac{1}{R}} d R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{\frac{1}{t}} y=\int 4 \cos (t) \mathrm{e}^{\frac{1}{t}} d t+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{\frac{1}{t}} y=\int 4 \cos (t) \mathrm{e}^{\frac{1}{t}} d t+c_{1}
$$

Which gives

$$
y=\left(\int 4 \cos (t) \mathrm{e}^{\frac{1}{t}} d t+c_{1}\right) \mathrm{e}^{-\frac{1}{t}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{y+4 \cos (t) t^{2}}{t^{2}}$		$\frac{d S}{d R}=4 \cos (R) \mathrm{e}^{\frac{1}{R}}$
	$R=t$	
	$S=\mathrm{e}^{\frac{1}{t}} y$	
	$S=\mathrm{e}^{t} y$	

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(\int 4 \cos (t) \mathrm{e}^{\frac{1}{t}} d t+c_{1}\right) \mathrm{e}^{-\frac{1}{t}} \tag{1}
\end{equation*}
$$

Figure 274: Slope field plot

Verification of solutions

$$
y=\left(\int 4 \cos (t) \mathrm{e}^{\frac{1}{t}} d t+c_{1}\right) \mathrm{e}^{-\frac{1}{t}}
$$

Verified OK.

7.15.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the
ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(\frac{y}{t^{2}}+4 \cos (t)\right) \mathrm{d} t \\
\left(-\frac{y}{t^{2}}-4 \cos (t)\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-\frac{y}{t^{2}}-4 \cos (t) \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{y}{t^{2}}-4 \cos (t)\right) \\
& =-\frac{1}{t^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1\left(\left(-\frac{1}{t^{2}}\right)-(0)\right) \\
& =-\frac{1}{t^{2}}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-\frac{1}{t^{2}} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\frac{1}{t}} \\
& =\mathrm{e}^{\frac{1}{t}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{\frac{1}{t}}\left(-\frac{y}{t^{2}}-4 \cos (t)\right) \\
& =\frac{\left(-y-4 \cos (t) t^{2}\right) \mathrm{e}^{\frac{1}{t}}}{t^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{\frac{1}{t}}(1) \\
& =\mathrm{e}^{\frac{1}{t}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t}=0 \\
\left(\frac{\left(-y-4 \cos (t) t^{2}\right) \mathrm{e}^{\frac{1}{t}}}{t^{2}}\right)+\left(\mathrm{e}^{\frac{1}{t}}\right) \frac{\mathrm{d} y}{\mathrm{~d} t}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \frac{\left(-y-4 \cos (t) t^{2}\right) \mathrm{e}^{\frac{1}{t}}}{t^{2}} \mathrm{~d} t \\
\phi & =\int^{t} \frac{\left(-y-4 \cos \left(_a\right) _a^{2}\right) \mathrm{e}^{\frac{1}{-a}}}{-a^{2}} d _a+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{\frac{1}{t}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{\frac{1}{t}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{\frac{1}{t}}=\mathrm{e}^{\frac{1}{t}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\int^{t} \frac{\left(-y-4 \cos \left(_a\right) _a^{2}\right) \mathrm{e}^{\frac{1}{-a}}}{-^{2}} d _a+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\int^{t} \frac{\left(-y-4 \cos \left(_a\right) _a^{2}\right) \mathrm{e}^{\frac{1}{-a}}}{-^{2}} d _a
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\int^{t} \frac{\left(-y-4 \cos \left(_a\right) _a^{2}\right) \mathrm{e}^{\frac{1}{-a}}}{-a^{2}} d _a=c_{1} \tag{1}
\end{equation*}
$$

Figure 275: Slope field plot

Verification of solutions

$$
\int^{t} \frac{\left(-y-4 \cos \left(_a\right) _a^{2}\right) \mathrm{e}^{\frac{1}{-a}}}{a^{2}} d _a=c_{1}
$$

Verified OK.

7.15.4 Maple step by step solution

Let's solve
$y^{\prime}-\frac{y}{t^{2}}=4 \cos (t)$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{y}{t^{2}}+4 \cos (t)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{y}{t^{2}}=4 \cos (t)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-\frac{y}{t^{2}}\right)=4 \mu(t) \cos (t)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-\frac{y}{t^{2}}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\frac{\mu(t)}{t^{2}}$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{\frac{1}{t}}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 4 \mu(t) \cos (t) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 4 \mu(t) \cos (t) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 4 \mu(t) \cos (t) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{\frac{1}{t}}$

$$
y=\frac{\int 4 \cos (t) \mathrm{e}^{\frac{1}{t}} d t+c_{1}}{\mathrm{e}^{\frac{1}{t}}}
$$

- Simplify

$$
y=\left(4\left(\int \cos (t) \mathrm{e}^{\frac{1}{t}} d t\right)+c_{1}\right) \mathrm{e}^{-\frac{1}{t}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
dsolve(diff(y(t),t)=y(t)/t^2+4*\operatorname{cos}(t),y(t), singsol=all)
```

$$
y(t)=\left(4\left(\int \cos (t) \mathrm{e}^{\frac{1}{t}} d t\right)+c_{1}\right) \mathrm{e}^{-\frac{1}{t}}
$$

\checkmark Solution by Mathematica
Time used: 3.836 (sec). Leaf size: 34
DSolve [y' $[\mathrm{t}]==\mathrm{y}[\mathrm{t}] / \mathrm{t} \wedge 2+4 * \operatorname{Cos}[\mathrm{t}], \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow e^{-1 / t}\left(\int_{1}^{t} 4 e^{\frac{1}{K[1]}} \cos (K[1]) d K[1]+c_{1}\right)
$$

7.16 problem 16

7.16.1 Solving as linear ode . 1231
7.16.2 Solving as first order ode lie symmetry lookup ode 1233
7.16.3 Solving as exact ode . 1238
7.16.4 Maple step by step solution . 1242

Internal problem ID [13021]
Internal file name [OUTPUT/11673_Wednesday_November_08_2023_03_28_24_AM_40855923/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133
Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-y=4 \cos \left(t^{2}\right)
$$

7.16.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-1 \\
q(t) & =4 \cos \left(t^{2}\right)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-y=4 \cos \left(t^{2}\right)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-1) d t} \\
& =\mathrm{e}^{-t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(4 \cos \left(t^{2}\right)\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-t} y\right) & =\left(\mathrm{e}^{-t}\right)\left(4 \cos \left(t^{2}\right)\right) \\
\mathrm{d}\left(\mathrm{e}^{-t} y\right) & =\left(4 \cos \left(t^{2}\right) \mathrm{e}^{-t}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-t} y=\int 4 \cos \left(t^{2}\right) \mathrm{e}^{-t} \mathrm{~d} t \\
& \mathrm{e}^{-t} y=\frac{\sqrt{\pi} \mathrm{e}^{\frac{i}{4}} \operatorname{erf}\left(\sqrt{-i} t+\frac{1}{2 \sqrt{-i}}\right)}{\sqrt{-i}}-\sqrt{\pi} \mathrm{e}^{-\frac{i}{4}}(-1)^{\frac{3}{4}} \operatorname{erf}\left((-1)^{\frac{1}{4}} t-\frac{(-1)^{\frac{3}{4}}}{2}\right)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-t}$ results in

$$
y=\mathrm{e}^{t}\left(\frac{\sqrt{\pi} \mathrm{e}^{\frac{i}{4}} \operatorname{erf}\left(\sqrt{-i} t+\frac{1}{2 \sqrt{-i}}\right)}{\sqrt{-i}}-\sqrt{\pi} \mathrm{e}^{-\frac{i}{4}}(-1)^{\frac{3}{4}} \operatorname{erf}\left((-1)^{\frac{1}{4}} t-\frac{(-1)^{\frac{3}{4}}}{2}\right)\right)+c_{1} \mathrm{e}^{t}
$$

which simplifies to

$$
y=\left(\frac{1}{4}-\frac{i}{4}\right)\left(2 \mathrm{e}^{-\frac{i}{4}} \operatorname{erf}\left(\frac{(1-i+(2+2 i) t) \sqrt{2}}{4}\right) \sqrt{\pi}+2 i \sqrt{\pi} \mathrm{e}^{\frac{i}{4}} \operatorname{erf}\left(\left(\frac{1}{4}-\frac{i}{4}\right) \sqrt{2}(2 t+i)\right)+(1+i)\right.
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y=\left(\frac{1}{4}-\frac{i}{4}\right) & \left(2 \mathrm{e}^{-\frac{i}{4}} \operatorname{erf}\left(\frac{(1-i+(2+2 i) t) \sqrt{2}}{4}\right) \sqrt{\pi}\right. \tag{1}\\
& \left.+2 i \sqrt{\pi} \mathrm{e}^{\frac{i}{4}} \operatorname{erf}\left(\left(\frac{1}{4}-\frac{i}{4}\right) \sqrt{2}(2 t+i)\right)+(1+i) c_{1} \sqrt{2}\right) \mathrm{e}^{t} \sqrt{2}
\end{align*}
$$

Figure 276: Slope field plot
Verification of solutions

$$
\begin{aligned}
y=\left(\frac{1}{4}-\frac{i}{4}\right) & \left(2 \mathrm{e}^{-\frac{i}{4}} \operatorname{erf}\left(\frac{(1-i+(2+2 i) t) \sqrt{2}}{4}\right) \sqrt{\pi}\right. \\
& \left.+2 i \sqrt{\pi} \mathrm{e}^{\frac{i}{4}} \operatorname{erf}\left(\left(\frac{1}{4}-\frac{i}{4}\right) \sqrt{2}(2 t+i)\right)+(1+i) c_{1} \sqrt{2}\right) \mathrm{e}^{t} \sqrt{2}
\end{aligned}
$$

Verified OK.

7.16.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=y+4 \cos \left(t^{2}\right) \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 269: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=y+4 \cos \left(t^{2}\right)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-\mathrm{e}^{-t} y \\
S_{y} & =\mathrm{e}^{-t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=4 \cos \left(t^{2}\right) \mathrm{e}^{-t} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=4 \cos \left(R^{2}\right) \mathrm{e}^{-R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\sqrt{\pi} \mathrm{e}^{\frac{i}{4}} \operatorname{erf}\left(\sqrt{-i} R+\frac{1}{2 \sqrt{-i}}\right)}{\sqrt{-i}}-\sqrt{\pi} \mathrm{e}^{-\frac{i}{4}}(-1)^{\frac{3}{4}} \operatorname{erf}\left((-1)^{\frac{1}{4}} R-\frac{(-1)^{\frac{3}{4}}}{2}\right)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-t} y=\frac{\sqrt{\pi} \mathrm{e}^{\frac{i}{4}} \operatorname{erf}\left(\sqrt{-i} t+\frac{1}{2 \sqrt{-i}}\right)}{\sqrt{-i}}-\sqrt{\pi} \mathrm{e}^{-\frac{i}{4}}(-1)^{\frac{3}{4}} \operatorname{erf}\left((-1)^{\frac{1}{4}} t-\frac{(-1)^{\frac{3}{4}}}{2}\right)+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-t} y=\frac{\sqrt{\pi} \mathrm{e}^{\frac{i}{4}} \operatorname{erf}\left(\sqrt{-i} t+\frac{1}{2 \sqrt{-i}}\right)}{\sqrt{-i}}-\sqrt{\pi} \mathrm{e}^{-\frac{i}{4}}(-1)^{\frac{3}{4}} \operatorname{erf}\left((-1)^{\frac{1}{4}} t-\frac{(-1)^{\frac{3}{4}}}{2}\right)+c_{1}
$$

Which gives

$$
y=-\frac{\left(i \sqrt{\pi} \mathrm{e}^{-\frac{i}{4}} \operatorname{erf}\left((-1)^{\frac{1}{4}} t-\frac{(-1)^{\frac{3}{4}}}{2}\right)+\sqrt{\pi} \mathrm{e}^{\frac{i}{4}} \operatorname{erf}\left(\frac{2 i t-1}{2 \sqrt{-i}}\right)-c_{1} \sqrt{-i}\right) \mathrm{e}^{t}}{\sqrt{-i}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=y+4 \cos \left(t^{2}\right)$		$\frac{d S}{d R}=4 \cos \left(R^{2}\right) \mathrm{e}^{-R}$
+ $\uparrow+\begin{aligned} & \text { a }\end{aligned}$		S $R^{4}+1+1 \rightarrow$
		+ $\uparrow+\uparrow \xrightarrow{\text { ¢ }}$
+	$R=t$	
	$S=\mathrm{e}^{-t} y$	
		+ +1

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(i \sqrt{\pi} \mathrm{e}^{-\frac{i}{4}} \operatorname{erf}\left((-1)^{\frac{1}{4}} t-\frac{(-1)^{\frac{3}{4}}}{2}\right)+\sqrt{\pi} \mathrm{e}^{\frac{i}{4}} \operatorname{erf}\left(\frac{2 i t-1}{2 \sqrt{-i}}\right)-c_{1} \sqrt{-i}\right) \mathrm{e}^{t}}{\sqrt{-i}} \tag{1}
\end{equation*}
$$

Figure 277: Slope field plot

Verification of solutions

$$
y=-\frac{\left(i \sqrt{\pi} \mathrm{e}^{-\frac{i}{4}} \operatorname{erf}\left((-1)^{\frac{1}{4}} t-\frac{(-1)^{\frac{3}{4}}}{2}\right)+\sqrt{\pi} \mathrm{e}^{\frac{i}{4}} \operatorname{erf}\left(\frac{2 i t-1}{2 \sqrt{-i}}\right)-c_{1} \sqrt{-i}\right) \mathrm{e}^{t}}{\sqrt{-i}}
$$

Verified OK.

7.16.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(y+4 \cos \left(t^{2}\right)\right) \mathrm{d} t \\
\left(-y-4 \cos \left(t^{2}\right)\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-y-4 \cos \left(t^{2}\right) \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-y-4 \cos \left(t^{2}\right)\right) \\
& =-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((-1)-(0)) \\
& =-1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-1 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-t} \\
& =\mathrm{e}^{-t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-t}\left(-y-4 \cos \left(t^{2}\right)\right) \\
& =-\mathrm{e}^{-t}\left(y+4 \cos \left(t^{2}\right)\right)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-t}(1) \\
& =\mathrm{e}^{-t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t}=0 \\
\left(-\mathrm{e}^{-t}\left(y+4 \cos \left(t^{2}\right)\right)\right)+\left(\mathrm{e}^{-t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\mathrm{e}^{-t}\left(y+4 \cos \left(t^{2}\right)\right) \mathrm{d} t \\
\phi & =\int^{t}-\mathrm{e}^{--a}\left(y+4 \cos \left(-a^{2}\right)\right) d _a+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-t}=\mathrm{e}^{-t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\int^{t}-\mathrm{e}^{--a}\left(y+4 \cos \left(_a^{2}\right)\right) d _a+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\int^{t}-\mathrm{e}^{--a}\left(y+4 \cos \left(_a^{2}\right)\right) d _a
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{t}-\mathrm{e}^{--a}\left(y+4 \cos \left(_a^{2}\right)\right) d _a=c_{1} \tag{1}
\end{equation*}
$$

Figure 278: Slope field plot

Verification of solutions

$$
\int^{t}-\mathrm{e}^{--a}\left(y+4 \cos \left(_a^{2}\right)\right) d _a=c_{1}
$$

Verified OK.

7.16.4 Maple step by step solution

Let's solve
$y^{\prime}-y=4 \cos \left(t^{2}\right)$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=y+4 \cos \left(t^{2}\right)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-y=4 \cos \left(t^{2}\right)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-y\right)=4 \mu(t) \cos \left(t^{2}\right)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 4 \mu(t) \cos \left(t^{2}\right) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 4 \mu(t) \cos \left(t^{2}\right) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 4 \mu(t) \cos \left(t^{2}\right) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-t}$
$y=\frac{\int 4 \cos \left(t^{2}\right) \mathrm{e}^{-t} d t+c_{1}}{\mathrm{e}^{-t}}$
- Evaluate the integrals on the rhs

$$
y=\frac{\frac{\sqrt{\pi} \mathrm{e}^{\frac{1}{4}} \operatorname{erf}\left(\sqrt{-1} t+\frac{1}{2 \sqrt{-1}}\right)}{\sqrt{-1}}-\sqrt{\pi} \mathrm{e}^{-\frac{1}{4}}(-1)^{\frac{3}{4}} \operatorname{erf}\left((-1)^{\frac{1}{4} t} t-\frac{(-1)^{\frac{3}{4}}}{2}\right)+c_{1}}{\mathrm{e}^{-t}}
$$

- Simplify

$$
y=\left(\frac{1}{4}-\frac{\mathrm{I}}{4}\right)\left(2 \mathrm{e}^{-\frac{\mathrm{I}}{4}} \operatorname{erf}\left(\frac{(1-\mathrm{I}+(2+2 \mathrm{I}) t) \sqrt{2}}{4}\right) \sqrt{\pi}+2 \mathrm{I} \sqrt{\pi} \mathrm{e}^{\frac{\mathrm{I}}{4}} \operatorname{erf}\left(\left(\frac{1}{4}-\frac{\mathrm{I}}{4}\right) \sqrt{2}(2 t+\mathrm{I})\right)+(1+\mathrm{I}) c_{1} \sqrt{2}\right) \mathrm{e}^{t}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 68

```
dsolve(diff(y(t),t)=y(t)+4*\operatorname{cos}(t^2),y(t), singsol=all)
```

$$
\begin{aligned}
& y(t)=\left(\frac{1}{4}-\frac{i}{4}\right) \sqrt{2} \mathrm{e}^{t}\left(2 \mathrm{e}^{-\frac{i}{4}} \operatorname{erf}\left(\frac{(1-i+(2+2 i) t) \sqrt{2}}{4}\right) \sqrt{\pi}\right. \\
&\left.+2 i \sqrt{\pi} \mathrm{e}^{\frac{i}{4}} \operatorname{erf}\left(\left(\frac{1}{4}-\frac{i}{4}\right) \sqrt{2}(2 t+i)\right)+(1+i) \sqrt{2} c_{1}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.137 (sec). Leaf size: 77
DSolve[y' $[t]==y[t]+4 * \operatorname{Cos}[t \wedge 2], y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow e^{t}\left(c_{1}-\sqrt[4]{-1} e^{-\frac{i}{4}} \sqrt{\pi}\left(\operatorname{erfi}\left(\frac{1}{2}(-1)^{3 / 4}(2 t-i)\right)+i e^{\frac{i}{2}} \operatorname{erfi}\left(\frac{1}{2} \sqrt[4]{-1}(2 t+i)\right)\right)\right)
$$

7.17 problem 17

7.17.1 Solving as linear ode . 1244
7.17.2 Solving as first order ode lie symmetry lookup ode 1246
7.17.3 Solving as exact ode . 1250
7.17.4 Maple step by step solution . 1255

Internal problem ID [13022]
Internal file name [OUTPUT/11674_Wednesday_November_08_2023_03_28_25_AM_28842069/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133
Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}+\mathrm{e}^{-t^{2}} y=\cos (t)
$$

7.17.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =\mathrm{e}^{-t^{2}} \\
q(t) & =\cos (t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\mathrm{e}^{-t^{2}} y=\cos (t)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \mathrm{e}^{-t^{2}} d t} \\
& =\mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)(\cos (t)) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}} y\right) & =\left(\mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}}\right)(\cos (t)) \\
\mathrm{d}\left(\mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}} y\right) & =\left(\cos (t) \mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}} y=\int \cos (t) \mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}} \mathrm{~d} t \\
& \mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}} y=\int \cos (t) \mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}} d t+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=e^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}}$ results in

$$
y=\mathrm{e}^{-\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}}\left(\int \cos (t) \mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}} d t\right)+c_{1} \mathrm{e}^{-\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}}
$$

which simplifies to

$$
y=\mathrm{e}^{-\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}}\left(\int \cos (t) \mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}} d t+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}}\left(\int \cos (t) \mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}} d t+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 279: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}}\left(\int \cos (t) \mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}} d t+c_{1}\right)
$$

Verified OK.

7.17.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\left(-y+\cos (t) \mathrm{e}^{t^{2}}\right) \mathrm{e}^{-t^{2}} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 272: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\left(-y+\cos (t) \mathrm{e}^{t^{2}}\right) \mathrm{e}^{-t^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =y \mathrm{e}^{-t^{2}+\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}} \\
S_{y} & =\mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\cos (t) \mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\cos (R) \mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(R)}{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\int \cos (R) \mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(R)}{2}} d R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}} y=\int \cos (t) \mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}} d t+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}} y=\int \cos (t) \mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}} d t+c_{1}
$$

Which gives

$$
y=\left(\int \cos (t) \mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}} d t+c_{1}\right) \mathrm{e}^{-\frac{\sqrt{\pi} \operatorname{er}(t)}{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates		ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\left(-y+\cos (t) \mathrm{e}^{t^{2}}\right) \mathrm{e}^{-t^{2}}$		$\frac{d S}{d R}=\cos (R) \mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(R)}{2}}$
$\rightarrow x^{-1}$		\rightarrow S(R) x^{\prime}
$\rightarrow \rightarrow$,		017
\rightarrow	$R=t$	
$\rightarrow \rightarrow-4 x^{-\infty}$	$S=\mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}} y$	
	$S=\mathrm{e}^{\frac{2}{}{ }^{2}} y$	
		-299,

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(\int \cos (t) \mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}} d t+c_{1}\right) \mathrm{e}^{-\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}} \tag{1}
\end{equation*}
$$

Figure 280: Slope field plot

Verification of solutions

$$
y=\left(\int \cos (t) \mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}} d t+c_{1}\right) \mathrm{e}^{-\frac{\sqrt{\pi} \operatorname{er} f(t)}{2}}
$$

Verified OK.

7.17.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-y \mathrm{e}^{-t^{2}}+\cos (t)\right) \mathrm{d} t \\
\left(-\cos (t)+y \mathrm{e}^{-t^{2}}\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-\cos (t)+y \mathrm{e}^{-t^{2}} \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\cos (t)+y \mathrm{e}^{-t^{2}}\right) \\
& =\mathrm{e}^{-t^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1\left(\left(\mathrm{e}^{-t^{2}}\right)-(0)\right) \\
& =\mathrm{e}^{-t^{2}}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int \mathrm{e}^{-t^{2}} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}} \\
& =e^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}}\left(-\cos (t)+y \mathrm{e}^{-t^{2}}\right) \\
& =\mathrm{e}^{-t^{2}+\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}}\left(-\cos (t) \mathrm{e}^{t^{2}}+y\right)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}}(1) \\
& =\mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t}=0 \\
\left(\mathrm{e}^{-t^{2}+\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}}\left(-\cos (t) \mathrm{e}^{t^{2}}+y\right)\right)+\left(\mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} t}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
& \int \frac{\partial \phi}{\partial t} \mathrm{~d} t=\int \bar{M} \mathrm{~d} t \\
& \int \frac{\partial \phi}{\partial t} \mathrm{~d} t=\int \mathrm{e}^{-t^{2}+\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}}\left(-\cos (t) \mathrm{e}^{t^{2}}+y\right) \mathrm{d} t \\
& \phi=\int \mathrm{e}^{t}--^{2}+\frac{\sqrt{\pi} \operatorname{erf}(\llcorner a)}{2} \tag{3}\\
&\left(-\cos \left(_a\right) \mathrm{e}^{-a^{2}}+y\right) d _a+f(y)
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\int^{t} \mathrm{e}^{-_a^{2}+\frac{\sqrt{\pi} \operatorname{erf}\left(_a\right)}{2}} d _a+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}}=\int^{t} \mathrm{e}^{-_a^{2}+\frac{\sqrt{\pi} \operatorname{erf}(\llcorner a)}{2}} d _a+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\left(\int^{t} \mathrm{e}^{--a^{2}+\frac{\sqrt{\pi} \operatorname{erf}\left(_a\right)}{2}} d _a\right)+\mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\left(\int^{t} \mathrm{e}^{--a^{2}+\frac{\sqrt{\pi} \operatorname{erf}(\llcorner a)}{2}} d _a\right)+\mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}}\right) \mathrm{d} y \\
f(y) & =\left(-\left(\int^{t} \mathrm{e}^{--a^{2}+\frac{\sqrt{\pi} \operatorname{erf}\left(_a\right)}{2}} d _a\right)+\mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}}\right) y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\begin{aligned}
\phi= & \int^{t} \mathrm{e}^{--a^{2}+\frac{\sqrt{\pi} \operatorname{erf}\left(_a\right)}{2}}\left(-\cos \left(_a\right) \mathrm{e}^{a^{2}}+y\right) d _a \\
& +\left(-\left(\int^{t} \mathrm{e}^{-a^{2}+\frac{\sqrt{\pi} \operatorname{erf}\left(_a\right)}{2}} d _a\right)+\mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}}\right) y+c_{1}
\end{aligned}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
\begin{aligned}
c_{1}= & \int^{t} \mathrm{e}^{--a^{2}+\frac{\sqrt{\pi} \operatorname{erf}\left(_a\right)}{2}}\left(-\cos \left(_a\right) \mathrm{e}^{a^{2}}+y\right) d _a \\
& +\left(-\left(\int^{t} \mathrm{e}^{-_a^{2}+\frac{\sqrt{\pi} \operatorname{erf}\left(_a\right)}{2}} d _a\right)+\mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}}\right) y
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& \int^{t} \mathrm{e}^{--a^{2}+\frac{\sqrt{\pi} \operatorname{erf}(\llcorner a)}{2}}\left(-\cos \left(_a\right) \mathrm{e}^{-a^{2}}+y\right) d _a \tag{1}\\
& +\left(-\left(\int^{t} \mathrm{e}^{--a^{2}+\frac{\sqrt{\pi} \operatorname{erf}(\llcorner a)}{2}} d _a\right)+\mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}}\right) y=c_{1}
\end{align*}
$$

Figure 281: Slope field plot

Verification of solutions

$$
\begin{aligned}
& \int^{t} \mathrm{e}^{-_a^{2}+\frac{\sqrt{\pi} \operatorname{erf}(\llcorner a)}{2}}\left(-\cos \left(_a\right) \mathrm{e}^{-a^{2}}+y\right) d _a \\
& +\left(-\left(\int^{t} \mathrm{e}^{--a^{2}+\frac{\sqrt{\pi} \operatorname{erf}(\square a)}{2}} d _a\right)+\mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}}\right) y=c_{1}
\end{aligned}
$$

Verified OK.

7.17.4 Maple step by step solution

Let's solve
$y^{\prime}+\frac{y}{\mathrm{e}^{t^{2}}}=\cos (t)$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Isolate the derivative

$$
y^{\prime}=-\frac{y}{\mathrm{e}^{t^{2}}}+\cos (t)
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+\frac{y}{\mathrm{e}^{t^{2}}}=\cos (t)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+\frac{y}{\mathrm{e}^{t^{2}}}\right)=\mu(t) \cos (t)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+\frac{y}{\mathrm{e}^{t^{2}}}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- \quad Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\frac{\mu(t)}{\mathrm{e}^{t^{2}}}$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}} \mathrm{e}^{-t^{2}} \mathrm{e}^{t^{2}}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t) \cos (t) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t) \cos (t) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(t) \cos (t) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}} \mathrm{e}^{-t^{2}} \mathrm{e}^{t^{2}}$
$y=\frac{\int \mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}} \mathrm{e}^{-t^{2}} \mathrm{e}^{t^{2}} \cos (t) d t+c_{1}}{\mathrm{e}^{\frac{\sqrt{\pi}}{\operatorname{erf}} \frac{2}{2}} \mathrm{e}^{-t^{2}} \mathrm{e}^{t^{2}}}$
- Simplify
$y=\left(\int \cos (t) \mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}} d t+c_{1}\right) \mathrm{e}^{-\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 28
dsolve(diff($y(t), t)=-y(t) / \exp \left(t^{\wedge} 2\right)+\cos (t), y(t), \quad$ singsol=all)

$$
y(t)=\left(\int \cos (t) \mathrm{e}^{\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}} d t+c_{1}\right) \mathrm{e}^{-\frac{\sqrt{\pi} \operatorname{erf}(t)}{2}}
$$

\checkmark Solution by Mathematica
Time used: 1.093 (sec). Leaf size: 47
DSolve[y'[t]==-y[t]/Exp[t^2]+Cos[t],y[t],t,IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow e^{-\frac{1}{2} \sqrt{\pi} \operatorname{erf}(t)}\left(\int_{1}^{t} e^{\frac{1}{2} \sqrt{\pi} \operatorname{erf}(K[1])} \cos (K[1]) d K[1]+c_{1}\right)
$$

7.18 problem 18

7.18.1 Solving as linear ode . 1258
7.18.2 Solving as first order ode lie symmetry lookup ode 1260
7.18.3 Solving as exact ode . 1266
7.18.4 Maple step by step solution . 1275

Internal problem ID [13023]
Internal file name [OUTPUT/11675_Wednesday_November_08_2023_03_28_27_AM_88496519/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133
Problem number: 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-\frac{y}{\sqrt{t^{3}-3}}=t
$$

7.18.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-\frac{1}{\sqrt{t^{3}-3}} \\
& q(t)=t
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{\sqrt{t^{3}-3}}=t
$$

The integrating factor μ is

$$
\mu=\mathrm{e}^{\int-\frac{1}{\sqrt{t^{3}-3}} d t}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)(t) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{\int-\frac{1}{\sqrt{t^{3}-3}} d t} y\right) & =\left(\mathrm{e}^{\int-\frac{1}{\sqrt{t^{3}-3}} d t}\right)(t) \\
\mathrm{d}\left(\mathrm{e}^{\int-\frac{1}{\sqrt{t^{3}-3}} d t} y\right) & \left.=\left(t \mathrm{e}^{-\left(\int \frac{1}{\sqrt{t^{3}-3}} d t\right.}\right)\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\int-\frac{1}{\sqrt{t^{3}-3}} d t} y=\int t \mathrm{e}^{-\left(\int \frac{1}{\sqrt{t^{3}-3}} d t\right)} \mathrm{d} t \\
& \mathrm{e}^{\int-\frac{1}{\sqrt{t^{3}-3}} d t} y=\int t \mathrm{e}^{-\left(\int \frac{1}{\sqrt{t^{3}-3}} d t\right)} d t+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\int-\frac{1}{\sqrt{t^{3}-3}} d t}$ results in

$$
y=\mathrm{e}^{\int \frac{1}{\sqrt{t^{3}-3}} d t}\left(\int t \mathrm{e}^{-\left(\int \frac{1}{\sqrt{t^{3}-3}} d t\right)} d t\right)+c_{1} \mathrm{e}^{\int \frac{1}{\sqrt{t^{3}-3}} d t}
$$

which simplifies to

$$
y=\mathrm{e}^{\int \frac{1}{\sqrt{t^{3}-3}} d t}\left(\int t \mathrm{e}^{-\left(\int \frac{1}{\sqrt{t^{3}-3}} d t\right)} d t+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\int \frac{1}{\sqrt{t^{3}-3}} d t}\left(\int t \mathrm{e}^{-\left(\int \frac{1}{\sqrt{t^{3}-3}} d t\right)} d t+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 282: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\int \frac{1}{\sqrt{t^{3}-3}} d t}\left(\int t \mathrm{e}^{-\left(\int \frac{1}{\sqrt{t^{3}-3}} d t\right)} d t+c_{1}\right)
$$

Verified OK.

7.18.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{t \sqrt{t^{3}-3}+y}{\sqrt{t^{3}-3}} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 275: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that
$\xi(t, y)=0$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.
The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
& S=\int \frac{1}{\eta} d y
\end{aligned}
$$

Which results in
$S=\mathrm{e}^{-\frac{2 i \text { EllipticF }}{}\left(\frac{\sqrt{6} \sqrt{-i\left(i 3^{\frac{5}{6}}+3^{\frac{1}{3}}+2 t\right) 3^{\frac{1}{6}}}}{6}, \sqrt{-\frac{i^{\frac{5}{6}}}{-\frac{33^{\frac{1}{3}}}{2}-\frac{i 3^{\frac{5}{6}}}{2}}}\right) \sqrt{\frac{t-3^{\frac{1}{3}}}{-\frac{33^{\frac{1}{3}}}{3}-\frac{i 3^{\frac{5}{6}}}{6}}} \sqrt{i\left(t-\frac{i 3^{\frac{5}{6}}}{2}+\frac{3^{\frac{1}{3}}}{2}\right) 3^{\frac{1}{6}}} \sqrt{-i\left(t+\frac{3^{\frac{1}{3}}}{2}+\frac{i 33^{\frac{5}{6}}}{2}\right) 3^{\frac{1}{6}} 3^{\frac{5}{6}}}} y$
Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{t \sqrt{t^{3}-3}+y}{\sqrt{t^{3}-3}}
$$

Evaluating all the partial derivatives gives
$R_{t}=1$
$R_{y}=0$

$$
\begin{aligned}
& \left.-\frac{2 \sqrt{3^{\frac{1}{3}}-t} \sqrt{3^{\frac{5}{6}+i 3^{\frac{1}{3}}+2 i t} \text { EllipticF }}\left(\frac{3^{\frac{1}{12}} \sqrt{63^{\frac{5}{6}}-6 i 3^{\frac{1}{3}}-12 i t}}{6},,^{\frac{i}{2}}+\frac{\sqrt{3}}{2}\right.}{6}\right)\left(i 3^{\left.\frac{5}{6}+3^{\frac{1}{3}}+2 t\right)}\right. \\
& S_{t}=-\frac{12 \mathrm{e}^{\sqrt{i 3^{\frac{5}{6}}+33^{\frac{1}{3}} \sqrt{t^{3}-3}} \sqrt{23^{\frac{5}{6}-2 i 3^{\frac{1}{3}}-4 i t}}}}{\sqrt{18-6 i \sqrt{3}+6 i 3^{\frac{1}{6}} t-63^{\frac{2}{3}} t} \sqrt{18+6 i \sqrt{3}+12 i 3^{\frac{1}{6}} t} \sqrt{3^{\frac{5}{6}}+i 3^{\frac{1}{3}}+2 i t} \sqrt{t^{3}-3} \sqrt{i 3^{\frac{5}{6}}+33^{\frac{1}{3}}} \sqrt{3^{\frac{1}{3}}}} \\
& S_{y}=\mathrm{e}^{-\frac{2 \sqrt{3^{\frac{1}{3}}-t} \sqrt{3^{\frac{5}{6}}+i 3^{\frac{1}{3}}+2 i t} \text { EllipticF }\left(\frac{3^{\frac{1}{12}} \sqrt{63^{\frac{5}{6}-6 i 3^{\frac{1}{3}}-12 i t}}}{6}, \frac{i}{2}+\frac{\sqrt{3}}{2}\right)\left(i 3^{\frac{5}{6}}+3^{\frac{1}{3}}+2 t\right)}{\sqrt{i 3^{\frac{5}{6}}+33^{\frac{1}{3}}} \sqrt{t^{3}-3} \sqrt{23^{\frac{5}{6}-2 i 3^{\frac{1}{3}}-4 i t}}}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{24\left(\frac{\sqrt{3^{\frac{1}{3}}-t} \sqrt{i 3^{\frac{5}{6}}+33^{\frac{1}{3}}} \sqrt{18+6 i \sqrt{3}+12 i 3^{\frac{1}{6}}} t \sqrt{3^{\frac{5}{6}}+i 3^{\frac{1}{3}}+2 i t}\left(t \sqrt{t^{3}-3}+y\right) \sqrt{18-6 i \sqrt{3}+6 i 3^{\frac{1}{6}} t-63^{\frac{2}{3}} t}}{24}+\left(i 3^{\frac{7}{12}} t^{2}-\frac{i 3^{\frac{11}{12}} t}{2}-\frac{3 i^{\frac{3}{3}}}{2}\right.\right.}{\sqrt{3^{\frac{1}{3}-}} \sqrt{t^{3}-3} \sqrt{3^{\frac{5}{6}}+i 3^{\frac{1}{3}}+2 i t} \sqrt{18-6 i \sqrt{3}+6 i 3^{\frac{1}{6}} t-}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{-12 i S(R) 3^{\frac{11}{12}} R+24 i S(R) 3^{\frac{7}{12}} R^{2}+36 S(R) 3^{\frac{5}{12}} R+R \sqrt{3^{\frac{5}{6}}+i 3^{\frac{1}{3}}+2 i R} \sqrt{18-6 i \sqrt{3}+6 i 3^{\frac{1}{6}} R-6}}{\text { 位 }}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives
$S(R)=\left(\int R \mathrm{e}^{\left.-\begin{array}{l}-\sqrt{3^{\frac{1}{3}}-R} \sqrt{3^{\frac{5}{6}}+i 3^{\frac{1}{3}}+2 i R} \text { EllipticF }\left(\frac{3^{\frac{1}{12}} \sqrt{63^{\frac{5}{6}}-6 i 3^{\frac{1}{3}}-12 i R}}{6}, \frac{i}{2}+\frac{\sqrt{3}}{2}\right.\end{array}\right) 3^{\frac{5}{6}}+2 \sqrt{3^{\frac{1}{3}}-R} \sqrt{3^{\frac{5}{6}}+i 3^{\frac{1}{3}}+2 i R} \text { EllipticF }\left(\frac{3^{\frac{1}{12}} \sqrt{63^{\frac{5}{6}}-6 i 3^{\frac{1}{3}}}}{6}\right.}\right.$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

Which simplifies to

Which gives

Summary
The solution(s) found are the following
y

$+c_{1} \mathrm{e}^{-\frac{\text { EllipticF }\left(\frac{i \sqrt{-23^{\frac{5}{6}}+2 i 3^{\frac{1}{3}}+4 i t} 3^{\frac{7}{12}}}{6}, \frac{i}{2}+\frac{\sqrt{3}}{2}\right) \sqrt{3^{\frac{5}{6}}+i 3^{\frac{1}{3}}+2 i t} \sqrt{-3^{\frac{5}{6}}+i 3^{\frac{1}{3}}+2 i t} \sqrt{23^{\frac{1}{3}-2 t}}}{\sqrt{i 3^{\frac{5}{6}}+33^{\frac{1}{3}}} \sqrt{t^{3}-3}}}$

Figure 283: Slope field plot

Verification of solutions

Verified OK.

7.18.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(\frac{y}{\sqrt{t^{3}-3}}+t\right) \mathrm{d} t \\
\left(-\frac{y}{\sqrt{t^{3}-3}}-t\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-\frac{y}{\sqrt{t^{3}-3}}-t \\
& N(t, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{y}{\sqrt{t^{3}-3}}-t\right) \\
& =-\frac{1}{\sqrt{t^{3}-3}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1\left(\left(-\frac{1}{\sqrt{t^{3}-3}}\right)-(0)\right) \\
& =-\frac{1}{\sqrt{t^{3}-3}}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-\frac{1}{\sqrt{t^{3}-3}} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
& 2 i 3^{\frac{5}{6}} \sqrt{-i\left(t+\frac{3^{\frac{1}{3}}}{2}+\frac{i 3^{\frac{5}{6}}}{2}\right) 3 \frac{1}{6}} \sqrt{\frac{t-3^{\frac{1}{3}}}{-\frac{33^{\frac{1}{3}}}{2}-\frac{i 3 \frac{5}{6}}{2}}} \sqrt{\left(t-\frac{i 3^{\frac{5}{6}}}{2}+\frac{3^{\frac{1}{3}}}{2}\right) 3^{\frac{1}{6}}} \operatorname{EllipticF}\left(\sqrt[{\left.\sqrt{3} \sqrt{-i\left(t+\frac{3^{\frac{1}{3}}}{2}+\frac{i 3^{\frac{5}{6}}}{2}\right.}\right) 3^{\frac{1}{6}}}]{3}, \sqrt{-\frac{i 3^{\frac{5}{6}}}{-\frac{33^{\frac{1}{3}}}{2}-\frac{i 3^{\frac{5}{6}}}{2}}}\right) \\
& \mu=e^{-} \quad 3 \sqrt{t^{3}-3} \\
& =-\frac{2 \sqrt{\frac{3^{\frac{1}{3}}-t}{i 3^{\frac{5}{6}}+33^{\frac{1}{3}}}} \sqrt{3^{\frac{5}{6}}+i 3^{\frac{1}{3}}+2 i t} \text { EllipticF }\left(\frac{3^{\frac{1}{12}} \sqrt{63^{\frac{5}{6}}-6 i 3^{\frac{1}{3}}-12 i t}}{6}, \frac{i}{2}+\frac{\sqrt{3}}{2}\right)\left(i 3^{\frac{5}{6}}+3^{\frac{1}{3}}+2 t\right)}{\sqrt{t^{3}-3} \sqrt{23^{\frac{5}{6}}-2 i 3^{\frac{1}{3}}-4 i t}} \\
& =-\frac{2 \sqrt{\frac{3^{\frac{1}{3}}-t}{i 3^{\frac{5}{6}}+33^{\frac{1}{3}}} \sqrt{3^{\frac{5}{6}}+i 3^{\frac{1}{3}}+2 i t} \text { EllipticF }\left(\frac{33^{\frac{1}{12}} \sqrt{63^{\frac{5}{6}}-6 i 3^{\frac{1}{3}}-12 i t}}{6}, \frac{i}{2}+\frac{\sqrt{3}}{2}\right)\left(i 3^{\frac{5}{6}}+3^{\frac{1}{3}}+2 t\right)}}{\sqrt{t^{3}-3} \sqrt{23^{\frac{5}{6}}-2 i 3^{\frac{1}{3}}-4 i t}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
& \bar{M}=\mu M \\
& =\mathrm{e}^{\left.-\frac{2 \sqrt{\frac{3^{\frac{1}{3}}-t}{i 3^{\frac{5}{6}}+33^{\frac{1}{3}}}} \sqrt{3^{\frac{5}{6}}+i 3^{\frac{1}{3}}+2 i t} \text { EllipticF }\left(\frac{\left.3^{\frac{1}{12}} \sqrt{63^{\frac{5}{6}-6 i 3^{\frac{1}{3}}-12 i t}}, 2^{\frac{i}{2}}+\frac{\sqrt{3}}{2}\right)\left(i 3^{\frac{5}{6}+3^{\frac{1}{3}}+2 t}\right)}{\sqrt{t^{3}-3} \sqrt{23^{\frac{5}{6}}-2 i 3^{\frac{1}{3}-4 i t}}}\left(-\frac{y}{\sqrt{t^{3}-3}}-t\right)\right.}{}\right)} \\
& =\frac{\left(-t \sqrt{t^{3}-3}-y\right) \mathrm{e}^{-\frac{2 \sqrt{\frac{3^{\frac{1}{3}}-t}{i 3^{\frac{5}{6}}+33^{\frac{1}{3}}}} \sqrt{3^{\frac{5}{6}}+i 3^{\frac{1}{3}}+2 i t} \text { ElipticF }\left(\frac{3^{\frac{1}{12}} \sqrt{63^{\frac{5}{6}-6 i 3^{\frac{1}{3}}-12 i t}},{ }_{2}^{\frac{i}{2}}+\frac{\sqrt{3}}{2}}{6}\right)\left(i 3^{\frac{5}{6}+3^{\frac{1}{3}}+2 t}\right)}{\sqrt{t^{3}-3} \sqrt{23^{\frac{5}{6}-2 i 3^{\frac{1}{3}}-4 i t}}}} \sqrt{t^{3}-3}}{}
\end{aligned}
$$

And

$$
\begin{align*}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-\frac{\sqrt[2]{\frac{3^{\frac{1}{3}}-t}{i 3^{\frac{5}{6}}+33^{\frac{1}{3}}}} \sqrt{3^{\frac{5}{6}}+i 3^{\frac{1}{3}}+2 i t} \text { EllipticF }\left(\frac{3^{\frac{1}{12}} \sqrt{63^{\frac{5}{6}}-6 i 3^{\frac{1}{3}}-12 i t},,^{\frac{i}{2}}+\frac{\sqrt{3}}{2}}{6}\right)\left(i 3^{\frac{5}{6}+3^{\frac{1}{3}}+2 t}\right)}{\sqrt{t^{3}-3} \sqrt{23^{\frac{5}{6}}-2 i 3^{\frac{1}{3}}-4 i t}}} \tag{1}\\
& =\mathrm{e}^{-\frac{2 \sqrt{\frac{3^{\frac{1}{3}}-t}{i 3^{\frac{5}{6}}+33^{\frac{1}{3}}}} \sqrt{3^{\frac{5}{6}}+i 3^{\frac{1}{3}}+2 i t} \text { EllipticF }\left(\frac{\left.3^{\frac{1}{12}} \sqrt{63^{\frac{5}{6}}-6 i 3^{\frac{1}{3}}-12 i t}, \frac{i}{2}+\frac{\sqrt{3}}{2}\right)\left(i 3^{\frac{5}{6}}+3^{\frac{1}{3}}+2 t\right)}{\sqrt{t^{3}-3} \sqrt{23^{\frac{5}{6}-2 i 3^{\frac{1}{3}}-4 i t}}}\right.}{}}
\end{align*}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{aligned}
& \int \frac{\partial \phi}{\partial t} \mathrm{~d} t=\int \bar{M} \mathrm{~d} t \\
& \int \frac{\partial \phi}{\partial t} \mathrm{~d} t
\end{aligned}
$$

$$
\begin{aligned}
= & \left.\int^{t} \frac{\left(-_a \sqrt{-a^{3}-3}-y\right) \mathrm{e}^{-\sqrt{-^{a^{3}-3}} \sqrt{23^{\frac{5}{6}-2 i 3^{\frac{1}{3}}-4 i-a}}}}{} \begin{array}{ll}
& \sqrt{-a^{3}-3}
\end{array}\right]
\end{aligned}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
& +f^{\prime}(y) \tag{4}
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}$

$$
\left.-\underline{2 \sqrt{\frac{3^{\frac{1}{3}}-t}{i 3^{\frac{5}{6}}+33^{\frac{1}{3}}}} \sqrt{3^{\frac{5}{6}}+i 3^{\frac{1}{3}}+2 i t} \text { EllipticF }\left(\frac{3^{\frac{1}{12}} \sqrt{63^{\frac{5}{6}-6 i 3^{\frac{1}{3}}-12 i t}}}{6}, \frac{i}{2}+\frac{\sqrt{3}}{2}\right.}\right)\left(i 3^{\frac{5}{6}}+3^{\frac{1}{3}}+2 t\right)
$$

Therefore equation (4) becomes

Solving equation (5) for $f^{\prime}(y)$ gives

$$
\begin{aligned}
& f^{\prime}(y)=\int^{t} \frac{-\frac{\left.\sqrt{\frac{\frac{3}{}_{\frac{1}{3}}^{i 3^{\frac{5}{6}}+33^{\frac{1}{3}}}}{} \sqrt{3^{\frac{5}{6}}+i 3^{\frac{1}{3}}+2 i _a} \text { EllipticF }\left(\frac{3^{\frac{1}{12}} \sqrt{63^{\frac{5}{6}}-6 i 3^{\frac{1}{3}}-12 i _a}}{6}, \frac{i}{2}+\frac{\sqrt{3}}{2}\right.}\right)\left(3^{\frac{5}{6}}+3^{\frac{1}{3}}+2 _a\right)}{\sqrt{-^{3}-3} \sqrt{23^{\frac{5}{6}}-2 i 3^{\frac{1}{3}}-4 i-a}}}{\sqrt{-a^{3}-3}} d _a \\
& +\mathrm{e}^{-\frac{2 \sqrt{\frac{3^{\frac{1}{3}}-t}{i 3^{\frac{5}{6}}+33^{\frac{1}{3}}}} \sqrt{3^{\frac{5}{6}}+i 3^{\frac{1}{3}}+2 i t}}{\text { EllipticF }}\left(\frac{3^{\frac{1}{2}} \sqrt{63^{\frac{5}{6}}-6 i 3^{\frac{1}{3}}-12 i t}}{6}, \frac{i}{2^{2}}+\frac{\sqrt{3}}{2}\right)\left(i 3^{\frac{5}{6}}+3^{\frac{1}{3}}+2 t\right)} \sqrt{\sqrt{t^{3}-3} \sqrt{23^{\frac{5}{6}}-2 i 3^{\frac{1}{3}}-4 i t}}
\end{aligned}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
& \int f^{\prime}(y) \mathrm{d} y
\end{aligned}
$$

$$
\begin{aligned}
& +\mathrm{e}^{\left.-\frac{2 \sqrt{\frac{3^{\frac{1}{3}}-t}{i 3^{\frac{5}{6}}+33^{\frac{1}{3}}}} \sqrt{3^{\frac{5}{6}}+i 3^{\frac{1}{3}}+2 i t} \text { EllipticF }\left(\frac{3^{\frac{1}{12}} \sqrt{63^{\frac{5}{6}}-6 i 3^{\frac{1}{3}}-12 i t},,^{\frac{i}{2}}+\frac{\sqrt{3}}{6}}{6}\right)\left(i 3^{\frac{5}{6}}+3^{\frac{1}{3}}+2 t\right)}{\sqrt{t^{3}-3} \sqrt{23^{\frac{5}{6}}-2 i 3^{\frac{1}{3}}-4 i t}}\right)} \mathrm{dy} \\
& f(y)=\left(\int^{t} \frac{\mathrm{e}^{-\frac{2 \sqrt{\frac{3^{\frac{1}{3}}-\ldots a}{i 3^{\frac{5}{6}}+33^{\frac{1}{3}}} \sqrt{3^{\frac{5}{6}}+i 3^{\frac{1}{3}}+2 i-a} \text { EllipticF }\left(\frac{3^{\frac{1}{12}} \sqrt{63^{\frac{5}{6}-6 i 3^{\frac{1}{3}}-12 i-a}}{ }^{6}, 2^{\frac{i}{2}}+\frac{\sqrt{3}}{2}}{6}\right)\left(i 3^{\frac{5}{6}}+3^{\frac{1}{3}}+2 _a\right)}}{\sqrt{-^{a^{3}-3}} \sqrt{23^{\frac{5}{6}}-2 i 3^{\frac{1}{3}}-4 i-a}}}}{\sqrt{-a^{3}-3}} d _a\right. \\
& \left.+\mathrm{e}^{\left.-\frac{2 \sqrt{\frac{3^{\frac{1}{3}}-t}{i 3^{\frac{3}{6}}+33^{\frac{1}{3}}} \sqrt{3^{\frac{5}{6}}+i 3^{\frac{1}{3}}+2 i t} \text { EllipticF }\left(\frac{3^{\frac{1}{12}} \sqrt{63^{\frac{5}{6}-6 i 3^{\frac{1}{3}}-12 i t}}, \frac{i}{6}+\frac{\sqrt{3}}{2}}{6}\right)\left(i 3^{\frac{5}{6}}+3^{\frac{1}{3}}+2 t\right)}}{\sqrt{t^{3}-3} \sqrt{23^{\frac{5}{6}-2 i 3^{\frac{1}{3}}-4 i t}}}\right) y+c_{1} .}\right)
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ
ϕ

$$
\begin{aligned}
& -\sqrt{\frac{3^{\frac{1}{3}}-\ldots a}{i 3^{\frac{5}{6}}+33^{\frac{1}{3}}}} \sqrt{3^{\frac{5}{6}}+i 3^{\frac{1}{3}}+2 i _a} \text { EllipticF }\left(\frac{3^{\frac{1}{12} \sqrt{63^{\frac{5}{6}}-6 i 3^{\frac{1}{3}}-12 i _a}} 6}{6}, \frac{i}{2}+\frac{\sqrt{3}}{2}\right)\left(i 3^{\frac{5}{6}}+3^{\frac{1}{3}}+2 _a\right) \\
& =\int^{t} \frac{\left(-\ldots a \sqrt{\ldots} a^{3}-3-y\right) \mathrm{e}}{\sqrt{a^{3}-3} \sqrt{2^{\frac{5}{6}-2 i 3^{\frac{1}{3}-4 i _a}}}} d \underline{a^{3}-3} a \\
& +\left(\int^{t} \frac{2 \sqrt{\frac{3^{\frac{1}{3}}-\ldots a}{i 3^{\frac{5}{6}}+33^{\frac{1}{3}}}} \sqrt{3^{\frac{5}{6}}+i 3^{\frac{1}{3}}+2 i _a} \text { EllipticF }\left(\frac{3^{\frac{1}{12} \sqrt{63^{\frac{5}{6}-6 i 3^{\frac{1}{3}}-12 i _a}}} \frac{\sqrt{6}}{6}+\frac{\sqrt{3}}{2}}{}\right)\left(i 3^{\frac{5}{6}+3^{\frac{1}{3}}+2 _a}\right)}{\sqrt{-a^{3}-3} \sqrt{23^{\frac{5}{6}-2 i 3^{\frac{1}{3}}-4 i _a}}} \sqrt{\sqrt{a^{3}-3}} d _a\right. \\
& \left.+\mathrm{e}-\frac{2 \sqrt{\frac{3^{\frac{1}{3}}-t}{i 3^{\frac{5}{6}}+33^{\frac{1}{3}}}} \sqrt{3^{\frac{5}{6}}+i 3^{\frac{1}{3}}+2 i t} \text { EllipticF }\left(\frac{3^{\frac{1}{12}} \sqrt{63^{\frac{5}{6}}-6 i 3^{\frac{1}{3}}-12 i t}}{6}, \frac{i}{2}+\frac{\sqrt{3}}{2}\right)\left(i 3^{\frac{5}{6}}+3^{\frac{1}{3}}+2 t\right)}{\sqrt{t^{3}-3} \sqrt{23^{\frac{5}{6}}-2 i 3^{\frac{1}{3}}-4 i t}}\right) y+c_{1}
\end{aligned}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

Summary

The solution(s) found are the following

$$
\begin{aligned}
& +\left(\int^{t} \frac{-\frac{\left.\sqrt[2]{\frac{3^{\frac{1}{3}}-a}{i 3^{\frac{5}{6}}+33^{\frac{1}{3}}} \sqrt{3^{\frac{5}{6}}+i 3^{\frac{1}{3}}+2 i _a} \text { EllipticF }\left(\frac{3^{\frac{1}{12}} \sqrt{63^{\frac{5}{6}}-6 i 3^{\frac{1}{3}}-12 i-a}}{6},,^{\frac{i}{2}}+\frac{\sqrt{3}}{2}\right.}\right)\left(i 3^{\frac{5^{\frac{5}{6}}}{}+3^{\frac{1}{3}}+2 _a}\right)}{\sqrt{-a^{3}-3} \sqrt{23^{\frac{5}{6}-2 i 3^{\frac{1}{3}}-4 i-a}}}}{\sqrt{-a^{3}-3}} d-a\right. \\
& \left.+\mathrm{e}^{\left.-\frac{2 \sqrt{\frac{3^{\frac{1}{3}}-t}{i 3^{\frac{5}{6}}+33^{\frac{1}{3}}}} \sqrt{3^{\frac{5}{6}}+i 3^{\frac{1}{3}}+2 i t} \text { EllipticF }\left(\frac{3^{\frac{1}{2}} \sqrt{63^{\frac{5}{6}}-6 i 3^{\frac{1}{3}}-12 i t}}{6}, \frac{i}{2}+\frac{\sqrt{3}}{2}\right.}{6}\right)\left(i 3^{\frac{5}{6}+3^{\frac{1}{3}}+2 t}\right)} \sqrt{\sqrt{t^{3}-3} \sqrt{23^{\frac{5}{6}}-2 i 3^{\frac{1}{3}}-4 i t}}\right) y=c_{1}
\end{aligned}
$$

Figure 284: Slope field plot

Verification of solutions

Verified OK.

7.18.4 Maple step by step solution

Let's solve
$y^{\prime}-\frac{y}{\sqrt{t^{3}-3}}=t$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative

$$
y^{\prime}=\frac{y}{\sqrt{t^{3}-3}}+t
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{y}{\sqrt{t^{3}-3}}=t$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-\frac{y}{\sqrt{t^{3}-3}}\right)=\mu(t) t$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-\frac{y}{\sqrt{t^{3}-3}}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\frac{\mu(t)}{\sqrt{t^{3}-3}}$
- Solve to find the integrating factor
$\mu(t)=e^{\int-\frac{1}{\sqrt{t^{3}-3}} d t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t) t d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t) t d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(t) t d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=e^{\int-\frac{1}{\sqrt{t^{3}-3}} d t}$
$y=\frac{\int t \mathrm{e}^{\int-\frac{1}{\sqrt{t^{3}-3}} d t} d t+c_{1}}{\mathrm{e}^{\int-\frac{1}{\sqrt{t^{3}-3}} d t}}$
- Evaluate the integrals on the rhs

$$
\begin{aligned}
& -\frac{2 \mathrm{I}}{3} 3^{\frac{5}{6}} \sqrt{-\mathrm{I}\left(t+\frac{3^{\frac{1}{3}}}{2}+\frac{\mathrm{I} 3^{\frac{5}{6}}}{2}\right) 3^{\frac{1}{6}}} \sqrt{\frac{t-3^{\frac{1}{3}}}{-\frac{33^{\frac{1}{3}}}{2}-\frac{\mathrm{I}}{} 3^{\frac{5}{6}}}} \sqrt{\mathrm{I}\left(t-\frac{\mathrm{I} 3^{\frac{5}{6}}}{2}+\frac{3^{\frac{1}{3}}}{2}\right) 3^{\frac{1}{6}}} \text { EllipticF}\left(\frac{\sqrt{3} \sqrt{-\mathrm{I}\left(t+\frac{3^{\frac{1}{3}}}{2}+\frac{\mathrm{I} 3^{\frac{5}{6}}}{2}\right) 3^{\frac{1}{6}}}}{3}, \sqrt{\frac{-\mathrm{I} 3^{\frac{5}{6}}}{-\frac{33^{\frac{1}{3}}}{2}-\frac{I 3^{\frac{5}{6}}}{2}}}\right)
\end{aligned}
$$

- Simplify

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 33

```
dsolve(diff(y(t),t)=y(t)/sqrt(t`3-3)+t,y(t), singsol=all)
```

$$
y(t)=\left(\int t \mathrm{e}^{-\left(\int \frac{1}{\sqrt{t^{3}-3}} d t\right)} d t+c_{1}\right) \mathrm{e}^{\int \frac{1}{\sqrt{t^{3}-3}} d t}
$$

\checkmark Solution by Mathematica
Time used: 20.591 (sec). Leaf size: 110

DSolve[y'[t]==y[t]/Sqrt[t^3-3]+t,y[t],t,IncludeSingularSolutions $->$ True]
$y(t)$
$\rightarrow e^{\left.\frac{t \sqrt{1-\frac{t^{3}}{3}} \text { Hypergeometric2F1 }\left(\frac{1}{3}, \frac{1}{2}, \frac{4}{3}, \frac{t^{3}}{3}\right.}{}\right)} \sqrt{{\sqrt{t^{3}-3}}^{t}}\left(\int_{1} \exp \left(-\frac{\text { Hypergeometric2F1 }\left(\frac{1}{3}, \frac{1}{2}, \frac{4}{3}, \frac{K[1]^{3}}{3}\right) K[1] \sqrt{1-\frac{K[1]^{3}}{3}}}{\sqrt{K[1]^{3}-3}}\right) K[1] a\right.$

$$
\left.+c_{1}\right)
$$

7.19 problem 19

$$
\begin{array}{ll}
\text { 7.19.1 } & \text { Solving as linear ode . } 1278 \\
\text { 7.19.2 } & \text { Solving as first order ode lie symmetry lookup ode } 1280 \\
\text { 7.19.3 } & \text { Solving as exact ode . } 1283 \\
\text { 7.19.4 } & \text { Maple step by step solution . } 1287
\end{array}
$$

Internal problem ID [13024]
Internal file name [OUTPUT/11676_Wednesday_November_08_2023_03_28_38_AM_47368872/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133
Problem number: 19.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-a t y=4 \mathrm{e}^{-t^{2}}
$$

7.19.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-t a \\
& q(t)=4 \mathrm{e}^{-t^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-a t y=4 \mathrm{e}^{-t^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-t a d t} \\
& =\mathrm{e}^{-\frac{t^{2} a}{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(4 \mathrm{e}^{-t^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-\frac{t^{2} a}{2}} y\right) & =\left(\mathrm{e}^{-\frac{t^{2} a}{2}}\right)\left(4 \mathrm{e}^{-t^{2}}\right) \\
\mathrm{d}\left(\mathrm{e}^{-\frac{t^{2} a}{2}} y\right) & =\left(4 \mathrm{e}^{-\frac{t^{2}(a+2)}{2}}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-\frac{t^{2} a}{2}} y=\int 4 \mathrm{e}^{-\frac{t^{2}(a+2)}{2}} \mathrm{~d} t \\
& \mathrm{e}^{-\frac{t^{2} a}{2}} y=\frac{4 \sqrt{\pi} \operatorname{erf}\left(\frac{\sqrt{2 a+4} t}{2}\right)}{\sqrt{2 a+4}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-\frac{t^{2} a}{2}}$ results in

$$
y=\frac{4 \mathrm{e}^{\frac{t^{2} a}{2}} \sqrt{\pi} \operatorname{erf}\left(\frac{\sqrt{2 a+4} t}{2}\right)}{\sqrt{2 a+4}}+c_{1} \mathrm{e}^{\frac{t^{2} a}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{4 \mathrm{e}^{\frac{t^{2} a}{2}} \sqrt{\pi} \operatorname{erf}\left(\frac{\sqrt{2 a+4} t}{2}\right)}{\sqrt{2 a+4}}+c_{1} \mathrm{e}^{\frac{t^{2} a}{2}} \tag{1}
\end{equation*}
$$

$\underline{\text { Verification of solutions }}$

$$
y=\frac{4 \mathrm{e}^{\frac{t^{2} a}{2}} \sqrt{\pi} \operatorname{erf}\left(\frac{\sqrt{2 a+4} t}{2}\right)}{\sqrt{2 a+4}}+c_{1} \mathrm{e}^{\frac{t^{2} a}{2}}
$$

Verified OK.

7.19.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=a t y+4 \mathrm{e}^{-t^{2}} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 278: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{\frac{t^{2} a}{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\frac{t^{2} a}{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-\frac{t^{2} a}{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=a t y+4 \mathrm{e}^{-t^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-t a \mathrm{e}^{-\frac{t^{2} a}{2}} y \\
S_{y} & =\mathrm{e}^{-\frac{t^{2} a}{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=4 \mathrm{e}^{-\frac{t^{2}(a+2)}{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=4 \mathrm{e}^{-\frac{R^{2}(a+2)}{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{4 \sqrt{\pi} \operatorname{erf}\left(\frac{\sqrt{2 a+4} R}{2}\right)}{\sqrt{2 a+4}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-\frac{t^{2} a}{2}} y=\frac{4 \sqrt{\pi} \operatorname{erf}\left(\frac{\sqrt{2 a+4} t}{2}\right)}{\sqrt{2 a+4}}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-\frac{t^{2} a}{2}} y=\frac{4 \sqrt{\pi} \operatorname{erf}\left(\frac{\sqrt{2 a+4} t}{2}\right)}{\sqrt{2 a+4}}+c_{1}
$$

Which gives

$$
y=\frac{\mathrm{e}^{\frac{t^{2} a}{2}}\left(4 \sqrt{\pi} \operatorname{erf}\left(\frac{\sqrt{2 a+4} t}{2}\right)+\sqrt{2 a+4} c_{1}\right)}{\sqrt{2 a+4}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{\frac{t^{2} a}{2}}\left(4 \sqrt{\pi} \operatorname{erf}\left(\frac{\sqrt{2 a+4} t}{2}\right)+\sqrt{2 a+4} c_{1}\right)}{\sqrt{2 a+4}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\mathrm{e}^{\frac{t^{2} a}{2}}\left(4 \sqrt{\pi} \operatorname{erf}\left(\frac{\sqrt{2 a+4} t}{2}\right)+\sqrt{2 a+4} c_{1}\right)}{\sqrt{2 a+4}}
$$

Verified OK.

7.19.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(a t y+4 \mathrm{e}^{-t^{2}}\right) \mathrm{d} t \\
\left(-a t y-4 \mathrm{e}^{-t^{2}}\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-a t y-4 \mathrm{e}^{-t^{2}} \\
& N(t, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-a t y-4 \mathrm{e}^{-t^{2}}\right) \\
& =-t a
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((-t a)-(0)) \\
& =-t a
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-t a \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\frac{t^{2} a}{2}} \\
& =\mathrm{e}^{-\frac{t^{2} a}{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-\frac{t^{2} a}{2}}\left(-a t y-4 \mathrm{e}^{-t^{2}}\right) \\
& =-\mathrm{e}^{-\frac{t^{2} a}{2}}\left(a t y+4 \mathrm{e}^{-t^{2}}\right)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-\frac{t^{2} a}{2}}(1) \\
& =\mathrm{e}^{-\frac{t^{2} a}{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
& \bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t}=0 \\
& \left(-\mathrm{e}^{-\frac{t^{2} a}{2}}\left(a t y+4 \mathrm{e}^{-t^{2}}\right)\right)+\left(\mathrm{e}^{-\frac{t^{2} a}{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} t}=0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\mathrm{e}^{-\frac{t^{2} a}{2}}\left(a t y+4 \mathrm{e}^{-t^{2}}\right) \mathrm{d} t \\
\phi & =\frac{\mathrm{e}^{-\frac{t^{2} a}{2}} y \sqrt{2 a+4}-4 \sqrt{\pi} \operatorname{erf}\left(\frac{\sqrt{2 a+4} t}{2}\right)}{\sqrt{2 a+4}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-\frac{t^{2} a}{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-\frac{t^{2} a}{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-\frac{t^{2} a}{2}}=\mathrm{e}^{-\frac{t^{2} a}{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{\mathrm{e}^{-\frac{t^{2} a}{2}} y \sqrt{2 a+4}-4 \sqrt{\pi} \operatorname{erf}\left(\frac{\sqrt{2 a+4} t}{2}\right)}{\sqrt{2 a+4}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{\mathrm{e}^{-\frac{t^{2} a}{2}} y \sqrt{2 a+4}-4 \sqrt{\pi} \operatorname{erf}\left(\frac{\sqrt{2 a+4} t}{2}\right)}{\sqrt{2 a+4}}
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{\frac{t^{2} a}{2}}\left(4 \sqrt{\pi} \operatorname{erf}\left(\frac{\sqrt{2 a+4} t}{2}\right)+\sqrt{2 a+4} c_{1}\right)}{\sqrt{2 a+4}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{\frac{t^{2} a}{2}}\left(4 \sqrt{\pi} \operatorname{erf}\left(\frac{\sqrt{2 a+4} t}{2}\right)+\sqrt{2 a+4} c_{1}\right)}{\sqrt{2 a+4}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\mathrm{e}^{\frac{t^{2} a}{2}}\left(4 \sqrt{\pi} \operatorname{erf}\left(\frac{\sqrt{2 a+4} t}{2}\right)+\sqrt{2 a+4} c_{1}\right)}{\sqrt{2 a+4}}
$$

Verified OK.

7.19.4 Maple step by step solution

Let's solve
$y^{\prime}-a t y=4 \mathrm{e}^{-t^{2}}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=a t y+4 \mathrm{e}^{-t^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}-a t y=4 \mathrm{e}^{-t^{2}}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-a t y\right)=4 \mu(t) \mathrm{e}^{-t^{2}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-a t y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\mu(t) t a$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-\frac{t^{2} a}{2}}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 4 \mu(t) \mathrm{e}^{-t^{2}} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 4 \mu(t) \mathrm{e}^{-t^{2}} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 4 \mu(t) \mathrm{e}^{-t^{2} d t+c_{1}}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-\frac{t^{2} a}{2}}$
$y=\frac{\int 4 \mathrm{e}^{-t^{2}} \mathrm{e}^{-\frac{t^{2} a}{2}} d t+c_{1}}{\mathrm{e}^{-\frac{t^{2} a}{2}}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{4 \sqrt{\pi} \operatorname{erf}\left(\frac{\sqrt{2 a+4} t}{2}\right)}{\sqrt{2 a+4}}+c_{1}}{\mathrm{e}^{-\frac{t^{2} a}{2}}}$
- Simplify

$$
y=\frac{\mathrm{e}^{t^{2} a}\left(4 \sqrt{\pi} \operatorname{erf}\left(\frac{\sqrt{2 a+4} t}{2}\right)+\sqrt{2 a+4} c_{1}\right)}{\sqrt{2 a+4}}
$$

Maple trace
-Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 45

```
dsolve(diff(y(t),t)=a*t*y(t)+4*exp(-t^2),y(t), singsol=all)
```

$$
y(t)=\frac{\left(c_{1} \sqrt{2 a+4}+4 \sqrt{\pi} \operatorname{erf}\left(\frac{\sqrt{2 a+4} t}{2}\right)\right) \mathrm{e}^{\frac{a t^{2}}{2}}}{\sqrt{2 a+4}}
$$

\checkmark Solution by Mathematica
Time used: 0.213 (sec). Leaf size: 58
DSolve[y'[t]==a*t*y[t]+4*Exp[-t^2],y[t],t,IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{e^{\frac{a t^{2}}{2}}\left(2 \sqrt{2 \pi} \operatorname{erf}\left(\frac{\sqrt{a+2} t}{\sqrt{2}}\right)+\sqrt{a+2} c_{1}\right)}{\sqrt{a+2}}
$$

7.20 problem 20

7.20.1 Solving as linear ode . 1289
7.20.2 Solving as first order ode lie symmetry lookup ode 1291
7.20.3 Solving as exact ode . 1295
7.20.4 Maple step by step solution . 1299

Internal problem ID [13025]
Internal file name [OUTPUT/11677_Wednesday_November_08_2023_03_28_39_AM_78626353/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133
Problem number: 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-t^{r} y=4
$$

7.20.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-t^{r} \\
q(t) & =4
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-t^{r} y=4
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-t^{r} d t} \\
& =\mathrm{e}^{-\frac{t^{1+r}}{1+r}}
\end{aligned}
$$

The ode becomes

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)(4) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-\frac{t^{+1+r}}{1+r}} y\right) & =\left(\mathrm{e}^{-\frac{t^{1+r}}{1+r}}\right)(4) \tag{4}\\
\mathrm{d}\left(\mathrm{e}^{-\frac{t^{1+r}}{1+r}} y\right) & =\left(4 \mathrm{e}^{-\frac{t^{1+r}}{1+r}}\right) \mathrm{d} t
\end{align*}
$$

Integrating gives
$\mathrm{e}^{-\frac{t^{1+r}}{1+r}} y=\int 4 \mathrm{e}^{-\frac{t^{1+r}}{1+r}} \mathrm{~d} t$
$\mathrm{e}^{-\frac{t^{1+r}}{1+r}} y=\frac{4\left(\frac{1}{1+r}\right)^{-\frac{1}{1+r}}\left(\frac{(1+r)^{2} t^{\frac{1}{1+r}+\frac{r}{1+r}-1-r}\left(\frac{1}{1+r}\right)^{\frac{1}{1+r}}\left(\frac{t^{1+r_{r}}}{1+r}+\frac{2 t^{1+r} r}{1+r}+r^{2}+\frac{t^{1+r}}{1+r}+3 r+2\right)\left(\frac{t^{1+r}}{1+r}\right)^{-\frac{r+2}{2(1+r)}} \mathrm{e}^{-\frac{t^{1+r}}{2(1+r)}} \text { WhittakerM}}{(r+2)(2 r+3)}\right.}{}$
Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-\frac{t^{1+r}}{1+r}}$ results in
which simplifies to
$y=\frac{4 \mathrm{e}^{\frac{t t^{r}}{2+2 r}}\left(t^{-r}\left(\frac{t t^{r}}{1+r}\right)^{\frac{-r-2}{2+2 r}}(1+r)(r+2)^{2} \text { WhittakerM }\left(\frac{r+2}{2+2 r}, \frac{2 r+3}{2+2 r}, \frac{t t^{r}}{1+r}\right)+\left((r+2) t^{-r}+t\right)\left(\frac{t t^{r}}{1+r}\right)^{\frac{-r-2}{2+2 r}}(1+\right.}{2 r^{2}+7 r+6}$
Summary
The solution(s) found are the following
y
$=\frac{4 \mathrm{e}^{\frac{t t^{r}}{2+2 r}}\left(t^{-r}\left(\frac{t t^{r}}{1+r}\right)^{\frac{-r-2}{2+2 r}}(1+r)(r+2)^{2} \text { WhittakerM }\left(\frac{r+2}{2+2 r}, \frac{2 r+3}{2+2 r}, \frac{t t^{r}}{1+r}\right)+\left((r+2) t^{-r}+t\right)\left(\frac{t t^{r}}{1+r}\right)^{\frac{-r-2}{2+2 r}}(1+r\right.}{2 r^{2}+7 r+6}$

Verification of solutions

y
$=\frac{4 \mathrm{e}^{\frac{t t^{r}}{2+2 r}}\left(t^{-r}\left(\frac{t t^{r}}{1+r}\right)^{\frac{-r-2}{2+2 r}}(1+r)(r+2)^{2} \text { WhittakerM }\left(\frac{r+2}{2+2 r}, \frac{2 r+3}{2+2 r}, \frac{t t^{r}}{1+r}\right)+\left((r+2) t^{-r}+t\right)\left(\frac{t t^{r}}{1+r}\right)^{\frac{-r-2}{2+2 r}}(1+r\right.}{2 r^{2}+7 r+6}$
Verified OK.

7.20.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=t^{r} y+4 \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 281: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(t, y) & =0 \\
\eta(t, y) & =\mathrm{e}^{\frac{t^{1+r}}{1+r}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\frac{t^{1+r}}{1+r}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-\frac{t^{1+r}}{1+r}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=t^{r} y+4
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-y t^{r} \mathrm{e}^{-\frac{t^{1+r}}{1+r}} \\
S_{y} & =\mathrm{e}^{-\frac{t^{1+r}}{1+r}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=4 \mathrm{e}^{-\frac{t^{1+r}}{1+r}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=4 \mathrm{e}^{-\frac{R^{1+r}}{1+r}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives
$S(R)=\frac{4\left(\frac{1}{1+r}\right)^{-\frac{1}{1+r}}\left(\frac{(1+r)^{2} R^{\frac{1}{1+r}+\frac{r}{1+r}-1-r}\left(\frac{1}{1+r}\right)^{\frac{1}{1+r}}\left(\frac{R^{1+r} r^{2}}{1+r}+\frac{2 R^{1+r}}{1+r}+r^{2}+\frac{R^{1+r}}{1+r}+3 r+2\right)\left(\frac{R^{1+r}}{1+r}\right)^{-\frac{r+2}{2(1+r)}} \mathrm{e}^{-\frac{R^{1+r}}{2(1+r)}} \text { WhittakerN }}{(r+2)(2 r+3)}\right.}{}$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in
$\mathrm{e}^{-\frac{t^{1+r}}{1+r}} y=\frac{4\left(\frac{1}{1+r}\right)^{-\frac{1}{1+r}}\left(\frac{(1+r)^{2} t^{\frac{1}{1+r}+\frac{r}{1+r}-1-r}\left(\frac{1}{1+r}\right)^{\frac{1}{1+r}}\left(\frac{t^{1+r^{2}}}{1+r}+\frac{2 t^{1+r_{r}}}{1+r}+r^{2}+\frac{t^{1+r}}{1+r}+3 r+2\right)\left(\frac{t^{1+r}}{1+r}\right)^{-\frac{r+2}{2(1+r)}} \mathrm{e}^{-\frac{t^{1+r}}{2(1+r)}} \text { WhittakerM }}{(r+2)(2 r+3)}\right.}{}$
Which simplifies to

$$
\frac{-4 \mathrm{e}^{-\frac{t^{1+r}}{2+2 r}} t^{-\frac{3 r}{2}-1}(1+r)^{\frac{3 r+4}{2+2 r}}(r+2)^{2} \text { WhittakerM }\left(\frac{r+2}{2+2 r}, \frac{2 r+3}{2+2 r}, \frac{t^{1+r}}{1+r}\right)-4(1+r)^{\frac{3 r+4}{2+2 r}} \mathrm{e}^{-\frac{t^{1+r}}{2+2 r}}(1+r)((r+2) t}{2 r^{2}+7 r+6}
$$

Which gives
$y=\frac{\left(4 r^{2} t^{-\frac{3 r}{2}-1}(1+r)^{\frac{3 r+4}{2+2 r}} \mathrm{e}^{-\frac{t^{1+r}}{2(1+r)}} \mathrm{WhittakerM}\left(-\frac{r}{2(1+r)}, \frac{2 r+3}{2+2 r}, \frac{t^{1+r}}{1+r}\right)+4 r^{2} t^{-\frac{3 r}{2}-1}(1+r)^{\frac{3 r+4}{2+2 r}} \mathrm{e}^{-\frac{t^{1+r}}{2(1+r)}} \text { Whit }\right.}{}$

Summary

The solution(s) found are the following
y
$=\underline{\left(4 r^{2} t^{-\frac{3 r}{2}-1}(1+r)^{\frac{3 r+4}{2+2 r}} \mathrm{e}^{-\frac{t^{1+r}}{2(1+r)}} \text { WhittakerM }\left(-\frac{r}{2(1+r)}, \frac{2 r+3}{2+2 r}, \frac{t^{1+r}}{1+r}\right)+4 r^{2} t^{-\frac{3 r}{2}-1}(1+r)^{\frac{3 r+4}{2^{2+2 r}}} \mathrm{e}^{-\frac{t^{1+r}}{2(1+r)}} \text { Whitta}\right.}$

Verification of solutions

y
$=\underline{\left(4 r^{2} t^{-\frac{3 r}{2}-1}(1+r)^{\frac{3 r+4}{2+2 r}} \mathrm{e}^{-\frac{t^{1+r}}{2(1+r)}} \text { WhittakerM }\left(-\frac{r}{2(1+r)}, \frac{2 r+3}{2+2 r}, \frac{t^{1+r}}{1+r}\right)+4 r^{2} t^{-\frac{3 r}{2}-1}(1+r)^{\frac{3 r+4}{2+2 r}} \mathrm{e}^{-\frac{t^{1+r}}{2(1+r)}} \text { Whitta }\right.}$
Verified OK.

7.20.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(t^{r} y+4\right) \mathrm{d} t \\
\left(-t^{r} y-4\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-t^{r} y-4 \\
& N(t, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-t^{r} y-4\right) \\
& =-t^{r}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1\left(\left(-t^{r}\right)-(0)\right) \\
& =-t^{r}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-t^{r} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\frac{t^{1+r}}{1+r}} \\
& =\mathrm{e}^{-\frac{t^{1+r}}{1+r}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-\frac{t^{1+r}}{1+r}}\left(-t^{r} y-4\right) \\
& =-\mathrm{e}^{-\frac{t^{1+r}}{1+r}}\left(t^{r} y+4\right)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-\frac{t^{1+r}}{1+r}}(1) \\
& =\mathrm{e}^{-\frac{t^{1+r}}{1+r}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t}=0 \\
\left(-\mathrm{e}^{-\frac{t^{1+r}}{1+r}}\left(t^{r} y+4\right)\right)+\left(\mathrm{e}^{-\frac{t^{1+r}}{1+r}}\right) \frac{\mathrm{d} y}{\mathrm{~d} t}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{aligned}
& \int \frac{\partial \phi}{\partial t} \mathrm{~d} t=\int \bar{M} \mathrm{~d} t \\
& \int \frac{\partial \phi}{\partial t} \mathrm{~d} t=\int-\mathrm{e}^{-\frac{t^{1+r}}{1+r}}\left(t^{r} y+4\right) \mathrm{d} t \\
& \phi \\
&= \frac{-4 t^{-r} \mathrm{e}^{-\frac{t^{1+r}}{2+2 r}}\left(\frac{t^{1+r}}{1+r}\right)^{\frac{-r-2}{2+2 r}}(1+r)(r+2)^{2} \text { WhittakerM }\left(\frac{r+2}{2+2 r}, \frac{2 r+3}{2+2 r}, \frac{t^{1+r}}{1+r}\right)-4\left((r+2) t^{-r}+t\right)\left(\frac{t^{1+r}}{1+r}\right.}{2 r^{2}+7 r+} \\
&+f(y)
\end{aligned}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{2\left(r+\frac{3}{2}\right)\left(\mathrm{e}^{-\frac{t^{1+r}}{1+r}}-1\right)(r+2)}{2 r^{2}+7 r+6}+f^{\prime}(y) \tag{4}\\
& =\mathrm{e}^{-\frac{t^{1+r}}{1+r}}-1+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-\frac{t^{1+r}}{1+r}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-\frac{t^{1+r}}{1+r}}=\mathrm{e}^{-\frac{t^{1+r}}{1+r}}-1+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=1
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(1) \mathrm{d} y \\
f(y) & =y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ
ϕ

$$
\begin{aligned}
&= \frac{-4 t^{-r} \mathrm{e}^{-\frac{t^{1+r}}{2+2 r}}\left(\frac{t^{1+r}}{1+r}\right)^{\frac{-r-2}{2+2 r}}(1+r)(r+2)^{2} \text { WhittakerM }\left(\frac{r+2}{2+2 r}, \frac{2 r+3}{2+2 r}, \frac{t^{1+r}}{1+r}\right)-4\left((r+2) t^{-r}+t\right)\left(\frac{t^{1+r}}{1+r}\right)^{\frac{-r-2}{2+2 r}} \mathrm{e}}{2 r^{2}+7 r+6} \\
& \quad+y+c_{1}
\end{aligned}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
\begin{aligned}
& c_{1} \\
& =\frac{-4 t^{-r} \mathrm{e}^{-\frac{t^{1+r}}{2+2 r}}\left(\frac{t^{1+r}}{1+r}\right)^{\frac{-r-2}{2+2 r}}(1+r)(r+2)^{2} \text { WhittakerM }\left(\frac{r+2}{2+2 r}, \frac{2 r+3}{2+2 r}, \frac{t^{1+r}}{1+r}\right)-4\left((r+2) t^{-r}+t\right)\left(\frac{t^{1+r}}{1+r}\right)^{\frac{-r-2}{2+2 r}} \mathrm{e}}{2 r^{2}+7 r+6}
\end{aligned}
$$

The solution becomes
y
$=\underline{\left(4 r^{3} t^{-r} \mathrm{e}^{-\frac{t^{1+r}}{2(1+r)}}\left(\frac{t^{1+r}}{1+r}\right)^{-\frac{r+2}{2(1+r)}} \text { WhittakerM }\left(-\frac{r}{2(1+r)}, \frac{2 r+3}{2+2 r}, \frac{t^{1+r}}{1+r}\right)+4 r^{3} t^{-r} \mathrm{e}^{-\frac{t^{1+r}}{2(1+r)}}\left(\frac{t^{1+r}}{1+r}\right)^{-\frac{r+2}{2(1+r)}} \text { Whittaker }\right.}$

Summary

The solution(s) found are the following
y
(1)
$=\frac{\left(4 r^{3} t^{-r} \mathrm{e}^{-\frac{t^{1+r}}{2(1+r)}}\left(\frac{t^{1+r}}{1+r}\right)^{-\frac{r+2}{2(1+r)}} \text { WhittakerM }\left(-\frac{r}{2(1+r)}, \frac{2 r+3}{2+2 r}, \frac{t^{1+r}}{1+r}\right)+4 r^{3} t^{-r} \mathrm{e}^{-\frac{t^{1+r}}{2(1+r)}}\left(\frac{t^{1+r}}{1+r}\right)^{-\frac{r+2}{2(1+r)}} \text { Whittaker }\right.}{}$
Verification of solutions
y
$=\frac{\left(4 r^{3} t^{-r} \mathrm{e}^{-\frac{t^{1+r}}{2(1+r)}}\left(\frac{t^{1+r}}{1+r}\right)^{-\frac{r+2}{2(1+r)}} \text { WhittakerM }\left(-\frac{r}{2(1+r)}, \frac{2 r+3}{2+2 r}, \frac{t^{1+r}}{1+r}\right)+4 r^{3} t^{-r} \mathrm{e}^{-\frac{t^{1+r}}{2(1+r)}}\left(\frac{t^{1+r}}{1+r}\right)^{-\frac{r+2}{2(1+r)}} \text { Whittaker }\right.}{}$
Verified OK.

7.20.4 Maple step by step solution

Let's solve
$y^{\prime}-t^{r} y=4$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=t^{r} y+4$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}-t^{r} y=4$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-t^{r} y\right)=4 \mu(t)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-t^{r} y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\mu(t) t^{r}$
- Solve to find the integrating factor

$$
\mu(t)=\mathrm{e}^{-\frac{t t^{r}}{1+r}}
$$

- Integrate both sides with respect to t

$$
\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 4 \mu(t) d t+c_{1}
$$

- Evaluate the integral on the lhs

$$
\mu(t) y=\int 4 \mu(t) d t+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\int 4 \mu(t) d t+c_{1}}{\mu(t)}
$$

- \quad Substitute $\mu(t)=\mathrm{e}^{-\frac{t t^{r}}{1+r}}$

$$
y=\frac{\int 4 \mathrm{e}^{-\frac{t t^{r}}{1+r}} d t+c_{1}}{\mathrm{e}^{-\frac{t t^{r}}{1+r}}}
$$

- Evaluate the integrals on the rhs

$$
y=\xlongequal{{ }^{4\left(\frac{1}{1+r}\right)^{-\frac{1}{1+r}}\left(\frac{(1+r)^{2} t^{\frac{1}{1+r}+1}+\frac{r}{1+r}-1-r}{}\left(\frac{1}{1+r}\right)^{\frac{1}{1+r}}\left(\frac{t^{1+r} r^{2}}{1+r}+\frac{2 t^{1+r_{r}}}{1+r}+r^{2}+\frac{t^{1+r}}{1+r}+3 r+2\right)\left(\frac{t^{1+r}}{1+r}\right)^{-\frac{r+2}{2(1+r)} \mathrm{e}^{-\frac{t^{1+r}}{2(1+r)}} \text { WhittakerM(} \frac{1}{1+r}-\frac{1}{2}}\right.}(r+2)(2 r+3)}
$$

- Simplify

$$
y=\frac{4 \mathrm{e}^{\frac{t t^{r}}{2+2 r}}\left(t ^ { - r } (\frac { t t ^ { r } } { 1 + r }) ^ { \frac { - r - 2 } { 2 + 2 r } } (1 + r) (r + 2) ^ { 2 } \text { WhittakerM } (\frac { r + 2 } { 2 + 2 r } , \frac { 2 r + 3 } { 2 + 2 r } , \frac { t r ^ { r } } { 1 + r }) + ((r + 2) t ^ { - r } + t) (\frac { t t ^ { r } } { 1 + r }) ^ { \frac { - r - 2 } { 2 + 2 r } } (1 + r) ^ { 2 } \text { WhittakerM } \left(-\frac{r}{2+2 r},\right.\right.}{2 r^{2}+7 r+6}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 202

```
dsolve(diff(y(t),t)=t^r*y(t)+4,y(t), singsol=all)
y(t)
=}\frac{4\mp@subsup{\textrm{e}}{}{\frac{\mp@subsup{t}{}{r}t}{2r+2}}(\mp@subsup{t}{}{-r}(\frac{t\mp@subsup{t}{}{r}}{r+1}\mp@subsup{)}{}{\frac{-r-2}{2r+2}}(r+1)(r+2\mp@subsup{)}{}{2}\mathrm{ WhittakerM (r+2}}{2r+2},\frac{2r+3}{2r+2},\frac{t\mp@subsup{t}{}{r}}{r+1})+(r+1\mp@subsup{)}{}{2}((r+2)\mp@subsup{t}{}{-r}+t)(\frac{t\mp@subsup{t}{}{r}}{r+1}\mp@subsup{)}{}{\frac{-r}{2r}
```

\checkmark Solution by Mathematica
Time used: 0.12 (sec). Leaf size: 66
DSolve[y' $[\mathrm{t}]==\mathrm{t}^{\wedge} \mathrm{r} * \mathrm{y}[\mathrm{t}]+4, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow e^{\frac{t^{r+1}}{r+1}}\left(-\frac{4 t\left(\frac{t^{r+1}}{r+1}\right)^{-\frac{1}{r+1}} \Gamma\left(\frac{1}{r+1}, \frac{t^{r+1}}{r+1}\right)}{r+1}+c_{1}\right)
$$

7.21 problem 21

7.21.1 Solving as linear ode . 1302
7.21.2 Solving as first order ode lie symmetry lookup ode 1304
7.21.3 Solving as exact ode . 1308
7.21.4 Maple step by step solution . 1313

Internal problem ID [13026]
Internal file name [OUTPUT/11678_Wednesday_November_08_2023_03_28_41_AM_84814416/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133
Problem number: 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
v^{\prime}+\frac{2 v}{5}=3 \cos (2 t)
$$

7.21.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
v^{\prime}+p(t) v=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=\frac{2}{5} \\
& q(t)=3 \cos (2 t)
\end{aligned}
$$

Hence the ode is

$$
v^{\prime}+\frac{2 v}{5}=3 \cos (2 t)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{5} d t} \\
& =\mathrm{e}^{\frac{2 t}{5}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu v) & =(\mu)(3 \cos (2 t)) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{\frac{2 t}{5}} v\right) & =\left(\mathrm{e}^{\frac{2 t}{5}}\right)(3 \cos (2 t)) \\
\mathrm{d}\left(\mathrm{e}^{\frac{2 t}{5}} v\right) & =\left(3 \cos (2 t) \mathrm{e}^{\frac{2 t}{5}}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\frac{2 t}{5}} v=\int 3 \cos (2 t) \mathrm{e}^{\frac{2 t}{5}} \mathrm{~d} t \\
& \mathrm{e}^{\frac{2 t}{5}} v=\frac{15 \cos (2 t) \mathrm{e}^{\frac{2 t}{5}}}{52}+\frac{75 \sin (2 t) \mathrm{e}^{\frac{2 t}{5}}}{52}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\frac{2 t}{5}}$ results in

$$
v=\mathrm{e}^{-\frac{2 t}{5}}\left(\frac{15 \cos (2 t) \mathrm{e}^{\frac{2 t}{5}}}{52}+\frac{75 \sin (2 t) \mathrm{e}^{\frac{2 t}{5}}}{52}\right)+c_{1} \mathrm{e}^{-\frac{2 t}{5}}
$$

which simplifies to

$$
v=\frac{75 \sin (2 t)}{52}+\frac{15 \cos (2 t)}{52}+c_{1} \mathrm{e}^{-\frac{2 t}{5}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
v=\frac{75 \sin (2 t)}{52}+\frac{15 \cos (2 t)}{52}+c_{1} \mathrm{e}^{-\frac{2 t}{5}} \tag{1}
\end{equation*}
$$

Figure 285: Slope field plot

Verification of solutions

$$
v=\frac{75 \sin (2 t)}{52}+\frac{15 \cos (2 t)}{52}+c_{1} \mathrm{e}^{-\frac{2 t}{5}}
$$

Verified OK.

7.21.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
v^{\prime} & =-\frac{2 v}{5}+3 \cos (2 t) \\
v^{\prime} & =\omega(t, v)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{v}-\xi_{t}\right)-\omega^{2} \xi_{v}-\omega_{t} \xi-\omega_{v} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 284: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, v)=0 \\
& \eta(t, v)=\mathrm{e}^{-\frac{2 t}{5}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, v) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d v}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial v}\right) S(t, v)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\frac{2 t}{5}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\frac{2 t}{5}} v
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, v) S_{v}}{R_{t}+\omega(t, v) R_{v}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{v}, S_{t}, S_{v}$ are all partial derivatives and $\omega(t, v)$ is the right hand side of the original ode given by

$$
\omega(t, v)=-\frac{2 v}{5}+3 \cos (2 t)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{v} & =0 \\
S_{t} & =\frac{2 \mathrm{e}^{\frac{2 t}{5}} v}{5} \\
S_{v} & =\mathrm{e}^{\frac{2 t}{5}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=3 \cos (2 t) \mathrm{e}^{\frac{2 t}{5}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, v in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=3 \cos (2 R) \mathrm{e}^{\frac{2 R}{5}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1}+\frac{15 \mathrm{e}^{\frac{2 R}{5}}(\cos (2 R)+5 \sin (2 R))}{52} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, v coordinates. This results in

$$
\mathrm{e}^{\frac{2 t}{5}} v=\frac{15 \mathrm{e}^{\frac{2 t}{5}}(\cos (2 t)+5 \sin (2 t))}{52}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{\frac{2 t}{5}} v=\frac{15 \mathrm{e}^{\frac{2 t}{5}}(\cos (2 t)+5 \sin (2 t))}{52}+c_{1}
$$

Which gives

$$
v=\frac{\mathrm{e}^{-\frac{2 t}{5}}\left(15 \cos (2 t) \mathrm{e}^{\frac{2 t}{5}}+75 \sin (2 t) \mathrm{e}^{\frac{2 t}{5}}+52 c_{1}\right)}{52}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, v coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d v}{d t}=-\frac{2 v}{5}+3 \cos (2 t)$		$\frac{d S}{d R}=3 \cos (2 R) \mathrm{e}^{\frac{2 R}{5}}$
	$S=\mathrm{e}^{\frac{2 t}{5}} v$	
		$\rightarrow{ }^{1}+1$

Summary
The solution(s) found are the following

$$
\begin{equation*}
v=\frac{\mathrm{e}^{-\frac{2 t}{5}}\left(15 \cos (2 t) \mathrm{e}^{\frac{2 t}{5}}+75 \sin (2 t) \mathrm{e}^{\frac{2 t}{5}}+52 c_{1}\right)}{52} \tag{1}
\end{equation*}
$$

Figure 286: Slope field plot

Verification of solutions

$$
v=\frac{\mathrm{e}^{-\frac{2 t}{5}}\left(15 \cos (2 t) \mathrm{e}^{\frac{2 t}{5}}+75 \sin (2 t) \mathrm{e}^{\frac{2 t}{5}}+52 c_{1}\right)}{52}
$$

Verified OK.

7.21.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the
ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, v) \mathrm{d} t+N(t, v) \mathrm{d} v=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} v & =\left(-\frac{2 v}{5}+3 \cos (2 t)\right) \mathrm{d} t \\
\left(\frac{2 v}{5}-3 \cos (2 t)\right) \mathrm{d} t+\mathrm{d} v & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, v)=\frac{2 v}{5}-3 \cos (2 t) \\
& N(t, v)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial v}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial v} & =\frac{\partial}{\partial v}\left(\frac{2 v}{5}-3 \cos (2 t)\right) \\
& =\frac{2}{5}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial v} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial v}-\frac{\partial N}{\partial t}\right) \\
& =1\left(\left(\frac{2}{5}\right)-(0)\right) \\
& =\frac{2}{5}
\end{aligned}
$$

Since A does not depend on v, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int \frac{2}{5} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\frac{2 t}{5}} \\
& =\mathrm{e}^{\frac{2 t}{5}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{\frac{2 t}{5}}\left(\frac{2 v}{5}-3 \cos (2 t)\right) \\
& =-\frac{(-2 v+15 \cos (2 t)) \mathrm{e}^{\frac{2 t}{5}}}{5}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{\frac{2 t}{5}}(1) \\
& =\mathrm{e}^{\frac{2 t}{5}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} v}{\mathrm{~d} t}=0 \\
\left(-\frac{(-2 v+15 \cos (2 t)) \mathrm{e}^{\frac{2 t}{5}}}{5}\right)+\left(\mathrm{e}^{\frac{2 t}{5}}\right) \frac{\mathrm{d} v}{\mathrm{~d} t}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(t, v)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial v}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\frac{(-2 v+15 \cos (2 t)) \mathrm{e}^{\frac{2 t}{5}}}{5} \mathrm{~d} t \\
\phi & =-\frac{\mathrm{e}^{\frac{2 t}{5}}(-52 v+15 \cos (2 t)+75 \sin (2 t))}{52}+f(v) \tag{3}
\end{align*}
$$

Where $f(v)$ is used for the constant of integration since ϕ is a function of both t and v. Taking derivative of equation (3) w.r.t v gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial v}=\mathrm{e}^{\frac{2 t}{5}}+f^{\prime}(v) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial v}=\mathrm{e}^{\frac{2 t}{5}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{\frac{2 t}{5}}=\mathrm{e}^{\frac{2 t}{5}}+f^{\prime}(v) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(v)$ gives

$$
f^{\prime}(v)=0
$$

Therefore

$$
f(v)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(v)$ into equation (3) gives ϕ

$$
\phi=-\frac{\mathrm{e}^{\frac{2 t}{5}}(-52 v+15 \cos (2 t)+75 \sin (2 t))}{52}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\mathrm{e}^{\frac{2 t}{5}}(-52 v+15 \cos (2 t)+75 \sin (2 t))}{52}
$$

The solution becomes

$$
v=\frac{\mathrm{e}^{-\frac{2 t}{5}}\left(15 \cos (2 t) \mathrm{e}^{\frac{2 t}{5}}+75 \sin (2 t) \mathrm{e}^{\frac{2 t}{5}}+52 c_{1}\right)}{52}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
v=\frac{\mathrm{e}^{-\frac{2 t}{5}}\left(15 \cos (2 t) \mathrm{e}^{\frac{2 t}{5}}+75 \sin (2 t) \mathrm{e}^{\frac{2 t}{5}}+52 c_{1}\right)}{52} \tag{1}
\end{equation*}
$$

Figure 287: Slope field plot

Verification of solutions

$$
v=\frac{\mathrm{e}^{-\frac{2 t}{5}}\left(15 \cos (2 t) \mathrm{e}^{\frac{2 t}{5}}+75 \sin (2 t) \mathrm{e}^{\frac{2 t}{5}}+52 c_{1}\right)}{52}
$$

Verified OK.

7.21.4 Maple step by step solution

Let's solve
$v^{\prime}+\frac{2 v}{5}=3 \cos (2 t)$

- Highest derivative means the order of the ODE is 1
v^{\prime}
- Isolate the derivative
$v^{\prime}=-\frac{2 v}{5}+3 \cos (2 t)$
- Group terms with v on the lhs of the ODE and the rest on the rhs of the ODE $v^{\prime}+\frac{2 v}{5}=3 \cos (2 t)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(v^{\prime}+\frac{2 v}{5}\right)=3 \mu(t) \cos (2 t)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) v)$
$\mu(t)\left(v^{\prime}+\frac{2 v}{5}\right)=\mu^{\prime}(t) v+\mu(t) v^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=\frac{2 \mu(t)}{5}$
- \quad Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{\frac{2 t}{5}}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) v)\right) d t=\int 3 \mu(t) \cos (2 t) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) v=\int 3 \mu(t) \cos (2 t) d t+c_{1}$
- \quad Solve for v
$v=\frac{\int 3 \mu(t) \cos (2 t) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{\frac{2 t}{5}}$
$v=\frac{\int 3 \cos (2 t) \mathrm{e}^{\frac{2 t}{5}} d t+c_{1}}{\mathrm{e}^{\frac{2 t}{5}}}$
- Evaluate the integrals on the rhs
$v=\frac{\frac{15 \cos (2 t) e^{\frac{2 t}{5}}}{52}+\frac{75 \sin (2 t) e^{\frac{2 t}{5}}}{52}+c_{1}}{\mathrm{e}^{\frac{2 t}{5}}}$
- Simplify
$v=\frac{75 \sin (2 t)}{52}+\frac{15 \cos (2 t)}{52}+c_{1} \mathrm{e}^{-\frac{2 t}{5}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23
dsolve(diff $(v(t), t)+4 / 10 * v(t)=3 * \cos (2 * t), v(t)$, singsol=all)

$$
v(t)=\frac{15 \cos (2 t)}{52}+\frac{75 \sin (2 t)}{52}+\mathrm{e}^{-\frac{2 t}{5}} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.152 (sec). Leaf size: 31
DSolve[v'[t] $+4 / 10 * v[t]==3 * \operatorname{Cos}[2 * t], v[t], t$, IncludeSingularSolutions $->$ True]

$$
v(t) \rightarrow \frac{15}{52}(5 \sin (2 t)+\cos (2 t))+c_{1} e^{-2 t / 5}
$$

7.22 problem 22 (f)

7.22.1 Solving as linear ode . 1316
7.22.2 Solving as first order ode lie symmetry lookup ode 1318
7.22.3 Solving as exact ode . 1322
7.22.4 Maple step by step solution . 1327

Internal problem ID [13027]
Internal file name [OUTPUT/11679_Wednesday_November_08_2023_03_28_41_AM_7293898/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133
Problem number: 22 (f).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}+2 t y=4 \mathrm{e}^{-t^{2}}
$$

7.22.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=2 t \\
& q(t)=4 \mathrm{e}^{-t^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+2 t y=4 \mathrm{e}^{-t^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 2 t d t} \\
& =\mathrm{e}^{t^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(4 \mathrm{e}^{-t^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{t^{2}} y\right) & =\left(\mathrm{e}^{t^{2}}\right)\left(4 \mathrm{e}^{-t^{2}}\right) \\
\mathrm{d}\left(\mathrm{e}^{t^{2}} y\right) & =4 \mathrm{~d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{t^{2}} y=\int 4 \mathrm{~d} t \\
& \mathrm{e}^{t^{2}} y=4 t+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{t^{2}}$ results in

$$
y=4 \mathrm{e}^{-t^{2}} t+c_{1} \mathrm{e}^{-t^{2}}
$$

which simplifies to

$$
y=\mathrm{e}^{-t^{2}}\left(4 t+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-t^{2}}\left(4 t+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 288: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{-t^{2}}\left(4 t+c_{1}\right)
$$

Verified OK.

7.22.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-2 t y+4 \mathrm{e}^{-t^{2}} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 287: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-t^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-t^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{t^{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-2 t y+4 \mathrm{e}^{-t^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =2 t \mathrm{e}^{t^{2}} y \\
S_{y} & =\mathrm{e}^{t^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=4 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=4
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=4 R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
y \mathrm{e}^{t^{2}}=4 t+c_{1}
$$

Which simplifies to

$$
y \mathrm{e}^{t^{2}}=4 t+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{-t^{2}}\left(4 t+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-2 t y+4 \mathrm{e}^{-t^{2}}$		$\frac{d S}{d R}=4$
		¢ ¢ p p p p p p p p p p p p p p p
S_{4}	$S=\mathrm{e}^{t^{2}} y$	P ${ }_{\text {a }}$
,		
${ }^{2}$		
t		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-t^{2}}\left(4 t+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 289: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-t^{2}}\left(4 t+c_{1}\right)
$$

Verified OK.

7.22.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-2 t y+4 \mathrm{e}^{-t^{2}}\right) \mathrm{d} t \\
\left(2 t y-4 \mathrm{e}^{-t^{2}}\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =2 t y-4 \mathrm{e}^{-t^{2}} \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 t y-4 \mathrm{e}^{-t^{2}}\right) \\
& =2 t
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((2 t)-(0)) \\
& =2 t
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int 2 t \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{t^{2}} \\
& =\mathrm{e}^{t^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{t^{2}}\left(2 t y-4 \mathrm{e}^{-t^{2}}\right) \\
& =2 t \mathrm{e}^{t^{2}} y-4
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{t^{2}}(1) \\
& =\mathrm{e}^{t^{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(2 t \mathrm{e}^{t^{2}} y-4\right)+\left(\mathrm{e}^{t^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int 2 t \mathrm{e}^{t^{2}} y-4 \mathrm{~d} t \\
\phi & =-4 t+\mathrm{e}^{t^{2}} y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{t^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{t^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{t^{2}}=\mathrm{e}^{t^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-4 t+\mathrm{e}^{t^{2}} y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-4 t+\mathrm{e}^{t^{2}} y
$$

The solution becomes

$$
y=\mathrm{e}^{-t^{2}}\left(4 t+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-t^{2}}\left(4 t+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 290: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-t^{2}}\left(4 t+c_{1}\right)
$$

Verified OK.

7.22.4 Maple step by step solution

Let's solve
$y^{\prime}+2 t y=4 \mathrm{e}^{-t^{2}}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-2 t y+4 \mathrm{e}^{-t^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+2 t y=4 \mathrm{e}^{-t^{2}}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+2 t y\right)=4 \mu(t) \mathrm{e}^{-t^{2}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+2 t y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=2 \mu(t) t$
- \quad Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{t^{2}}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 4 \mu(t) \mathrm{e}^{-t^{2}} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 4 \mu(t) \mathrm{e}^{-t^{2}} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 4 \mu(t) \mathrm{e}^{-t^{2} d t+c_{1}}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{t^{2}}$
$y=\frac{\int 4 \mathrm{e}^{-t^{2}} \mathrm{e}^{t^{2}} d t+c_{1}}{\mathrm{e}^{\mathrm{t}^{2}}}$
- Evaluate the integrals on the rhs
$y=\frac{4 t+c_{1}}{\mathrm{e}^{t^{2}}}$
- Simplify

$$
y=\mathrm{e}^{-t^{2}}\left(4 t+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve(diff(y(t),t)=-2*t*y(t)+4*exp(-t^2),y(t), singsol=all)
```

$$
y(t)=\left(4 t+c_{1}\right) \mathrm{e}^{-t^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.095 (sec). Leaf size: 19
DSolve[y' $[t]==-2 * t * y[t]+4 * \operatorname{Exp}[-t \wedge 2], y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow e^{-t^{2}}\left(4 t+c_{1}\right)
$$

7.23 problem 23

7.23.1 Solving as linear ode . 1329
7.23.2 Solving as first order ode lie symmetry lookup ode 1331
7.23.3 Solving as exact ode . 1335
7.23.4 Maple step by step solution . 1339

Internal problem ID [13028]
Internal file name [OUTPUT/11680_Wednesday_November_08_2023_03_28_42_AM_33364285/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Exercises section 1.9 page 133
Problem number: 23.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+2 y=3 \mathrm{e}^{-2 t}
$$

7.23.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =2 \\
q(t) & =3 \mathrm{e}^{-2 t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+2 y=3 \mathrm{e}^{-2 t}
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int 2 d t} \\
=\mathrm{e}^{2 t}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(3 \mathrm{e}^{-2 t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{2 t} y\right) & =\left(\mathrm{e}^{2 t}\right)\left(3 \mathrm{e}^{-2 t}\right) \\
\mathrm{d}\left(\mathrm{e}^{2 t} y\right) & =3 \mathrm{~d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{2 t} y=\int 3 \mathrm{~d} t \\
& \mathrm{e}^{2 t} y=3 t+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{2 t}$ results in

$$
y=3 t \mathrm{e}^{-2 t}+c_{1} \mathrm{e}^{-2 t}
$$

which simplifies to

$$
y=\mathrm{e}^{-2 t}\left(3 t+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 t}\left(3 t+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 291: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{-2 t}\left(3 t+c_{1}\right)
$$

Verified OK.

7.23.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-2 y+3 \mathrm{e}^{-2 t} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 290: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-2 t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-2 t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{2 t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-2 y+3 \mathrm{e}^{-2 t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =2 \mathrm{e}^{2 t} y \\
S_{y} & =\mathrm{e}^{2 t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=3 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=3
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=3 R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{2 t} y=3 t+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{2 t} y=3 t+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{-2 t}\left(3 t+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-2 y+3 \mathrm{e}^{-2 t}$		$\frac{d S}{d R}=3$
${ }^{+}{ }_{4}{ }^{+}$		
(ta) ${ }^{1}$		
	$R=t$	
	$S=\mathrm{e}^{2 t} y$	
-	$S=\mathrm{e}^{2 t} y$	¢fo

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 t}\left(3 t+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 292: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 t}\left(3 t+c_{1}\right)
$$

Verified OK.

7.23.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-2 y+3 \mathrm{e}^{-2 t}\right) \mathrm{d} t \\
\left(2 y-3 \mathrm{e}^{-2 t}\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =2 y-3 \mathrm{e}^{-2 t} \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 y-3 \mathrm{e}^{-2 t}\right) \\
& =2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((2)-(0)) \\
& =2
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int 2 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{2 t} \\
& =\mathrm{e}^{2 t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{2 t}\left(2 y-3 \mathrm{e}^{-2 t}\right) \\
& =2 \mathrm{e}^{2 t} y-3
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{2 t}(1) \\
& =\mathrm{e}^{2 t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(2 \mathrm{e}^{2 t} y-3\right)+\left(\mathrm{e}^{2 t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int 2 \mathrm{e}^{2 t} y-3 \mathrm{~d} t \\
\phi & =-3 t+\mathrm{e}^{2 t} y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{2 t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{2 t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{2 t}=\mathrm{e}^{2 t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-3 t+\mathrm{e}^{2 t} y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-3 t+\mathrm{e}^{2 t} y
$$

The solution becomes

$$
y=\mathrm{e}^{-2 t}\left(3 t+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 t}\left(3 t+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 293: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 t}\left(3 t+c_{1}\right)
$$

Verified OK.

7.23.4 Maple step by step solution

Let's solve
$y^{\prime}+2 y=3 \mathrm{e}^{-2 t}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-2 y+3 \mathrm{e}^{-2 t}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+2 y=3 \mathrm{e}^{-2 t}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+2 y\right)=3 \mu(t) \mathrm{e}^{-2 t}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+2 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=2 \mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{2 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 3 \mu(t) \mathrm{e}^{-2 t} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 3 \mu(t) \mathrm{e}^{-2 t} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 3 \mu(t) \mathrm{e}^{-2 t} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{2 t}$
$y=\frac{\int 3 \mathrm{e}^{-2 t} \mathrm{e}^{2 t} d t+c_{1}}{\mathrm{e}^{2 t}}$
- Evaluate the integrals on the rhs
$y=\frac{3 t+c_{1}}{\mathrm{e}^{2 t}}$
- Simplify
$y=\mathrm{e}^{-2 t}\left(3 t+c_{1}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
dsolve(diff $(y(t), t)+2 * y(t)=3 * \exp (-2 * t), y(t)$, singsol=all)

$$
y(t)=\left(c_{1}+3 t\right) \mathrm{e}^{-2 t}
$$

\checkmark Solution by Mathematica
Time used: 0.084 (sec). Leaf size: 17
DSolve $\left[y^{\prime}[\mathrm{t}]+2 * \mathrm{y}[\mathrm{t}]==3 * \operatorname{Exp}[-2 * \mathrm{t}], \mathrm{y}[\mathrm{t}], \mathrm{t}\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow e^{-2 t}\left(3 t+c_{1}\right)
$$

8 Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
8.1 problem 2 1343
8.2 problem 3 1346
8.3 problem 4 1349
8.4 problem 5 1352
8.5 problem 6 1364
8.6 problem 17 1367
8.7 problem 20 1370
8.8 problem 21 1383
8.9 problem 22 1386
8.10 problem 23 1401
8.11 problem 24 1414
8.12 problem 25 1429
8.13 problem 26 1442
8.14 problem 27 1455
8.15 problem 28 1458
8.16 problem 29 1462
8.17 problem 30 1475
8.18 problem 31 1490
8.19 problem 32 1504
8.20 problem 33 1518
8.21 problem 34 1532
8.22 problem 35 1546
8.23 problem 36 1560
8.24 problem 37 1578
8.25 problem 38 1594
8.26 problem 39 1598
8.27 problem 40 1612
8.28 problem 43 1616
8.29 problem 44 1621
8.30 problem 45 1626
8.31 problem 46 1640
8.32 problem 47 1656

8.1 problem 2

8.1.1 Solving as quadrature ode . 1343
8.1.2 Maple step by step solution . 1344

Internal problem ID [13029]
Internal file name [OUTPUT/11681_Wednesday_November_08_2023_03_28_42_AM_83223225/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-3 y=0
$$

8.1.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{3 y} d y & =\int d t \\
\frac{\ln (y)}{3} & =t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
y^{\frac{1}{3}}=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
y^{\frac{1}{3}}=c_{2} \mathrm{e}^{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2}^{3} \mathrm{e}^{3 t} \tag{1}
\end{equation*}
$$

Figure 294: Slope field plot
Verification of solutions

$$
y=c_{2}^{3} \mathrm{e}^{3 t}
$$

Verified OK.

8.1.2 Maple step by step solution

Let's solve
$y^{\prime}-3 y=0$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=3
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{y} d t=\int 3 d t+c_{1}
$$

- Evaluate integral

$$
\ln (y)=3 t+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{3 t+c_{1}}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

```
dsolve(diff(y(t),t)=3*y(t),y(t), singsol=all)
```

$$
y(t)=c_{1} \mathrm{e}^{3 t}
$$

\checkmark Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 18
DSolve [y' $[\mathrm{t}]==3 * y[\mathrm{t}], \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(t) \rightarrow c_{1} e^{3 t} \\
& y(t) \rightarrow 0
\end{aligned}
$$

8.2 problem 3

8.2.1 Solving as quadrature ode . 1346
8.2.2 Maple step by step solution . 1347

Internal problem ID [13030]
Internal file name [OUTPUT/11682_Wednesday_November_08_2023_03_28_43_AM_26569994/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 3 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=t^{2}\left(t^{2}+1\right)
$$

8.2.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int t^{2}\left(t^{2}+1\right) \mathrm{d} t \\
& =\frac{1}{5} t^{5}+\frac{1}{3} t^{3}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{5} t^{5}+\frac{1}{3} t^{3}+c_{1} \tag{1}
\end{equation*}
$$

Figure 295: Slope field plot

Verification of solutions

$$
y=\frac{1}{5} t^{5}+\frac{1}{3} t^{3}+c_{1}
$$

Verified OK.

8.2.2 Maple step by step solution

Let's solve

$$
y^{\prime}=t^{2}\left(t^{2}+1\right)
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to t
$\int y^{\prime} d t=\int t^{2}\left(t^{2}+1\right) d t+c_{1}$
- Evaluate integral

$$
y=\frac{1}{5} t^{5}+\frac{1}{3} t^{3}+c_{1}
$$

- \quad Solve for y

$$
y=\frac{1}{5} t^{5}+\frac{1}{3} t^{3}+c_{1}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 16

```
dsolve(diff(y(t),t)=t^2*(t^2+1),y(t), singsol=all)
```

$$
y(t)=\frac{1}{5} t^{5}+\frac{1}{3} t^{3}+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 22
DSolve[y'[t]==t^2*(t^2+1),y[t],t,IncludeSingularSolutions -> True]

$$
y(t) \rightarrow \frac{t^{5}}{5}+\frac{t^{3}}{3}+c_{1}
$$

8.3 problem 4

8.3.1 Solving as quadrature ode . 1349
8.3.2 Maple step by step solution . 1350

Internal problem ID [13031]
Internal file name [OUTPUT/11683_Wednesday_November_08_2023_03_28_43_AM_97575103/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}+\sin (y)^{5}=0
$$

8.3.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sin (y)^{5}} d y & =\int d t \\
\int^{y}-\frac{1}{\sin \left(_a\right)^{5}} d _a & =t+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{y}-\frac{1}{\sin \left(_a\right)^{5}} d _a=t+c_{1} \tag{1}
\end{equation*}
$$

Figure 296: Slope field plot
Verification of solutions

$$
\int^{y}-\frac{1}{\sin \left(_a\right)^{5}} d _a=t+c_{1}
$$

Verified OK.

8.3.2 Maple step by step solution

Let's solve
$y^{\prime}+\sin (y)^{5}=0$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- \quad Separate variables

$$
\frac{y^{\prime}}{\sin (y)^{5}}=-1
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{\sin (y)^{5}} d t=\int(-1) d t+c_{1}
$$

- Evaluate integral

$$
\left(-\frac{\csc (y)^{3}}{4}-\frac{3 \csc (y)}{8}\right) \cot (y)+\frac{3 \ln (\csc (y)-\cot (y))}{8}=-t+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

Solution by Maple
Time used: 0.047 (sec). Leaf size: 190

```
dsolve(diff(y(t),t)=-sin(y(t))^ 5,y(t), singsol=all)
```

$y(t)$

\checkmark Solution by Mathematica
Time used: 1.165 (sec). Leaf size: 101

```
DSolve[y'[t]==-Sin[y[t]]~5,y[t],t,IncludeSingularSolutions -> True]
```

$y(t) \rightarrow$ InverseFunction $\left[\frac{1}{16}\left(-\frac{1}{64} \csc ^{4}\left(\frac{\# 1}{2}\right)-\frac{3}{32} \csc ^{2}\left(\frac{\# 1}{2}\right)+\frac{1}{64} \sec ^{4}\left(\frac{\# 1}{2}\right)\right.\right.$

$$
\left.\left.+\frac{3}{32} \sec ^{2}\left(\frac{\# 1}{2}\right)+\frac{3}{8} \log \left(\sin \left(\frac{\# 1}{2}\right)\right)-\frac{3}{8} \log \left(\cos \left(\frac{\# 1}{2}\right)\right)\right) \&\right]\left[-\frac{t}{16}+c_{1}\right]
$$

$y(t) \rightarrow 0$

8.4 problem 5

8.4.1 Solving as separable ode . 1352
8.4.2 Solving as first order ode lie symmetry lookup ode 1354
8.4.3 Solving as exact ode . 1358
8.4.4 Maple step by step solution . 1362

Internal problem ID [13032]
Internal file name [OUTPUT/11684_Wednesday_November_08_2023_03_28_44_AM_66323007/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 5 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{\left(t^{2}-4\right)(y+1) \mathrm{e}^{y}}{(t-1)(3-y)}=0
$$

8.4.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =-\frac{\left(t^{2}-4\right)(y+1) \mathrm{e}^{y}}{(t-1)(y-3)}
\end{aligned}
$$

Where $f(t)=-\frac{t^{2}-4}{t-1}$ and $g(y)=\frac{(y+1) \mathrm{e}^{y}}{y-3}$. Integrating both sides gives

$$
\frac{1}{\frac{(y+1) \mathrm{e}^{y}}{y-3}} d y=-\frac{t^{2}-4}{t-1} d t
$$

$$
\begin{aligned}
\int \frac{1}{\frac{(y+1) \mathrm{e}^{y}}{y-3}} d y & =\int-\frac{t^{2}-4}{t-1} d t \\
-\mathrm{e}^{-y}+4 \mathrm{e} \exp \operatorname{Integral}_{1}(y+1) & =-\frac{t^{2}}{2}-t+3 \ln (t-1)+c_{1}
\end{aligned}
$$

Which results in

$$
y=-\operatorname{RootOf}\left(-8 \mathrm{e} \exp \operatorname{Integral}_{1}\left(1-_Z\right)-t^{2}+2 \mathrm{e}^{Z}+6 \ln (t-1)+2 c_{1}-2 t\right)
$$

Summary

The solution(s) found are the following

$$
y=-\operatorname{RootOf}\left(-8 \mathrm{e} \exp \operatorname{Integral}_{1}\left(1-_Z\right)-t^{2}+2 \mathrm{e}^{Z}+6 \ln (t-1)+2 c_{1}-2 t\right)(1)
$$

Figure 297: Slope field plot

Verification of solutions

$$
y=-\operatorname{RootOf}\left(-8 \mathrm{e} \exp \operatorname{Integral}_{1}\left(1-_Z\right)-t^{2}+2 \mathrm{e}^{-}+6 \ln (t-1)+2 c_{1}-2 t\right)
$$

Verified OK.

8.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{\left(t^{2}-4\right)(y+1) \mathrm{e}^{y}}{(t-1)(y-3)} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 296: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$\underline{a}_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=-\frac{t-1}{t^{2}-4} \\
& \eta(t, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{-\frac{t-1}{t^{2}-4}} d t
\end{aligned}
$$

Which results in

$$
S=-\frac{t^{2}}{2}-t+3 \ln (t-1)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-\frac{\left(t^{2}-4\right)(y+1) \mathrm{e}^{y}}{(t-1)(y-3)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{y} & =1 \\
S_{t} & =-t-1+\frac{3}{t-1} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{\mathrm{e}^{-y}(y-3)}{y+1} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{\mathrm{e}^{-R}(R-3)}{R+1}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\mathrm{e}^{-R}+4 \mathrm{e} \exp \operatorname{Integral}_{1}(R+1)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
-\frac{t^{2}}{2}-t+3 \ln (t-1)=-\mathrm{e}^{-y}+4 \mathrm{e} \operatorname{expIntegral}{ }_{1}(y+1)+c_{1}
$$

Which simplifies to

$$
-\frac{t^{2}}{2}-t+3 \ln (t-1)=-\mathrm{e}^{-y}+4 \mathrm{e} \exp \operatorname{Integral}_{1}(y+1)+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-\frac{\left(t^{2}-4\right)(y+1) \mathrm{e}^{y}}{(t-1)(y-3)}$		$\frac{d S}{d R}=\frac{\mathrm{e}^{-R}(R-3)}{R+1}$
¢ ¢ ¢ ¢ d d d d d + ¢ d d d d		
		$\downarrow \uparrow \uparrow S(R){ }^{\text {d }}$
${ }^{+}$		
	$R=y$	$\wedge{ }^{\text {迵 }}$
	$S=t^{2}-t+3 \ln (t-1)$	
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$	$S=-\frac{1}{2}-t+3 \ln (t-1$,	${ }^{\text {den }}$
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-2}$		
$\rightarrow \rightarrow \rightarrow \rightarrow$		
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 遇		

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{t^{2}}{2}-t+3 \ln (t-1)=-\mathrm{e}^{-y}+4 \mathrm{e} \exp \operatorname{Integral}_{1}(y+1)+c_{1} \tag{1}
\end{equation*}
$$

Figure 298: Slope field plot

Verification of solutions

$$
-\frac{t^{2}}{2}-t+3 \ln (t-1)=-\mathrm{e}^{-y}+4 \mathrm{e} \exp \operatorname{Integral}_{1}(y+1)+c_{1}
$$

Verified OK.

8.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{\mathrm{e}^{-y}(y-3)}{y+1}\right) \mathrm{d} y & =\left(\frac{t^{2}-4}{t-1}\right) \mathrm{d} t \\
\left(-\frac{t^{2}-4}{t-1}\right) \mathrm{d} t+\left(-\frac{\mathrm{e}^{-y}(y-3)}{y+1}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-\frac{t^{2}-4}{t-1} \\
& N(t, y)=-\frac{\mathrm{e}^{-y}(y-3)}{y+1}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{t^{2}-4}{t-1}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(-\frac{\mathrm{e}^{-y}(y-3)}{y+1}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\frac{t^{2}-4}{t-1} \mathrm{~d} t \\
\phi & =-\frac{t^{2}}{2}-t+3 \ln (t-1)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{\mathrm{e}^{-y}(y-3)}{y+1}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{\mathrm{e}^{-y}(y-3)}{y+1}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{\mathrm{e}^{-y}(y-3)}{y+1}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
& \int f^{\prime}(y) \mathrm{d} y=\int\left(-\frac{\mathrm{e}^{-y}(y-3)}{y+1}\right) \mathrm{d} y \\
& f(y)=\mathrm{e}^{-y}-4 \mathrm{e} \operatorname{expIntegral} \\
& 1
\end{aligned}(y+1)+c_{1}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{t^{2}}{2}-t+3 \ln (t-1)+\mathrm{e}^{-y}-4 \mathrm{e} \exp \operatorname{Integral}_{1}(y+1)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{t^{2}}{2}-t+3 \ln (t-1)+\mathrm{e}^{-y}-4 \mathrm{e} \exp \operatorname{Integral}_{1}(y+1)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-4 \mathrm{e} \operatorname{expIntegral}{ }_{1}(y+1)-\frac{t^{2}}{2}+3 \ln (t-1)+\mathrm{e}^{-y}-t=c_{1} \tag{1}
\end{equation*}
$$

Figure 299: Slope field plot

Verification of solutions

$$
-4 \mathrm{e} \operatorname{expIntegral}{ }_{1}(y+1)-\frac{t^{2}}{2}+3 \ln (t-1)+\mathrm{e}^{-y}-t=c_{1}
$$

Verified OK.

8.4.4 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{\left(t^{2}-4\right)(y+1) \mathrm{e}^{y}}{(t-1)(3-y)}=0
$$

- Highest derivative means the order of the ODE is 1

y^{\prime}

- Separate variables

$$
\frac{y^{\prime}(3-y)}{(y+1) \mathrm{e}^{y}}=\frac{t^{2}-4}{t-1}
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}(3-y)}{(y+1) \mathrm{e}^{y}} d t=\int \frac{t^{2}-4}{t-1} d t+c_{1}
$$

- Evaluate integral

$$
\mathrm{e}^{-y}-4 \mathrm{e} \mathrm{Ei}_{1}(y+1)=\frac{t^{2}}{2}+t-3 \ln (t-1)+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.062 (sec). Leaf size: 38

```
dsolve(diff (y(t),t)=( (t^2-4)*(1+y(t))*exp(y(t)))/( (t-1)*(3-y(t))),y(t), singsol=all)
```

$$
y(t)=-\operatorname{RootOf}\left(8 \mathrm{e} \exp \operatorname{Integral}_{1}\left(1-_Z\right)+t^{2}-2 \mathrm{e}^{Z}-6 \ln (t-1)+2 c_{1}+2 t\right)
$$

\checkmark Solution by Mathematica
Time used: 1.486 (sec). Leaf size: 53

```
DSolve[y'[t]==( (t~2-4)*(1+y[t])*Exp[y[t]])/( (t-1)*(3-y[t])),y[t],t,IncludeSingularSolut
```

$y(t) \rightarrow$ InverseFunction $\left[-4 e \operatorname{ExpIntegral\operatorname {Ei}(-\# 1-1)-e^{-\# 1}\&][-\frac {t^{2}}{2}-t+3\operatorname {log}(t-1),~(1)~}\right.$

$$
\left.+\frac{3}{2}+c_{1}\right]
$$

$y(t) \rightarrow-1$

8.5 problem 6

8.5.1 Solving as quadrature ode . 1364
8.5.2 Maple step by step solution 1365

Internal problem ID [13033]
Internal file name [OUTPUT/11685_Wednesday_November_08_2023_03_28_45_AM_58753678/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-\sin (y)^{2}=0
$$

8.5.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sin (y)^{2}} d y & =t+c_{1} \\
-\cot (y) & =t+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=\pi-\operatorname{arccot}\left(t+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\pi-\operatorname{arccot}\left(t+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 300: Slope field plot

Verification of solutions

$$
y=\pi-\operatorname{arccot}\left(t+c_{1}\right)
$$

Verified OK.

8.5.2 Maple step by step solution

Let's solve

$$
y^{\prime}-\sin (y)^{2}=0
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- \quad Separate variables

$$
\frac{y^{\prime}}{\sin (y)^{2}}=1
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{\sin (y)^{2}} d t=\int 1 d t+c_{1}
$$

- Evaluate integral

$$
-\cot (y)=t+c_{1}
$$

- \quad Solve for y

$$
y=\pi-\operatorname{arccot}\left(t+c_{1}\right)
$$

Maple trace

```
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 12

```
dsolve(diff(y(t),t)=sin(y(t))^2,y(t), singsol=all)
```

$$
y(t)=\frac{\pi}{2}+\arctan \left(t+c_{1}\right)
$$

Solution by Mathematica
Time used: 0.319 (sec). Leaf size: 19

```
DSolve[y'[t]==Sin[y[t]]~2,y[t],t,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(t) \rightarrow-\cot ^{-1}\left(t-2 c_{1}\right) \\
& y(t) \rightarrow 0
\end{aligned}
$$

8.6 problem 17

Internal problem ID [13034]
Internal file name [OUTPUT/11686_Wednesday_November_08_2023_03_28_45_AM_49820772/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
$\left[\begin{array}{l}x \\ = \\ -G\left(y, y^{\prime}\right)\end{array}\right]$
Unable to solve or complete the solution.

$$
y^{\prime}-(y-3)(\sin (y) \sin (t)+\cos (t)+1)=0
$$

With initial conditions

$$
[y(0)=4]
$$

Unable to determine ODE type.

Maple trace

```
MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, -> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`
```

X Solution by Maple

```
dsolve([diff(y(t),t)= (y(t)-3)*( sin(y(t))*\operatorname{sin}(t)+\operatorname{cos}(t)+1),y(0)=4],y(t), singsol=all)
```

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $\left[\left\{y^{\prime}[t]==(y[t]-3) *(\operatorname{Sin}[y[t]] * \operatorname{Sin}[t]+\operatorname{Cos}[t]+1),\{y[0]==4\}\right\}, y[t], t\right.$, IncludeSingularSoluti

Not solved

8.7 problem 20

8.7.1 Solving as linear ode 1370
8.7.2 Solving as first order ode lie symmetry lookup ode 1372
8.7.3 Solving as exact ode . 1376
8.7.4 Maple step by step solution . 1380

Internal problem ID [13035]
Internal file name [OUTPUT/11687_Wednesday_November_08_2023_03_28_48_AM_75053001/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-y=\mathrm{e}^{-t}
$$

8.7.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-1 \\
q(t) & =\mathrm{e}^{-t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-y=\mathrm{e}^{-t}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-1) d t} \\
& =\mathrm{e}^{-t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\mathrm{e}^{-t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-t} y\right) & =\left(\mathrm{e}^{-t}\right)\left(\mathrm{e}^{-t}\right) \\
\mathrm{d}\left(\mathrm{e}^{-t} y\right) & =\mathrm{e}^{-2 t} \mathrm{~d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-t} y=\int \mathrm{e}^{-2 t} \mathrm{~d} t \\
& \mathrm{e}^{-t} y=-\frac{\mathrm{e}^{-2 t}}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-t}$ results in

$$
y=-\frac{\mathrm{e}^{t} \mathrm{e}^{-2 t}}{2}+c_{1} \mathrm{e}^{t}
$$

which simplifies to

$$
y=-\frac{\mathrm{e}^{-t}}{2}+c_{1} \mathrm{e}^{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-t}}{2}+c_{1} \mathrm{e}^{t} \tag{1}
\end{equation*}
$$

Figure 301: Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-t}}{2}+c_{1} \mathrm{e}^{t}
$$

Verified OK.

8.7.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =y+\mathrm{e}^{-t} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 300: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=y+\mathrm{e}^{-t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-\mathrm{e}^{-t} y \\
S_{y} & =\mathrm{e}^{-t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{-2 t} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{-2 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\mathrm{e}^{-2 R}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-t} y=-\frac{\mathrm{e}^{-2 t}}{2}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-t} y=-\frac{\mathrm{e}^{-2 t}}{2}+c_{1}
$$

Which gives

$$
y=-\frac{\left(\mathrm{e}^{-2 t}-2 c_{1}\right) \mathrm{e}^{t}}{2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=y+\mathrm{e}^{-t}$		$\frac{d S}{d R}=\mathrm{e}^{-2 R}$
		$111111110=$
	$R=t$	
	$S=\mathrm{e}^{-t} y$	
		为 $\rightarrow \rightarrow+\rightarrow \rightarrow+\rightarrow \rightarrow$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(\mathrm{e}^{-2 t}-2 c_{1}\right) \mathrm{e}^{t}}{2} \tag{1}
\end{equation*}
$$

Figure 302: Slope field plot

Verification of solutions

$$
y=-\frac{\left(\mathrm{e}^{-2 t}-2 c_{1}\right) \mathrm{e}^{t}}{2}
$$

Verified OK.

8.7.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(y+\mathrm{e}^{-t}\right) \mathrm{d} t \\
\left(-y-\mathrm{e}^{-t}\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-y-\mathrm{e}^{-t} \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-y-\mathrm{e}^{-t}\right) \\
& =-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((-1)-(0)) \\
& =-1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-1 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-t} \\
& =\mathrm{e}^{-t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-t}\left(-y-\mathrm{e}^{-t}\right) \\
& =-\mathrm{e}^{-t}\left(y+\mathrm{e}^{-t}\right)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-t}(1) \\
& =\mathrm{e}^{-t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(-\mathrm{e}^{-t}\left(y+\mathrm{e}^{-t}\right)\right)+\left(\mathrm{e}^{-t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\mathrm{e}^{-t}\left(y+\mathrm{e}^{-t}\right) \mathrm{d} t \\
\phi & =\mathrm{e}^{-t} y+\frac{\mathrm{e}^{-2 t}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-t}=\mathrm{e}^{-t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\mathrm{e}^{-t} y+\frac{\mathrm{e}^{-2 t}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\mathrm{e}^{-t} y+\frac{\mathrm{e}^{-2 t}}{2}
$$

The solution becomes

$$
y=-\frac{\left(\mathrm{e}^{-2 t}-2 c_{1}\right) \mathrm{e}^{t}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(\mathrm{e}^{-2 t}-2 c_{1}\right) \mathrm{e}^{t}}{2} \tag{1}
\end{equation*}
$$

Figure 303: Slope field plot

Verification of solutions

$$
y=-\frac{\left(\mathrm{e}^{-2 t}-2 c_{1}\right) \mathrm{e}^{t}}{2}
$$

Verified OK.

8.7.4 Maple step by step solution

Let's solve
$y^{\prime}-y=\mathrm{e}^{-t}$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=y+\mathrm{e}^{-t}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-y=\mathrm{e}^{-t}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-y\right)=\mu(t) \mathrm{e}^{-t}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t) \mathrm{e}^{-t} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t) \mathrm{e}^{-t} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(t) \mathrm{e}^{-t} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-t}$
$y=\frac{\int\left(\mathrm{e}^{-t}\right)^{2} d t+c_{1}}{\mathrm{e}^{-t}}$
- Evaluate the integrals on the rhs
$y=\frac{-\frac{\left(\mathrm{e}^{-t}\right)^{2}}{2}+c_{1}}{\mathrm{e}^{-t}}$
- Simplify
$y=-\frac{\mathrm{e}^{-t}}{2}+c_{1} \mathrm{e}^{t}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve(diff(y(t),t)= y(t)+exp(-t),y(t), singsol=all)
```

$$
y(t)=-\frac{\mathrm{e}^{-t}}{2}+c_{1} \mathrm{e}^{t}
$$

\checkmark Solution by Mathematica
Time used: 0.079 (sec). Leaf size: 21
DSolve[y' $[\mathrm{t}]==\mathrm{y}[\mathrm{t}]+\operatorname{Exp}[-\mathrm{t}], \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow-\frac{e^{-t}}{2}+c_{1} e^{t}
$$

8.8 problem 21

8.8.1 Solving as quadrature ode . 1383
8.8.2 Maple step by step solution . 1384

Internal problem ID [13036]
Internal file name [OUTPUT/11688_Wednesday_November_08_2023_03_28_49_AM_31209479/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}+2 y=3
$$

8.8.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-2 y+3} d y & =\int d t \\
-\frac{\ln (-2 y+3)}{2} & =t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{\sqrt{-2 y+3}}=\mathrm{e}^{t+c_{1}}
$$

Which simplifies to

$$
\frac{1}{\sqrt{-2 y+3}}=c_{2} \mathrm{e}^{t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-2 t}}{2 c_{2}^{2}}+\frac{3}{2} \tag{1}
\end{equation*}
$$

Figure 304: Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-2 t}}{2 c_{2}^{2}}+\frac{3}{2}
$$

Verified OK.

8.8.2 Maple step by step solution

Let's solve

$$
y^{\prime}+2 y=3
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{3-2 y}=1
$$

- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{3-2 y} d t=\int 1 d t+c_{1}$
- Evaluate integral
$-\frac{\ln (3-2 y)}{2}=t+c_{1}$
- \quad Solve for y

$$
y=-\frac{\mathrm{e}^{-2 t-2 c_{1}}}{2}+\frac{3}{2}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(diff(y(t),t)= 3-2*y(t),y(t), singsol=all)
```

$$
y(t)=\frac{3}{2}+\mathrm{e}^{-2 t} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 24

```
DSolve[y'[t]==3-2*y[t],y[t],t,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
y(t) & \rightarrow \frac{3}{2}+c_{1} e^{-2 t} \\
y(t) & \rightarrow \frac{3}{2}
\end{aligned}
$$

8.9 problem 22

8.9.1 Solving as separable ode . 1386
8.9.2 Solving as linear ode . 1388
8.9.3 Solving as homogeneousTypeD2 ode 1389
8.9.4 Solving as first order ode lie symmetry lookup ode 1391
8.9.5 Solving as exact ode . 1395
8.9.6 Maple step by step solution . 1399

Internal problem ID [13037]
Internal file name [OUTPUT/11689_Wednesday_November_08_2023_03_28_49_AM_35410921/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 22.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-t y=0
$$

8.9.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =t y
\end{aligned}
$$

Where $f(t)=t$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =t d t \\
\int \frac{1}{y} d y & =\int t d t \\
\ln (y) & =\frac{t^{2}}{2}+c_{1} \\
y & =\mathrm{e}^{\frac{t^{2}}{2}+c_{1}} \\
& =c_{1} \mathrm{e}^{\frac{t^{2}}{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{t^{2}} \tag{1}
\end{equation*}
$$

Figure 305: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{t^{2}}
$$

Verified OK.

8.9.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-t \\
& q(t)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-t y=0
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int-t d t} \\
=\mathrm{e}^{-\frac{t^{2}}{2}}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} t}\left(\mathrm{e}^{-\frac{t^{2}}{2}} y\right) & =0
\end{aligned}
$$

Integrating gives

$$
\mathrm{e}^{-\frac{t^{2}}{2}} y=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-\frac{t^{2}}{2}}$ results in

$$
y=c_{1} \mathrm{e}^{\frac{t^{2}}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{t^{2}}{2}} \tag{1}
\end{equation*}
$$

Figure 306: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{t^{2}}
$$

Verified OK.

8.9.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(t) t$ on the above ode results in new ode in $u(t)$

$$
u^{\prime}(t) t+u(t)-t^{2} u(t)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =\frac{u\left(t^{2}-1\right)}{t}
\end{aligned}
$$

Where $f(t)=\frac{t^{2}-1}{t}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{t^{2}-1}{t} d t \\
\int \frac{1}{u} d u & =\int \frac{t^{2}-1}{t} d t \\
\ln (u) & =\frac{t^{2}}{2}-\ln (t)+c_{2} \\
u & =\mathrm{e}^{\frac{t^{2}}{2}-\ln (t)+c_{2}} \\
& =c_{2} \mathrm{e}^{\frac{t^{2}}{2}-\ln (t)}
\end{aligned}
$$

Which simplifies to

$$
u(t)=\frac{c_{2} \mathrm{e}^{t^{2}}}{t}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =t u \\
& =\mathrm{e}^{\frac{t^{2}}{2}} c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{t^{2}}{2}} c_{2} \tag{1}
\end{equation*}
$$

Figure 307: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{t^{2}}{2}} c_{2}
$$

Verified OK.

8.9.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =t y \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 304: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{\frac{t^{2}}{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\frac{t^{2}}{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-\frac{t^{2}}{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=t y
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-t \mathrm{e}^{-\frac{t^{2}}{2}} y \\
S_{y} & =\mathrm{e}^{-\frac{t^{2}}{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-\frac{t^{2}}{2}} y=c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-\frac{t^{2}}{2}} y=c_{1}
$$

Which gives

$$
y=c_{1} \mathrm{e}^{\frac{t^{2}}{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=t y$		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{t^{2}} \tag{1}
\end{equation*}
$$

Figure 308: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{t^{2}}
$$

Verified OK.

8.9.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =(t) \mathrm{d} t \\
(-t) \mathrm{d} t+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-t \\
& N(t, y)=\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-t) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-t \mathrm{~d} t \\
\phi & =-\frac{t^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{t^{2}}{2}+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{t^{2}}{2}+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{\frac{t^{2}}{2}+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{t^{2}}{2}+c_{1}} \tag{1}
\end{equation*}
$$

Figure 309: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{t^{2}}{2}+c_{1}}
$$

Verified OK.

8.9.6 Maple step by step solution

Let's solve

$$
y^{\prime}-t y=0
$$

- Highest derivative means the order of the ODE is 1
- \quad Separate variables

$$
\frac{y^{\prime}}{y}=t
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{y} d t=\int t d t+c_{1}
$$

- Evaluate integral
$\ln (y)=\frac{t^{2}}{2}+c_{1}$
- \quad Solve for y

$$
y=\mathrm{e}^{\frac{t^{2}}{2}+c_{1}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(diff(y(t),t)= t*y(t),y(t), singsol=all)
    y(t)=\mp@subsup{e}{}{\frac{\mp@subsup{t}{}{2}}{2}}\mp@subsup{c}{1}{}
```

\checkmark Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 22
DSolve[y' $[\mathrm{t}]==\mathrm{t} * \mathrm{y}[\mathrm{t}], \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(t) \rightarrow c_{1} e^{\frac{t^{2}}{2}} \\
& y(t) \rightarrow 0
\end{aligned}
$$

8.10 problem 23

8.10.1 Solving as linear ode . 1401
8.10.2 Solving as first order ode lie symmetry lookup ode 1403
8.10.3 Solving as exact ode . 1407
8.10.4 Maple step by step solution . 1411

Internal problem ID [13038]
Internal file name [OUTPUT/11690_Wednesday_November_08_2023_03_28_50_AM_6445994/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 23.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-3 y=\mathrm{e}^{7 t}
$$

8.10.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-3 \\
q(t) & =\mathrm{e}^{7 t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-3 y=\mathrm{e}^{7 t}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-3) d t} \\
& =\mathrm{e}^{-3 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\mathrm{e}^{7 t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-3 t} y\right) & =\left(\mathrm{e}^{-3 t}\right)\left(\mathrm{e}^{7 t}\right) \\
\mathrm{d}\left(\mathrm{e}^{-3 t} y\right) & =\mathrm{e}^{4 t} \mathrm{~d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-3 t} y=\int \mathrm{e}^{4 t} \mathrm{~d} t \\
& \mathrm{e}^{-3 t} y=\frac{\mathrm{e}^{4 t}}{4}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-3 t}$ results in

$$
y=\frac{\mathrm{e}^{3 t} \mathrm{e}^{4 t}}{4}+c_{1} \mathrm{e}^{3 t}
$$

which simplifies to

$$
y=\frac{\mathrm{e}^{7 t}}{4}+c_{1} \mathrm{e}^{3 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{7 t}}{4}+c_{1} \mathrm{e}^{3 t} \tag{1}
\end{equation*}
$$

Figure 310: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{7 t}}{4}+c_{1} \mathrm{e}^{3 t}
$$

Verified OK.

8.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=3 y+\mathrm{e}^{7 t} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 307: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{3 t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{3 t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-3 t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=3 y+\mathrm{e}^{7 t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-3 \mathrm{e}^{-3 t} y \\
S_{y} & =\mathrm{e}^{-3 t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{4 t} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{4 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\mathrm{e}^{4 R}}{4}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-3 t} y=\frac{\mathrm{e}^{4 t}}{4}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-3 t} y=\frac{\mathrm{e}^{4 t}}{4}+c_{1}
$$

Which gives

$$
y=\frac{\left(\mathrm{e}^{4 t}+4 c_{1}\right) \mathrm{e}^{3 t}}{4}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=3 y+\mathrm{e}^{7 t}$		$\frac{d S}{d R}=\mathrm{e}^{4 R}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-S(R T)]{\rightarrow \rightarrow-\infty}{ }^{\text {a }} \uparrow$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow+\infty}$
	$S=\mathrm{e}^{-3 t} y$	
-b: b b btatatat		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-}$ - ${ }_{\text {l }}$
,		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\mathrm{e}^{4 t}+4 c_{1}\right) \mathrm{e}^{3 t}}{4} \tag{1}
\end{equation*}
$$

Figure 311: Slope field plot

Verification of solutions

$$
y=\frac{\left(\mathrm{e}^{4 t}+4 c_{1}\right) \mathrm{e}^{3 t}}{4}
$$

Verified OK.

8.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(3 y+\mathrm{e}^{7 t}\right) \mathrm{d} t \\
\left(-3 y-\mathrm{e}^{7 t}\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-3 y-\mathrm{e}^{7 t} \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-3 y-\mathrm{e}^{7 t}\right) \\
& =-3
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((-3)-(0)) \\
& =-3
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-3 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-3 t} \\
& =\mathrm{e}^{-3 t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-3 t}\left(-3 y-\mathrm{e}^{7 t}\right) \\
& =\left(-3 y-\mathrm{e}^{7 t}\right) \mathrm{e}^{-3 t}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-3 t}(1) \\
& =\mathrm{e}^{-3 t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(\left(-3 y-\mathrm{e}^{7 t}\right) \mathrm{e}^{-3 t}\right)+\left(\mathrm{e}^{-3 t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int\left(-3 y-\mathrm{e}^{7 t}\right) \mathrm{e}^{-3 t} \mathrm{~d} t \\
\phi & =-\frac{\left(\mathrm{e}^{7 t}-4 y\right) \mathrm{e}^{-3 t}}{4}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-3 t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-3 t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-3 t}=\mathrm{e}^{-3 t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\left(\mathrm{e}^{7 t}-4 y\right) \mathrm{e}^{-3 t}}{4}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\left(\mathrm{e}^{7 t}-4 y\right) \mathrm{e}^{-3 t}}{4}
$$

The solution becomes

$$
y=\frac{\left(\mathrm{e}^{7 t} \mathrm{e}^{-3 t}+4 c_{1}\right) \mathrm{e}^{3 t}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\mathrm{e}^{7 t} \mathrm{e}^{-3 t}+4 c_{1}\right) \mathrm{e}^{3 t}}{4} \tag{1}
\end{equation*}
$$

Figure 312: Slope field plot

Verification of solutions

$$
y=\frac{\left(\mathrm{e}^{7 t} \mathrm{e}^{-3 t}+4 c_{1}\right) \mathrm{e}^{3 t}}{4}
$$

Verified OK.

8.10.4 Maple step by step solution

Let's solve
$y^{\prime}-3 y=\mathrm{e}^{7 t}$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=3 y+\mathrm{e}^{7 t}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-3 y=\mathrm{e}^{7 t}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-3 y\right)=\mu(t) \mathrm{e}^{7 t}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-3 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-3 \mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-3 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t) \mathrm{e}^{7 t} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t) \mathrm{e}^{7 t} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(t) \mathrm{e}^{7 t} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-3 t}$
$y=\frac{\int \mathrm{e}^{7 t} \mathrm{e}^{-3 t} d t+c_{1}}{\mathrm{e}^{-3 t}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{\frac{e}{4 t}_{4}^{4}}{4}+c_{1}}{\mathrm{e}^{-3 t}}$
- Simplify
$y=\frac{\left(\mathrm{e}^{4 t}+4 c_{1}\right) \mathrm{e}^{3 t}}{4}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

```
dsolve(diff(y(t),t)= 3*y(t)+exp(7*t),y(t), singsol=all)
```

$$
y(t)=\frac{\left(\mathrm{e}^{4 t}+4 c_{1}\right) \mathrm{e}^{3 t}}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.068 (sec). Leaf size: 23
DSolve[y'[t]==3*y[t]+Exp[7*t],y[t],t,IncludeSingularSolutions -> True]

$$
y(t) \rightarrow \frac{e^{7 t}}{4}+c_{1} e^{3 t}
$$

8.11 problem 24

8.11.1 Solving as separable ode . 1414
8.11.2 Solving as linear ode . 1416
8.11.3 Solving as homogeneousTypeD2 ode 1417
8.11.4 Solving as first order ode lie symmetry lookup ode 1419
8.11.5 Solving as exact ode . 1423
8.11.6 Maple step by step solution . 1427

Internal problem ID [13039]
Internal file name [OUTPUT/11691_Wednesday_November_08_2023_03_28_50_AM_61009845/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 24.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{t y}{t^{2}+1}=0
$$

8.11.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =\frac{t y}{t^{2}+1}
\end{aligned}
$$

Where $f(t)=\frac{t}{t^{2}+1}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{t}{t^{2}+1} d t \\
\int \frac{1}{y} d y & =\int \frac{t}{t^{2}+1} d t \\
\ln (y) & =\frac{\ln \left(t^{2}+1\right)}{2}+c_{1} \\
y & =\mathrm{e}^{\frac{\ln \left(t^{2}+1\right)}{2}+c_{1}} \\
& =c_{1} \sqrt{t^{2}+1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \sqrt{t^{2}+1} \tag{1}
\end{equation*}
$$

Figure 313: Slope field plot

Verification of solutions

$$
y=c_{1} \sqrt{t^{2}+1}
$$

Verified OK.

8.11.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-\frac{t}{t^{2}+1} \\
& q(t)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{t y}{t^{2}+1}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{t}{t^{2}+1} d t} \\
& =\frac{1}{\sqrt{t^{2}+1}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{y}{\sqrt{t^{2}+1}}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{y}{\sqrt{t^{2}+1}}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{\sqrt{t^{2}+1}}$ results in

$$
y=c_{1} \sqrt{t^{2}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \sqrt{t^{2}+1} \tag{1}
\end{equation*}
$$

Figure 314: Slope field plot

Verification of solutions

$$
y=c_{1} \sqrt{t^{2}+1}
$$

Verified OK.

8.11.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(t) t$ on the above ode results in new ode in $u(t)$

$$
u^{\prime}(t) t+u(t)-\frac{t^{2} u(t)}{t^{2}+1}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =-\frac{u}{t\left(t^{2}+1\right)}
\end{aligned}
$$

Where $f(t)=-\frac{1}{t\left(t^{2}+1\right)}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{t\left(t^{2}+1\right)} d t \\
\int \frac{1}{u} d u & =\int-\frac{1}{t\left(t^{2}+1\right)} d t \\
\ln (u) & =-\ln (t)+\frac{\ln \left(t^{2}+1\right)}{2}+c_{2} \\
u & =\mathrm{e}^{-\ln (t)+\frac{\ln \left(t^{2}+1\right)}{2}+c_{2}} \\
& =c_{2} \mathrm{e}^{-\ln (t)+\frac{\ln \left(t^{2}+1\right)}{2}}
\end{aligned}
$$

Which simplifies to

$$
u(t)=\frac{c_{2} \sqrt{t^{2}+1}}{t}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =t u \\
& =c_{2} \sqrt{t^{2}+1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} \sqrt{t^{2}+1} \tag{1}
\end{equation*}
$$

Figure 315: Slope field plot
Verification of solutions

$$
y=c_{2} \sqrt{t^{2}+1}
$$

Verified OK.

8.11.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{t y}{t^{2}+1} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 310: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\sqrt{t^{2}+1} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\sqrt{t^{2}+1}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{\sqrt{t^{2}+1}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{t y}{t^{2}+1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-\frac{y t}{\left(t^{2}+1\right)^{\frac{3}{2}}} \\
S_{y} & =\frac{1}{\sqrt{t^{2}+1}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\frac{y}{\sqrt{t^{2}+1}}=c_{1}
$$

Which simplifies to

$$
\frac{y}{\sqrt{t^{2}+1}}=c_{1}
$$

Which gives

$$
y=c_{1} \sqrt{t^{2}+1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{t y}{t^{2}+1}$		$\frac{d S}{d R}=0$
		$\rightarrow \rightarrow \rightarrow$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+}$
		$\xrightarrow{\text { a }} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 29 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
\rightarrow	$R=t$	$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
$\xrightarrow[\rightarrow \rightarrow-4 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 0]{ } \rightarrow$	$S=\underline{y}$	
	$=\frac{}{\sqrt{t^{2}+1}}$	
		$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+4 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
		$\rightarrow \rightarrow \rightarrow$ 他

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \sqrt{t^{2}+1} \tag{1}
\end{equation*}
$$

Figure 316: Slope field plot

Verification of solutions

$$
y=c_{1} \sqrt{t^{2}+1}
$$

Verified OK.

8.11.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =\left(\frac{t}{t^{2}+1}\right) \mathrm{d} t \\
\left(-\frac{t}{t^{2}+1}\right) \mathrm{d} t+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-\frac{t}{t^{2}+1} \\
& N(t, y)=\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{t}{t^{2}+1}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\frac{t}{t^{2}+1} \mathrm{~d} t \\
\phi & =-\frac{\ln \left(t^{2}+1\right)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\ln \left(t^{2}+1\right)}{2}+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\ln \left(t^{2}+1\right)}{2}+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{\ln \left(t^{2}+1\right)} 2+c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\ln \left(t^{2}+1\right)} 2+c_{1} \tag{1}
\end{equation*}
$$

Figure 317: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{\ln \left(t^{2}+1\right)}{2}+c_{1}}
$$

Verified OK.

8.11.6 Maple step by step solution

Let's solve
$y^{\prime}-\frac{t y}{t^{2}+1}=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y}=\frac{t}{t^{2}+1}$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y} d t=\int \frac{t}{t^{2}+1} d t+c_{1}$
- Evaluate integral
$\ln (y)=\frac{\ln \left(t^{2}+1\right)}{2}+c_{1}$
- \quad Solve for y

$$
y=\mathrm{e}^{\frac{\ln \left(t^{2}+1\right)}{2}+c_{1}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve(diff(y(t),t)=t*y(t)/(1+t^2),y(t), singsol=all)
```

$$
y(t)=c_{1} \sqrt{t^{2}+1}
$$

\checkmark Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 22
DSolve[y'[t]==t*y[t]/(1+t^2),y[t],t,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(t) \rightarrow c_{1} \sqrt{t^{2}+1} \\
& y(t) \rightarrow 0
\end{aligned}
$$

8.12 problem 25

8.12.1 Solving as linear ode . 1429
8.12.2 Solving as first order ode lie symmetry lookup ode 1431
8.12.3 Solving as exact ode . 1435
8.12.4 Maple step by step solution . 1439

Internal problem ID [13040]
Internal file name [OUTPUT/11692_Wednesday_November_08_2023_03_28_51_AM_63651877/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 25.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+5 y=\sin (3 t)
$$

8.12.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =5 \\
q(t) & =\sin (3 t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+5 y=\sin (3 t)
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int 5 d t} \\
=\mathrm{e}^{5 t}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)(\sin (3 t)) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{5 t} y\right) & =\left(\mathrm{e}^{5 t}\right)(\sin (3 t)) \\
\mathrm{d}\left(\mathrm{e}^{5 t} y\right) & =\left(\sin (3 t) \mathrm{e}^{5 t}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{5 t} y=\int \sin (3 t) \mathrm{e}^{5 t} \mathrm{~d} t \\
& \mathrm{e}^{5 t} y=-\frac{3 \cos (3 t) \mathrm{e}^{5 t}}{34}+\frac{5 \sin (3 t) \mathrm{e}^{5 t}}{34}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{5 t}$ results in

$$
y=\mathrm{e}^{-5 t}\left(-\frac{3 \cos (3 t) \mathrm{e}^{5 t}}{34}+\frac{5 \sin (3 t) \mathrm{e}^{5 t}}{34}\right)+c_{1} \mathrm{e}^{-5 t}
$$

which simplifies to

$$
y=\frac{5 \sin (3 t)}{34}-\frac{3 \cos (3 t)}{34}+c_{1} \mathrm{e}^{-5 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{5 \sin (3 t)}{34}-\frac{3 \cos (3 t)}{34}+c_{1} \mathrm{e}^{-5 t} \tag{1}
\end{equation*}
$$

Figure 318: Slope field plot

Verification of solutions

$$
y=\frac{5 \sin (3 t)}{34}-\frac{3 \cos (3 t)}{34}+c_{1} \mathrm{e}^{-5 t}
$$

Verified OK.

8.12.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-5 y+\sin (3 t) \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 313: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-5 t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-5 t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{5 t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-5 y+\sin (3 t)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =5 \mathrm{e}^{5 t} y \\
S_{y} & =\mathrm{e}^{5 t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\sin (3 t) \mathrm{e}^{5 t} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\sin (3 R) \mathrm{e}^{5 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1}-\frac{\mathrm{e}^{5 R}(3 \cos (3 R)-5 \sin (3 R))}{34} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{5 t} y=c_{1}-\frac{\mathrm{e}^{5 t}(3 \cos (3 t)-5 \sin (3 t))}{34}
$$

Which simplifies to

$$
\mathrm{e}^{5 t} y=c_{1}-\frac{\mathrm{e}^{5 t}(3 \cos (3 t)-5 \sin (3 t))}{34}
$$

Which gives

$$
y=\frac{\mathrm{e}^{-5 t}\left(5 \sin (3 t) \mathrm{e}^{5 t}-3 \cos (3 t) \mathrm{e}^{5 t}+34 c_{1}\right)}{34}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-5 y+\sin (3 t)$		$\frac{d S}{d R}=\sin (3 R) \mathrm{e}^{5 R}$
		$\rightarrow \rightarrow$
(t^{2})		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow S}$
1. ${ }^{1}$		$\rightarrow \rightarrow$
	$R=t$	$\rightarrow \rightarrow \rightarrow \rightarrow$
	$S=\mathrm{e}^{5 t} y$	$\xrightarrow{-4 \rightarrow \rightarrow-2 \rightarrow \rightarrow}$
	$S=\mathrm{e}^{5 t} y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{\rightarrow \rightarrow+}$
19 ¢ ¢ ¢ ${ }^{\text {a }}$		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
${ }_{+}+$		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
¢ $\uparrow \uparrow \uparrow$		\rightarrow

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-5 t}\left(5 \sin (3 t) \mathrm{e}^{5 t}-3 \cos (3 t) \mathrm{e}^{5 t}+34 c_{1}\right)}{34} \tag{1}
\end{equation*}
$$

Figure 319: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-5 t}\left(5 \sin (3 t) \mathrm{e}^{5 t}-3 \cos (3 t) \mathrm{e}^{5 t}+34 c_{1}\right)}{34}
$$

Verified OK.

8.12.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(-5 y+\sin (3 t)) \mathrm{d} t \\
(5 y-\sin (3 t)) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =5 y-\sin (3 t) \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(5 y-\sin (3 t)) \\
& =5
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((5)-(0)) \\
& =5
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int 5 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{5 t} \\
& =\mathrm{e}^{5 t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{5 t}(5 y-\sin (3 t)) \\
& =(5 y-\sin (3 t)) \mathrm{e}^{5 t}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{5 t}(1) \\
& =\mathrm{e}^{5 t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left((5 y-\sin (3 t)) \mathrm{e}^{5 t}\right)+\left(\mathrm{e}^{5 t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int(5 y-\sin (3 t)) \mathrm{e}^{5 t} \mathrm{~d} t \\
\phi & =-\frac{\mathrm{e}^{5 t}(-3 \cos (3 t)+5 \sin (3 t)-34 y)}{34}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{5 t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{5 t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{5 t}=\mathrm{e}^{5 t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\mathrm{e}^{5 t}(-3 \cos (3 t)+5 \sin (3 t)-34 y)}{34}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\mathrm{e}^{5 t}(-3 \cos (3 t)+5 \sin (3 t)-34 y)}{34}
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{-5 t}\left(5 \sin (3 t) \mathrm{e}^{5 t}-3 \cos (3 t) \mathrm{e}^{5 t}+34 c_{1}\right)}{34}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-5 t}\left(5 \sin (3 t) \mathrm{e}^{5 t}-3 \cos (3 t) \mathrm{e}^{5 t}+34 c_{1}\right)}{34} \tag{1}
\end{equation*}
$$

Figure 320: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-5 t}\left(5 \sin (3 t) \mathrm{e}^{5 t}-3 \cos (3 t) \mathrm{e}^{5 t}+34 c_{1}\right)}{34}
$$

Verified OK.

8.12.4 Maple step by step solution

Let's solve
$y^{\prime}+5 y=\sin (3 t)$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-5 y+\sin (3 t)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+5 y=\sin (3 t)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+5 y\right)=\mu(t) \sin (3 t)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+5 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=5 \mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{5 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t) \sin (3 t) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t) \sin (3 t) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(t) \sin (3 t) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{5 t}$
$y=\frac{\int \sin (3 t) \mathrm{e}^{5 t} d t+c_{1}}{\mathrm{e}^{5 t}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{5 \sin (3 t) \mathrm{e}^{5 t}}{34}-\frac{3 \cos (3 t) \mathrm{e}^{5 t}}{3 t}+c_{1}}{\mathrm{e}^{5 t}}$
- Simplify
$y=\frac{5 \sin (3 t)}{34}-\frac{3 \cos (3 t)}{34}+c_{1} \mathrm{e}^{-5 t}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(diff (y (t),t)= -5*y(t)+\operatorname{sin}(3*t),y(t), singsol=all)
```

$$
y(t)=-\frac{3 \cos (3 t)}{34}+\frac{5 \sin (3 t)}{34}+\mathrm{e}^{-5 t} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.165 (sec). Leaf size: 30
DSolve[y' $[\mathrm{t}]==-5 * \mathrm{y}[\mathrm{t}]+\operatorname{Sin}[3 * \mathrm{t}], \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{5}{34} \sin (3 t)-\frac{3}{34} \cos (3 t)+c_{1} e^{-5 t}
$$

8.13 problem 26

8.13.1 Solving as linear ode 1442
8.13.2 Solving as first order ode lie symmetry lookup ode 1444
8.13.3 Solving as exact ode . 1448
8.13.4 Maple step by step solution . 1453

Internal problem ID [13041]
Internal file name [OUTPUT/11693_Wednesday_November_08_2023_03_28_52_AM_60644923/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 26.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-\frac{2 y}{1+t}=t
$$

8.13.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-\frac{2}{1+t} \\
& q(t)=t
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 y}{1+t}=t
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{1+t} d t} \\
& =\frac{1}{(1+t)^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)(t) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{y}{(1+t)^{2}}\right) & =\left(\frac{1}{(1+t)^{2}}\right)(t) \\
\mathrm{d}\left(\frac{y}{(1+t)^{2}}\right) & =\left(\frac{t}{(1+t)^{2}}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{(1+t)^{2}}=\int \frac{t}{(1+t)^{2}} \mathrm{~d} t \\
& \frac{y}{(1+t)^{2}}=\ln (1+t)+\frac{1}{1+t}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{(1+t)^{2}}$ results in

$$
y=(1+t)^{2}\left(\ln (1+t)+\frac{1}{1+t}\right)+c_{1}(1+t)^{2}
$$

which simplifies to

$$
y=(1+t)\left((1+t) \ln (1+t)+c_{1} t+c_{1}+1\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(1+t)\left((1+t) \ln (1+t)+c_{1} t+c_{1}+1\right) \tag{1}
\end{equation*}
$$

Figure 321: Slope field plot
Verification of solutions

$$
y=(1+t)\left((1+t) \ln (1+t)+c_{1} t+c_{1}+1\right)
$$

Verified OK.

8.13.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{t^{2}+t+2 y}{1+t} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 316: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=(1+t)^{2} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{(1+t)^{2}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{(1+t)^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{t^{2}+t+2 y}{1+t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-\frac{2 y}{(1+t)^{3}} \\
S_{y} & =\frac{1}{(1+t)^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{t}{(1+t)^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{R}{(1+R)^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (1+R)+\frac{1}{1+R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\frac{y}{(1+t)^{2}}=\ln (1+t)+\frac{1}{1+t}+c_{1}
$$

Which simplifies to

$$
\frac{y}{(1+t)^{2}}=\ln (1+t)+\frac{1}{1+t}+c_{1}
$$

Which gives

$$
y=(1+t)\left(\ln (1+t) t+c_{1} t+\ln (1+t)+c_{1}+1\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{t^{2}+t+2 y}{1+t}$		$\frac{d S}{d R}=\frac{R}{(1+R)^{2}}$
$1+1$		
	$R=t$	-
	y	
	$S=\frac{}{(1+t)^{2}}$	
	$(1+t)^{2}$	

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(1+t)\left(\ln (1+t) t+c_{1} t+\ln (1+t)+c_{1}+1\right) \tag{1}
\end{equation*}
$$

Figure 322: Slope field plot

Verification of solutions

$$
y=(1+t)\left(\ln (1+t) t+c_{1} t+\ln (1+t)+c_{1}+1\right)
$$

Verified OK.

8.13.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(t+\frac{2 y}{1+t}\right) \mathrm{d} t \\
\left(-t-\frac{2 y}{1+t}\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-t-\frac{2 y}{1+t} \\
& N(t, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-t-\frac{2 y}{1+t}\right) \\
& =-\frac{2}{1+t}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1\left(\left(-\frac{2}{1+t}\right)-(0)\right) \\
& =-\frac{2}{1+t}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-\frac{2}{1+t} \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (1+t)} \\
& =\frac{1}{(1+t)^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{(1+t)^{2}}\left(-t-\frac{2 y}{1+t}\right) \\
& =\frac{-t^{2}-t-2 y}{(1+t)^{3}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{(1+t)^{2}}(1) \\
& =\frac{1}{(1+t)^{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(\frac{-t^{2}-t-2 y}{(1+t)^{3}}\right)+\left(\frac{1}{(1+t)^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \frac{-t^{2}-t-2 y}{(1+t)^{3}} \mathrm{~d} t \\
\phi & =\frac{y}{(1+t)^{2}}-\ln (1+t)-\frac{1}{1+t}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{(1+t)^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{(1+t)^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{(1+t)^{2}}=\frac{1}{(1+t)^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{y}{(1+t)^{2}}-\ln (1+t)-\frac{1}{1+t}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{y}{(1+t)^{2}}-\ln (1+t)-\frac{1}{1+t}
$$

The solution becomes

$$
y=(1+t)\left(\ln (1+t) t+c_{1} t+\ln (1+t)+c_{1}+1\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(1+t)\left(\ln (1+t) t+c_{1} t+\ln (1+t)+c_{1}+1\right) \tag{1}
\end{equation*}
$$

Figure 323: Slope field plot

Verification of solutions

$$
y=(1+t)\left(\ln (1+t) t+c_{1} t+\ln (1+t)+c_{1}+1\right)
$$

Verified OK.

8.13.4 Maple step by step solution

Let's solve
$y^{\prime}-\frac{2 y}{1+t}=t$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=t+\frac{2 y}{1+t}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{2 y}{1+t}=t$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-\frac{2 y}{1+t}\right)=\mu(t) t$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-\frac{2 y}{1+t}\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- \quad Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-\frac{2 \mu(t)}{1+t}$
- \quad Solve to find the integrating factor $\mu(t)=\frac{1}{(1+t)^{2}}$
- Integrate both sides with respect to t

$$
\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t) t d t+c_{1}
$$

- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t) t d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(t) t d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\frac{1}{(1+t)^{2}}$

$$
y=(1+t)^{2}\left(\int \frac{t}{(1+t)^{2}} d t+c_{1}\right)
$$

- Evaluate the integrals on the rhs

$$
y=(1+t)^{2}\left(\ln (1+t)+\frac{1}{1+t}+c_{1}\right)
$$

- Simplify

$$
y=(1+t)\left((1+t) \ln (1+t)+c_{1} t+c_{1}+1\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 22

```
dsolve(diff(y(t),t)= t+2*y(t)/(1+t),y(t), singsol=all)
```

$$
y(t)=(t+1)\left((t+1) \ln (t+1)+c_{1} t+c_{1}+1\right)
$$

\checkmark Solution by Mathematica
Time used: 0.054 (sec). Leaf size: 23

```
DSolve[y'[t]==t+2*y[t]/(1+t),y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow(t+1)^{2}\left(\frac{1}{t+1}+\log (t+1)+c_{1}\right)
$$

8.14 problem 27

8.14.1 Solving as quadrature ode . 1455
8.14.2 Maple step by step solution . 1456

Internal problem ID [13042]
Internal file name [OUTPUT/11694_Wednesday_November_08_2023_03_28_52_AM_18688578/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 27.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y^{2}=3
$$

8.14.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{2}+3} d y & =t+c_{1} \\
\frac{\sqrt{3} \arctan \left(\frac{\sqrt{3} y}{3}\right)}{3} & =t+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=\sqrt{3} \tan \left(\left(t+c_{1}\right) \sqrt{3}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{3} \tan \left(\left(t+c_{1}\right) \sqrt{3}\right) \tag{1}
\end{equation*}
$$

Figure 324: Slope field plot

Verification of solutions

$$
y=\sqrt{3} \tan \left(\left(t+c_{1}\right) \sqrt{3}\right)
$$

Verified OK.

8.14.2 Maple step by step solution

Let's solve

$$
y^{\prime}-y^{2}=3
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{3+y^{2}}=1
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{3+y^{2}} d t=\int 1 d t+c_{1}
$$

- Evaluate integral

$$
\frac{\sqrt{3} \arctan \left(\frac{y \sqrt{3}}{3}\right)}{3}=t+c_{1}
$$

- \quad Solve for y

$$
y=\sqrt{3} \tan \left(\left(t+c_{1}\right) \sqrt{3}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve(diff(y(t),t)= 3+y(t)^2,y(t), singsol=all)
```

$$
y(t)=\sqrt{3} \tan \left(\left(t+c_{1}\right) \sqrt{3}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.256 (sec). Leaf size: 48
DSolve[y' $[t]==3+y[t] \sim 2, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(t) \rightarrow \sqrt{3} \tan \left(\sqrt{3}\left(t+c_{1}\right)\right) \\
& y(t) \rightarrow-i \sqrt{3} \\
& y(t) \rightarrow i \sqrt{3}
\end{aligned}
$$

8.15 problem 28

8.15.1 Solving as quadrature ode . 1458
8.15.2 Maple step by step solution . 1460

Internal problem ID [13043]
Internal file name [OUTPUT/11695_Wednesday_November_08_2023_03_28_53_AM_26392571/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 28.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-2 y+y^{2}=0
$$

8.15.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-y^{2}+2 y} d y & =\int d t \\
-\frac{\ln (y-2)}{2}+\frac{\ln (y)}{2} & =t+c_{1}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(-\frac{1}{2}\right)(\ln (y-2)-\ln (y)) & =t+c_{1} \\
\ln (y-2)-\ln (y) & =(-2)\left(t+c_{1}\right) \\
& =-2 t-2 c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (y-2)-\ln (y)}=-2 c_{1} \mathrm{e}^{-2 t}
$$

Which simplifies to

$$
\frac{y-2}{y}=c_{2} \mathrm{e}^{-2 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2}{-1+c_{2} \mathrm{e}^{-2 t}} \tag{1}
\end{equation*}
$$

Figure 325: Slope field plot
Verification of solutions

$$
y=-\frac{2}{-1+c_{2} \mathrm{e}^{-2 t}}
$$

Verified OK.

8.15.2 Maple step by step solution

Let's solve

$$
y^{\prime}-2 y+y^{2}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{2 y-y^{2}}=1
$$

- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{2 y-y^{2}} d t=\int 1 d t+c_{1}
$$

- Evaluate integral

$$
-\frac{\ln (y-2)}{2}+\frac{\ln (y)}{2}=t+c_{1}
$$

- \quad Solve for y

$$
y=\frac{2 \mathrm{e}^{2 t+2 c_{1}}}{-1+\mathrm{e}^{2 t+2 c_{1}}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve(diff(y(t),t)=2*y(t)-y(t)~2,y(t), singsol=all)

$$
y(t)=\frac{2}{1+2 \mathrm{e}^{-2 t} c_{1}}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.447 (sec). Leaf size: 36

```
DSolve[y'[t]==2*y[t]-y[t]~2,y[t],t,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(t) \rightarrow \frac{2 e^{2 t}}{e^{2 t}+e^{2 c_{1}}} \\
& y(t) \rightarrow 0 \\
& y(t) \rightarrow 2
\end{aligned}
$$

8.16 problem 29

8.16.1 Solving as linear ode . 1462
8.16.2 Solving as first order ode lie symmetry lookup ode 1464
8.16.3 Solving as exact ode . 1468
8.16.4 Maple step by step solution . 1472

Internal problem ID [13044]
Internal file name [OUTPUT/11696_Wednesday_November_08_2023_03_28_53_AM_65199612/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 29.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+3 y=\mathrm{e}^{-2 t}+t^{2}
$$

8.16.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =3 \\
q(t) & =\mathrm{e}^{-2 t}+t^{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+3 y=\mathrm{e}^{-2 t}+t^{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 3 d t} \\
& =\mathrm{e}^{3 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\mathrm{e}^{-2 t}+t^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{3 t} y\right) & =\left(\mathrm{e}^{3 t}\right)\left(\mathrm{e}^{-2 t}+t^{2}\right) \\
\mathrm{d}\left(\mathrm{e}^{3 t} y\right) & =\left(\left(\mathrm{e}^{2 t} t^{2}+1\right) \mathrm{e}^{t}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{3 t} y=\int\left(\mathrm{e}^{2 t} t^{2}+1\right) \mathrm{e}^{t} \mathrm{~d} t \\
& \mathrm{e}^{3 t} y=\frac{t^{2} \mathrm{e}^{3 t}}{3}-\frac{2 t \mathrm{e}^{3 t}}{9}+\frac{2 \mathrm{e}^{3 t}}{27}+\mathrm{e}^{t}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{3 t}$ results in

$$
y=\mathrm{e}^{-3 t}\left(\frac{t^{2} \mathrm{e}^{3 t}}{3}-\frac{2 t \mathrm{e}^{3 t}}{9}+\frac{2 \mathrm{e}^{3 t}}{27}+\mathrm{e}^{t}\right)+\mathrm{e}^{-3 t} c_{1}
$$

which simplifies to

$$
y=\frac{t^{2}}{3}-\frac{2 t}{9}+\frac{2}{27}+\mathrm{e}^{-2 t}+\mathrm{e}^{-3 t} c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{t^{2}}{3}-\frac{2 t}{9}+\frac{2}{27}+\mathrm{e}^{-2 t}+\mathrm{e}^{-3 t} c_{1} \tag{1}
\end{equation*}
$$

Figure 326: Slope field plot

Verification of solutions

$$
y=\frac{t^{2}}{3}-\frac{2 t}{9}+\frac{2}{27}+\mathrm{e}^{-2 t}+\mathrm{e}^{-3 t} c_{1}
$$

Verified OK.

8.16.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-3 y+\mathrm{e}^{-2 t}+t^{2} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 321: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-3 t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-3 t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{3 t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-3 y+\mathrm{e}^{-2 t}+t^{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =3 \mathrm{e}^{3 t} y \\
S_{y} & =\mathrm{e}^{3 t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=t^{2} \mathrm{e}^{3 t}+\mathrm{e}^{t} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R^{2} \mathrm{e}^{3 R}+\mathrm{e}^{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2} \mathrm{e}^{3 R}}{3}-\frac{2 R \mathrm{e}^{3 R}}{9}+\frac{2 \mathrm{e}^{3 R}}{27}+\mathrm{e}^{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{3 t} y=\frac{t^{2} \mathrm{e}^{3 t}}{3}-\frac{2 t \mathrm{e}^{3 t}}{9}+\frac{2 \mathrm{e}^{3 t}}{27}+\mathrm{e}^{t}+c_{1}
$$

Which simplifies to

$$
\frac{\left(-9 t^{2}+6 t+27 y-2\right) \mathrm{e}^{3 t}}{27}-c_{1}-\mathrm{e}^{t}=0
$$

Which gives

$$
y=\frac{\left(9 t^{2} \mathrm{e}^{3 t}-6 t \mathrm{e}^{3 t}+27 \mathrm{e}^{t}+2 \mathrm{e}^{3 t}+27 c_{1}\right) \mathrm{e}^{-3 t}}{27}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-3 y+\mathrm{e}^{-2 t}+t^{2}$		$\frac{d S}{d R}=R^{2} \mathrm{e}^{3 R}+\mathrm{e}^{R}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow-\infty}+1+1+1+1$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
	$R=t$	+ $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty$
	$S=\mathrm{e}^{3 t} y$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow+]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
		-
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(9 t^{2} \mathrm{e}^{3 t}-6 t \mathrm{e}^{3 t}+27 \mathrm{e}^{t}+2 \mathrm{e}^{3 t}+27 c_{1}\right) \mathrm{e}^{-3 t}}{27} \tag{1}
\end{equation*}
$$

Figure 327: Slope field plot

Verification of solutions

$$
y=\frac{\left(9 t^{2} \mathrm{e}^{3 t}-6 t \mathrm{e}^{3 t}+27 \mathrm{e}^{t}+2 \mathrm{e}^{3 t}+27 c_{1}\right) \mathrm{e}^{-3 t}}{27}
$$

Verified OK.

8.16.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-3 y+\mathrm{e}^{-2 t}+t^{2}\right) \mathrm{d} t \\
\left(3 y-\mathrm{e}^{-2 t}-t^{2}\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =3 y-\mathrm{e}^{-2 t}-t^{2} \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(3 y-\mathrm{e}^{-2 t}-t^{2}\right) \\
& =3
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((3)-(0)) \\
& =3
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int 3 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{3 t} \\
& =\mathrm{e}^{3 t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{3 t}\left(3 y-\mathrm{e}^{-2 t}-t^{2}\right) \\
& =-\mathrm{e}^{t}\left(1+\left(t^{2}-3 y\right) \mathrm{e}^{2 t}\right)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{3 t}(1) \\
& =\mathrm{e}^{3 t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(-\mathrm{e}^{t}\left(1+\left(t^{2}-3 y\right) \mathrm{e}^{2 t}\right)\right)+\left(\mathrm{e}^{3 t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\mathrm{e}^{t}\left(1+\left(t^{2}-3 y\right) \mathrm{e}^{2 t}\right) \mathrm{d} t \\
\phi & =\frac{\left(-9 t^{2}+6 t+27 y-2\right) \mathrm{e}^{3 t}}{27}-\mathrm{e}^{t}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{3 t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{3 t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{3 t}=\mathrm{e}^{3 t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{\left(-9 t^{2}+6 t+27 y-2\right) \mathrm{e}^{3 t}}{27}-\mathrm{e}^{t}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{\left(-9 t^{2}+6 t+27 y-2\right) \mathrm{e}^{3 t}}{27}-\mathrm{e}^{t}
$$

The solution becomes

$$
y=\frac{\left(9 t^{2} \mathrm{e}^{3 t}-6 t \mathrm{e}^{3 t}+27 \mathrm{e}^{t}+2 \mathrm{e}^{3 t}+27 c_{1}\right) \mathrm{e}^{-3 t}}{27}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(9 t^{2} \mathrm{e}^{3 t}-6 t \mathrm{e}^{3 t}+27 \mathrm{e}^{t}+2 \mathrm{e}^{3 t}+27 c_{1}\right) \mathrm{e}^{-3 t}}{27} \tag{1}
\end{equation*}
$$

Figure 328: Slope field plot

Verification of solutions

$$
y=\frac{\left(9 t^{2} \mathrm{e}^{3 t}-6 t \mathrm{e}^{3 t}+27 \mathrm{e}^{t}+2 \mathrm{e}^{3 t}+27 c_{1}\right) \mathrm{e}^{-3 t}}{27}
$$

Verified OK.

8.16.4 Maple step by step solution

Let's solve
$y^{\prime}+3 y=\mathrm{e}^{-2 t}+t^{2}$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=-3 y+\mathrm{e}^{-2 t}+t^{2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+3 y=\mathrm{e}^{-2 t}+t^{2}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+3 y\right)=\mu(t)\left(\mathrm{e}^{-2 t}+t^{2}\right)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+3 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=3 \mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{3 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t)\left(\mathrm{e}^{-2 t}+t^{2}\right) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t)\left(\mathrm{e}^{-2 t}+t^{2}\right) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(t)\left(\mathrm{e}^{-2 t}+t^{2}\right) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{3 t}$
$y=\frac{\int\left(\mathrm{e}^{-2 t}+t^{2}\right) \mathrm{e}^{3 t} d t+c_{1}}{\mathrm{e}^{3 t}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{\left(e^{t}\right)^{3} t^{2}}{3}-\frac{2\left(e^{t}\right)^{3} t}{9}+\frac{2\left(e^{t}\right)^{3}}{27}+\mathrm{e}^{t}+c_{1}}{\mathrm{e}^{3 t}}$
- Simplify
$y=\frac{\left(\left(t^{2}-\frac{2}{3} t+\frac{2}{9}\right) \mathrm{e}^{3 t}+3 c_{1}+3 \mathrm{e}^{t}\right) \mathrm{e}^{-3 t}}{3}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
dsolve(diff (y (t),t)= -3*y(t)+exp(-2*t)+t^2,y(t), singsol=all)
```

$$
y(t)=\frac{t^{2}}{3}-\frac{2 t}{9}+\frac{2}{27}+\mathrm{e}^{-2 t}+c_{1} \mathrm{e}^{-3 t}
$$

\checkmark Solution by Mathematica
Time used: 0.147 (sec). Leaf size: 33
DSolve[y'[t] $==-3 * y[t]+\operatorname{Exp}[-2 * t]+t \wedge 2, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{1}{27}\left(9 t^{2}-6 t+2\right)+e^{-2 t}+c_{1} e^{-3 t}
$$

8.17 problem 30

8.17.1 Existence and uniqueness analysis 1476
8.17.2 Solving as separable ode . 1476
8.17.3 Solving as linear ode . 1477
8.17.4 Solving as homogeneousTypeD2 ode 1479
8.17.5 Solving as first order ode lie symmetry lookup ode 1480
8.17.6 Solving as exact ode . 1484
8.17.7 Maple step by step solution . 1488

Internal problem ID [13045]
Internal file name [OUTPUT/11697_Wednesday_November_08_2023_03_28_54_AM_79512382/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 30 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[_separable]
```

$$
x^{\prime}+x t=0
$$

With initial conditions

$$
[x(0)=\mathrm{e}]
$$

8.17.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
x^{\prime}+p(t) x=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =t \\
q(t) & =0
\end{aligned}
$$

Hence the ode is

$$
x^{\prime}+x t=0
$$

The domain of $p(t)=t$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. Hence solution exists and is unique.

8.17.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
x^{\prime} & =F(t, x) \\
& =f(t) g(x) \\
& =-t x
\end{aligned}
$$

Where $f(t)=-t$ and $g(x)=x$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{x} d x & =-t d t \\
\int \frac{1}{x} d x & =\int-t d t \\
\ln (x) & =-\frac{t^{2}}{2}+c_{1} \\
x & =\mathrm{e}^{-\frac{t^{2}}{2}+c_{1}} \\
& =\mathrm{e}^{-\frac{t^{2}}{2}} c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $x=\mathrm{e}$ in the above solution gives an equation to solve for the constant of integration.

$$
\mathrm{e}=c_{1}
$$

$$
c_{1}=\mathrm{e}
$$

Substituting c_{1} found above in the general solution gives

$$
x=\mathrm{e}^{-\frac{t^{2}}{2}} \mathrm{e}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\mathrm{e}^{-\frac{t^{2}}{2}} \mathrm{e} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
x=\mathrm{e}^{-\frac{t^{2}}{2}} \mathrm{e}
$$

Verified OK.

8.17.3 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int t d t} \\
& =\mathrm{e}^{\frac{t^{2}}{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \mu x & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} t}\left(\mathrm{e}^{\frac{t^{2}}{2}} x\right) & =0
\end{aligned}
$$

Integrating gives

$$
\mathrm{e}^{\frac{t^{2}}{2}} x=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\frac{t}{}_{2}^{2}}$ results in

$$
x=\mathrm{e}^{-\frac{t^{2}}{2}} c_{1}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $x=\mathrm{e}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \mathrm{e}=c_{1} \\
& c_{1}=\mathrm{e}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
x=\mathrm{e}^{-\frac{t^{2}}{2}} \mathrm{e}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
x=\mathrm{e}^{-\frac{t^{2}}{2}} \mathrm{e} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
x=\mathrm{e}^{-\frac{t^{2}}{2}} \mathrm{e}
$$

Verified OK.

8.17.4 Solving as homogeneousTypeD2 ode

Using the change of variables $x=u(t) t$ on the above ode results in new ode in $u(t)$

$$
u^{\prime}(t) t+u(t)+u(t) t^{2}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(t, u) \\
& =f(t) g(u) \\
& =-\frac{u\left(t^{2}+1\right)}{t}
\end{aligned}
$$

Where $f(t)=-\frac{t^{2}+1}{t}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{t^{2}+1}{t} d t \\
\int \frac{1}{u} d u & =\int-\frac{t^{2}+1}{t} d t \\
\ln (u) & =-\frac{t^{2}}{2}-\ln (t)+c_{2} \\
u & =\mathrm{e}^{-\frac{t^{2}}{2}-\ln (t)+c_{2}} \\
& =c_{2} \mathrm{e}^{-\frac{t^{2}}{2}-\ln (t)}
\end{aligned}
$$

Which simplifies to

$$
u(t)=\frac{c_{2} \mathrm{e}^{-\frac{t^{2}}{2}}}{t}
$$

Therefore the solution x is

$$
\begin{aligned}
x & =t u \\
& =c_{2} \mathrm{e}^{-\frac{t^{2}}{2}}
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=0$ and $x=\mathrm{e}$ in the above solution gives an equation to solve for the constant of integration.

$$
\mathrm{e}=c_{2}
$$

$$
c_{2}=\mathrm{e}
$$

Substituting c_{2} found above in the general solution gives

$$
x=\mathrm{e}^{-\frac{t^{2}}{2}} \mathrm{e}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\mathrm{e}^{-\frac{t^{2}}{2}} \mathrm{e} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
x=\mathrm{e}^{-\frac{t^{2}}{2}} \mathrm{e}
$$

Verified OK.

8.17.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
x^{\prime} & =-t x \\
x^{\prime} & =\omega(t, x)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{x}-\xi_{t}\right)-\omega^{2} \xi_{x}-\omega_{t} \xi-\omega_{x} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 324: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(t, x) & =0 \\
\eta(t, x) & =\mathrm{e}^{-\frac{t^{2}}{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, x) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d x}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial x}\right) S(t, x)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\frac{t^{2}}{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\frac{t^{2}}{2}} x
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, x) S_{x}}{R_{t}+\omega(t, x) R_{x}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{x}, S_{t}, S_{x}$ are all partial derivatives and $\omega(t, x)$ is the right hand side of the original ode given by

$$
\omega(t, x)=-t x
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{x} & =0 \\
S_{t} & =t \mathrm{e}^{\frac{t^{2}}{2}} x \\
S_{x} & =\mathrm{e}^{\frac{t^{2}}{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, x in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, x coordinates. This results in

$$
\mathrm{e}^{\frac{t^{2}}{2}} x=c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{\frac{t^{2}}{2}} x=c_{1}
$$

Which gives

$$
x=\mathrm{e}^{-\frac{t^{2}}{2}} c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, x coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d x}{d t}=-t x$		$\frac{d S}{d R}=0$
		$\rightarrow \rightarrow$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 40}$ 为
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow-S(R)} \rightarrow$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
	$R=t$	$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
	$S=\mathrm{e}^{\frac{t^{2}}{2}} x$	
		$\rightarrow \rightarrow \rightarrow$ 边
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\triangle+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $x=\mathrm{e}$ in the above solution gives an equation to solve for the constant of integration.

$$
\mathrm{e}=c_{1}
$$

$$
c_{1}=\mathrm{e}
$$

Substituting c_{1} found above in the general solution gives

$$
x=\mathrm{e}^{-\frac{t^{2}}{2}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\mathrm{e}^{-\frac{t^{2}}{2}+1} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
x=\mathrm{e}^{-\frac{t^{2}}{2}+1}
$$

Verified OK.

8.17.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, x) \mathrm{d} t+N(t, x) \mathrm{d} x=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{1}{x}\right) \mathrm{d} x & =(t) \mathrm{d} t \\
(-t) \mathrm{d} t+\left(-\frac{1}{x}\right) \mathrm{d} x & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, x)=-t \\
& N(t, x)=-\frac{1}{x}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial x}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial x} & =\frac{\partial}{\partial x}(-t) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial x}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, x)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial x}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-t \mathrm{~d} t \\
\phi & =-\frac{t^{2}}{2}+f(x) \tag{3}
\end{align*}
$$

Where $f(x)$ is used for the constant of integration since ϕ is a function of both t and x. Taking derivative of equation (3) w.r.t x gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}=0+f^{\prime}(x) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial x}=-\frac{1}{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{x}=0+f^{\prime}(x) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(x)$ gives

$$
f^{\prime}(x)=-\frac{1}{x}
$$

Integrating the above w.r.t x gives

$$
\begin{aligned}
\int f^{\prime}(x) \mathrm{d} x & =\int\left(-\frac{1}{x}\right) \mathrm{d} x \\
f(x) & =-\ln (x)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(x)$ into equation (3) gives ϕ

$$
\phi=-\frac{t^{2}}{2}-\ln (x)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{t^{2}}{2}-\ln (x)
$$

The solution becomes

$$
x=\mathrm{e}^{-\frac{t^{2}}{2}-c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $x=\mathrm{e}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& \mathrm{e}=\mathrm{e}^{-c_{1}} \\
& c_{1}=-1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
x=\mathrm{e}^{-\frac{t^{2}}{2}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x=\mathrm{e}^{-\frac{t^{2}}{2}+1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
x=\mathrm{e}^{-\frac{t^{2}}{2}+1}
$$

Verified OK.

8.17.7 Maple step by step solution

Let's solve

$$
\left[x^{\prime}+x t=0, x(0)=\mathrm{e}\right]
$$

- Highest derivative means the order of the ODE is 1
x^{\prime}
- \quad Separate variables
$\frac{x^{\prime}}{x}=-t$
- Integrate both sides with respect to t

$$
\int \frac{x^{\prime}}{x} d t=\int-t d t+c_{1}
$$

- Evaluate integral

$$
\ln (x)=-\frac{t^{2}}{2}+c_{1}
$$

- \quad Solve for x
$x=\mathrm{e}^{-\frac{t^{2}}{2}+c_{1}}$
- Use initial condition $x(0)=\mathrm{e}$

$$
\mathrm{e}=\mathrm{e}^{c_{1}}
$$

- \quad Solve for c_{1}
$c_{1}=1$
- \quad Substitute $c_{1}=1$ into general solution and simplify
$x=\mathrm{e}^{-\frac{t^{2}}{2}+1}$
- \quad Solution to the IVP
$x=\mathrm{e}^{-\frac{t^{2}}{2}+1}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve([diff(x(t),t)= -t*x(t),x(0) = exp(1)],x(t), singsol=all)
```

$$
x(t)=\mathrm{e}^{1-\frac{t^{2}}{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 16

```
DSolve[{x'[t]==-t*x[t],{x[0]==Exp[1]}},x[t],t,IncludeSingularSolutions -> True]
```

$$
x(t) \rightarrow e^{1-\frac{t^{2}}{2}}
$$

8.18 problem 31

8.18.1 Existence and uniqueness analysis 1490
8.18.2 Solving as linear ode . 1491
8.18.3 Solving as first order ode lie symmetry lookup ode 1493
8.18.4 Solving as exact ode . 1497
8.18.5 Maple step by step solution . 1501

Internal problem ID [13046]
Internal file name [OUTPUT/11698_Wednesday_November_08_2023_03_28_55_AM_78194016/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 31.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-2 y=\cos (4 t)
$$

With initial conditions

$$
[y(0)=1]
$$

8.18.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-2 \\
q(t) & =\cos (4 t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-2 y=\cos (4 t)
$$

The domain of $p(t)=-2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=\cos (4 t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

8.18.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-2) d t} \\
& =\mathrm{e}^{-2 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)(\cos (4 t)) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-2 t} y\right) & =\left(\mathrm{e}^{-2 t}\right)(\cos (4 t)) \\
\mathrm{d}\left(\mathrm{e}^{-2 t} y\right) & =\left(\cos (4 t) \mathrm{e}^{-2 t}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-2 t} y=\int \cos (4 t) \mathrm{e}^{-2 t} \mathrm{~d} t \\
& \mathrm{e}^{-2 t} y=-\frac{\cos (4 t) \mathrm{e}^{-2 t}}{10}+\frac{\sin (4 t) \mathrm{e}^{-2 t}}{5}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-2 t}$ results in

$$
y=\mathrm{e}^{2 t}\left(-\frac{\cos (4 t) \mathrm{e}^{-2 t}}{10}+\frac{\sin (4 t) \mathrm{e}^{-2 t}}{5}\right)+c_{1} \mathrm{e}^{2 t}
$$

which simplifies to

$$
y=c_{1} \mathrm{e}^{2 t}+\frac{\sin (4 t)}{5}-\frac{\cos (4 t)}{10}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=c_{1}-\frac{1}{10} \\
c_{1}=\frac{11}{10}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{11 \mathrm{e}^{2 t}}{10}+\frac{\sin (4 t)}{5}-\frac{\cos (4 t)}{10}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{11 \mathrm{e}^{2 t}}{10}+\frac{\sin (4 t)}{5}-\frac{\cos (4 t)}{10} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{11 \mathrm{e}^{2 t}}{10}+\frac{\sin (4 t)}{5}-\frac{\cos (4 t)}{10}
$$

Verified OK.

8.18.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =2 y+\cos (4 t) \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 327: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{2 t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{2 t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-2 t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=2 y+\cos (4 t)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-2 \mathrm{e}^{-2 t} y \\
S_{y} & =\mathrm{e}^{-2 t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\cos (4 t) \mathrm{e}^{-2 t} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\cos (4 R) \mathrm{e}^{-2 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1}-\frac{\mathrm{e}^{-2 R}(\cos (4 R)-2 \sin (4 R))}{10} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-2 t} y=-\frac{(\cos (4 t)-2 \sin (4 t)) \mathrm{e}^{-2 t}}{10}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-2 t} y=-\frac{(\cos (4 t)-2 \sin (4 t)) \mathrm{e}^{-2 t}}{10}+c_{1}
$$

Which gives

$$
y=-\frac{\mathrm{e}^{2 t}\left(\cos (4 t) \mathrm{e}^{-2 t}-2 \sin (4 t) \mathrm{e}^{-2 t}-10 c_{1}\right)}{10}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=2 y+\cos (4 t)$		$\frac{d S}{d R}=\cos (4 R) \mathrm{e}^{-2 R}$
¢ 4 ¢		
		$\xrightarrow{\text { l }} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
	$R=t$	
	$S=\mathrm{e}^{-2 t} y$	
bfibly fitiof		
		\rightarrow
		\rightarrow

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=c_{1}-\frac{1}{10} \\
c_{1}=\frac{11}{10}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{11 \mathrm{e}^{2 t}}{10}+\frac{\sin (4 t)}{5}-\frac{\cos (4 t)}{10}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{11 \mathrm{e}^{2 t}}{10}+\frac{\sin (4 t)}{5}-\frac{\cos (4 t)}{10} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{11 \mathrm{e}^{2 t}}{10}+\frac{\sin (4 t)}{5}-\frac{\cos (4 t)}{10}
$$

Verified OK.

8.18.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(2 y+\cos (4 t)) \mathrm{d} t \\
(-2 y-\cos (4 t)) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-2 y-\cos (4 t) \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-2 y-\cos (4 t)) \\
& =-2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((-2)-(0)) \\
& =-2
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-2 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 t} \\
& =\mathrm{e}^{-2 t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-2 t}(-2 y-\cos (4 t)) \\
& =-\mathrm{e}^{-2 t}(2 y+\cos (4 t))
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-2 t}(1) \\
& =\mathrm{e}^{-2 t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(-\mathrm{e}^{-2 t}(2 y+\cos (4 t))\right)+\left(\mathrm{e}^{-2 t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\mathrm{e}^{-2 t}(2 y+\cos (4 t)) \mathrm{d} t \\
\phi & =\frac{(10 y+\cos (4 t)-2 \sin (4 t)) \mathrm{e}^{-2 t}}{10}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-2 t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-2 t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-2 t}=\mathrm{e}^{-2 t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{(10 y+\cos (4 t)-2 \sin (4 t)) \mathrm{e}^{-2 t}}{10}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{(10 y+\cos (4 t)-2 \sin (4 t)) \mathrm{e}^{-2 t}}{10}
$$

The solution becomes

$$
y=-\frac{\mathrm{e}^{2 t}\left(\cos (4 t) \mathrm{e}^{-2 t}-2 \sin (4 t) \mathrm{e}^{-2 t}-10 c_{1}\right)}{10}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=c_{1}-\frac{1}{10} \\
c_{1}=\frac{11}{10}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{11 \mathrm{e}^{2 t}}{10}+\frac{\sin (4 t)}{5}-\frac{\cos (4 t)}{10}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{11 \mathrm{e}^{2 t}}{10}+\frac{\sin (4 t)}{5}-\frac{\cos (4 t)}{10} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{11 \mathrm{e}^{2 t}}{10}+\frac{\sin (4 t)}{5}-\frac{\cos (4 t)}{10}
$$

Verified OK.

8.18.5 Maple step by step solution

Let's solve
$\left[y^{\prime}-2 y=\cos (4 t), y(0)=1\right]$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=2 y+\cos (4 t)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-2 y=\cos (4 t)$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-2 y\right)=\mu(t) \cos (4 t)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-2 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-2 \mu(t)$
- \quad Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-2 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int \mu(t) \cos (4 t) d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int \mu(t) \cos (4 t) d t+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(t) \cos (4 t) d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-2 t}$
$y=\frac{\int \cos (4 t) \mathrm{e}^{-2 t} d t+c_{1}}{\mathrm{e}^{-2 t}}$
- Evaluate the integrals on the rhs
$y=\frac{-\frac{\cos (4 t) \mathrm{e}^{-2 t}}{10}+\frac{\sin (4 t) \mathrm{e}^{-2 t}}{5}+c_{1}}{\mathrm{e}^{-2 t}}$
- Simplify
$y=c_{1} \mathrm{e}^{2 t}+\frac{\sin (4 t)}{5}-\frac{\cos (4 t)}{10}$
- Use initial condition $y(0)=1$
$1=c_{1}-\frac{1}{10}$
- \quad Solve for c_{1}
$c_{1}=\frac{11}{10}$
- \quad Substitute $c_{1}=\frac{11}{10}$ into general solution and simplify
$y=\frac{11 \mathrm{e}^{2 t}}{10}+\frac{\sin (4 t)}{5}-\frac{\cos (4 t)}{10}$
- \quad Solution to the IVP
$y=\frac{11 \mathrm{e}^{2 t}}{10}+\frac{\sin (4 t)}{5}-\frac{\cos (4 t)}{10}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve([diff(y(t),t)= 2*y(t)+cos(4*t),y(0) = 1],y(t), singsol=all)
```

$$
y(t)=-\frac{\cos (4 t)}{10}+\frac{\sin (4 t)}{5}+\frac{11 \mathrm{e}^{2 t}}{10}
$$

\checkmark Solution by Mathematica
Time used: 0.159 (sec). Leaf size: 29
DSolve[\{y' $[\mathrm{t}]==2 * \mathrm{y}[\mathrm{t}]+\operatorname{Cos}[4 * \mathrm{t}],\{\mathrm{y}[0]==1\}\}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{1}{10}\left(11 e^{2 t}+2 \sin (4 t)-\cos (4 t)\right)
$$

8.19 problem 32

8.19.1 Existence and uniqueness analysis 1504
8.19.2 Solving as linear ode . 1505
8.19.3 Solving as first order ode lie symmetry lookup ode 1507
8.19.4 Solving as exact ode . 1511
8.19.5 Maple step by step solution . 1515

Internal problem ID [13047]
Internal file name [OUTPUT/11699_Wednesday_November_08_2023_03_28_56_AM_8180774/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 32 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-3 y=2 \mathrm{e}^{3 t}
$$

With initial conditions

$$
[y(0)=-1]
$$

8.19.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =-3 \\
q(t) & =2 \mathrm{e}^{3 t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-3 y=2 \mathrm{e}^{3 t}
$$

The domain of $p(t)=-3$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=2 \mathrm{e}^{3 t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

8.19.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-3) d t} \\
& =\mathrm{e}^{-3 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(2 \mathrm{e}^{3 t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-3 t} y\right) & =\left(\mathrm{e}^{-3 t}\right)\left(2 \mathrm{e}^{3 t}\right) \\
\mathrm{d}\left(\mathrm{e}^{-3 t} y\right) & =2 \mathrm{~d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-3 t} y=\int 2 \mathrm{~d} t \\
& \mathrm{e}^{-3 t} y=2 t+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-3 t}$ results in

$$
y=2 t \mathrm{e}^{3 t}+c_{1} \mathrm{e}^{3 t}
$$

which simplifies to

$$
y=\mathrm{e}^{3 t}\left(2 t+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -1=c_{1} \\
& c_{1}=-1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\mathrm{e}^{3 t}(2 t-1)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{3 t}(2 t-1) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{3 t}(2 t-1)
$$

Verified OK.

8.19.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=3 y+2 \mathrm{e}^{3 t} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 330: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{3 t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{3 t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-3 t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=3 y+2 \mathrm{e}^{3 t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-3 \mathrm{e}^{-3 t} y \\
S_{y} & =\mathrm{e}^{-3 t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=2 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=2
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=2 R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-3 t} y=2 t+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-3 t} y=2 t+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{3 t}\left(2 t+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=3 y+2 \mathrm{e}^{3 t}$		$\frac{d S}{d R}=2$
¢ ${ }_{\text {¢ }}^{+}$		
	$R=t$	
	$S=\mathrm{e}^{-3 t} y$	
	$S=\mathrm{e}^{-3 t} y$	
1		
blitidatatatata		

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -1=c_{1} \\
& c_{1}=-1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=2 t \mathrm{e}^{3 t}-\mathrm{e}^{3 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 t \mathrm{e}^{3 t}-\mathrm{e}^{3 t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=2 t \mathrm{e}^{3 t}-\mathrm{e}^{3 t}
$$

Verified OK.

8.19.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(3 y+2 \mathrm{e}^{3 t}\right) \mathrm{d} t \\
\left(-3 y-2 \mathrm{e}^{3 t}\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-3 y-2 \mathrm{e}^{3 t} \\
& N(t, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-3 y-2 \mathrm{e}^{3 t}\right) \\
& =-3
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((-3)-(0)) \\
& =-3
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-3 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-3 t} \\
& =\mathrm{e}^{-3 t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-3 t}\left(-3 y-2 \mathrm{e}^{3 t}\right) \\
& =-3 \mathrm{e}^{-3 t} y-2
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-3 t}(1) \\
& =\mathrm{e}^{-3 t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(-3 \mathrm{e}^{-3 t} y-2\right)+\left(\mathrm{e}^{-3 t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-3 \mathrm{e}^{-3 t} y-2 \mathrm{~d} t \\
\phi & =-2 t+\mathrm{e}^{-3 t} y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-3 t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-3 t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-3 t}=\mathrm{e}^{-3 t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-2 t+\mathrm{e}^{-3 t} y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-2 t+\mathrm{e}^{-3 t} y
$$

The solution becomes

$$
y=\mathrm{e}^{3 t}\left(2 t+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -1=c_{1} \\
& c_{1}=-1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=2 t \mathrm{e}^{3 t}-\mathrm{e}^{3 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 t \mathrm{e}^{3 t}-\mathrm{e}^{3 t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=2 t \mathrm{e}^{3 t}-\mathrm{e}^{3 t}
$$

Verified OK.

8.19.5 Maple step by step solution

Let's solve
$\left[y^{\prime}-3 y=2 \mathrm{e}^{3 t}, y(0)=-1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=3 y+2 \mathrm{e}^{3 t}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}-3 y=2 \mathrm{e}^{3 t}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-3 y\right)=2 \mu(t) \mathrm{e}^{3 t}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-3 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-3 \mu(t)$
- \quad Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-3 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 2 \mu(t) \mathrm{e}^{3 t} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 2 \mu(t) \mathrm{e}^{3 t} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 2 \mu(t) e^{3 t} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{-3 t}$
$y=\frac{\int 2 \mathrm{e}^{33} \mathrm{e}^{-3 t} d t+c_{1}}{\mathrm{e}^{-3 t}}$
- Evaluate the integrals on the rhs
$y=\frac{2 t+c_{1}}{\mathrm{e}^{-3 t}}$
- Simplify
$y=\mathrm{e}^{3 t}\left(2 t+c_{1}\right)$
- Use initial condition $y(0)=-1$
$-1=c_{1}$
- \quad Solve for c_{1}
$c_{1}=-1$
- Substitute $c_{1}=-1$ into general solution and simplify
$y=\mathrm{e}^{3 t}(2 t-1)$
- \quad Solution to the IVP
$y=\mathrm{e}^{3 t}(2 t-1)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

```
dsolve([diff(y(t),t)= 3*y(t)+2*exp(3*t),y(0) = -1],y(t), singsol=all)
```

$$
y(t)=(2 t-1) \mathrm{e}^{3 t}
$$

\checkmark Solution by Mathematica
Time used: 0.07 (sec). Leaf size: 16
DSolve[\{y' $[t]==3 * y[t]+2 * \operatorname{Exp}[3 * t],\{y[0]==-1\}\}, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow e^{3 t}(2 t-1)
$$

8.20 problem 33

8.20.1 Existence and uniqueness analysis 1518
8.20.2 Solving as separable ode . 1519
8.20.3 Solving as first order ode lie symmetry lookup ode 1521
8.20.4 Solving as exact ode . 1526
8.20.5 Maple step by step solution . 1530

Internal problem ID [13048]
Internal file name [OUTPUT/11700_Wednesday_November_08_2023_03_28_56_AM_46356146/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 33 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-t^{2} y^{3}-y^{3}=0
$$

With initial conditions

$$
\left[y(0)=-\frac{1}{2}\right]
$$

8.20.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =y^{3} t^{2}+y^{3}
\end{aligned}
$$

The t domain of $f(t, y)$ when $y=-\frac{1}{2}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-\frac{1}{2}$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(y^{3} t^{2}+y^{3}\right) \\
& =3 y^{2} t^{2}+3 y^{2}
\end{aligned}
$$

The t domain of $\frac{\partial f}{\partial y}$ when $y=-\frac{1}{2}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-\frac{1}{2}$ is inside this domain. Therefore solution exists and is unique.

8.20.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =y^{3}\left(t^{2}+1\right)
\end{aligned}
$$

Where $f(t)=t^{2}+1$ and $g(y)=y^{3}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{3}} d y & =t^{2}+1 d t \\
\int \frac{1}{y^{3}} d y & =\int t^{2}+1 d t \\
-\frac{1}{2 y^{2}} & =\frac{1}{3} t^{3}+t+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=-\frac{3}{\sqrt{-6 t^{3}-18 c_{1}-18 t}} \\
& y=\frac{3}{\sqrt{-6 t^{3}-18 c_{1}-18 t}}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=-\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
-\frac{1}{2}=\frac{1}{\sqrt{-2 c_{1}}}
$$

Warning: Unable to solve for c_{1}. No particular solution can be found using given initial conditions for this solution. removing this solution as not valid. Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=-\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-\frac{1}{2}=-\frac{1}{\sqrt{-2 c_{1}}} \\
c_{1}=-2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{3}{\sqrt{-6 t^{3}-18 t+36}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{3}{\sqrt{-6 t^{3}-18 t+36}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{3}{\sqrt{-6 t^{3}-18 t+36}}
$$

Verified OK.

8.20.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =y^{3} t^{2}+y^{3} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 333: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=\frac{1}{t^{2}+1} \\
& \eta(t, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{\frac{1}{t^{2}+1}} d t
\end{aligned}
$$

Which results in

$$
S=\frac{1}{3} t^{3}+t
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=y^{3} t^{2}+y^{3}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{y} & =1 \\
S_{t} & =t^{2}+1 \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{3}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{3}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{2 R^{2}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\frac{1}{3} t^{3}+t=-\frac{1}{2 y^{2}}+c_{1}
$$

Which simplifies to

$$
\frac{1}{3} t^{3}+t=-\frac{1}{2 y^{2}}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=y^{3} t^{2}+y^{3}$		$\frac{d S}{d R}=\frac{1}{R^{3}}$
(tat		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{\rightarrow \rightarrow \rightarrow \rightarrow}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
	$R=y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }$
1,	$S=\frac{1}{3} t^{3}+t$	
1:		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty}$
, ${ }^{\text {d }}$		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
		$\rightarrow \rightarrow \rightarrow \rightarrow \infty$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=-\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=-2+c_{1} \\
c_{1}=2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{1}{3} t^{3}+t=\frac{4 y^{2}-1}{2 y^{2}}
$$

The above simplifies to

$$
2 y^{2} t^{3}+6 t y^{2}-12 y^{2}+3=0
$$

Solving for y from the above gives

$$
y=-\frac{3}{\sqrt{-6 t^{3}-18 t+36}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{3}{\sqrt{-6 t^{3}-18 t+36}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{3}{\sqrt{-6 t^{3}-18 t+36}}
$$

Verified OK.

8.20.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y^{3}}\right) \mathrm{d} y & =\left(t^{2}+1\right) \mathrm{d} t \\
\left(-t^{2}-1\right) \mathrm{d} t+\left(\frac{1}{y^{3}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-t^{2}-1 \\
& N(t, y)=\frac{1}{y^{3}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-t^{2}-1\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\frac{1}{y^{3}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-t^{2}-1 \mathrm{~d} t \\
\phi & =-\frac{1}{3} t^{3}-t+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y^{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y^{3}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y^{3}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y^{3}}\right) \mathrm{d} y \\
f(y) & =-\frac{1}{2 y^{2}}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{t^{3}}{3}-\frac{1}{2 y^{2}}-t+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{t^{3}}{3}-\frac{1}{2 y^{2}}-t
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=-\frac{1}{2}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -2=c_{1} \\
& c_{1}=-2
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{t^{3}}{3}-\frac{1}{2 y^{2}}-t=-2
$$

The above simplifies to

$$
-2 y^{2} t^{3}-6 t y^{2}+12 y^{2}-3=0
$$

Solving for y from the above gives

$$
y=-\frac{3}{\sqrt{-6 t^{3}-18 t+36}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{3}{\sqrt{-6 t^{3}-18 t+36}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{3}{\sqrt{-6 t^{3}-18 t+36}}
$$

Verified OK.

8.20.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-t^{2} y^{3}-y^{3}=0, y(0)=-\frac{1}{2}\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{y^{3}}=t^{2}+1
$$

- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y^{3}} d t=\int\left(t^{2}+1\right) d t+c_{1}$
- Evaluate integral
$-\frac{1}{2 y^{2}}=\frac{1}{3} t^{3}+t+c_{1}$
- \quad Solve for y
$\left\{y=-\frac{3}{\sqrt{-6 t^{3}-18 c_{1}-18 t}}, y=\frac{3}{\sqrt{-6 t^{3}-18 c_{1}-18 t}}\right\}$
- Use initial condition $y(0)=-\frac{1}{2}$
$-\frac{1}{2}=-\frac{3}{\sqrt{-18 c_{1}}}$
- \quad Solve for c_{1}
$c_{1}=-2$
- Substitute $c_{1}=-2$ into general solution and simplify
$y=-\frac{3}{\sqrt{-6 t^{3}-18 t+36}}$
- Use initial condition $y(0)=-\frac{1}{2}$
$-\frac{1}{2}=\frac{3}{\sqrt{-18 c_{1}}}$
- Solution does not satisfy initial condition
- Solution to the IVP
$y=-\frac{3}{\sqrt{-6 t^{3}-18 t+36}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.14 (sec). Leaf size: 18

```
dsolve([diff(y(t),t)= t^2*y(t)^3+y(t)^3,y(0) = -1/2],y(t), singsol=all)
```

$$
y(t)=-\frac{3}{\sqrt{-6 t^{3}-18 t+36}}
$$

\checkmark Solution by Mathematica
Time used: 0.319 (sec). Leaf size: 28
DSolve[\{y' $\left.[\mathrm{t}]==\mathrm{t}^{\wedge} 2 * y[\mathrm{t}] \wedge 3+\mathrm{y}[\mathrm{t}] \wedge 3,\{y[0]==-1 / 2\}\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow-\frac{\sqrt{\frac{3}{2}}}{\sqrt{-t^{3}-3 t+6}}
$$

8.21 problem 34

8.21.1 Existence and uniqueness analysis 1532
8.21.2 Solving as linear ode . 1533
8.21.3 Solving as first order ode lie symmetry lookup ode 1535
8.21.4 Solving as exact ode . 1539
8.21.5 Maple step by step solution . 1543

Internal problem ID [13049]
Internal file name [OUTPUT/11701_Wednesday_November_08_2023_03_28_57_AM_4011091/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 34 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+5 y=3 \mathrm{e}^{-5 t}
$$

With initial conditions

$$
[y(0)=-2]
$$

8.21.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
p(t) & =5 \\
q(t) & =3 \mathrm{e}^{-5 t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+5 y=3 \mathrm{e}^{-5 t}
$$

The domain of $p(t)=5$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=3 \mathrm{e}^{-5 t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

8.21.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int 5 d t} \\
=\mathrm{e}^{5 t}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(3 \mathrm{e}^{-5 t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{5 t} y\right) & =\left(\mathrm{e}^{5 t}\right)\left(3 \mathrm{e}^{-5 t}\right) \\
\mathrm{d}\left(\mathrm{e}^{5 t} y\right) & =3 \mathrm{~d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{5 t} y=\int 3 \mathrm{~d} t \\
& \mathrm{e}^{5 t} y=3 t+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{5 t}$ results in

$$
y=3 t \mathrm{e}^{-5 t}+c_{1} \mathrm{e}^{-5 t}
$$

which simplifies to

$$
y=\mathrm{e}^{-5 t}\left(3 t+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -2=c_{1} \\
& c_{1}=-2
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\mathrm{e}^{-5 t}(-2+3 t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-5 t}(-2+3 t) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-5 t}(-2+3 t)
$$

Verified OK.

8.21.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-5 y+3 \mathrm{e}^{-5 t} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 336: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{-5 t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-5 t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{5 t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=-5 y+3 \mathrm{e}^{-5 t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =5 \mathrm{e}^{5 t} y \\
S_{y} & =\mathrm{e}^{5 t}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=3 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=3
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=3 R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{5 t} y=3 t+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{5 t} y=3 t+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{-5 t}\left(3 t+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=-5 y+3 \mathrm{e}^{-5 t}$		$\frac{d S}{d R}=3$
,		
	$R=t$	
	$S=\mathrm{e}^{5 t} y$	
		Af年Af

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -2=c_{1} \\
& c_{1}=-2
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=3 t \mathrm{e}^{-5 t}-2 \mathrm{e}^{-5 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 t \mathrm{e}^{-5 t}-2 \mathrm{e}^{-5 t} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=3 t \mathrm{e}^{-5 t}-2 \mathrm{e}^{-5 t}
$$

Verified OK.

8.21.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-5 y+3 \mathrm{e}^{-5 t}\right) \mathrm{d} t \\
\left(5 y-3 \mathrm{e}^{-5 t}\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =5 y-3 \mathrm{e}^{-5 t} \\
N(t, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(5 y-3 \mathrm{e}^{-5 t}\right) \\
& =5
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((5)-(0)) \\
& =5
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int 5 \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{5 t} \\
& =\mathrm{e}^{5 t}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{5 t}\left(5 y-3 \mathrm{e}^{-5 t}\right) \\
& =5 \mathrm{e}^{5 t} y-3
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{5 t}(1) \\
& =\mathrm{e}^{5 t}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(5 \mathrm{e}^{5 t} y-3\right)+\left(\mathrm{e}^{5 t}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int 5 \mathrm{e}^{5 t} y-3 \mathrm{~d} t \\
\phi & =-3 t+\mathrm{e}^{5 t} y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{5 t}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{5 t}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{5 t}=\mathrm{e}^{5 t}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-3 t+\mathrm{e}^{5 t} y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-3 t+\mathrm{e}^{5 t} y
$$

The solution becomes

$$
y=\mathrm{e}^{-5 t}\left(3 t+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& -2=c_{1} \\
& c_{1}=-2
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=3 t \mathrm{e}^{-5 t}-2 \mathrm{e}^{-5 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 t \mathrm{e}^{-5 t}-2 \mathrm{e}^{-5 t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=3 t \mathrm{e}^{-5 t}-2 \mathrm{e}^{-5 t}
$$

Verified OK.

8.21.5 Maple step by step solution

Let's solve
$\left[y^{\prime}+5 y=3 \mathrm{e}^{-5 t}, y(0)=-2\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-5 y+3 \mathrm{e}^{-5 t}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+5 y=3 \mathrm{e}^{-5 t}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}+5 y\right)=3 \mu(t) \mathrm{e}^{-5 t}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}+5 y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=5 \mu(t)$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{5 t}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 3 \mu(t) \mathrm{e}^{-5 t} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 3 \mu(t) \mathrm{e}^{-5 t} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 3 \mu(t) \mathrm{e}^{-5 t} d t+c_{1}}{\mu(t)}$
- \quad Substitute $\mu(t)=\mathrm{e}^{5 t}$
$y=\frac{\int 3 \mathrm{e}^{5 t} \mathrm{e}^{-5 t} d t+c_{1}}{\mathrm{e}^{5 t}}$
- Evaluate the integrals on the rhs
$y=\frac{3 t+c_{1}}{\mathrm{e}^{5 t}}$
- Simplify
$y=\mathrm{e}^{-5 t}\left(3 t+c_{1}\right)$
- Use initial condition $y(0)=-2$
$-2=c_{1}$
- \quad Solve for c_{1}
$c_{1}=-2$
- Substitute $c_{1}=-2$ into general solution and simplify
$y=\mathrm{e}^{-5 t}(-2+3 t)$
- \quad Solution to the IVP
$y=\mathrm{e}^{-5 t}(-2+3 t)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve([diff(y(t),t)+5*y(t)= 3*exp(-5*t),y(0) = -2],y(t), singsol=all)
```

$$
y(t)=(-2+3 t) \mathrm{e}^{-5 t}
$$

\checkmark Solution by Mathematica
Time used: 0.085 (sec). Leaf size: 16

$$
\begin{aligned}
& \text { DSolve }\left[\left\{y^{\prime}[\mathrm{t}]+5 * \mathrm{y}[\mathrm{t}]==3 * \operatorname{Exp}[-5 * \mathrm{t}],\{\mathrm{y}[0]==-2\}\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t} \text {, IncludeSingularSolutions } \rightarrow \text { True }\right] \\
& \qquad y(t) \rightarrow e^{-5 t}(3 t-2)
\end{aligned}
$$

8.22 problem 35

8.22.1 Existence and uniqueness analysis 1546
8.22.2 Solving as linear ode . 1547
8.22.3 Solving as first order ode lie symmetry lookup ode 1549
8.22.4 Solving as exact ode . 1553
8.22.5 Maple step by step solution . 1557

Internal problem ID [13050]
Internal file name [OUTPUT/11702_Wednesday_November_08_2023_03_28_58_AM_47061977/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 35 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-2 t y=3 t \mathrm{e}^{t^{2}}
$$

With initial conditions

$$
[y(0)=1]
$$

8.22.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-2 t \\
& q(t)=3 t \mathrm{e}^{t^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-2 t y=3 t \mathrm{e}^{t^{2}}
$$

The domain of $p(t)=-2 t$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=3 t \mathrm{e}^{t^{2}}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

8.22.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-2 t d t} \\
& =\mathrm{e}^{-t^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(3 t \mathrm{e}^{t^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-t^{2}} y\right) & =\left(\mathrm{e}^{-t^{2}}\right)\left(3 t \mathrm{e}^{t^{2}}\right) \\
\mathrm{d}\left(\mathrm{e}^{-t^{2}} y\right) & =(3 t) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-t^{2}} y=\int 3 t \mathrm{~d} t \\
& \mathrm{e}^{-t^{2}} y=\frac{3 t^{2}}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-t^{2}}$ results in

$$
y=\frac{3 t^{2} \mathrm{e}^{t^{2}}}{2}+c_{1} \mathrm{e}^{t^{2}}
$$

which simplifies to

$$
y=\mathrm{e}^{t^{2}}\left(\frac{3 t^{2}}{2}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=c_{1} \\
& c_{1}=1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\mathrm{e}^{t^{2}}\left(3 t^{2}+2\right)}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{t^{2}}\left(3 t^{2}+2\right)}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{t^{2}}\left(3 t^{2}+2\right)}{2}
$$

Verified OK.

8.22.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =2 t y+3 t \mathrm{e}^{t^{2}} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 339: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{t^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{t^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-t^{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=2 t y+3 t \mathrm{e}^{t^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-2 \mathrm{e}^{-t^{2}} t y \\
S_{y} & =\mathrm{e}^{-t^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=3 t \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=3 R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{3 R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-t^{2}} y=\frac{3 t^{2}}{2}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-t^{2}} y=\frac{3 t^{2}}{2}+c_{1}
$$

Which gives

$$
y=\frac{\mathrm{e}^{t^{2}}\left(3 t^{2}+2 c_{1}\right)}{2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=2 t y+3 t \mathrm{e}^{t^{2}}$		$\frac{d S}{d R}=3 R$
	$R=t$	
	$S=\mathrm{e}^{-t^{2}} y$	

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=c_{1} \\
& c_{1}=1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{3 t^{2} \mathrm{e}^{t^{2}}}{2}+\mathrm{e}^{t^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 t^{2} \mathrm{e}^{t^{2}}}{2}+\mathrm{e}^{t^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{3 t^{2} \mathrm{e}^{t^{2}}}{2}+\mathrm{e}^{t^{2}}
$$

Verified OK.

8.22.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(2 t y+3 t \mathrm{e}^{t^{2}}\right) \mathrm{d} t \\
\left(-2 t y-3 t \mathrm{e}^{t^{2}}\right) \mathrm{d} t+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-2 t y-3 t \mathrm{e}^{t^{2}} \\
& N(t, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-2 t y-3 t \mathrm{e}^{t^{2}}\right) \\
& =-2 t
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial t}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial t}\right) \\
& =1((-2 t)-(0)) \\
& =-2 t
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} t} \\
& =e^{\int-2 t \mathrm{~d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-t^{2}} \\
& =\mathrm{e}^{-t^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-t^{2}}\left(-2 t y-3 t \mathrm{e}^{t^{2}}\right) \\
& =-2 \mathrm{e}^{-t^{2}} t y-3 t
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-t^{2}}(1) \\
& =\mathrm{e}^{-t^{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} t} & =0 \\
\left(-2 \mathrm{e}^{-t^{2}} t y-3 t\right)+\left(\mathrm{e}^{-t^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} t} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int \bar{M} \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-2 \mathrm{e}^{-t^{2}} t y-3 t \mathrm{~d} t \\
\phi & =-\frac{3 t^{2}}{2}+\mathrm{e}^{-t^{2}} y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-t^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-t^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-t^{2}}=\mathrm{e}^{-t^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{3 t^{2}}{2}+\mathrm{e}^{-t^{2}} y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{3 t^{2}}{2}+\mathrm{e}^{-t^{2}} y
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{t^{2}}\left(3 t^{2}+2 c_{1}\right)}{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=c_{1} \\
& c_{1}=1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{3 t^{2} \mathrm{e}^{t^{2}}}{2}+\mathrm{e}^{t^{2}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 t^{2} \mathrm{e}^{t^{2}}}{2}+\mathrm{e}^{t^{2}} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{3 t^{2} \mathrm{e}^{t^{2}}}{2}+\mathrm{e}^{t^{2}}
$$

Verified OK.

8.22.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-2 t y=3 t \mathrm{e}^{t^{2}}, y(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=2 t y+3 t \mathrm{e}^{t^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-2 t y=3 t \mathrm{e}^{t^{2}}$
- The ODE is linear; multiply by an integrating factor $\mu(t)$
$\mu(t)\left(y^{\prime}-2 t y\right)=3 \mu(t) t \mathrm{e}^{t^{2}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d t}(\mu(t) y)$
$\mu(t)\left(y^{\prime}-2 t y\right)=\mu^{\prime}(t) y+\mu(t) y^{\prime}$
- Isolate $\mu^{\prime}(t)$
$\mu^{\prime}(t)=-2 \mu(t) t$
- Solve to find the integrating factor
$\mu(t)=\mathrm{e}^{-t^{2}}$
- Integrate both sides with respect to t
$\int\left(\frac{d}{d t}(\mu(t) y)\right) d t=\int 3 \mu(t) t \mathrm{e}^{t^{2}} d t+c_{1}$
- Evaluate the integral on the lhs
$\mu(t) y=\int 3 \mu(t) t \mathrm{e}^{t^{2}} d t+c_{1}$
- \quad Solve for y
$y=\frac{\int 3 \mu(t) t \mathrm{e}^{t^{2}} d t+c_{1}}{\mu(t)}$
- Substitute $\mu(t)=\mathrm{e}^{-t^{2}}$
$y=\frac{\int 3 t \mathrm{e}^{t^{2}} \mathrm{e}^{-t^{2}} d t+c_{1}}{\mathrm{e}^{-t^{2}}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{3 t^{2}}{2}+c_{1}}{\mathrm{e}^{-t^{2}}}$
- Simplify
$y=\frac{\mathrm{e}^{\mathrm{t}^{2}}\left(3 t^{2}+2 c_{1}\right)}{2}$
- Use initial condition $y(0)=1$
$1=c_{1}$
- \quad Solve for c_{1}
$c_{1}=1$
- \quad Substitute $c_{1}=1$ into general solution and simplify

$$
y=\frac{\mathrm{e}^{t^{2}}\left(3 t^{2}+2\right)}{2}
$$

- \quad Solution to the IVP
$y=\frac{\mathrm{e}^{t^{2}}\left(3 t^{2}+2\right)}{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 16

```
dsolve([diff(y(t),t)= 2*t*y(t)+3*t*exp(t^2),y(0) = 1],y(t), singsol=all)
```

$$
y(t)=\frac{\left(3 t^{2}+2\right) \mathrm{e}^{t^{2}}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.082 (sec). Leaf size: 21
DSolve[\{y' $\left.[t]==2 * t * y[t]+3 * t * \operatorname{Exp}\left[t^{\wedge} 2\right],\{y[0]==1\}\right\}, y[t], t$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow \frac{1}{2} e^{t^{2}}\left(3 t^{2}+2\right)
$$

8.23 problem 36

8.23.1 Existence and uniqueness analysis 1561
8.23.2 Solving as separable ode . 1561
8.23.3 Solving as differentialType ode 1563
8.23.4 Solving as homogeneousTypeMapleC ode 1566
8.23.5 Solving as first order ode lie symmetry lookup ode 1569
8.23.6 Solving as exact ode . 1573
8.23.7 Maple step by step solution . 1576

Internal problem ID [13051]
Internal file name [OUTPUT/11703_Wednesday_November_08_2023_03_28_59_AM_25959753/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 36 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "homogeneousTypeMapleC", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{(1+t)^{2}}{(y+1)^{2}}=0
$$

With initial conditions

$$
[y(0)=0]
$$

8.23.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =\frac{(1+t)^{2}}{(y+1)^{2}}
\end{aligned}
$$

The t domain of $f(t, y)$ when $y=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The y domain of $f(t, y)$ when $t=0$ is

$$
\{y<-1 \vee-1<y\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{(1+t)^{2}}{(y+1)^{2}}\right) \\
& =-\frac{2(1+t)^{2}}{(y+1)^{3}}
\end{aligned}
$$

The t domain of $\frac{\partial f}{\partial y}$ when $y=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{y<-1 \vee-1<y\}
$$

And the point $y_{0}=0$ is inside this domain. Therefore solution exists and is unique.

8.23.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =\frac{(1+t)^{2}}{(y+1)^{2}}
\end{aligned}
$$

Where $f(t)=(1+t)^{2}$ and $g(y)=\frac{1}{(y+1)^{2}}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{(y+1)^{2}}} d y & =(1+t)^{2} d t \\
\int \frac{1}{\frac{1}{(y+1)^{2}}} d y & =\int(1+t)^{2} d t \\
\frac{(y+1)^{3}}{3} & =\frac{(1+t)^{3}}{3}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\left(t^{3}+3 t^{2}+3 c_{1}+3 t+1\right)^{\frac{1}{3}}-1 \\
& y=-\frac{\left(t^{3}+3 t^{2}+3 c_{1}+3 t+1\right)^{\frac{1}{3}}}{2}+\frac{i \sqrt{3}\left(t^{3}+3 t^{2}+3 c_{1}+3 t+1\right)^{\frac{1}{3}}}{2}-1 \\
& y=-\frac{\left(t^{3}+3 t^{2}+3 c_{1}+3 t+1\right)^{\frac{1}{3}}}{2}-\frac{i \sqrt{3}\left(t^{3}+3 t^{2}+3 c_{1}+3 t+1\right)^{\frac{1}{3}}}{2}-1
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=-\frac{\left(3 c_{1}+1\right)^{\frac{1}{3}}}{2}-\frac{i \sqrt{3}\left(3 c_{1}+1\right)^{\frac{1}{3}}}{2}-1
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=-\frac{\left(3 c_{1}+1\right)^{\frac{1}{3}}}{2}+\frac{i \sqrt{3}\left(3 c_{1}+1\right)^{\frac{1}{3}}}{2}-1
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\left(3 c_{1}+1\right)^{\frac{1}{3}}-1 \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\left(t^{3}+3 t^{2}+3 t+1\right)^{\frac{1}{3}}-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(t^{3}+3 t^{2}+3 t+1\right)^{\frac{1}{3}}-1 \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\left(t^{3}+3 t^{2}+3 t+1\right)^{\frac{1}{3}}-1
$$

Verified OK.

8.23.3 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{(1+t)^{2}}{(y+1)^{2}} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
\left(y^{2}+2 y+1\right) d y=\left((1+t)^{2}\right) d t \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
\left((1+t)^{2}\right) d t=d\left(\frac{1}{3} t^{3}+t^{2}+t\right)
$$

Hence (2) becomes

$$
\left(y^{2}+2 y+1\right) d y=d\left(\frac{1}{3} t^{3}+t^{2}+t\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\left(t^{3}+3 t^{2}+3 c_{1}+3 t\right)^{\frac{1}{3}}-1+c_{1} \\
& y=-\frac{\left(t^{3}+3 t^{2}+3 c_{1}+3 t\right)^{\frac{1}{3}}}{2}+\frac{i \sqrt{3}\left(t^{3}+3 t^{2}+3 c_{1}+3 t\right)^{\frac{1}{3}}}{2}-1+c_{1} \\
& y=-\frac{\left(t^{3}+3 t^{2}+3 c_{1}+3 t\right)^{\frac{1}{3}}}{2}-\frac{i \sqrt{3}\left(t^{3}+3 t^{2}+3 c_{1}+3 t\right)^{\frac{1}{3}}}{2}-1+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=-\frac{c_{1}^{\frac{1}{3}} 3^{\frac{1}{3}}}{2}-\frac{i 3^{\frac{5}{6}} c_{1}^{\frac{1}{3}}}{2}-1+c_{1} \\
\left.c_{1}=1+\frac{\left(\frac{(108+36 \sqrt{13})^{\frac{1}{3}}}{6}-\frac{6\left(-\frac{3^{\frac{1}{3}}}{6}-\frac{i 33^{\frac{5}{6}}}{6}\right.}{}\right)}{(108+36 \sqrt{13})^{\frac{1}{3}}}\right) 3^{\frac{5}{6}}\left(\frac{(108+36 \sqrt{13})^{\frac{1}{3}}}{6}-\frac{6\left(-\frac{3^{\frac{1}{3}}}{6}-\frac{i 3^{\frac{5}{6}}}{6}\right)}{(108+36 \sqrt{13})^{\frac{1}{3}}}\right) 3^{\frac{1}{3}} \\
2
\end{gathered} \frac{2}{2}
$$

Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=-\frac{c_{1}^{\frac{1}{3}} 3^{\frac{1}{3}}}{2}+\frac{i 3^{\frac{5}{6}} c_{1}^{\frac{1}{3}}}{2}-1+c_{1} \\
c_{1}=1-\frac{i\left(\frac{(108+36 \sqrt{13})^{\frac{1}{3}}}{6}-\frac{6\left(\frac{i 3^{\frac{5}{6}}}{6}-\frac{3^{\frac{1}{3}}}{6}\right)}{(108+36 \sqrt{13})^{\frac{1}{3}}}\right) 3^{\frac{5}{6}}}{2}+\frac{\left(\frac{(108+36 \sqrt{13})^{\frac{1}{3}}}{6}-\frac{6\left(\frac{i 3^{\frac{5}{6}}}{6}-\frac{3^{\frac{1}{3}}}{6}\right)}{(108+36 \sqrt{13})^{\frac{1}{3}}}\right) 3^{\frac{1}{3}}}{2}
\end{gathered}
$$

Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=c_{1}^{\frac{1}{3}} 3^{\frac{1}{3}}-1+c_{1} \\
c_{1}=-3^{\frac{1}{3}}\left(\frac{(108+36 \sqrt{13})^{\frac{1}{3}}}{6}-\frac{23^{\frac{1}{3}}}{(108+36 \sqrt{13})^{\frac{1}{3}}}\right)+1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
=\frac{-3^{\frac{1}{3}}(108+36 \sqrt{13})^{\frac{7}{9}}+123^{\frac{2}{3}}(108+36 \sqrt{13})^{\frac{1}{9}}+6\left(t^{3}(108+36 \sqrt{13})^{\frac{1}{3}}-\frac{3^{\frac{1}{3}}(108+36 \sqrt{13})^{\frac{2}{3}}}{2}+3 t^{2}(108+\right.}{6(108+36 \sqrt{13})^{\frac{4}{9}}}
$$

Summary

The solution(s) found are the following
y
$=\frac{-3^{\frac{1}{3}}(108+36 \sqrt{13})^{\frac{7}{9}}+123^{\frac{2}{3}}(108+36 \sqrt{13})^{\frac{1}{9}}+6\left(t^{3}(108+36 \sqrt{13})^{\frac{1}{3}}-\frac{3^{\frac{1}{3}}(108+36 \sqrt{13})^{\frac{2}{3}}}{2}+3 t^{2}(108+36\right.}{6(108+36 \sqrt{13})^{\frac{4}{9}}}$

(a) Solution plot
(b) Slope field plot

Verification of solutions

y

$$
=\frac{-3^{\frac{1}{3}}(108+36 \sqrt{13})^{\frac{7}{9}}+123^{\frac{2}{3}}(108+36 \sqrt{13})^{\frac{1}{9}}+6\left(t^{3}(108+36 \sqrt{13})^{\frac{1}{3}}-\frac{3^{\frac{1}{3}}(108+36 \sqrt{13})^{\frac{2}{3}}}{2}+3 t^{2}(108+36\right.}{6(108+36 \sqrt{13})^{\frac{4}{9}}}
$$

Verified OK.

8.23.4 Solving as homogeneousTypeMapleC ode

Let $Y=y+y_{0}$ and $X=t+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=\frac{\left(1+X+x_{0}\right)^{2}}{\left(Y(X)+y_{0}+1\right)^{2}}
$$

Solving for possible values of x_{0} and y_{0} which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
& x_{0}=-1 \\
& y_{0}=-1
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=\frac{X^{2}}{Y(X)^{2}}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =\frac{X^{2}}{Y^{2}} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order n if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=X^{2}$ and $N=Y^{2}$ are both homogeneous and of the same order $n=2$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =\frac{1}{u^{2}} \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{\frac{1}{u(X)^{2}}-u(X)}{X}
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)-\frac{\frac{1}{u(X)^{2}}-u(X)}{X}=0
$$

Or

$$
\left(\frac{d}{d X} u(X)\right) u(X)^{2} X+u(X)^{3}-1=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =-\frac{u^{3}-1}{u^{2} X}
\end{aligned}
$$

Where $f(X)=-\frac{1}{X}$ and $g(u)=\frac{u^{3}-1}{u^{2}}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{3}-1}{u^{2}}} d u & =-\frac{1}{X} d X \\
\int \frac{1}{\frac{u^{3}-1}{u^{2}}} d u & =\int-\frac{1}{X} d X \\
\frac{\ln \left(u^{3}-1\right)}{3} & =-\ln (X)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\left(u^{3}-1\right)^{\frac{1}{3}}=\mathrm{e}^{-\ln (X)+c_{2}}
$$

Which simplifies to

$$
\left(u^{3}-1\right)^{\frac{1}{3}}=\frac{c_{3}}{X}
$$

Which simplifies to

$$
\left(u(X)^{3}-1\right)^{\frac{1}{3}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{X}
$$

The solution is

$$
\left(u(X)^{3}-1\right)^{\frac{1}{3}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{X}
$$

Now u in the above solution is replaced back by Y using $u=\frac{Y}{X}$ which results in the solution

$$
\left(\frac{Y(X)^{3}}{X^{3}}-1\right)^{\frac{1}{3}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{X}
$$

Using the solution for $Y(X)$

$$
\left(\frac{Y(X)^{3}-X^{3}}{X^{3}}\right)^{\frac{1}{3}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{X}
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
& Y=y+y_{0} \\
& X=t+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
& Y=y-1 \\
& X=t-1
\end{aligned}
$$

Then the solution in y becomes

$$
\left(\frac{(y+1)^{3}-(1+t)^{3}}{(1+t)^{3}}\right)^{\frac{1}{3}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{1+t}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
0=c_{3} \mathrm{e}^{c_{2}}
$$

Unable to solve for constant of integration. Warning: Unable to solve for constant of integration.

Verification of solutions N/A

8.23.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{(1+t)^{2}}{(y+1)^{2}} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 342: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$\underline{a}_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=\frac{1}{(1+t)^{2}} \\
& \eta(t, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{\frac{1}{(1+t)^{2}}} d t
\end{aligned}
$$

Which results in

$$
S=\frac{(1+t)^{3}}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{(1+t)^{2}}{(y+1)^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{y} & =1 \\
S_{t} & =(1+t)^{2} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=(y+1)^{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=(R+1)^{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{(R+1)^{3}}{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\frac{(1+t)^{3}}{3}=\frac{(y+1)^{3}}{3}+c_{1}
$$

Which simplifies to

$$
\frac{(1+t)^{3}}{3}=\frac{(y+1)^{3}}{3}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{(1+t)^{2}}{(y+1)^{2}}$		$\frac{d S}{d R}=(R+1)^{2}$
何		
可 $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty$ -		
	$R=y$	+
	$(1+t)^{3}$	
	$S=\frac{(1+t)}{3}$	
	$S=\frac{1+t)}{3}$	

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\frac{1}{3}=c_{1}+\frac{1}{3} \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{(1+t)^{3}}{3}=\frac{(y+1)^{3}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{(1+t)^{3}}{3}=\frac{(y+1)^{3}}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{(1+t)^{3}}{3}=\frac{(y+1)^{3}}{3}
$$

Verified OK.

8.23.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left((y+1)^{2}\right) \mathrm{d} y & =\left((1+t)^{2}\right) \mathrm{d} t \\
\left(-(1+t)^{2}\right) \mathrm{d} t+\left((y+1)^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-(1+t)^{2} \\
N(t, y) & =(y+1)^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-(1+t)^{2}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left((y+1)^{2}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-(1+t)^{2} \mathrm{~d} t \\
\phi & =-\frac{(1+t)^{3}}{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=(y+1)^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
(y+1)^{2}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=(y+1)^{2}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left((y+1)^{2}\right) \mathrm{d} y \\
f(y) & =\frac{(y+1)^{3}}{3}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{(1+t)^{3}}{3}+\frac{(y+1)^{3}}{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{(1+t)^{3}}{3}+\frac{(y+1)^{3}}{3}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=c_{1} \\
& c_{1}=0
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{(1+t)^{3}}{3}+\frac{(y+1)^{3}}{3}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{(1+t)^{3}}{3}+\frac{(y+1)^{3}}{3}=0 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\frac{(1+t)^{3}}{3}+\frac{(y+1)^{3}}{3}=0
$$

Verified OK.
The solution

$$
\frac{(1+t)^{3}}{3}=\frac{(y+1)^{3}}{3}
$$

can be simplified to

$$
(1+t)^{3}=(y+1)^{3}
$$

8.23.7 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{(1+t)^{2}}{(y+1)^{2}}=0, y(0)=0\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables
$y^{\prime}(y+1)^{2}=(1+t)^{2}$
- Integrate both sides with respect to t
$\int y^{\prime}(y+1)^{2} d t=\int(1+t)^{2} d t+c_{1}$
- Evaluate integral
$\frac{(y+1)^{3}}{3}=\frac{(1+t)^{3}}{3}+c_{1}$
- \quad Solve for y
$y=\left(t^{3}+3 t^{2}+3 c_{1}+3 t+1\right)^{\frac{1}{3}}-1$
- Use initial condition $y(0)=0$
$0=\left(3 c_{1}+1\right)^{\frac{1}{3}}-1$
- \quad Solve for c_{1}
$c_{1}=0$
- \quad Substitute $c_{1}=0$ into general solution and simplify
$y=\left((1+t)^{3}\right)^{\frac{1}{3}}-1$
- \quad Solution to the IVP

$$
y=\left((1+t)^{3}\right)^{\frac{1}{3}}-1
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.094 (sec). Leaf size: 5

```
dsolve([diff(y(t),t)=(t+1)^2/(y(t)+1)^2,y(0) = 0],y(t), singsol=all)
\[
y(t)=t
\]
```

\checkmark Solution by Mathematica
Time used: 0.805 (sec). Leaf size: 16
DSolve[\{y' $[t]==(t+1) \wedge 2 /(y[t]+1) \wedge 2,\{y[0]==0\}\}, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \sqrt[3]{(t+1)^{3}}-1
$$

8.24 problem 37

8.24.1 Existence and uniqueness analysis 1579
8.24.2 Solving as separable ode . 1579
8.24.3 Solving as first order ode lie symmetry lookup ode 1581
8.24.4 Solving as exact ode . 1585
8.24.5 Solving as riccati ode . 1589
8.24.6 Maple step by step solution . 1591

Internal problem ID [13052]
Internal file name [OUTPUT/11704_Wednesday_November_08_2023_03_29_00_AM_45043933/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 37 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-2 t y^{2}-3 t^{2} y^{2}=0
$$

With initial conditions

$$
[y(1)=-1]
$$

8.24.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =3 y^{2} t^{2}+2 t y^{2}
\end{aligned}
$$

The t domain of $f(t, y)$ when $y=-1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=1$ is inside this domain. The y domain of $f(t, y)$ when $t=1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(3 y^{2} t^{2}+2 t y^{2}\right) \\
& =6 y t^{2}+4 t y
\end{aligned}
$$

The t domain of $\frac{\partial f}{\partial y}$ when $y=-1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $t=1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-1$ is inside this domain. Therefore solution exists and is unique.

8.24.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =\left(3 t^{2}+2 t\right) y^{2}
\end{aligned}
$$

Where $f(t)=3 t^{2}+2 t$ and $g(y)=y^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{2}} d y & =3 t^{2}+2 t d t \\
\int \frac{1}{y^{2}} d y & =\int 3 t^{2}+2 t d t \\
-\frac{1}{y} & =t^{3}+t^{2}+c_{1}
\end{aligned}
$$

Which results in

$$
y=-\frac{1}{t^{3}+t^{2}+c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=-\frac{1}{c_{1}+2} \\
c_{1}=-1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{1}{t^{3}+t^{2}-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{t^{3}+t^{2}-1} \tag{1}
\end{equation*}
$$

(b) Slope field plot

Verification of solutions

$$
y=-\frac{1}{t^{3}+t^{2}-1}
$$

Verified OK.

8.24.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=3 y^{2} t^{2}+2 t y^{2} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 345: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=\frac{1}{3 t^{2}+2 t} \\
& \eta(t, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{\frac{1}{3 t^{2}+2 t}} d t
\end{aligned}
$$

Which results in

$$
S=t^{3}+t^{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=3 y^{2} t^{2}+2 t y^{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{y} & =1 \\
S_{t} & =3 t^{2}+2 t \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
t^{2}(1+t)=-\frac{1}{y}+c_{1}
$$

Which simplifies to

$$
t^{2}(1+t)=-\frac{1}{y}+c_{1}
$$

Which gives

$$
y=\frac{1}{-t^{3}-t^{2}+c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=3 y^{2} t^{2}+2 t y^{2}$		$\frac{d S}{d R}=\frac{1}{R^{2}}$
		$\rightarrow \rightarrow \rightarrow \rightarrow$ 性 $\uparrow \rightarrow \rightarrow \rightarrow \rightarrow$ -
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
$\stackrel{+1}{\text { ¢ }}$	$R=y$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty}$
	$S=t^{2}(1+t)$	$\xrightarrow{\rightarrow \rightarrow-4 \rightarrow \rightarrow- \pm}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty}$
¢ ¢ ¢ ¢ A A A A A A A		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-]{ }$
P ${ }_{1}^{4}$		

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
-1=\frac{1}{-2+c_{1}}
$$

$$
c_{1}=1
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{1}{t^{3}+t^{2}-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{t^{3}+t^{2}-1} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{1}{t^{3}+t^{2}-1}
$$

Verified OK.

8.24.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y^{2}}\right) \mathrm{d} y & =\left(3 t^{2}+2 t\right) \mathrm{d} t \\
\left(-3 t^{2}-2 t\right) \mathrm{d} t+\left(\frac{1}{y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-3 t^{2}-2 t \\
& N(t, y)=\frac{1}{y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-3 t^{2}-2 t\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\frac{1}{y^{2}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-3 t^{2}-2 t \mathrm{~d} t \\
\phi & =-t^{3}-t^{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y^{2}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y^{2}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y^{2}}\right) \mathrm{d} y \\
f(y) & =-\frac{1}{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-t^{3}-t^{2}-\frac{1}{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-t^{3}-t^{2}-\frac{1}{y}
$$

The solution becomes

$$
y=-\frac{1}{t^{3}+t^{2}+c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=-\frac{1}{c_{1}+2} \\
c_{1}=-1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{1}{t^{3}+t^{2}-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{t^{3}+t^{2}-1} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{1}{t^{3}+t^{2}-1}
$$

Verified OK.

8.24.5 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =3 y^{2} t^{2}+2 t y^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=3 y^{2} t^{2}+2 t y^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(t)+f_{1}(t) y+f_{2}(t) y^{2}
$$

Shows that $f_{0}(t)=0, f_{1}(t)=0$ and $f_{2}(t)=3 t^{2}+2 t$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\left(3 t^{2}+2 t\right) u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(t)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(t)+f_{2}^{2} f_{0} u(t)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =6 t+2 \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\left(3 t^{2}+2 t\right) u^{\prime \prime}(t)-(6 t+2) u^{\prime}(t)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(t)=c_{1}+t^{2}(1+t) c_{2}
$$

The above shows that

$$
u^{\prime}(t)=c_{2} t(3 t+2)
$$

Using the above in (1) gives the solution

$$
y=-\frac{c_{2} t(3 t+2)}{\left(3 t^{2}+2 t\right)\left(c_{1}+t^{2}(1+t) c_{2}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{1}{t^{3}+t^{2}+c_{3}}
$$

Initial conditions are used to solve for c_{3}. Substituting $t=1$ and $y=-1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-1=-\frac{1}{c_{3}+2} \\
c_{3}=-1
\end{gathered}
$$

Substituting c_{3} found above in the general solution gives

$$
y=-\frac{1}{t^{3}+t^{2}-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{t^{3}+t^{2}-1} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{1}{t^{3}+t^{2}-1}
$$

Verified OK.

8.24.6 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-2 t y^{2}-3 t^{2} y^{2}=0, y(1)=-1\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y^{2}}=t(3 t+2)
$$

- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y^{2}} d t=\int t(3 t+2) d t+c_{1}$
- Evaluate integral
$-\frac{1}{y}=t^{3}+t^{2}+c_{1}$
- \quad Solve for y
$y=-\frac{1}{t^{3}+t^{2}+c_{1}}$
- Use initial condition $y(1)=-1$
$-1=-\frac{1}{c_{1}+2}$
- \quad Solve for c_{1}
$c_{1}=-1$
- Substitute $c_{1}=-1$ into general solution and simplify $y=-\frac{1}{t^{3}+t^{2}-1}$
- \quad Solution to the IVP
$y=-\frac{1}{t^{3}+t^{2}-1}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 16

```
dsolve([diff(y(t),t)= 2*t*y(t)^2+3*t^2*y(t)^2,y(1) = -1],y(t), singsol=all)
```

$$
y(t)=-\frac{1}{t^{3}+t^{2}-1}
$$

\checkmark Solution by Mathematica
Time used: 0.222 (sec). Leaf size: 17
DSolve[\{y' $\left.[\mathrm{t}]==2 * \mathrm{t} * \mathrm{y}[\mathrm{t}] \sim 2+3 * \mathrm{t}^{\wedge} 2 * \mathrm{y}[\mathrm{t}] \sim 2,\{\mathrm{y}[1]==-1\}\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow-\frac{1}{t^{3}+t^{2}-1}
$$

8.25 problem 38

8.25.1 Existence and uniqueness analysis 1594
8.25.2 Solving as quadrature ode . 1595
8.25.3 Maple step by step solution . 1596

Internal problem ID [13053]
Internal file name [OUTPUT/11705_Wednesday_November_08_2023_03_29_01_AM_7767521/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 38.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}+y^{2}=1
$$

With initial conditions

$$
[y(0)=1]
$$

8.25.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =-y^{2}+1
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-y^{2}+1\right) \\
& =-2 y
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=1$ is inside this domain. Therefore solution exists and is unique.

8.25.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-y^{2}+1} d y & =t+c_{1} \\
\operatorname{arctanh}(y) & =t+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=\tanh \left(t+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=\tanh \left(c_{1}\right)
$$

Unable to solve for constant of integration. Since $\lim _{c_{1} \rightarrow \infty}$ gives $y=\tanh \left(t+c_{1}\right)=y=$ Summary
1 and this result satisfies the given initial condition. The solution(s) found are the following

$$
y=1
$$

Verification of solutions

$$
y=1
$$

Verified OK.

8.25.3 Maple step by step solution

Let's solve
$\left[y^{\prime}+y^{2}=1, y(0)=1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{1-y^{2}}=1$
- Integrate both sides with respect to t

$$
\int \frac{y^{\prime}}{1-y^{2}} d t=\int 1 d t+c_{1}
$$

- Evaluate integral
$\operatorname{arctanh}(y)=t+c_{1}$
- \quad Solve for y

$$
y=\tanh \left(t+c_{1}\right)
$$

- Use initial condition $y(0)=1$

$$
1=\tanh \left(c_{1}\right)
$$

- Solution does not satisfy initial condition

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

```
dsolve([diff(y(t),t)= 1-y(t)^2,y(0) = 1],y(t), singsol=all)
```

$$
y(t)=1
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 6
DSolve[\{y' $[t]==1-y[t] \sim 2,\{y[0]==1\}\}, y[t], t$, IncludeSingularSolutions $->$ True $]$

$$
y(t) \rightarrow 1
$$

8.26 problem 39

8.26.1 Existence and uniqueness analysis 1599
8.26.2 Solving as separable ode . 1599
8.26.3 Solving as first order ode lie symmetry lookup ode 1601
8.26.4 Solving as exact ode . 1606
8.26.5 Maple step by step solution . 1609

Internal problem ID [13054]
Internal file name [OUTPUT/11706_Wednesday_November_08_2023_03_29_02_AM_91067722/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 39 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{t^{2}}{y+y t^{3}}=0
$$

With initial conditions

$$
[y(0)=-2]
$$

8.26.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =\frac{t^{2}}{y\left(t^{3}+1\right)}
\end{aligned}
$$

The t domain of $f(t, y)$ when $y=-2$ is

$$
\{t<-1 \vee-1<t\}
$$

And the point $t_{0}=0$ is inside this domain. The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{t^{2}}{y\left(t^{3}+1\right)}\right) \\
& =-\frac{t^{2}}{y^{2}\left(t^{3}+1\right)}
\end{aligned}
$$

The t domain of $\frac{\partial f}{\partial y}$ when $y=-2$ is

$$
\{t<-1 \vee-1<t\}
$$

And the point $t_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-2$ is inside this domain. Therefore solution exists and is unique.

8.26.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =\frac{t^{2}}{y\left(t^{3}+1\right)}
\end{aligned}
$$

Where $f(t)=\frac{t^{2}}{t^{3}+1}$ and $g(y)=\frac{1}{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{y}} d y & =\frac{t^{2}}{t^{3}+1} d t \\
\int \frac{1}{\frac{1}{y}} d y & =\int \frac{t^{2}}{t^{3}+1} d t \\
\frac{y^{2}}{2} & =\frac{\ln \left(t^{3}+1\right)}{3}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\frac{\sqrt{6 \ln \left(t^{3}+1\right)+18 c_{1}}}{3} \\
& y=-\frac{\sqrt{6 \ln \left(t^{3}+1\right)+18 c_{1}}}{3}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-2=-\sqrt{c_{1}} \sqrt{2} \\
c_{1}=2
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{\sqrt{6 \ln \left(t^{3}+1\right)+36}}{3}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
-2=\sqrt{c_{1}} \sqrt{2}
$$

Summary

The solution(s) found are the following
Warning: Unable to solve for constant of integration.

$$
y=-\frac{\sqrt{6 \ln \left(t^{3}+1\right)-}}{3}
$$

Verification of solutions

$$
y=-\frac{\sqrt{6 \ln \left(t^{3}+1\right)+36}}{3}
$$

Verified OK.

8.26.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{t^{2}}{y\left(t^{3}+1\right)} \\
y^{\prime} & =\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 349: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=\frac{t^{3}+1}{t^{2}} \\
& \eta(t, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d t \\
& =\int \frac{1}{\frac{t^{3}+1}{t^{2}}} d t
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(t^{3}+1\right)}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{t^{2}}{y\left(t^{3}+1\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =0 \\
R_{y} & =1 \\
S_{t} & =\frac{t^{2}}{\left(t^{2}-t+1\right)(1+t)} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\frac{\ln (1+t)}{3}+\frac{\ln \left(t^{2}-t+1\right)}{3}=\frac{y^{2}}{2}+c_{1}
$$

Which simplifies to

$$
\frac{\ln (1+t)}{3}+\frac{\ln \left(t^{2}-t+1\right)}{3}=\frac{y^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

| Original ode in t, y coordinates |
| :---: | :---: | :---: | \left\lvert\, | Canonical
 coordinates
 transformation |
| :---: |
| $\frac{d y}{d t}=\frac{t^{2}}{y\left(t^{3}+1\right)}$ | | ODE in canonical coordinates |
| :---: |
| (R, S) |\right.

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
0=c_{1}+2
$$

$$
c_{1}=-2
$$

Substituting c_{1} found above in the general solution gives

$$
\frac{\ln (1+t)}{3}+\frac{\ln \left(t^{2}-t+1\right)}{3}=\frac{y^{2}}{2}-2
$$

Solving for y from the above gives

$$
y=-\frac{\sqrt{36+6 \ln (1+t)+6 \ln \left(t^{2}-t+1\right)}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\sqrt{36+6 \ln (1+t)+6 \ln \left(t^{2}-t+1\right)}}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{\sqrt{36+6 \ln (1+t)+6 \ln \left(t^{2}-t+1\right)}}{3}
$$

Verified OK.

8.26.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(y) \mathrm{d} y & =\left(\frac{t^{2}}{t^{3}+1}\right) \mathrm{d} t \\
\left(-\frac{t^{2}}{t^{3}+1}\right) \mathrm{d} t+(y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-\frac{t^{2}}{t^{3}+1} \\
& N(t, y)=y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{t^{2}}{t^{3}+1}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}(y) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\frac{t^{2}}{t^{3}+1} \mathrm{~d} t \\
\phi & =-\frac{\ln \left(t^{3}+1\right)}{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y$. Therefore equation (4) becomes

$$
\begin{equation*}
y=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(y) \mathrm{d} y \\
f(y) & =\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\ln \left(t^{3}+1\right)}{3}+\frac{y^{2}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\ln \left(t^{3}+1\right)}{3}+\frac{y^{2}}{2}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 2=c_{1} \\
& c_{1}=2
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
-\frac{\ln \left(t^{3}+1\right)}{3}+\frac{y^{2}}{2}=2
$$

Solving for y from the above gives

$$
y=-\frac{\sqrt{6 \ln \left(t^{3}+1\right)+36}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\sqrt{6 \ln \left(t^{3}+1\right)+36}}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=-\frac{\sqrt{6 \ln \left(t^{3}+1\right)+36}}{3}
$$

Verified OK.

8.26.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{t^{2}}{y+y t^{3}}=0, y(0)=-2\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
y^{\prime} y=\frac{t^{2}}{\left(t^{2}-t+1\right)(1+t)}
$$

- Integrate both sides with respect to t
$\int y^{\prime} y d t=\int \frac{t^{2}}{\left(t^{2}-t+1\right)(1+t)} d t+c_{1}$
- Evaluate integral

$$
\frac{y^{2}}{2}=\frac{\ln \left((1+t)\left(t^{2}-t+1\right)\right)}{3}+c_{1}
$$

- \quad Solve for y
$\left\{y=-\frac{\sqrt{18 c_{1}+6 \ln \left((1+t)\left(t^{2}-t+1\right)\right)}}{3}, y=\frac{\sqrt{18 c_{1}+6 \ln \left((1+t)\left(t^{2}-t+1\right)\right)}}{3}\right\}$
- Use initial condition $y(0)=-2$
$-2=-\frac{\sqrt{18} \sqrt{c_{1}}}{3}$
- \quad Solve for c_{1}
$c_{1}=2$
- \quad Substitute $c_{1}=2$ into general solution and simplify

$$
y=-\frac{\sqrt{6 \ln \left((1+t)\left(t^{2}-t+1\right)\right)+36}}{3}
$$

- Use initial condition $y(0)=-2$
$-2=\frac{\sqrt{18} \sqrt{c_{1}}}{3}$
- Solution does not satisfy initial condition
- Solution to the IVP
$y=-\frac{\sqrt{6 \ln \left((1+t)\left(t^{2}-t+1\right)\right)+36}}{3}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 18
dsolve([diff $(y(t), t)=t \sim 2 /(y(t)+t \wedge 3 * y(t)), y(0)=-2], y(t)$, singsol=all)

$$
y(t)=-\frac{\sqrt{36+6 \ln \left(t^{3}+1\right)}}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.195 (sec). Leaf size: 26
DSolve $\left[\left\{y^{\prime}[\mathrm{t}]==\mathrm{t}^{\wedge} 2 /(\mathrm{y}[\mathrm{t}]+\mathrm{t} \sim 3 * \mathrm{y}[\mathrm{t}]),\{\mathrm{y}[0]==-2\}\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}\right.$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow-\sqrt{\frac{2}{3}} \sqrt{\log \left(t^{3}+1\right)+6}
$$

8.27 problem 40

8.27.1 Existence and uniqueness analysis 1612
8.27.2 Solving as quadrature ode . 1613
8.27.3 Maple step by step solution . 1614

Internal problem ID [13055]
Internal file name [OUTPUT/11707_Wednesday_November_08_2023_03_29_03_AM_54714494/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 40.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y^{2}+2 y=1
$$

With initial conditions

$$
[y(0)=2]
$$

8.27.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =y^{2}-2 y+1
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2}-2 y+1\right) \\
& =2 y-2
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=2$ is inside this domain. Therefore solution exists and is unique.

8.27.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{2}-2 y+1} d y & =t+c_{1} \\
-\frac{1}{y-1} & =t+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=\frac{c_{1}+t-1}{t+c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2=\frac{-1+c_{1}}{c_{1}} \\
c_{1}=-1
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{-2+t}{t-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-2+t}{t-1} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{-2+t}{t-1}
$$

Verified OK.

8.27.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-y^{2}+2 y=1, y(0)=2\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables
$\frac{y^{\prime}}{y^{2}-2 y+1}=1$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y^{2}-2 y+1} d t=\int 1 d t+c_{1}$
- Evaluate integral
$-\frac{1}{y-1}=t+c_{1}$
- \quad Solve for y

$$
y=\frac{c_{1}+t-1}{t+c_{1}}
$$

- Use initial condition $y(0)=2$
$2=\frac{-1+c_{1}}{c_{1}}$
- \quad Solve for c_{1}
$c_{1}=-1$
- \quad Substitute $c_{1}=-1$ into general solution and simplify $y=\frac{-2+t}{t-1}$
- Solution to the IVP
$y=\frac{-2+t}{t-1}$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 13

```
dsolve([diff(y(t),t)= y(t)^2-2*y(t)+1,y(0) = 2],y(t), singsol=all)
```

$$
y(t)=\frac{t-2}{t-1}
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 14
DSolve[\{y' $[t]==y[t] \sim 2-2 * y[t]+1,\{y[0]==2\}\}, y[t], t$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow \frac{t-2}{t-1}
$$

8.28 problem 43

8.28.1 Solving as riccati ode . 1616

Internal problem ID [13056]
Internal file name [OUTPUT/11708_Wednesday_November_08_2023_03_29_03_AM_89585763/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 43.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati"
Maple gives the following as the ode type
[_Riccati]

$$
y^{\prime}-(y-2)(y+1-\cos (t))=0
$$

8.28.1 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =-(y-2)(-y+\cos (t)-1)
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-\cos (t) y+y^{2}+2 \cos (t)-y-2
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(t)+f_{1}(t) y+f_{2}(t) y^{2}
$$

Shows that $f_{0}(t)=2 \cos (t)-2, f_{1}(t)=-\cos (t)-1$ and $f_{2}(t)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(t)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(t)+f_{2}^{2} f_{0} u(t)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =-\cos (t)-1 \\
f_{2}^{2} f_{0} & =2 \cos (t)-2
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(t)-(-\cos (t)-1) u^{\prime}(t)+(2 \cos (t)-2) u(t)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(t)=c_{1} \mathrm{e}^{-2 t+\pi}+i c_{2} \mathrm{e}^{-2 t}\left(\int \mathrm{e}^{3 t-\frac{3 \pi}{2}-\sin (t)} d t\right)
$$

The above shows that

$$
u^{\prime}(t)=-2 c_{1} \mathrm{e}^{-2 t+\pi}-2 i c_{2} \mathrm{e}^{-2 t}\left(\int \mathrm{e}^{3 t-\frac{3 \pi}{2}-\sin (t)} d t\right)+i c_{2} \mathrm{e}^{t-\frac{3 \pi}{2}-\sin (t)}
$$

Using the above in (1) gives the solution

$$
y=-\frac{-2 c_{1} \mathrm{e}^{-2 t+\pi}-2 i c_{2} \mathrm{e}^{-2 t}\left(\int \mathrm{e}^{3 t-\frac{3 \pi}{2}-\sin (t)} d t\right)+i c_{2} \mathrm{e}^{t-\frac{3 \pi}{2}-\sin (t)}}{c_{1} \mathrm{e}^{-2 t+\pi}+i c_{2} \mathrm{e}^{-2 t}\left(\int \mathrm{e}^{3 t-\frac{3 \pi}{2}-\sin (t)} d t\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{2 i c_{3} \mathrm{e}^{-2 t+\pi}-2 \mathrm{e}^{-2 t}\left(\int \mathrm{e}^{3 t-\frac{3 \pi}{2}-\sin (t)} d t\right)+\mathrm{e}^{t-\frac{3 \pi}{2}-\sin (t)}}{i c_{3} \mathrm{e}^{-2 t+\pi}-\mathrm{e}^{-2 t}\left(\int \mathrm{e}^{3 t-\frac{3 \pi}{2}-\sin (t)} d t\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 i c_{3} \mathrm{e}^{-2 t+\pi}-2 \mathrm{e}^{-2 t}\left(\int \mathrm{e}^{3 t-\frac{3 \pi}{2}-\sin (t)} d t\right)+\mathrm{e}^{t-\frac{3 \pi}{2}-\sin (t)}}{i c_{3} \mathrm{e}^{-2 t+\pi}-\mathrm{e}^{-2 t}\left(\int \mathrm{e}^{3 t-\frac{3 \pi}{2}-\sin (t)} d t\right)} \tag{1}
\end{equation*}
$$

Figure 360: Slope field plot

Verification of solutions

$$
y=\frac{2 i c_{3} \mathrm{e}^{-2 t+\pi}-2 \mathrm{e}^{-2 t}\left(\int \mathrm{e}^{3 t-\frac{3 \pi}{2}-\sin (t)} d t\right)+\mathrm{e}^{t-\frac{3 \pi}{2}-\sin (t)}}{i c_{3} \mathrm{e}^{-2 t+\pi}-\mathrm{e}^{-2 t}\left(\int \mathrm{e}^{3 t-\frac{3 \pi}{2}-\sin (t)} d t\right)}
$$

Verified OK.

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying Riccati
trying Riccati sub-methods:
    trying Riccati_symmetries
    trying Riccati to 2nd Order
    -> Calling odsolve with the ODE`, diff(diff(y(x), x), x) = (-cos(x)-1)*(diff(y(x), x))+(2
    Methods for second order ODEs:
    --- Trying classification methods ---
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
    -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) *
    -> Trying changes of variables to rationalize or make the ODE simpler
        trying a symmetry of the form [xi=0, eta=F(x)]
        checking if the LODE is missing y
        -> Trying a solution in terms of special functions:
            -> Bessel
            -> elliptic
            -> Legendre
            -> Kummer
                    -> hyper3: Equivalence to 1F1 under a power @ Moebius
            -> hypergeometric
                    -> heuristic approach
                    -> hyper3: Equivalence to 2F1, 1F1 or 0F1 under a power @ Moebius
            -> Mathieu
                    -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moe
        -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx))
            trying a symmetry of the form [xi=0, eta=F(x)]
            trying 2nd order exact linear
            trying symmetries linear in x and y(x)
            trying to convert to a linear ODE with constant coefficients
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 81
dsolve(diff $(y(t), t)=(y(t)-2) *(y(t)+1-\cos (t)), y(t)$, singsol=all)

$$
y(t)=\frac{-2 c_{1} \mathrm{e}^{-2 t}\left(\int \mathrm{e}^{-\frac{3 \pi}{2}+3 t-\sin (t)} d t\right)+c_{1} \mathrm{e}^{t-\frac{3 \pi}{2}-\sin (t)}+2 i \mathrm{e}^{-2 t+\pi}}{-c_{1} \mathrm{e}^{-2 t}\left(\int \mathrm{e}^{-\frac{3 \pi}{2}+3 t-\sin (t)} d t\right)+i \mathrm{e}^{-2 t+\pi}}
$$

\checkmark Solution by Mathematica
Time used: 3.379 (sec). Leaf size: 224
DSolve [y' $[\mathrm{t}]==(\mathrm{y}[\mathrm{t}]-2) *(\mathrm{y}[\mathrm{t}]+1-\operatorname{Cos}[\mathrm{t}]), \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(t) \rightarrow-\frac{-2 \int_{1}^{e^{i t}} e^{\frac{i\left(K[1]^{2}-1\right)}{2 K[1]}} K[1]^{-1-3 i} d K[1]+i e^{\frac{1}{2} i e^{-i t}\left(-1+e^{2 i t}\right)}\left(e^{i t}\right)^{-3 i}-2 c_{1}}{\int_{1}^{e^{i t}} e^{\frac{i\left(K[]^{2}-1\right)}{2 K[1]}} K[1]^{-1-3 i} d K[1]+c_{1}} \\
& y(t) \rightarrow 2 \\
& y(t) \rightarrow 2-\frac{i e^{\frac{1}{2} i e^{-i t}\left(-1+e^{2 i t}\right)}\left(e^{i t}\right)^{-3 i}}{\int_{1}^{e^{i t}} e^{\frac{i\left(K[1]^{2}-1\right)}{2 K[1]}} K[1]^{-1-3 i} d K[1]}
\end{aligned}
$$

8.29 problem 44

8.29.1 Solving as abelFirstKind ode 1621

Internal problem ID [13057]
Internal file name [OUTPUT/11709_Wednesday_November_08_2023_03_29_05_AM_81720901/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 44.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "abelFirstKind"
Maple gives the following as the ode type
[_Abel]
$\underline{\text { Unable to solve or complete the solution. }}$

$$
y^{\prime}-(y-1)(y-2)\left(y-\mathrm{e}^{\frac{t}{2}}\right)=0
$$

8.29.1 Solving as abelFirstKind ode

This is Abel first kind ODE, it has the form

$$
y^{\prime}=f_{0}(t)+f_{1}(t) y+f_{2}(t) y^{2}+f_{3}(t) y^{3}
$$

Comparing the above to given ODE which is

$$
\begin{equation*}
y^{\prime}=y^{3}+\left(-3-\mathrm{e}^{\frac{t}{2}}\right) y^{2}+\left(2+3 \mathrm{e}^{\frac{t}{2}}\right) y-2 \mathrm{e}^{\frac{t}{2}} \tag{1}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
& f_{0}(t)=-2 \mathrm{e}^{\frac{t}{2}} \\
& f_{1}(t)=2+3 \mathrm{e}^{\frac{t}{2}} \\
& f_{2}(t)=-3-\mathrm{e}^{\frac{t}{2}} \\
& f_{3}(t)=1
\end{aligned}
$$

Since $f_{2}(t)=-3-\mathrm{e}^{\frac{t}{2}}$ is not zero, then the first step is to apply the following transformation to remove f_{2}. Let $y=u(t)-\frac{f_{2}}{3 f_{3}}$ or

$$
\begin{aligned}
y & =u(t)-\left(\frac{-3-\mathrm{e}^{\frac{t}{2}}}{3}\right) \\
& =u(t)+1+\frac{\mathrm{e}^{\frac{t}{2}}}{3}
\end{aligned}
$$

The above transformation applied to (1) gives a new ODE as

$$
\begin{equation*}
u^{\prime}(t)=-\frac{\mathrm{e}^{\frac{t}{2}}}{2}+u(t)^{3}-u(t)+u(t) \mathrm{e}^{\frac{t}{2}}-\frac{u(t) \mathrm{e}^{t}}{3}+\frac{\mathrm{e}^{t}}{3}-\frac{2 \mathrm{e}^{\frac{3 t}{2}}}{27} \tag{2}
\end{equation*}
$$

This is Abel first kind ODE, it has the form

$$
u^{\prime}(t)=f_{0}(t)+f_{1}(t) u(t)+f_{2}(t) u(t)^{2}+f_{3}(t) u(t)^{3}
$$

Comparing the above to given ODE which is

$$
\begin{equation*}
u^{\prime}(t)=u(t)^{3}+\left(-1-\frac{\mathrm{e}^{t}}{3}+\mathrm{e}^{\frac{t}{2}}\right) u(t)-\frac{\mathrm{e}^{\frac{t}{2}}}{2}+\frac{\mathrm{e}^{t}}{3}-\frac{2 \mathrm{e}^{\frac{3 t}{2}}}{27} \tag{1}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
& f_{0}(t)=-\frac{\mathrm{e}^{\frac{t}{2}}}{2}+\frac{\mathrm{e}^{t}}{3}-\frac{2 \mathrm{e}^{\frac{3 t}{2}}}{27} \\
& f_{1}(t)=-1-\frac{\mathrm{e}^{t}}{3}+\mathrm{e}^{\frac{t}{2}} \\
& f_{2}(t)=0 \\
& f_{3}(t)=1
\end{aligned}
$$

Since $f_{2}(t)=0$ then we check the Abel invariant to see if it depends on t or not. The Abel invariant is given by

$$
-\frac{f_{1}^{3}}{f_{0}^{2} f_{3}}
$$

Which when evaluating gives

$$
-\frac{\left(\frac{\mathrm{e}^{\frac{t}{2}}}{4}-\frac{\mathrm{e}^{t}}{3}+\frac{\mathrm{e}^{\frac{3 t}{2}}}{9}+3\left(-\frac{\mathrm{e}^{\frac{t}{2}}}{2}+\frac{\mathrm{e}^{t}}{3}-\frac{2 \mathrm{e}^{\frac{3 t}{2}}}{27}\right)\left(-1-\frac{\mathrm{e}^{t}}{3}+\mathrm{e}^{\frac{t}{2}}\right)\right)^{3}}{27\left(-\frac{\mathrm{e}^{\frac{t}{2}}}{2}+\frac{\mathrm{e}^{t}}{3}-\frac{2 \mathrm{e}^{\frac{3 t}{2}}}{27}\right)^{5}}
$$

Since the Abel invariant depends on t then unable to solve this ode at this time.

Unable to complete the solution now.

```
MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
-> Calling odsolve with the ODE`, diff(y(x), x) = -1/(exp(y(x)+x-2*exp((1/2)*x)-1)-1), y(
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    trying Bernoulli
    trying separable
    trying inverse linear
    trying homogeneous types:
    trying Chini
    differential order: 1; looking for linear symmetries
    trying exact
    Looking for potential symmetries
    trying inverse_Riccati
    trying an equivalence to an Abel ODE
    differential order: 1; trying a linearization to 2nd order
    --- trying a change of variables {x -> y(x), y(x) -> x}
    differential order: 1; trying a linearization to 2nd order
    trying 1st order ODE linearizable_by_differentiation
    --- Trying Lie symmetry methods, 1st order ---
    `, `-> Computing symmetries using: way = 3
    `, `-> Computing symmetries using: way = 4
    `, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of 16he form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
```

X Solution by Maple
dsolve(diff $(\mathrm{y}(\mathrm{t}), \mathrm{t})=(\mathrm{y}(\mathrm{t})-1) *(\mathrm{y}(\mathrm{t})-2) *(\mathrm{y}(\mathrm{t})-\exp (\mathrm{t} / 2)), \mathrm{y}(\mathrm{t})$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[y' $[\mathrm{t}]==(\mathrm{y}[\mathrm{t}]-1) *(\mathrm{y}[\mathrm{t}]-2) *(\mathrm{y}[\mathrm{t}]-\operatorname{Exp}[\mathrm{t} / 2]), \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions $->$ True]
Timed out

8.30 problem 45

8.30.1 Solving as separable ode . 1626
8.30.2 Solving as linear ode . 1628
8.30.3 Solving as first order ode lie symmetry lookup ode 1630
8.30.4 Solving as exact ode . 1634
8.30.5 Maple step by step solution . 1638

Internal problem ID [13058]
Internal file name [OUTPUT/11710_Wednesday_November_08_2023_03_29_08_AM_40993183/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 45.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-t^{2} y-y=t^{2}+1
$$

8.30.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =\left(t^{2}+1\right)(y+1)
\end{aligned}
$$

Where $f(t)=t^{2}+1$ and $g(y)=y+1$. Integrating both sides gives

$$
\frac{1}{y+1} d y=t^{2}+1 d t
$$

$$
\begin{aligned}
\int \frac{1}{y+1} d y & =\int t^{2}+1 d t \\
\ln (y+1) & =\frac{1}{3} t^{3}+t+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
y+1=\mathrm{e}^{\frac{1}{3} t^{3}+t+c_{1}}
$$

Which simplifies to

$$
y+1=c_{2} \mathrm{e}^{\frac{1}{t^{3}}+t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} \mathrm{e}^{\frac{1}{3} t^{3}+t+c_{1}}-1 \tag{1}
\end{equation*}
$$

Figure 361: Slope field plot

Verification of solutions

$$
y=c_{2} \mathrm{e}^{\frac{1}{3} t^{3}+t+c_{1}}-1
$$

Verified OK.

8.30.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-t^{2}-1 \\
& q(t)=t^{2}+1
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\left(-t^{2}-1\right) y=t^{2}+1
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int\left(-t^{2}-1\right) d t} \\
& =\mathrm{e}^{-\frac{1}{3} t^{3}-t}
\end{aligned}
$$

Which simplifies to

$$
\mu=\mathrm{e}^{-\frac{t\left(t^{2}+3\right)}{3}}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(t^{2}+1\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{-\frac{t\left(t^{2}+3\right)}{3}} y\right) & =\left(\mathrm{e}^{-\frac{t\left(t^{2}+3\right)}{3}}\right)\left(t^{2}+1\right) \\
\mathrm{d}\left(\mathrm{e}^{-\frac{t\left(t^{2}+3\right)}{3}} y\right) & =\left(\left(t^{2}+1\right) \mathrm{e}^{-\frac{t\left(t^{2}+3\right)}{3}}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-\frac{t\left(t^{2}+3\right)}{3}} y=\int\left(t^{2}+1\right) \mathrm{e}^{-\frac{t\left(t^{2}+3\right)}{3}} \mathrm{~d} t \\
& \mathrm{e}^{-\frac{t\left(t^{2}+3\right)}{3}} y=-\mathrm{e}^{-\frac{t\left(t^{2}+3\right)}{3}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-\frac{t\left(t^{2}+3\right)}{3}}$ results in

$$
y=-\mathrm{e}^{\frac{t\left(t^{2}+3\right)}{3}} \mathrm{e}^{-\frac{t\left(t^{2}+3\right)}{3}}+c_{1} \mathrm{e}^{\frac{t\left(t^{2}+3\right)}{3}}
$$

which simplifies to

$$
y=-1+c_{1} \mathrm{e}^{\frac{t\left(t^{2}+3\right)}{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-1+c_{1} \mathrm{e}^{\frac{t\left(t^{2}+3\right)}{3}} \tag{1}
\end{equation*}
$$

Figure 362: Slope field plot

Verification of solutions

$$
y=-1+c_{1} \mathrm{e}^{\frac{t\left(t^{2}+3\right)}{3}}
$$

Verified OK.

8.30.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=y t^{2}+t^{2}+y+1 \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 353: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=\mathrm{e}^{\frac{1}{3} t^{3}+t} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\frac{1}{3} t^{3}+t}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-\frac{1}{3} t^{3}-t} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=y t^{2}+t^{2}+y+1
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-\left(t^{2}+1\right) \mathrm{e}^{-\frac{t\left(t^{2}+3\right)}{3}} y \\
S_{y} & =\mathrm{e}^{-\frac{t\left(t^{2}+3\right)}{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\left(t^{2}+1\right) \mathrm{e}^{-\frac{t\left(t^{2}+3\right)}{3}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\left(R^{2}+1\right) \mathrm{e}^{-\frac{R\left(R^{2}+3\right)}{3}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\mathrm{e}^{-\frac{R\left(R^{2}+3\right)}{3}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\mathrm{e}^{-\frac{t\left(t^{2}+3\right)}{3}} y=-\mathrm{e}^{-\frac{t\left(t^{2}+3\right)}{3}}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-\frac{t\left(t^{2}+3\right)}{3}} y=-\mathrm{e}^{-\frac{t\left(t^{2}+3\right)}{3}}+c_{1}
$$

Which gives

$$
y=-\left(\mathrm{e}^{-\frac{t\left(t^{2}+3\right)}{3}}-c_{1}\right) \mathrm{e}^{\frac{t\left(t^{2}+3\right)}{3}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in t, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=y t^{2}+t^{2}+y+1$		$\frac{d S}{d R}=\left(R^{2}+1\right) \mathrm{e}^{-\frac{R\left(R^{2}+3\right)}{3}}$
		$1+1+1+3 y_{0}$
	$R=t$	$\hat{1}^{1} \uparrow$
＋4tataty		
	$S=\mathrm{e}^{-\frac{t\left(t^{2}+3\right)}{3}} y$	
	$S=\mathrm{e} \quad{ }^{3} \quad y$	
－2		
．		
．1．1．1．1．		
		¢ ¢ ¢ ¢＋¢ ¢ ターブ

Summary

The solution（s）found are the following

$$
\begin{equation*}
y=-\left(\mathrm{e}^{-\frac{t\left(t^{2}+3\right)}{3}}-c_{1}\right) \mathrm{e}^{\frac{t\left(t^{2}+3\right)}{3}} \tag{1}
\end{equation*}
$$

Figure 363: Slope field plot

Verification of solutions

$$
y=-\left(\mathrm{e}^{-\frac{t\left(t^{2}+3\right)}{3}}-c_{1}\right) \mathrm{e}^{\frac{t\left(t^{2}+3\right)}{3}}
$$

Verified OK.

8.30.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y+1}\right) \mathrm{d} y & =\left(t^{2}+1\right) \mathrm{d} t \\
\left(-t^{2}-1\right) \mathrm{d} t+\left(\frac{1}{y+1}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(t, y)=-t^{2}-1 \\
& N(t, y)=\frac{1}{y+1}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-t^{2}-1\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\frac{1}{y+1}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-t^{2}-1 \mathrm{~d} t \\
\phi & =-\frac{1}{3} t^{3}-t+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y+1}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y+1}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y+1}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y+1}\right) \mathrm{d} y \\
f(y) & =\ln (y+1)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{t^{3}}{3}-t+\ln (y+1)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{t^{3}}{3}-t+\ln (y+1)
$$

The solution becomes

$$
y=\mathrm{e}^{\frac{1}{t^{3}}+t+c_{1}}-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{1}{4} t^{3}+t+c_{1}}-1 \tag{1}
\end{equation*}
$$

Figure 364: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{1}{3} t^{3}+t+c_{1}}-1
$$

Verified OK.

8.30.5 Maple step by step solution

Let's solve
$y^{\prime}-t^{2} y-y=t^{2}+1$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y+1}=t^{2}+1$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{y+1} d t=\int\left(t^{2}+1\right) d t+c_{1}$
- Evaluate integral
$\ln (y+1)=\frac{1}{3} t^{3}+t+c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{\frac{1}{3} t^{3}+t+c_{1}}-1$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

$$
\begin{gathered}
\text { dsolve }(\operatorname{diff}(\mathrm{y}(\mathrm{t}), \mathrm{t})=\mathrm{t} \wedge 2 * \mathrm{y}(\mathrm{t})+1+\mathrm{y}(\mathrm{t})+\mathrm{t} \wedge 2, \mathrm{y}(\mathrm{t}) \text {, singsol=all) } \\
y(\mathrm{t})=-1+\mathrm{e}^{\frac{t\left(t^{2}+3\right)}{3}} c_{1}
\end{gathered}
$$

\checkmark Solution by Mathematica
Time used: 0.188 (sec). Leaf size: 26
DSolve [y' $[\mathrm{t}]==\mathrm{t} \wedge 2 * \mathrm{y}[\mathrm{t}]+1+\mathrm{y}[\mathrm{t}]+\mathrm{t} \wedge 2, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(t) \rightarrow-1+c_{1} e^{t^{3}}+t \\
& y(t) \rightarrow-1
\end{aligned}
$$

8.31 problem 46

8.31.1 Solving as separable ode . 1640
8.31.2 Solving as linear ode . 1642
8.31.3 Solving as homogeneousTypeMapleC ode 1644
8.31.4 Solving as first order ode lie symmetry lookup ode 1646
8.31.5 Solving as exact ode . 1650
8.31.6 Maple step by step solution . 1654

Internal problem ID [13059]
Internal file name [OUTPUT/11711_Wednesday_November_08_2023_03_29_09_AM_67191522/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 46.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeMapleC", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[_separable]
```

$$
y^{\prime}-\frac{2 y+1}{t}=0
$$

8.31.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(t, y) \\
& =f(t) g(y) \\
& =\frac{2 y+1}{t}
\end{aligned}
$$

Where $f(t)=\frac{1}{t}$ and $g(y)=2 y+1$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{2 y+1} d y & =\frac{1}{t} d t \\
\int \frac{1}{2 y+1} d y & =\int \frac{1}{t} d t \\
\frac{\ln (2 y+1)}{2} & =\ln (t)+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{2 y+1}=\mathrm{e}^{\ln (t)+c_{1}}
$$

Which simplifies to

$$
\sqrt{2 y+1}=c_{2} t
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{2}^{2} t^{2} \mathrm{e}^{2 c_{1}}}{2}-\frac{1}{2} \tag{1}
\end{equation*}
$$

Figure 365: Slope field plot

Verification of solutions

$$
y=\frac{c_{2}^{2} t^{2} \mathrm{e}^{2 c_{1}}}{2}-\frac{1}{2}
$$

Verified OK.

8.31.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=-\frac{2}{t} \\
& q(t)=\frac{1}{t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 y}{t}=\frac{1}{t}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{t} d t} \\
& =\frac{1}{t^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{1}{t}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{y}{t^{2}}\right) & =\left(\frac{1}{t^{2}}\right)\left(\frac{1}{t}\right) \\
\mathrm{d}\left(\frac{y}{t^{2}}\right) & =\frac{1}{t^{3}} \mathrm{~d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{t^{2}} & =\int \frac{1}{t^{3}} \mathrm{~d} t \\
\frac{y}{t^{2}} & =-\frac{1}{2 t^{2}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{t^{2}}$ results in

$$
y=-\frac{1}{2}+t^{2} c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{2}+t^{2} c_{1} \tag{1}
\end{equation*}
$$

Figure 366: Slope field plot

Verification of solutions

$$
y=-\frac{1}{2}+t^{2} c_{1}
$$

Verified OK.

8.31.3 Solving as homogeneousTypeMapleC ode

Let $Y=y+y_{0}$ and $X=t+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=\frac{2 Y(X)+2 y_{0}+1}{X+x_{0}}
$$

Solving for possible values of x_{0} and y_{0} which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
& x_{0}=0 \\
& y_{0}=-\frac{1}{2}
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=\frac{2 Y(X)}{X}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =\frac{2 Y}{X} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order n if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=2 Y$ and $N=X$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =2 u \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{u(X)}{X}
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)-\frac{u(X)}{X}=0
$$

Or

$$
\left(\frac{d}{d X} u(X)\right) X-u(X)=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =\frac{u}{X}
\end{aligned}
$$

Where $f(X)=\frac{1}{X}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{1}{X} d X \\
\int \frac{1}{u} d u & =\int \frac{1}{X} d X \\
\ln (u) & =\ln (X)+c_{2} \\
u & =\mathrm{e}^{\ln (X)+c_{2}} \\
& =c_{2} X
\end{aligned}
$$

Now u in the above solution is replaced back by Y using $u=\frac{Y}{X}$ which results in the solution

$$
Y(X)=X^{2} c_{2}
$$

Using the solution for $Y(X)$

$$
Y(X)=X^{2} c_{2}
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
& Y=y+y_{0} \\
& X=t+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
& Y=y-\frac{1}{2} \\
& X=t
\end{aligned}
$$

Then the solution in y becomes

$$
y+\frac{1}{2}=c_{2} t^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y+\frac{1}{2}=c_{2} t^{2} \tag{1}
\end{equation*}
$$

Figure 367: Slope field plot

Verification of solutions

$$
y+\frac{1}{2}=c_{2} t^{2}
$$

Verified OK.

8.31.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{2 y+1}{t} \\
& y^{\prime}=\omega(t, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{t}+\omega\left(\eta_{y}-\xi_{t}\right)-\omega^{2} \xi_{y}-\omega_{t} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 356: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(t, y)=0 \\
& \eta(t, y)=t^{2} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(t, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d t}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial t}+\eta \frac{\partial}{\partial y}\right) S(t, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=t
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{t^{2}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{t^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{t}+\omega(t, y) S_{y}}{R_{t}+\omega(t, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{t}, R_{y}, S_{t}, S_{y}$ are all partial derivatives and $\omega(t, y)$ is the right hand side of the original ode given by

$$
\omega(t, y)=\frac{2 y+1}{t}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{t} & =1 \\
R_{y} & =0 \\
S_{t} & =-\frac{2 y}{t^{3}} \\
S_{y} & =\frac{1}{t^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{t^{3}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for t, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{3}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{2 R^{2}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to t, y coordinates. This results in

$$
\frac{y}{t^{2}}=-\frac{1}{2 t^{2}}+c_{1}
$$

Which simplifies to

$$
\frac{y}{t^{2}}=-\frac{1}{2 t^{2}}+c_{1}
$$

Which gives

$$
y=-\frac{1}{2}+t^{2} c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in t, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d t}=\frac{2 y+1}{t}$		$\frac{d S}{d R}=\frac{1}{R^{3}}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
L-		
	$R=t$	
$\xrightarrow[\rightarrow-4 \rightarrow \rightarrow \pm]{ }$	$S=\frac{y}{t^{2}}$	
		$\xrightarrow[\rightarrow \rightarrow \rightarrow 0]{ }$
		$\xrightarrow{\text { a }} \rightarrow \rightarrow \rightarrow+{ }_{\text {d }}$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{2}+t^{2} c_{1} \tag{1}
\end{equation*}
$$

Figure 368: Slope field plot
Verification of solutions

$$
y=-\frac{1}{2}+t^{2} c_{1}
$$

Verified OK.

8.31.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(t, y) \mathrm{d} t+N(t, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{2 y+1}\right) \mathrm{d} y & =\left(\frac{1}{t}\right) \mathrm{d} t \\
\left(-\frac{1}{t}\right) \mathrm{d} t+\left(\frac{1}{2 y+1}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(t, y) & =-\frac{1}{t} \\
N(t, y) & =\frac{1}{2 y+1}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{t}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =\frac{\partial}{\partial t}\left(\frac{1}{2 y+1}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial t}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(t, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial t}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. t gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int M \mathrm{~d} t \\
\int \frac{\partial \phi}{\partial t} \mathrm{~d} t & =\int-\frac{1}{t} \mathrm{~d} t \\
\phi & =-\ln (t)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both t and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{2 y+1}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{2 y+1}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{2 y+1}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{2 y+1}\right) \mathrm{d} y \\
f(y) & =\frac{\ln (2 y+1)}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (t)+\frac{\ln (2 y+1)}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (t)+\frac{\ln (2 y+1)}{2}
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{2 c_{1}} t^{2}}{2}-\frac{1}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{2 c_{1}} t^{2}}{2}-\frac{1}{2} \tag{1}
\end{equation*}
$$

Figure 369: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{2 c_{1}} t^{2}}{2}-\frac{1}{2}
$$

Verified OK.

8.31.6 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{2 y+1}{t}=0
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- Separate variables

$$
\frac{y^{\prime}}{2 y+1}=\frac{1}{t}
$$

- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{2 y+1} d t=\int \frac{1}{t} d t+c_{1}$
- Evaluate integral
$\frac{\ln (2 y+1)}{2}=\ln (t)+c_{1}$
- \quad Solve for y
$y=\frac{\mathrm{e}^{2 c_{1}} t^{2}}{2}-\frac{1}{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

```
dsolve(diff(y(t),t)=(2*y(t)+1)/t,y(t), singsol=all)
```

$$
y(t)=-\frac{1}{2}+c_{1} t^{2}
$$

\checkmark Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 22
DSolve[y' $[\mathrm{t}]==(2 * y[\mathrm{t}]+1) / \mathrm{t}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(t) \rightarrow-\frac{1}{2}+c_{1} t^{2} \\
& y(t) \rightarrow-\frac{1}{2}
\end{aligned}
$$

8.32 problem 47

8.32.1 Existence and uniqueness analysis 1656
8.32.2 Solving as quadrature ode . 1657
8.32.3 Maple step by step solution . 1658

Internal problem ID [13060]
Internal file name [OUTPUT/11712_Wednesday_November_08_2023_03_29_10_AM_98042492/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 1. First-Order Differential Equations. Review Exercises for chapter 1. page 136
Problem number: 47.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}+y^{2}=3
$$

With initial conditions

$$
[y(0)=0]
$$

8.32.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(t, y) \\
& =-y^{2}+3
\end{aligned}
$$

The y domain of $f(t, y)$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-y^{2}+3\right) \\
& =-2 y
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $t=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Therefore solution exists and is unique.

8.32.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-y^{2}+3} d y & =t+c_{1} \\
\frac{\sqrt{3} \operatorname{arctanh}\left(\frac{\sqrt{3} y}{3}\right)}{3} & =t+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=\sqrt{3} \tanh \left(\left(t+c_{1}\right) \sqrt{3}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{\sqrt{3} \mathrm{e}^{2 \sqrt{3} c_{1}}-\sqrt{3}}{\mathrm{e}^{2 \sqrt{3} c_{1}}+1} \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\sqrt{3} \mathrm{e}^{2 \sqrt{3} t}-\sqrt{3}}{\mathrm{e}^{2 \sqrt{3} t}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{3} \mathrm{e}^{2 \sqrt{3} t}-\sqrt{3}}{\mathrm{e}^{2 \sqrt{3} t}+1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sqrt{3} \mathrm{e}^{2 \sqrt{3} t}-\sqrt{3}}{\mathrm{e}^{2 \sqrt{3} t}+1}
$$

Verified OK.

8.32.3 Maple step by step solution

Let's solve
$\left[y^{\prime}+y^{2}=3, y(0)=0\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{3-y^{2}}=1$
- Integrate both sides with respect to t
$\int \frac{y^{\prime}}{3-y^{2}} d t=\int 1 d t+c_{1}$
- Evaluate integral
$\frac{\sqrt{3} \operatorname{arctanh}\left(\frac{y \sqrt{3}}{3}\right)}{3}=t+c_{1}$
- \quad Solve for y

$$
y=\sqrt{3} \tanh \left(\left(t+c_{1}\right) \sqrt{3}\right)
$$

- Use initial condition $y(0)=0$
$0=\sqrt{3} \tanh \left(\sqrt{3} c_{1}\right)$
- \quad Solve for c_{1}
$c_{1}=0$
- \quad Substitute $c_{1}=0$ into general solution and simplify
$y=\sqrt{3} \tanh (\sqrt{3} t)$
- \quad Solution to the IVP
$y=\sqrt{3} \tanh (\sqrt{3} t)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

Solution by Maple
Time used: 0.032 (sec). Leaf size: 14

```
dsolve([diff(y(t),t)=3-y(t)~2,y(0) = 0],y(t), singsol=all)
```

$$
y(t)=\sqrt{3} \tanh (\sqrt{3} t)
$$

\checkmark Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 37
DSolve[\{y' $[t]==3-y[t] \sim 2,\{y[0]==0\}\}, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{\sqrt{3}\left(e^{2 \sqrt{3} t}-1\right)}{e^{2 \sqrt{3} t}+1}
$$

9 Chapter 3. Linear Systems. Exercises section 3.1. page 258
9.1 problem 1 1661
9.2 problem 2 1670
9.3 problem 3 1679
9.4 problem 4 1689
9.5 problem 5 1698
9.6 problem 6 1707
9.7 problem 7 1715
9.8 problem 8 1730
9.9 problem 9 1738
9.10 problem 24 1745
9.11 problem 25 1753
9.12 problem 26 1761
9.13 problem 28 1769
9.14 problem 29 1776
9.15 problem 34 1784

9.1 problem 1

9.1.1 Solution using Matrix exponential method 1661
9.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1662
9.1.3 Maple step by step solution . 1667

Internal problem ID [13061]
Internal file name [OUTPUT/11713_Wednesday_November_08_2023_04_49_52_AM_64086885/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =x(t)-y \\
y^{\prime} & =x(t)-y
\end{aligned}
$$

9.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
1+t & -t \\
t & 1-t
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
1+t & -t \\
t & 1-t
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
(1+t) c_{1}-t c_{2} \\
t c_{1}+(1-t) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
\left(c_{1}-c_{2}\right) t+c_{1} \\
\left(c_{1}-c_{2}\right) t+c_{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

9.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & -1 \\
1 & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=0
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
0	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=0$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]-(0)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
1 & -1 & 0 \\
1 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
0	2	1	Yes	$\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 0 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 371: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]-(0)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue 0 . Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] 1 \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right] t+\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right) 1 \\
& =\left[\begin{array}{l}
t+2 \\
1+t
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
t+2 \\
1+t
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
c_{1}+c_{2}(t+2) \\
c_{2} t+c_{1}+c_{2}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 372: Phase plot

9.1.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=x(t)-y, y^{\prime}=x(t)-y\right]
$$

- Define vector
$\vec{x}(t)=\left[\begin{array}{c}x(t) \\ y\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}1 & -1 \\ 1 & -1\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}1 & -1 \\ 1 & -1\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[0,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair
$\left[0,\left[\begin{array}{l}1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[0,\left[\begin{array}{l}0 \\ 0\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{x}_{2}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
$$

- Substitute solutions into the general solution

$$
\vec{x}=\left[\begin{array}{l}
c_{1} \\
c_{1}
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{l}
c_{1} \\
c_{1}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=c_{1}, y=c_{1}\right\}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 21

```
dsolve([diff(x(t),t)=x(t)-y(t),\operatorname{diff}(y(t),t)=x(t)-y(t)],singsol=all)
```

$$
\begin{aligned}
& x(t)=c_{1} t+c_{2} \\
& y(t)=c_{1} t-c_{1}+c_{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 32
DSolve $\left[\left\{x^{\prime}[t]==x[t]-y[t], y^{\prime}[t]==x[t]-y[t]\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions \rightarrow True $]$

$$
\begin{aligned}
& x(t) \rightarrow c_{1}(t+1)-c_{2} t \\
& y(t) \rightarrow\left(c_{1}-c_{2}\right) t+c_{2}
\end{aligned}
$$

9.2 problem 2

9.2.1 Solution using Matrix exponential method 1670
9.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1671
9.2.3 Maple step by step solution . 1676

Internal problem ID [13062]
Internal file name [OUTPUT/11714_Wednesday_November_08_2023_04_49_55_AM_14524618/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =2 x(t)-y \\
y^{\prime} & =0
\end{aligned}
$$

9.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{2 t} & -\frac{\mathrm{e}^{2 t}}{2}+\frac{1}{2} \\
0 & 1
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{2 t} & -\frac{\mathrm{e}^{2 t}}{2}+\frac{1}{2} \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{2 t} c_{1}+\left(-\frac{\mathrm{e}^{2 t}}{2}+\frac{1}{2}\right) c_{2} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(2 c_{1}-c_{2}\right) \mathrm{e}^{2 t}}{2}+\frac{c_{2}}{2} \\
c_{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

9.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2 & -1 \\
0 & 0
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & -1 \\
0 & -\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(2-\lambda)(-\lambda)=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=0
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
0	1	real eigenvalue
2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=0$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
2 & -1 \\
0 & 0
\end{array}\right]-(0)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
2 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
2 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
2 & -1 \\
0 & 0
\end{array}\right]-(2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
0 & -1 \\
0 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
0 & -1 & 0 \\
0 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}-2 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{1}\right\}$ and the leading variables are $\left\{v_{2}\right\}$. Let $v_{1}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=\left[\begin{array}{l}
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
2	1	1	No	$\left[\begin{array}{l}1 \\ 0\end{array}\right]$
0	1	1	No	$\left[\begin{array}{c}\frac{1}{2} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 2 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{2 t} \\
& =\left[\begin{array}{l}
1 \\
0
\end{array}\right] e^{2 t}
\end{aligned}
$$

Since eigenvalue 0 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{0} \\
& =\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right] e^{0}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{2 t} \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
c_{1} \mathrm{e}^{2 t}+\frac{c_{2}}{2} \\
c_{2}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 373: Phase plot

9.2.3 Maple step by step solution

Let's solve
$\left[x^{\prime}(t)=2 x(t)-y, y^{\prime}=0\right]$

- Define vector
$\vec{x}(t)=\left[\begin{array}{c}x(t) \\ y\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}2 & -1 \\ 0 & 0\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}2 & -1 \\ 0 & 0\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
2 & -1 \\
0 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[0,\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{l}1 \\ 0\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair
$\vec{x}_{2}=\mathrm{e}^{2 t} .\left[\begin{array}{l}1 \\ 0\end{array}\right]$
- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
$$

- Substitute solutions into the general solution

$$
\vec{x}=c_{2} \mathrm{e}^{2 t} \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
\frac{c_{1}}{2} \\
c_{1}
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
c_{2} \mathrm{e}^{2 t}+\frac{c_{1}}{2} \\
c_{1}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x(t)=c_{2} \mathrm{e}^{2 t}+\frac{c_{1}}{2}, y=c_{1}\right\}
$$

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 19

```
dsolve([diff(x(t),t)=2*x(t)-y(t),\operatorname{diff}(y(t),t)=0], singsol=all)
```

$$
\begin{aligned}
& x(t)=\frac{c_{2}}{2}+c_{1} \mathrm{e}^{2 t} \\
& y(t)=c_{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 32
DSolve $\left[\left\{x^{\prime}[t]==2 * x[t]-y[t], y^{\prime}[t]==0\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions \rightarrow True $]$

$$
\begin{aligned}
& x(t) \rightarrow\left(c_{1}-\frac{c_{2}}{2}\right) e^{2 t}+\frac{c_{2}}{2} \\
& y(t) \rightarrow c_{2}
\end{aligned}
$$

9.3 problem 3

9.3.1 Solution using Matrix exponential method 1679
9.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1680
9.3.3 Maple step by step solution . 1685

Internal problem ID [13063]
Internal file name [OUTPUT/11715_Wednesday_November_08_2023_04_49_55_AM_47063498/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =x(t) \\
y^{\prime} & =2 x(t)+y
\end{aligned}
$$

9.3.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{t} & 0 \\
2 t \mathrm{e}^{t} & \mathrm{e}^{t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{t} & 0 \\
2 t \mathrm{e}^{t} & \mathrm{e}^{t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t} c_{1} \\
2 t \mathrm{e}^{t} c_{1}+\mathrm{e}^{t} c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t} c_{1} \\
\mathrm{e}^{t}\left(2 c_{1} t+c_{2}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

9.3.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 0 \\
2 & 1-\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(1-\lambda)(1-\lambda)=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=1
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ll}
0 & 0 \\
2 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ll|l}
0 & 0 & 0 \\
2 & 0 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{ll|l}
2 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
1	2	1	Yes	$\left[\begin{array}{l}0 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 1 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 374: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& {\left[\begin{array}{ll}
0 & 0 \\
2 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue 1. Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
0 \\
1
\end{array}\right] \mathrm{e}^{t} \\
& =\left[\begin{array}{c}
0 \\
\mathrm{e}^{t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right] t+\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]\right) \mathrm{e}^{t} \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{t}}{2} \\
\mathrm{e}^{t}(1+t)
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
\mathrm{e}^{t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{\mathrm{e}^{t}}{2} \\
\mathrm{e}^{t}(1+t)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{2} e^{t}}{2} \\
\mathrm{e}^{t}\left(c_{2} t+c_{1}+c_{2}\right)
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 375: Phase plot

9.3.3 Maple step by step solution

Let's solve
$\left[x^{\prime}(t)=x(t), y^{\prime}=2 x(t)+y\right]$

- Define vector
$\vec{x}(t)=\left[\begin{array}{c}x(t) \\ y\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- \quad System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}1 & 0 \\ 2 & 1\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[1,\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[1,\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue 1
$\vec{x}_{1}(t)=\mathrm{e}^{t} \cdot\left[\begin{array}{l}0 \\ 1\end{array}\right]$
- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=1$ is the eigenvalue, and $\vec{x}_{2}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- Note that the t multiplying \vec{v} makes this solution linearly independent to the 1 st solution obtai
- \quad Substitute $\vec{x}_{2}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition \vec{p} must meet for $\vec{x}_{2}(t)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 1

$$
\left(\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]-1 \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

- Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- Second solution from eigenvalue 1
$\vec{x}_{2}(t)=\mathrm{e}^{t} \cdot\left(t \cdot\left[\begin{array}{l}0 \\ 1\end{array}\right]+\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)$
- General solution to the system of ODEs
$\vec{x}=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)$
- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{t} \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{t} \cdot\left(t \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right)
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
0 \\
\mathrm{e}^{t}\left(c_{2} t+c_{1}\right)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x(t)=0, y=\mathrm{e}^{t}\left(c_{2} t+c_{1}\right)\right\}
$$

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 21

```
dsolve([diff(x(t),t)=x(t), diff(y(t),t)=2*x(t)+y(t)],singsol=all)
```

$$
\begin{aligned}
& x(t)=c_{2} \mathrm{e}^{t} \\
& y(t)=\left(2 c_{2} t+c_{1}\right) \mathrm{e}^{t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 26
DSolve[\{x' $\left.[t]==x[t], y^{\prime}[t]==2 * x[t]+y[t]\right\},\{x[t], y[t]\}, t$, IncludeSingularSolutions \rightarrow True $]$

$$
\begin{aligned}
& x(t) \rightarrow c_{1} e^{t} \\
& y(t) \rightarrow e^{t}\left(2 c_{1} t+c_{2}\right)
\end{aligned}
$$

9.4 problem 4

9.4.1 Solution using Matrix exponential method 1689
9.4.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1690
9.4.3 Maple step by step solution . 1695

Internal problem ID [13064]
Internal file name [OUTPUT/11716_Wednesday_November_08_2023_04_49_55_AM_40386715/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-x(t)+2 y \\
y^{\prime} & =2 x(t)-y
\end{aligned}
$$

9.4.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 2 \\
2 & -1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{\left(\mathrm{e}^{4 t}+1\right) \mathrm{e}^{-3 t}}{2} & \frac{\left(\mathrm{e}^{4 t}-1\right) \mathrm{e}^{-3 t}}{2} \\
\frac{\left(\mathrm{e}^{4 t}-1\right) \mathrm{e}^{-3 t}}{2} & \frac{\left(\mathrm{e}^{4 t}+1\right) \mathrm{e}^{-3 t}}{2}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ll}
\frac{\left(\mathrm{e}^{4 t}+1\right) \mathrm{e}^{-3 t}}{2} & \frac{\left(\mathrm{e}^{4 t}-1\right) \mathrm{e}^{-3 t}}{2} \\
\frac{\left(\mathrm{e}^{4 t}-1\right) \mathrm{e}^{-3 t}}{2} & \frac{\left(\mathrm{e}^{4 t}+1\right) \mathrm{e}^{-3 t}}{2}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{\left(\mathrm{e}^{4 t}+1\right) \mathrm{e}^{-3 t} c_{1}}{2}+\frac{\left(\mathrm{e}^{4 t}-1\right) \mathrm{e}^{-3 t} c_{2}}{2} \\
\frac{\left(\mathrm{e}^{4 t}-1\right) \mathrm{e}^{-3 t} c_{1}}{2}+\frac{\left(\mathrm{e}^{4 t}+1\right) \mathrm{e}^{-3 t} c_{2}}{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{\left(\left(c_{1}+c_{2}\right) \mathrm{e}^{4 t}+c_{1}-c_{2}\right) \mathrm{e}^{-3 t}}{2} \\
\frac{\mathrm{e}^{-3 t}\left(\left(c_{1}+c_{2}\right) \mathrm{e}^{4 t}-c_{1}+c_{2}\right)}{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

9.4.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 2 \\
2 & -1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1 & 2 \\
2 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1-\lambda & 2 \\
2 & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+2 \lambda-3=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =-3 \\
\lambda_{2} & =1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue
-3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-1 & 2 \\
2 & -1
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
2 & 2 & 0 \\
2 & 2 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{ll|l}
2 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
2 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-1 & 2 \\
2 & -1
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-2 & 2 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2 & 2 & 0 \\
2 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-2 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-3	1	1	No	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
1	1	1	No	$\left[\begin{array}{c}1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -3 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-3 t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-3 t}
\end{aligned}
$$

Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{t} \\
\mathrm{e}^{t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-\left(-c_{2} \mathrm{e}^{4 t}+c_{1}\right) \mathrm{e}^{-3 t} \\
\left(c_{2} \mathrm{e}^{4 t}+c_{1}\right) \mathrm{e}^{-3 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 376: Phase plot

9.4.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=-x(t)+2 y, y^{\prime}=2 x(t)-y\right]
$$

- Define vector
$\vec{x}(t)=\left[\begin{array}{c}x(t) \\ y\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}-1 & 2 \\ 2 & -1\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}-1 & 2 \\ 2 & -1\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
-1 & 2 \\
2 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-3,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-3,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair
$\vec{x}_{1}=\mathrm{e}^{-3 t} \cdot\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
- Consider eigenpair
$\left[1,\left[\begin{array}{l}1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair
$\vec{x}_{2}=\mathrm{e}^{t} \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]$
- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
$$

- Substitute solutions into the general solution

$$
\vec{x}=\mathrm{e}^{-3 t} c_{1} \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{t} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-\left(-c_{2} \mathrm{e}^{4 t}+c_{1}\right) \mathrm{e}^{-3 t} \\
\left(c_{2} \mathrm{e}^{4 t}+c_{1}\right) \mathrm{e}^{-3 t}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=-\left(-c_{2} \mathrm{e}^{4 t}+c_{1}\right) \mathrm{e}^{-3 t}, y=\left(c_{2} \mathrm{e}^{4 t}+c_{1}\right) \mathrm{e}^{-3 t}\right\}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 31
dsolve([diff $(x(t), t)=-x(t)+2 * y(t), \operatorname{diff}(y(t), t)=2 * x(t)-y(t)]$, singsol=all)

$$
\begin{aligned}
& x(t)=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{-3 t} \\
& y(t)=c_{1} \mathrm{e}^{t}-c_{2} \mathrm{e}^{-3 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 68
DSolve $\left[\left\{x^{\prime}[t]==-x[t]+2 * y[t], y^{\prime}[t]==2 * x[t]-y[t]\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions $\rightarrow T r$

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{2} e^{-3 t}\left(c_{1}\left(e^{4 t}+1\right)+c_{2}\left(e^{4 t}-1\right)\right) \\
& y(t) \rightarrow \frac{1}{2} e^{-3 t}\left(c_{1}\left(e^{4 t}-1\right)+c_{2}\left(e^{4 t}+1\right)\right)
\end{aligned}
$$

9.5 problem 5

9.5.1 Solution using Matrix exponential method 1698
9.5.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1699
9.5.3 Maple step by step solution . 1704

Internal problem ID [13065]
Internal file name [OUTPUT/11720_Sunday_December_03_2023_07_15_15_PM_64086885/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =2 x(t)+y \\
y^{\prime} & =x(t)+y
\end{aligned}
$$

9.5.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{(5+\sqrt{5}) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}-\frac{\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(-5+\sqrt{5})}{10} & -\frac{\left(-\mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+\mathrm{e}^{\left.-\frac{(\sqrt{5}-3) t}{2}\right) \sqrt{5}}\right.}{5} \\
5 & \left(-\mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}\right) \sqrt{5} \\
-\frac{(5-\sqrt{5}) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}+\frac{\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(5+\sqrt{5})}{10}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& \vec{x}_{h}(t)=e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{(5+\sqrt{5}) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}-\frac{\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(-5+\sqrt{5})}{10} & -\frac{\left(-\mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+\mathrm{e}^{\left.-\frac{(\sqrt{5}-3) t}{2}\right) \sqrt{5}}\right.}{5} \\
-\frac{\left(-\mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+\mathrm{e}^{\left.-\frac{(\sqrt{5}-3) t}{2}\right) \sqrt{5}}\right.}{5} & \frac{(5-\sqrt{5}) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}+\frac{\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(5+\sqrt{5})}{10}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{(5+\sqrt{5}) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}-\frac{\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(-5+\sqrt{5})}{10}\right) c_{1}-\frac{\left(-\mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}\right) \sqrt{5} c_{2}}{5} \\
-\frac{\left(-\mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+\mathrm{e}^{\left.-\frac{(\sqrt{5}-3) t}{2}\right) \sqrt{5} c_{1}}\right.}{5}+\left(\frac{(5-\sqrt{5}) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}+\frac{\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(5+\sqrt{5})}{10}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(\left(c_{1}+2 c_{2}\right) \sqrt{5}+5 c_{1}\right) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}-\frac{\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}\left(\left(c_{1}+2 c_{2}\right) \sqrt{5}-5 c_{1}\right)}}{10} \\
\frac{\left(\left(2 c_{1}-c_{2}\right) \sqrt{5}+5 c_{2}\right) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}-\frac{\left(\left(c_{1}-\frac{c_{2}}{2}\right) \sqrt{5}-\frac{5 c_{2}}{2}\right) \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}}{5}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

9.5.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-3 \lambda+1=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=\frac{3}{2}+\frac{\sqrt{5}}{2} \\
& \lambda_{2}=\frac{3}{2}-\frac{\sqrt{5}}{2}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$\frac{3}{2}-\frac{\sqrt{5}}{2}$	1	real eigenvalue
$\frac{3}{2}+\frac{\sqrt{5}}{2}$	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=\frac{3}{2}-\frac{\sqrt{5}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]-\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]}
\end{array}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
\frac{1}{2}+\frac{\sqrt{5}}{2} & 1 & 0 \\
1 & \frac{\sqrt{5}}{2}-\frac{1}{2} & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}-\frac{R_{1}}{\frac{1}{2}+\frac{\sqrt{5}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
\frac{1}{2}+\frac{\sqrt{5}}{2} & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{1}{2}+\frac{\sqrt{5}}{2} & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{2 t}{\sqrt{5}+1}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{2 t}{\sqrt{5}+1} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 t}{\sqrt{5}+1} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{2 t}{\sqrt{5}+1} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{2}{\sqrt{5}+1} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{2 t}{\sqrt{5}+1} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{\sqrt{5}+1} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{2 t}{\sqrt{5}+1} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{\sqrt{5}+1} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=\frac{3}{2}+\frac{\sqrt{5}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]-\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{cc}
\frac{1}{2}-\frac{\sqrt{5}}{2} & 1 \\
1 & -\frac{1}{2}-\frac{\sqrt{5}}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right.
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
\frac{1}{2}-\frac{\sqrt{5}}{2} & 1 & 0 \\
1 & -\frac{1}{2}-\frac{\sqrt{5}}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{\frac{1}{2}-\frac{\sqrt{5}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
\frac{1}{2}-\frac{\sqrt{5}}{2} & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{1}{2}-\frac{\sqrt{5}}{2} & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{2 t}{\sqrt{5}-1}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{2 t}{\sqrt{5}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2 t}{\sqrt{5}-1} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{2 t}{\sqrt{5}-1} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{2}{\sqrt{5}-1} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{2 t}{\sqrt{5}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{\sqrt{5}-1} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{2 t}{\sqrt{5}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{\sqrt{5}-1} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$\frac{3}{2}+\frac{\sqrt{5}}{2}$	1	1	No	$\left[\begin{array}{c}\frac{1}{\frac{\sqrt{5}}{2}-\frac{1}{2}} \\ 1\end{array}\right]$
$\frac{3}{2}-\frac{\sqrt{5}}{2}$	1	1	No	$\left[\begin{array}{c}\frac{1}{-\frac{1}{2}-\frac{\sqrt{5}}{2}} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue $\frac{3}{2}+\frac{\sqrt{5}}{2}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) t} \\
& =\left[\begin{array}{c}
\frac{1}{\frac{\sqrt{5}}{2}-\frac{1}{2}} \\
1
\end{array}\right] e^{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) t}
\end{aligned}
$$

Since eigenvalue $\frac{3}{2}-\frac{\sqrt{5}}{2}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t} \\
& =\left[\begin{array}{c}
\frac{1}{-\frac{1}{2}-\frac{\sqrt{5}}{2}} \\
1
\end{array}\right] e^{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) t}{\frac{\sqrt{5}}{2}-\frac{1}{2}} \\
\mathrm{e}^{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{\mathrm{e}^{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t}}{-\frac{1}{2}-\frac{\sqrt{5}}{2}} \\
\mathrm{e}^{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{1}(\sqrt{5}+1) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{2}-\frac{c_{2} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(\sqrt{5}-1)}{2} \\
c_{1} \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+c_{2} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 377: Phase plot

9.5.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=2 x(t)+y, y^{\prime}=x(t)+y\right]
$$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right] \cdot \vec{x}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\frac{3}{2}-\frac{\sqrt{5}}{2},\left[\begin{array}{c}
\frac{1}{-\frac{1}{2}-\frac{\sqrt{5}}{2}} \\
1
\end{array}\right]\right],\left[\frac{3}{2}+\frac{\sqrt{5}}{2},\left[\begin{array}{c}
\frac{1}{\frac{\sqrt{5}}{2}-\frac{1}{2}} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[\frac{3}{2}-\frac{\sqrt{5}}{2},\left[\begin{array}{c}
\frac{1}{-\frac{1}{2}-\frac{\sqrt{5}}{2}} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair
$\vec{x}_{1}=\mathrm{e}^{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t} \cdot\left[\begin{array}{c}\frac{1}{-\frac{1}{2}-\frac{\sqrt{5}}{2}} \\ 1\end{array}\right]$
- Consider eigenpair

$$
\left[\frac{3}{2}+\frac{\sqrt{5}}{2},\left[\begin{array}{c}
\frac{1}{\frac{\sqrt{5}}{2}-\frac{1}{2}} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair
$\vec{x}_{2}=\mathrm{e}^{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) t} \cdot\left[\begin{array}{c}\frac{1}{\frac{\sqrt{5}}{2}-\frac{1}{2}} \\ 1\end{array}\right]$
- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
$$

- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t} \cdot\left[\begin{array}{c}
\frac{1}{-\frac{1}{2}-\frac{\sqrt{5}}{2}} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) t} \cdot\left[\begin{array}{c}
\frac{1}{\frac{\sqrt{5}}{2}-\frac{1}{2}} \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{2}(\sqrt{5}+1) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{2}-\frac{c_{1} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(\sqrt{5}-1)}{2} \\
c_{1} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}+c_{2} \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x(t)=\frac{c_{2}(\sqrt{5}+1) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{2}-\frac{c_{1} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(\sqrt{5}-1)}{2}, y=c_{1} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}+c_{2} \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}\right\}
$$

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 86

```
dsolve([diff(x(t),t)=2*x(t)+y(t), diff(y(t),t)=x(t)+y(t)],singsol=all)
```

$$
\begin{aligned}
& x(t)=c_{1} \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+c_{2} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}} \\
& y(t)=\frac{c_{1} \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}} \sqrt{5}}{2}-\frac{c_{2} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}} \sqrt{5}}{2}-\frac{c_{1} \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{2}-\frac{c_{2} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 145

```
DSolve[{x'[t]==2*x[t]+y[t], y'[t]==x[t]+y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{10} e^{-\frac{1}{2}(\sqrt{5}-3) t}\left(c_{1}\left((5+\sqrt{5}) e^{\sqrt{5} t}+5-\sqrt{5}\right)+2 \sqrt{5} c_{2}\left(e^{\sqrt{5} t}-1\right)\right) \\
& y(t) \rightarrow \frac{1}{10} e^{-\frac{1}{2}(\sqrt{5}-3) t}\left(2 \sqrt{5} c_{1}\left(e^{\sqrt{5} t}-1\right)-c_{2}\left((\sqrt{5}-5) e^{\sqrt{5} t}-5-\sqrt{5}\right)\right)
\end{aligned}
$$

9.6 problem 6

9.6.1 Solution using Matrix exponential method 1707
9.6.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1708

Internal problem ID [13066]
Internal file name [OUTPUT/11721_Sunday_December_03_2023_07_15_18_PM_40386715/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258
Problem number: 6 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =3 y \\
y^{\prime} & =3 \pi y-\frac{x(t)}{3}
\end{aligned}
$$

9.6.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & 3 \\
-\frac{1}{3} & 3 \pi
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be
$e^{A t}=\left[\begin{array}{c}\frac{\frac{3\left(\pi+\frac{\sqrt{9 \pi^{2}-4}}{3}\right)}{} \mathrm{e}^{\frac{\left(3 \pi-\sqrt{9 \pi^{2}-4}\right) t}{2}}-\frac{3 \mathrm{e}^{\frac{\left(3 \pi+\sqrt{9 \pi^{2}-4}\right) t}{2}}\left(\pi-\frac{\sqrt{9 \pi^{2}-4}}{3}\right)}{2}}{\sqrt{9 \pi^{2}-4}} \\ \frac{-\mathrm{e}^{\frac{\left(3 \pi+\sqrt{9 \pi^{2}-4}\right) t}{2}}+\mathrm{e}^{\frac{\left(3 \pi-\sqrt{9 \pi^{2}-4}\right) t}{2}}}{3 \sqrt{9 \pi^{2}-4}}\end{array}\right.$

$$
\begin{gathered}
-\frac{3\left(-\mathrm{e}^{\frac{\left(3 \pi+\sqrt{9 \pi^{2}-4}\right) t}{2}}+\mathrm{e}^{\left.\frac{\left(3 \pi-\sqrt{9 \pi^{2}-4}\right) t}{2}\right)}\right.}{\sqrt{9 \pi^{2}-4}} \\
\left.\frac{\sqrt{9 \pi^{2}-4}}{3}\right) \mathrm{e}^{\frac{\left(3 \pi-\sqrt{9 \pi^{2}-4}\right) t}{2}}-\mathrm{e}^{\frac{\left(3 \pi+\sqrt{9 \pi^{2}-4}\right) t}{2}}\left(\pi+\frac{\downarrow}{2 \sqrt{9 \pi^{2}-4}}\right.
\end{gathered}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& \vec{x}_{h}(t)=e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{\left.\frac{3\left(\pi+\frac{\sqrt{9 \pi^{2}-4}}{3}\right.}{}\right) \mathrm{e}^{\frac{\left(3 \pi-\sqrt{9 \pi^{2}-4}\right) t}{2}}}{2}-\frac{3 \mathrm{e}^{\frac{\left(3 \pi+\sqrt{9 \pi^{2}-4}\right) t}{2}\left(\pi-\frac{\sqrt{9 \pi^{2}-4}}{3}\right)}}{\sqrt{9 \pi^{2}-4}} & -\frac{3\left(-\mathrm{e}^{\frac{\left(3 \pi+\sqrt{9 \pi^{2}-4}\right) t}{2}}+\mathrm{e}^{\frac{\left(3 \pi-\sqrt{9 \pi^{2}-4}\right) t}{2}}\right)}{\sqrt{9 \pi^{2}-4}} \\
\frac{-\mathrm{e}^{\frac{\left(3 \pi+\sqrt{9 \pi^{2}-4}\right) t}{2}}+\mathrm{e}^{\frac{\left(3 \pi-\sqrt{9 \pi^{2}-4}\right) t}{2}}}{3 \sqrt{9 \pi^{2}-4}} & -\frac{3\left(\left(\pi-\frac{\sqrt{9 \pi^{2}-4}}{3}\right) \mathrm{e}^{\frac{\left(3 \pi-\sqrt{9 \pi^{2}-4}\right) t}{2}}-\mathrm{e}^{\frac{\left(3 \pi+\sqrt{9 \pi^{2}-4}\right) t}{2}}(\pi-\right.}{2 \sqrt{9 \pi^{2}-4}}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{c}
\frac{\frac{3\left(c_{1} \pi+\frac{c_{1} \sqrt{9 \pi^{2}-4}}{3}-2 c_{2}\right) \mathrm{e}^{\frac{\left(3 \pi-\sqrt{9 \pi^{2}-4}\right) t}{2}}}{2}-\frac{3 \mathrm{e}^{\frac{\left(3 \pi+\sqrt{9 \pi^{2}-4}\right) t}{2}}\left(c_{1} \pi-\frac{c_{1} \sqrt{9 \pi^{2}-4}}{3}-2 c_{2}\right)}{2}}{\sqrt{9 \pi^{2}-4}} \\
-\frac{3\left(\left(c_{2} \pi-\frac{c_{2} \sqrt{9 \pi^{2}-4}}{3}-\frac{2 c_{1}}{9}\right) \mathrm{e}^{\frac{\left(3 \pi-\sqrt{9 \pi^{2}-4}\right) t}{2}}-\mathrm{e}^{\frac{\left(3 \pi+\sqrt{9 \pi^{2}-4}\right) t}{2}}\left(c_{2} \pi+\frac{c_{2} \sqrt{9 \pi^{2}-4}}{3}-\frac{2 c_{1}}{9}\right)\right)}{2 \sqrt{9 \pi^{2}-4}}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

9.6.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & 3 \\
-\frac{1}{3} & 3 \pi
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
0 & 3 \\
-\frac{1}{3} & 3 \pi
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & 3 \\
-\frac{1}{3} & 3 \pi-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
-3 \pi \lambda+\lambda^{2}+1=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=\frac{3 \pi}{2}-\frac{\sqrt{9 \pi^{2}-4}}{2} \\
& \lambda_{2}=\frac{3 \pi}{2}+\frac{\sqrt{9 \pi^{2}-4}}{2}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$\frac{3 \pi}{2}+\frac{\sqrt{9 \pi^{2}-4}}{2}$	1	real eigenvalue
$\frac{3 \pi}{2}-\frac{\sqrt{9 \pi^{2}-4}}{2}$	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=\frac{3 \pi}{2}-\frac{\sqrt{9 \pi^{2}-4}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
0 & 3 \\
-\frac{1}{3} & 3 \pi
\end{array}\right]-\left(\frac{3 \pi}{2}-\frac{\sqrt{9 \pi^{2}-4}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{cc}
-\frac{3 \pi}{2}+\frac{\sqrt{9 \pi^{2}-4}}{2} & 3 \\
-\frac{1}{3} & \frac{3 \pi}{2}+\frac{\sqrt{9 \pi^{2}-4}}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-\frac{3 \pi}{2}+\frac{\sqrt{9 \pi^{2}-4}}{2} & 3 & 0 \\
-\frac{1}{3} & \frac{3 \pi}{2}+\frac{\sqrt{9 \pi^{2}-4}}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{R_{1}}{-\frac{9 \pi}{2}+\frac{3 \sqrt{9 \pi^{2}-4}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
-\frac{3 \pi}{2}+\frac{\sqrt{9 \pi^{2}-4}}{2} & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-\frac{3 \pi}{2}+\frac{\sqrt{9 \pi^{2}-4}}{2} & 3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{6 t}{3 \pi-\sqrt{9 \pi^{2}-4}}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{6 t}{3 \pi-\sqrt{9 \pi^{2}-4}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{6 t}{3 \pi-\sqrt{9 \pi^{2}-4}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{6 t}{3 \pi-\sqrt{9 \pi^{2}-4}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{6}{3 \pi-\sqrt{9 \pi^{2}-4}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{6 t}{3 \pi-\sqrt{9 \pi^{2}-4}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{6}{3 \pi-\sqrt{9 \pi^{2}-4}} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=\frac{3 \pi}{2}+\frac{\sqrt{9 \pi^{2}-4}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
0 & 3 \\
-\frac{1}{3} & 3 \pi
\end{array}\right]-\left(\frac{3 \pi}{2}+\frac{\sqrt{9 \pi^{2}-4}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-\frac{3 \pi}{2}-\frac{\sqrt{9 \pi^{2}-4}}{2} & 3 \\
-\frac{1}{3} & \frac{3 \pi}{2}-\frac{\sqrt{9 \pi^{2}-4}}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
-\frac{3 \pi}{2}-\frac{\sqrt{9 \pi^{2}-4}}{2} & 3 & 0 \\
-\frac{1}{3} & \frac{3 \pi}{2}-\frac{\sqrt{9 \pi^{2}-4}}{2} & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}+\frac{R_{1}}{-\frac{9 \pi}{2}-\frac{3 \sqrt{9 \pi^{2}-4}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
-\frac{3 \pi}{2}-\frac{\sqrt{9 \pi^{2}-4}}{2} & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-\frac{3 \pi}{2}-\frac{\sqrt{9 \pi^{2}-4}}{2} & 3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{6 t}{3 \pi+\sqrt{9 \pi^{2}-4}}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{6 t}{3 \pi+\sqrt{9 \pi^{2}-4}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{6 t}{3 \pi+\sqrt{9 \pi^{2}-4}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{6 t}{3 \pi+\sqrt{9 \pi^{2}-4}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{6}{3 \pi+\sqrt{9 \pi^{2}-4}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{6 t}{3 \pi+\sqrt{9 \pi^{2}-4}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{6}{3 \pi+\sqrt{9 \pi^{2}-4}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{6 t}{3 \pi+\sqrt{9 \pi^{2}-4}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{6}{3 \pi+\sqrt{9 \pi^{2}-4}} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k		eigenvectors
$\frac{3 \pi}{2}-\frac{\sqrt{9 \pi^{2}-4}}{2}$	1	1	No	$\left[\begin{array}{c}\frac{3}{\frac{3 \pi}{2}-\frac{\sqrt{9 \pi^{2}-4}}{2}} \\ 1\end{array}\right]$
$\frac{3 \pi}{2}+\frac{\sqrt{9 \pi^{2}-4}}{2}$	1	1	No	$\left[\begin{array}{c}\frac{3}{2 \pi}+\frac{\sqrt{9 \pi^{2}-4}}{2} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue $\frac{3 \pi}{2}-\frac{\sqrt{9 \pi^{2}-4}}{2}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\left(\frac{3 \pi}{2}-\frac{\sqrt{9 \pi^{2}-4}}{2}\right) t} \\
& =\left[\begin{array}{c}
\frac{3}{\frac{3 \pi}{2}-\frac{\sqrt{9 \pi^{2}-4}}{2}} \\
1
\end{array}\right] e^{\left(\frac{3 \pi}{2}-\frac{\sqrt{9 \pi^{2}-4}}{2}\right) t}
\end{aligned}
$$

Since eigenvalue $\frac{3 \pi}{2}+\frac{\sqrt{9 \pi^{2}-4}}{2}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{\left(\frac{3 \pi}{2}+\frac{\sqrt{9 \pi^{2}-4}}{2}\right) t} \\
& =\left[\begin{array}{c}
\frac{3 \pi}{2}+\frac{3 \sqrt{9 \pi^{2}-4}}{2} \\
1
\end{array}\right] e^{\left(\frac{3 \pi}{2}+\frac{\sqrt{9 \pi^{2}-4}}{2}\right) t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{3 \mathrm{e}^{\left(\frac{3 \pi}{2}-\frac{\sqrt{9 \pi^{2}-4}}{2}\right) t}}{\frac{3 \pi}{2}-\frac{\sqrt{9 \pi^{2}-4}}{2}} \\
\left.\mathrm{e}^{\left(\frac{3 \pi}{2}-\frac{\sqrt{9 \pi^{2}-4}}{2}\right.}\right) t
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{\left.3 \mathrm{e}^{\left(\frac{3 \pi}{2}+\frac{\sqrt{9 \pi^{2}-4}}{2}\right.}\right) t}{\frac{3 \pi}{2}+\frac{\sqrt{9 \pi^{2}-4}}{2}} \\
\mathrm{e}^{\left(\frac{3 \pi}{2}+\frac{\sqrt{9 \pi^{2}-4}}{2}\right) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\frac{9 c_{1}\left(\pi+\frac{\sqrt{9 \pi^{2}-4}}{3}\right) \mathrm{e}^{\frac{\left(3 \pi-\sqrt{9 \pi^{2}-4}\right) t}{2}}}{2}+\frac{9 \mathrm{e}^{\frac{\left(3 \pi+\sqrt{9 \pi^{2}-4}\right) t}{2}} c_{2}\left(\pi-\frac{\sqrt{9 \pi^{2}-4}}{3}\right)}{2} \\
c_{1} \mathrm{e}^{\frac{\left(3 \pi-\sqrt{9 \pi^{2}-4}\right) t}{2}}+c_{2} \mathrm{e}^{\frac{\left(3 \pi+\sqrt{9 \pi^{2}-4}\right) t}{2}}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 378: Phase plot
\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 120

```
dsolve([diff (x (t),t)=3*y(t), diff(y(t),t)=3*Pi*y (t)-1/3*x(t)],singsol=all)
```

$$
\begin{aligned}
& x(t)=c_{1} \mathrm{e}^{\frac{\left(3 \pi-\sqrt{9 \pi^{2}-4}\right) t}{2}}+c_{2} \mathrm{e}^{\frac{\left(3 \pi+\sqrt{9 \pi^{2}-4}\right) t}{2}} \\
& y(t)=\left(\frac{\pi}{2}+\frac{\sqrt{9 \pi^{2}-4}}{6}\right) c_{2} \mathrm{e}^{\frac{\left(3 \pi+\sqrt{9 \pi^{2}-4}\right) t}{2}}+\left(\frac{\pi}{2}-\frac{\sqrt{9 \pi^{2}-4}}{6}\right) c_{1} \mathrm{e}^{\frac{\left(3 \pi-\sqrt{9 \pi^{2}-4}\right) t}{2}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 233
DSolve $\left[\left\{x^{\prime}[t]==3 * y[t], y^{\prime}[t]==3 * \operatorname{Pi} * y[t]-1 / 3 * x[t]\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions \rightarrow I
$x(t)$
$\rightarrow \frac{e^{-\frac{1}{2}\left(\sqrt{9 \pi^{2}-4}-3 \pi\right) t}\left(\sqrt{9 \pi^{2}-4} c_{1}\left(e^{\sqrt{9 \pi^{2}-4} t}+1\right)-3 \pi c_{1}\left(e^{\sqrt{9 \pi^{2}-4} t}-1\right)+6 c_{2}\left(e^{\sqrt{9 \pi^{2}-4} t}-1\right)\right)}{2 \sqrt{9 \pi^{2}-4}}$
$y(t)$
$\rightarrow \frac{e^{-\frac{1}{2}\left(\sqrt{9 \pi^{2}-4}-3 \pi\right) t}\left(3 c_{2}\left(3 \pi\left(e^{\sqrt{9 \pi^{2}-4} t}-1\right)+\sqrt{9 \pi^{2}-4}\left(e^{\sqrt{9 \pi^{2}-4} t}+1\right)\right)-2 c_{1}\left(e^{\sqrt{9 \pi^{2}-4} t}-1\right)\right)}{6 \sqrt{9 \pi^{2}-4}}$

9.7 problem 7

9.7.1 Solution using Matrix exponential method 1715
9.7.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1715

Internal problem ID [13067]
Internal file name [OUTPUT/11722_Sunday_December_03_2023_07_15_19_PM_78487314/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258
Problem number: 7 .
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
p^{\prime}(t) & =3 p(t)-2 q(t)-7 r(t) \\
q^{\prime}(t) & =-2 p(t)+6 r(t) \\
r^{\prime}(t) & =\frac{73 q(t)}{100}+2 r(t)
\end{aligned}
$$

9.7.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as Warning. Unable to find the matrix exponential.

9.7.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
p^{\prime}(t) \\
q^{\prime}(t) \\
r^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
3 & -2 & -7 \\
-2 & 0 & 6 \\
0 & \frac{73}{100} & 2
\end{array}\right]\left[\begin{array}{c}
p(t) \\
q(t) \\
r(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
3 & -2 & -7 \\
-2 & 0 & 6 \\
0 & \frac{73}{100} & 2
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
3-\lambda & -2 & -7 \\
-2 & -\lambda & 6 \\
0 & \frac{73}{100} & 2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-5 \lambda^{2}-\frac{119}{50} \lambda+\frac{273}{25}=0
$$

The roots of the above are the eigenvalues.
$\lambda_{1}=\frac{(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}{30}+\frac{1607}{15(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}+\frac{5}{3}$
$\lambda_{2}=-\frac{(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}{60}-\frac{1607}{30(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}+\frac{5}{3}+\frac{i \sqrt{3}\left(\frac{(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}{30}-\frac{1}{1}\right.}{2}$
$\lambda_{3}=-\frac{(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}{60}-\frac{1607}{30(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}+\frac{5}{3}-\frac{i \sqrt{3}\left(\frac{(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}{30}-\frac{1}{1}\right.}{2}$
This table summarises the above result

| eigenvalue | alge |
| :--- | :--- | :--- |
| $-\frac{(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}{60}-\frac{1607}{30(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}+\frac{5}{3}-\frac{i \sqrt{3}\left(\frac{(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}{30}-\frac{1607}{15(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}\right)}{2}$ | 1 |
| $-\frac{(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}{60}-\frac{1607}{30(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}+\frac{5}{3}+\frac{i \sqrt{3}\left(\frac{(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}{30}-\frac{1607}{15(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}\right)}{2}$ | 1 |
| $\frac{(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}{30}+\frac{1607}{15(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}+\frac{5}{3}$ | 1 |

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=\frac{(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}{30}+\frac{1607}{15(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}+\frac{5}{3}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{gathered}
{\left[\left(\left[\begin{array}{ccc}
3 & -2 & -7 \\
-2 & 0 & 6 \\
0 & \frac{73}{100} & 2
\end{array}\right]-\left(\frac{(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}{30}+\frac{}{15}\right.\right.\right.} \\
{\left[\begin{array}{c}
\frac{-(31130+6 i \sqrt{895302429})^{\frac{2}{3}}+40(31130+6 i \sqrt{895302429})^{\frac{1}{3}}-3214}{30(31130+6 i \sqrt{895302429})^{\frac{1}{3}}} \\
-2 \\
0
\end{array} \frac{-(31130+6 i \sqrt{895302429})^{\frac{2}{3}}-50(31130+6 i \sqrt{895302429})^{\frac{1}{3}}-3214}{30(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}\right.} \\
0
\end{gathered}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented
matrix is

$$
\left[\begin{array}{ccc}
\frac{4}{3}-\frac{(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}{30}-\frac{1607}{15(31130+6 i \sqrt{895302429})^{\frac{1}{3}}} & -2 \\
-2 & -\frac{5}{3}-\frac{(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}{30}-\frac{1607}{15(31130+6 i \sqrt{895302429})^{\frac{1}{3}}} \\
0 & \frac{73}{100}
\end{array}\right.
$$

$R_{2}=R_{2}+\frac{2 R_{1}}{\frac{4}{3}-\frac{(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}{30}-\frac{1607}{15(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}} \Longrightarrow\left[\begin{array}{c}\frac{-(31130+6 i \sqrt{895302429})^{\frac{2}{3}}+40(31130+6 i \sqrt{8953}}{30(31130+6 i \sqrt{895302429})^{\frac{1}{3}}} \\ 0 \\ 0\end{array}\right.$

$$
R_{3}=R_{3}-\frac{73(31130+6 i \sqrt{895302429})^{\frac{1}{3}}\left((31130+6 i \sqrt{895302429})^{\frac{2}{3}}-40(31130\right.}{20\left(-i \sqrt{895302429}(31130+6 i \sqrt{895302429})^{\frac{1}{3}}-10 i \sqrt{895302429}-138(31130+6 i \sqrt{895302}\right.}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{-(31130+6 i \sqrt{895302429})^{\frac{2}{3}}+40(31130+6 i \sqrt{895302429})^{\frac{1}{3}}-3214}{30(31130+6 i \sqrt{895302429})^{\frac{1}{3}}} & \\
0 & \frac{-i \sqrt{895302429}(31130+6 i \sqrt{895302429})^{\frac{1}{3}}-10 i \sqrt{895302429}-138(31130}{5(31130+6 i \sqrt{895302429})^{\frac{1}{3}}((31130+6 i \sqrt{89530242}} \\
0 & 0
\end{array}\right.
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{30(31130+6 i \sqrt{895302429})^{\frac{1}{3}} t\left(7 i \sqrt{895302429}(31130+6 i \sqrt{895302429})^{\frac{1}{3}}+43\right.}{\left(i \sqrt{895302429}(31130+6 i \sqrt{895302429})^{\frac{1}{3}}+10 i \sqrt{895302429}+138(31130+6 i \sqrt{895302429})^{\frac{2}{3}}+\right.}\right.$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{30(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{1}{3}} t\left(7 \mathrm{I} \sqrt{895302429}(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{1}{3}}+430 \mathrm{I} \sqrt{895302429}+2766(31130+6 \mathrm{I} \sqrt{8953}\right.}{\left(\mathrm{I} \sqrt{895302429}(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{1}{3}}+10 \mathrm{I} \sqrt{895302429}+138(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{2}{3}}+10545(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{1}{3}}+17735\right.} \\
\sqrt{60 t\left(3 \mathrm{I} \sqrt{895302429}+15(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{2}{3}}+1607(31130+6 \mathrm{I} \sqrt{8953024}\right.} \\
\mathrm{I} \sqrt{895302429}(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{1}{3}}+10 \mathrm{I} \sqrt{895302429}+138(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{2}{3}}+10545(
\end{array}\right.
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{30(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{1}{3}} t\left(7 \mathrm{I} \sqrt{895302429}(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{1}{3}}+430 \mathrm{I} \sqrt{895302429}+2766(31130+6 \mathrm{I} \sqrt{8953}\right.}{\left(\mathrm{I} \sqrt{895302429}(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{1}{3}}+10 \mathrm{I} \sqrt{895302429}+138(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{2}{3}}+10545(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{1}{3}}+17735\right.} \\
\left.\frac{60 t\left(3 \mathrm{I} \sqrt{895302429}+15(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{2}{3}}+1607(31130+6 \mathrm{I} \sqrt{8953024}\right.}{\mathrm{I} \sqrt{895302429}(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{1}{3}}+10 \mathrm{I} \sqrt{895302429}+138(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{2}{3}}+10545(}\right) \\
t
\end{array}\right.
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{30(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{1}{3}} t\left(7 \mathrm{I} \sqrt{895302429}(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{1}{3}}+430 \mathrm{I} \sqrt{895302429}+2766(31130+6 \mathrm{I} \sqrt{8953}\right.}{\left(\mathrm{I} \sqrt{895302429}(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{1}{3}}+10 \mathrm{I} \sqrt{895302429}+138(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{2}{3}}+10545(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{1}{3}}+17735\right.} \\
\left.\frac{60 t\left(3 \mathrm{I} \sqrt{895302429}+15(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{2}{3}}+1607(31130+6 \mathrm{I} \sqrt{8953024}\right.}{\mathrm{I} \sqrt{895302429}(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{1}{3}}+10 \mathrm{I} \sqrt{895302429}+138(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{2}{3}}+10545(}\right) \\
t
\end{array}\right.
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{30(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{1}{3}} t\left(7 \mathrm{I} \sqrt{895302429}(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{1}{3}}+430 \mathrm{I} \sqrt{895302429}+2766(31130+6 \mathrm{I} \sqrt{8953}\right.}{\left(\mathrm{I} \sqrt{895302429}(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{1}{3}}+10 \mathrm{I} \sqrt{895302429}+138(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{2}{3}}+10545(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{1}{3}}+17735\right.} \\
60 t\left(3 \mathrm{I} \sqrt{895302429}+15(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{2}{3}}+1607(31130+6 \mathrm{I} \sqrt{8953024}\right. \\
\mathrm{I} \sqrt{895302429}(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{1}{3}}+10 \mathrm{I} \sqrt{895302429}+138(31130+6 \mathrm{I} \sqrt{895302429})^{\frac{2}{3}}+10545(
\end{array}\right.
$$

Considering the eigenvalue $\lambda_{2}=-\frac{(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}{60}-\frac{1607}{30(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}+\frac{5}{3}-$ $\frac{i \sqrt{3}\left(\frac{(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}{30}-\frac{1607}{15(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}\right)}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented
matrix is

$$
\left[\begin{array}{c}
\frac{4}{3}+\frac{(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}{60}+\frac{1607}{30(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}+\frac{i \sqrt{3}\left(\frac{(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}{30}-\frac{1607}{15(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}\right)}{2} \\
-2 \\
0
\end{array}\right.
$$

$$
R_{2}=R_{2}+\frac{2 R_{1}}{\frac{4}{3}+\frac{(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}{60}+\frac{1607}{30(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}+\frac{i \sqrt{3}\left(\frac{(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}{30}-\frac{1607}{15(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}\right.}{2}}
$$

$$
R_{3}=R_{3}-\frac{73\left(3214+80(31130+6 i \sqrt{895302429})^{\frac{1}{3}}+(1+i \sqrt{3})(31130+\right.}{20\left((-i \sqrt{895302429}+10545 i \sqrt{3}-3 \sqrt{298434143}-10545)(31130+6 i \sqrt{895302429})^{\frac{1}{3}}-177\right.}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{c}
\frac{4}{3}+\frac{\sqrt{3214} \cos \left(\frac{\arctan \left(\frac{3 \sqrt{89532429}}{15565}\right)}{3}\right)}{30}-\frac{\sqrt{3214} \sin \left(\frac{\arctan \left(\frac{3 \sqrt{895302429}}{15565}\right)}{3}\right) \sqrt{3}}{30} \\
0 \\
0
\end{array}\right.
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of
free variables gives equation $\left\{v_{1}=\frac{30 t\left(25 i(31130+6 i \sqrt{3} \sqrt{298434143})^{\frac{2}{3}} \sqrt{3} \sqrt{298434143}+3649\right.}{\left(5 i(31130+6 i \sqrt{3} \sqrt{298434143})^{\frac{2}{3}} \sqrt{3} \sqrt{298434143}+299208 i(31130+6 i \sqrt{3} \sqrt{298434143})^{\frac{2}{3}} \sqrt{3}-6\right.}\right.$
Hence the solution is

> Expression too large to display

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

Expression too large to displayExpression too large to display
Let $t=1$ the eigenvector becomes

> Expression too large to display

Which is normalized to

Expression too large to display

Considering the eigenvalue $\lambda_{3}=-\frac{(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}{60}-\frac{1607}{30(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}+\frac{5}{3}+$ $\frac{i \sqrt{3}\left(\frac{(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}{30}-\frac{1607}{15(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}\right)}{2}$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{c}
\frac{4}{3}+\frac{(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}{60}+\frac{1607}{30(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}-\frac{i \sqrt{3}\left(\frac{(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}{30}-\frac{1607}{15(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}\right)}{2} \\
-2 \\
0
\end{array}\right.
$$

$$
R_{2}=R_{2}+\frac{2 R_{1}}{\frac{4}{3}+\frac{(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}{60}+\frac{1607}{30(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}-\frac{i \sqrt{3}\left(\frac{(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}{30}-\frac{1607}{15(31130+6 i \sqrt{895302429})^{\frac{1}{3}}}\right.}{2}}
$$

$$
R_{3}=R_{3}-\frac{73\left(-3214-80(31130+6 i \sqrt{3} \sqrt{298434143})^{\frac{1}{3}}+(i \sqrt{3}-1)(311\right.}{20\left(1773516+(31130+6 i \sqrt{3} \sqrt{298434143})^{\frac{1}{3}}(10545+i(10545+\sqrt{298434143}) \sqrt{3}-3 \sqrt{298}\right.}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{4}{3}+\frac{\sqrt{3214} \cos \left(\frac{\arctan \left(\frac{3 \sqrt{895302499}}{15565}\right)}{3}\right)}{30}+\frac{\sqrt{3214} \sin \left(\frac{\arctan \left(\frac{3 \sqrt{895302429}}{15565}\right)}{3}\right) \sqrt{3}}{30} & \\
0 & \frac{1773516+(31130+6 i \sqrt{3} \sqrt{298434143})^{\frac{1}{3}}(10545+i(1}{5(-3214-80(31130+6 i \sqrt{ })} \\
0 &
\end{array}\right.
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{30 t\left(10947 \sqrt{298434143}(31130+6 i \sqrt{3} \sqrt{298434143})^{\frac{1}{3}}+3649 i\right.}{\left(40+\sqrt{3214}\left(\sin \left(\frac{\arctan \left(\frac{3 \sqrt{895302499}}{15565}\right)}{3}\right) \sqrt{3}+\cos \left(\frac{\arctan \left(\frac{3 \sqrt{855032429}}{11555}\right)}{3}\right)\right)\right)(15(31130+6}\right.$

Hence the solution is
Expression too large to display
Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

Expression too large to displayExpression too large to display
Let $t=1$ the eigenvector becomes
Expression too large to display
Which is normalized to
Expression too large to display

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

Which becomes
Expression too large to display

\checkmark Solution by Maple

Time used: 0.157 (sec). Leaf size: 1006

```
dsolve([diff(p(t),t)=3*p(t)-2*q(t)-7*r(t),\operatorname{diff}(q(t),t)=-2*p(t)+6*r(t),\operatorname{diff}(r(t),t)=73/100*q
p(t)=
    -(-i\sqrt{}{3}(31130+6i\sqrt{}{895302429}\mp@subsup{)}{}{\frac{4}{3}}+(31130+6i\sqrt{}{895302429}\mp@subsup{)}{}{\frac{4}{3}}+96420i\sqrt{}{3}(31130+6i\sqrt{}{89530242}
```

 \(+\underline{\left(-i \sqrt{3}(31130+6 i \sqrt{895302429})^{\frac{4}{3}}-(31130+6 i \sqrt{895302429})^{\frac{4}{3}}+96420 i \sqrt{3}(31130+6 i \sqrt{89530242}\right.}\)
 \(+\frac{\left((31130+6 i \sqrt{895302429})^{\frac{4}{3}}-5114(31130+6 i \sqrt{895302429})^{\frac{2}{3}}-180 i \sqrt{895302429}-96420(31130+\right.}{2400(31130+6 i \sqrt{8953024}}\)

$-\left(i \sqrt{3}(31130+6 i \sqrt{895302429})^{\frac{4}{3}}+(31130+6 i \sqrt{895302429})^{\frac{4}{3}}+32140 i \sqrt{3}(31130+6 i \sqrt{895302429})\right.$
$+\frac{\left((31130+6 i \sqrt{895302429})^{\frac{4}{3}}-3114(31130+6 i \sqrt{895302429})^{\frac{2}{3}}+60 i \sqrt{895302429}+32140(31130+6\right.}{7200(31130+6 i \sqrt{89530242}}$

Solution by Mathematica

Time used: 0.051 (sec). Leaf size: 602

```
DSolve[{p'[t]==3*p[t]-2*q[t]-7*r[t],q'[t]==-2*p[t]+6*r[t],r'[t]==73/100*q[t]+2*r[t]},{p[t],0
```

$$
\begin{aligned}
p(t) \rightarrow- & 100 c_{2} \text { RootSum }\left[\# 1^{3}-500 \# 1^{2}-23800 \# 1\right. \\
& \left.+10920000 \&, \frac{2 \# 1 e^{\frac{\# 1 t}{100}}+111 e^{\frac{\# 1 t}{100}}}{3 \# 1^{2}-1000 \# 1-23800} \&\right]-100 c_{3} \operatorname{RootSum}\left[\# 1^{3}-500 \# 1^{2}\right. \\
& \left.-23800 \# 1+10920000 \&, \frac{7 \# 1 e^{\frac{\# 1 t}{100}}+1200 e^{\frac{\# 1 t}{100}}}{3 \# 1^{2}-1000 \# 1-23800} \&\right]+c_{1} \operatorname{RootSum}\left[\# 1^{3}\right. \\
& \left.-500 \# 1^{2}-23800 \# 1+10920000 \&, \frac{\# 1^{2} e^{\frac{\# 1 t}{100}}-200 \# 1 e^{\frac{\# 1 t}{100}}-43800 e^{\frac{\# 1 t}{100}}}{3 \# 1^{2}-1000 \# 1-23800} \&\right]
\end{aligned}
$$

$$
q(t) \rightarrow-200 c_{1} \text { RootSum }\left[\# 1^{3}-500 \# 1^{2}-23800 \# 1\right.
$$

$$
\left.+10920000 \&, \frac{\# 1 e^{\frac{\# 1 t}{100}}-200 e^{\frac{\# 1 t}{100}}}{3 \# 1^{2}-1000 \# 1-23800} \&\right]+200 c_{3} \text { RootSum }\left[\# 1^{3}-500 \# 1^{2}\right.
$$

$$
\left.-23800 \# 1+10920000 \&, \frac{3 \# 1 e^{\frac{\# 1 t}{100}}-200 e^{\frac{\# 1 t}{100}}}{3 \# 1^{2}-1000 \# 1-23800} \&\right]+c_{2} \text { RootSum }\left[\# 1^{3}\right.
$$

$$
\left.-500 \# 1^{2}-23800 \# 1+10920000 \&, \frac{\# 1^{2} e^{\frac{\# 1 t}{100}}-500 \# 1 e^{\frac{\# 1 t}{100}}+60000 e^{\frac{\# 1 t}{100}}}{3 \# 1^{2}-1000 \# 1-23800} \&\right]
$$

$$
r(t) \rightarrow-14600 c_{1} \text { RootSum }\left[\# 1^{3}-500 \# 1^{2}-23800 \# 1\right.
$$

$$
\left.+10920000 \&, \frac{e^{\frac{\# 1 t}{100}}}{3 \# 1^{2}-1000 \# 1-23800} \&\right]+73 c_{2} \text { RootSum }\left[\# 1^{3}-500 \# 1^{2}\right.
$$

$$
\left.-23800 \# 1+10920000 \&, \frac{\# 1 e^{\frac{\# 1 t}{100}}-300 e^{\frac{\# 1 t}{100}}}{3 \# 1^{2}-1000 \# 1-23800} \&\right]+c_{3} \operatorname{RootSum}\left[\# 1^{3}\right.
$$

$$
\left.-500 \# 1^{2}-23800 \# 1+10920000 \&, \frac{\# 1^{2} e^{\frac{\# 1 t}{100}}-300 \# 1 e^{\frac{\# 1 t}{100}}-40000 e^{\frac{\# \mathrm{~L}}{100}}}{3 \# 1^{2}-1000 \# 1-23800} \&\right]
$$

9.8 problem 8

9.8.1 Solution using Matrix exponential method 1730
9.8.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1731

Internal problem ID [13068]
Internal file name [OUTPUT/11723_Sunday_December_03_2023_07_16_06_PM_91365529/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258
Problem number: 8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-3 x(t)+2 \pi y \\
y^{\prime} & =4 x(t)-y
\end{aligned}
$$

9.8.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-3 & 2 \pi \\
4 & -1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{(\sqrt{1+8 \pi}+1) \mathrm{e}^{-(2+\sqrt{1+8 \pi}) t}+\mathrm{e}^{(-2+\sqrt{1+8 \pi}) t}(-1+\sqrt{1+8 \pi})}{2 \sqrt{1+8 \pi}} & \frac{\pi\left(\mathrm{e}^{(-2+\sqrt{1+8 \pi}) t}-\mathrm{e}^{-(2+\sqrt{1+8 \pi}) t}\right)}{\sqrt{1+8 \pi}} \\
\frac{2 \mathrm{e}^{\left(-2+\sqrt{1+8 \pi) t}-2 \mathrm{e}^{-(2+\sqrt{1+8 \pi}) t}\right.}}{\sqrt{1+8 \pi}} & \frac{(-1+\sqrt{1+8 \pi}) \mathrm{e}^{-(2+\sqrt{1+8 \pi) t} t} \mathrm{e}^{(-2+\sqrt{1+8 \pi}) t}(\sqrt{1+8 \pi}+1)}{2 \sqrt{1+8 \pi}}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& \vec{x}_{h}(t)=e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{(\sqrt{1+8 \pi}+1) \mathrm{e}^{-(2+\sqrt{1+8 \pi}) t}+\mathrm{e}^{(-2+\sqrt{1+8 \pi}) t}(-1+\sqrt{1+8 \pi})}{2 \sqrt{1+8 \pi}} & \frac{\pi\left(\mathrm{e}^{(-2+\sqrt{1+8 \pi}) t}-\mathrm{e}^{-(2+\sqrt{1+8 \pi}) t}\right)}{\sqrt{1+8 \pi}} \\
\frac{2 \mathrm{e}^{(-2+\sqrt{1+8 \pi}) t}-2 \mathrm{e}^{-(2+\sqrt{1+8 \pi}) t}}{\sqrt{1+8 \pi}} & \frac{(-1+\sqrt{1+8 \pi}) \mathrm{e}^{-(2+\sqrt{1+8 \pi}) t}+\mathrm{e}^{(-2+\sqrt{1+8 \pi}) t}(\sqrt{1+8 \pi}+1)}{2 \sqrt{1+8 \pi}}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} .
\end{array}\right. \\
& =\left[\begin{array}{c}
\frac{\left((\sqrt{1+8 \pi}+1) \mathrm{e}^{-(2+\sqrt{1+8 \pi}) t}+\mathrm{e}^{(-2+\sqrt{1+8 \pi}) t}(-1+\sqrt{1+8 \pi})\right) c_{1}}{2 \sqrt{1+8 \pi}}+\frac{\pi\left(\mathrm{e}^{(-2+\sqrt{1+8 \pi}) t}-\mathrm{e}^{-(2+\sqrt{1+8 \pi}) t}\right) c_{2}}{\sqrt{1+8 \pi}} \\
\frac{2\left(\mathrm{e}^{(-2+\sqrt{1+8 \pi}) t}-\mathrm{e}^{-(2+\sqrt{1+8 \pi}) t}\right) c_{1}}{\sqrt{1+8 \pi}}+\frac{\left((-1+\sqrt{1+8 \pi}) \mathrm{e}^{-(2+\sqrt{1+8 \pi}) t}+\mathrm{e}^{(-2+\sqrt{1+8 \pi}) t}(\sqrt{1+8 \pi}+1)\right) c_{2}}{2 \sqrt{1+8 \pi}}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(-c_{2} \pi+\frac{c_{1} \sqrt{1+8 \pi}}{2}+\frac{c_{1}}{2}\right) \mathrm{e}^{-(2+\sqrt{1+8 \pi}) t}+\mathrm{e}^{(-2+\sqrt{1+8 \pi}) t}\left(c_{2} \pi+\frac{c_{1} \sqrt{1+8 \pi}}{2}-\frac{c_{1}}{2}\right)}{\sqrt{1+8 \pi}} \\
\frac{2\left(\frac{c_{2} \sqrt{1+8 \pi}}{4}-c_{1}-\frac{c_{2}}{4}\right) \mathrm{e}^{-(2+\sqrt{1+8 \pi}) t}+2 \mathrm{e}^{(-2+\sqrt{1+8 \pi}) t}\left(\frac{c_{2} \sqrt{1+8 \pi}}{4}+c_{1}+\frac{c_{2}}{4}\right)}{\sqrt{1+8 \pi}}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

9.8.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-3 & 2 \pi \\
4 & -1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-3 & 2 \pi \\
4 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-3-\lambda & 2 \pi \\
4 & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-8 \pi+4 \lambda+3=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-2+\sqrt{1+8 \pi} \\
& \lambda_{2}=-2-\sqrt{1+8 \pi}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-2+\sqrt{1+8 \pi}$	1	real eigenvalue
$-2-\sqrt{1+8 \pi}$	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-2-\sqrt{1+8 \pi}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-3 & 2 \pi \\
4 & -1
\end{array}\right]-(-2-\sqrt{1+8 \pi})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-1+\sqrt{1+8 \pi} & 2 \pi \\
4 & \sqrt{1+8 \pi}+1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1+\sqrt{1+8 \pi} & 2 \pi & 0 \\
4 & \sqrt{1+8 \pi}+1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{4 R_{1}}{-1+\sqrt{1+8 \pi}} \Longrightarrow\left[\begin{array}{cc|c}
-1+\sqrt{1+8 \pi} & 2 \pi & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1+\sqrt{1+8 \pi} & 2 \pi \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{2 \pi t}{-1+\sqrt{1+8 \pi}}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{2 \pi t}{-1+\sqrt{1+8 \pi}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 \pi t}{-1+\sqrt{1+8 \pi}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{2 \pi t}{-1+\sqrt{1+8 \pi}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{2 \pi}{-1+\sqrt{1+8 \pi}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{2 \pi t}{-1+\sqrt{1+8 \pi}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 \pi}{-1+\sqrt{1+8 \pi}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{2 \pi t}{-1+\sqrt{1+8 \pi}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 \pi}{-1+\sqrt{1+8 \pi}} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-2+\sqrt{1+8 \pi}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-3 & 2 \pi \\
4 & -1
\end{array}\right]-(-2+\sqrt{1+8 \pi})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-1-\sqrt{1+8 \pi} & 2 \pi \\
4 & 1-\sqrt{1+8 \pi}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
-1-\sqrt{1+8 \pi} & 2 \pi & 0 \\
4 & 1-\sqrt{1+8 \pi} & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}-\frac{4 R_{1}}{-1-\sqrt{1+8 \pi}} \Longrightarrow\left[\begin{array}{cc|c}
-1-\sqrt{1+8 \pi} & 2 \pi & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1-\sqrt{1+8 \pi} & 2 \pi \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{2 \pi t}{\sqrt{1+8 \pi}+1}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{2 \pi t}{\sqrt{1+8 \pi+1}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2 \pi t}{\sqrt{1+8 \pi+1}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{2 \pi t}{\sqrt{1+8 \pi}+1} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{2 \pi}{\sqrt{1+8 \pi}+1} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{2 \pi t}{\sqrt{1+8 \pi+1}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2 \pi}{\sqrt{1+8 \pi}+1} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{2 \pi t}{\sqrt{1+8 \pi}+1} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2 \pi}{\sqrt{1+8 \pi}+1} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k		eigenvectors
$-2+\sqrt{1+8 \pi}$	1	1	No	$\left[\begin{array}{c}\frac{2 \pi}{\sqrt{1+8 \pi}+1} \\ 1\end{array}\right]$
$-2-\sqrt{1+8 \pi}$	1	1	No	$\left[\begin{array}{c}\frac{2 \pi}{1-\sqrt{1+8 \pi}} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue $-2+\sqrt{1+8 \pi}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{(-2+\sqrt{1+8 \pi}) t} \\
& =\left[\begin{array}{c}
\frac{2 \pi}{\sqrt{1+8 \pi}+1} \\
1
\end{array}\right] e^{(-2+\sqrt{1+8 \pi}) t}
\end{aligned}
$$

Since eigenvalue $-2-\sqrt{1+8 \pi}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{(-2-\sqrt{1+8 \pi}) t} \\
& =\left[\begin{array}{c}
\frac{2 \pi}{1-\sqrt{1+8 \pi}} \\
1
\end{array}\right] e^{(-2-\sqrt{1+8 \pi}) t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{2 \mathrm{e}^{(-2+\sqrt{1+8 \pi}) t} \pi}{\sqrt{1+8 \pi+1}} \\
\mathrm{e}^{(-2+\sqrt{1+8 \pi}) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{2 \mathrm{e}^{(-2-\sqrt{1+8 \pi}) t} \pi}{1-\sqrt{1+8 \pi}} \\
\mathrm{e}^{(-2-\sqrt{1+8 \pi) t}}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-\frac{c_{2}(\sqrt{1+8 \pi}+1) \mathrm{e}^{-(2+\sqrt{1+8 \pi}) t}}{4}+\frac{c_{1} \mathrm{e}^{(-2+\sqrt{1+8 \pi}) t}(-1+\sqrt{1+8 \pi})}{4} \\
c_{1} \mathrm{e}^{(-2+\sqrt{1+8 \pi}) t}+c_{2} \mathrm{e}^{-(2+\sqrt{1+8 \pi}) t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 379: Phase plot
\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 119

```
dsolve([diff(x(t),t)=-3*x(t)+2*Pi*y(t),\operatorname{diff}(y(t),t)=4*x(t)-y(t)],singsol=all)
```

$x(t)=c_{1} \mathrm{e}^{-(2+\sqrt{1+8 \pi}) t}+c_{2} \mathrm{e}^{(-2+\sqrt{1+8 \pi}) t}$
$y(t)=-\frac{c_{1} \mathrm{e}^{-(2+\sqrt{1+8 \pi}) t} \sqrt{1+8 \pi}-c_{2} \mathrm{e}^{(-2+\sqrt{1+8 \pi}) t} \sqrt{1+8 \pi}-c_{1} \mathrm{e}^{-(2+\sqrt{1+8 \pi}) t}-c_{2} \mathrm{e}^{(-2+\sqrt{1+8 \pi}) t}}{2 \pi}$
\checkmark Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 189
DSolve $\left[\left\{x^{\prime}[t]==-3 * x[t]+2 * P i * y[t], y^{\prime}[t]==4 * x[t]-y[t]\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions
$x(t)$
$\rightarrow \frac{e^{-((2+\sqrt{1+8 \pi}) t)}\left(c_{1}\left((\sqrt{1+8 \pi}-1) e^{2 \sqrt{1+8 \pi} t}+1+\sqrt{1+8 \pi}\right)+2 \pi c_{2}\left(e^{2 \sqrt{1+8 \pi} t}-1\right)\right)}{2 \sqrt{1+8 \pi}}$
$y(t)$

$$
\rightarrow \frac{e^{-((2+\sqrt{1+8 \pi}) t)}\left(4 c_{1}\left(e^{2 \sqrt{1+8 \pi} t}-1\right)+c_{2}\left((1+\sqrt{1+8 \pi}) e^{2 \sqrt{1+8 \pi} t}-1+\sqrt{1+8 \pi}\right)\right)}{2 \sqrt{1+8 \pi}}
$$

9.9 problem 9

9.9.1 Solution using Matrix exponential method 1738
9.9.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1739

Internal problem ID [13069]
Internal file name [OUTPUT/11724_Sunday_December_03_2023_07_16_07_PM_53256305/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258
Problem number: 9.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =\beta y \\
y^{\prime} & =\gamma x(t)-y
\end{aligned}
$$

9.9.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & \beta \\
\gamma & -1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{(1+\sqrt{4 \gamma \beta+1}) \mathrm{e}^{\frac{(-1+\sqrt{4 \gamma \beta+1}) t}{2}}+\mathrm{e}^{-\frac{(1+\sqrt{4 \gamma \beta+1}) t}{2}}(-1+\sqrt{4 \gamma \beta+1})}{2 \sqrt{4 \gamma \beta+1}} & \frac{\beta\left(\mathrm{e}^{\frac{(-1+\sqrt{4 \gamma \beta+1}) t}{2}}-\mathrm{e}^{-\frac{(1+\sqrt{4 \gamma \beta+1}) t}{2}}\right)}{\sqrt{4 \gamma \beta+1}} \\
\frac{\gamma\left(\mathrm{e}^{\frac{(-1+\sqrt{4 \gamma \beta+1}) t}{2}}-\mathrm{e}^{\left.-\frac{(1+\sqrt{4 \gamma \beta+1}) t}{2}\right)}\right.}{\sqrt{4 \gamma \beta+1}} & \frac{(-1+\sqrt{4 \gamma \beta+1}) \mathrm{e}^{\frac{(-1+\sqrt{4 \gamma \beta+1}) t}{2}}+\mathrm{e}^{-\frac{(1+\sqrt{4 \gamma \beta+1}) t}{2}}(1+\sqrt{4 \gamma \beta+1})}{2 \sqrt{4 \gamma \beta+1}}
\end{array}\right.
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& \vec{x}_{h}(t)=e^{A t} \vec{c} \\
& =\left[\begin{array}{c}
\frac{(1+\sqrt{4 \gamma \beta+1}) \mathrm{e}^{\frac{(-1+\sqrt{4 \gamma \beta+1}) t}{2}}+\mathrm{e}^{-\frac{(1+\sqrt{4 \gamma \beta+1}) t}{2}}(-1+\sqrt{4 \gamma \beta+1})}{2 \sqrt{4 \gamma \beta+1}} \\
\frac{\gamma\left(\mathrm{e}^{\frac{(-1+\sqrt{4 \gamma \beta+1}) t}{2}}-\mathrm{e}^{\left.-\frac{(1+\sqrt{4 \gamma \beta+1}) t}{2}\right)}\right.}{\sqrt{4 \gamma \beta+1}}
\end{array}\right. \\
& \frac{\beta\left(\mathrm{e}^{\frac{(-1+\sqrt{4 \gamma \beta+1}) t}{2}}-\mathrm{e}^{\left.-\frac{(1+\sqrt{4 \gamma \beta+1}) t}{2}\right)}\right.}{\sqrt{4 \gamma \beta+1}} \\
& =\left[\begin{array}{c}
\frac{\left((1+\sqrt{4 \gamma \beta+1}) \mathrm{e}^{\frac{(-1+\sqrt{4 \gamma \beta+1}) t}{2}}+\mathrm{e}^{-\frac{(1+\sqrt{4 \gamma \beta+1}) t}{2}}(-1+\sqrt{4 \gamma \beta+1})\right) c_{1}}{2 \sqrt{4 \gamma \beta+1}}+\frac{\beta\left(\mathrm{e}^{\frac{(-1+\sqrt{4 \gamma \beta+1}) t}{2}}-\mathrm{e}^{-\frac{(1+\sqrt{4 \gamma \beta+1}) t}{2}}\right) c_{2}}{\sqrt{4 \gamma \beta+1}} \\
\frac{\gamma\left(\mathrm{e}^{\frac{(-1+\sqrt{4 \gamma \beta+1}) t}{2}}-\mathrm{e}^{-\frac{(1+\sqrt{4 \gamma \beta+1}) t}{2}}\right) c_{1}}{\sqrt{4 \gamma \beta+1}}+\frac{\left((-1+\sqrt{4 \gamma \beta+1}) \mathrm{e}^{\frac{(-1+\sqrt{4 \gamma \beta+1}) t}{2}}+\mathrm{e}^{-\frac{(1+\sqrt{4 \gamma \beta+1}) t}{2}}(1+\sqrt{4 \gamma \beta+1})\right) c_{2}}{2 \sqrt{4 \gamma \beta+1}}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(\beta c_{2}+\frac{c_{1} \sqrt{4 \gamma \beta+1}}{2}+\frac{c_{1}}{2}\right) \mathrm{e}^{\frac{(-1+\sqrt{4 \gamma \beta+1}) t}{2}}-\mathrm{e}^{-\frac{(1+\sqrt{4 \gamma \beta+1}) t}{2}}\left(\beta c_{2}-\frac{c_{1} \sqrt{4 \gamma \beta+1}}{2}+\frac{c_{1}}{2}\right)}{\sqrt{4 \gamma \beta+1}} \\
\frac{\left(\gamma c_{1}+\frac{c_{2} \sqrt{4 \gamma \beta+1}}{2}-\frac{c_{2}}{2}\right) \mathrm{e}^{\frac{(-1+\sqrt{4 \gamma \beta+1}) t}{2}}-\left(\gamma c_{1}-\frac{c_{2} \sqrt{4 \gamma \beta+1}}{2}-\frac{c_{2}}{2}\right) \mathrm{e}^{-\frac{(1+\sqrt{4 \gamma \beta+1}) t}{2}}}{\sqrt{4 \gamma \beta+1}}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

9.9.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & \beta \\
\gamma & -1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
0 & \beta \\
\gamma & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & \beta \\
\gamma & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
-\gamma \beta+\lambda^{2}+\lambda=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{\sqrt{4 \gamma \beta+1}}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{\sqrt{4 \gamma \beta+1}}{2}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-\frac{1}{2}+\frac{\sqrt{4 \gamma \beta+1}}{2}$	1	real eigenvalue
$-\frac{1}{2}-\frac{\sqrt{4 \gamma \beta+1}}{2}$	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-\frac{1}{2}-\frac{\sqrt{4 \gamma \beta+1}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
0 & \beta \\
\gamma & -1
\end{array}\right]-\left(-\frac{1}{2}-\frac{\sqrt{4 \gamma \beta+1}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{cc}
\frac{1}{2}+\frac{\sqrt{4 \gamma \beta+1}}{2} & \beta \\
\gamma & -\frac{1}{2}+\frac{\sqrt{4 \gamma \beta+1}}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right.
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
\frac{1}{2}+\frac{\sqrt{4 \gamma \beta+1}}{2} & \beta & 0 \\
\gamma & -\frac{1}{2}+\frac{\sqrt{4 \gamma \beta+1}}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{\gamma R_{1}}{\frac{1}{2}+\frac{\sqrt{4 \gamma \beta+1}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
\frac{1}{2}+\frac{\sqrt{4 \gamma \beta+1}}{2} & \beta & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{1}{2}+\frac{\sqrt{4 \gamma \beta+1}}{2} & \beta \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{2 \beta t}{1+\sqrt{4 \gamma \beta+1}}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{2 \beta t}{1+\sqrt{4 \gamma \beta+1}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 \beta t}{1+\sqrt{4 \gamma \beta+1}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{2 \beta t}{1+\sqrt{4 \gamma \beta+1}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{2 \beta}{1+\sqrt{4 \gamma \beta+1}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{2 \beta t}{1+\sqrt{4 \gamma \beta+1}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 \beta}{1+\sqrt{4 \gamma \beta+1}} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-\frac{1}{2}+\frac{\sqrt{4 \gamma \beta+1}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
0 & \beta \\
\gamma & -1
\end{array}\right]-\left(-\frac{1}{2}+\frac{\sqrt{4 \gamma \beta+1}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{cc}
\frac{1}{2}-\frac{\sqrt{4 \gamma \beta+1}}{2} & \beta \\
\gamma \quad-\frac{1}{2}-\frac{\sqrt{4 \gamma \beta+1}}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right.
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
\frac{1}{2}-\frac{\sqrt{4 \gamma \beta+1}}{2} & \beta & 0 \\
\gamma & -\frac{1}{2}-\frac{\sqrt{4 \gamma \beta+1}}{2} & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}-\frac{\gamma R_{1}}{\frac{1}{2}-\frac{\sqrt{4 \gamma \beta+1}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
\frac{1}{2}-\frac{\sqrt{4 \gamma \beta+1}}{2} & \beta & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{1}{2}-\frac{\sqrt{4 \gamma \beta+1}}{2} & \beta \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{2 \beta t}{-1+\sqrt{4 \gamma \beta+1}}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{2 \beta t}{-1+\sqrt{4 \gamma \beta+1}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2 \beta t}{-1+\sqrt{4 \gamma \beta+1}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{2 \beta t}{-1+\sqrt{4 \gamma \beta+1}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{2 \beta}{-1+\sqrt{4 \gamma \beta+1}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{2 \beta t}{-1+\sqrt{4 \gamma \beta+1}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2 \beta}{-1+\sqrt{4 \gamma \beta+1}} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k		eigenvectors
$-\frac{1}{2}+\frac{\sqrt{4 \gamma \beta+1}}{2}$	1	1	No	$\left[\begin{array}{c}\frac{\beta}{-\frac{1}{2}+\frac{\sqrt{4 \gamma \beta+1}}{2}} \\ 1\end{array}\right]$
$-\frac{1}{2}-\frac{\sqrt{4 \gamma \beta+1}}{2}$	1	1	No	$\left[\begin{array}{c}\frac{\beta}{-\frac{1}{2}-\frac{\sqrt{4 \gamma \beta+1}}{2}} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue $-\frac{1}{2}+\frac{\sqrt{4 \gamma \beta+1}}{2}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\left(-\frac{1}{2}+\frac{\sqrt{4 \gamma \beta+1}}{2}\right) t} \\
& =\left[\begin{array}{c}
\frac{\beta}{-\frac{1}{2}+\frac{\sqrt{4 \gamma \beta+1}}{2}} \\
1
\end{array}\right] e^{\left(-\frac{1}{2}+\frac{\sqrt{4 \gamma \beta+1}}{2}\right) t}
\end{aligned}
$$

Since eigenvalue $-\frac{1}{2}-\frac{\sqrt{4 \gamma \beta+1}}{2}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{\left(-\frac{1}{2}-\frac{\sqrt{4 \gamma \beta+1}}{2}\right) t} \\
& =\left[\begin{array}{c}
\frac{\beta}{-\frac{1}{2}-\frac{\sqrt{4 \gamma \beta+1}}{2}} \\
1
\end{array}\right] e^{\left(-\frac{1}{2}-\frac{\sqrt{4 \gamma \beta+1}}{2}\right) t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{\mathrm{e}^{\left(-\frac{1}{2}+\frac{\sqrt{4 \gamma \beta+1}}{2}\right) t}{ }_{\beta}}{-\frac{1}{2}+\frac{\sqrt{4 \gamma \beta+1}}{2}} \\
\mathrm{e}^{\left(-\frac{1}{2}+\frac{\sqrt{4 \gamma \beta+1}}{2}\right) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{\mathrm{e}^{\left(-\frac{1}{2}-\frac{\sqrt{4 \gamma \beta+1}}{2}\right) t} t^{-\frac{1}{2}-\frac{\sqrt{4 \gamma \beta+1}}{2}}}{\mathrm{e}^{\left(-\frac{1}{2}-\frac{\sqrt{4 \gamma \beta+1}}{2}\right) t}}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{1}(1+\sqrt{4 \gamma \beta+1}) \mathrm{e}^{\frac{(-1+\sqrt{4 \gamma \beta+1}) t}{2}}-c_{2} \mathrm{e}^{-\frac{(1+\sqrt{4 \gamma \beta+1}) t}{2}}(-1+\sqrt{4 \gamma \beta+1})}{2 \gamma} \\
c_{1} \mathrm{e}^{\frac{(-1+\sqrt{4 \gamma \beta+1}) t}{2}}+c_{2} \mathrm{e}^{-\frac{(1+\sqrt{4 \gamma \beta+1}) t}{2}}
\end{array}\right]
$$

The following is the phase plot of the system.
Solution by Maple
Time used: 0.046 (sec). Leaf size: 119

```
dsolve([diff (x (t),t)=beta*y(t), diff (y(t),t)=gamma*x (t) - y (t)],singsol=all)
```

$$
\begin{aligned}
& x(t)=c_{1} \mathrm{e}^{\frac{(-1+\sqrt{4 \beta \gamma+1}) t}{2}}+c_{2} \mathrm{e}^{-\frac{(1+\sqrt{4 \beta \gamma+1}) t}{2}} \\
& y(t)=\frac{\left(-\frac{1}{2}+\frac{\sqrt{4 \beta \gamma+1}}{2}\right) c_{1} \mathrm{e}^{\frac{(-1+\sqrt{4 \beta \gamma+1}) t}{2}}}{\beta}+\frac{\left(-\frac{\mathrm{e}^{-\frac{(1+\sqrt{4 \beta \gamma+1) t}}{2}} \sqrt{4 \beta \gamma+1}}{2}-\frac{\mathrm{e}^{-\frac{(1+\sqrt{4 \beta \gamma+1}) t}{2}}}{2}\right) c_{2}}{\beta}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 202
DSolve $\left[\left\{x^{\prime}[t]==\backslash[\right.\right.$ Beta $] * y[t], y^{\prime}[t]==\backslash[$ Gamma $\left.] * x[t]-y[t]\right\},\{x[t], y[t]\}, t$, IncludeSingularSolution

$$
\begin{aligned}
& x(t) \\
& \rightarrow \frac{e^{-\frac{1}{2} t(\sqrt{4 \beta \gamma+1}+1)}\left(c_{1}\left(\sqrt{4 \beta \gamma+1}+(\sqrt{4 \beta \gamma+1}+1) e^{t \sqrt{4 \beta \gamma+1}}-1\right)+2 \beta c_{2}\left(e^{t \sqrt{4 \beta \gamma+1}}-1\right)\right)}{2 \sqrt{4 \beta \gamma+1}} \\
& y(t) \\
& \rightarrow \frac{e^{-\frac{1}{2} t(\sqrt{4 \beta \gamma+1}+1)}\left(2 \gamma c_{1}\left(e^{t \sqrt{4 \beta \gamma+1}}-1\right)+c_{2}\left(\sqrt{4 \beta \gamma+1}+(\sqrt{4 \beta \gamma+1}-1) e^{t \sqrt{4 \beta \gamma+1}}+1\right)\right)}{2 \sqrt{4 \beta \gamma+1}}
\end{aligned}
$$

9.10 problem 24

9.10.1 Solution using Matrix exponential method 1745
9.10.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1746

Internal problem ID [13070]
Internal file name [OUTPUT/11725_Sunday_December_03_2023_07_16_07_PM_4428554/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258
Problem number: 24.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =2 y \\
y^{\prime} & =x(t)+y
\end{aligned}
$$

With initial conditions

$$
[x(0)=-2, y(0)=-1]
$$

9.10.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{2 t}}{3} & \frac{2 \mathrm{e}^{2 t}}{3}-\frac{2 \mathrm{e}^{-t}}{3} \\
\frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3} & \frac{\mathrm{e}^{-t}}{3}+\frac{2 \mathrm{e}^{2 t}}{3}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{2 t}}{3} & \frac{2 \mathrm{e}^{2 t}}{3}-\frac{2 \mathrm{e}^{-t}}{3} \\
\frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3} & \frac{\mathrm{e}^{-t}}{3}+\frac{2 \mathrm{e}^{2 t}}{3}
\end{array}\right]\left[\begin{array}{c}
-2 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{2 \mathrm{e}^{-t}}{3}-\frac{4 \mathrm{e}^{2 t}}{3} \\
-\frac{4 \mathrm{e}^{2 t}}{3}+\frac{\mathrm{e}^{-t}}{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

9.10.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & 2 \\
1 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-\lambda-2=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
1 & 2 & 0 \\
1 & 2 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{ll|l}
1 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-2 t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right]-(2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-2 & 2 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2 & 2 & 0 \\
1 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{cc|c}
-2 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
2	1	1	No	$\left[\begin{array}{c}1 \\ 1\end{array}\right]$
-1	1	1	No	$\left[\begin{array}{c}-2 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{2 t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-t} \\
& =\left[\begin{array}{c}
-2 \\
1
\end{array}\right] e^{-t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-2 \mathrm{e}^{-t} \\
\mathrm{e}^{-t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
c_{1} \mathrm{e}^{2 t}-2 c_{2} \mathrm{e}^{-t} \\
c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{-t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=-2 \tag{1}\\
y(0)=-1
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{c}
-2 \\
-1
\end{array}\right]=\left[\begin{array}{c}
c_{1}-2 c_{2} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=-\frac{4}{3} \\
c_{2}=\frac{1}{3}
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 \mathrm{e}^{-t}}{3}-\frac{4 \mathrm{e}^{2 t}}{3} \\
-\frac{4 \mathrm{e}^{2 t}}{3}+\frac{\mathrm{e}^{-t}}{3}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 380: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 34
dsolve([diff(x $(t), t)=2 * y(t), \operatorname{diff}(y(t), t)=x(t)+y(t), x(0)=-2, y(0)=-1]$, singsol=all)

$$
\begin{aligned}
& x(t)=-\frac{2 \mathrm{e}^{-t}}{3}-\frac{4 \mathrm{e}^{2 t}}{3} \\
& y(t)=\frac{\mathrm{e}^{-t}}{3}-\frac{4 \mathrm{e}^{2 t}}{3}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 44
DSolve $\left[\left\{x^{\prime}[t]==2 * y[t], y^{\prime}[t]==x[t]+y[t]\right\},\{x[0]==-2, y[0]==-1\},\{x[t], y[t]\}, t\right.$, IncludeSingularSol

$$
\begin{aligned}
& x(t) \rightarrow-\frac{2}{3} e^{-t}\left(2 e^{3 t}+1\right) \\
& y(t) \rightarrow \frac{1}{3} e^{-t}\left(1-4 e^{3 t}\right)
\end{aligned}
$$

9.11 problem 25

9.11.1 Solution using Matrix exponential method 1753
9.11.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1754

Internal problem ID [13071]
Internal file name [OUTPUT/11726_Sunday_December_03_2023_07_16_08_PM_81532362/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258
Problem number: 25.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =x(t)-y \\
y^{\prime} & =x(t)+3 y
\end{aligned}
$$

With initial conditions

$$
[x(0)=0, y(0)=2]
$$

9.11.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
1 & 3
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{2 t}(1-t) & -\mathrm{e}^{2 t} t \\
\mathrm{e}^{2 t} t & \mathrm{e}^{2 t}(1+t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{2 t}(1-t) & -\mathrm{e}^{2 t} t \\
\mathrm{e}^{2 t} t & \mathrm{e}^{2 t}(1+t)
\end{array}\right]\left[\begin{array}{l}
0 \\
2
\end{array}\right] \\
& =\left[\begin{array}{c}
-2 \mathrm{e}^{2 t} t \\
2 \mathrm{e}^{2 t}(1+t)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

9.11.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
1 & 3
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1 & -1 \\
1 & 3
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & -1 \\
1 & 3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-4 \lambda+4=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=2
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & -1 \\
1 & 3
\end{array}\right]-(2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1 & -1 & 0 \\
1 & 1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
2	2	1	Yes	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 2 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 381: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & -1 \\
1 & 3
\end{array}\right]-(2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
& {\left[\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue 2. Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \mathrm{e}^{2 t} \\
& =\left[\begin{array}{c}
-\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
-1 \\
1
\end{array}\right] t+\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \mathrm{e}^{2 t} \\
& =\left[\begin{array}{c}
-\mathrm{e}^{2 t} t \\
\mathrm{e}^{2 t}(1+t)
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\mathrm{e}^{2 t} t \\
\mathrm{e}^{2 t}(1+t)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{2 t}\left(-t c_{2}-c_{1}\right) \\
\mathrm{e}^{2 t}\left(t c_{2}+c_{1}+c_{2}\right)
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=0 \tag{1}\\
y(0)=2
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
0 \\
2
\end{array}\right]=\left[\begin{array}{c}
-c_{1} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{l}
c_{1}=0 \\
c_{2}=2
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-2 \mathrm{e}^{2 t} t \\
\mathrm{e}^{2 t}(2 t+2)
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 382: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 26
dsolve([diff $(x(t), t)=x(t)-y(t), \operatorname{diff}(y(t), t)=x(t)+3 * y(t), x(0)=0, y(0)=2]$, singsol=a

$$
\begin{aligned}
& x(t)=-2 \mathrm{e}^{2 t} t \\
& y(t)=-\mathrm{e}^{2 t}(-2 t-2)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 26
DSolve $\left[\left\{x^{\prime}[t]==x[t]-y[t], y^{\prime}[t]==x[t]+3 * y[t]\right\},\{x[0]==0, y[0]==2\},\{x[t], y[t]\}, t\right.$, IncludeSingular

$$
\begin{aligned}
& x(t) \rightarrow-2 e^{2 t} t \\
& y(t) \rightarrow 2 e^{2 t}(t+1)
\end{aligned}
$$

9.12 problem 26

9.12.1 Solution using Matrix exponential method 1761
9.12.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1762

Internal problem ID [13072]
Internal file name [OUTPUT/11727_Sunday_December_03_2023_07_16_08_PM_80783439/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258
Problem number: 26.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-2 x(t)-y \\
y^{\prime} & =2 x(t)-5 y
\end{aligned}
$$

With initial conditions

$$
[x(0)=2, y(0)=3]
$$

9.12.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-2 & -1 \\
2 & -5
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
-\mathrm{e}^{-4 t}+2 \mathrm{e}^{-3 t} & -\mathrm{e}^{-3 t}+\mathrm{e}^{-4 t} \\
2 \mathrm{e}^{-3 t}-2 \mathrm{e}^{-4 t} & 2 \mathrm{e}^{-4 t}-\mathrm{e}^{-3 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
-\mathrm{e}^{-4 t}+2 \mathrm{e}^{-3 t} & -\mathrm{e}^{-3 t}+\mathrm{e}^{-4 t} \\
2 \mathrm{e}^{-3 t}-2 \mathrm{e}^{-4 t} & 2 \mathrm{e}^{-4 t}-\mathrm{e}^{-3 t}
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-4 t}+\mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}+2 \mathrm{e}^{-4 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

9.12.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-2 & -1 \\
2 & -5
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-2 & -1 \\
2 & -5
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-2-\lambda & -1 \\
2 & -5-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+7 \lambda+12=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-4 \\
& \lambda_{2}=-3
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-3	1	real eigenvalue
-4	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-4$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{r}
\left(\left[\begin{array}{cc}
-2 & -1 \\
2 & -5
\end{array}\right]-(-4)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ll}
2 & -1 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{array}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
2 & -1 & 0 \\
2 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{cc|c}
2 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-2 & -1 \\
2 & -5
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & -1 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
1 & -1 & 0 \\
2 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}-2 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-4	1	1	No	$\left[\begin{array}{c}\frac{1}{2} \\ 1\end{array}\right]$
-3	1	1	No	$\left[\begin{array}{c}1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -4 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-4 t} \\
& =\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right] e^{-4 t}
\end{aligned}
$$

Since eigenvalue -3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-3 t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{-3 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{\mathrm{e}^{-4 t}}{2} \\
\mathrm{e}^{-4 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{1} \mathrm{e}^{-4 t}}{2}+c_{2} \mathrm{e}^{-3 t} \\
c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-3 t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=2 \tag{1}\\
y(0)=3
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{1}}{2}+c_{2} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{l}
c_{1}=2 \\
c_{2}=1
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{-4 t}+\mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}+2 \mathrm{e}^{-4 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 383: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 28
dsolve $([\operatorname{diff}(x(t), t)=-2 * x(t)-y(t), \operatorname{diff}(y(t), t)=2 * x(t)-5 * y(t), x(0)=2, y(0)=3]$, sing

$$
\begin{aligned}
& x(t)=\mathrm{e}^{-4 t}+\mathrm{e}^{-3 t} \\
& y(t)=2 \mathrm{e}^{-4 t}+\mathrm{e}^{-3 t}
\end{aligned}
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 30
DSolve $\left[\left\{x^{\prime}[t]==-2 * x[t]-y[t], y^{\prime}[t]==2 * x[t]-5 * y[t]\right\},\{x[0]==2, y[0]==3\},\{x[t], y[t]\}, t\right.$, IncludeSin

$$
\begin{aligned}
& x(t) \rightarrow e^{-4 t}\left(e^{t}+1\right) \\
& y(t) \rightarrow e^{-4 t}\left(e^{t}+2\right)
\end{aligned}
$$

9.13 problem 28

9.13.1 Solution using Matrix exponential method 1769
9.13.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1770

Internal problem ID [13073]
Internal file name [OUTPUT/11728_Sunday_December_03_2023_07_16_08_PM_97356223/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258
Problem number: 28.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-2 x(t)-3 y \\
y^{\prime} & =3 x(t)-2 y
\end{aligned}
$$

With initial conditions

$$
[x(0)=2, y(0)=3]
$$

9.13.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-2 & -3 \\
3 & -2
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{-2 t} \cos (3 t) & -\mathrm{e}^{-2 t} \sin (3 t) \\
\mathrm{e}^{-2 t} \sin (3 t) & \mathrm{e}^{-2 t} \cos (3 t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-2 t} \cos (3 t) & -\mathrm{e}^{-2 t} \sin (3 t) \\
\mathrm{e}^{-2 t} \sin (3 t) & \mathrm{e}^{-2 t} \cos (3 t)
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right] \\
& =\left[\begin{array}{c}
2 \mathrm{e}^{-2 t} \cos (3 t)-3 \mathrm{e}^{-2 t} \sin (3 t) \\
2 \mathrm{e}^{-2 t} \sin (3 t)+3 \mathrm{e}^{-2 t} \cos (3 t)
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-2 t}(2 \cos (3 t)-3 \sin (3 t)) \\
\mathrm{e}^{-2 t}(2 \sin (3 t)+3 \cos (3 t))
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

9.13.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-2 & -3 \\
3 & -2
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-2 & -3 \\
3 & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-2-\lambda & -3 \\
3 & -2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+4 \lambda+13=0
$$

The roots of the above are the eigenvalues.

$$
\begin{gathered}
\lambda_{1}=-2+3 i \\
\lambda_{2}=-2-3 i
\end{gathered}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-2-3 i$	1	complex eigenvalue
$-2+3 i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-2-3 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-2 & -3 \\
3 & -2
\end{array}\right]-(-2-3 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
3 i & -3 \\
3 & 3 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
3 i & -3 & 0 \\
3 & 3 i & 0
\end{array}\right]} \\
R_{2}=i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cc|c}
3 i & -3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
3 i & -3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-i \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-2+3 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-2 & -3 \\
3 & -2
\end{array}\right]-(-2+3 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-3 i & -3 \\
3 & -3 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-3 i & -3 & 0 \\
3 & -3 i & 0
\end{array}\right]} \\
R_{2}=-i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cc|c}
-3 i & -3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-3 i & -3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{l}
i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=t\left[\begin{array}{l}
i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{l}
i \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$-2+3 i$	1	1	No	$\left[\begin{array}{c}i \\ 1\end{array}\right]$
$-2-3 i$	1	1	No	$\left[\begin{array}{c}-i \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
i \mathrm{e}^{(-2+3 i) t} \\
\mathrm{e}^{(-2+3 i) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-i \mathrm{e}^{(-2-3 i) t} \\
\mathrm{e}^{(-2-3 i) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-i\left(c_{2} \mathrm{e}^{(-2-3 i) t}-c_{1} \mathrm{e}^{(-2+3 i) t}\right) \\
c_{1} \mathrm{e}^{(-2+3 i) t}+c_{2} \mathrm{e}^{(-2-3 i) t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=2 \tag{1}\\
y(0)=3
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
i\left(c_{1}-c_{2}\right) \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=\frac{3}{2}-i \\
c_{2}=\frac{3}{2}+i
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-i\left(\left(\frac{3}{2}+i\right) \mathrm{e}^{(-2-3 i) t}+\left(-\frac{3}{2}+i\right) \mathrm{e}^{(-2+3 i) t}\right) \\
\left(\frac{3}{2}-i\right) \mathrm{e}^{(-2+3 i) t}+\left(\frac{3}{2}+i\right) \mathrm{e}^{(-2-3 i) t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 384: Phase plot

The following are plots of each solution.
\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 45

```
dsolve([diff(x(t),t) = -2*x(t)-3*y(t), diff(y(t),t) = 3*x(t)-2*y(t), x(0) = 2, y(0) = 3], si
```

$$
\begin{aligned}
x(t) & =\mathrm{e}^{-2 t}(-3 \sin (3 t)+2 \cos (3 t)) \\
y(t) & =-\mathrm{e}^{-2 t}(-3 \cos (3 t)-2 \sin (3 t))
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 46
DSolve $\left[\left\{x^{\prime}[t]==-2 * x[t]-3 * y[t], y^{\prime}[t]==3 * x[t]-2 * y[t]\right\},\{x[0]==2, y[0]==3\},\{x[t], y[t]\}, t\right.$, IncludeS

$$
\begin{aligned}
& x(t) \rightarrow e^{-2 t}(2 \cos (3 t)-3 \sin (3 t)) \\
& y(t) \rightarrow e^{-2 t}(2 \sin (3 t)+3 \cos (3 t))
\end{aligned}
$$

9.14 problem 29

9.14.1 Solution using Matrix exponential method 1776
9.14.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1777

Internal problem ID [13074]
Internal file name [OUTPUT/11729_Sunday_December_03_2023_07_16_09_PM_44482920/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258
Problem number: 29.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =2 x(t)+3 y \\
y^{\prime} & =x(t)
\end{aligned}
$$

With initial conditions

$$
[x(0)=2, y(0)=3]
$$

9.14.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
2 & 3 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{\mathrm{e}^{-t}}{4}+\frac{3 \mathrm{e}^{3 t}}{4} & \frac{3 \mathrm{e}^{3 t}}{4}-\frac{3 \mathrm{e}^{-t}}{4} \\
\frac{\mathrm{e}^{3 t}}{4}-\frac{\mathrm{e}^{-t}}{4} & \frac{3 \mathrm{e}^{-t}}{4}+\frac{\mathrm{e}^{3 t}}{4}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{ll}
\frac{\mathrm{e}^{-t}}{4}+\frac{3 \mathrm{e}^{3 t}}{4} & \frac{3 \mathrm{e}^{3 t}}{4}-\frac{3 \mathrm{e}^{-t}}{4} \\
\frac{\mathrm{e}^{3 t}}{4}-\frac{\mathrm{e}^{-t}}{4} & \frac{3 \mathrm{e}^{-t}}{4}+\frac{\mathrm{e}^{3 t}}{4}
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{7 \mathrm{e}^{-t}}{4}+\frac{15 \mathrm{e}^{3 t}}{4} \\
\frac{5 \mathrm{e}^{3 t}}{4}+\frac{7 \mathrm{e}^{-t}}{4}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

9.14.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
2 & 3 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
2 & 3 \\
1 & 0
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & 3 \\
1 & -\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-2 \lambda-3=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =3 \\
\lambda_{2} & =-1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
2 & 3 \\
1 & 0
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
3 & 3 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
3 & 3 & 0 \\
1 & 1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{3} \Longrightarrow\left[\begin{array}{ll|l}
3 & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
3 & 3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
2 & 3 \\
1 & 0
\end{array}\right]-(3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-1 & 3 \\
1 & -3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1 & 3 & 0 \\
1 & -3 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1 & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1 & 3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=3 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
3 t \\
t
\end{array}\right]=\left[\begin{array}{c}
3 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
3 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
3 t \\
t
\end{array}\right]=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
3	1	1	No	$\left[\begin{array}{c}3 \\ 1\end{array}\right]$
-1	1	1	No	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{3 t} \\
& =\left[\begin{array}{l}
3 \\
1
\end{array}\right] e^{3 t}
\end{aligned}
$$

Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
3 \mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\mathrm{e}^{-t} \\
\mathrm{e}^{-t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
3 c_{1} \mathrm{e}^{3 t}-c_{2} \mathrm{e}^{-t} \\
c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{-t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=2 \tag{1}\\
y(0)=3
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
3 c_{1}-c_{2} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{l}
c_{1}=\frac{5}{4} \\
c_{2}=\frac{7}{4}
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-\frac{7 \mathrm{e}^{-t}}{4}+\frac{15 \mathrm{e}^{3 t}}{4} \\
\frac{5 \mathrm{e}^{3 t}}{4}+\frac{7 \mathrm{e}^{-t}}{4}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 385: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 34
dsolve([diff $(x(t), t)=2 * x(t)+3 * y(t), \operatorname{diff}(y(t), t)=x(t), x(0)=2, y(0)=3]$, singsol=all)

$$
\begin{aligned}
& x(t)=\frac{15 \mathrm{e}^{3 t}}{4}-\frac{7 \mathrm{e}^{-t}}{4} \\
& y(t)=\frac{5 \mathrm{e}^{3 t}}{4}+\frac{7 \mathrm{e}^{-t}}{4}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 44
DSolve $\left[\left\{x^{\prime}[t]==2 * x[t]+3 * y[t], y^{\prime}[t]==x[t]\right\},\{x[0]==2, y[0]==3\},\{x[t], y[t]\}, t\right.$, IncludeSingularSol

$$
\begin{aligned}
x(t) & \rightarrow \frac{1}{4} e^{-t}\left(15 e^{4 t}-7\right) \\
y(t) & \rightarrow \frac{1}{4} e^{-t}\left(5 e^{4 t}+7\right)
\end{aligned}
$$

9.15 problem 34

9.15.1 Solution using Matrix exponential method 1784
9.15.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1786

Internal problem ID [13075]
Internal file name [OUTPUT/11730_Sunday_December_03_2023_07_16_09_PM_26869848/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.1. page 258
Problem number: 34 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =1 \\
y^{\prime} & =x(t)
\end{aligned}
$$

9.15.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ll}
1 & 0 \\
t & 1
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ll}
1 & 0 \\
t & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
c_{1} \\
t c_{1}+c_{2}
\end{array}\right]
\end{aligned}
$$

The particular solution given by

$$
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
$$

But

$$
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
1 & 0 \\
-t & 1
\end{array}\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{ll}
1 & 0 \\
t & 1
\end{array}\right] \int\left[\begin{array}{cc}
1 & 0 \\
-t & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] d t \\
& =\left[\begin{array}{ll}
1 & 0 \\
t & 1
\end{array}\right]\left[\begin{array}{c}
t \\
-\frac{t^{2}}{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
t \\
\frac{t^{2}}{2}
\end{array}\right]
\end{aligned}
$$

Hence the complete solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
c_{1}+t \\
t c_{1}+c_{2}+\frac{1}{2} t^{2}
\end{array}\right]
\end{aligned}
$$

9.15.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Since the system is nonhomogeneous, then the solution is given by

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
$$

Where $\vec{x}_{h}(t)$ is the homogeneous solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)$ and $\vec{x}_{p}(t)$ is a particular solution to $\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)$. The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & 0 \\
1 & -\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(-\lambda)(-\lambda)=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=0
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
0	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=0$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]-(0)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ll|l}
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
0	2	1	Yes	$\left[\begin{array}{l}0 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 0 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 386: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]-(0)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& {\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue 0 . Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{l}
0 \\
1
\end{array}\right] 1 \\
& =\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right] t+\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right) 1 \\
& =\left[\begin{array}{c}
1 \\
1+t
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{l}
0 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
1 \\
1+t
\end{array}\right]
$$

Now that we found homogeneous solution above, we need to find a particular solution $\vec{x}_{p}(t)$. We will use Variation of parameters. The fundamental matrix is

$$
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
$$

Where \vec{x}_{i} are the solution basis found above. Therefore the fundamental matrix is

$$
\Phi(t)=\left[\begin{array}{cc}
0 & 1 \\
1 & 1+t
\end{array}\right]
$$

The particular solution is then given by

$$
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
$$

But

$$
\Phi^{-1}=\left[\begin{array}{cc}
-1-t & 1 \\
1 & 0
\end{array}\right]
$$

Hence

$$
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
0 & 1 \\
1 & 1+t
\end{array}\right] \int\left[\begin{array}{cc}
-1-t & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
0 & 1 \\
1 & 1+t
\end{array}\right] \int\left[\begin{array}{c}
-1-t \\
1
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
0 & 1 \\
1 & 1+t
\end{array}\right]\left[\begin{array}{c}
-t-\frac{1}{2} t^{2} \\
t
\end{array}\right] \\
& =\left[\begin{array}{c}
t \\
\frac{t^{2}}{2}
\end{array}\right]
\end{aligned}
$$

Now that we found particular solution, the final solution is

$$
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x(t) \\
y
\end{array}\right] } & =\left[\begin{array}{c}
0 \\
c_{1}
\end{array}\right]+\left[\begin{array}{c}
c_{2} \\
c_{2}(1+t)
\end{array}\right]+\left[\begin{array}{c}
t \\
\frac{t^{2}}{2}
\end{array}\right]
\end{aligned}
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
c_{2}+t \\
c_{1}+c_{2} t+c_{2}+\frac{1}{2} t^{2}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 387: Phase plot
\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 21

```
dsolve([diff(x(t),t)=1,\operatorname{diff}(y(t),t)=x(t)],singsol=all)
```

$$
\begin{aligned}
& x(t)=c_{2}+t \\
& y(t)=c_{2} t+\frac{1}{2} t^{2}+c_{1}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 26

```
DSolve[{x'[t]==1,y'[t]==x[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& x(t) \rightarrow t+c_{1} \\
& y(t) \rightarrow \frac{t^{2}}{2}+c_{1} t+c_{2}
\end{aligned}
$$

10 Chapter 3. Linear Systems. Exercises section 3.2. page 277
10.1 problem 1 1794
10.2 problem 2 1803
10.3 problem 3 1812
10.4 problem 4 1821
10.5 problem 5 1831
10.6 problem 6 1841
10.7 problem 7 1850
10.8 problem 8 1859
10.9 problem 9 1868
10.10problem 10 1877
10.11problem 11 (a) 1886
10.12problem 11 (b) 1894
10.13problem 11 (c) 1902
10.14problem 12 (a) 1910
10.15problem 12 (b) 1918
10.16problem 12 (c) 1926
10.17problem 13 (a) 1934
10.18problem 13 (b) 1942
10.19problem 13 (c) 1950
10.20problem 14 (a) 1958
10.21 problem 14 (b) 1966
10.22problem 14 (c) 1974

10.1 problem 1

10.1.1 Solution using Matrix exponential method 1794
10.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1795
10.1.3 Maple step by step solution . 1800

Internal problem ID [13076]
Internal file name [OUTPUT/11731_Sunday_December_03_2023_07_16_10_PM_52240061/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =3 x(t) \\
y^{\prime} & =-2 y
\end{aligned}
$$

10.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
3 & 0 \\
0 & -2
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{3 t} & 0 \\
0 & \mathrm{e}^{-2 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{3 t} & 0 \\
0 & \mathrm{e}^{-2 t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{3 t} c_{1} \\
\mathrm{e}^{-2 t} c_{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

10.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
3 & 0 \\
0 & -2
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3 & 0 \\
0 & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3-\lambda & 0 \\
0 & -2-\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(3-\lambda)(-2-\lambda)=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=3 \\
& \lambda_{2}=-2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-2	1	real eigenvalue
3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
3 & 0 \\
0 & -2
\end{array}\right]-(-2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ll|l}
5 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
5 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
3 & 0 \\
0 & -2
\end{array}\right]-(3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
0 & 0 \\
0 & -5
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
0 & 0 & 0 \\
0 & -5 & 0
\end{array}\right]
$$

Since the current pivot $A(1,2)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{cc|c}
0 & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
0 & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{1}\right\}$ and the leading variables are $\left\{v_{2}\right\}$. Let $v_{1}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=\left[\begin{array}{l}
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
3	1	1	No	$\left[\begin{array}{l}1 \\ 0\end{array}\right]$
-2	1	1	No	$\left[\begin{array}{l}0 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{3 t} \\
& =\left[\begin{array}{l}
1 \\
0
\end{array}\right] e^{3 t}
\end{aligned}
$$

Since eigenvalue -2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-2 t} \\
& =\left[\begin{array}{l}
0 \\
1
\end{array}\right] e^{-2 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{3 t} \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
0 \\
\mathrm{e}^{-2 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
c_{1} \mathrm{e}^{3 t} \\
c_{2} \mathrm{e}^{-2 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 388: Phase plot

10.1.3 Maple step by step solution

Let's solve
$\left[x^{\prime}(t)=3 x(t), y^{\prime}=-2 y\right]$

- Define vector
$\vec{x}(t)=\left[\begin{array}{c}x(t) \\ y\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}3 & 0 \\ 0 & -2\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}3 & 0 \\ 0 & -2\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
3 & 0 \\
0 & -2
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-2,\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair
$\vec{x}_{1}=\mathrm{e}^{-2 t} \cdot\left[\begin{array}{l}0 \\ 1\end{array}\right]$
- Consider eigenpair

$$
\left[3,\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{2}=\mathrm{e}^{3 t} \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
$$

- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{-2 t} \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{3 t} \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
c_{2} \mathrm{e}^{3 t} \\
c_{1} \mathrm{e}^{-2 t}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x(t)=c_{2} \mathrm{e}^{3 t}, y=c_{1} \mathrm{e}^{-2 t}\right\}
$$

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 20

```
dsolve([diff(x(t),t)=3*x(t), diff(y(t),t)=-2*y(t)],singsol=all)
```

$$
\begin{aligned}
& x(t)=c_{2} \mathrm{e}^{3 t} \\
& y(t)=c_{1} \mathrm{e}^{-2 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 32
DSolve[\{x'[t]==3*x[t], $\left.y^{\prime}[t]==-2 * x[t]\right\},\{x[t], y[t]\}, t$, IncludeSingularSolutions \rightarrow True $]$

$$
\begin{aligned}
& x(t) \rightarrow c_{1} e^{3 t} \\
& y(t) \rightarrow c_{2}-\frac{2}{3} c_{1}\left(e^{3 t}-1\right)
\end{aligned}
$$

10.2 problem 2

10.2.1 Solution using Matrix exponential method 1803
10.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1804
10.2.3 Maple step by step solution . 1809

Internal problem ID [13077]
Internal file name [OUTPUT/11732_Sunday_December_03_2023_07_16_10_PM_54236071/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-4 x(t)-2 y \\
y^{\prime} & =-x(t)-3 y
\end{aligned}
$$

10.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
-4 & -2 \\
-1 & -3
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{-5 t}}{3}+\frac{\mathrm{e}^{-2 t}}{3} & -\frac{2 \mathrm{e}^{-2 t}}{3}+\frac{2 \mathrm{e}^{-5 t}}{3} \\
-\frac{\mathrm{e}^{-2 t}}{3}+\frac{\mathrm{e}^{-5 t}}{3} & \frac{\mathrm{e}^{-5 t}}{3}+\frac{2 \mathrm{e}^{-2 t}}{3}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{-5 t}}{3}+\frac{\mathrm{e}^{-2 t}}{3} & -\frac{2 \mathrm{e}^{-2 t}}{3}+\frac{2 \mathrm{e}^{-5 t}}{3} \\
-\frac{\mathrm{e}^{-2 t}}{3}+\frac{\mathrm{e}^{-5 t}}{3} & \frac{\mathrm{e}^{-5 t}}{3}+\frac{2 \mathrm{e}^{-2 t}}{3}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{2 \mathrm{e}^{-5 t}}{3}+\frac{\mathrm{e}^{-2 t}}{3}\right) c_{1}+\left(-\frac{2 \mathrm{e}^{-2 t}}{3}+\frac{2 \mathrm{e}^{-5 t}}{3}\right) c_{2} \\
\left(-\frac{\mathrm{e}^{-2 t}}{3}+\frac{\mathrm{e}^{-5 t}}{3}\right) c_{1}+\left(\frac{\mathrm{e}^{-5 t}}{3}+\frac{2 \mathrm{e}^{-2 t}}{3}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(2 c_{1}+2 c_{2}\right) \mathrm{e}^{-5 t}}{3}+\frac{\mathrm{e}^{-2 t}\left(c_{1}-2 c_{2}\right)}{3} \\
\frac{\left(c_{1}+c_{2}\right) \mathrm{e}^{-5 t}}{3}-\frac{\mathrm{e}^{-2 t}\left(c_{1}-2 c_{2}\right)}{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

10.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-4 & -2 \\
-1 & -3
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
-4 & -2 \\
-1 & -3
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-4-\lambda & -2 \\
-1 & -3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+7 \lambda+10=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-2 \\
& \lambda_{2}=-5
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-2	1	real eigenvalue
-5	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-5$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
-4 & -2 \\
-1 & -3
\end{array}\right]-(-5)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
1 & -2 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
1 & -2 & 0 \\
-1 & 2 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
-4 & -2 \\
-1 & -3
\end{array}\right]-(-2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
-2 & -2 \\
-1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
-2 & -2 & 0 \\
-1 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{cc|c}
-2 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-2	1	1	No	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
-5	1	1	No	$\left[\begin{array}{c}2 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -2 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-2 t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}
\end{aligned}
$$

Since eigenvalue -5 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-5 t} \\
& =\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{-5 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{-2 t} \\
\mathrm{e}^{-2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
2 \mathrm{e}^{-5 t} \\
\mathrm{e}^{-5 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-c_{1} \mathrm{e}^{-2 t}+2 c_{2} \mathrm{e}^{-5 t} \\
c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-5 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 389: Phase plot

10.2.3 Maple step by step solution

Let's solve
$\left[x^{\prime}(t)=-4 x(t)-2 y, y^{\prime}=-x(t)-3 y\right]$

- Define vector
$\vec{x}(t)=\left[\begin{array}{c}x(t) \\ y\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}-4 & -2 \\ -1 & -3\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}-4 & -2 \\ -1 & -3\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
-4 & -2 \\
-1 & -3
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-5,\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right],\left[-2,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-5,\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\mathrm{e}^{-5 t} \cdot\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair
$\vec{x}_{2}=\mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
$$

- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{-5 t} \cdot\left[\begin{array}{l}
2 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
2 c_{1} \mathrm{e}^{-5 t}-c_{2} \mathrm{e}^{-2 t} \\
c_{1} \mathrm{e}^{-5 t}+c_{2} \mathrm{e}^{-2 t}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=2 c_{1} \mathrm{e}^{-5 t}-c_{2} \mathrm{e}^{-2 t}, y=c_{1} \mathrm{e}^{-5 t}+c_{2} \mathrm{e}^{-2 t}\right\}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 36

```
dsolve([diff(x(t),t)=-4*x(t)-2*y(t), diff (y(t),t)=-x(t)-3*y(t)],singsol=all)
```

$$
\begin{aligned}
& x(t)=c_{1} \mathrm{e}^{-5 t}+c_{2} \mathrm{e}^{-2 t} \\
& y(t)=\frac{c_{1} \mathrm{e}^{-5 t}}{2}-c_{2} \mathrm{e}^{-2 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 71
DSolve[\{x' [t]==-4*x[t]-2*y[t],y'[t]==-x[t]-3*y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{3} e^{-5 t}\left(c_{1}\left(e^{3 t}+2\right)-2 c_{2}\left(e^{3 t}-1\right)\right) \\
& y(t) \rightarrow \frac{1}{3} e^{-5 t}\left(c_{1}\left(-e^{3 t}\right)+2 c_{2} e^{3 t}+c_{1}+c_{2}\right)
\end{aligned}
$$

10.3 problem 3

10.3.1 Solution using Matrix exponential method 1812
10.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1813
10.3.3 Maple step by step solution 1818

Internal problem ID [13078]
Internal file name [OUTPUT/11733_Sunday_December_03_2023_07_16_10_PM_11568325/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-5 x(t)-2 y \\
y^{\prime} & =-x(t)-4 y
\end{aligned}
$$

10.3.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
-5 & -2 \\
-1 & -4
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{-6 t}}{3}+\frac{\mathrm{e}^{-3 t}}{3} & -\frac{2 \mathrm{e}^{-3 t}}{3}+\frac{2 \mathrm{e}^{-6 t}}{3} \\
-\frac{\mathrm{e}^{-3 t}}{3}+\frac{\mathrm{e}^{-6 t}}{3} & \frac{\mathrm{e}^{-6 t}}{3}+\frac{2 \mathrm{e}^{-3 t}}{3}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{-6 t}}{3}+\frac{\mathrm{e}^{-3 t}}{3} & -\frac{2 \mathrm{e}^{-3 t}}{3}+\frac{2 \mathrm{e}^{-6 t}}{3} \\
-\frac{\mathrm{e}^{-3 t}}{3}+\frac{\mathrm{e}^{-6 t}}{3} & \frac{\mathrm{e}^{-6 t}}{3}+\frac{2 \mathrm{e}^{-3 t}}{3}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{2 \mathrm{e}^{-6 t}}{3}+\frac{\mathrm{e}^{-3 t}}{3}\right) c_{1}+\left(-\frac{2 \mathrm{e}^{-3 t}}{3}+\frac{2 \mathrm{e}^{-6 t}}{3}\right) c_{2} \\
\left(-\frac{\mathrm{e}^{-3 t}}{3}+\frac{\mathrm{e}^{-6 t}}{3}\right) c_{1}+\left(\frac{\mathrm{e}^{-6 t}}{3}+\frac{2 \mathrm{e}^{-3 t}}{3}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(2 c_{1}+2 c_{2}\right) \mathrm{e}^{-6 t}}{3}+\frac{\mathrm{e}^{-3 t}\left(c_{1}-2 c_{2}\right)}{3} \\
\frac{\left(c_{1}+c_{2}\right) \mathrm{e}^{-6 t}}{3}-\frac{\mathrm{e}^{-3 t}\left(c_{1}-2 c_{2}\right)}{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

10.3.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-5 & -2 \\
-1 & -4
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
-5 & -2 \\
-1 & -4
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-5-\lambda & -2 \\
-1 & -4-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+9 \lambda+18=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-3 \\
& \lambda_{2}=-6
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-3	1	real eigenvalue
-6	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-6$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
-5 & -2 \\
-1 & -4
\end{array}\right]-(-6)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
1 & -2 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
1 & -2 & 0 \\
-1 & 2 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
-5 & -2 \\
-1 & -4
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
-2 & -2 \\
-1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
-2 & -2 & 0 \\
-1 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{cc|c}
-2 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-3	1	1	No	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
-6	1	1	No	$\left[\begin{array}{c}2 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -3 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-3 t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-3 t}
\end{aligned}
$$

Since eigenvalue -6 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-6 t} \\
& =\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{-6 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
2 \mathrm{e}^{-6 t} \\
\mathrm{e}^{-6 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-c_{1} \mathrm{e}^{-3 t}+2 c_{2} \mathrm{e}^{-6 t} \\
c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{-6 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 390: Phase plot

10.3.3 Maple step by step solution

Let's solve
$\left[x^{\prime}(t)=-5 x(t)-2 y, y^{\prime}=-x(t)-4 y\right]$

- Define vector
$\vec{x}(t)=\left[\begin{array}{c}x(t) \\ y\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{ll}-5 & -2 \\ -1 & -4\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}-5 & -2 \\ -1 & -4\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
-5 & -2 \\
-1 & -4
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-6,\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right],\left[-3,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-6,\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\mathrm{e}^{-6 t} \cdot\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-3,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair
$\vec{x}_{2}=\mathrm{e}^{-3 t} \cdot\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
$$

- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{-6 t} \cdot\left[\begin{array}{l}
2 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-3 t} \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
2 c_{1} \mathrm{e}^{-6 t}-c_{2} \mathrm{e}^{-3 t} \\
c_{1} \mathrm{e}^{-6 t}+c_{2} \mathrm{e}^{-3 t}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x(t)=2 c_{1} \mathrm{e}^{-6 t}-c_{2} \mathrm{e}^{-3 t}, y=c_{1} \mathrm{e}^{-6 t}+c_{2} \mathrm{e}^{-3 t}\right\}
$$

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 36

```
dsolve([diff(x(t),t)=-5*x(t)-2*y(t), diff(y(t),t)=-x(t)-4*y(t)],singsol=all)
```

$$
\begin{aligned}
& x(t)=\mathrm{e}^{-6 t} c_{1}+c_{2} \mathrm{e}^{-3 t} \\
& y(t)=\frac{\mathrm{e}^{-6 t} c_{1}}{2}-c_{2} \mathrm{e}^{-3 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 71
DSolve[\{x' [t]==-5*x[t]-2*y[t],y'[t]==-x[t]-4*y[t]\},\{x[t],y[t]\},t,IncludeSingularSolutions

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{3} e^{-6 t}\left(c_{1}\left(e^{3 t}+2\right)-2 c_{2}\left(e^{3 t}-1\right)\right) \\
& y(t) \rightarrow \frac{1}{3} e^{-6 t}\left(c_{1}\left(-e^{3 t}\right)+2 c_{2} e^{3 t}+c_{1}+c_{2}\right)
\end{aligned}
$$

10.4 problem 4

10.4.1 Solution using Matrix exponential method 1821
10.4.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1822
10.4.3 Maple step by step solution . 1827

Internal problem ID [13079]
Internal file name [0UTPUT/11734_Sunday_December_03_2023_07_16_11_PM_47153869/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =2 x(t)+y \\
y^{\prime} & =-x(t)+4 y
\end{aligned}
$$

10.4.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
2 & 1 \\
-1 & 4
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{3 t}(1-t) & t \mathrm{e}^{3 t} \\
-t \mathrm{e}^{3 t} & \mathrm{e}^{3 t}(1+t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{3 t}(1-t) & t \mathrm{e}^{3 t} \\
-t \mathrm{e}^{3 t} & \mathrm{e}^{3 t}(1+t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{3 t}(1-t) c_{1}+t \mathrm{e}^{3 t} c_{2} \\
-t \mathrm{e}^{3 t} c_{1}+\mathrm{e}^{3 t}(1+t) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{3 t}\left(-t c_{1}+c_{2} t+c_{1}\right) \\
\mathrm{e}^{3 t}\left(-t c_{1}+c_{2} t+c_{2}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

10.4.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
2 & 1 \\
-1 & 4
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2 & 1 \\
-1 & 4
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & 1 \\
-1 & 4-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-6 \lambda+9=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=3
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
2 & 1 \\
-1 & 4
\end{array}\right]-(3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
-1 & 1 & 0 \\
-1 & 1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
3	2	1	Yes	$\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 3 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 391: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
2 & 1 \\
-1 & 4
\end{array}\right]-(3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& {\left[\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue 3 . Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] \mathrm{e}^{3 t} \\
& =\left[\begin{array}{c}
\mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right] t+\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \mathrm{e}^{3 t} \\
& =\left[\begin{array}{c}
t \mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}(1+t)
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
t \mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}(1+t)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{3 t}\left(t c_{2}+c_{1}\right) \\
\mathrm{e}^{3 t}\left(t c_{2}+c_{1}+c_{2}\right)
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 392: Phase plot

10.4.3 Maple step by step solution

Let's solve
$\left[x^{\prime}(t)=2 x(t)+y, y^{\prime}=-x(t)+4 y\right]$

- Define vector
$\vec{x}(t)=\left[\begin{array}{c}x(t) \\ y\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}2 & 1 \\ -1 & 4\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}2 & 1 \\ -1 & 4\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
2 & 1 \\
-1 & 4
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[3,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[3,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue 3
$\vec{x}_{1}(t)=\mathrm{e}^{3 t} \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]$
- Form of the 2nd homogeneous solution where \vec{p} is to be solved for, $\lambda=3$ is the eigenvalue, and $\vec{x}_{2}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- Note that the t multiplying \vec{v} makes this solution linearly independent to the 1 st solution obtair
- Substitute $\vec{x}_{2}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition \vec{p} must meet for $\vec{x}_{2}(t)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 3

$$
\left(\left[\begin{array}{cc}
2 & 1 \\
-1 & 4
\end{array}\right]-3 \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right]
$$

- Second solution from eigenvalue 3

$$
\vec{x}_{2}(t)=\mathrm{e}^{3 t} \cdot\left(t \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{3 t} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{3 t} \cdot\left(t \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0
\end{array}\right]\right)
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{3 t}\left((t-1) c_{2}+c_{1}\right) \\
\mathrm{e}^{3 t}\left(c_{2} t+c_{1}\right)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x(t)=\mathrm{e}^{3 t}\left((t-1) c_{2}+c_{1}\right), y=\mathrm{e}^{3 t}\left(c_{2} t+c_{1}\right)\right\}
$$

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 29

```
dsolve([diff (x (t),t)=2*x(t)+1*y (t), diff (y (t),t)=-x(t)+4*y(t)],singsol=all)
```

$$
\begin{aligned}
& x(t)=\mathrm{e}^{3 t}\left(c_{2} t+c_{1}\right) \\
& y(t)=\mathrm{e}^{3 t}\left(c_{2} t+c_{1}+c_{2}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 44
DSolve $\left[\left\{x^{\prime}[t]==2 * x[t]+1 * y[t], y^{\prime}[t]==-x[t]+4 * y[t]\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions $->$

$$
\begin{aligned}
& x(t) \rightarrow e^{3 t}\left(c_{1}(-t)+c_{2} t+c_{1}\right) \\
& y(t) \rightarrow e^{3 t}\left(\left(c_{2}-c_{1}\right) t+c_{2}\right)
\end{aligned}
$$

10.5 problem 5

10.5.1 Solution using Matrix exponential method 1831
10.5.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1832
10.5.3 Maple step by step solution . 1837

Internal problem ID [13080]
Internal file name [OUTPUT/11735_Sunday_December_03_2023_07_16_11_PM_4736820/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs" Solve

$$
\begin{aligned}
x^{\prime}(t) & =-\frac{x(t)}{2} \\
y^{\prime} & =x(t)-\frac{y}{2}
\end{aligned}
$$

10.5.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{2} & 0 \\
1 & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{t}{2}} & 0 \\
\mathrm{e}^{-\frac{t}{2}} t & \mathrm{e}^{-\frac{t}{2}}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-\frac{t}{2}} & 0 \\
\mathrm{e}^{-\frac{t}{2}} t & \mathrm{e}^{-\frac{t}{2}}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-\frac{t}{2}} c_{1} \\
\mathrm{e}^{-\frac{t}{2}} t c_{1}+\mathrm{e}^{-\frac{t}{2}} c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-\frac{t}{2}} c_{1} \\
\mathrm{e}^{-\frac{t}{2}}\left(c_{1} t+c_{2}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

10.5.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{2} & 0 \\
1 & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\frac{1}{2} & 0 \\
1 & -\frac{1}{2}
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\frac{1}{2}-\lambda & 0 \\
1 & -\frac{1}{2}-\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
\left(-\frac{1}{2}-\lambda\right)\left(-\frac{1}{2}-\lambda\right)=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=-\frac{1}{2}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-\frac{1}{2}$	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-\frac{1}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-\frac{1}{2} & 0 \\
1 & -\frac{1}{2}
\end{array}\right]-\left(-\frac{1}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ll|l}
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$-\frac{1}{2}$	2	1	Yes	$\left[\begin{array}{l}0 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue $-\frac{1}{2}$ is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 393: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-\frac{1}{2} & 0 \\
1 & -\frac{1}{2}
\end{array}\right]-\left(-\frac{1}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
{\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue $-\frac{1}{2}$. Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
0 \\
1
\end{array}\right] \mathrm{e}^{-\frac{t}{2}} \\
& =\left[\begin{array}{c}
0 \\
\mathrm{e}^{-\frac{t}{2}}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right] t+\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right) \mathrm{e}^{-\frac{t}{2}} \\
& =\left[\begin{array}{c}
\mathrm{e}^{-\frac{t}{2}} \\
\mathrm{e}^{-\frac{t}{2}}(1+t)
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
\mathrm{e}^{-\frac{t}{2}}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{-\frac{t}{2}} \\
\mathrm{e}^{-\frac{t}{2}}(1+t)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
c_{2} \mathrm{e}^{-\frac{t}{2}} \\
\mathrm{e}^{-\frac{t}{2}}\left(c_{2} t+c_{1}+c_{2}\right)
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 394: Phase plot

10.5.3 Maple step by step solution

Let's solve
$\left[x^{\prime}(t)=-\frac{x(t)}{2}, y^{\prime}=x(t)-\frac{y}{2}\right]$

- Define vector
$\vec{x}(t)=\left[\begin{array}{c}x(t) \\ y\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}-\frac{1}{2} & 0 \\ 1 & -\frac{1}{2}\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}-\frac{1}{2} & 0 \\ 1 & -\frac{1}{2}\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
-\frac{1}{2} & 0 \\
1 & -\frac{1}{2}
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-\frac{1}{2},\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right],\left[-\frac{1}{2},\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[-\frac{1}{2},\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right]
$$

- \quad First solution from eigenvalue $-\frac{1}{2}$
$\vec{x}_{1}(t)=\mathrm{e}^{-\frac{t}{2}} \cdot\left[\begin{array}{l}0 \\ 1\end{array}\right]$
- Form of the 2nd homogeneous solution where \vec{p} is to be solved for, $\lambda=-\frac{1}{2}$ is the eigenvalue, an $\vec{x}_{2}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- Note that the t multiplying \vec{v} makes this solution linearly independent to the 1 st solution obtair
- Substitute $\vec{x}_{2}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $\vec{x}_{2}(t)$ to be a solution to the homogeneous system
$(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue $-\frac{1}{2}$

$$
\left(\left[\begin{array}{cc}
-\frac{1}{2} & 0 \\
1 & -\frac{1}{2}
\end{array}\right]--\frac{1}{2} \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue $-\frac{1}{2}$
$\vec{x}_{2}(t)=\mathrm{e}^{-\frac{t}{2}} \cdot\left(t \cdot\left[\begin{array}{l}0 \\ 1\end{array}\right]+\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)$
- General solution to the system of ODEs
$\vec{x}=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)$
- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{-\frac{t}{2}} \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-\frac{t}{2}} \cdot\left(t \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right)
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
0 \\
\mathrm{e}^{-\frac{t}{2}}\left(c_{2} t+c_{1}\right)
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=0, y=\mathrm{e}^{-\frac{t}{2}}\left(c_{2} t+c_{1}\right)\right\}
$$

Solution by Maple
Time used: 0.031 (sec). Leaf size: 24

```
dsolve([diff (x (t),t)=-1/2*x(t),\operatorname{diff}(y(t),t)=x(t)-1/2*y(t)], singsol=all)
```

$$
\begin{aligned}
x(t) & =c_{2} \mathrm{e}^{-\frac{t}{2}} \\
y(t) & =\left(c_{2} t+c_{1}\right) \mathrm{e}^{-\frac{t}{2}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 33
DSolve $\left[\left\{x^{\prime}[t]==-1 / 2 * x[t], y^{\prime}[t]==x[t]-1 / 2 * y[t]\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions \rightarrow Tru

$$
\begin{aligned}
x(t) & \rightarrow c_{1} e^{-t / 2} \\
y(t) & \rightarrow e^{-t / 2}\left(c_{1} t+c_{2}\right)
\end{aligned}
$$

10.6 problem 6

10.6.1 Solution using Matrix exponential method 1841
10.6.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1842
10.6.3 Maple step by step solution . 1847

Internal problem ID [13081]
Internal file name [OUTPUT/11736_Sunday_December_03_2023_07_16_11_PM_35031517/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =5 x(t)+4 y \\
y^{\prime} & =9 x(t)
\end{aligned}
$$

10.6.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
5 & 4 \\
9 & 0
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{\left(9 \mathrm{e}^{13 t}+4\right) \mathrm{e}^{-4 t}}{13} & \frac{4\left(\mathrm{e}^{13 t}-1\right) \mathrm{e}^{-4 t}}{13} \\
\frac{9\left(\mathrm{e}^{13 t}-1\right) \mathrm{e}^{-4 t}}{13} & \frac{\left(4 \mathrm{e}^{13 t}+9\right) \mathrm{e}^{-4 t}}{13}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ll}
\frac{\left(9 \mathrm{e}^{13 t}+4\right) \mathrm{e}^{-4 t}}{13} & \frac{4\left(\mathrm{e}^{13 t}-1\right) \mathrm{e}^{-4 t}}{13} \\
\frac{9\left(\mathrm{e}^{13 t}-1\right) \mathrm{e}^{-4 t}}{13} & \frac{\left(4 \mathrm{e}^{13 t}+9\right) \mathrm{e}^{-4 t}}{13}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{\left(9 \mathrm{e}^{13 t}+4\right) \mathrm{e}^{-4 t} c_{1}}{13}+\frac{4\left(\mathrm{e}^{13 t}-1\right) \mathrm{e}^{-4 t} c_{2}}{13} \\
\frac{9\left(\mathrm{e}^{13 t}-1\right) \mathrm{e}^{-4 t} c_{1}}{13}+\frac{\left(4 \mathrm{e}^{13 t}+9\right) \mathrm{e}^{-4 t} c_{2}}{13}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{-4 t}\left(\left(9 c_{1}+4 c_{2}\right) \mathrm{e}^{13 t}+4 c_{1}-4 c_{2}\right)}{13} \\
\frac{9\left(\left(c_{1}+\frac{4 c_{2}}{9}\right) \mathrm{e}^{13 t}+c_{2}-c_{1}\right) \mathrm{e}^{-4 t}}{13}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

10.6.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
5 & 4 \\
9 & 0
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
5 & 4 \\
9 & 0
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
5-\lambda & 4 \\
9 & -\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-5 \lambda-36=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-4 \\
& \lambda_{2}=9
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-4	1	real eigenvalue
9	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-4$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
5 & 4 \\
9 & 0
\end{array}\right]-(-4)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
9 & 4 \\
9 & 4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
9 & 4 & 0 \\
9 & 4 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{ll|l}
9 & 4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
9 & 4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{4 t}{9}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{4 t}{9} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{4 t}{9} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{4 t}{9} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{4}{9} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{4 t}{9} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{4}{9} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{4 t}{9} \\
t
\end{array}\right]=\left[\begin{array}{c}
-4 \\
9
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=9$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
5 & 4 \\
9 & 0
\end{array}\right]-(9)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-4 & 4 \\
9 & -9
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-4 & 4 & 0 \\
9 & -9 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{9 R_{1}}{4} \Longrightarrow\left[\begin{array}{cc|c}
-4 & 4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-4 & 4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-4	1	1	No	$\left[\begin{array}{c}-\frac{4}{9} \\ 1\end{array}\right]$
9	1	1	No	$\left[\begin{array}{c}1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -4 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-4 t} \\
& =\left[\begin{array}{c}
-\frac{4}{9} \\
1
\end{array}\right] e^{-4 t}
\end{aligned}
$$

Since eigenvalue 9 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{9 t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{9 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{4 \mathrm{e}^{-4 t}}{9} \\
\mathrm{e}^{-4 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{9 t} \\
\mathrm{e}^{9 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
c_{2} \mathrm{e}^{-4 t} \mathrm{e}^{13 t}-\frac{4 c_{1} \mathrm{e}^{-4 t}}{9} \\
\left(c_{2} \mathrm{e}^{13 t}+c_{1}\right) \mathrm{e}^{-4 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 395: Phase plot

10.6.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=5 x(t)+4 y, y^{\prime}=9 x(t)\right]
$$

- Define vector
$\vec{x}(t)=\left[\begin{array}{c}x(t) \\ y\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{ll}5 & 4 \\ 9 & 0\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{ll}5 & 4 \\ 9 & 0\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
5 & 4 \\
9 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-4,\left[\begin{array}{c}
-\frac{4}{9} \\
1
\end{array}\right]\right],\left[9,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-4,\left[\begin{array}{c}
-\frac{4}{9} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair
$\vec{x}_{1}=\mathrm{e}^{-4 t} \cdot\left[\begin{array}{c}-\frac{4}{9} \\ 1\end{array}\right]$
- Consider eigenpair
$\left[9,\left[\begin{array}{l}1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{x}_{2}=\mathrm{e}^{9 t} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
$$

- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{-4 t} \cdot\left[\begin{array}{c}
-\frac{4}{9} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{9 t} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
c_{2} \mathrm{e}^{-4 t} \mathrm{e}^{13 t}-\frac{4 c_{1} \mathrm{e}^{-4 t}}{9} \\
\left(c_{2} \mathrm{e}^{13 t}+c_{1}\right) \mathrm{e}^{-4 t}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x(t)=c_{2} \mathrm{e}^{-4 t} \mathrm{e}^{13 t}-\frac{4 c_{1} \mathrm{e}^{-4 t}}{9}, y=\left(c_{2} \mathrm{e}^{13 t}+c_{1}\right) \mathrm{e}^{-4 t}\right\}
$$

Solution by Maple
Time used: 0.016 (sec). Leaf size: 35

```
dsolve([diff(x(t),t)=5*x(t)+4*y(t),\operatorname{diff}(y(t),t)=9*x(t)],}\mathrm{ , ingsol=all)
```

$$
\begin{aligned}
& x(t)=-\frac{4 \mathrm{e}^{-4 t} c_{1}}{9}+c_{2} \mathrm{e}^{9 t} \\
& y(t)=\mathrm{e}^{-4 t} c_{1}+c_{2} \mathrm{e}^{9 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 74
DSolve $\left[\left\{x^{\prime}[t]==5 * x[t]+4 * y[t], y^{\prime}[t]==9 * x[t]\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions $->$ True $]$

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{13} e^{-4 t}\left(c_{1}\left(9 e^{13 t}+4\right)+4 c_{2}\left(e^{13 t}-1\right)\right) \\
& y(t) \rightarrow \frac{1}{13} e^{-4 t}\left(9 c_{1}\left(e^{13 t}-1\right)+c_{2}\left(4 e^{13 t}+9\right)\right)
\end{aligned}
$$

10.7 problem 7

10.7.1 Solution using Matrix exponential method 1850
10.7.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1851
10.7.3 Maple step by step solution . 1856

Internal problem ID [13082]
Internal file name [OUTPUT/11737_Sunday_December_03_2023_07_16_12_PM_37067417/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =3 x(t)+4 y \\
y^{\prime} & =x(t)
\end{aligned}
$$

10.7.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
3 & 4 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{\mathrm{e}^{-t}}{5}+\frac{4 \mathrm{e}^{4 t}}{5} & \frac{4 \mathrm{e}^{4 t}}{5}-\frac{4 \mathrm{e}^{-t}}{5} \\
\frac{\mathrm{e}^{4 t}}{5}-\frac{\mathrm{e}^{-t}}{5} & \frac{4 \mathrm{e}^{-t}}{5}+\frac{\mathrm{e}^{4 t}}{5}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\left.\begin{array}{rl}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-t}}{5}+\frac{4 \mathrm{e}^{4 t}}{5} & \frac{4 \mathrm{e}^{4 t}}{5}-\frac{4 \mathrm{e}^{-t}}{5} \\
\frac{\mathrm{e}^{4 t}}{5}-\frac{\mathrm{e}^{-t}}{5} & \frac{4 \mathrm{e}^{-t}}{5}+\frac{\mathrm{e}^{4 t}}{5}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{\mathrm{e}^{-t}}{5}+\frac{4 \mathrm{e}^{4 t}}{5}\right) c_{1}+\left(\frac{4 \mathrm{e}^{4 t}}{5}-\frac{4 \mathrm{e}^{-t}}{5}\right) c_{2} \\
\left(\frac{\mathrm{e}^{4 t}}{5}-\frac{\mathrm{e}^{-t}}{5}\right) c_{1}+\left(\frac{4 \mathrm{e}^{-t}}{5}+\mathrm{e}^{4 t}\right. \\
5
\end{array}\right) c_{2}
\end{array}\right] .
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

10.7.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
3 & 4 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
3 & 4 \\
1 & 0
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3-\lambda & 4 \\
1 & -\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-3 \lambda-4=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=4
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
4	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
3 & 4 \\
1 & 0
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
4 & 4 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
4 & 4 & 0 \\
1 & 1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{4} \Longrightarrow\left[\begin{array}{ll|l}
4 & 4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
4 & 4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=4$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
3 & 4 \\
1 & 0
\end{array}\right]-(4)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-1 & 4 \\
1 & -4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1 & 4 & 0 \\
1 & -4 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1 & 4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1 & 4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=4 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
4 t \\
t
\end{array}\right]=\left[\begin{array}{c}
4 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
4 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
4 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
4 t \\
t
\end{array}\right]=\left[\begin{array}{l}
4 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-1	1	1	No	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
4	1	1	No	$\left[\begin{array}{c}4 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -1 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-t}
\end{aligned}
$$

Since eigenvalue 4 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{4 t} \\
& =\left[\begin{array}{l}
4 \\
1
\end{array}\right] e^{4 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{-t} \\
\mathrm{e}^{-t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
4 \mathrm{e}^{4 t} \\
\mathrm{e}^{4 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-c_{1} \mathrm{e}^{-t}+4 c_{2} \mathrm{e}^{4 t} \\
c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{4 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 396: Phase plot

10.7.3 Maple step by step solution

Let's solve
$\left[x^{\prime}(t)=3 x(t)+4 y, y^{\prime}=x(t)\right]$

- Define vector
$\vec{x}(t)=\left[\begin{array}{c}x(t) \\ y\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{ll}3 & 4 \\ 1 & 0\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{ll}3 & 4 \\ 1 & 0\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
3 & 4 \\
1 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right],\left[4,\left[\begin{array}{l}
4 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[4,\left[\begin{array}{l}4 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{x}_{2}=\mathrm{e}^{4 t} \cdot\left[\begin{array}{l}
4 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
$$

- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{4 t} \cdot\left[\begin{array}{l}
4 \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-c_{1} \mathrm{e}^{-t}+4 c_{2} \mathrm{e}^{4 t} \\
c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{4 t}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x(t)=-c_{1} \mathrm{e}^{-t}+4 c_{2} \mathrm{e}^{4 t}, y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{4 t}\right\}
$$

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 36

```
dsolve ([diff \((x(t), t)=3 * x(t)+4 * y(t), \operatorname{diff}(y(t), t)=1 * x(t)]\), singsol=all)
```

$$
\begin{aligned}
& x(t)=4 c_{1} \mathrm{e}^{4 t}-c_{2} \mathrm{e}^{-t} \\
& y(t)=c_{1} \mathrm{e}^{4 t}+c_{2} \mathrm{e}^{-t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 71
DSolve $\left[\left\{x^{\prime}[t]==3 * x[t]+4 * y[t], y^{\prime}[t]==1 * x[t]\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions $->$ True $]$

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{5} e^{-t}\left(c_{1}\left(4 e^{5 t}+1\right)+4 c_{2}\left(e^{5 t}-1\right)\right) \\
& y(t) \rightarrow \frac{1}{5} e^{-t}\left(c_{1}\left(e^{5 t}-1\right)+c_{2}\left(e^{5 t}+4\right)\right)
\end{aligned}
$$

10.8 problem 8

10.8.1 Solution using Matrix exponential method 1859
10.8.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1860
10.8.3 Maple step by step solution

Internal problem ID [13083]
Internal file name [OUTPUT/11738_Sunday_December_03_2023_07_16_12_PM_94234493/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =2 x(t)-y \\
y^{\prime} & =-x(t)+y
\end{aligned}
$$

10.8.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{(5+\sqrt{5}) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}-\frac{\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(-5+\sqrt{5})}{10} & \frac{\left(-\mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+\mathrm{e}^{\left.-\frac{(\sqrt{5}-3) t}{2}\right) \sqrt{5}}\right.}{5} \\
\frac{\left(-\mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}\right) \sqrt{5}}{5} & \frac{(5-\sqrt{5}) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}+\frac{\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(5+\sqrt{5})}{10}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& \vec{x}_{h}(t)=e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{(5+\sqrt{5}) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}-\frac{\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(-5+\sqrt{5})}{10} & \frac{\left(-\mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+\mathrm{e}^{\left.-\frac{(\sqrt{5}-3) t}{2}\right)} \sqrt{5}\right.}{5} \\
\frac{\left(-\mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+\mathrm{e}^{\left.-\frac{(\sqrt{5}-3) t}{2}\right) \sqrt{5}}\right.}{5} & \frac{(5-\sqrt{5}) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}+\frac{\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(5+\sqrt{5})}{10}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{(5+\sqrt{5}) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}-\frac{\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(-5+\sqrt{5})}{10}\right) c_{1}+\frac{\left(-\mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}\right) \sqrt{5} c_{2}}{5} \\
\frac{\left(-\mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}\right) \sqrt{5} c_{1}}{5}+\left(\frac{(5-\sqrt{5}) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}+\frac{\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(5+\sqrt{5})}{10}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(\left(c_{1}-2 c_{2}\right) \sqrt{5}+5 c_{1}\right) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}-\frac{\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}\left(\left(c_{1}-2 c_{2}\right) \sqrt{5}-5 c_{1}\right)}}{10} \\
\frac{\left(\left(-2 c_{1}-c_{2}\right) \sqrt{5}+5 c_{2}\right) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}+\frac{\left(\left(c_{1}+\frac{c_{2}}{2}\right) \sqrt{5}+\frac{5 c_{2}}{2}\right) \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}}{5}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

10.8.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & -1 \\
-1 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-3 \lambda+1=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=\frac{3}{2}+\frac{\sqrt{5}}{2} \\
& \lambda_{2}=\frac{3}{2}-\frac{\sqrt{5}}{2}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$\frac{3}{2}-\frac{\sqrt{5}}{2}$	1	real eigenvalue
$\frac{3}{2}+\frac{\sqrt{5}}{2}$	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=\frac{3}{2}-\frac{\sqrt{5}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]-\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
\frac{1}{2}+\frac{\sqrt{5}}{2} & -1 \\
-1 & \frac{\sqrt{5}}{2}-\frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
\frac{1}{2}+\frac{\sqrt{5}}{2} & -1 & 0 \\
-1 & \frac{\sqrt{5}}{2}-\frac{1}{2} & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}+\frac{R_{1}}{\frac{1}{2}+\frac{\sqrt{5}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
\frac{1}{2}+\frac{\sqrt{5}}{2} & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{1}{2}+\frac{\sqrt{5}}{2} & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{2 t}{\sqrt{5}+1}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{2 t}{\sqrt{5}+1} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2 t}{\sqrt{5}+1} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{2 t}{\sqrt{5}+1} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{2}{\sqrt{5}+1} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{2 t}{\sqrt{5}+1} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{\sqrt{5}+1} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{2 t}{\sqrt{5}+1} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{\sqrt{5}+1} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=\frac{3}{2}+\frac{\sqrt{5}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]-\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
\frac{1}{2}-\frac{\sqrt{5}}{2} & -1 \\
-1 & -\frac{1}{2}-\frac{\sqrt{5}}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
\frac{1}{2}-\frac{\sqrt{5}}{2} & -1 & 0 \\
-1 & -\frac{1}{2}-\frac{\sqrt{5}}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{R_{1}}{\frac{1}{2}-\frac{\sqrt{5}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
\frac{1}{2}-\frac{\sqrt{5}}{2} & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{1}{2}-\frac{\sqrt{5}}{2} & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{2 t}{\sqrt{5}-1}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{2 t}{\sqrt{5}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 t}{\sqrt{5}-1} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{2 t}{\sqrt{5}-1} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{2}{\sqrt{5}-1} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{2 t}{\sqrt{5}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{\sqrt{5}-1} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{2 t}{\sqrt{5}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{\sqrt{5}-1} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity		defective?	eigenvectors
	algebraic m	geometric k		
$\frac{3}{2}+\frac{\sqrt{5}}{2}$	1	1	No	$\left[\begin{array}{c}-\frac{1}{\frac{\sqrt{5}}{2}-\frac{1}{2}} \\ 1\end{array}\right]$
$\frac{3}{2}-\frac{\sqrt{5}}{2}$	1	1	No	$\left[\begin{array}{c}-\frac{1}{-\frac{1}{2}-\frac{\sqrt{5}}{2}} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue $\frac{3}{2}+\frac{\sqrt{5}}{2}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) t} \\
& =\left[\begin{array}{c}
-\frac{1}{\frac{\sqrt{5}}{2}-\frac{1}{2}} \\
1
\end{array}\right] e^{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) t}
\end{aligned}
$$

Since eigenvalue $\frac{3}{2}-\frac{\sqrt{5}}{2}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t} \\
& =\left[\begin{array}{c}
-\frac{1}{-\frac{1}{2}-\frac{\sqrt{5}}{2}} \\
1
\end{array}\right] e^{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{\mathrm{e}^{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) t}}{\frac{\sqrt{5}}{2}-\frac{1}{2}} \\
\mathrm{e}^{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{\mathrm{e}^{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t}}{-\frac{1}{2}-\frac{\sqrt{5}}{2}} \\
\mathrm{e}^{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-\frac{c_{1}(\sqrt{5}+1) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{2}+\frac{c_{2} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(\sqrt{5}-1)}{2} \\
c_{1} \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+c_{2} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 397: Phase plot

10.8.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=2 x(t)-y, y^{\prime}=-x(t)+y\right]
$$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right] \cdot \vec{x}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[\frac{3}{2}-\frac{\sqrt{5}}{2},\left[\begin{array}{c}
-\frac{1}{-\frac{1}{2}-\frac{\sqrt{5}}{2}} \\
1
\end{array}\right]\right],\left[\frac{3}{2}+\frac{\sqrt{5}}{2},\left[\begin{array}{c}
-\frac{1}{\frac{\sqrt{5}}{2}-\frac{1}{2}} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[\frac{3}{2}-\frac{\sqrt{5}}{2},\left[\begin{array}{c}
-\frac{1}{-\frac{1}{2}-\frac{\sqrt{5}}{2}} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair
$\vec{x}_{1}=\mathrm{e}^{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t} \cdot\left[\begin{array}{c}-\frac{1}{-\frac{1}{2}-\frac{\sqrt{5}}{2}} \\ 1\end{array}\right]$
- Consider eigenpair

$$
\left[\frac{3}{2}+\frac{\sqrt{5}}{2},\left[\begin{array}{c}
-\frac{1}{\frac{\sqrt{5}}{2}-\frac{1}{2}} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair
$\vec{x}_{2}=\mathrm{e}^{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) t} \cdot\left[\begin{array}{c}-\frac{1}{\frac{\sqrt{5}}{2}-\frac{1}{2}} \\ 1\end{array}\right]$
- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
$$

- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t} \cdot\left[\begin{array}{c}
-\frac{1}{-\frac{1}{2}-\frac{\sqrt{5}}{2}} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) t} \cdot\left[\begin{array}{c}
-\frac{1}{\frac{\sqrt{5}}{2}-\frac{1}{2}} \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-\frac{c_{2}(\sqrt{5}+1) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{2}+\frac{c_{1} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(\sqrt{5}-1)}{2} \\
c_{1} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}+c_{2} \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=-\frac{c_{2}(\sqrt{5}+1) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{2}+\frac{c_{1} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(\sqrt{5}-1)}{2}, y=c_{1} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}+c_{2} \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}\right\}
$$

\checkmark Solution by Maple

Time used: 0.016 (sec). Leaf size: 86

```
dsolve([diff(x(t),t)=2*x(t)-y(t), diff (y(t),t)=-1*x(t)+y(t)],singsol=all)
```

$$
\begin{aligned}
& x(t)=c_{1} \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+c_{2} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}} \\
& y(t)=-\frac{c_{1} \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}} \sqrt{5}}{2}+\frac{c_{2} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}} \sqrt{5}}{2}+\frac{c_{1} \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{2}+\frac{c_{2} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}}{2}
\end{aligned}
$$

Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 144

```
DSolve[{x'[t]==2*x[t]-y[t],y'[t]==-1*x[t]+y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> Tr
```

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{10} e^{-\frac{1}{2}(\sqrt{5}-3) t}\left(c_{1}\left((5+\sqrt{5}) e^{\sqrt{5} t}+5-\sqrt{5}\right)-2 \sqrt{5} c_{2}\left(e^{\sqrt{5} t}-1\right)\right) \\
& y(t) \rightarrow-\frac{1}{10} e^{-\frac{1}{2}(\sqrt{5}-3) t}\left(2 \sqrt{5} c_{1}\left(e^{\sqrt{5} t}-1\right)+c_{2}\left((\sqrt{5}-5) e^{\sqrt{5} t}-5-\sqrt{5}\right)\right)
\end{aligned}
$$

10.9 problem 9

10.9.1 Solution using Matrix exponential method 1868
10.9.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1869
10.9.3 Maple step by step solution . 1874

Internal problem ID [13084]
Internal file name [OUTPUT/11739_Sunday_December_03_2023_07_16_13_PM_73874009/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277
Problem number: 9.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =2 x(t)+y \\
y^{\prime} & =x(t)+y
\end{aligned}
$$

10.9.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{(5+\sqrt{5}) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}-\frac{\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(-5+\sqrt{5})}{10} & -\frac{\left(-\mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+\mathrm{e}^{\left.-\frac{(\sqrt{5}-3) t}{2}\right) \sqrt{5}}\right.}{5} \\
5 & \left(-\mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}\right) \sqrt{5} \\
-\frac{(5-\sqrt{5}) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}+\frac{\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(5+\sqrt{5})}{10}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& \vec{x}_{h}(t)=e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{(5+\sqrt{5}) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}-\frac{\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(-5+\sqrt{5})}{10} & -\frac{\left(-\mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+\mathrm{e}^{\left.-\frac{(\sqrt{5}-3) t}{2}\right) \sqrt{5}}\right.}{5} \\
-\frac{\left(-\mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}\right) \sqrt{5}}{5} & \frac{(5-\sqrt{5}) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}+\frac{\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(5+\sqrt{5})}{10}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{(5+\sqrt{5}) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}-\frac{\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(-5+\sqrt{5})}{10}\right) c_{1}-\frac{\left(-\mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}\right) \sqrt{5} c_{2}}{5} \\
-\frac{\left(-\mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+\mathrm{e}^{\left.-\frac{(\sqrt{5}-3) t}{2}\right) \sqrt{5} c_{1}}\right.}{5}+\left(\frac{(5-\sqrt{5}) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}+\frac{\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(5+\sqrt{5})}{10}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(\left(c_{1}+2 c_{2}\right) \sqrt{5}+5 c_{1}\right) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}-\frac{\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}\left(\left(c_{1}+2 c_{2}\right) \sqrt{5}-5 c_{1}\right)}}{10} \\
\frac{\left(\left(2 c_{1}-c_{2}\right) \sqrt{5}+5 c_{2}\right) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}-\frac{\left(\left(c_{1}-\frac{c_{2}}{2}\right) \sqrt{5}-\frac{5 c_{2}}{2}\right) \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}}{5}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

10.9.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-3 \lambda+1=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=\frac{3}{2}+\frac{\sqrt{5}}{2} \\
& \lambda_{2}=\frac{3}{2}-\frac{\sqrt{5}}{2}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$\frac{3}{2}-\frac{\sqrt{5}}{2}$	1	real eigenvalue
$\frac{3}{2}+\frac{\sqrt{5}}{2}$	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=\frac{3}{2}-\frac{\sqrt{5}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]-\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]}
\end{array}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
\frac{1}{2}+\frac{\sqrt{5}}{2} & 1 & 0 \\
1 & \frac{\sqrt{5}}{2}-\frac{1}{2} & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}-\frac{R_{1}}{\frac{1}{2}+\frac{\sqrt{5}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
\frac{1}{2}+\frac{\sqrt{5}}{2} & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{1}{2}+\frac{\sqrt{5}}{2} & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{2 t}{\sqrt{5}+1}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{2 t}{\sqrt{5}+1} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 t}{\sqrt{5}+1} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{2 t}{\sqrt{5}+1} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{2}{\sqrt{5}+1} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{2 t}{\sqrt{5}+1} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{\sqrt{5}+1} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{2 t}{\sqrt{5}+1} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{\sqrt{5}+1} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=\frac{3}{2}+\frac{\sqrt{5}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]-\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{cc}
\frac{1}{2}-\frac{\sqrt{5}}{2} & 1 \\
1 & -\frac{1}{2}-\frac{\sqrt{5}}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right.
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
\frac{1}{2}-\frac{\sqrt{5}}{2} & 1 & 0 \\
1 & -\frac{1}{2}-\frac{\sqrt{5}}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{\frac{1}{2}-\frac{\sqrt{5}}{2}} \Longrightarrow\left[\begin{array}{ccc|c}
\frac{1}{2}-\frac{\sqrt{5}}{2} & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{1}{2}-\frac{\sqrt{5}}{2} & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{2 t}{\sqrt{5}-1}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{2 t}{\sqrt{5}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2 t}{\sqrt{5}-1} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{2 t}{\sqrt{5}-1} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{2}{\sqrt{5}-1} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{2 t}{\sqrt{5}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{\sqrt{5}-1} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{2 t}{\sqrt{5}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{\sqrt{5}-1} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$\frac{3}{2}+\frac{\sqrt{5}}{2}$	1	1	No	$\left[\begin{array}{c}\frac{1}{\frac{\sqrt{5}}{2}-\frac{1}{2}} \\ 1\end{array}\right]$
$\frac{3}{2}-\frac{\sqrt{5}}{2}$	1	1	No	$\left[\begin{array}{c}\frac{1}{-\frac{1}{2}-\frac{\sqrt{5}}{2}} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue $\frac{3}{2}+\frac{\sqrt{5}}{2}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) t} \\
& =\left[\begin{array}{c}
\frac{1}{\frac{\sqrt{5}}{2}-\frac{1}{2}} \\
1
\end{array}\right] e^{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) t}
\end{aligned}
$$

Since eigenvalue $\frac{3}{2}-\frac{\sqrt{5}}{2}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t} \\
& =\left[\begin{array}{c}
\frac{1}{-\frac{1}{2}-\frac{\sqrt{5}}{2}} \\
1
\end{array}\right] e^{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) t}{\frac{\sqrt{5}}{2}-\frac{1}{2}} \\
\mathrm{e}^{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{\mathrm{e}^{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t}}{-\frac{1}{2}-\frac{\sqrt{5}}{2}} \\
\mathrm{e}^{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{1}(\sqrt{5}+1) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{2}-\frac{c_{2} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(\sqrt{5}-1)}{2} \\
c_{1} \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+c_{2} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 398: Phase plot

10.9.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=2 x(t)+y, y^{\prime}=x(t)+y\right]
$$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right] \cdot \vec{x}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\frac{3}{2}-\frac{\sqrt{5}}{2},\left[\begin{array}{c}
\frac{1}{-\frac{1}{2}-\frac{\sqrt{5}}{2}} \\
1
\end{array}\right]\right],\left[\frac{3}{2}+\frac{\sqrt{5}}{2},\left[\begin{array}{c}
\frac{1}{\frac{\sqrt{5}}{2}-\frac{1}{2}} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[\frac{3}{2}-\frac{\sqrt{5}}{2},\left[\begin{array}{c}
\frac{1}{-\frac{1}{2}-\frac{\sqrt{5}}{2}} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair
$\vec{x}_{1}=\mathrm{e}^{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t} \cdot\left[\begin{array}{c}\frac{1}{-\frac{1}{2}-\frac{\sqrt{5}}{2}} \\ 1\end{array}\right]$
- Consider eigenpair

$$
\left[\frac{3}{2}+\frac{\sqrt{5}}{2},\left[\begin{array}{c}
\frac{1}{\frac{\sqrt{5}}{2}-\frac{1}{2}} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair
$\vec{x}_{2}=\mathrm{e}^{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) t} \cdot\left[\begin{array}{c}\frac{1}{\frac{\sqrt{5}}{2}-\frac{1}{2}} \\ 1\end{array}\right]$
- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
$$

- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t} \cdot\left[\begin{array}{c}
\frac{1}{-\frac{1}{2}-\frac{\sqrt{5}}{2}} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) t} \cdot\left[\begin{array}{c}
\frac{1}{\frac{\sqrt{5}}{2}-\frac{1}{2}} \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{2}(\sqrt{5}+1) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{2}-\frac{c_{1} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(\sqrt{5}-1)}{2} \\
c_{1} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}+c_{2} \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x(t)=\frac{c_{2}(\sqrt{5}+1) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{2}-\frac{c_{1} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(\sqrt{5}-1)}{2}, y=c_{1} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}+c_{2} \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}\right\}
$$

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 86

```
dsolve([diff(x(t),t)=2*x(t)+y(t), diff(y(t),t)=x(t)+y(t)],singsol=all)
```

$$
\begin{aligned}
& x(t)=c_{1} \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+c_{2} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}} \\
& y(t)=\frac{c_{1} \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}} \sqrt{5}}{2}-\frac{c_{2} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}} \sqrt{5}}{2}-\frac{c_{1} \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{2}-\frac{c_{2} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 145

```
DSolve[{x'[t]==2*x[t]+y[t], y'[t]==x[t]+y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{10} e^{-\frac{1}{2}(\sqrt{5}-3) t}\left(c_{1}\left((5+\sqrt{5}) e^{\sqrt{5} t}+5-\sqrt{5}\right)+2 \sqrt{5} c_{2}\left(e^{\sqrt{5} t}-1\right)\right) \\
& y(t) \rightarrow \frac{1}{10} e^{-\frac{1}{2}(\sqrt{5}-3) t}\left(2 \sqrt{5} c_{1}\left(e^{\sqrt{5} t}-1\right)-c_{2}\left((\sqrt{5}-5) e^{\sqrt{5} t}-5-\sqrt{5}\right)\right)
\end{aligned}
$$

10.10 problem 10

10.10.1 Solution using Matrix exponential method 1877
10.10.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1878
10.10.3 Maple step by step solution . 1883

Internal problem ID [13085]
Internal file name [OUTPUT/11740_Sunday_December_03_2023_07_16_13_PM_70773648/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-x(t)-2 y \\
y^{\prime} & =x(t)-4 y
\end{aligned}
$$

10.10.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 & -2 \\
1 & -4
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
-\mathrm{e}^{-3 t}+2 \mathrm{e}^{-2 t} & -2 \mathrm{e}^{-2 t}+2 \mathrm{e}^{-3 t} \\
\mathrm{e}^{-2 t}-\mathrm{e}^{-3 t} & 2 \mathrm{e}^{-3 t}-\mathrm{e}^{-2 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
-\mathrm{e}^{-3 t}+2 \mathrm{e}^{-2 t} & -2 \mathrm{e}^{-2 t}+2 \mathrm{e}^{-3 t} \\
\mathrm{e}^{-2 t}-\mathrm{e}^{-3 t} & 2 \mathrm{e}^{-3 t}-\mathrm{e}^{-2 t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-\mathrm{e}^{-3 t}+2 \mathrm{e}^{-2 t}\right) c_{1}+\left(-2 \mathrm{e}^{-2 t}+2 \mathrm{e}^{-3 t}\right) c_{2} \\
\left(\mathrm{e}^{-2 t}-\mathrm{e}^{-3 t}\right) c_{1}+\left(2 \mathrm{e}^{-3 t}-\mathrm{e}^{-2 t}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-c_{1}+2 c_{2}\right) \mathrm{e}^{-3 t}+2 \mathrm{e}^{-2 t}\left(-c_{2}+c_{1}\right) \\
\left(-c_{1}+2 c_{2}\right) \mathrm{e}^{-3 t}+\mathrm{e}^{-2 t}\left(-c_{2}+c_{1}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

10.10.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-1 & -2 \\
1 & -4
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1 & -2 \\
1 & -4
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1-\lambda & -2 \\
1 & -4-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+5 \lambda+6=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =-3 \\
\lambda_{2} & =-2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-2	1	real eigenvalue
-3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{r}
\left(\left[\begin{array}{cc}
-1 & -2 \\
1 & -4
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ll}
2 & -2 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{array}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
2 & -2 & 0 \\
1 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{cc|c}
2 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-1 & -2 \\
1 & -4
\end{array}\right]-(-2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & -2 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
1 & -2 & 0 \\
1 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-3	1	1	No	$\left[\begin{array}{l}1 \\ 1\end{array}\right]$
-2	1	1	No	$\left[\begin{array}{l}2 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -3 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-3 t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{-3 t}
\end{aligned}
$$

Since eigenvalue -2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-2 t} \\
& =\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{-2 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
2 \mathrm{e}^{-2 t} \\
\mathrm{e}^{-2 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
c_{1} \mathrm{e}^{-3 t}+2 c_{2} \mathrm{e}^{-2 t} \\
c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{-2 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 399: Phase plot

10.10.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=-x(t)-2 y, y^{\prime}=x(t)-4 y\right]
$$

- Define vector
$\vec{x}(t)=\left[\begin{array}{c}x(t) \\ y\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}-1 & -2 \\ 1 & -4\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}-1 & -2 \\ 1 & -4\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
-1 & -2 \\
1 & -4
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-3,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right],\left[-2,\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair
$\left[-3,\left[\begin{array}{l}1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\mathrm{e}^{-3 t} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[-2,\left[\begin{array}{l}2 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair
$\vec{x}_{2}=\mathrm{e}^{-2 t} \cdot\left[\begin{array}{l}2 \\ 1\end{array}\right]$
- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
$$

- Substitute solutions into the general solution

$$
\vec{x}=\mathrm{e}^{-3 t} c_{1} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-2 t} \cdot\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{-3 t} c_{1}+2 c_{2} \mathrm{e}^{-2 t} \\
\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{-2 t}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=\mathrm{e}^{-3 t} c_{1}+2 c_{2} \mathrm{e}^{-2 t}, y=\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{-2 t}\right\}
$$

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 35

```
dsolve([diff \((x(t), t)=-x(t)-2 * y(t), \operatorname{diff}(y(t), t)=x(t)-4 * y(t)]\), singsol=all)
```

$$
\begin{aligned}
& x(t)=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-3 t} \\
& y(t)=\frac{c_{1} \mathrm{e}^{-2 t}}{2}+c_{2} \mathrm{e}^{-3 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 58
DSolve $\left[\left\{x^{\prime}[t]==-x[t]-2 * y[t], y^{\prime}[t]==x[t]-4 * y[t]\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions $\rightarrow T r$

$$
\begin{aligned}
x(t) & \rightarrow e^{-3 t}\left(c_{1}\left(2 e^{t}-1\right)-2 c_{2}\left(e^{t}-1\right)\right) \\
y(t) & \rightarrow e^{-3 t}\left(c_{1}\left(e^{t}-1\right)-c_{2}\left(e^{t}-2\right)\right)
\end{aligned}
$$

10.11 problem 11 (a)

10.11.1 Solution using Matrix exponential method 1886
10.11.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1887

Internal problem ID [13086]
Internal file name [OUTPUT/11741_Sunday_December_03_2023_07_16_13_PM_83227821/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277
Problem number: 11 (a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-2 x(t)-2 y \\
y^{\prime} & =-2 x(t)+y
\end{aligned}
$$

With initial conditions

$$
[x(0)=1, y(0)=0]
$$

10.11.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-2 & -2 \\
-2 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{\left(\mathrm{e}^{5 t}+4\right) \mathrm{e}^{-3 t}}{5} & -\frac{2\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} \\
-\frac{2\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} & \frac{\left(4 \mathrm{e}^{5 t}+1\right) \mathrm{e}^{-3 t}}{5}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\frac{\left(e^{5 t}+4\right) \mathrm{e}^{-3 t}}{5} & -\frac{2\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} \\
-\frac{2\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} & \frac{\left(4 \mathrm{e}^{5 t}+1\right) \mathrm{e}^{-3 t}}{5}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(\mathrm{e}^{5 t}+4\right) \mathrm{e}^{-3 t}}{5} \\
-\frac{2\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

10.11.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-2 & -2 \\
-2 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-2 & -2 \\
-2 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-2-\lambda & -2 \\
-2 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+\lambda-6=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-3
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-3	1	real eigenvalue
2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-2 & -2 \\
-2 & 1
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
1 & -2 \\
-2 & 4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
1 & -2 & 0 \\
-2 & 4 & 0
\end{array}\right]} \\
R_{2}=R_{2}+2 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-2 & -2 \\
-2 & 1
\end{array}\right]-(2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
-4 & -2 \\
-2 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
-4 & -2 & 0 \\
-2 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{cc|c}
-4 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-4 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
2	1	1	No	$\left[\begin{array}{c}-\frac{1}{2} \\ 1\end{array}\right]$
-3	1	1	No	$\left[\begin{array}{c}2 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 2 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{2 t} \\
& =\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

Since eigenvalue -3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-3 t} \\
& =\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{-3 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{\mathrm{e}^{2 t}}{2} \\
\mathrm{e}^{2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
2 \mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-\frac{\left(c_{1} \mathrm{e}^{5 t}-4 c_{2}\right) \mathrm{e}^{-3 t}}{2} \\
\left(c_{1} \mathrm{e}^{5 t}+c_{2}\right) \mathrm{e}^{-3 t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=1 \tag{1}\\
y(0)=0
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-\frac{c_{1}}{2}+2 c_{2} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=-\frac{2}{5} \\
c_{2}=\frac{2}{5}
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-\frac{\left(-\frac{2 \mathrm{e}^{5 t}}{5}-\frac{8}{5}\right) \mathrm{e}^{-3 t}}{2} \\
\left(-\frac{2 \mathrm{e}^{5 t}}{5}+\frac{2}{5}\right) \mathrm{e}^{-3 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 400: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 34
dsolve([diff $(x(t), t)=-2 * x(t)-2 * y(t), \operatorname{diff}(y(t), t)=-2 * x(t)+y(t), x(0)=1, y(0)=0]$, \sin

$$
\begin{aligned}
& x(t)=\frac{\mathrm{e}^{2 t}}{5}+\frac{4 \mathrm{e}^{-3 t}}{5} \\
& y(t)=-\frac{2 \mathrm{e}^{2 t}}{5}+\frac{2 \mathrm{e}^{-3 t}}{5}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 40
DSolve $\left[\left\{x^{\prime}[t]==-2 * x[t]-2 * y[t], y^{\prime}[t]==-2 * x[t]+y[t]\right\},\{x[0]==1, y[0]==0\},\{x[t], y[t]\}, t\right.$, IncludeSi

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{5} e^{-3 t}\left(e^{5 t}+4\right) \\
& y(t) \rightarrow-\frac{2}{5} e^{-3 t}\left(e^{5 t}-1\right)
\end{aligned}
$$

10.12 problem 11 (b)

10.12.1 Solution using Matrix exponential method 1894
10.12.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1895

Internal problem ID [13087]
Internal file name [OUTPUT/11742_Sunday_December_03_2023_07_16_14_PM_48038817/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277
Problem number: 11 (b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-2 x(t)-2 y \\
y^{\prime} & =-2 x(t)+y
\end{aligned}
$$

With initial conditions

$$
[x(0)=0, y(0)=1]
$$

10.12.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-2 & -2 \\
-2 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{\left(\mathrm{e}^{5 t}+4\right) \mathrm{e}^{-3 t}}{5} & -\frac{2\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} \\
-\frac{2\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} & \frac{\left(4 \mathrm{e}^{5 t}+1\right) \mathrm{e}^{-3 t}}{5}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\frac{\left(e^{5 t}+4\right) \mathrm{e}^{-3 t}}{5} & -\frac{2\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} \\
-\frac{2\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} & \frac{\left(4 \mathrm{e}^{5 t}+1\right) \mathrm{e}^{-3 t}}{5}
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{2\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} \\
\frac{\left(4 \mathrm{e}^{5 t}+1\right) \mathrm{e}^{-3 t}}{5}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

10.12.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-2 & -2 \\
-2 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-2 & -2 \\
-2 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-2-\lambda & -2 \\
-2 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+\lambda-6=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-3
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-3	1	real eigenvalue
2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-2 & -2 \\
-2 & 1
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
1 & -2 \\
-2 & 4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
1 & -2 & 0 \\
-2 & 4 & 0
\end{array}\right]} \\
R_{2}=R_{2}+2 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-2 & -2 \\
-2 & 1
\end{array}\right]-(2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
-4 & -2 \\
-2 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
-4 & -2 & 0 \\
-2 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{cc|c}
-4 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-4 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
2	1	1	No	$\left[\begin{array}{c}-\frac{1}{2} \\ 1\end{array}\right]$
-3	1	1	No	$\left[\begin{array}{c}2 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 2 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{2 t} \\
& =\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

Since eigenvalue -3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-3 t} \\
& =\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{-3 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{\mathrm{e}^{2 t}}{2} \\
\mathrm{e}^{2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
2 \mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-\frac{\left(c_{1} \mathrm{e}^{5 t}-4 c_{2}\right) \mathrm{e}^{-3 t}}{2} \\
\left(c_{1} \mathrm{e}^{5 t}+c_{2}\right) \mathrm{e}^{-3 t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=0 \tag{1}\\
y(0)=1
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-\frac{c_{1}}{2}+2 c_{2} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{l}
c_{1}=\frac{4}{5} \\
c_{2}=\frac{1}{5}
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-\frac{\left(\frac{4 \mathrm{e}^{5 t}}{5}-\frac{4}{5}\right) \mathrm{e}^{-3 t}}{2} \\
\left(\frac{1}{5}+\frac{4 \mathrm{e}^{5 t}}{5}\right) \mathrm{e}^{-3 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 401: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 34

```
dsolve([diff(x(t),t) = - 2*x(t) -2*y(t), diff(y(t),t) = - 2*x(t)+y(t), x(0) = 0, y(0) = 1], sin
```

$$
\begin{aligned}
& x(t)=-\frac{2 \mathrm{e}^{2 t}}{5}+\frac{2 \mathrm{e}^{-3 t}}{5} \\
& y(t)=\frac{4 \mathrm{e}^{2 t}}{5}+\frac{\mathrm{e}^{-3 t}}{5}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 42
DSolve $\left[\left\{x^{\prime}[t]==-2 * x[t]-2 * y[t], y^{\prime}[t]==-2 * x[t]+y[t]\right\},\{x[0]==0, y[0]==1\},\{x[t], y[t]\}, t\right.$, IncludeSi

$$
\begin{aligned}
& x(t) \rightarrow-\frac{2}{5} e^{-3 t}\left(e^{5 t}-1\right) \\
& y(t) \rightarrow \frac{1}{5} e^{-3 t}\left(4 e^{5 t}+1\right)
\end{aligned}
$$

10.13 problem 11 (c)

10.13.1 Solution using Matrix exponential method 1902
10.13.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1903

Internal problem ID [13088]
Internal file name [OUTPUT/11743_Sunday_December_03_2023_07_16_14_PM_39292626/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277
Problem number: 11 (c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-2 x(t)-2 y \\
y^{\prime} & =-2 x(t)+y
\end{aligned}
$$

With initial conditions

$$
[x(0)=1, y(0)=-2]
$$

10.13.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-2 & -2 \\
-2 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{\left(\mathrm{e}^{5 t}+4\right) \mathrm{e}^{-3 t}}{5} & -\frac{2\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} \\
-\frac{2\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} & \frac{\left(4 \mathrm{e}^{5 t}+1\right) \mathrm{e}^{-3 t}}{5}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\left.\begin{array}{rl}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\frac{\left(\mathrm{e}^{5 t}+4\right) \mathrm{e}^{-3 t}}{5} & -\frac{2\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} \\
-\frac{2\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} & \frac{\left(4 \mathrm{e}^{5 t}+1\right) \mathrm{e}^{-3 t}}{5}
\end{array}\right]\left[\begin{array}{c}
1 \\
-2
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(\mathrm{e}^{5 t}+4\right) \mathrm{e}^{-3 t}}{5} \\
-\frac{4\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} \\
-\frac{2\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} \\
\hline
\end{array}\right] \\
& =\left[\begin{array}{c}
2\left(4 \mathrm{e}^{5 t}+1\right) \mathrm{e}^{-3 t} \\
5
\end{array}\right] \\
-2 \mathrm{e}^{2 t}
\end{array}\right] \quad \$ \mathrm{l}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

10.13.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-2 & -2 \\
-2 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-2 & -2 \\
-2 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-2-\lambda & -2 \\
-2 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+\lambda-6=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-3
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-3	1	real eigenvalue
2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-2 & -2 \\
-2 & 1
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
1 & -2 \\
-2 & 4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
1 & -2 & 0 \\
-2 & 4 & 0
\end{array}\right]} \\
R_{2}=R_{2}+2 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-2 & -2 \\
-2 & 1
\end{array}\right]-(2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
-4 & -2 \\
-2 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
-4 & -2 & 0 \\
-2 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{cc|c}
-4 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-4 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
2	1	1	No	$\left[\begin{array}{c}-\frac{1}{2} \\ 1\end{array}\right]$
-3	1	1	No	$\left[\begin{array}{c}2 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{2 t} \\
& =\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

Since eigenvalue -3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-3 t} \\
& =\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{-3 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{\mathrm{e}^{2 t}}{2} \\
\mathrm{e}^{2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
2 \mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-\frac{\left(c_{1} \mathrm{e}^{5 t}-4 c_{2}\right) \mathrm{e}^{-3 t}}{2} \\
\left(c_{1} \mathrm{e}^{5 t}+c_{2}\right) \mathrm{e}^{-3 t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{c}
x(0)=1 \tag{1}\\
y(0)=-2
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{c}
1 \\
-2
\end{array}\right]=\left[\begin{array}{c}
-\frac{c_{1}}{2}+2 c_{2} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=-2 \\
c_{2}=0
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{-3 t} \mathrm{e}^{5 t} \\
-2 \mathrm{e}^{-3 t} \mathrm{e}^{5 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 402: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18
dsolve([diff $(x(t), t)=-2 * x(t)-2 * y(t), \operatorname{diff}(y(t), t)=-2 * x(t)+y(t), x(0)=1, y(0)=-2]$,

$$
\begin{aligned}
& x(t)=\mathrm{e}^{2 t} \\
& y(t)=-2 \mathrm{e}^{2 t}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 20
DSolve $\left[\left\{x^{\prime}[t]==-2 * x[t]-2 * y[t], y^{\prime}[t]==-2 * x[t]+y[t]\right\},\{x[0]==1, y[0]==-2\},\{x[t], y[t]\}, t\right.$, IncludeS

$$
\begin{aligned}
& x(t) \rightarrow e^{2 t} \\
& y(t) \rightarrow-2 e^{2 t}
\end{aligned}
$$

10.14 problem 12 (a)

10.14.1 Solution using Matrix exponential method 1910
10.14.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1911

Internal problem ID [13089]
Internal file name [OUTPUT/11744_Sunday_December_03_2023_07_16_15_PM_83843814/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277
Problem number: 12 (a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =3 x(t) \\
y^{\prime} & =x(t)-2 y
\end{aligned}
$$

With initial conditions

$$
[x(0)=1, y(0)=0]
$$

10.14.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
3 & 0 \\
1 & -2
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{3 t} & 0 \\
\frac{\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t}}{5} & \mathrm{e}^{-2 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{3 t} & 0 \\
\frac{\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t}}{5} & \mathrm{e}^{-2 t}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{3 t} \\
\frac{\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t}}{5}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

10.14.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
3 & 0 \\
1 & -2
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3 & 0 \\
1 & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3-\lambda & 0 \\
1 & -2-\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(3-\lambda)(-2-\lambda)=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-2 \\
& \lambda_{2}=3
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-2	1	real eigenvalue
3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
3 & 0 \\
1 & -2
\end{array}\right]-(-2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
5 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
5 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{5} \Longrightarrow\left[\begin{array}{ll|l}
5 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
5 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
3 & 0 \\
1 & -2
\end{array}\right]-(3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
0 & 0 \\
1 & -5
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
0 & 0 & 0 \\
1 & -5 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{cc|c}
1 & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1 & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=5 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
5 t \\
t
\end{array}\right]=\left[\begin{array}{c}
5 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
5 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
5 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
5 t \\
t
\end{array}\right]=\left[\begin{array}{l}
5 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-2	1	1	No	$\left[\begin{array}{l}0 \\ 1\end{array}\right]$
3	1	1	No	$\left[\begin{array}{l}5 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -2 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-2 t} \\
& =\left[\begin{array}{l}
0 \\
1
\end{array}\right] e^{-2 t}
\end{aligned}
$$

Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{3 t} \\
& =\left[\begin{array}{c}
5 \\
1
\end{array}\right] e^{3 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
\mathrm{e}^{-2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
5 \mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
5 c_{2} \mathrm{e}^{3 t} \\
\left(c_{2} \mathrm{e}^{5 t}+c_{1}\right) \mathrm{e}^{-2 t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=1 \tag{1}\\
y(0)=0
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
5 c_{2} \\
c_{2}+c_{1}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=-\frac{1}{5} \\
c_{2}=\frac{1}{5}
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{3 t} \\
\left(\frac{\mathrm{e}^{5 t}}{5}-\frac{1}{5}\right) \mathrm{e}^{-2 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 403: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 25

```
dsolve([diff(x(t),t) = 3*x(t), diff(y(t),t) = x (t)-2*y(t), x(0) = 1, y(0) = 0], singsol=all)
```

$$
\begin{aligned}
& x(t)=\mathrm{e}^{3 t} \\
& y(t)=\frac{\mathrm{e}^{3 t}}{5}-\frac{\mathrm{e}^{-2 t}}{5}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 29
DSolve $\left[\left\{x^{\prime}[t]==3 * x[t], y^{\prime}[t]==x[t]-2 * y[t]\right\},\{x[0]==1, y[0]==0\},\{x[t], y[t]\}, t\right.$, IncludeSingularSol

$$
\begin{aligned}
x(t) & \rightarrow e^{3 t} \\
y(t) & \rightarrow \frac{1}{5} e^{-2 t}\left(e^{5 t}-1\right)
\end{aligned}
$$

10.15 problem 12 (b)

10.15.1 Solution using Matrix exponential method 1918
10.15.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1919

Internal problem ID [13090]
Internal file name [OUTPUT/11745_Sunday_December_03_2023_07_16_15_PM_83669804/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277
Problem number: 12 (b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =3 x(t) \\
y^{\prime} & =x(t)-2 y
\end{aligned}
$$

With initial conditions

$$
[x(0)=0, y(0)=1]
$$

10.15.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
3 & 0 \\
1 & -2
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{3 t} & 0 \\
\frac{\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t}}{5} & \mathrm{e}^{-2 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{3 t} & 0 \\
\frac{\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t}}{5} & \mathrm{e}^{-2 t}
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
0 \\
\mathrm{e}^{-2 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

10.15.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
3 & 0 \\
1 & -2
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3 & 0 \\
1 & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3-\lambda & 0 \\
1 & -2-\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(3-\lambda)(-2-\lambda)=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =3 \\
\lambda_{2} & =-2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-2	1	real eigenvalue
3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
3 & 0 \\
1 & -2
\end{array}\right]-(-2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
5 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
5 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{5} \Longrightarrow\left[\begin{array}{ll|l}
5 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
5 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
3 & 0 \\
1 & -2
\end{array}\right]-(3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
0 & 0 \\
1 & -5
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
0 & 0 & 0 \\
1 & -5 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{cc|c}
1 & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1 & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=5 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
5 t \\
t
\end{array}\right]=\left[\begin{array}{c}
5 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
5 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
5 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
5 t \\
t
\end{array}\right]=\left[\begin{array}{l}
5 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
3	1	1	No	$\left[\begin{array}{l}5 \\ 1\end{array}\right]$
-2	1	1	No	$\left[\begin{array}{l}0 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 3 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{3 t} \\
& =\left[\begin{array}{l}
5 \\
1
\end{array}\right] e^{3 t}
\end{aligned}
$$

Since eigenvalue -2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-2 t} \\
& =\left[\begin{array}{l}
0 \\
1
\end{array}\right] e^{-2 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
5 \mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
0 \\
\mathrm{e}^{-2 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
5 c_{1} \mathrm{e}^{3 t} \\
\left(c_{1} \mathrm{e}^{5 t}+c_{2}\right) \mathrm{e}^{-2 t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=0 \tag{1}\\
y(0)=1
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
5 c_{1} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{l}
c_{1}=0 \\
c_{2}=1
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
0 \\
\mathrm{e}^{-2 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 404: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve([diff(x(t),t) = 3*x(t), diff(y(t),t) = x (t)-2*y(t), x(0) = 0, y(0) = 1], singsol=all)
```

$$
\begin{aligned}
x(t) & =0 \\
y(t) & =\mathrm{e}^{-2 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 14
DSolve $\left[\left\{x^{\prime}[t]==3 * x[t], y^{\prime}[t]==x[t]-2 * y[t]\right\},\{x[0]==0, y[0]==1\},\{x[t], y[t]\}, t\right.$, IncludeSingularSol

$$
\begin{aligned}
x(t) & \rightarrow 0 \\
y(t) & \rightarrow e^{-2 t}
\end{aligned}
$$

10.16 problem 12 (c)

10.16.1 Solution using Matrix exponential method 1926
10.16.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1927

Internal problem ID [13091]
Internal file name [OUTPUT/11746_Sunday_December_03_2023_07_16_15_PM_18260334/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277
Problem number: 12 (c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =3 x(t) \\
y^{\prime} & =x(t)-2 y
\end{aligned}
$$

With initial conditions

$$
[x(0)=2, y(0)=2]
$$

10.16.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
3 & 0 \\
1 & -2
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{3 t} & 0 \\
\frac{\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t}}{5} & \mathrm{e}^{-2 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{3 t} & 0 \\
\frac{\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t}}{5} & \mathrm{e}^{-2 t}
\end{array}\right]\left[\begin{array}{l}
2 \\
2
\end{array}\right] \\
& =\left[\begin{array}{c}
2 \mathrm{e}^{3 t} \\
\frac{2\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t}}{5}+2 \mathrm{e}^{-2 t}
\end{array}\right] \\
& =\left[\begin{array}{c}
2 \mathrm{e}^{3 t} \\
\frac{2\left(\mathrm{e}^{5 t}+4\right) \mathrm{e}^{-2 t}}{5}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

10.16.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
3 & 0 \\
1 & -2
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3 & 0 \\
1 & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3-\lambda & 0 \\
1 & -2-\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(3-\lambda)(-2-\lambda)=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =-2 \\
\lambda_{2} & =3
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-2	1	real eigenvalue
3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
3 & 0 \\
1 & -2
\end{array}\right]-(-2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
5 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
5 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{5} \Longrightarrow\left[\begin{array}{ll|l}
5 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
5 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
3 & 0 \\
1 & -2
\end{array}\right]-(3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
0 & 0 \\
1 & -5
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
0 & 0 & 0 \\
1 & -5 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{cc|c}
1 & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1 & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=5 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
5 t \\
t
\end{array}\right]=\left[\begin{array}{c}
5 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
5 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
5 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
5 t \\
t
\end{array}\right]=\left[\begin{array}{l}
5 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-2	1	1	No	$\left[\begin{array}{l}0 \\ 1\end{array}\right]$
3	1	1	No	$\left[\begin{array}{l}5 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-2 t} \\
& =\left[\begin{array}{l}
0 \\
1
\end{array}\right] e^{-2 t}
\end{aligned}
$$

Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{3 t} \\
& =\left[\begin{array}{l}
5 \\
1
\end{array}\right] e^{3 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
\mathrm{e}^{-2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
5 \mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
5 c_{2} \mathrm{e}^{3 t} \\
\left(c_{2} \mathrm{e}^{5 t}+c_{1}\right) \mathrm{e}^{-2 t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=2 \tag{1}\\
y(0)=2
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
2 \\
2
\end{array}\right]=\left[\begin{array}{c}
5 c_{2} \\
c_{2}+c_{1}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{l}
c_{1}=\frac{8}{5} \\
c_{2}=\frac{2}{5}
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
2 \mathrm{e}^{3 t} \\
\left(\frac{2 \mathrm{e}^{5 t}}{5}+\frac{8}{5}\right) \mathrm{e}^{-2 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 405: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 27

```
dsolve([diff(x(t),t) = 3*x(t), diff(y(t),t) = x (t)-2*y(t), x(0) = 2, y(0) = 2], singsol=all)
```

$$
\begin{aligned}
x(t) & =2 \mathrm{e}^{3 t} \\
y(t) & =\frac{2 \mathrm{e}^{3 t}}{5}+\frac{8 \mathrm{e}^{-2 t}}{5}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 31
DSolve $\left[\left\{x^{\prime}[t]==3 * x[t], y^{\prime}[t]==x[t]-2 * y[t]\right\},\{x[0]==2, y[0]==2\},\{x[t], y[t]\}, t\right.$, IncludeSingularSol

$$
\begin{aligned}
x(t) & \rightarrow 2 e^{3 t} \\
y(t) & \rightarrow \frac{2}{5} e^{-2 t}\left(e^{5 t}+4\right)
\end{aligned}
$$

10.17 problem 13 (a)

10.17.1 Solution using Matrix exponential method 1934
10.17.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1935

Internal problem ID [13092]
Internal file name [OUTPUT/11747_Sunday_December_03_2023_07_16_16_PM_91697910/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277
Problem number: 13 (a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-4 x(t)+y \\
y^{\prime} & =2 x(t)-3 y
\end{aligned}
$$

With initial conditions

$$
[x(0)=1, y(0)=0]
$$

10.17.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-4 & 1 \\
2 & -3
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{-5 t}}{3}+\frac{\mathrm{e}^{-2 t}}{3} & \frac{\mathrm{e}^{-2 t}}{3}-\frac{\mathrm{e}^{-5 t}}{3} \\
\frac{2 \mathrm{e}^{-2 t}}{3}-\frac{2 \mathrm{e}^{-5 t}}{3} & \frac{\mathrm{e}^{-5 t}}{3}+\frac{2 \mathrm{e}^{-2 t}}{3}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{-5 t}}{3}+\frac{\mathrm{e}^{-2 t}}{3} & \frac{\mathrm{e}^{-2 t}}{3}-\frac{\mathrm{e}^{-5 t}}{3} \\
\frac{2 \mathrm{e}^{-2 t}}{3}-\frac{2 \mathrm{e}^{-5 t}}{3} & \frac{\mathrm{e}^{-5 t}}{3}+\frac{2 \mathrm{e}^{-2 t}}{3}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{2 \mathrm{e}^{-5 t}}{3}+\frac{\mathrm{e}^{-2 t}}{3} \\
\frac{2 \mathrm{e}^{-2 t}}{3}-\frac{2 \mathrm{e}^{-5 t}}{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

10.17.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-4 & 1 \\
2 & -3
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-4 & 1 \\
2 & -3
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-4-\lambda & 1 \\
2 & -3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+7 \lambda+10=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-2 \\
& \lambda_{2}=-5
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-2	1	real eigenvalue
-5	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-5$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-4 & 1 \\
2 & -3
\end{array}\right]-(-5)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
1 & 1 & 0 \\
2 & 2 & 0
\end{array}\right]} \\
R_{2}=R_{2}-2 R_{1} \Longrightarrow\left[\begin{array}{ll|l}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-4 & 1 \\
2 & -3
\end{array}\right]-(-2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-2 & 1 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2 & 1 & 0 \\
2 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-2 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-2	1	1	No	$\left[\begin{array}{c}\frac{1}{2} \\ 1\end{array}\right]$
-5	1	1	No	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -2 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-2 t} \\
& =\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right] e^{-2 t}
\end{aligned}
$$

Since eigenvalue -5 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-5 t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-5 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{\mathrm{e}^{-2 t}}{2} \\
\mathrm{e}^{-2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\mathrm{e}^{-5 t} \\
\mathrm{e}^{-5 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{1} \mathrm{e}^{-2 t}}{2}-c_{2} \mathrm{e}^{-5 t} \\
c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-5 t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=1 \tag{1}\\
y(0)=0
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{1}}{2}-c_{2} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=\frac{2}{3} \\
c_{2}=-\frac{2}{3}
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\frac{2 \mathrm{e}^{-5 t}}{3}+\frac{\mathrm{e}^{-2 t}}{3} \\
\frac{2 \mathrm{e}^{-2 t}}{3}-\frac{2 \mathrm{e}^{-5 t}}{3}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 406: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 34

```
dsolve([diff(x(t),t) = -4*x(t)+y(t), diff(y(t),t) = 2*x(t)-3*y(t), x(0) = 1, y(0) = 0], sing
```

$$
\begin{aligned}
& x(t)=\frac{2 \mathrm{e}^{-5 t}}{3}+\frac{\mathrm{e}^{-2 t}}{3} \\
& y(t)=-\frac{2 \mathrm{e}^{-5 t}}{3}+\frac{2 \mathrm{e}^{-2 t}}{3}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 40
DSolve $\left[\left\{x^{\prime}[t]==-4 * x[t]+y[t], y^{\prime}[t]==2 * x[t]-3 * y[t]\right\},\{x[0]==1, y[0]==0\},\{x[t], y[t]\}, t\right.$, IncludeSin

$$
\begin{aligned}
x(t) & \rightarrow \frac{1}{3} e^{-5 t}\left(e^{3 t}+2\right) \\
y(t) & \rightarrow \frac{2}{3} e^{-5 t}\left(e^{3 t}-1\right)
\end{aligned}
$$

10.18 problem 13 (b)

10.18.1 Solution using Matrix exponential method 1942
10.18.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1943

Internal problem ID [13093]
Internal file name [OUTPUT/11748_Sunday_December_03_2023_07_16_16_PM_57675736/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277
Problem number: 13 (b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-4 x(t)+y \\
y^{\prime} & =2 x(t)-3 y
\end{aligned}
$$

With initial conditions

$$
[x(0)=2, y(0)=1]
$$

10.18.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-4 & 1 \\
2 & -3
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{-5 t}}{3}+\frac{\mathrm{e}^{-2 t}}{3} & \frac{\mathrm{e}^{-2 t}}{3}-\frac{\mathrm{e}^{-5 t}}{3} \\
\frac{2 \mathrm{e}^{-2 t}}{3}-\frac{2 \mathrm{e}^{-5 t}}{3} & \frac{\mathrm{e}^{-5 t}}{3}+\frac{2 \mathrm{e}^{-2 t}}{3}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{-5 t}}{3}+\frac{\mathrm{e}^{-2 t}}{3} & \frac{\mathrm{e}^{-2 t}}{3}-\frac{\mathrm{e}^{-5 t}}{3} \\
\frac{2 \mathrm{e}^{-2 t}}{3}-\frac{2 \mathrm{e}^{-5 t}}{3} & \frac{\mathrm{e}^{-5 t}}{3}+\frac{2 \mathrm{e}^{-2 t}}{3}
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-5 t}+\mathrm{e}^{-2 t} \\
2 \mathrm{e}^{-2 t}-\mathrm{e}^{-5 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

10.18.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-4 & 1 \\
2 & -3
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-4 & 1 \\
2 & -3
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-4-\lambda & 1 \\
2 & -3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+7 \lambda+10=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-5 \\
& \lambda_{2}=-2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-2	1	real eigenvalue
-5	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-5$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-4 & 1 \\
2 & -3
\end{array}\right]-(-5)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
1 & 1 & 0 \\
2 & 2 & 0
\end{array}\right]} \\
R_{2}=R_{2}-2 R_{1} \Longrightarrow\left[\begin{array}{ll|l}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-4 & 1 \\
2 & -3
\end{array}\right]-(-2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-2 & 1 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2 & 1 & 0 \\
2 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-2 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-5	1	1	No	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
-2	1	1	No	$\left[\begin{array}{c}\frac{1}{2} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -5 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-5 t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-5 t}
\end{aligned}
$$

Since eigenvalue -2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-2 t} \\
& =\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right] e^{-2 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{-5 t} \\
\mathrm{e}^{-5 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{\mathrm{e}^{-2 t}}{2} \\
\mathrm{e}^{-2 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-c_{1} \mathrm{e}^{-5 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{2} \\
c_{1} \mathrm{e}^{-5 t}+c_{2} \mathrm{e}^{-2 t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=2 \tag{1}\\
y(0)=1
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
-c_{1}+\frac{c_{2}}{2} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=-1 \\
c_{2}=2
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{-5 t}+\mathrm{e}^{-2 t} \\
2 \mathrm{e}^{-2 t}-\mathrm{e}^{-5 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 407: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 30

```
dsolve([diff(x(t),t) = -4*x(t)+y(t), diff (y(t),t) = 2*x(t)-3*y(t), x(0) = 2, y(0) = 1], sing
```

$$
\begin{aligned}
x(t) & =\mathrm{e}^{-5 t}+\mathrm{e}^{-2 t} \\
y(t) & =-\mathrm{e}^{-5 t}+2 \mathrm{e}^{-2 t}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 34
DSolve $\left[\left\{x^{\prime}[t]==-4 * x[t]+y[t], y^{\prime}[t]==2 * x[t]-3 * y[t]\right\},\{x[0]==2, y[0]==1\},\{x[t], y[t]\}, t\right.$, IncludeSin

$$
\begin{aligned}
& x(t) \rightarrow e^{-5 t}+e^{-2 t} \\
& y(t) \rightarrow e^{-5 t}\left(2 e^{3 t}-1\right)
\end{aligned}
$$

10.19 problem 13 (c)

10.19.1 Solution using Matrix exponential method 1950
10.19.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1951

Internal problem ID [13094]
Internal file name [OUTPUT/11749_Sunday_December_03_2023_07_16_17_PM_40395156/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277
Problem number: 13 (c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-4 x(t)+y \\
y^{\prime} & =2 x(t)-3 y
\end{aligned}
$$

With initial conditions

$$
[x(0)=-1, y(0)=-2]
$$

10.19.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-4 & 1 \\
2 & -3
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{-5 t}}{3}+\frac{\mathrm{e}^{-2 t}}{3} & \frac{\mathrm{e}^{-2 t}}{3}-\frac{\mathrm{e}^{-5 t}}{3} \\
\frac{2 \mathrm{e}^{-2 t}}{3}-\frac{2 \mathrm{e}^{-5 t}}{3} & \frac{\mathrm{e}^{-5 t}}{3}+\frac{2 \mathrm{e}^{-2 t}}{3}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{-5 t}}{3}+\frac{\mathrm{e}^{-2 t}}{3} & \frac{\mathrm{e}^{-2 t}}{3}-\frac{\mathrm{e}^{-5 t}}{3} \\
\frac{2 \mathrm{e}^{-2 t}}{3}-\frac{2 \mathrm{e}^{-5 t}}{3} & \frac{\mathrm{e}^{-5 t}}{3}+\frac{2 \mathrm{e}^{-2 t}}{3}
\end{array}\right]\left[\begin{array}{c}
-1 \\
-2
\end{array}\right] \\
& =\left[\begin{array}{c}
-\mathrm{e}^{-2 t} \\
-2 \mathrm{e}^{-2 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

10.19.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-4 & 1 \\
2 & -3
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-4 & 1 \\
2 & -3
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-4-\lambda & 1 \\
2 & -3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+7 \lambda+10=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-5 \\
& \lambda_{2}=-2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-2	1	real eigenvalue
-5	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-5$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-4 & 1 \\
2 & -3
\end{array}\right]-(-5)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
1 & 1 & 0 \\
2 & 2 & 0
\end{array}\right]} \\
R_{2}=R_{2}-2 R_{1} \Longrightarrow\left[\begin{array}{ll|l}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-4 & 1 \\
2 & -3
\end{array}\right]-(-2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-2 & 1 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2 & 1 & 0 \\
2 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-2 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-5	1	1	No	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
-2	1	1	No	$\left[\begin{array}{c}\frac{1}{2} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -5 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-5 t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-5 t}
\end{aligned}
$$

Since eigenvalue -2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-2 t} \\
& =\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right] e^{-2 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{-5 t} \\
\mathrm{e}^{-5 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{\mathrm{e}^{-2 t}}{2} \\
\mathrm{e}^{-2 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-c_{1} \mathrm{e}^{-5 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{2} \\
c_{1} \mathrm{e}^{-5 t}+c_{2} \mathrm{e}^{-2 t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=-1 \tag{1}\\
y(0)=-2
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{c}
-1 \\
-2
\end{array}\right]=\left[\begin{array}{c}
-c_{1}+\frac{c_{2}}{2} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=0 \\
c_{2}=-2
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-\mathrm{e}^{-2 t} \\
-2 \mathrm{e}^{-2 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 408: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

$$
\begin{aligned}
& \text { dsolve }([\operatorname{diff}(\mathrm{x}(\mathrm{t}), \mathrm{t})=-4 * \mathrm{x}(\mathrm{t})+\mathrm{y}(\mathrm{t}), \operatorname{diff}(\mathrm{y}(\mathrm{t}), \mathrm{t})=2 * \mathrm{x}(\mathrm{t})-3 * \mathrm{y}(\mathrm{t}), \mathrm{x}(0)=-1, \mathrm{y}(0)=-2], \\
& x(t)=-\mathrm{e}^{-2 t} \\
& y(t)=-2 \mathrm{e}^{-2 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 22
DSolve $\left[\left\{x^{\prime}[t]==-4 * x[t]+y[t], y^{\prime}[t]==2 * x[t]-3 * y[t]\right\},\{x[0]==-1, y[0]=-2\},\{x[t], y[t]\}, t\right.$, IncludeS

$$
\begin{aligned}
x(t) & \rightarrow-e^{-2 t} \\
y(t) & \rightarrow-2 e^{-2 t}
\end{aligned}
$$

10.20 problem 14 (a)

10.20.1 Solution using Matrix exponential method 1958
10.20.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1959

Internal problem ID [13095]
Internal file name [OUTPUT/11750_Sunday_December_03_2023_07_16_17_PM_30950620/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277
Problem number: 14 (a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =4 x(t)-2 y \\
y^{\prime} & =x(t)+y
\end{aligned}
$$

With initial conditions

$$
[x(0)=1, y(0)=0]
$$

10.20.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
4 & -2 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
-\mathrm{e}^{2 t}+2 \mathrm{e}^{3 t} & -2 \mathrm{e}^{3 t}+2 \mathrm{e}^{2 t} \\
\mathrm{e}^{3 t}-\mathrm{e}^{2 t} & 2 \mathrm{e}^{2 t}-\mathrm{e}^{3 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
-\mathrm{e}^{2 t}+2 \mathrm{e}^{3 t} & -2 \mathrm{e}^{3 t}+2 \mathrm{e}^{2 t} \\
\mathrm{e}^{3 t}-\mathrm{e}^{2 t} & 2 \mathrm{e}^{2 t}-\mathrm{e}^{3 t}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
-\mathrm{e}^{2 t}+2 \mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}-\mathrm{e}^{2 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

10.20.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
4 & -2 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
4 & -2 \\
1 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
4-\lambda & -2 \\
1 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-5 \lambda+6=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=3
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
2	1	real eigenvalue
3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
4 & -2 \\
1 & 1
\end{array}\right]-(2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
2 & -2 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
2 & -2 & 0 \\
1 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{cc|c}
2 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
4 & -2 \\
1 & 1
\end{array}\right]-(3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & -2 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
1 & -2 & 0 \\
1 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
2	1	1	No	$\left[\begin{array}{l}1 \\ 1\end{array}\right]$
3	1	1	No	$\left[\begin{array}{l}2 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{2 t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{3 t} \\
& =\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{3 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
2 \mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
c_{1} \mathrm{e}^{2 t}+2 c_{2} \mathrm{e}^{3 t} \\
c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{3 t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=1 \tag{1}\\
y(0)=0
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
c_{1}+2 c_{2} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=-1 \\
c_{2}=1
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-\mathrm{e}^{2 t}+2 \mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}-\mathrm{e}^{2 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 409: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 32
dsolve([diff $(x(t), t)=4 * x(t)-2 * y(t), \operatorname{diff}(y(t), t)=x(t)+y(t), x(0)=1, y(0)=0]$, singsol

$$
\begin{aligned}
& x(t)=2 \mathrm{e}^{3 t}-\mathrm{e}^{2 t} \\
& y(t)=\mathrm{e}^{3 t}-\mathrm{e}^{2 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 32
DSolve $\left[\left\{x^{\prime}[t]==4 * x[t]-2 * y[t], y^{\prime}[t]==x[t]+y[t]\right\},\{x[0]==1, y[0]==0\},\{x[t], y[t]\}, t\right.$, IncludeSingul

$$
\begin{gathered}
x(t) \rightarrow e^{2 t}\left(2 e^{t}-1\right) \\
y(t) \rightarrow e^{2 t}\left(e^{t}-1\right)
\end{gathered}
$$

10.21 problem 14 (b)

10.21.1 Solution using Matrix exponential method 1966
10.21.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1967

Internal problem ID [13096]
Internal file name [OUTPUT/11751_Sunday_December_03_2023_07_16_17_PM_83864725/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277
Problem number: 14 (b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =4 x(t)-2 y \\
y^{\prime} & =x(t)+y
\end{aligned}
$$

With initial conditions

$$
[x(0)=2, y(0)=1]
$$

10.21.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
4 & -2 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
-\mathrm{e}^{2 t}+2 \mathrm{e}^{3 t} & -2 \mathrm{e}^{3 t}+2 \mathrm{e}^{2 t} \\
\mathrm{e}^{3 t}-\mathrm{e}^{2 t} & 2 \mathrm{e}^{2 t}-\mathrm{e}^{3 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
-\mathrm{e}^{2 t}+2 \mathrm{e}^{3 t} & -2 \mathrm{e}^{3 t}+2 \mathrm{e}^{2 t} \\
\mathrm{e}^{3 t}-\mathrm{e}^{2 t} & 2 \mathrm{e}^{2 t}-\mathrm{e}^{3 t}
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
2 \mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

10.21.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
4 & -2 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
4 & -2 \\
1 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
4-\lambda & -2 \\
1 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-5 \lambda+6=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=3 \\
& \lambda_{2}=2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
2	1	real eigenvalue
3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
4 & -2 \\
1 & 1
\end{array}\right]-(2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
2 & -2 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
2 & -2 & 0 \\
1 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{cc|c}
2 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
4 & -2 \\
1 & 1
\end{array}\right]-(3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & -2 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
1 & -2 & 0 \\
1 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
3	1	1	No	$\left[\begin{array}{l}2 \\ 1\end{array}\right]$
2	1	1	No	$\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{3 t} \\
& =\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{3 t}
\end{aligned}
$$

Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{2 t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
2 \mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
2 c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{2 t} \\
c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{2 t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=2 \tag{1}\\
y(0)=1
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
2 c_{1}+c_{2} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{l}
c_{1}=1 \\
c_{2}=0
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
2 \mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 410: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18
dsolve $([\operatorname{diff}(x(t), t)=4 * x(t)-2 * y(t), \operatorname{diff}(y(t), t)=x(t)+y(t), x(0)=2, y(0)=1]$, singsol

$$
\begin{aligned}
x(t) & =2 \mathrm{e}^{3 t} \\
y(t) & =\mathrm{e}^{3 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 20
DSolve $\left[\left\{x^{\prime}[t]==4 * x[t]-2 * y[t], y^{\prime}[t]==x[t]+y[t]\right\},\{x[0]==2, y[0]==1\},\{x[t], y[t]\}, t\right.$, IncludeSingul

$$
\begin{aligned}
x(t) & \rightarrow 2 e^{3 t} \\
y(t) & \rightarrow e^{3 t}
\end{aligned}
$$

10.22 problem 14 (c)

10.22.1 Solution using Matrix exponential method 1974
10.22.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1975

Internal problem ID [13097]
Internal file name [OUTPUT/11752_Sunday_December_03_2023_07_16_18_PM_8293298/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.2. page 277
Problem number: 14 (c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =4 x(t)-2 y \\
y^{\prime} & =x(t)+y
\end{aligned}
$$

With initial conditions

$$
[x(0)=-1, y(0)=-2]
$$

10.22.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
4 & -2 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
-\mathrm{e}^{2 t}+2 \mathrm{e}^{3 t} & -2 \mathrm{e}^{3 t}+2 \mathrm{e}^{2 t} \\
\mathrm{e}^{3 t}-\mathrm{e}^{2 t} & 2 \mathrm{e}^{2 t}-\mathrm{e}^{3 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
-\mathrm{e}^{2 t}+2 \mathrm{e}^{3 t} & -2 \mathrm{e}^{3 t}+2 \mathrm{e}^{2 t} \\
\mathrm{e}^{3 t}-\mathrm{e}^{2 t} & 2 \mathrm{e}^{2 t}-\mathrm{e}^{3 t}
\end{array}\right]\left[\begin{array}{l}
-1 \\
-2
\end{array}\right] \\
& =\left[\begin{array}{c}
-3 \mathrm{e}^{2 t}+2 \mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}-3 \mathrm{e}^{2 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

10.22.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
4 & -2 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
4 & -2 \\
1 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
4-\lambda & -2 \\
1 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-5 \lambda+6=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=3 \\
& \lambda_{2}=2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
2	1	real eigenvalue
3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
4 & -2 \\
1 & 1
\end{array}\right]-(2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
2 & -2 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
2 & -2 & 0 \\
1 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{cc|c}
2 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
4 & -2 \\
1 & 1
\end{array}\right]-(3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & -2 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
1 & -2 & 0 \\
1 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
3	1	1	No	$\left[\begin{array}{l}2 \\ 1\end{array}\right]$
2	1	1	No	$\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{3 t} \\
& =\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{3 t}
\end{aligned}
$$

Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{2 t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
2 \mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
2 c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{2 t} \\
c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{2 t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=-1 \tag{1}\\
y(0)=-2
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
-1 \\
-2
\end{array}\right]=\left[\begin{array}{c}
2 c_{1}+c_{2} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=1 \\
c_{2}=-3
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-3 \mathrm{e}^{2 t}+2 \mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}-3 \mathrm{e}^{2 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 411: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 32
dsolve([diff $(x(t), t)=4 * x(t)-2 * y(t), \operatorname{diff}(y(t), t)=x(t)+y(t), x(0)=-1, y(0)=-2]$, sings

$$
\begin{aligned}
& x(t)=2 \mathrm{e}^{3 t}-3 \mathrm{e}^{2 t} \\
& y(t)=\mathrm{e}^{3 t}-3 \mathrm{e}^{2 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 32
DSolve $\left[\left\{x^{\prime}[t]==4 * x[t]-2 * y[t], y^{\prime}[t]==x[t]+y[t]\right\},\{x[0]==-1, y[0]==-2\},\{x[t], y[t]\}, t\right.$, IncludeSing

$$
\begin{aligned}
& x(t) \rightarrow e^{2 t}\left(2 e^{t}-3\right) \\
& y(t) \rightarrow e^{2 t}\left(e^{t}-3\right)
\end{aligned}
$$

11 Chapter 3. Linear Systems. Exercises section 3.4 page 310
11.1 problem 3 1983
11.2 problem 4 1990
11.3 problem 5 1998
11.4 problem 6 2006
11.5 problem 7 2014
11.6 problem 8 2022
11.7 problem 9 2030
11.8 problem 10 2037
11.9 problem 11 2045
11.10problem 12 2053
11.11problem 13 2061
11.12problem 14 2069
11.13problem 24 2077
11.14problem 26 2084

11.1 problem 3

11.1.1 Solution using Matrix exponential method 1983
11.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1984

Internal problem ID [13098]
Internal file name [OUTPUT/11753_Sunday_December_03_2023_07_16_18_PM_69937057/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310
Problem number: 3 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =2 y \\
y^{\prime} & =-2 x(t)
\end{aligned}
$$

With initial conditions

$$
[x(0)=1, y(0)=0]
$$

11.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\cos (2 t) & \sin (2 t) \\
-\sin (2 t) & \cos (2 t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\cos (2 t) & \sin (2 t) \\
-\sin (2 t) & \cos (2 t)
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
\cos (2 t) \\
-\sin (2 t)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

11.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & 2 \\
-2 & -\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+4=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =2 i \\
\lambda_{2} & =-2 i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$2 i$	1	complex eigenvalue
$-2 i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right]-(-2 i)\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
2 i & 2 \\
-2 & 2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2 i & 2 & 0 \\
-2 & 2 i & 0
\end{array}\right]} \\
R_{2}=-i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cc|c}
2 i & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2 i & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=t\left[\begin{array}{l}
i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
i \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right]-(2 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-2 i & 2 \\
-2 & -2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2 i & 2 & 0 \\
-2 & -2 i & 0
\end{array}\right]} \\
R_{2}=i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cc|c}
-2 i & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2 i & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-i \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$2 i$	1	1	No	$\left[\begin{array}{c}-i \\ 1\end{array}\right]$
$-2 i$	1	1	No	$\left[\begin{array}{c}i \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
-i \mathrm{e}^{2 i t} \\
\mathrm{e}^{2 i t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
i \mathrm{e}^{-2 i t} \\
\mathrm{e}^{-2 i t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
i\left(c_{2} \mathrm{e}^{-2 i t}-c_{1} \mathrm{e}^{2 i t}\right) \\
c_{1} \mathrm{e}^{2 i t}+c_{2} \mathrm{e}^{-2 i t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=1 \tag{1}\\
y(0)=0
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-i\left(c_{1}-c_{2}\right) \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=\frac{i}{2} \\
c_{2}=-\frac{i}{2}
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
i\left(-\frac{i \mathrm{e}^{-2 i t}}{2}-\frac{i \mathrm{e}^{2 i t}}{2}\right) \\
\frac{i \mathrm{e}^{2 i t}}{2}-\frac{i \mathrm{e}^{-2 i t}}{2}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 412: Phase plot

The following are plots of each solution.
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 18

```
dsolve([diff(x(t),t) = 2*y(t), diff(y(t),t) = -2*x(t), x(0) = 1, y(0) = 0], singsol=all)
```

$$
\begin{aligned}
& x(t)=\cos (2 t) \\
& y(t)=-\sin (2 t)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 18
DSolve $\left[\left\{x^{\prime}[t]==2 * y[t], y^{\prime}[t]==-2 * x[t]\right\},\{x[0]==1, y[0]==0\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutio

$$
\begin{aligned}
x(t) & \rightarrow \cos (2 t) \\
y(t) & \rightarrow-\sin (2 t)
\end{aligned}
$$

11.2 problem 4

11.2.1 Solution using Matrix exponential method 1990
11.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1991

Internal problem ID [13099]
Internal file name [OUTPUT/11754_Sunday_December_03_2023_07_16_19_PM_42285339/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =2 x(t)+2 y \\
y^{\prime} & =-4 x(t)+6 y
\end{aligned}
$$

With initial conditions

$$
[x(0)=1, y(0)=1]
$$

11.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
2 & 2 \\
-4 & 6
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{4 t} \cos (2 t)-\mathrm{e}^{4 t} \sin (2 t) & \mathrm{e}^{4 t} \sin (2 t) \\
-2 \mathrm{e}^{4 t} \sin (2 t) & \mathrm{e}^{4 t} \cos (2 t)+\mathrm{e}^{4 t} \sin (2 t)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathrm{e}^{4 t}(\cos (2 t)-\sin (2 t)) & \mathrm{e}^{4 t} \sin (2 t) \\
-2 \mathrm{e}^{4 t} \sin (2 t) & \mathrm{e}^{4 t}(\sin (2 t)+\cos (2 t))
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{4 t}(\cos (2 t)-\sin (2 t)) & \mathrm{e}^{4 t} \sin (2 t) \\
-2 \mathrm{e}^{4 t} \sin (2 t) & \mathrm{e}^{4 t}(\sin (2 t)+\cos (2 t))
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{4 t}(\cos (2 t)-\sin (2 t))+\mathrm{e}^{4 t} \sin (2 t) \\
-2 \mathrm{e}^{4 t} \sin (2 t)+\mathrm{e}^{4 t}(\sin (2 t)+\cos (2 t))
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{4 t} \cos (2 t) \\
\mathrm{e}^{4 t}(\cos (2 t)-\sin (2 t))
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

11.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
2 & 2 \\
-4 & 6
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2 & 2 \\
-4 & 6
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & 2 \\
-4 & 6-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-8 \lambda+20=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=4+2 i \\
& \lambda_{2}=4-2 i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$4+2 i$	1	complex eigenvalue
$4-2 i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=4-2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
2 & 2 \\
-4 & 6
\end{array}\right]-(4-2 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-2+2 i & 2 \\
-4 & 2+2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2+2 i & 2 & 0 \\
-4 & 2+2 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+(-1-i) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-2+2 i & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2+2 i & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(\frac{1}{2}+\frac{i}{2}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{i}{2}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2}+\frac{i}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}+\frac{i}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
1+i \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=4+2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
2 & 2 \\
-4 & 6
\end{array}\right]-(4+2 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-2-2 i & 2 \\
-4 & 2-2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2-2 i & 2 & 0 \\
-4 & 2-2 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+(-1+i) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-2-2 i & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2-2 i & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(\frac{1}{2}-\frac{i}{2}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{i}{2}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2}-\frac{i}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}-\frac{i}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
1-i \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$4+2 i$	1	1	No	$\left[\begin{array}{c}\frac{1}{2}-\frac{i}{2} \\ 1\end{array}\right]$
$4-2 i$	1	1	No	$\left[\begin{array}{c}\frac{1}{2}+\frac{i}{2} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{i}{2}\right) \mathrm{e}^{(4+2 i) t} \\
\mathrm{e}^{(4+2 i) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{i}{2}\right) \mathrm{e}^{(4-2 i) t} \\
\mathrm{e}^{(4-2 i) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{i}{2}\right) c_{1} \mathrm{e}^{(4+2 i) t}+\left(\frac{1}{2}+\frac{i}{2}\right) c_{2} \mathrm{e}^{(4-2 i) t} \\
c_{1} \mathrm{e}^{(4+2 i) t}+c_{2} \mathrm{e}^{(4-2 i) t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=1 \tag{1}\\
y(0)=1
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{i}{2}\right) c_{1}+\left(\frac{1}{2}+\frac{i}{2}\right) c_{2} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{l}
c_{1}=\frac{1}{2}+\frac{i}{2} \\
c_{2}=\frac{1}{2}-\frac{i}{2}
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\frac{\mathrm{e}^{(4+2 i) t}}{2}+\frac{\mathrm{e}^{(4-2 i) t}}{2} \\
\left(\frac{1}{2}-\frac{i}{2}\right) \mathrm{e}^{(4-2 i) t}+\left(\frac{1}{2}+\frac{i}{2}\right) \mathrm{e}^{(4+2 i) t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 413: Phase plot

The following are plots of each solution.
Solution by Maple
Time used: 0.031 (sec). Leaf size: 33

```
dsolve([diff(x(t),t) = 2*x(t)+2*y(t), diff (y(t),t) = -4*x(t)+6*y(t), x(0) = 1, y(0) = 1], si
```

$$
\begin{aligned}
& x(t)=\mathrm{e}^{4 t} \cos (2 t) \\
& y(t)=\mathrm{e}^{4 t}(\cos (2 t)-\sin (2 t))
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 35
DSolve $\left[\left\{x^{\prime}[t]==2 * x[t]+2 * y[t], y^{\prime}[t]==-4 * x[t]+6 * y[t]\right\},\{x[0]==1, y[0]==1\},\{x[t], y[t]\}, t\right.$, IncludeS

$$
\begin{aligned}
x(t) & \rightarrow e^{4 t} \cos (2 t) \\
y(t) & \rightarrow e^{4 t}(\cos (2 t)-\sin (2 t))
\end{aligned}
$$

11.3 problem 5

11.3.1 Solution using Matrix exponential method 1998
11.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1999

Internal problem ID [13100]
Internal file name [OUTPUT/11755_Sunday_December_03_2023_07_16_19_PM_13150055/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-3 x(t)-5 y \\
y^{\prime} & =3 x(t)+y
\end{aligned}
$$

With initial conditions

$$
[x(0)=4, y(0)=0]
$$

11.3.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-3 & -5 \\
3 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{-t} \cos (\sqrt{11} t)-\frac{2 \mathrm{e}^{-t} \sin (\sqrt{11} t) \sqrt{11}}{11} & -\frac{5 \mathrm{e}^{-t} \sin (\sqrt{11} t) \sqrt{11}}{11} \\
\frac{3 \mathrm{e}^{-t} \sin (\sqrt{11} t) \sqrt{11}}{11} & \mathrm{e}^{-t} \cos (\sqrt{11} t)+\frac{2 \mathrm{e}^{-t} \sin (\sqrt{11} t) \sqrt{11}}{11}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-t}\left(\cos (\sqrt{11} t)-\frac{2 \sin (\sqrt{11} t) \sqrt{11}}{11}\right) & -\frac{5 \mathrm{e}^{-t} \sin (\sqrt{11} t) \sqrt{11}}{11} \\
\frac{3 \mathrm{e}^{-t} \sin (\sqrt{11} t) \sqrt{11}}{11} & \frac{\mathrm{e}^{-t}(2 \sin (\sqrt{11} t) \sqrt{11}+11 \cos (\sqrt{11} t))}{11}
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-t}\left(\cos (\sqrt{11} t)-\frac{2 \sin (\sqrt{11} t) \sqrt{11}}{11}\right) & -\frac{5 \mathrm{e}^{-t} \sin (\sqrt{11} t) \sqrt{11}}{11} \\
\frac{3 \mathrm{e}^{-t} \sin (\sqrt{11} t) \sqrt{11}}{11} & \frac{\mathrm{e}^{-t}(2 \sin (\sqrt{11} t) \sqrt{11}+11 \cos (\sqrt{11} t))}{11}
\end{array}\right]\left[\begin{array}{l}
4 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
4 \mathrm{e}^{-t\left(\cos (\sqrt{11} t)-\frac{2 \sin (\sqrt{11} t) \sqrt{11}}{11}\right)} \\
\frac{12 \mathrm{e}^{-t} \sin (\sqrt{11} t) \sqrt{11}}{11}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

11.3.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-3 & -5 \\
3 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-3 & -5 \\
3 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-3-\lambda & -5 \\
3 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+2 \lambda+12=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1+i \sqrt{11} \\
& \lambda_{2}=-1-i \sqrt{11}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-1-i \sqrt{11}$	1	complex eigenvalue
$-1+i \sqrt{11}$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1-i \sqrt{11}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-3 & -5 \\
3 & 1
\end{array}\right]-(-1-i \sqrt{11})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-2+i \sqrt{11} & -5 \\
3 & 2+i \sqrt{11}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
-2+i \sqrt{11} & -5 & 0 \\
3 & 2+i \sqrt{11} & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}-\frac{3 R_{1}}{-2+i \sqrt{11}} \Longrightarrow\left[\begin{array}{cc|c}
-2+i \sqrt{11} & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2+i \sqrt{11} & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{5 t}{-2+i \sqrt{11}}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{5 t}{-2+\mathrm{I} \sqrt{11}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{5 t}{-2+i \sqrt{11}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{5 t}{-2+\mathrm{I} \sqrt{11}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{5}{-2+i \sqrt{11}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{5 t}{-2+\mathrm{I} \sqrt{11}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{5}{-2+i \sqrt{11}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{5 t}{-2+\mathrm{I} \sqrt{11}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{5}{-2+i \sqrt{11}} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-1+i \sqrt{11}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-3 & -5 \\
3 & 1
\end{array}\right]-(-1+i \sqrt{11})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-2-i \sqrt{11} & -5 \\
3 & 2-i \sqrt{11}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2-i \sqrt{11} & -5 & 0 \\
3 & 2-i \sqrt{11} & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{3 R_{1}}{-2-i \sqrt{11}} \Longrightarrow\left[\begin{array}{cc|c}
-2-i \sqrt{11} & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2-i \sqrt{11} & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{5 t}{2+i \sqrt{11}}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{5 t}{2+\mathrm{I} \sqrt{11}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{5 t}{2+i \sqrt{11}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{5 t}{2+\mathrm{I} \sqrt{11}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{5}{2+i \sqrt{11}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{5 t}{2+\mathrm{I} \sqrt{11}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{5}{2+i \sqrt{11}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{5 t}{2+\mathrm{I} \sqrt{11}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{5}{2+i \sqrt{11}} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$-1+i \sqrt{11}$	1	1	No	$\left[\begin{array}{c}-\frac{5}{2+i \sqrt{11}} \\ 1\end{array}\right]$
$-1-i \sqrt{11}$	1	1	No	$\left[\begin{array}{c}-\frac{5}{2-i \sqrt{11}} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{5 \mathrm{e}^{(-1+i \sqrt{11}) t}}{2+i \sqrt{11}} \\
\mathrm{e}^{(-1+i \sqrt{11}) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{5 \mathrm{e}^{(-1-i \sqrt{11}) t}}{2-i \sqrt{11}} \\
\mathrm{e}^{(-1-i \sqrt{11}) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\frac{2 i c_{2}\left(i-\frac{\sqrt{11}}{2}\right) \mathrm{e}^{-(i \sqrt{11}+1) t}}{3}+\frac{2 i\left(i+\frac{\sqrt{11}}{2}\right) \mathrm{e}^{(-1+i \sqrt{11}) t} c_{1}}{3} \\
c_{1} \mathrm{e}^{(-1+i \sqrt{11}) t}+c_{2} \mathrm{e}^{-(i \sqrt{11}+1) t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=4 \tag{1}\\
y(0)=0
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
4 \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{i\left(c_{1}-c_{2}\right) \sqrt{11}}{3}-\frac{2 c_{1}}{3}-\frac{2 c_{2}}{3} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=-\frac{6 i \sqrt{11}}{11} \\
c_{2}=\frac{6 i \sqrt{11}}{11}
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-\frac{4 \sqrt{11}\left(i-\frac{\sqrt{11}}{2}\right) \mathrm{e}^{-(i \sqrt{11}+1) t}}{11}+\frac{4\left(i+\frac{\sqrt{11}}{2}\right) \mathrm{e}^{(-1+i \sqrt{11}) t} \sqrt{11}}{11} \\
-\frac{6 i \sqrt{11} \mathrm{e}^{(-1+i \sqrt{11}) t}}{11}+\frac{6 i \sqrt{11} \mathrm{e}^{-(i \sqrt{11}+1) t}}{11}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 414: Phase plot

The following are plots of each solution.
\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 48
dsolve $([\operatorname{diff}(x(t), t)=-3 * x(t)-5 * y(t), \operatorname{diff}(y(t), t)=3 * x(t)+y(t), x(0)=4, y(0)=0]$, sing

$$
\begin{aligned}
& x(t)=\mathrm{e}^{-t}\left(-\frac{8 \sqrt{11} \sin (\sqrt{11} t)}{11}+4 \cos (\sqrt{11} t)\right) \\
& y(t)=\frac{12 \mathrm{e}^{-t} \sqrt{11} \sin (\sqrt{11} t)}{11}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 63
DSolve $\left[\left\{x^{\prime}[t]==-3 * x[t]-5 * y[t], y^{\prime}[t]==3 * x[t]+y[t]\right\},\{x[0]==4, y[0]==0\},\{x[t], y[t]\}, t\right.$, IncludeSin

$$
\begin{aligned}
x(t) & \rightarrow \frac{4}{11} e^{-t}(11 \cos (\sqrt{11} t)-2 \sqrt{11} \sin (\sqrt{11} t)) \\
y(t) & \rightarrow \frac{12 e^{-t} \sin (\sqrt{11} t)}{\sqrt{11}}
\end{aligned}
$$

11.4 problem 6

11.4.1 Solution using Matrix exponential method 2006
11.4.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2007

Internal problem ID [13101]
Internal file name [OUTPUT/11756_Sunday_December_03_2023_07_16_20_PM_12272310/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =2 y \\
y^{\prime} & =-2 x(t)-y
\end{aligned}
$$

With initial conditions

$$
[x(0)=-1, y(0)=1]
$$

11.4.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & 2 \\
-2 & -1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-\frac{t}{2} \sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)}}{15}+\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{\sqrt{15} t}{2}\right) & \frac{4 \mathrm{e}^{-\frac{t}{2} \sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)}}{15} \\
-\frac{4 \mathrm{e}^{-\frac{t}{2} \sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)}}{15} & \mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{\sqrt{15} t}{2}\right)-\frac{\mathrm{e}^{-\frac{t}{2} \sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)}}{15}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{\left(\sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)+15 \cos \left(\frac{\sqrt{15} t}{2}\right)\right) \mathrm{e}^{-\frac{t}{2}}}{15} & \frac{4 \mathrm{e}^{-\frac{t}{2} \sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)}}{15} \\
-\frac{4 \mathrm{e}^{-\frac{t}{2} \sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)}}{15} & -\frac{\mathrm{e}^{-\frac{t}{2}}\left(\sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)-15 \cos \left(\frac{\sqrt{15} t}{2}\right)\right)}{15}
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\frac{\left(\sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)+15 \cos \left(\frac{\sqrt{15} t}{2}\right)\right) \mathrm{e}^{-\frac{t}{2}}}{15} & \frac{4 \mathrm{e}^{-\frac{t}{2} \sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)}}{15} \\
-\frac{4 \mathrm{e}^{-\frac{t}{2}} \sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)}{15} & -\frac{\mathrm{e}^{-\frac{t}{2}}\left(\sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)-15 \cos \left(\frac{\sqrt{15} t}{2}\right)\right)}{15}
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{\left(\sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)+15 \cos \left(\frac{\sqrt{15} t}{2}\right)\right) \mathrm{e}^{-\frac{t}{2}}}{15}+\frac{4 \mathrm{e}^{-\frac{t}{2} \sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)}}{15} \\
\frac{4 \mathrm{e}^{-\frac{t}{2} \sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)}}{15}-\frac{\mathrm{e}^{-\frac{t}{2}}\left(\sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)-15 \cos \left(\frac{\sqrt{15} t}{2}\right)\right)}{15}
\end{array}\right] \\
& =\left[\begin{array}{l}
\left.\frac{\mathrm{e}^{-\frac{t}{2}}\left(\sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)-5 \cos \left(\frac{\sqrt{15} t}{2}\right)\right)}{5}\right] \\
\frac{\mathrm{e}^{-\frac{t}{2}}\left(\sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)+5 \cos \left(\frac{\sqrt{15} t}{2}\right)\right)}{5}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

11.4.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & 2 \\
-2 & -1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
0 & 2 \\
-2 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & 2 \\
-2 & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+\lambda+4=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{i \sqrt{15}}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{15}}{2}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-\frac{1}{2}+\frac{i \sqrt{15}}{2}$	1	complex eigenvalue
$-\frac{1}{2}-\frac{i \sqrt{15}}{2}$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-\frac{1}{2}-\frac{i \sqrt{15}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
0 & 2 \\
-2 & -1
\end{array}\right]-\left(-\frac{1}{2}-\frac{i \sqrt{15}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
\frac{1}{2}+\frac{i \sqrt{15}}{2} & 2 \\
-2 & -\frac{1}{2}+\frac{i \sqrt{15}}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
\frac{1}{2}+\frac{i \sqrt{15}}{2} & 2 & 0 \\
-2 & -\frac{1}{2}+\frac{i \sqrt{15}}{2} & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}+\frac{2 R_{1}}{\frac{1}{2}+\frac{i \sqrt{15}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
\frac{1}{2}+\frac{i \sqrt{15}}{2} & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{1}{2}+\frac{i \sqrt{15}}{2} & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{4 t}{i \sqrt{15}+1}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{4 t}{\mathrm{I} \sqrt{15+1}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{4 t}{i \sqrt{15+1}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{4 t}{\mathrm{I} \sqrt{15}+1} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{4}{i \sqrt{15}+1} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{4 t}{\mathrm{I} \sqrt{15+1}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{4}{i \sqrt{15}+1} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{4 t}{\mathrm{I} \sqrt{15}+1} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{4}{i \sqrt{15}+1} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-\frac{1}{2}+\frac{i \sqrt{15}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
0 & 2 \\
-2 & -1
\end{array}\right]-\left(-\frac{1}{2}+\frac{i \sqrt{15}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
\frac{1}{2}-\frac{i \sqrt{15}}{2} & 2 & 0 \\
-2 & -\frac{1}{2}-\frac{i \sqrt{15}}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{2 R_{1}}{\frac{1}{2}-\frac{i \sqrt{15}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
\frac{1}{2}-\frac{i \sqrt{15}}{2} & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{1}{2}-\frac{i \sqrt{15}}{2} & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{4 t}{-1+i \sqrt{15}}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{4 t}{-1+\mathrm{I} \sqrt{15}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{4 t}{-1+i \sqrt{15}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{4 t}{-1+\mathrm{I} \sqrt{15}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{4}{-1+i \sqrt{15}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{4 t}{-1+\mathrm{I} \sqrt{15}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{4}{-1+i \sqrt{15}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{4 t}{-1+\mathrm{I} \sqrt{15}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{4}{-1+i \sqrt{15}} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$-\frac{1}{2}+\frac{i \sqrt{15}}{2}$	1	1	No	$\left[\begin{array}{c}\frac{2}{-\frac{1}{2}+\frac{i \sqrt{15}}{2}} \\ 1\end{array}\right]$
$-\frac{1}{2}-\frac{i \sqrt{15}}{2}$	1	1	No	$\left[\begin{array}{c}\frac{2}{-\frac{1}{2}-\frac{i \sqrt{15}}{2}} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{2 \mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{15}}{2}\right) t}}{-\frac{1}{2}+\frac{i \sqrt{15}}{2}} \\
\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{15}}{2}\right) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{2 \mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{15}}{2}\right) t}}{-\frac{1}{2}-\frac{i \sqrt{15}}{2}} \\
\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{15}}{2}\right) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\frac{i(-\sqrt{15}+i) c_{1} \mathrm{e}^{\frac{(-1+i \sqrt{15}) t}{2}}}{4}+\frac{i(i+\sqrt{15}) \mathrm{e}^{-\frac{(i \sqrt{15}+1) t}{2} c_{2}}}{4} \\
c_{1} \mathrm{e}^{\frac{(-1+i \sqrt{15}) t}{2}}+c_{2} \mathrm{e}^{-\frac{(i \sqrt{15}+1) t}{2}}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{c}
x(0)=-1 \tag{1}\\
y(0)=1
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{i\left(-c_{1}+c_{2}\right) \sqrt{15}}{4}-\frac{c_{1}}{4}-\frac{c_{2}}{4} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=-\frac{(-\sqrt{15}+3 i) \sqrt{15}}{30} \\
c_{2}=\frac{\sqrt{15}(\sqrt{15}+3 i)}{30}
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-\frac{i(-\sqrt{15}+i)(-\sqrt{15}+3 i) \sqrt{15} \mathrm{e}^{\frac{(-1+i \sqrt{15}) t}{2}}}{120}+\frac{i(i+\sqrt{15}) \mathrm{e}^{-\frac{(i \sqrt{15}+1) t}{2} \sqrt{15}(\sqrt{15}+3 i)}}{120} \\
-\frac{(-\sqrt{15}+3 i) \sqrt{15} \mathrm{e}^{\frac{(-1+i \sqrt{15}) t}{2}}}{30}+\frac{\sqrt{15}(\sqrt{15}+3 i) \mathrm{e}^{-\frac{(i \sqrt{15}+1) t}{2}}}{30}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 415: Phase plot

The following are plots of each solution.
\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 63
dsolve([diff $(x(t), t)=2 * y(t), \operatorname{diff}(y(t), t)=-2 * x(t)-y(t), x(0)=-1, y(0)=1]$, singsol $=a l$

$$
\begin{aligned}
& x(t)=\mathrm{e}^{-\frac{t}{2}}\left(\frac{\sqrt{15} \sin \left(\frac{t \sqrt{15}}{2}\right)}{5}-\cos \left(\frac{t \sqrt{15}}{2}\right)\right) \\
& y(t)=-\frac{\mathrm{e}^{-\frac{t}{2}}\left(-\frac{4 \sqrt{15} \sin \left(\frac{t \sqrt{15}}{2}\right)}{5}-4 \cos \left(\frac{t \sqrt{15}}{2}\right)\right)}{4}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 92
DSolve $\left[\left\{x^{\prime}[t]==0 * x[t]+2 * y[t], y^{\prime}[t]==-2 * x[t]-y[t]\right\},\{x[0]==-1, y[0]==1\},\{x[t], y[t]\}, t\right.$, IncludeSi

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{5} e^{-t / 2}\left(\sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)-5 \cos \left(\frac{\sqrt{15} t}{2}\right)\right) \\
& y(t) \rightarrow \frac{1}{5} e^{-t / 2}\left(\sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)+5 \cos \left(\frac{\sqrt{15} t}{2}\right)\right)
\end{aligned}
$$

11.5 problem 7

11.5.1 Solution using Matrix exponential method 2014
11.5.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2015

Internal problem ID [13102]
Internal file name [OUTPUT/11757_Sunday_December_03_2023_07_16_20_PM_91629352/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =2 x(t)-6 y \\
y^{\prime} & =2 x(t)+y
\end{aligned}
$$

With initial conditions

$$
[x(0)=2, y(0)=1]
$$

11.5.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
2 & -6 \\
2 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{\frac{3 t}{2}} \cos \left(\frac{\sqrt{47} t}{2}\right)+\frac{\sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47} & -\frac{12 \sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47} \\
\frac{4 \sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47} & \mathrm{e}^{\frac{3 t}{2}} \cos \left(\frac{\sqrt{47} t}{2}\right)-\frac{\sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)+47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}{47} & -\frac{12 \sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47} \\
\frac{4 \sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47} & -\frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)-47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}{47}
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)+47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}{47} & -\frac{12 \sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47} \\
\frac{4 \sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47} & -\frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)-47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}{47}
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)+47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}{47}-\frac{12 \sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47} \\
\frac{8 \sqrt{47} \mathrm{e}^{\frac{3 t}{2} \sin \left(\frac{\sqrt{47} t}{2}\right)}}{47}-\frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)-47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}{47}
\end{array}\right] \\
& =\left[\begin{array}{c}
2 \mathrm{e}^{\frac{3 t}{2}\left(-\frac{5 \sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47}+\cos \left(\frac{\sqrt{47} t}{2}\right)\right)} \\
\frac{\mathrm{e}^{\frac{3 t}{2}}\left(7 \sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)+47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}{47}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

11.5.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
2 & -6 \\
2 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2 & -6 \\
2 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & -6 \\
2 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-3 \lambda+14=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=\frac{3}{2}+\frac{i \sqrt{47}}{2} \\
& \lambda_{2}=\frac{3}{2}-\frac{i \sqrt{47}}{2}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$\frac{3}{2}-\frac{i \sqrt{47}}{2}$	1	complex eigenvalue
$\frac{3}{2}+\frac{i \sqrt{47}}{2}$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=\frac{3}{2}-\frac{i \sqrt{47}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
2 & -6 \\
2 & 1
\end{array}\right]-\left(\frac{3}{2}-\frac{i \sqrt{47}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
\frac{1}{2}+\frac{i \sqrt{47}}{2} & -6 \\
2 & -\frac{1}{2}+\frac{i \sqrt{47}}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
\frac{1}{2}+\frac{i \sqrt{47}}{2} & -6 & 0 \\
2 & -\frac{1}{2}+\frac{i \sqrt{47}}{2} & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}-\frac{2 R_{1}}{\frac{1}{2}+\frac{i \sqrt{47}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
\frac{1}{2}+\frac{i \sqrt{47}}{2} & -6 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{1}{2}+\frac{i \sqrt{47}}{2} & -6 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{12 t}{1+i \sqrt{47}}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{12 t}{1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{12 t}{1+i \sqrt{47}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{12 t}{1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{12}{1+i \sqrt{47}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{12 t}{1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{12}{1+i \sqrt{47}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{12 t}{1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{12}{1+i \sqrt{47}} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=\frac{3}{2}+\frac{i \sqrt{47}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
2 & -6 \\
2 & 1
\end{array}\right]-\left(\frac{3}{2}+\frac{i \sqrt{47}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
\frac{1}{2}-\frac{i \sqrt{47}}{2} & -6 \\
2 & -\frac{1}{2}-\frac{i \sqrt{47}}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
\frac{1}{2}-\frac{i \sqrt{47}}{2} & -6 & 0 \\
2 & -\frac{1}{2}-\frac{i \sqrt{47}}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{2 R_{1}}{\frac{1}{2}-\frac{i \sqrt{47}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
\frac{1}{2}-\frac{i \sqrt{47}}{2} & -6 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{1}{2}-\frac{i \sqrt{47}}{2} & -6 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{12 t}{-1+i \sqrt{47}}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{12 t}{-1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{12 t}{-1+i \sqrt{47}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{12 t}{-1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{12}{-1+i \sqrt{47}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{12 t}{-1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{12}{-1+i \sqrt{47}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{12 t}{-1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{12}{-1+i \sqrt{47}} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity		algebraic m	geometric k
	defective?	eivenvectors		
2	1	1	No	$\left[\begin{array}{c}-\frac{6}{-\frac{1}{2}+\frac{i \sqrt{47}}{27}} \\ 1\end{array}\right]$
$\frac{3}{2}-\frac{i \sqrt{47}}{2}$	1	1	No	$\left[\begin{array}{c}-\frac{6}{-\frac{1}{2}-\frac{i \sqrt{47}}{2}} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{6 \mathrm{e}^{\left(\frac{3}{2}+\frac{i \sqrt{47}}{2}\right) t}}{-\frac{1}{2}+\frac{i \sqrt{47}}{2}} \\
\mathrm{e}^{\left(\frac{3}{2}+\frac{i \sqrt{47}}{2}\right) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{6 \mathrm{e}^{\left(\frac{3}{2}-\frac{i \sqrt{47}}{2}\right) t}}{-\frac{1}{2}-\frac{i \sqrt{47}}{2}} \\
\mathrm{e}^{\left(\frac{3}{2}-\frac{i \sqrt{47}}{2}\right) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-\frac{i(i-\sqrt{47}) c_{1} \mathrm{e}^{\frac{(3+i \sqrt{47}) t}{2}}}{4}-\frac{i \mathrm{e}^{-\frac{(i \sqrt{47}-3) t}{2}} c_{2}(i+\sqrt{47})}{4} \\
c_{1} \mathrm{e}^{\frac{(3+i \sqrt{47}) t}{2}}+c_{2} \mathrm{e}^{-\frac{(i \sqrt{47}-3) t}{2}}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=2 \tag{1}\\
y(0)=1
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{i\left(c_{1}-c_{2}\right) \sqrt{47}}{4}+\frac{c_{1}}{4}+\frac{c_{2}}{4} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=-\frac{(-\sqrt{47}+7 i) \sqrt{47}}{94} \\
c_{2}=\frac{\sqrt{47}(\sqrt{47}+7 i)}{94}
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\frac{i(i-\sqrt{47})(-\sqrt{47}+7 i) \sqrt{47} \mathrm{e}^{\frac{(3+i \sqrt{47}) t}{2}}}{376}-\frac{i e^{-\frac{(i \sqrt{47}-3) t}{2} \sqrt{47}(\sqrt{47}+7 i)(i+\sqrt{47})}}{376} \\
-\frac{(-\sqrt{47}+7 i) \sqrt{47} \mathrm{e}^{\frac{(3+i \sqrt{47}) t}{2}}}{94}+\frac{\sqrt{47}(\sqrt{47}+7 i) \mathrm{e}^{-\frac{(i \sqrt{47}-3) t}{2}}}{94}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 416: Phase plot

The following are plots of each solution.
\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 63

```
dsolve([diff(x(t),t) = 2*x(t)-6*y(t), diff(y(t),t) = 2*x(t)+y(t), x(0) = 2, y(0) = 1], sings
```

$$
\begin{aligned}
& x(t)=\mathrm{e}^{\frac{3 t}{2}}\left(-\frac{10 \sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47}+2 \cos \left(\frac{\sqrt{47} t}{2}\right)\right) \\
& y(t)=\frac{\mathrm{e}^{\frac{3 t}{2}}\left(\frac{84 \sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47}+12 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}{12}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 94
DSolve $\left[\left\{x^{\prime}[t]==2 * x[t]-6 * y[t], y^{\prime}[t]==2 * x[t]+y[t]\right\},\{x[0]==2, y[0]==1\},\{x[t], y[t]\}, t\right.$, IncludeSing

$$
\begin{aligned}
& x(t) \rightarrow \frac{2}{47} e^{3 t / 2}\left(47 \cos \left(\frac{\sqrt{47} t}{2}\right)-5 \sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)\right) \\
& y(t) \rightarrow \frac{1}{47} e^{3 t / 2}\left(7 \sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)+47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)
\end{aligned}
$$

11.6 problem 8

11.6.1 Solution using Matrix exponential method 2022
11.6.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2023

Internal problem ID [13103]
Internal file name [OUTPUT/11758_Sunday_December_03_2023_07_16_21_PM_85445911/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310
Problem number: 8 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =x(t)+4 y \\
y^{\prime} & =-3 x(t)+2 y
\end{aligned}
$$

With initial conditions

$$
[x(0)=1, y(0)=-1]
$$

11.6.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & 4 \\
-3 & 2
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{\frac{3 t}{2}} \cos \left(\frac{\sqrt{47} t}{2}\right)-\frac{\sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47} & \frac{8 \sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47} \\
-\frac{6 \sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47} & \mathrm{e}^{\frac{3 t}{2}} \cos \left(\frac{\sqrt{47} t}{2}\right)+\frac{\sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47}
\end{array}\right] \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)-47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}{47} & \frac{8 \sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{477} \\
-\frac{6 \sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47} & \frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)+47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}{47}
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)-47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}{47} & \frac{8 \sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47} \\
-\frac{6 \sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47} & \frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)+47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}{47}
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)-47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}{47}-\frac{8 \sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47} \\
-\frac{6 \sqrt{47} \mathrm{e}^{\frac{3 t}{2} \sin \left(\frac{\sqrt{47} t}{2}\right)}}{47}-\frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)+47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}{47}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{\frac{3 t}{2}\left(-\frac{9 \sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47}+\cos \left(\frac{\sqrt{47} t}{2}\right)\right)} \\
-\frac{\mathrm{e}^{\frac{3 t}{2}}\left(7 \sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)+47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}{47}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

11.6.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & 4 \\
-3 & 2
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1 & 4 \\
-3 & 2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 4 \\
-3 & 2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-3 \lambda+14=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=\frac{3}{2}+\frac{i \sqrt{47}}{2} \\
& \lambda_{2}=\frac{3}{2}-\frac{i \sqrt{47}}{2}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$\frac{3}{2}-\frac{i \sqrt{47}}{2}$	1	complex eigenvalue
$\frac{3}{2}+\frac{i \sqrt{47}}{2}$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=\frac{3}{2}-\frac{i \sqrt{47}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & 4 \\
-3 & 2
\end{array}\right]-\left(\frac{3}{2}-\frac{i \sqrt{47}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-\frac{1}{2}+\frac{i \sqrt{47}}{2} & 4 \\
-3 & \frac{1}{2}+\frac{i \sqrt{47}}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
-\frac{1}{2}+\frac{i \sqrt{47}}{2} & 4 & 0 \\
-3 & \frac{1}{2}+\frac{i \sqrt{47}}{2} & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}+\frac{3 R_{1}}{-\frac{1}{2}+\frac{i \sqrt{47}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
-\frac{1}{2}+\frac{i \sqrt{47}}{2} & 4 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-\frac{1}{2}+\frac{i \sqrt{47}}{2} & 4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{8 t}{-1+i \sqrt{47}}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{8 t}{-1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{8 t}{-1+i \sqrt{47}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{8 t}{-1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{8}{-1+i \sqrt{47}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{8 t}{-1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{8}{-1+i \sqrt{47}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{8 t}{-1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{8}{-1+i \sqrt{47}} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=\frac{3}{2}+\frac{i \sqrt{47}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & 4 \\
-3 & 2
\end{array}\right]-\left(\frac{3}{2}+\frac{i \sqrt{47}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-\frac{1}{2}-\frac{i \sqrt{47}}{2} & 4 \\
-3 & \frac{1}{2}-\frac{i \sqrt{47}}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-\frac{1}{2}-\frac{i \sqrt{47}}{2} & 4 & 0 \\
-3 & \frac{1}{2}-\frac{i \sqrt{47}}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{3 R_{1}}{-\frac{1}{2}-\frac{i \sqrt{47}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
-\frac{1}{2}-\frac{i \sqrt{47}}{2} & 4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-\frac{1}{2}-\frac{i \sqrt{47}}{2} & 4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{8 t}{1+i \sqrt{47}}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{8 t}{1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{8 t}{1+i \sqrt{47}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{8 t}{1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{8}{1+i \sqrt{47}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{8 t}{1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{8}{1+i \sqrt{47}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{8 t}{1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{8}{1+i \sqrt{47}} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$\frac{3}{2}+\frac{i \sqrt{47}}{2}$	1	1	No	$\left[\begin{array}{c}\frac{4}{\frac{1}{2}+\frac{i \sqrt{47}}{2}} \\ 1\end{array}\right]$
$\frac{3}{2}-\frac{i \sqrt{47}}{2}$	1	1	No	$\left[\begin{array}{c}\left.\frac{4}{2} \begin{array}{c}\frac{i \sqrt{47}}{2} \\ 1\end{array}\right] \\ \hline\end{array} \mathrm{l}\right.$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{4 \mathrm{e}^{\left(\frac{3}{2}+\frac{i \sqrt{47}}{2}\right) t}}{\frac{1}{2}+\frac{i \sqrt{47}}{2}} \\
\mathrm{e}^{\left(\frac{3}{2}+\frac{i \sqrt{47}}{2}\right) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{4 \mathrm{e}^{\left(\frac{3}{2}-\frac{i \sqrt{47}}{2}\right) t}}{\frac{1}{2}-\frac{i \sqrt{47}}{2}} \\
\mathrm{e}^{\left(\frac{3}{2}-\frac{i \sqrt{47}}{2}\right) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-\frac{i(i+\sqrt{47}) c_{1} \mathrm{e}^{\frac{(3+i \sqrt{47}) t}{2}}}{6}-\frac{i \mathrm{e}^{-\frac{(i \sqrt{47}-3) t}{2}} c_{2}(i-\sqrt{47})}{6} \\
c_{1} \mathrm{e}^{\frac{(3+i \sqrt{47}) t}{2}}+c_{2} \mathrm{e}^{-\frac{(i \sqrt{47}-3) t}{2}}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{c}
x(0)=1 \tag{1}\\
y(0)=-1
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
\frac{i\left(-c_{1}+c_{2}\right) \sqrt{47}}{6}+\frac{c_{1}}{6}+\frac{c_{2}}{6} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{l}
c_{1}=-\frac{(\sqrt{47}-7 i) \sqrt{47}}{94} \\
c_{2}=-\frac{\sqrt{47}(\sqrt{47}+7 i)}{94}
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\frac{i(i+\sqrt{47})(\sqrt{47}-7 i) \sqrt{47} \mathrm{e}^{\frac{(3+i \sqrt{47}) t}{2}}}{564}+\frac{i \mathrm{e}^{-\frac{(i \sqrt{47}-3) t}{2}} \sqrt{47}(\sqrt{47}+7 i)(i-\sqrt{47})}{564} \\
-\frac{(\sqrt{47}-7 i) \sqrt{47} \mathrm{e}^{\frac{(3+i \sqrt{47}) t}{2}}}{94}-\frac{\sqrt{47}(\sqrt{47}+7 i) \mathrm{e}^{-\frac{(i \sqrt{47}-3) t}{2}}}{94}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 417: Phase plot

The following are plots of each solution.
\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 61
dsolve $([\operatorname{diff}(x(t), t)=x(t)+4 * y(t), \operatorname{diff}(y(t), t)=-3 * x(t)+2 * y(t), x(0)=1, y(0)=-1]$, sin

$$
\begin{aligned}
& x(t)=\mathrm{e}^{\frac{3 t}{2}}\left(-\frac{9 \sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47}+\cos \left(\frac{\sqrt{47} t}{2}\right)\right) \\
& y(t)=-\frac{\mathrm{e}^{\frac{3 t}{2}\left(\frac{56 \sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47}+8 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}}{8}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 94
DSolve $\left[\left\{x^{\prime}[t]==1 * x[t]+4 * y[t], y^{\prime}[t]==-3 * x[t]+2 * y[t]\right\},\{x[0]==1, y[0]==-1\},\{x[t], y[t]\}, t\right.$, Include

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{47} e^{3 t / 2}\left(47 \cos \left(\frac{\sqrt{47} t}{2}\right)-9 \sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)\right) \\
& y(t) \rightarrow-\frac{1}{47} e^{3 t / 2}\left(7 \sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)+47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)
\end{aligned}
$$

11.7 problem 9

11.7.1 Solution using Matrix exponential method 2030
11.7.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2031

Internal problem ID [13104]
Internal file name [OUTPUT/11759_Sunday_December_03_2023_07_16_22_PM_2645872/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310
Problem number: 9 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =2 y \\
y^{\prime} & =-2 x(t)
\end{aligned}
$$

With initial conditions

$$
[x(0)=1, y(0)=0]
$$

11.7.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\cos (2 t) & \sin (2 t) \\
-\sin (2 t) & \cos (2 t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\cos (2 t) & \sin (2 t) \\
-\sin (2 t) & \cos (2 t)
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
\cos (2 t) \\
-\sin (2 t)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

11.7.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & 2 \\
-2 & -\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+4=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =2 i \\
\lambda_{2} & =-2 i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$2 i$	1	complex eigenvalue
$-2 i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right]-(-2 i)\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
2 i & 2 \\
-2 & 2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2 i & 2 & 0 \\
-2 & 2 i & 0
\end{array}\right]} \\
R_{2}=-i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cc|c}
2 i & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2 i & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=t\left[\begin{array}{l}
i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
i \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right]-(2 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-2 i & 2 \\
-2 & -2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2 i & 2 & 0 \\
-2 & -2 i & 0
\end{array}\right]} \\
R_{2}=i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cc|c}
-2 i & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2 i & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-i \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$2 i$	1	1	No	$\left[\begin{array}{c}-i \\ 1\end{array}\right]$
$-2 i$	1	1	No	$\left[\begin{array}{c}i \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
-i \mathrm{e}^{2 i t} \\
\mathrm{e}^{2 i t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
i \mathrm{e}^{-2 i t} \\
\mathrm{e}^{-2 i t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-i\left(c_{1} \mathrm{e}^{2 i t}-c_{2} \mathrm{e}^{-2 i t}\right) \\
c_{1} \mathrm{e}^{2 i t}+c_{2} \mathrm{e}^{-2 i t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=1 \tag{1}\\
y(0)=0
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-i\left(c_{1}-c_{2}\right) \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=\frac{i}{2} \\
c_{2}=-\frac{i}{2}
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-i\left(\frac{i \mathrm{e}^{2 i t}}{2}+\frac{i \mathrm{e}^{-2 i t}}{2}\right) \\
\frac{i \mathrm{e}^{2 i t}}{2}-\frac{i \mathrm{e}^{-2 i t}}{2}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 418: Phase plot

The following are plots of each solution.
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

```
dsolve([diff(x(t),t) = 2*y(t), diff(y(t),t) = -2*x(t), x(0) = 1, y(0) = 0], singsol=all)
```

$$
\begin{aligned}
& x(t)=\cos (2 t) \\
& y(t)=-\sin (2 t)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 18
DSolve $\left[\left\{x^{\prime}[t]==0 * x[t]+2 * y[t], y^{\prime}[t]==-2 * x[t]+0 * y[t]\right\},\{x[0]==1, y[0]==0\},\{x[t], y[t]\}, t\right.$, IncludeS

$$
\begin{aligned}
& x(t) \rightarrow \cos (2 t) \\
& y(t) \rightarrow-\sin (2 t)
\end{aligned}
$$

11.8 problem 10

11.8.1 Solution using Matrix exponential method 2037
11.8.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2038

Internal problem ID [13105]
Internal file name [OUTPUT/11760_Sunday_December_03_2023_07_16_22_PM_70722247/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =2 x(t)+2 y \\
y^{\prime} & =-4 x(t)+6 y
\end{aligned}
$$

With initial conditions

$$
[x(0)=1, y(0)=1]
$$

11.8.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
2 & 2 \\
-4 & 6
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{4 t} \cos (2 t)-\mathrm{e}^{4 t} \sin (2 t) & \mathrm{e}^{4 t} \sin (2 t) \\
-2 \mathrm{e}^{4 t} \sin (2 t) & \mathrm{e}^{4 t} \cos (2 t)+\mathrm{e}^{4 t} \sin (2 t)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathrm{e}^{4 t}(\cos (2 t)-\sin (2 t)) & \mathrm{e}^{4 t} \sin (2 t) \\
-2 \mathrm{e}^{4 t} \sin (2 t) & \mathrm{e}^{4 t}(\sin (2 t)+\cos (2 t))
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{4 t}(\cos (2 t)-\sin (2 t)) & \mathrm{e}^{4 t} \sin (2 t) \\
-2 \mathrm{e}^{4 t} \sin (2 t) & \mathrm{e}^{4 t}(\sin (2 t)+\cos (2 t))
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{4 t}(\cos (2 t)-\sin (2 t))+\mathrm{e}^{4 t} \sin (2 t) \\
-2 \mathrm{e}^{4 t} \sin (2 t)+\mathrm{e}^{4 t}(\sin (2 t)+\cos (2 t))
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{4 t} \cos (2 t) \\
\mathrm{e}^{4 t}(\cos (2 t)-\sin (2 t))
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

11.8.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
2 & 2 \\
-4 & 6
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2 & 2 \\
-4 & 6
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & 2 \\
-4 & 6-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-8 \lambda+20=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=4+2 i \\
& \lambda_{2}=4-2 i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$4+2 i$	1	complex eigenvalue
$4-2 i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=4-2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
2 & 2 \\
-4 & 6
\end{array}\right]-(4-2 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-2+2 i & 2 \\
-4 & 2+2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2+2 i & 2 & 0 \\
-4 & 2+2 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+(-1-i) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-2+2 i & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2+2 i & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(\frac{1}{2}+\frac{i}{2}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{i}{2}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2}+\frac{i}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}+\frac{i}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
1+i \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=4+2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
2 & 2 \\
-4 & 6
\end{array}\right]-(4+2 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-2-2 i & 2 \\
-4 & 2-2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2-2 i & 2 & 0 \\
-4 & 2-2 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+(-1+i) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-2-2 i & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2-2 i & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(\frac{1}{2}-\frac{i}{2}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{i}{2}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2}-\frac{i}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}-\frac{i}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
1-i \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$4+2 i$	1	1	No	$\left[\begin{array}{c}\frac{1}{2}-\frac{i}{2} \\ 1\end{array}\right]$
$4-2 i$	1	1	No	$\left[\begin{array}{c}\frac{1}{2}+\frac{i}{2} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{i}{2}\right) \mathrm{e}^{(4+2 i) t} \\
\mathrm{e}^{(4+2 i) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{i}{2}\right) \mathrm{e}^{(4-2 i) t} \\
\mathrm{e}^{(4-2 i) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{i}{2}\right) c_{1} \mathrm{e}^{(4+2 i) t}+\left(\frac{1}{2}+\frac{i}{2}\right) c_{2} \mathrm{e}^{(4-2 i) t} \\
c_{1} \mathrm{e}^{(4+2 i) t}+c_{2} \mathrm{e}^{(4-2 i) t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=1 \tag{1}\\
y(0)=1
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{i}{2}\right) c_{1}+\left(\frac{1}{2}+\frac{i}{2}\right) c_{2} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{l}
c_{1}=\frac{1}{2}+\frac{i}{2} \\
c_{2}=\frac{1}{2}-\frac{i}{2}
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\frac{\mathrm{e}^{(4+2 i) t}}{2}+\frac{\mathrm{e}^{(4-2 i) t}}{2} \\
\left(\frac{1}{2}-\frac{i}{2}\right) \mathrm{e}^{(4-2 i) t}+\left(\frac{1}{2}+\frac{i}{2}\right) \mathrm{e}^{(4+2 i) t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 419: Phase plot

The following are plots of each solution.
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 33

```
dsolve([diff(x(t),t) = 2*x(t)+2*y(t), diff (y(t),t) = -4*x(t)+6*y(t), x(0) = 1, y(0) = 1], si
```

$$
\begin{aligned}
& x(t)=\mathrm{e}^{4 t} \cos (2 t) \\
& y(t)=\mathrm{e}^{4 t}(\cos (2 t)-\sin (2 t))
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 35
DSolve $\left[\left\{x^{\prime}[t]==2 * x[t]+2 * y[t], y^{\prime}[t]==-4 * x[t]+6 * y[t]\right\},\{x[0]==1, y[0]==1\},\{x[t], y[t]\}, t\right.$, IncludeS

$$
\begin{aligned}
x(t) & \rightarrow e^{4 t} \cos (2 t) \\
y(t) & \rightarrow e^{4 t}(\cos (2 t)-\sin (2 t))
\end{aligned}
$$

11.9 problem 11

11.9.1 Solution using Matrix exponential method 2045
11.9.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2046

Internal problem ID [13106]
Internal file name [OUTPUT/11761_Sunday_December_03_2023_07_16_22_PM_58303665/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-3 x(t)-5 y \\
y^{\prime} & =3 x(t)+y
\end{aligned}
$$

With initial conditions

$$
[x(0)=4, y(0)=0]
$$

11.9.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-3 & -5 \\
3 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{-t} \cos (\sqrt{11} t)-\frac{2 \mathrm{e}^{-t} \sin (\sqrt{11} t) \sqrt{11}}{11} & -\frac{5 \mathrm{e}^{-t} \sin (\sqrt{11} t) \sqrt{11}}{11} \\
\frac{3 \mathrm{e}^{-t} \sin (\sqrt{11} t) \sqrt{11}}{11} & \mathrm{e}^{-t} \cos (\sqrt{11} t)+\frac{2 \mathrm{e}^{-t} \sin (\sqrt{11} t) \sqrt{11}}{11}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-t}\left(\cos (\sqrt{11} t)-\frac{2 \sin (\sqrt{11} t) \sqrt{11}}{11}\right) & -\frac{5 \mathrm{e}^{-t} \sin (\sqrt{11} t) \sqrt{11}}{11} \\
\frac{3 \mathrm{e}^{-t} \sin (\sqrt{11} t) \sqrt{11}}{11} & \frac{\mathrm{e}^{-t}(2 \sin (\sqrt{11} t) \sqrt{11}+11 \cos (\sqrt{11} t))}{11}
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-t}\left(\cos (\sqrt{11} t)-\frac{2 \sin (\sqrt{11} t) \sqrt{11}}{11}\right) & -\frac{5 \mathrm{e}^{-t} \sin (\sqrt{11} t) \sqrt{11}}{11} \\
\frac{3 \mathrm{e}^{-t} \sin (\sqrt{11} t) \sqrt{11}}{11} & \frac{\mathrm{e}^{-t}(2 \sin (\sqrt{11} t) \sqrt{11}+11 \cos (\sqrt{11} t))}{11}
\end{array}\right]\left[\begin{array}{l}
4 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
4 \mathrm{e}^{-t\left(\cos (\sqrt{11} t)-\frac{2 \sin (\sqrt{11} t) \sqrt{11}}{11}\right)} \\
\frac{12 \mathrm{e}^{-t} \sin (\sqrt{11} t) \sqrt{11}}{11}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

11.9.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-3 & -5 \\
3 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-3 & -5 \\
3 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-3-\lambda & -5 \\
3 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+2 \lambda+12=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1+i \sqrt{11} \\
& \lambda_{2}=-1-i \sqrt{11}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-1-i \sqrt{11}$	1	complex eigenvalue
$-1+i \sqrt{11}$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1-i \sqrt{11}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-3 & -5 \\
3 & 1
\end{array}\right]-(-1-i \sqrt{11})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-2+i \sqrt{11} & -5 \\
3 & 2+i \sqrt{11}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
-2+i \sqrt{11} & -5 & 0 \\
3 & 2+i \sqrt{11} & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}-\frac{3 R_{1}}{-2+i \sqrt{11}} \Longrightarrow\left[\begin{array}{cc|c}
-2+i \sqrt{11} & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2+i \sqrt{11} & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{5 t}{-2+i \sqrt{11}}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{5 t}{-2+\mathrm{I} \sqrt{11}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{5 t}{-2+i \sqrt{11}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{5 t}{-2+\mathrm{I} \sqrt{11}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{5}{-2+i \sqrt{11}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{5 t}{-2+\mathrm{I} \sqrt{11}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{5}{-2+i \sqrt{11}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{5 t}{-2+\mathrm{I} \sqrt{11}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{5}{-2+i \sqrt{11}} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-1+i \sqrt{11}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-3 & -5 \\
3 & 1
\end{array}\right]-(-1+i \sqrt{11})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-2-i \sqrt{11} & -5 \\
3 & 2-i \sqrt{11}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2-i \sqrt{11} & -5 & 0 \\
3 & 2-i \sqrt{11} & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{3 R_{1}}{-2-i \sqrt{11}} \Longrightarrow\left[\begin{array}{cc|c}
-2-i \sqrt{11} & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2-i \sqrt{11} & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{5 t}{2+i \sqrt{11}}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{5 t}{2+\mathrm{I} \sqrt{11}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{5 t}{2+i \sqrt{11}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{5 t}{2+\mathrm{I} \sqrt{11}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{5}{2+i \sqrt{11}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{5 t}{2+\mathrm{I} \sqrt{11}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{5}{2+i \sqrt{11}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{5 t}{2+\mathrm{I} \sqrt{11}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{5}{2+i \sqrt{11}} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$-1+i \sqrt{11}$	1	1	No	$\left[\begin{array}{c}-\frac{5}{2+i \sqrt{11}} \\ 1\end{array}\right]$
$-1-i \sqrt{11}$	1	1	No	$\left[\begin{array}{c}-\frac{5}{2-i \sqrt{11}} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{5 \mathrm{e}^{(-1+i \sqrt{11}) t}}{2+i \sqrt{11}} \\
\mathrm{e}^{(-1+i \sqrt{11}) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{5 \mathrm{e}^{(-1-i \sqrt{11}) t}}{2-i \sqrt{11}} \\
\mathrm{e}^{(-1-i \sqrt{11}) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\frac{2 i c_{2}\left(i-\frac{\sqrt{11}}{2}\right) \mathrm{e}^{-(i \sqrt{11}+1) t}}{3}+\frac{2 i\left(i+\frac{\sqrt{11}}{2}\right) \mathrm{e}^{(-1+i \sqrt{11}) t} c_{1}}{3} \\
c_{1} \mathrm{e}^{(-1+i \sqrt{11}) t}+c_{2} \mathrm{e}^{-(i \sqrt{11}+1) t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=4 \tag{1}\\
y(0)=0
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
4 \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{i\left(c_{1}-c_{2}\right) \sqrt{11}}{3}-\frac{2 c_{1}}{3}-\frac{2 c_{2}}{3} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=-\frac{6 i \sqrt{11}}{11} \\
c_{2}=\frac{6 i \sqrt{11}}{11}
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-\frac{4 \sqrt{11}\left(i-\frac{\sqrt{11}}{2}\right) \mathrm{e}^{-(i \sqrt{11}+1) t}}{11}+\frac{4\left(i+\frac{\sqrt{11}}{2}\right) \mathrm{e}^{(-1+i \sqrt{11}) t} \sqrt{11}}{11} \\
-\frac{6 i \sqrt{11} \mathrm{e}^{(-1+i \sqrt{11}) t}}{11}+\frac{6 i \sqrt{11} \mathrm{e}^{-(i \sqrt{11}+1) t}}{11}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 420: Phase plot

The following are plots of each solution.
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 48
dsolve $([\operatorname{diff}(x(t), t)=-3 * x(t)-5 * y(t), \operatorname{diff}(y(t), t)=3 * x(t)+y(t), x(0)=4, y(0)=0]$, sing

$$
\begin{aligned}
& x(t)=\mathrm{e}^{-t}\left(-\frac{8 \sqrt{11} \sin (\sqrt{11} t)}{11}+4 \cos (\sqrt{11} t)\right) \\
& y(t)=\frac{12 \mathrm{e}^{-t} \sqrt{11} \sin (\sqrt{11} t)}{11}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 63
DSolve $\left[\left\{x^{\prime}[t]==-3 * x[t]-5 * y[t], y^{\prime}[t]==3 * x[t]+1 * y[t]\right\},\{x[0]==4, y[0]==0\},\{x[t], y[t]\}, t\right.$, IncludeS

$$
\begin{aligned}
x(t) & \rightarrow \frac{4}{11} e^{-t}(11 \cos (\sqrt{11} t)-2 \sqrt{11} \sin (\sqrt{11} t)) \\
y(t) & \rightarrow \frac{12 e^{-t} \sin (\sqrt{11} t)}{\sqrt{11}}
\end{aligned}
$$

11.10 problem 12

11.10.1 Solution using Matrix exponential method 2053
11.10.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2054

Internal problem ID [13107]
Internal file name [OUTPUT/11762_Sunday_December_03_2023_07_16_23_PM_20812460/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =2 y \\
y^{\prime} & =-2 x(t)-y
\end{aligned}
$$

With initial conditions

$$
[x(0)=-1, y(0)=1]
$$

11.10.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & 2 \\
-2 & -1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-\frac{t}{2} \sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)}}{15}+\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{\sqrt{15} t}{2}\right) & \frac{4 \mathrm{e}^{-\frac{t}{2} \sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)}}{15} \\
-\frac{4 \mathrm{e}^{-\frac{t}{2} \sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)}}{15} & \mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{\sqrt{15} t}{2}\right)-\frac{\mathrm{e}^{-\frac{t}{2} \sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)}}{15}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{\left(\sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)+15 \cos \left(\frac{\sqrt{15} t}{2}\right)\right) \mathrm{e}^{-\frac{t}{2}}}{15} & \frac{4 \mathrm{e}^{-\frac{t}{2} \sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)}}{15} \\
-\frac{4 \mathrm{e}^{-\frac{t}{2} \sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)}}{15} & -\frac{\mathrm{e}^{-\frac{t}{2}}\left(\sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)-15 \cos \left(\frac{\sqrt{15} t}{2}\right)\right)}{15}
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\frac{\left(\sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)+15 \cos \left(\frac{\sqrt{15} t}{2}\right)\right) \mathrm{e}^{-\frac{t}{2}}}{15} & \frac{4 \mathrm{e}^{-\frac{t}{2} \sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)}}{15} \\
-\frac{4 \mathrm{e}^{-\frac{t}{2} \sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)}}{15} & -\frac{\mathrm{e}^{-\frac{t}{2}}\left(\sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)-15 \cos \left(\frac{\sqrt{15} t}{2}\right)\right)}{15}
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{\left(\sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)+15 \cos \left(\frac{\sqrt{15} t}{2}\right)\right) \mathrm{e}^{-\frac{t}{2}}}{15}+\frac{4 \mathrm{e}^{-\frac{t}{2} \sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)}}{15} \\
\frac{4 \mathrm{e}^{-\frac{t}{2} \sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)}}{15}-\frac{\mathrm{e}^{-\frac{t}{2}}\left(\sqrt{15} \sin \left(\frac{\sqrt{15} t}{1}\right)-15 \cos \left(\frac{\sqrt{15} t}{2}\right)\right)}{15}
\end{array}\right] \\
& =\left[\begin{array}{l}
\left.\frac{\mathrm{e}^{-\frac{t}{2}}\left(\sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)-5 \cos \left(\frac{\sqrt{15} t}{2}\right)\right)}{5}\right] \\
\frac{\mathrm{e}^{-\frac{t}{2}}\left(\sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)+5 \cos \left(\frac{\sqrt{15} t}{2}\right)\right)}{5}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

11.10.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & 2 \\
-2 & -1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
0 & 2 \\
-2 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & 2 \\
-2 & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+\lambda+4=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{i \sqrt{15}}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{15}}{2}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-\frac{1}{2}+\frac{i \sqrt{15}}{2}$	1	complex eigenvalue
$-\frac{1}{2}-\frac{i \sqrt{15}}{2}$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-\frac{1}{2}-\frac{i \sqrt{15}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
0 & 2 \\
-2 & -1
\end{array}\right]-\left(-\frac{1}{2}-\frac{i \sqrt{15}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
\frac{1}{2}+\frac{i \sqrt{15}}{2} & 2 \\
-2 & -\frac{1}{2}+\frac{i \sqrt{15}}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
\frac{1}{2}+\frac{i \sqrt{15}}{2} & 2 & 0 \\
-2 & -\frac{1}{2}+\frac{i \sqrt{15}}{2} & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}+\frac{2 R_{1}}{\frac{1}{2}+\frac{i \sqrt{15}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
\frac{1}{2}+\frac{i \sqrt{15}}{2} & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{1}{2}+\frac{i \sqrt{15}}{2} & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{4 t}{i \sqrt{15}+1}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{4 t}{\mathrm{I} \sqrt{15+1}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{4 t}{i \sqrt{15+1}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{4 t}{\mathrm{I} \sqrt{15}+1} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{4}{i \sqrt{15}+1} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{4 t}{\mathrm{I} \sqrt{15+1}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{4}{i \sqrt{15}+1} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{4 t}{\mathrm{I} \sqrt{15}+1} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{4}{i \sqrt{15}+1} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-\frac{1}{2}+\frac{i \sqrt{15}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
0 & 2 \\
-2 & -1
\end{array}\right]-\left(-\frac{1}{2}+\frac{i \sqrt{15}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=} \\
& {\left[\begin{array}{l}
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{cc}
\frac{1}{2}-\frac{i \sqrt{15}}{2} & 2 \\
-2 & -\frac{1}{2}-\frac{i \sqrt{15}}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
\frac{1}{2}-\frac{i \sqrt{15}}{2} & 2 & 0 \\
-2 & -\frac{1}{2}-\frac{i \sqrt{15}}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{2 R_{1}}{\frac{1}{2}-\frac{i \sqrt{15}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
\frac{1}{2}-\frac{i \sqrt{15}}{2} & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{1}{2}-\frac{i \sqrt{15}}{2} & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{4 t}{-1+i \sqrt{15}}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{4 t}{-1+\mathrm{I} \sqrt{15}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{4 t}{-1+i \sqrt{15}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{4 t}{-1+\mathrm{I} \sqrt{15}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{4}{-1+i \sqrt{15}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{4 t}{-1+\mathrm{I} \sqrt{15}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{4}{-1+i \sqrt{15}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{4 t}{-1+\mathrm{I} \sqrt{15}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{4}{-1+i \sqrt{15}} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$-\frac{1}{2}+\frac{i \sqrt{15}}{2}$	1	1	No	$\left[\begin{array}{c}\frac{2}{-\frac{1}{2}+\frac{i \sqrt{15}}{2}} \\ 1\end{array}\right]$
$-\frac{1}{2}-\frac{i \sqrt{15}}{2}$	1	1	No	$\left[\begin{array}{c}\frac{2}{-\frac{1}{2}-\frac{i \sqrt{15}}{2}} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{2 \mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{15}}{2}\right) t}}{-\frac{1}{2}+\frac{i \sqrt{15}}{2}} \\
\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{15}}{2}\right) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{2 \mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{15}}{2}\right) t}}{-\frac{1}{2}-\frac{i \sqrt{15}}{2}} \\
\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{15}}{2}\right) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\frac{i(-\sqrt{15}+i) c_{1} \mathrm{e}^{\frac{(-1+i \sqrt{15}) t}{2}}}{4}+\frac{i(i+\sqrt{15}) \mathrm{e}^{-\frac{(i \sqrt{15}+1) t}{2} c_{2}}}{4} \\
c_{1} \mathrm{e}^{\frac{(-1+i \sqrt{15}) t}{2}}+c_{2} \mathrm{e}^{-\frac{(i \sqrt{15}+1) t}{2}}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{c}
x(0)=-1 \tag{1}\\
y(0)=1
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{i\left(-c_{1}+c_{2}\right) \sqrt{15}}{4}-\frac{c_{1}}{4}-\frac{c_{2}}{4} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=-\frac{(-\sqrt{15}+3 i) \sqrt{15}}{30} \\
c_{2}=\frac{\sqrt{15}(\sqrt{15}+3 i)}{30}
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-\frac{i(-\sqrt{15}+i)(-\sqrt{15}+3 i) \sqrt{15} \mathrm{e}^{\frac{(-1+i \sqrt{15}) t}{2}}}{120}+\frac{i(i+\sqrt{15}) \mathrm{e}^{-\frac{(i \sqrt{15}+1) t}{2} \sqrt{15}(\sqrt{15}+3 i)}}{120} \\
-\frac{(-\sqrt{15}+3 i) \sqrt{15} \mathrm{e}^{\frac{(-1+i \sqrt{15}) t}{2}}}{30}+\frac{\sqrt{15}(\sqrt{15}+3 i) \mathrm{e}^{-\frac{(i \sqrt{15}+1) t}{2}}}{30}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 421: Phase plot

The following are plots of each solution.
\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 63
dsolve([diff $(x(t), t)=2 * y(t), \operatorname{diff}(y(t), t)=-2 * x(t)-y(t), x(0)=-1, y(0)=1]$, singsol $=a l$

$$
\begin{aligned}
& x(t)=\mathrm{e}^{-\frac{t}{2}}\left(\frac{\sqrt{15} \sin \left(\frac{t \sqrt{15}}{2}\right)}{5}-\cos \left(\frac{t \sqrt{15}}{2}\right)\right) \\
& y(t)=-\frac{\mathrm{e}^{-\frac{t}{2}}\left(-\frac{4 \sqrt{15} \sin \left(\frac{t \sqrt{15}}{2}\right)}{5}-4 \cos \left(\frac{t \sqrt{15}}{2}\right)\right)}{4}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 92
DSolve $\left[\left\{x^{\prime}[t]==2 * y[t], y^{\prime}[t]==-2 * x[t]-1 * y[t]\right\},\{x[0]==-1, y[0]==1\},\{x[t], y[t]\}, t\right.$, IncludeSingula

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{5} e^{-t / 2}\left(\sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)-5 \cos \left(\frac{\sqrt{15} t}{2}\right)\right) \\
& y(t) \rightarrow \frac{1}{5} e^{-t / 2}\left(\sqrt{15} \sin \left(\frac{\sqrt{15} t}{2}\right)+5 \cos \left(\frac{\sqrt{15} t}{2}\right)\right)
\end{aligned}
$$

11.11 problem 13

11.11.1 Solution using Matrix exponential method 2061
11.11.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2062

Internal problem ID [13108]
Internal file name [OUTPUT/11763_Sunday_December_03_2023_07_16_23_PM_57207460/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =2 x(t)-6 y \\
y^{\prime} & =2 x(t)+y
\end{aligned}
$$

With initial conditions

$$
[x(0)=2, y(0)=1]
$$

11.11.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
2 & -6 \\
2 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{\frac{3 t}{2}} \cos \left(\frac{\sqrt{47} t}{2}\right)+\frac{\sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47} & -\frac{12 \sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47} \\
\frac{4 \sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47} & \mathrm{e}^{\frac{3 t}{2}} \cos \left(\frac{\sqrt{47} t}{2}\right)-\frac{\sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)+47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}{47} & -\frac{12 \sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47} \\
\frac{4 \sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47} & -\frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)-47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}{47}
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)+47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}{47} & -\frac{12 \sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47} \\
\frac{4 \sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47} & -\frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)-47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}{47}
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)+47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}{47}-\frac{12 \sqrt{47} \mathrm{e}^{\frac{3 t}{2} \sin \left(\frac{\sqrt{47} t}{2}\right)}}{47} \\
\frac{8 \sqrt{47} \mathrm{e}^{\frac{3 t}{2} \sin \left(\frac{\sqrt{47} t}{2}\right)}}{47}-\frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)-47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}{47}
\end{array}\right] \\
& =\left[\begin{array}{c}
2 \mathrm{e}^{\frac{3 t}{2}\left(-\frac{5 \sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47}+\cos \left(\frac{\sqrt{47} t}{2}\right)\right)} \\
\frac{\mathrm{e}^{\frac{3 t}{2}}\left(7 \sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)+47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}{47}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

11.11.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
2 & -6 \\
2 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2 & -6 \\
2 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & -6 \\
2 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-3 \lambda+14=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=\frac{3}{2}+\frac{i \sqrt{47}}{2} \\
& \lambda_{2}=\frac{3}{2}-\frac{i \sqrt{47}}{2}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$\frac{3}{2}-\frac{i \sqrt{47}}{2}$	1	complex eigenvalue
$\frac{3}{2}+\frac{i \sqrt{47}}{2}$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=\frac{3}{2}-\frac{i \sqrt{47}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
2 & -6 \\
2 & 1
\end{array}\right]-\left(\frac{3}{2}-\frac{i \sqrt{47}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
\frac{1}{2}+\frac{i \sqrt{47}}{2} & -6 \\
2 & -\frac{1}{2}+\frac{i \sqrt{47}}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
\frac{1}{2}+\frac{i \sqrt{47}}{2} & -6 & 0 \\
2 & -\frac{1}{2}+\frac{i \sqrt{47}}{2} & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}-\frac{2 R_{1}}{\frac{1}{2}+\frac{i \sqrt{47}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
\frac{1}{2}+\frac{i \sqrt{47}}{2} & -6 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{1}{2}+\frac{i \sqrt{47}}{2} & -6 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{12 t}{1+i \sqrt{47}}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{12 t}{1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{12 t}{1+i \sqrt{47}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{12 t}{1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{12}{1+i \sqrt{47}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{12 t}{1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{12}{1+i \sqrt{47}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{12 t}{1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{12}{1+i \sqrt{47}} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=\frac{3}{2}+\frac{i \sqrt{47}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
2 & -6 \\
2 & 1
\end{array}\right]-\left(\frac{3}{2}+\frac{i \sqrt{47}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
\frac{1}{2}-\frac{i \sqrt{47}}{2} & -6 \\
2 & -\frac{1}{2}-\frac{i \sqrt{47}}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
\frac{1}{2}-\frac{i \sqrt{47}}{2} & -6 & 0 \\
2 & -\frac{1}{2}-\frac{i \sqrt{47}}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{2 R_{1}}{\frac{1}{2}-\frac{i \sqrt{47}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
\frac{1}{2}-\frac{i \sqrt{47}}{2} & -6 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{1}{2}-\frac{i \sqrt{47}}{2} & -6 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{12 t}{-1+i \sqrt{47}}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{12 t}{-1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{12 t}{-1+i \sqrt{47}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{12 t}{-1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{12}{-1+i \sqrt{47}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{12 t}{-1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{12}{-1+i \sqrt{47}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{12 t}{-1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{12}{-1+i \sqrt{47}} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity		algebraic m	geometric k
	defective?	eivenvectors		
2	1	1	No	$\left[\begin{array}{c}-\frac{6}{-\frac{1}{2}+\frac{i \sqrt{47}}{27}} \\ 1\end{array}\right]$
$\frac{3}{2}-\frac{i \sqrt{47}}{2}$	1	1	No	$\left[\begin{array}{c}-\frac{6}{-\frac{1}{2}-\frac{i \sqrt{47}}{2}} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{6 \mathrm{e}^{\left(\frac{3}{2}+\frac{i \sqrt{47}}{2}\right) t}}{-\frac{1}{2}+\frac{i \sqrt{47}}{2}} \\
\mathrm{e}^{\left(\frac{3}{2}+\frac{i \sqrt{47}}{2}\right) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{6 \mathrm{e}^{\left(\frac{3}{2}-\frac{i \sqrt{47}}{2}\right) t}}{-\frac{1}{2}-\frac{i \sqrt{47}}{2}} \\
\mathrm{e}^{\left(\frac{3}{2}-\frac{i \sqrt{47}}{2}\right) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-\frac{i(i-\sqrt{47}) c_{1} \mathrm{e}^{\frac{(3+i \sqrt{47}) t}{2}}}{4}-\frac{i \mathrm{e}^{-\frac{(i \sqrt{47}-3) t}{2}} c_{2}(i+\sqrt{47})}{4} \\
c_{1} \mathrm{e}^{\frac{(3+i \sqrt{47}) t}{2}}+c_{2} \mathrm{e}^{-\frac{(i \sqrt{47}-3) t}{2}}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=2 \tag{1}\\
y(0)=1
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{i\left(c_{1}-c_{2}\right) \sqrt{47}}{4}+\frac{c_{1}}{4}+\frac{c_{2}}{4} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=-\frac{(-\sqrt{47}+7 i) \sqrt{47}}{94} \\
c_{2}=\frac{\sqrt{47}(\sqrt{47}+7 i)}{94}
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\frac{i(i-\sqrt{47})(-\sqrt{47}+7 i) \sqrt{47} \mathrm{e}^{\frac{(3+i \sqrt{47}) t}{2}}}{376}-\frac{i e^{-\frac{(i \sqrt{47}-3) t}{2} \sqrt{47}(\sqrt{47}+7 i)(i+\sqrt{47})}}{376} \\
-\frac{(-\sqrt{47}+7 i) \sqrt{47} \mathrm{e}^{\frac{(3+i \sqrt{47}) t}{2}}}{94}+\frac{\sqrt{47}(\sqrt{47}+7 i) \mathrm{e}^{-\frac{(i \sqrt{47}-3) t}{2}}}{94}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 422: Phase plot

The following are plots of each solution.
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 63

```
dsolve([diff(x(t),t) = 2*x(t)-6*y(t), diff (y(t),t) = 2*x(t)+y(t), x(0) = 2, y(0) = 1], sings
```

$$
\begin{aligned}
& x(t)=\mathrm{e}^{\frac{3 t}{2}}\left(-\frac{10 \sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47}+2 \cos \left(\frac{\sqrt{47} t}{2}\right)\right) \\
& y(t)=\frac{\mathrm{e}^{\frac{3 t}{2}}\left(\frac{84 \sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47}+12 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}{12}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 94
DSolve $\left[\left\{x^{\prime}[t]==2 * x[t]-6 * y[t], y^{\prime}[t]==2 * x[t]+1 * y[t]\right\},\{x[0]==2, y[0]==1\},\{x[t], y[t]\}, t\right.$, IncludeSi

$$
\begin{aligned}
& x(t) \rightarrow \frac{2}{47} e^{3 t / 2}\left(47 \cos \left(\frac{\sqrt{47} t}{2}\right)-5 \sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)\right) \\
& y(t) \rightarrow \frac{1}{47} e^{3 t / 2}\left(7 \sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)+47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)
\end{aligned}
$$

11.12 problem 14

11.12.1 Solution using Matrix exponential method 2069
11.12.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2070

Internal problem ID [13109]
Internal file name [OUTPUT/11764_Sunday_December_03_2023_07_16_24_PM_94633801/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =x(t)+4 y \\
y^{\prime} & =-3 x(t)+2 y
\end{aligned}
$$

With initial conditions

$$
[x(0)=1, y(0)=-1]
$$

11.12.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & 4 \\
-3 & 2
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{\frac{3 t}{2}} \cos \left(\frac{\sqrt{47} t}{2}\right)-\frac{\sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47} & \frac{8 \sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47} \\
-\frac{6 \sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47} & \mathrm{e}^{\frac{3 t}{2}} \cos \left(\frac{\sqrt{47} t}{2}\right)+\frac{\sqrt{47} \mathrm{e}^{\frac{33}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47}
\end{array}\right] \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)-47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}{47} & \frac{8 \sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{477} \\
-\frac{6 \sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47} & \frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)+47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}{47}
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)-47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}{47} & \frac{8 \sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47} \\
-\frac{6 \sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47} & \frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)+47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}{47}
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)-47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}{47}-\frac{8 \sqrt{47} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47} \\
-\frac{6 \sqrt{47} \mathrm{e}^{\frac{3 t}{2} \sin \left(\frac{\sqrt{47} t}{2}\right)}}{47}-\frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)+47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}{47}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{\frac{3 t}{2}\left(-\frac{9 \sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47}+\cos \left(\frac{\sqrt{47} t}{2}\right)\right)} \\
-\frac{\mathrm{e}^{\frac{3 t}{2}}\left(7 \sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)+47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}{47}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

11.12.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & 4 \\
-3 & 2
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1 & 4 \\
-3 & 2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 4 \\
-3 & 2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-3 \lambda+14=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=\frac{3}{2}+\frac{i \sqrt{47}}{2} \\
& \lambda_{2}=\frac{3}{2}-\frac{i \sqrt{47}}{2}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$\frac{3}{2}-\frac{i \sqrt{47}}{2}$	1	complex eigenvalue
$\frac{3}{2}+\frac{i \sqrt{47}}{2}$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=\frac{3}{2}-\frac{i \sqrt{47}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & 4 \\
-3 & 2
\end{array}\right]-\left(\frac{3}{2}-\frac{i \sqrt{47}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-\frac{1}{2}+\frac{i \sqrt{47}}{2} & 4 \\
-3 & \frac{1}{2}+\frac{i \sqrt{47}}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
-\frac{1}{2}+\frac{i \sqrt{47}}{2} & 4 & 0 \\
-3 & \frac{1}{2}+\frac{i \sqrt{47}}{2} & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}+\frac{3 R_{1}}{-\frac{1}{2}+\frac{i \sqrt{47}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
-\frac{1}{2}+\frac{i \sqrt{47}}{2} & 4 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-\frac{1}{2}+\frac{i \sqrt{47}}{2} & 4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{8 t}{-1+i \sqrt{47}}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{8 t}{-1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{8 t}{-1+i \sqrt{47}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{8 t}{-1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{8}{-1+i \sqrt{47}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{8 t}{-1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{8}{-1+i \sqrt{47}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{8 t}{-1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{8}{-1+i \sqrt{47}} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=\frac{3}{2}+\frac{i \sqrt{47}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & 4 \\
-3 & 2
\end{array}\right]-\left(\frac{3}{2}+\frac{i \sqrt{47}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-\frac{1}{2}-\frac{i \sqrt{47}}{2} & 4 \\
-3 & \frac{1}{2}-\frac{i \sqrt{47}}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-\frac{1}{2}-\frac{i \sqrt{47}}{2} & 4 & 0 \\
-3 & \frac{1}{2}-\frac{i \sqrt{47}}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{3 R_{1}}{-\frac{1}{2}-\frac{i \sqrt{47}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
-\frac{1}{2}-\frac{i \sqrt{47}}{2} & 4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-\frac{1}{2}-\frac{i \sqrt{47}}{2} & 4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{8 t}{1+i \sqrt{47}}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{8 t}{1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{8 t}{1+i \sqrt{47}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{8 t}{1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{8}{1+i \sqrt{47}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{8 t}{1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{8}{1+i \sqrt{47}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{8 t}{1+\mathrm{I} \sqrt{47}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{8}{1+i \sqrt{47}} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$\frac{3}{2}+\frac{i \sqrt{47}}{2}$	1	1	No	$\left[\begin{array}{c}\frac{4}{\frac{1}{2}+\frac{i \sqrt{47}}{2}} \\ 1\end{array}\right]$
$\frac{3}{2}-\frac{i \sqrt{47}}{2}$	1	1	No	$\left[\begin{array}{c}\left.\frac{4}{2} \begin{array}{c}\frac{i \sqrt{47}}{2} \\ 1\end{array}\right] \\ \hline\end{array} \mathrm{l}\right.$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{4 \mathrm{e}^{\left(\frac{3}{2}+\frac{i \sqrt{47}}{2}\right) t}}{\frac{1}{2}+\frac{i \sqrt{47}}{2}} \\
\mathrm{e}^{\left(\frac{3}{2}+\frac{i \sqrt{47}}{2}\right) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{4 \mathrm{e}^{\left(\frac{3}{2}-\frac{i \sqrt{47}}{2}\right) t}}{\frac{1}{2}-\frac{i \sqrt{47}}{2}} \\
\mathrm{e}^{\left(\frac{3}{2}-\frac{i \sqrt{47}}{2}\right) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-\frac{i(i+\sqrt{47}) c_{1} \mathrm{e}^{\frac{(3+i \sqrt{47}) t}{2}}}{6}-\frac{i \mathrm{e}^{-\frac{(i \sqrt{47}-3) t}{2}} c_{2}(i-\sqrt{47})}{6} \\
c_{1} \mathrm{e}^{\frac{(3+i \sqrt{47}) t}{2}}+c_{2} \mathrm{e}^{-\frac{(i \sqrt{47}-3) t}{2}}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{c}
x(0)=1 \tag{1}\\
y(0)=-1
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
\frac{i\left(-c_{1}+c_{2}\right) \sqrt{47}}{6}+\frac{c_{1}}{6}+\frac{c_{2}}{6} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{l}
c_{1}=-\frac{(\sqrt{47}-7 i) \sqrt{47}}{94} \\
c_{2}=-\frac{\sqrt{47}(\sqrt{47}+7 i)}{94}
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\frac{i(i+\sqrt{47})(\sqrt{47}-7 i) \sqrt{47} \mathrm{e}^{\frac{(3+i \sqrt{47}) t}{2}}}{564}+\frac{i \mathrm{e}^{-\frac{(i \sqrt{47}-3) t}{2}} \sqrt{47}(\sqrt{47}+7 i)(i-\sqrt{47})}{564} \\
-\frac{(\sqrt{47}-7 i) \sqrt{47} \mathrm{e}^{\frac{(3+i \sqrt{47}) t}{2}}}{94}-\frac{\sqrt{47}(\sqrt{47}+7 i) \mathrm{e}^{-\frac{(i \sqrt{47}-3) t}{2}}}{94}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 423: Phase plot

The following are plots of each solution.
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 61
dsolve $([\operatorname{diff}(x(t), t)=x(t)+4 * y(t), \operatorname{diff}(y(t), t)=-3 * x(t)+2 * y(t), x(0)=1, y(0)=-1], \sin$

$$
\begin{aligned}
& x(t)=\mathrm{e}^{\frac{3 t}{2}\left(-\frac{9 \sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47}+\cos \left(\frac{\sqrt{47} t}{2}\right)\right)} \\
& y(t)=-\frac{\mathrm{e}^{\frac{3 t}{2}\left(\frac{56 \sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)}{47}+8 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)}}{8}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 94
DSolve $\left[\left\{x^{\prime}[t]==1 * x[t]+4 * y[t], y^{\prime}[t]==-3 * x[t]+2 * y[t]\right\},\{x[0]==1, y[0]==-1\},\{x[t], y[t]\}, t\right.$, Include

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{47} e^{3 t / 2}\left(47 \cos \left(\frac{\sqrt{47} t}{2}\right)-9 \sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)\right) \\
& y(t) \rightarrow-\frac{1}{47} e^{3 t / 2}\left(7 \sqrt{47} \sin \left(\frac{\sqrt{47} t}{2}\right)+47 \cos \left(\frac{\sqrt{47} t}{2}\right)\right)
\end{aligned}
$$

11.13 problem 24

11.13.1 Solution using Matrix exponential method 2077
11.13.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2078

Internal problem ID [13110]
Internal file name [OUTPUT/11765_Sunday_December_03_2023_07_16_24_PM_63702795/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310
Problem number: 24.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-\frac{9 x(t)}{10}-2 y \\
y^{\prime} & =x(t)+\frac{11 y}{10}
\end{aligned}
$$

With initial conditions

$$
[x(0)=1, y(0)=1]
$$

11.13.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{9}{10} & -2 \\
1 & \frac{11}{10}
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{\frac{t}{10}} \cos (t)-\mathrm{e}^{\frac{t}{10}} \sin (t) & -2 \mathrm{e}^{\frac{t}{10}} \sin (t) \\
\mathrm{e}^{\frac{t}{10}} \sin (t) & \mathrm{e}^{\frac{t}{10}} \cos (t)+\mathrm{e}^{\frac{t}{10}} \sin (t)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathrm{e}^{\frac{t}{10}}(\cos (t)-\sin (t)) & -2 \mathrm{e}^{\frac{t}{10}} \sin (t) \\
\mathrm{e}^{\frac{t}{10}} \sin (t) & \mathrm{e}^{\frac{t}{10}}(\cos (t)+\sin (t))
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{\frac{t}{10}}(\cos (t)-\sin (t)) & -2 \mathrm{e}^{\frac{t}{10}} \sin (t) \\
\mathrm{e}^{\frac{t}{10}} \sin (t) & \mathrm{e}^{\frac{t}{10}}(\cos (t)+\sin (t))
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{\frac{t}{10}}(\cos (t)-\sin (t))-2 \mathrm{e}^{\frac{t}{10}} \sin (t) \\
\mathrm{e}^{\frac{t}{10}} \sin (t)+\mathrm{e}^{\frac{t}{10}}(\cos (t)+\sin (t))
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{\frac{t}{10}}(\cos (t)-3 \sin (t)) \\
\mathrm{e}^{\frac{t}{10}}(\cos (t)+2 \sin (t))
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

11.13.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-\frac{9}{10} & -2 \\
1 & \frac{11}{10}
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\frac{9}{10} & -2 \\
1 & \frac{11}{10}
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\frac{9}{10}-\lambda & -2 \\
1 & \frac{11}{10}-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-\frac{1}{5} \lambda+\frac{101}{100}=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{10}+i \\
& \lambda_{2}=\frac{1}{10}-i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$\frac{1}{10}-i$	1	complex eigenvalue
$\frac{1}{10}+i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=\frac{1}{10}-i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-\frac{9}{10} & -2 \\
1 & \frac{11}{10}
\end{array}\right]-\left(\frac{1}{10}-i\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-1+i & -2 \\
1 & 1+i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1+i & -2 & 0 \\
1 & 1+i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(\frac{1}{2}+\frac{i}{2}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1+i & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1+i & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=(-1-i) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
(-1-\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
(-1-i) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
(-1-\mathrm{I}) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1-i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
(-1-\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1-i \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=\frac{1}{10}+i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-\frac{9}{10} & -2 \\
1 & \frac{11}{10}
\end{array}\right]-\left(\frac{1}{10}+i\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-1-i & -2 \\
1 & 1-i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1-i & -2 & 0 \\
1 & 1-i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(\frac{1}{2}-\frac{i}{2}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1-i & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1-i & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=(-1+i) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
(-1+\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
(-1+i) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
(-1+\mathrm{I}) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1+i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
(-1+\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1+i \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$\frac{1}{10}+i$	1	1	No	$\left[\begin{array}{c}-1+i \\ 1\end{array}\right]$
$\frac{1}{10}-i$	1	1	No	$\left[\begin{array}{c}-1-i \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
(-1+i) \mathrm{e}^{\left(\frac{1}{10}+i\right) t} \\
\mathrm{e}^{\left(\frac{1}{10}+i\right) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
(-1-i) \mathrm{e}^{\left(\frac{1}{10}-i\right) t} \\
\mathrm{e}^{\left(\frac{1}{10}-i\right) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
(-1+i) c_{1} \mathrm{e}^{\left(\frac{1}{10}+i\right) t}+(-1-i) c_{2} \mathrm{e}^{\left(\frac{1}{10}-i\right) t} \\
c_{1} \mathrm{e}^{\left(\frac{1}{10}+i\right) t}+c_{2} \mathrm{e}^{\left(\frac{1}{10}-i\right) t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=1 \tag{1}\\
y(0)=1
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
(-1+i) c_{1}+(-1-i) c_{2} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{l}
c_{1}=\frac{1}{2}-i \\
c_{2}=\frac{1}{2}+i
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{3 i}{2}\right) \mathrm{e}^{\left(\frac{1}{10}+i\right) t}+\left(\frac{1}{2}-\frac{3 i}{2}\right) \mathrm{e}^{\left(\frac{1}{10}-i\right) t} \\
\left(\frac{1}{2}-i\right) \mathrm{e}^{\left(\frac{1}{10}+i\right) t}+\left(\frac{1}{2}+i\right) \mathrm{e}^{\left(\frac{1}{10}-i\right) t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 424: Phase plot

The following are plots of each solution.
\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 35

```
dsolve([diff(x(t),t) = -9/10*x(t)-2*y(t), diff (y(t),t) = x (t)+11/10*y(t), x (0) = 1, y(0) =
```

$$
\begin{aligned}
& x(t)=\mathrm{e}^{\frac{t}{10}}(-3 \sin (t)+\cos (t)) \\
& y(t)=-\frac{\mathrm{e}^{\frac{t}{10}}(-4 \sin (t)-2 \cos (t))}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 38
DSolve $\left[\left\{x^{\prime}[t]==-9 / 10 * x[t]-2 * y[t], y^{\prime}[t]==x[t]+11 / 10 * y[t]\right\},\{x[0]==1, y[0]==1\},\{x[t], y[t]\}, t\right.$, Inc

$$
\begin{aligned}
& x(t) \rightarrow e^{t / 10}(\cos (t)-3 \sin (t)) \\
& y(t) \rightarrow e^{t / 10}(2 \sin (t)+\cos (t))
\end{aligned}
$$

11.14 problem 26

11.14.1 Solution using Matrix exponential method 2084
11.14.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2085
11.14.3 Maple step by step solution . 2089

Internal problem ID [13111]
Internal file name [OUTPUT/11766_Sunday_December_03_2023_07_16_25_PM_55203300/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.4 page 310
Problem number: 26.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-3 x(t)+10 y \\
y^{\prime} & =-x(t)+3 y
\end{aligned}
$$

11.14.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-3 & 10 \\
-1 & 3
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\cos (t)-3 \sin (t) & 10 \sin (t) \\
-\sin (t) & \cos (t)+3 \sin (t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\cos (t)-3 \sin (t) & 10 \sin (t) \\
-\sin (t) & \cos (t)+3 \sin (t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
(\cos (t)-3 \sin (t)) c_{1}+10 \sin (t) c_{2} \\
-\sin (t) c_{1}+(\cos (t)+3 \sin (t)) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-3 c_{1}+10 c_{2}\right) \sin (t)+c_{1} \cos (t) \\
\left(-c_{1}+3 c_{2}\right) \sin (t)+c_{2} \cos (t)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

11.14.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-3 & 10 \\
-1 & 3
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-3 & 10 \\
-1 & 3
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-3-\lambda & 10 \\
-1 & 3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+1=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =i \\
\lambda_{2} & =-i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
i	1	complex eigenvalue
$-i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-3 & 10 \\
-1 & 3
\end{array}\right]-(-i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-3+i & 10 \\
-1 & 3+i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-3+i & 10 & 0 \\
-1 & 3+i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{3}{10}-\frac{i}{10}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-3+i & 10 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-3+i & 10 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=(3+i) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
(3+\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
(3+i) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
(3+\mathrm{I}) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
3+i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
(3+\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
3+i \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-3 & 10 \\
-1 & 3
\end{array}\right]-(i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-3-i & 10 \\
-1 & 3-i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-3-i & 10 & 0 \\
-1 & 3-i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{3}{10}+\frac{i}{10}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-3-i & 10 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-3-i & 10 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=(3-i) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
(3-\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
(3-i) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
(3-\mathrm{I}) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
3-i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
(3-\mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
3-i \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
i	1	1	No	$\left[\begin{array}{c}3-i \\ 1\end{array}\right]$
$-i$	1	1	No	$\left[\begin{array}{c}3+i \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
(3-i) \mathrm{e}^{i t} \\
\mathrm{e}^{i t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
(3+i) \mathrm{e}^{-i t} \\
\mathrm{e}^{-i t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
(3-i) c_{1} \mathrm{e}^{i t}+(3+i) c_{2} \mathrm{e}^{-i t} \\
c_{1} \mathrm{e}^{i t}+c_{2} \mathrm{e}^{-i t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 425: Phase plot

11.14.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=-3 x(t)+10 y, y^{\prime}=-x(t)+3 y\right]
$$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
-3 & 10 \\
-1 & 3
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
-3 & 10 \\
-1 & 3
\end{array}\right] \cdot \vec{x}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
-3 & 10 \\
-1 & 3
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-\mathrm{I},\left[\begin{array}{c}
3+\mathrm{I} \\
1
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
3-\mathrm{I} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I},\left[\begin{array}{c}
3+\mathrm{I} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair
$\mathrm{e}^{-\mathrm{I} t} \cdot\left[\begin{array}{c}3+\mathrm{I} \\ 1\end{array}\right]$
- Use Euler identity to write solution in terms of sin and cos

$$
(\cos (t)-\mathrm{I} \sin (t)) \cdot\left[\begin{array}{c}
3+\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
(3+\mathrm{I})(\cos (t)-\mathrm{I} \sin (t)) \\
\cos (t)-\mathrm{I} \sin (t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{x}_{1}(t)=\left[\begin{array}{c}
3 \cos (t)+\sin (t) \\
\cos (t)
\end{array}\right], \vec{x}_{2}(t)=\left[\begin{array}{c}
\cos (t)-3 \sin (t) \\
-\sin (t)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

- Substitute solutions into the general solution

$$
\vec{x}=\left[\begin{array}{c}
c_{2}(\cos (t)-3 \sin (t))+c_{1}(3 \cos (t)+\sin (t)) \\
c_{1} \cos (t)-c_{2} \sin (t)
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\left(3 c_{1}+c_{2}\right) \cos (t)+\sin (t)\left(c_{1}-3 c_{2}\right) \\
c_{1} \cos (t)-c_{2} \sin (t)
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=\left(3 c_{1}+c_{2}\right) \cos (t)+\sin (t)\left(c_{1}-3 c_{2}\right), y=c_{1} \cos (t)-c_{2} \sin (t)\right\}
$$

Solution by Maple
Time used: 0.015 (sec). Leaf size: 38

```
dsolve([diff(x(t),t)=-3*x(t)+10*y (t), diff (y (t), t)=-x(t)+3*y(t)], singsol=all)
```

$$
\begin{aligned}
& x(t)=c_{1} \sin (t)+c_{2} \cos (t) \\
& y(t)=\frac{c_{1} \cos (t)}{10}-\frac{c_{2} \sin (t)}{10}+\frac{3 c_{1} \sin (t)}{10}+\frac{3 c_{2} \cos (t)}{10}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 42
DSolve $\left[\left\{x^{\prime}[t]==-3 * x[t]+10 * y[t], y^{\prime}[t]==-x[t]+3 * y[t]\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions

$$
\begin{aligned}
& x(t) \rightarrow 10 c_{2} \sin (t)+c_{1}(\cos (t)-3 \sin (t)) \\
& y(t) \rightarrow c_{2}(3 \sin (t)+\cos (t))-c_{1} \sin (t)
\end{aligned}
$$

12 Chapter 3. Linear Systems. Exercises section 3.5 page 327
12.1 problem 1 2093
12.2 problem 2 2101
12.3 problem 3 2109
12.4 problem 4 2117
12.5 problem 5 2125
12.6 problem 6 2133
12.7 problem 7 2141
12.8 problem 8 2149
12.9 problem 17 2157
12.10problem 18 2165
12.11problem 19 2173
12.12problem 21(a) 2181
12.13problem 21(b) 2190
12.14problem 24 2199

12.1 problem 1

12.1.1 Solution using Matrix exponential method 2093
12.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2094

Internal problem ID [13112]
Internal file name [OUTPUT/11767_Sunday_December_03_2023_07_16_25_PM_83371828/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-3 x(t) \\
y^{\prime} & =x(t)-3 y
\end{aligned}
$$

With initial conditions

$$
[x(0)=1, y(0)=0]
$$

12.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-3 & 0 \\
1 & -3
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{-3 t} & 0 \\
t \mathrm{e}^{-3 t} & \mathrm{e}^{-3 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-3 t} & 0 \\
t \mathrm{e}^{-3 t} & \mathrm{e}^{-3 t}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-3 t} \\
t \mathrm{e}^{-3 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

12.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-3 & 0 \\
1 & -3
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-3 & 0 \\
1 & -3
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-3-\lambda & 0 \\
1 & -3-\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(-3-\lambda)(-3-\lambda)=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=-3
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-3 & 0 \\
1 & -3
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ll|l}
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-3	2	1	Yes	$\left[\begin{array}{l}0 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue -3 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 426: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-3 & 0 \\
1 & -3
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] } \\
& {\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue -3 . Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
0 \\
1
\end{array}\right] \mathrm{e}^{-3 t} \\
& =\left[\begin{array}{c}
0 \\
\mathrm{e}^{-3 t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right] t+\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right) \mathrm{e}^{-3 t} \\
& =\left[\begin{array}{c}
\mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}(1+t)
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
\mathrm{e}^{-3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}(1+t)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
c_{2} \mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}\left(c_{2} t+c_{1}+c_{2}\right)
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=1 \tag{1}\\
y(0)=0
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
c_{2} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=-1 \\
c_{2}=1
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{-3 t} \\
t \mathrm{e}^{-3 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 427: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 18

```
dsolve([diff(x(t),t) = -3*x(t), diff(y(t),t) = x(t)-3*y(t), x(0) = 1, y(0) = 0], singsol=all
```

$$
\begin{aligned}
& x(t)=\mathrm{e}^{-3 t} \\
& y(t)=t \mathrm{e}^{-3 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 20
DSolve $\left[\left\{x^{\prime}[t]==-3 * x[t], y^{\prime}[t]==x[t]-3 * y[t]\right\},\{x[0]==1, y[0]==0\},\{x[t], y[t]\}, t\right.$, IncludeSingularSo

$$
\begin{aligned}
x(t) & \rightarrow e^{-3 t} \\
y(t) & \rightarrow e^{-3 t} t
\end{aligned}
$$

12.2 problem 2

12.2.1 Solution using Matrix exponential method 2101
12.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2102

Internal problem ID [13113]
Internal file name [OUTPUT/11768_Sunday_December_03_2023_07_16_26_PM_94654993/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =2 x(t)+y \\
y^{\prime} & =-x(t)-2 y
\end{aligned}
$$

With initial conditions

$$
[x(0)=1, y(0)=0]
$$

12.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
2 & 1 \\
-1 & -2
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{(3-2 \sqrt{3}) \mathrm{e}^{-\sqrt{3} t}}{6}+\frac{\mathrm{e}^{\sqrt{3} t}(3+2 \sqrt{3})}{6} & \frac{\left(-\mathrm{e}^{-\sqrt{3} t}+\mathrm{e}^{\sqrt{3} t}\right) \sqrt{3}}{6} \\
-\frac{\left(-\mathrm{e}^{-\sqrt{3} t}+\mathrm{e}^{\sqrt{3} t}\right) \sqrt{3}}{6} & \frac{(3+2 \sqrt{3}) \mathrm{e}^{-\sqrt{3} t}}{6}+\frac{(3-2 \sqrt{3}) \mathrm{e}^{\sqrt{3} t}}{6}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\frac{(3-2 \sqrt{3}) \mathrm{e}^{-\sqrt{3} t}}{6}+\frac{\mathrm{e}^{\sqrt{3} t}(3+2 \sqrt{3})}{6} & \frac{\left(-\mathrm{e}^{-\sqrt{3} t}+\mathrm{e}^{\sqrt{3} t}\right) \sqrt{3}}{6} \\
-\frac{\left(-\mathrm{e}^{-\sqrt{3} t}+\mathrm{e}^{\sqrt{3} t}\right) \sqrt{3}}{6} & \frac{(3+2 \sqrt{3}) \mathrm{e}^{-\sqrt{3} t}}{6}+\frac{(3-2 \sqrt{3}) \mathrm{e}^{\sqrt{3} t}}{6}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{(3-2 \sqrt{3}) \mathrm{e}^{-\sqrt{3} t}}{6}+\frac{\mathrm{e}^{\sqrt{3} t}(3+2 \sqrt{3})}{6} \\
-\frac{\left(-\mathrm{e}^{-\sqrt{3} t}+\mathrm{e}^{\sqrt{3} t}\right) \sqrt{3}}{6}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

12.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
2 & 1 \\
-1 & -2
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2 & 1 \\
-1 & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & 1 \\
-1 & -2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-3=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =\sqrt{3} \\
\lambda_{2} & =-\sqrt{3}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$\sqrt{3}$	1	real eigenvalue
$-\sqrt{3}$	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=\sqrt{3}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
2 & 1 \\
-1 & -2
\end{array}\right]-(\sqrt{3})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
2-\sqrt{3} & 1 \\
-1 & -2-\sqrt{3}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2-\sqrt{3} & 1 & 0 \\
-1 & -2-\sqrt{3} & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{R_{1}}{2-\sqrt{3}} \Longrightarrow\left[\begin{array}{cc|c}
2-\sqrt{3} & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2-\sqrt{3} & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{\sqrt{3}-2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{\sqrt{3}-2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{\sqrt{3}-2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{\sqrt{3}-2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{\sqrt{3}-2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{\sqrt{3}-2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\sqrt{3}-2} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-\sqrt{3}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
2 & 1 \\
-1 & -2
\end{array}\right]-(-\sqrt{3})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
2+\sqrt{3} & 1 \\
-1 & \sqrt{3}-2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2+\sqrt{3} & 1 & 0 \\
-1 & \sqrt{3}-2 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{R_{1}}{2+\sqrt{3}} \Longrightarrow\left[\begin{array}{cc|c}
2+\sqrt{3} & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2+\sqrt{3} & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{2+\sqrt{3}}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{2+\sqrt{3}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{2+\sqrt{3}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{t}{2+\sqrt{3}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{2+\sqrt{3}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{t}{2+\sqrt{3}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2+\sqrt{3}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{t}{2+\sqrt{3}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2+\sqrt{3}} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k		eigenvectors
$\sqrt{3}$	1	1	No	$\left[\begin{array}{c}\frac{1}{\sqrt{3}-2} \\ 1\end{array}\right]$
$-\sqrt{3}$	1	1	No	$\left[\begin{array}{c}\frac{1}{-2-\sqrt{3}} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue $\sqrt{3}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\sqrt{3} t} \\
& =\left[\begin{array}{c}
\frac{1}{\sqrt{3}-2} \\
1
\end{array}\right] e^{\sqrt{3} t}
\end{aligned}
$$

Since eigenvalue $-\sqrt{3}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-\sqrt{3} t} \\
& =\left[\begin{array}{c}
\frac{1}{-2-\sqrt{3}} \\
1
\end{array}\right] e^{-\sqrt{3} t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{\mathrm{e}^{\sqrt{3} t}}{\sqrt{3}-2} \\
\mathrm{e}^{\sqrt{3} t}
\end{array}\right]+c_{2}\left[\begin{array}{l}
\frac{\mathrm{e}^{-\sqrt{3} t}}{-2-\sqrt{3}} \\
\mathrm{e}^{-\sqrt{3} t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
c_{2}(\sqrt{3}-2) \mathrm{e}^{-\sqrt{3} t}-c_{1} \mathrm{e}^{\sqrt{3} t}(2+\sqrt{3}) \\
c_{1} \mathrm{e}^{\sqrt{3} t}+c_{2} \mathrm{e}^{-\sqrt{3} t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=1 \tag{1}\\
y(0)=0
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
\left(-c_{1}+c_{2}\right) \sqrt{3}-2 c_{1}-2 c_{2} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=-\frac{\sqrt{3}}{6} \\
c_{2}=\frac{\sqrt{3}}{6}
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\frac{\sqrt{3}(\sqrt{3}-2) \mathrm{e}^{-\sqrt{3} t}}{6}+\frac{\sqrt{3} \mathrm{e}^{\sqrt{3} t}(2+\sqrt{3})}{6} \\
-\frac{\sqrt{3} \mathrm{e}^{\sqrt{3} t}}{6}+\frac{\sqrt{3} \mathrm{e}^{-\sqrt{3} t}}{6}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 428: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 106

```
dsolve([diff(x(t),t) = 2*x(t)+y(t), diff(y(t),t) = -x(t)-2*y(t), x(0) = 1, y(0) = 0], singso
```

$$
\begin{aligned}
x(t)= & \left(\frac{1}{2}+\frac{\sqrt{3}}{3}\right) \mathrm{e}^{\sqrt{3} t}+\left(\frac{1}{2}-\frac{\sqrt{3}}{3}\right) \mathrm{e}^{-\sqrt{3} t} \\
y(t)= & \left(\frac{1}{2}+\frac{\sqrt{3}}{3}\right) \sqrt{3} \mathrm{e}^{\sqrt{3} t}-\left(\frac{1}{2}-\frac{\sqrt{3}}{3}\right) \sqrt{3} \mathrm{e}^{-\sqrt{3} t} \\
& -2\left(\frac{1}{2}+\frac{\sqrt{3}}{3}\right) \mathrm{e}^{\sqrt{3} t}-2\left(\frac{1}{2}-\frac{\sqrt{3}}{3}\right) \mathrm{e}^{-\sqrt{3} t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 82
DSolve $\left[\left\{x^{\prime}[t]==2 * x[t]+1 * y[t], y^{\prime}[t]==-1 * x[t]-2 * y[t]\right\},\{x[0]==1, y[0]==0\},\{x[t], y[t]\}, t\right.$, IncludeS

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{6} e^{-\sqrt{3} t}\left((3+2 \sqrt{3}) e^{2 \sqrt{3} t}+3-2 \sqrt{3}\right) \\
& y(t) \rightarrow-\frac{e^{-\sqrt{3} t}\left(e^{2 \sqrt{3} t}-1\right)}{2 \sqrt{3}}
\end{aligned}
$$

12.3 problem 3

12.3.1 Solution using Matrix exponential method 2109
12.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2110

Internal problem ID [13114]
Internal file name [OUTPUT/11769_Sunday_December_03_2023_07_16_26_PM_4516032/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-2 x(t)-y \\
y^{\prime} & =x(t)-4 y
\end{aligned}
$$

With initial conditions

$$
[x(0)=1, y(0)=0]
$$

12.3.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-2 & -1 \\
1 & -4
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{-3 t}(1+t) & -t \mathrm{e}^{-3 t} \\
t \mathrm{e}^{-3 t} & \mathrm{e}^{-3 t}(1-t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-3 t}(1+t) & -t \mathrm{e}^{-3 t} \\
t \mathrm{e}^{-3 t} & \mathrm{e}^{-3 t}(1-t)
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-3 t}(1+t) \\
t \mathrm{e}^{-3 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

12.3.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-2 & -1 \\
1 & -4
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-2 & -1 \\
1 & -4
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-2-\lambda & -1 \\
1 & -4-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+6 \lambda+9=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=-3
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-2 & -1 \\
1 & -4
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
1 & -1 & 0 \\
1 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-3	2	1	Yes	$\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue -3 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 429: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-2 & -1 \\
1 & -4
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
{\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue -3 . Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
1 \\
1
\end{array}\right] \mathrm{e}^{-3 t} \\
& =\left[\begin{array}{c}
\mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right] t+\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right) \mathrm{e}^{-3 t} \\
& =\left[\begin{array}{l}
\mathrm{e}^{-3 t}(t+2) \\
\mathrm{e}^{-3 t}(1+t)
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{-3 t}(t+2) \\
\mathrm{e}^{-3 t}(1+t)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\left((t+2) c_{2}+c_{1}\right) \mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}\left(c_{2} t+c_{1}+c_{2}\right)
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=1 \tag{1}\\
y(0)=0
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
2 c_{2}+c_{1} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=-1 \\
c_{2}=1
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{-3 t}(1+t) \\
t \mathrm{e}^{-3 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 430: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 22

```
dsolve([diff(x(t),t) = -2*x(t)-y(t), diff (y(t),t) = x (t)-4*y(t), x(0) = 1, y(0) = 0], singso
```

$$
\begin{aligned}
& x(t)=(t+1) \mathrm{e}^{-3 t} \\
& y(t)=t \mathrm{e}^{-3 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 24
DSolve $\left[\left\{x^{\prime}[t]==-2 * x[t]-1 * y[t], y^{\prime}[t]==1 * x[t]-4 * y[t]\right\},\{x[0]==1, y[0]==0\},\{x[t], y[t]\}, t\right.$, IncludeS

$$
\begin{aligned}
& x(t) \rightarrow e^{-3 t}(t+1) \\
& y(t) \rightarrow e^{-3 t} t
\end{aligned}
$$

12.4 problem 4

12.4.1 Solution using Matrix exponential method 2117
12.4.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2118

Internal problem ID [13115]
Internal file name [OUTPUT/11770_Sunday_December_03_2023_07_16_27_PM_63489899/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =y \\
y^{\prime} & =-x(t)-2 y
\end{aligned}
$$

With initial conditions

$$
[x(0)=1, y(0)=0]
$$

12.4.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-1 & -2
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
(1+t) \mathrm{e}^{-t} & t \mathrm{e}^{-t} \\
-t \mathrm{e}^{-t} & \mathrm{e}^{-t}(1-t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
(1+t) \mathrm{e}^{-t} & t \mathrm{e}^{-t} \\
-t \mathrm{e}^{-t} & \mathrm{e}^{-t}(1-t)
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
(1+t) \mathrm{e}^{-t} \\
-t \mathrm{e}^{-t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

12.4.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-1 & -2
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
0 & 1 \\
-1 & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & 1 \\
-1 & -2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+2 \lambda+1=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=-1
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
0 & 1 \\
-1 & -2
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
1 & 1 & 0 \\
-1 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{ll|l}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-1	2	1	Yes	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue -1 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 431: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
0 & 1 \\
-1 & -2
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue -1 . Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \mathrm{e}^{-t} \\
& =\left[\begin{array}{c}
-\mathrm{e}^{-t} \\
\mathrm{e}^{-t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
-1 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-2 \\
1
\end{array}\right]\right) \mathrm{e}^{-t} \\
& =\left[\begin{array}{c}
-(t+2) \mathrm{e}^{-t} \\
(1+t) \mathrm{e}^{-t}
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{-t} \\
\mathrm{e}^{-t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{-t}(-t-2) \\
(1+t) \mathrm{e}^{-t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-\left((t+2) c_{2}+c_{1}\right) \mathrm{e}^{-t} \\
\mathrm{e}^{-t}\left(c_{2} t+c_{1}+c_{2}\right)
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=1 \tag{1}\\
y(0)=0
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-2 c_{2}-c_{1} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=1 \\
c_{2}=-1
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-(-1-t) \mathrm{e}^{-t} \\
-t \mathrm{e}^{-t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 432: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 23

```
dsolve([diff(x(t),t) = y(t), diff(y(t),t) = -x(t)-2*y(t), x(0) = 1, y(0) = 0], singsol=all)
```

$$
\begin{aligned}
& x(t)=\mathrm{e}^{-t}(t+1) \\
& y(t)=-t \mathrm{e}^{-t}
\end{aligned}
$$

$\sqrt{\text { Solution by Mathematica }}$
Time used: 0.004 (sec). Leaf size: 25
DSolve $\left[\left\{x^{\prime}[t]==1 * y[t], y^{\prime}[t]==-1 * x[t]-2 * y[t]\right\},\{x[0]==1, y[0]==0\},\{x[t], y[t]\}, t\right.$, IncludeSingular

$$
\begin{aligned}
x(t) & \rightarrow e^{-t}(t+1) \\
y(t) & \rightarrow-e^{-t} t
\end{aligned}
$$

12.5 problem 5

12.5.1 Solution using Matrix exponential method 2125
12.5.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2126

Internal problem ID [13116]
Internal file name [OUTPUT/11771_Sunday_December_03_2023_07_16_27_PM_19636284/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-3 x(t) \\
y^{\prime} & =x(t)-3 y
\end{aligned}
$$

With initial conditions

$$
[x(0)=1, y(0)=0]
$$

12.5.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-3 & 0 \\
1 & -3
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{-3 t} & 0 \\
t \mathrm{e}^{-3 t} & \mathrm{e}^{-3 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-3 t} & 0 \\
t \mathrm{e}^{-3 t} & \mathrm{e}^{-3 t}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-3 t} \\
t \mathrm{e}^{-3 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

12.5.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-3 & 0 \\
1 & -3
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-3 & 0 \\
1 & -3
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-3-\lambda & 0 \\
1 & -3-\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(-3-\lambda)(-3-\lambda)=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=-3
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-3 & 0 \\
1 & -3
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ll|l}
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-3	2	1	Yes	$\left[\begin{array}{l}0 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue -3 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 433: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-3 & 0 \\
1 & -3
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] } \\
& {\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue -3 . Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
0 \\
1
\end{array}\right] \mathrm{e}^{-3 t} \\
& =\left[\begin{array}{c}
0 \\
\mathrm{e}^{-3 t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right] t+\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right) \mathrm{e}^{-3 t} \\
& =\left[\begin{array}{c}
\mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}(1+t)
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
\mathrm{e}^{-3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}(1+t)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
c_{2} \mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}\left(c_{2} t+c_{1}+c_{2}\right)
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=1 \tag{1}\\
y(0)=0
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
c_{2} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=-1 \\
c_{2}=1
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{-3 t} \\
t \mathrm{e}^{-3 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 434: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 18

```
dsolve([diff(x(t),t) = -3*x(t), diff(y(t),t) = x (t)-3*y(t), x(0) = 1, y(0) = 0], singsol=all
```

$$
\begin{aligned}
& x(t)=\mathrm{e}^{-3 t} \\
& y(t)=t \mathrm{e}^{-3 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 20
DSolve $\left[\left\{x^{\prime}[t]==-3 * x[t]+0 * y[t], y^{\prime}[t]==1 * x[t]-3 * y[t]\right\},\{x[0]==1, y[0]==0\},\{x[t], y[t]\}, t\right.$, IncludeS

$$
\begin{aligned}
x(t) & \rightarrow e^{-3 t} \\
y(t) & \rightarrow e^{-3 t} t
\end{aligned}
$$

12.6 problem 6

12.6.1 Solution using Matrix exponential method 2133
12.6.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2134

Internal problem ID [13117]
Internal file name [OUTPUT/11772_Sunday_December_03_2023_07_16_27_PM_72485441/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =2 x(t)+y \\
y^{\prime} & =-x(t)+4 y
\end{aligned}
$$

With initial conditions

$$
[x(0)=1, y(0)=0]
$$

12.6.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
2 & 1 \\
-1 & 4
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{3 t}(1-t) & t \mathrm{e}^{3 t} \\
-t \mathrm{e}^{3 t} & \mathrm{e}^{3 t}(1+t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{3 t}(1-t) & t \mathrm{e}^{3 t} \\
-t \mathrm{e}^{3 t} & \mathrm{e}^{3 t}(1+t)
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{3 t}(1-t) \\
-t \mathrm{e}^{3 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

12.6.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
2 & 1 \\
-1 & 4
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2 & 1 \\
-1 & 4
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & 1 \\
-1 & 4-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-6 \lambda+9=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=3
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
2 & 1 \\
-1 & 4
\end{array}\right]-(3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
-1 & 1 & 0 \\
-1 & 1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
3	2	1	Yes	$\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 3 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 435: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
2 & 1 \\
-1 & 4
\end{array}\right]-(3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& {\left[\begin{array}{ll}
-1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue 3 . Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] \mathrm{e}^{3 t} \\
& =\left[\begin{array}{c}
\mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right] t+\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \mathrm{e}^{3 t} \\
& =\left[\begin{array}{c}
t \mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}(1+t)
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
t \mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}(1+t)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{3 t}\left(t c_{2}+c_{1}\right) \\
\mathrm{e}^{3 t}\left(t c_{2}+c_{1}+c_{2}\right)
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=1 \tag{1}\\
y(0)=0
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
c_{1} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=1 \\
c_{2}=-1
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{3 t}(1-t) \\
-t \mathrm{e}^{3 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 436: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 25

```
dsolve([diff (x (t),t) = 2*x(t)+y(t), diff(y(t),t) = -x(t)+4*y(t), x(0) = 1, y(0)=0], singso
```

$$
\begin{aligned}
& x(t)=\mathrm{e}^{3 t}(-t+1) \\
& y(t)=-\mathrm{e}^{3 t} t
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 26
DSolve $\left[\left\{x^{\prime}[t]==2 * x[t]+1 * y[t], y^{\prime}[t]==-1 * x[t]+4 * y[t]\right\},\{x[0]==1, y[0]==0\},\{x[t], y[t]\}, t\right.$, IncludeS

$$
\begin{aligned}
x(t) & \rightarrow-e^{3 t}(t-1) \\
y(t) & \rightarrow-e^{3 t} t
\end{aligned}
$$

12.7 problem 7

12.7.1 Solution using Matrix exponential method 2141
12.7.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2142

Internal problem ID [13118]
Internal file name [OUTPUT/11773_Sunday_December_03_2023_07_16_28_PM_78819708/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-2 x(t)-y \\
y^{\prime} & =x(t)-4 y
\end{aligned}
$$

With initial conditions

$$
[x(0)=1, y(0)=0]
$$

12.7.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-2 & -1 \\
1 & -4
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{-3 t}(1+t) & -t \mathrm{e}^{-3 t} \\
t \mathrm{e}^{-3 t} & \mathrm{e}^{-3 t}(1-t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-3 t}(1+t) & -t \mathrm{e}^{-3 t} \\
t \mathrm{e}^{-3 t} & \mathrm{e}^{-3 t}(1-t)
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-3 t}(1+t) \\
t \mathrm{e}^{-3 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

12.7.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-2 & -1 \\
1 & -4
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-2 & -1 \\
1 & -4
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-2-\lambda & -1 \\
1 & -4-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+6 \lambda+9=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=-3
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-2 & -1 \\
1 & -4
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
1 & -1 & 0 \\
1 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-3	2	1	Yes	$\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue -3 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 437: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-2 & -1 \\
1 & -4
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
{\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue -3 . Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
1 \\
1
\end{array}\right] \mathrm{e}^{-3 t} \\
& =\left[\begin{array}{c}
\mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right] t+\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right) \mathrm{e}^{-3 t} \\
& =\left[\begin{array}{l}
\mathrm{e}^{-3 t}(t+2) \\
\mathrm{e}^{-3 t}(1+t)
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{-3 t}(t+2) \\
\mathrm{e}^{-3 t}(1+t)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\left((t+2) c_{2}+c_{1}\right) \mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}\left(c_{2} t+c_{1}+c_{2}\right)
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=1 \tag{1}\\
y(0)=0
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
2 c_{2}+c_{1} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=-1 \\
c_{2}=1
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{-3 t}(1+t) \\
t \mathrm{e}^{-3 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 438: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 22

```
dsolve([diff(x(t),t) = -2*x(t)-y(t), diff (y(t),t) = x (t)-4*y(t), x(0) = 1, y(0) = 0], singso
```

$$
\begin{aligned}
& x(t)=(t+1) \mathrm{e}^{-3 t} \\
& y(t)=t \mathrm{e}^{-3 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 24
DSolve $\left[\left\{x^{\prime}[t]==-2 * x[t]-1 * y[t], y^{\prime}[t]==1 * x[t]-4 * y[t]\right\},\{x[0]==1, y[0]==0\},\{x[t], y[t]\}, t\right.$, IncludeS

$$
\begin{aligned}
& x(t) \rightarrow e^{-3 t}(t+1) \\
& y(t) \rightarrow e^{-3 t} t
\end{aligned}
$$

12.8 problem 8

12.8.1 Solution using Matrix exponential method 2149
12.8.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2150

Internal problem ID [13119]
Internal file name [OUTPUT/11774_Sunday_December_03_2023_07_16_28_PM_718308/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327
Problem number: 8 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =y \\
y^{\prime} & =-x(t)-2 y
\end{aligned}
$$

With initial conditions

$$
[x(0)=1, y(0)=0]
$$

12.8.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-1 & -2
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
(1+t) \mathrm{e}^{-t} & t \mathrm{e}^{-t} \\
-t \mathrm{e}^{-t} & \mathrm{e}^{-t}(1-t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
(1+t) \mathrm{e}^{-t} & t \mathrm{e}^{-t} \\
-t \mathrm{e}^{-t} & \mathrm{e}^{-t}(1-t)
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
(1+t) \mathrm{e}^{-t} \\
-t \mathrm{e}^{-t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

12.8.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-1 & -2
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
0 & 1 \\
-1 & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & 1 \\
-1 & -2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+2 \lambda+1=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=-1
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
0 & 1 \\
-1 & -2
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
1 & 1 & 0 \\
-1 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{ll|l}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-1	2	1	Yes	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue -1 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 439: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
0 & 1 \\
-1 & -2
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue -1 . Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \mathrm{e}^{-t} \\
& =\left[\begin{array}{c}
-\mathrm{e}^{-t} \\
\mathrm{e}^{-t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
-1 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-2 \\
1
\end{array}\right]\right) \mathrm{e}^{-t} \\
& =\left[\begin{array}{c}
-(t+2) \mathrm{e}^{-t} \\
(1+t) \mathrm{e}^{-t}
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{-t} \\
\mathrm{e}^{-t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{-t}(-t-2) \\
(1+t) \mathrm{e}^{-t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-\left((t+2) c_{2}+c_{1}\right) \mathrm{e}^{-t} \\
\mathrm{e}^{-t}\left(c_{2} t+c_{1}+c_{2}\right)
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=1 \tag{1}\\
y(0)=0
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-2 c_{2}-c_{1} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=1 \\
c_{2}=-1
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-(-1-t) \mathrm{e}^{-t} \\
-t \mathrm{e}^{-t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 440: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 23

```
dsolve([diff(x(t),t) = y(t), diff(y(t),t) = -x(t)-2*y(t), x(0) = 1, y(0) = 0], singsol=all)
```

$$
\begin{aligned}
& x(t)=\mathrm{e}^{-t}(t+1) \\
& y(t)=-t \mathrm{e}^{-t}
\end{aligned}
$$

$\sqrt{\text { Solution by Mathematica }}$
Time used: 0.004 (sec). Leaf size: 25
DSolve $\left[\left\{x^{\prime}[t]==1 * y[t], y^{\prime}[t]==-1 * x[t]-2 * y[t]\right\},\{x[0]==1, y[0]==0\},\{x[t], y[t]\}, t\right.$, IncludeSingular

$$
\begin{aligned}
x(t) & \rightarrow e^{-t}(t+1) \\
y(t) & \rightarrow-e^{-t} t
\end{aligned}
$$

12.9 problem 17

12.9.1 Solution using Matrix exponential method 2157
12.9.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2158

Internal problem ID [13120]
Internal file name [OUTPUT/11775_Sunday_December_03_2023_07_16_28_PM_39181784/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327
Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =2 y \\
y^{\prime} & =-y
\end{aligned}
$$

With initial conditions

$$
[x(0)=1, y(0)=0]
$$

12.9.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & 2 \\
0 & -1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
1 & 2-2 \mathrm{e}^{-t} \\
0 & \mathrm{e}^{-t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
1 & 2-2 \mathrm{e}^{-t} \\
0 & \mathrm{e}^{-t}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

12.9.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & 2 \\
0 & -1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
0 & 2 \\
0 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & 2 \\
0 & -1-\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(-\lambda)(-1-\lambda)=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=0
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
0	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
0 & 2 \\
0 & -1
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ll|l}
1 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-2 t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=0$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
0 & 2 \\
0 & -1
\end{array}\right]-(0)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
0 & 2 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
0 & 2 & 0 \\
0 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ll|l}
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{1}\right\}$ and the leading variables are $\left\{v_{2}\right\}$. Let $v_{1}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=\left[\begin{array}{l}
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-1	1	1	No	$\left[\begin{array}{c}-2 \\ 1\end{array}\right]$
0	1	1	No	$\left[\begin{array}{l}1 \\ 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-t} \\
& =\left[\begin{array}{c}
-2 \\
1
\end{array}\right] e^{-t}
\end{aligned}
$$

Since eigenvalue 0 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{0} \\
& =\left[\begin{array}{l}
1 \\
0
\end{array}\right] e^{0}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
-2 \mathrm{e}^{-t} \\
\mathrm{e}^{-t}
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-2 c_{1} \mathrm{e}^{-t}+c_{2} \\
c_{1} \mathrm{e}^{-t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=1 \tag{1}\\
y(0)=0
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-2 c_{1}+c_{2} \\
c_{1}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{l}
c_{1}=0 \\
c_{2}=1
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 441: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 10
dsolve([diff $(x(t), t)=2 * y(t), \operatorname{diff}(y(t), t)=-y(t), x(0)=1, y(0)=0]$, singsol=all)

$$
\begin{aligned}
& x(t)=1 \\
& y(t)=0
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 10
DSolve $\left[\left\{x^{\prime}[t]==2 * y[t], y^{\prime}[t]==0 * x[t]-1 * y[t]\right\},\{x[0]==1, y[0]==0\},\{x[t], y[t]\}, t\right.$, IncludeSingulars

$$
\begin{aligned}
x(t) & \rightarrow 1 \\
y(t) & \rightarrow 0
\end{aligned}
$$

12.10 problem 18

12.10.1 Solution using Matrix exponential method 2165
12.10.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2166

Internal problem ID [13121]
Internal file name [OUTPUT/11776_Sunday_December_03_2023_07_16_29_PM_17148776/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327
Problem number: 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =2 x(t)+4 y \\
y^{\prime} & =3 x(t)+6 y
\end{aligned}
$$

With initial conditions

$$
[x(0)=1, y(0)=0]
$$

12.10.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
2 & 4 \\
3 & 6
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{3}{4}+\frac{\mathrm{e}^{8 t}}{4} & \frac{\mathrm{e}^{8 t}}{2}-\frac{1}{2} \\
\frac{3 \mathrm{e}^{8 t}}{8}-\frac{3}{8} & \frac{1}{4}+\frac{3 \mathrm{e}^{8 t}}{4}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\frac{3}{4}+\frac{\mathrm{e}^{8 t}}{4} & \frac{\mathrm{e}^{8 t}}{2}-\frac{1}{2} \\
\frac{3 \mathrm{e}^{8 t}}{8}-\frac{3}{8} & \frac{1}{4}+\frac{3 \mathrm{e}^{8 t}}{4}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{3}{4}+\frac{\mathrm{e}^{8 t}}{4} \\
\frac{3 \mathrm{e}^{8 t}}{8}-\frac{3}{8}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

12.10.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
2 & 4 \\
3 & 6
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
2 & 4 \\
3 & 6
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & 4 \\
3 & 6-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-8 \lambda=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=8
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
0	1	real eigenvalue
8	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=0$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
2 & 4 \\
3 & 6
\end{array}\right]-(0)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
2 & 4 \\
3 & 6
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
2 & 4 & 0 \\
3 & 6 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{3 R_{1}}{2} \Longrightarrow\left[\begin{array}{ll|l}
2 & 4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
2 & 4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-2 t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=8$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
2 & 4 \\
3 & 6
\end{array}\right]-(8)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-6 & 4 \\
3 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-6 & 4 & 0 \\
3 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{cc|c}
-6 & 4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-6 & 4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{2 t}{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{2 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2 t}{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{2 t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{2}{3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{2 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{3} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{2 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
0	1	1	No	$\left[\begin{array}{c}-2 \\ 1\end{array}\right]$
8	1	1	No	$\left[\begin{array}{c}\frac{2}{3} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 0 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{0} \\
& =\left[\begin{array}{c}
-2 \\
1
\end{array}\right] e^{0}
\end{aligned}
$$

Since eigenvalue 8 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{8 t} \\
& =\left[\begin{array}{c}
\frac{2}{3} \\
1
\end{array}\right] e^{8 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
-2 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{2 e^{8 t}}{3} \\
\mathrm{e}^{8 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-2 c_{1}+\frac{2 c_{2} \mathrm{e}^{8 t}}{3} \\
c_{1}+c_{2} \mathrm{e}^{8 t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=1 \tag{1}\\
y(0)=0
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-2 c_{1}+\frac{2 c_{2}}{3} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=-\frac{3}{8} \\
c_{2}=\frac{3}{8}
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{4}+\frac{\mathrm{e}^{8 t}}{4} \\
\frac{3 e^{8 t}}{8}-\frac{3}{8}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 442: Phase plot

The following are plots of each solution.

$\sqrt{ }$ Solution by Maple
Time used: 0.015 (sec). Leaf size: 24
dsolve([diff $(x(t), t)=2 * x(t)+4 * y(t), \operatorname{diff}(y(t), t)=3 * x(t)+6 * y(t), x(0)=1, y(0)=0]$, sin

$$
\begin{aligned}
& x(t)=\frac{3}{4}+\frac{\mathrm{e}^{8 t}}{4} \\
& y(t)=\frac{3 \mathrm{e}^{8 t}}{8}-\frac{3}{8}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 30
DSolve $\left[\left\{x^{\prime}[t]==2 * x[t]+4 * y[t], y^{\prime}[t]==3 * x[t]+6 * y[t]\right\},\{x[0]==1, y[0]==0\},\{x[t], y[t]\}, t\right.$, IncludeSi

$$
\begin{aligned}
x(t) & \rightarrow \frac{1}{4}\left(e^{8 t}+3\right) \\
y(t) & \rightarrow \frac{3}{8}\left(e^{8 t}-1\right)
\end{aligned}
$$

12.11 problem 19

12.11.1 Solution using Matrix exponential method 2173
12.11.2 Solution using explicit Eigenvalue and Eigenvector method . . .2174

Internal problem ID [13122]
Internal file name [OUTPUT/11777_Sunday_December_03_2023_07_16_29_PM_46630471/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327
Problem number: 19.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =4 x(t)+2 y \\
y^{\prime} & =2 x(t)+y
\end{aligned}
$$

With initial conditions

$$
[x(0)=1, y(0)=0]
$$

12.11.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{1}{5}+\frac{4 \mathrm{e}^{5 t}}{5} & \frac{2 e^{5 t}}{5}-\frac{2}{5} \\
\frac{2 e^{5 t}}{5}-\frac{2}{5} & \frac{4}{5}+\frac{e^{5 t}}{5}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\frac{1}{5}+\frac{4 \mathrm{e}^{5 t}}{5} & \frac{2 \mathrm{e}^{5 t}}{5}-\frac{2}{5} \\
\frac{2 \mathrm{e}^{5 t}}{5}-\frac{2}{5} & \frac{4}{5}+\frac{\mathrm{e}^{5 t}}{5}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{1}{5}+\frac{4 \mathrm{e}^{5 t}}{5} \\
\frac{2 \mathrm{e}^{5 t}}{5}-\frac{2}{5}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

12.11.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
4-\lambda & 2 \\
2 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-5 \lambda=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=5 \\
& \lambda_{2}=0
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
0	1	real eigenvalue
5	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=0$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right]-(0)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
4 & 2 & 0 \\
2 & 1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ll|l}
4 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
4 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=5$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right]-(5)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-1 & 2 \\
2 & -4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1 & 2 & 0 \\
2 & -4 & 0
\end{array}\right]} \\
R_{2}=R_{2}+2 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
5	1	1	No	$\left[\begin{array}{c}2 \\ 1\end{array}\right]$
0	1	1	No	$\left[\begin{array}{c}-\frac{1}{2} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 5 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{5 t} \\
& =\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{5 t}
\end{aligned}
$$

Since eigenvalue 0 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{0} \\
& =\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right] e^{0}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
2 \mathrm{e}^{5 t} \\
\mathrm{e}^{5 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
2 c_{1} \mathrm{e}^{5 t}-\frac{c_{2}}{2} \\
c_{1} \mathrm{e}^{5 t}+c_{2}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=1 \tag{1}\\
y(0)=0
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
2 c_{1}-\frac{c_{2}}{2} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=\frac{2}{5} \\
c_{2}=-\frac{2}{5}
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{5}+\frac{4 \mathrm{e}^{5 t}}{5} \\
\frac{2 \mathrm{e}^{5 t}}{5}-\frac{2}{5}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 443: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 24

```
dsolve([diff(x(t),t) = 4*x(t)+2*y(t), diff (y(t),t) = 2*x(t)+y(t), x(0) = 1, y(0) = 0], sings
```

$$
\begin{aligned}
& x(t)=\frac{1}{5}+\frac{4 \mathrm{e}^{5 t}}{5} \\
& y(t)=\frac{2 \mathrm{e}^{5 t}}{5}-\frac{2}{5}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 32
DSolve $\left[\left\{x^{\prime}[t]==4 * x[t]+2 * y[t], y^{\prime}[t]==2 * x[t]+1 * y[t]\right\},\{x[0]==1, y[0]==0\},\{x[t], y[t]\}, t\right.$, IncludeSi

$$
\begin{aligned}
x(t) & \rightarrow \frac{1}{5}\left(4 e^{5 t}+1\right) \\
y(t) & \rightarrow \frac{2}{5}\left(e^{5 t}-1\right)
\end{aligned}
$$

12.12 problem 21(a)

12.12.1 Solution using Matrix exponential method 2181
12.12.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2182
12.12.3 Maple step by step solution . 2187

Internal problem ID [13123]
Internal file name [OUTPUT/11778_Sunday_December_03_2023_07_16_30_PM_55848813/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327
Problem number: 21(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =2 y \\
y^{\prime} & =0
\end{aligned}
$$

12.12.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
1 & 2 t \\
0 & 1
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ll}
1 & 2 t \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
2 t c_{2}+c_{1} \\
c_{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

12.12.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & 2 \\
0 & -\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(-\lambda)(-\lambda)=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=0
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
0	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=0$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right]-(0)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ll|l}
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{1}\right\}$ and the leading variables are $\left\{v_{2}\right\}$. Let $v_{1}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=\left[\begin{array}{l}
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
0	2	1	Yes	$\left[\begin{array}{l}1 \\ 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 0 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 444: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right]-(0)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
1 \\
\frac{1}{2}
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue 0 . Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{l}
1 \\
0
\end{array}\right] 1 \\
& =\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right] t+\left[\begin{array}{l}
1 \\
\frac{1}{2}
\end{array}\right]\right) 1 \\
& =\left[\begin{array}{c}
1+t \\
\frac{1}{2}
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
1+t \\
\frac{1}{2}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
c_{2} t+c_{1}+c_{2} \\
\frac{c_{2}}{2}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 445: Phase plot

12.12.3 Maple step by step solution

Let's solve
$\left[x^{\prime}(t)=2 y, y^{\prime}=0\right]$

- Define vector
$\vec{x}(t)=\left[\begin{array}{c}x(t) \\ y\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[0,\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

- Consider eigenpair
$\left[0,\left[\begin{array}{l}0 \\ 0\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{x}_{2}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
$$

- Substitute solutions into the general solution

$$
\vec{x}=\left[\begin{array}{c}
c_{1} \\
0
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
c_{1} \\
0
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=c_{1}, y=0\right\}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

```
dsolve([diff(x (t),t)=2*y(t),\operatorname{diff}(y(t),t)=0],singsol=all)
```

$$
\begin{aligned}
& x(t)=2 c_{2} t+c_{1} \\
& y(t)=c_{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 18
DSolve $\left[\left\{x^{\prime}[t]==2 * y[t], y^{\prime}[t]==0 * x[t]+0 * y[t]\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions $->$ True $]$

$$
\begin{aligned}
x(t) & \rightarrow 2 c_{2} t+c_{1} \\
y(t) & \rightarrow c_{2}
\end{aligned}
$$

12.13 problem 21(b)

12.13.1 Solution using Matrix exponential method 2190
12.13.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2191
12.13.3 Maple step by step solution . 2196

Internal problem ID [13124]
Internal file name [OUTPUT/11779_Sunday_December_03_2023_07_16_30_PM_27040092/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327
Problem number: 21(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-2 y \\
y^{\prime} & =0
\end{aligned}
$$

12.13.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
1 & -2 t \\
0 & 1
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
1 & -2 t \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
-2 t c_{2}+c_{1} \\
c_{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

12.13.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
0 & -2 \\
0 & 0
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & -2 \\
0 & -\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(-\lambda)(-\lambda)=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=0
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
0	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=0$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
0 & -2 \\
0 & 0
\end{array}\right]-(0)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
0 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
0 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
0 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{1}\right\}$ and the leading variables are $\left\{v_{2}\right\}$. Let $v_{1}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=\left[\begin{array}{l}
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
0	2	1	Yes	$\left[\begin{array}{l}1 \\ 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 0 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 446: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
0 & -2 \\
0 & 0
\end{array}\right]-(0)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
0 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
1 \\
-\frac{1}{2}
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue 0 . Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{l}
1 \\
0
\end{array}\right] 1 \\
& =\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right] t+\left[\begin{array}{c}
1 \\
-\frac{1}{2}
\end{array}\right]\right) 1 \\
& =\left[\begin{array}{c}
1+t \\
-\frac{1}{2}
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
1+t \\
-\frac{1}{2}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
c_{2} t+c_{1}+c_{2} \\
-\frac{c_{2}}{2}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 447: Phase plot

12.13.3 Maple step by step solution

Let's solve
$\left[x^{\prime}(t)=-2 y, y^{\prime}=0\right]$

- Define vector
$\vec{x}(t)=\left[\begin{array}{c}x(t) \\ y\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}0 & -2 \\ 0 & 0\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}0 & -2 \\ 0 & 0\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
0 & -2 \\
0 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[0,\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

- Consider eigenpair
$\left[0,\left[\begin{array}{l}0 \\ 0\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{x}_{2}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
$$

- Substitute solutions into the general solution

$$
\vec{x}=\left[\begin{array}{c}
c_{1} \\
0
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
c_{1} \\
0
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=c_{1}, y=0\right\}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

```
dsolve([diff(x(t),t)=-2*y(t),\operatorname{diff}(y(t),t)=0],singsol=all)
```

$$
\begin{aligned}
& x(t)=-2 c_{2} t+c_{1} \\
& y(t)=c_{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 18
DSolve $\left[\left\{x^{\prime}[t]==-2 * y[t], y^{\prime}[t]==0 * x[t]+0 * y[t]\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions $->$ True $]$

$$
\begin{aligned}
& x(t) \rightarrow c_{1}-2 c_{2} t \\
& y(t) \rightarrow c_{2}
\end{aligned}
$$

12.14 problem 24

12.14.1 Solution using Matrix exponential method 2199
12.14.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2200

Internal problem ID [13125]
Internal file name [OUTPUT/11780_Sunday_December_03_2023_07_16_30_PM_90758387/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.5 page 327
Problem number: 24.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-3 x(t)-y \\
y^{\prime} & =4 x(t)+y
\end{aligned}
$$

With initial conditions

$$
[x(0)=-1, y(0)=2]
$$

12.14.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-3 & -1 \\
4 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{-t}(1-2 t) & -t \mathrm{e}^{-t} \\
4 t \mathrm{e}^{-t} & \mathrm{e}^{-t}(2 t+1)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-t}(1-2 t) & -t \mathrm{e}^{-t} \\
4 t \mathrm{e}^{-t} & \mathrm{e}^{-t}(2 t+1)
\end{array}\right]\left[\begin{array}{c}
-1 \\
2
\end{array}\right] \\
& =\left[\begin{array}{c}
-\mathrm{e}^{-t}(1-2 t)-2 t \mathrm{e}^{-t} \\
-4 t \mathrm{e}^{-t}+2 \mathrm{e}^{-t}(2 t+1)
\end{array}\right] \\
& =\left[\begin{array}{c}
-\mathrm{e}^{-t} \\
2 \mathrm{e}^{-t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

12.14.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-3 & -1 \\
4 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-3 & -1 \\
4 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-3-\lambda & -1 \\
4 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+2 \lambda+1=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=-1
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-3 & -1 \\
4 & 1
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-2 & -1 \\
4 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2 & -1 & 0 \\
4 & 2 & 0
\end{array}\right]} \\
R_{2}=R_{2}+2 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-2 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-1	2	1	Yes	$\left[\begin{array}{c}-\frac{1}{2} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue -1 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 448: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-3 & -1 \\
4 & 1
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right] \\
& {\left[\begin{array}{cc}
-2 & -1 \\
4 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
1 \\
-\frac{3}{2}
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue -1 . Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right] \mathrm{e}^{-t} \\
& =\left[\begin{array}{c}
-\frac{\mathrm{e}^{-t}}{2} \\
\mathrm{e}^{-t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right] t+\left[\begin{array}{c}
1 \\
-\frac{3}{2}
\end{array}\right]\right) \mathrm{e}^{-t} \\
& =\left[\begin{array}{c}
-\frac{\mathrm{e}^{-t}(-2+t)}{2} \\
\frac{\mathrm{e}^{-t}(2 t-3)}{2}
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{\mathrm{e}^{-t}}{2} \\
\mathrm{e}^{-t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{-t}\left(-\frac{t}{2}+1\right) \\
\mathrm{e}^{-t}\left(t-\frac{3}{2}\right)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-\frac{\left((-2+t) c_{2}+c_{1}\right) \mathrm{e}^{-t}}{2} \\
\mathrm{e}^{-t}\left(c_{1}+c_{2} t-\frac{3}{2} c_{2}\right)
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{c}
x(0)=-1 \tag{1}\\
y(0)=2
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{c}
-1 \\
2
\end{array}\right]=\left[\begin{array}{c}
c_{2}-\frac{c_{1}}{2} \\
c_{1}-\frac{3 c_{2}}{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{l}
c_{1}=2 \\
c_{2}=0
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-\mathrm{e}^{-t} \\
2 \mathrm{e}^{-t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 449: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 20

```
dsolve([diff(x(t),t) = -3*x(t)-y(t), diff (y(t),t) = 4*x(t)+y(t), x(0) = -1, y(0) = 2], sings
```

$$
\begin{aligned}
x(t) & =-\mathrm{e}^{-t} \\
y(t) & =2 \mathrm{e}^{-t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 22
DSolve $\left[\left\{x^{\prime}[t]==-3 * x[t]-y[t], y^{\prime}[t]==4 * x[t]+y[t]\right\},\{x[0]==-1, y[0]==2\},\{x[t], y[t]\}, t\right.$, IncludeSing

$$
\begin{aligned}
& x(t) \rightarrow-e^{-t} \\
& y(t) \rightarrow 2 e^{-t}
\end{aligned}
$$

13 Chapter 3. Linear Systems. Exercises section 3.6 page 342

13.1 problem 1 . 2208
13.2 problem 2 . 2216

13.1 problem 1

13.1.1 Solving as second order linear constant coeff ode 2208
13.1.2 Solving using Kovacic algorithm 2210
13.1.3 Maple step by step solution . 2214

Internal problem ID [13126]
Internal file name [OUTPUT/11781_Sunday_December_03_2023_07_16_31_PM_41270165/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.6 page 342
Problem number: 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-6 y^{\prime}-7 y=0
$$

13.1.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=-6, C=-7$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}-6 \lambda \mathrm{e}^{\lambda t}-7 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}-6 \lambda-7=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-6, C=-7$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-6^{2}-(4)(1)(-7)} \\
& =3 \pm 4
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=3+4 \\
& \lambda_{2}=3-4
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=7 \\
& \lambda_{2}=-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(7) t}+c_{2} e^{(-1) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{7 t}+c_{2} \mathrm{e}^{-t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{7 t}+c_{2} \mathrm{e}^{-t} \tag{1}
\end{equation*}
$$

Figure 450: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{7 t}+c_{2} \mathrm{e}^{-t}
$$

Verified OK.

13.1.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-6 y^{\prime}-7 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-6 \tag{3}\\
& C=-7
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{16}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=16 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=16 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 378: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=16$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-4 t}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-6}{1} d t} \\
& =z_{1} e^{3 t} \\
& =z_{1}\left(\mathrm{e}^{3 t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-6}{1}} d t}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{6 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\mathrm{e}^{8 t}}{8}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-t}\right)+c_{2}\left(\mathrm{e}^{-t}\left(\frac{\mathrm{e}^{8 t}}{8}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-t}+\frac{c_{2} \mathrm{e}^{7 t}}{8} \tag{1}
\end{equation*}
$$

Figure 451: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-t}+\frac{c_{2} \mathrm{e}^{7 t}}{8}
$$

Verified OK.

13.1.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-6 y^{\prime}-7 y=0
$$

- Highest derivative means the order of the ODE is 2 $y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}-6 r-7=0$
- Factor the characteristic polynomial

$$
(r+1)(r-7)=0
$$

- Roots of the characteristic polynomial
$r=(-1,7)$
- 1st solution of the ODE
$y_{1}(t)=\mathrm{e}^{-t}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(t)=\mathrm{e}^{7 t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{7 t}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve(diff(y(t),t\$2)-6*diff(y(t),t)-7*y(t)=0,y(t), singsol=all)

$$
y(t)=c_{1} \mathrm{e}^{7 t}+c_{2} \mathrm{e}^{-t}
$$

\checkmark Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 22
DSolve[y''[t]-6*y'[t]-7*y[t]==0,y[t],t,IncludeSingularSolutions -> True]

$$
y(t) \rightarrow e^{-t}\left(c_{2} e^{8 t}+c_{1}\right)
$$

13.2 problem 2

13.2.1 Solving as second order linear constant coeff ode 2216
13.2.2 Solving using Kovacic algorithm 2218
13.2.3 Maple step by step solution . 2222

Internal problem ID [13127]
Internal file name [OUTPUT/11782_Sunday_December_03_2023_07_16_32_PM_88545654/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.6 page 342
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-y^{\prime}-12 y=0
$$

13.2.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=-1, C=-12$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}-\lambda \mathrm{e}^{\lambda t}-12 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}-\lambda-12=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-1, C=-12$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-1^{2}-(4)(1)(-12)} \\
& =\frac{1}{2} \pm \frac{7}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{7}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{7}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=4 \\
& \lambda_{2}=-3
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(4) t}+c_{2} e^{(-3) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{4 t}+c_{2} \mathrm{e}^{-3 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{4 t}+c_{2} \mathrm{e}^{-3 t} \tag{1}
\end{equation*}
$$

Figure 452: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{4 t}+c_{2} \mathrm{e}^{-3 t}
$$

Verified OK.

13.2.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-y^{\prime}-12 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-1 \tag{3}\\
& C=-12
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{49}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=49 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\frac{49 z(t)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 380: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{49}{4}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-\frac{7 t}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d t} \\
& =z_{1} e^{\frac{t}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1}{1}} d t}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\mathrm{e}^{7 t}}{7}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 t}\right)+c_{2}\left(\mathrm{e}^{-3 t}\left(\frac{\mathrm{e}^{7 t}}{7}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 t} c_{1}+\frac{c_{2} \mathrm{e}^{4 t}}{7} \tag{1}
\end{equation*}
$$

Figure 453: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-3 t} c_{1}+\frac{c_{2} \mathrm{e}^{4 t}}{7}
$$

Verified OK.

13.2.3 Maple step by step solution

Let's solve
$y^{\prime \prime}-y^{\prime}-12 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}-r-12=0$
- Factor the characteristic polynomial

$$
(r+3)(r-4)=0
$$

- Roots of the characteristic polynomial
$r=(-3,4)$
- $\quad 1$ st solution of the ODE
$y_{1}(t)=\mathrm{e}^{-3 t}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(t)=\mathrm{e}^{4 t}$
- General solution of the ODE

$$
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

- Substitute in solutions

$$
y=\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{4 t}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 17
dsolve(diff($y(t), t \$ 2)-\operatorname{diff}(y(t), t)-12 * y(t)=0, y(t), \quad$ singsol=all)

$$
y(t)=\left(\mathrm{e}^{7 t} c_{2}+c_{1}\right) \mathrm{e}^{-3 t}
$$

\checkmark Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 22
DSolve[y''[t]-y'[t]-12*y[t]==0,y[t],t,IncludeSingularSolutions -> True]

$$
y(t) \rightarrow e^{-3 t}\left(c_{2} e^{7 t}+c_{1}\right)
$$

14 Chapter 3. Linear Systems. Exercises section 3.8 page 371
14.1 problem 1 2225
14.2 problem 4 2239
14.3 problem 5 2251
14.4 problem 6 2263
14.5 problem 7 2275
14.6 problem 10 2284
14.7 problem 11 2293
14.8 problem 12 2302
14.9 problem 13 2314
14.10problem 14 2325
14.11problem 15 2333
14.12problem 16 2344
14.13problem 17 2358
14.14problem 18 2371
14.15problem 20 2385

14.1 problem 1

14.1.1 Solution using Matrix exponential method 2225
14.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2226
14.1.3 Maple step by step solution . 2234

Internal problem ID [13128]
Internal file name [OUTPUT/11783_Sunday_December_03_2023_07_16_34_PM_72024113/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs" Solve

$$
\begin{aligned}
x^{\prime}(t) & =\frac{y}{10} \\
y^{\prime} & =\frac{z(t)}{5} \\
z^{\prime}(t) & =\frac{2 x(t)}{5}
\end{aligned}
$$

14.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime} \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
0 & \frac{1}{10} & 0 \\
0 & 0 & \frac{1}{5} \\
\frac{2}{5} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{\frac{t}{5}}}{3}+\frac{2 \mathrm{e}^{-\frac{t}{10}} \cos \left(\frac{\sqrt{3} t}{10}\right)}{3} & -\frac{\mathrm{e}^{-\frac{t}{10} \cos \left(\frac{\sqrt{3} t}{10}\right)}}{6}+\frac{\sqrt{3} \mathrm{e}^{-\frac{t}{10}} \sin \left(\frac{\sqrt{3} t}{10}\right)}{6}+\frac{\mathrm{e}^{\frac{t}{5}}}{6} & -\frac{\mathrm{e}^{-\frac{t}{10} \cos \left(\frac{\sqrt{3} t}{10}\right)}}{6} \\
-\frac{2 \mathrm{e}^{-\frac{t}{10}} \cos \left(\frac{\sqrt{3} t}{10}\right)}{3}-\frac{2 \sqrt{3} \mathrm{e}^{-\frac{t}{10}} \sin \left(\frac{\sqrt{3} t}{10}\right)}{3}+\frac{2 \mathrm{e}^{\frac{t}{5}}}{3} & \frac{\mathrm{e}^{t} 5}{3}+\frac{2 \mathrm{e}^{-\frac{t}{10} \cos \left(\frac{\sqrt{3} t}{10}\right)}}{3} \\
-\frac{2 \mathrm{e}^{-\frac{t}{10} \cos \left(\frac{\sqrt{3} t}{10}\right)}}{3}+\frac{2 \sqrt{3} \mathrm{e}^{-\frac{t}{10} \sin \left(\frac{\sqrt{3} t}{10}\right)}}{3}+\frac{2 \mathrm{e}^{\frac{t}{5}}}{3} & -\frac{\mathrm{e}^{-\frac{t}{10} \cos \left(\frac{\sqrt{3} t}{10}\right)}}{3}-\frac{\sqrt{3} \mathrm{e}^{-\frac{t}{10} \sin \left(\frac{\sqrt{3} t}{10}\right)}}{3}+\frac{\mathrm{e}^{\frac{t}{5}}}{3} & -\frac{\mathrm{e}^{-\frac{t}{10} \cos \left(\frac{\sqrt{3} t}{10}\right)}}{3}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& \vec{x}_{h}(t)=e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\frac{\mathrm{e}^{t} 5}{3}+\frac{2 \mathrm{e}^{-\frac{t}{10}} \cos \left(\frac{\sqrt{3} t}{10}\right)}{3} & -\frac{\mathrm{e}^{-\frac{t}{10} \cos \left(\frac{\sqrt{3} t}{10}\right)}}{6}+\frac{\sqrt{3} \mathrm{e}^{-\frac{t}{10}} \sin \left(\frac{\sqrt{3} t}{10}\right)}{6}+\frac{\mathrm{e}^{\frac{t}{5}}}{6} & -\frac{\mathrm{e}^{-\frac{t}{10} \cos \left(\frac{\sqrt{3} t}{10}\right)}}{6} \\
-\frac{2 \mathrm{e}^{-\frac{t}{10}} \cos \left(\frac{\sqrt{3} t}{10}\right)}{3}-\frac{2 \sqrt{3} \mathrm{e}^{-\frac{t}{10}} \sin \left(\frac{\sqrt{3} t}{10}\right)}{3}+\frac{2 \mathrm{e}^{\frac{t}{5}}}{3} & \frac{\mathrm{e}^{\frac{t}{5}}}{3}+\frac{2 \mathrm{e}^{-\frac{t}{10} \cos \left(\frac{\sqrt{3} t}{10}\right)}}{3} & -\frac{\mathrm{e}^{-\frac{t}{10} \cos \left(\frac{\sqrt{3} t}{10}\right)}}{3} \\
-\frac{2 \mathrm{e}^{-\frac{t}{10}} \cos \left(\frac{\sqrt{3} t}{10}\right)}{3}+\frac{2 \sqrt{3} \mathrm{e}^{-\frac{t}{10}} \sin \left(\frac{\sqrt{3} t}{10}\right)}{3}+\frac{2 \mathrm{e}^{\frac{t}{5}}}{3} & -\frac{\mathrm{e}^{-\frac{t}{10} \cos \left(\frac{\sqrt{3} t}{10}\right)}}{3}-\frac{\sqrt{3} \mathrm{e}^{-\frac{t}{10}} \sin \left(\frac{\sqrt{3} t}{10}\right)}{3}+\frac{\mathrm{e}^{t}}{3} & \frac{\mathrm{e}^{\frac{t}{5}}}{3}
\end{array}\right. \\
& {\left[\left(\frac{\mathrm{e}^{\frac{t}{5}}}{3}+\frac{2 \mathrm{e}^{-\frac{t}{10}} \cos \left(\frac{\sqrt{3} t}{10}\right)}{3}\right) c_{1}+\left(-\frac{\mathrm{e}^{-\frac{t}{10} \cos \left(\frac{\sqrt{3} t}{10}\right)}}{6}+\frac{\sqrt{3} \mathrm{e}^{-\frac{t}{10} \sin \left(\frac{\sqrt{3} t}{10}\right)}}{6}+\frac{\mathrm{e}^{\frac{t}{5}}}{6}\right) c_{2}+\left(-\frac{\mathrm{e}^{-\frac{t}{10} \cos \left(\frac{\sqrt{3} t}{10}\right)}}{6}-\right)\right.} \\
& =\left(-\frac{2 \mathrm{e}^{-\frac{t}{10}} \cos \left(\frac{\sqrt{3} t}{10}\right)}{3}-\frac{2 \sqrt{3} \mathrm{e}^{-\frac{t}{10}} \sin \left(\frac{\sqrt{3} t}{10}\right)}{3}+\frac{2 \mathrm{e}^{\frac{t}{5}}}{3}\right) c_{1}+\left(\frac{\mathrm{e}^{\frac{t}{5}}}{3}+\frac{2 \mathrm{e}^{-\frac{t}{10} \cos \left(\frac{\sqrt{3} t}{10}\right)}}{3}\right) c_{2}+\left(-\frac{\mathrm{e}^{-\frac{t}{10} \cos \left(\frac{\sqrt{3} t}{10}\right)}}{3}+\right. \\
& \left(-\frac{2 \mathrm{e}^{-\frac{t}{10}} \cos \left(\frac{\sqrt{3} t}{10}\right)}{3}+\frac{2 \sqrt{3} \mathrm{e}^{-\frac{t}{10}} \sin \left(\frac{\sqrt{3} t}{10}\right)}{3}+\frac{2 \mathrm{e}^{\frac{t}{5}}}{3}\right) c_{1}+\left(-\frac{\mathrm{e}^{-\frac{t}{10}} \cos \left(\frac{\sqrt{3} t}{10}\right)}{3}-\frac{\sqrt{3} \mathrm{e}^{-\frac{t}{10}} \sin \left(\frac{\sqrt{3} t}{10}\right)}{3}+\frac{\mathrm{e}^{\frac{t}{5}}}{3}\right) c_{2}+ \\
& =\left[\begin{array}{c}
\frac{2\left(c_{1}-\frac{c_{2}}{4}-\frac{c_{3}}{4}\right) \mathrm{e}^{-\frac{t}{10}} \cos \left(\frac{\sqrt{3} t}{10}\right)}{3}+\frac{\sqrt{3} \mathrm{e}^{-\frac{t}{10}}\left(c_{2}-c_{3}\right) \sin \left(\frac{\sqrt{3} t}{10}\right)}{6}+\frac{\mathrm{e}^{\frac{t}{5}}\left(c_{1}+\frac{c_{2}}{2}+\frac{c_{3}}{2}\right)}{3} \\
-\frac{2\left(c_{1}-c_{2}+\frac{c_{3}}{2}\right) \mathrm{e}^{-\frac{t}{10}} \cos \left(\frac{\sqrt{3} t}{10}\right)}{3}-\frac{2\left(c_{1}-\frac{c_{3}}{2}\right) \sqrt{3} \mathrm{e}^{-\frac{t}{10}} \sin \left(\frac{\sqrt{3} t}{10}\right)}{3}+\frac{2 \mathrm{e}^{\frac{t}{5}}\left(c_{1}+\frac{c_{2}}{2}+\frac{c_{3}}{2}\right)}{3} \\
-\frac{2 \mathrm{e}^{-\frac{t}{10}}\left(c_{1}+\frac{c_{2}}{2}-c_{3}\right) \cos \left(\frac{\sqrt{3} t}{10}\right)}{3}+\frac{2 \sqrt{3} \mathrm{e}^{-\frac{t}{10}}\left(c_{1}-\frac{c_{2}}{2}\right) \sin \left(\frac{\sqrt{3} t}{10}\right)}{3}+\frac{2 \mathrm{e}^{\frac{t}{5}}\left(c_{1}+\frac{c_{2}}{2}+\frac{c_{3}}{2}\right)}{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

14.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime} \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
0 & \frac{1}{10} & 0 \\
0 & 0 & \frac{1}{5} \\
\frac{2}{5} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
0 & \frac{1}{10} & 0 \\
0 & 0 & \frac{1}{5} \\
\frac{2}{5} & 0 & 0
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-\lambda & \frac{1}{10} & 0 \\
0 & -\lambda & \frac{1}{5} \\
\frac{2}{5} & 0 & -\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-\frac{1}{125}=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{5} \\
& \lambda_{2}=-\frac{1}{10}+\frac{i \sqrt{3}}{10} \\
& \lambda_{3}=-\frac{1}{10}-\frac{i \sqrt{3}}{10}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-\frac{1}{10}-\frac{i \sqrt{3}}{10}$	1	complex eigenvalue
$\frac{1}{5}$	1	real eigenvalue
$-\frac{1}{10}+\frac{i \sqrt{3}}{10}$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=\frac{1}{5}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
0 & \frac{1}{10} & 0 \\
0 & 0 & \frac{1}{5} \\
\frac{2}{5} & 0 & 0
\end{array}\right]-\left(\frac{1}{5}\right)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
-\frac{1}{5} & \frac{1}{10} & 0 \\
0 & -\frac{1}{5} & \frac{1}{5} \\
\frac{2}{5} & 0 & -\frac{1}{5}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-\frac{1}{5} & \frac{1}{10} & 0 & 0 \\
0 & -\frac{1}{5} & \frac{1}{5} & 0 \\
\frac{2}{5} & 0 & -\frac{1}{5} & 0
\end{array}\right]} \\
R_{3}=R_{3}+2 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-\frac{1}{5} & \frac{1}{10} & 0 & 0 \\
0 & -\frac{1}{5} & \frac{1}{5} & 0 \\
0 & \frac{1}{5} & -\frac{1}{5} & 0
\end{array}\right] \\
R_{3}=R_{3}+R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-\frac{1}{5} & \frac{1}{10} & 0 & 0 \\
0 & -\frac{1}{5} & \frac{1}{5} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-\frac{1}{5} & \frac{1}{10} & 0 \\
0 & -\frac{1}{5} & \frac{1}{5} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{2}, v_{2}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{2} \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-\frac{1}{10}-\frac{i \sqrt{3}}{10}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{r}
\left(\left[\begin{array}{ccc}
0 & \frac{1}{10} & 0 \\
0 & 0 & \frac{1}{5} \\
\frac{2}{5} & 0 & 0
\end{array}\right]-\left(-\frac{1}{10}-\frac{i \sqrt{3}}{10}\right)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
\frac{1}{10}+\frac{i \sqrt{3}}{10} & \frac{1}{10} & 0 \\
0 & \frac{1}{10}+\frac{i \sqrt{3}}{10} & \frac{1}{5} \\
\frac{2}{5} & 0 & \frac{1}{10}+\frac{i \sqrt{3}}{10}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{array}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented
matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
\frac{1}{10}+\frac{i \sqrt{3}}{10} & \frac{1}{10} & 0 & 0 \\
0 & \frac{1}{10}+\frac{i \sqrt{3}}{10} & \frac{1}{5} & 0 \\
\frac{2}{5} & 0 & \frac{1}{10}+\frac{i \sqrt{3}}{10} & 0
\end{array}\right]} \\
R_{3}=R_{3}-\frac{2 R_{1}}{5\left(\frac{1}{10}+\frac{i \sqrt{3}}{10}\right)} \Longrightarrow\left[\begin{array}{ccc|c}
\frac{1}{10}+\frac{i \sqrt{3}}{10} & \frac{1}{10} & 0 & 0 \\
0 & \frac{1}{10}+\frac{i \sqrt{3}}{10} & \frac{1}{5} & 0 \\
0 & -\frac{2}{5 i \sqrt{3}+5} & \frac{1}{10}+\frac{i \sqrt{3}}{10} & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{2 R_{2}}{(5 i \sqrt{3}+5)\left(\frac{1}{10}+\frac{i \sqrt{3}}{10}\right)} \Longrightarrow\left[\begin{array}{ccc|c}
\frac{1}{10}+\frac{i \sqrt{3}}{10} & \frac{1}{10} & 0 & 0 \\
0 & \frac{1}{10}+\frac{i \sqrt{3}}{10} & \frac{1}{5} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
\frac{1}{10}+\frac{i \sqrt{3}}{10} & \frac{1}{10} & 0 \\
0 & \frac{1}{10}+\frac{i \sqrt{3}}{10} & \frac{1}{5} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{i \sqrt{3}-1}, v_{2}=-\frac{2 t}{1+i \sqrt{3}}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{\mathrm{I} \sqrt{3}-1} \\
-\frac{2 t}{1+\mathrm{I} \sqrt{3}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{i \sqrt{3}-1} \\
-\frac{2 t}{1+i \sqrt{3}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{\mathrm{I} \sqrt{3}-1} \\
-\frac{2 t}{1+\mathrm{I} \sqrt{3}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{i \sqrt{3}-1} \\
-\frac{2}{1+i \sqrt{3}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{\mathrm{I} \sqrt{3}-1} \\
-\frac{2 t}{1+\mathrm{I} \sqrt{3}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{i \sqrt{3}-1} \\
-\frac{2}{1+i \sqrt{3}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{t}{\mathrm{I} \sqrt{3}-1} \\
-\frac{2 t}{1+\mathrm{I} \sqrt{3}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{i \sqrt{3}-1} \\
-\frac{2}{1+i \sqrt{3}} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=-\frac{1}{10}+\frac{i \sqrt{3}}{10}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{c}
\left(\left[\begin{array}{ccc}
0 & \frac{1}{10} & 0 \\
0 & 0 & \frac{1}{5} \\
\frac{2}{5} & 0 & 0
\end{array}\right]-\left(-\frac{1}{10}+\frac{i \sqrt{3}}{10}\right)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \\
{\left[\begin{array}{ccc}
\frac{1}{10}-\frac{i \sqrt{3}}{10} & \frac{1}{10} & 0 \\
0 & \frac{1}{10}-\frac{i \sqrt{3}}{10} & \frac{1}{5} \\
\frac{2}{5} & 0 & \frac{1}{10}-\frac{i \sqrt{3}}{10}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
\frac{1}{10}-\frac{i \sqrt{3}}{10} & \frac{1}{10} & 0 & 0 \\
0 & \frac{1}{10}-\frac{i \sqrt{3}}{10} & \frac{1}{5} & 0 \\
\frac{2}{5} & 0 & \frac{1}{10}-\frac{i \sqrt{3}}{10} & 0
\end{array}\right]} \\
R_{3}=R_{3}-\frac{2 R_{1}}{5\left(\frac{1}{10}-\frac{i \sqrt{3}}{10}\right)} \Longrightarrow\left[\begin{array}{ccc|c}
\frac{1}{10}-\frac{i \sqrt{3}}{10} & \frac{1}{10} & 0 & 0 \\
0 & \frac{1}{10}-\frac{i \sqrt{3}}{10} & \frac{1}{5} & 0 \\
0 & \frac{2}{-5+5 i \sqrt{3}} & \frac{1}{10}-\frac{i \sqrt{3}}{10} & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{2 R_{2}}{(-5+5 i \sqrt{3})\left(\frac{1}{10}-\frac{i \sqrt{3}}{10}\right)} \Longrightarrow\left[\begin{array}{ccc|c}
\frac{1}{10}-\frac{i \sqrt{3}}{10} & \frac{1}{10} & 0 & 0 \\
0 & \frac{1}{10}-\frac{i \sqrt{3}}{10} & \frac{1}{5} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
\frac{1}{10}-\frac{i \sqrt{3}}{10} & \frac{1}{10} & 0 \\
0 & \frac{1}{10}-\frac{i \sqrt{3}}{10} & \frac{1}{5} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{-i \sqrt{3}-1}, v_{2}=\frac{2 t}{i \sqrt{3}-1}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{-\mathrm{I} \sqrt{3}-1} \\
\frac{2 t}{\mathrm{I} \sqrt{3}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{-i \sqrt{3}-1} \\
\frac{2 t}{i \sqrt{3}-1} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{-\mathrm{I} \sqrt{3}-1} \\
\frac{2 t}{\mathrm{I} \sqrt{3}-1} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{-i \sqrt{3}-1} \\
\frac{2}{i \sqrt{3}-1} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{-\mathrm{I} \sqrt{3}-1} \\
\frac{2 t}{\mathrm{I} \sqrt{3}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{-i \sqrt{3}-1} \\
\frac{2}{i \sqrt{3}-1} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{t}{-\mathrm{I} \sqrt{3}-1} \\
\frac{2 t}{\mathrm{I} \sqrt{3}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{-i \sqrt{3}-1} \\
\frac{2}{i \sqrt{3}-1} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity		defective?	eigenvectors
	algebraic m	geometric k		
$\frac{1}{5}$	1	1	No	$\left[\begin{array}{c}\frac{1}{2} \\ 1 \\ 1\end{array}\right]$
$-\frac{1}{10}+\frac{i \sqrt{3}}{10}$	1	1	No	$\left[\begin{array}{c}\frac{1}{50\left(-\frac{1}{10}+\frac{i \sqrt{3}}{10}\right)^{2}} \\ \frac{1}{-\frac{1}{2}+\frac{i \sqrt{3}}{2}} \\ 1\end{array}\right]$
$-\frac{1}{10}-\frac{i \sqrt{3}}{10}$	1	1	No	$\left[\begin{array}{c}\frac{1}{50\left(-\frac{1}{10}-\frac{i \sqrt{3}}{10}\right)^{2}} \\ \frac{1}{-\frac{1}{2}-\frac{i \sqrt{3}}{2}} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue $\frac{1}{5}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\frac{t}{5}} \\
& =\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
1
\end{array}\right] e^{\frac{t}{5}}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{e^{\frac{t}{5}}}{2} \\
\mathrm{e}^{\frac{t}{5}} \\
\mathrm{e}^{\frac{t}{5}}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{\mathrm{e}^{\left(-\frac{1}{10}+\frac{i \sqrt{3}}{10}\right) t}}{50\left(-\frac{1}{10}+\frac{i \sqrt{3}}{10}\right)^{2}} \\
\frac{\mathrm{e}^{\left(-\frac{1}{10}+\frac{i \sqrt{3}}{10}\right) t}}{-\frac{1}{2}+\frac{i \sqrt{3}}{2}} \\
\mathrm{e}^{\left(-\frac{1}{10}+\frac{i \sqrt{3}}{10}\right) t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
\frac{\mathrm{e}^{\left(-\frac{1}{10}-\frac{i \sqrt{3}}{10}\right) t}}{50\left(-\frac{1}{10}-\frac{i \sqrt{3}}{10}\right)^{2}} \\
\frac{\mathrm{e}^{\left(-\frac{1}{10}-\frac{i \sqrt{3}}{10}\right) t}}{-\frac{1}{2}-\frac{i \sqrt{3}}{2}} \\
\mathrm{e}^{\left(-\frac{1}{10}-\frac{i \sqrt{3}}{10}\right) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{3}(-i \sqrt{3}-1) \mathrm{e}^{-\frac{(1+i \sqrt{3}) t}{10}}}{4}+\frac{c_{2}(i \sqrt{3}-1) \mathrm{e}^{\frac{(i \sqrt{3}-1) t}{10}}}{4}+\frac{c_{1} \mathrm{e}^{\frac{t}{5}}}{2} \\
\frac{c_{3}(i \sqrt{3}-1) \mathrm{e}^{-\frac{(1+i \sqrt{3}) t}{10}}}{2}+\frac{c_{2}(-i \sqrt{3}-1) \mathrm{e}^{\frac{(i \sqrt{3}-1) t}{10}}}{2}+c_{1} \mathrm{e}^{\frac{t}{5}} \\
c_{1} \mathrm{e}^{\frac{t}{5}}+c_{2} \mathrm{e}^{\frac{(i \sqrt{3}-1) t}{10}}+c_{3} \mathrm{e}^{-\frac{(1+i \sqrt{3}) t}{10}}
\end{array}\right]
$$

14.1.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=\frac{y}{10}, y^{\prime}=\frac{z(t)}{5}, z^{\prime}(t)=\frac{2 x(t)}{5}\right]
$$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{ccc}
0 & \frac{1}{10} & 0 \\
0 & 0 & \frac{1}{5} \\
\frac{2}{5} & 0 & 0
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{ccc}
0 & \frac{1}{10} & 0 \\
0 & 0 & \frac{1}{5} \\
\frac{2}{5} & 0 & 0
\end{array}\right] \cdot \vec{x}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & \frac{1}{10} & 0 \\
0 & 0 & \frac{1}{5} \\
\frac{2}{5} & 0 & 0
\end{array}\right]
$$

- Rewrite the system as
$\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[\frac{1}{5},\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
1
\end{array}\right]\right],\left[-\frac{1}{10}-\frac{\mathrm{I} \sqrt{3}}{10},\left[\begin{array}{c}
\frac{1}{50\left(-\frac{1}{10}-\frac{\mathrm{I} \sqrt{3}}{10}\right)^{2}} \\
\frac{1}{5\left(-\frac{1}{10}-\frac{\mathrm{I} \sqrt{3}}{10}\right)} \\
1
\end{array}\right]\right],\left[-\frac{1}{10}+\frac{\mathrm{I} \sqrt{3}}{10},\left[\begin{array}{c}
\frac{1}{50\left(-\frac{1}{10}+\frac{\mathrm{I} \sqrt{3}}{10}\right)^{2}} \\
\frac{1}{5\left(-\frac{1}{10}+\frac{\mathrm{I} \sqrt{3}}{10}\right)} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair
$\left[\frac{1}{5},\left[\begin{array}{c}\frac{1}{2} \\ 1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\mathrm{e}^{\frac{t}{5}} \cdot\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\frac{1}{10}-\frac{\mathrm{I} \sqrt{3}}{10},\left[\begin{array}{c}
\frac{1}{50\left(-\frac{1}{10}-\frac{\mathrm{I} \sqrt{3}}{10}\right)^{2}} \\
\frac{1}{5\left(-\frac{1}{10}-\frac{\mathrm{I} \sqrt{3}}{10}\right)} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{\left(-\frac{1}{10}-\frac{\mathrm{I} \sqrt{3}}{10}\right) t} \cdot\left[\begin{array}{c}
\frac{1}{50\left(-\frac{1}{10}-\frac{\mathrm{I} \sqrt{3}}{10}\right)^{2}} \\
\frac{1}{5\left(-\frac{1}{10}-\frac{\mathrm{I} \sqrt{3}}{10}\right)} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{-\frac{t}{10}} \cdot\left(\cos \left(\frac{\sqrt{3} t}{10}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} t}{10}\right)\right) \cdot\left[\begin{array}{c}
\frac{1}{50\left(-\frac{1}{10}-\frac{\mathrm{I} \sqrt{3}}{10}\right)^{2}} \\
\frac{1}{5\left(-\frac{1}{10}-\frac{\mathrm{I} \sqrt{3}}{10}\right)} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-\frac{t}{10}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{\sqrt{3} t}{10}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} t}{10}\right)}{50\left(-\frac{1}{10}-\frac{\sqrt{3} 3}{10}\right)^{2}} \\
\frac{\cos \left(\frac{\sqrt{3} t}{10}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} t}{10}\right)}{5\left(-\frac{1}{10}-\frac{\mathrm{I} \sqrt{3}}{10}\right)} \\
\cos \left(\frac{\sqrt{3} t}{10}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} t}{10}\right)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{x}_{2}(t)=\mathrm{e}^{-\frac{t}{10}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{\sqrt{3} t}{10}\right)}{4}-\frac{\sqrt{3} \sin \left(\frac{\sqrt{3} t}{10}\right)}{4} \\
-\frac{\cos \left(\frac{\sqrt{3} t}{10}\right)}{2}+\frac{\sqrt{3} \sin \left(\frac{\sqrt{3} t}{10}\right)}{2} \\
\cos \left(\frac{\sqrt{3} t}{10}\right)
\end{array}\right], \vec{x}_{3}(t)=\mathrm{e}^{-\frac{t}{10}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{\sqrt{3} t}{10}\right) \sqrt{3}}{4}+\frac{\sin \left(\frac{\sqrt{3} t}{10}\right)}{4} \\
\frac{\cos \left(\frac{\sqrt{3} t}{10}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} t}{10}\right)}{2} \\
-\sin \left(\frac{\sqrt{3} t}{10}\right)
\end{array}\right]\right]
$$

- General solution to the system of ODEs
$\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)$
- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{\frac{t}{5}} \cdot\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-\frac{t}{10}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{\sqrt{3} t}{10}\right)}{4}-\frac{\sqrt{3} \sin \left(\frac{\sqrt{3} t}{10}\right)}{4} \\
-\frac{\cos \left(\frac{\sqrt{3} t}{10}\right)}{2}+\frac{\sqrt{3} \sin \left(\frac{\sqrt{3} t}{10}\right)}{2} \\
\cos \left(\frac{\sqrt{3} t}{10}\right)
\end{array}\right]+c_{3} \mathrm{e}^{-\frac{t}{10}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{\sqrt{3} t}{10}\right) \sqrt{3}}{4}+\frac{\sin \left(\frac{\sqrt{3} t}{10}\right)}{4} \\
\frac{\cos \left(\frac{\sqrt{3} t}{10}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} t}{10}\right)}{2} \\
-\sin \left(\frac{\sqrt{3} t}{10}\right)
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{\mathrm{e}^{-\frac{t}{10}}\left(c_{3} \sqrt{3}+c_{2}\right) \cos \left(\frac{\sqrt{3} t}{10}\right)}{4}-\frac{\mathrm{e}^{-\frac{t}{10}}\left(c_{2} \sqrt{3}-c_{3}\right) \sin \left(\frac{\sqrt{3} t}{10}\right)}{4}+\frac{c_{1} \mathrm{e}^{\frac{t}{5}}}{2} \\
-\frac{\mathrm{e}^{-\frac{t}{10}}\left(-c_{3} \sqrt{3}+c_{2}\right) \cos \left(\frac{\sqrt{3} t}{10}\right)}{2}+\frac{\mathrm{e}^{-\frac{t}{10}}\left(c_{2} \sqrt{3}+c_{3}\right) \sin \left(\frac{\sqrt{3} t}{10}\right)}{2}+c_{1} \mathrm{e}^{\frac{t}{5}} \\
c_{1} \mathrm{e}^{\frac{t}{5}}+c_{2} \mathrm{e}^{-\frac{t}{10}} \cos \left(\frac{\sqrt{3} t}{10}\right)-c_{3} \mathrm{e}^{-\frac{t}{10}} \sin \left(\frac{\sqrt{3} t}{10}\right)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x(t)=-\frac{\mathrm{e}^{-\frac{t}{10}}\left(c_{3} \sqrt{3}+c_{2}\right) \cos \left(\frac{\sqrt{3} t}{10}\right)}{4}-\frac{\mathrm{e}^{-\frac{t}{10}}\left(c_{2} \sqrt{3}-c_{3}\right) \sin \left(\frac{\sqrt{3} t}{10}\right)}{4}+\frac{c_{1} \mathrm{e}^{\frac{t}{5}}}{2}, y=-\frac{\mathrm{e}^{-\frac{t}{10}}\left(-c_{3} \sqrt{3}+c_{2}\right) \cos \left(\frac{\sqrt{3} t}{10}\right)}{2}+\frac{\mathrm{e}^{-\frac{1}{1}}}{2}\right.
$$

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 183
dsolve $([\operatorname{diff}(x(t), t)=0 * x(t)+1 / 10 * y(t)+0 * z(t), \operatorname{diff}(y(t), t)=0 * x(t)+0 * y(t)+2 / 10 * z(t), \operatorname{diff}(z(t)$,

$$
\begin{aligned}
x(t)= & \frac{\mathrm{e}^{\frac{t}{5}} c_{1}}{2}-\frac{c_{2} \mathrm{e}^{-\frac{t}{10}} \sin \left(\frac{\sqrt{3} t}{10}\right)}{4}+\frac{c_{2} \mathrm{e}^{-\frac{t}{10}} \sqrt{3} \cos \left(\frac{\sqrt{3} t}{10}\right)}{4} \\
& -\frac{c_{3} \mathrm{e}^{-\frac{t}{10}} \cos \left(\frac{\sqrt{3} t}{10}\right)}{4}-\frac{c_{3} \mathrm{e}^{-\frac{t}{10}} \sqrt{3} \sin \left(\frac{\sqrt{3} t}{10}\right)}{4} \\
y(t)= & \mathrm{e}^{\frac{t}{5}} c_{1}-\frac{c_{2} \mathrm{e}^{-\frac{t}{10}} \sin \left(\frac{\sqrt{3} t}{10}\right)}{2}-\frac{c_{2} \mathrm{e}^{-\frac{t}{10}} \sqrt{3} \cos \left(\frac{\sqrt{3} t}{10}\right)}{2} \\
& -\frac{c_{3} \mathrm{e}^{-\frac{t}{10}} \cos \left(\frac{\sqrt{3} t}{10}\right)}{2}+\frac{c_{3} \mathrm{e}^{-\frac{t}{10}} \sqrt{3} \sin \left(\frac{\sqrt{3} t}{10}\right)}{2} \\
z(t)= & \mathrm{e}^{\frac{t}{5}} c_{1}+c_{2} \mathrm{e}^{-\frac{t}{10}} \sin \left(\frac{\sqrt{3} t}{10}\right)+c_{3} \mathrm{e}^{-\frac{t}{10}} \cos \left(\frac{\sqrt{3} t}{10}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.059 (sec). Leaf size: 269
DSolve $\left[\left\{x^{\prime}[t]==0 * x[t]+1 / 10 * y[t]+0 * z[t], y^{\prime}[t]==0 * x[t]+0 * y[t]+2 / 10 * z[t], z^{\prime}[t]==4 / 10 * x[t]+0 * y[t\right.\right.$

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{6} e^{-t / 10}(\left(2 c_{1}+c_{2}+c_{3}\right) e^{t / 10} \sqrt[5]{e^{t}} \\
&\left.\quad+\left(4 c_{1}-c_{2}-c_{3}\right) \cos \left(\frac{\sqrt{3} t}{10}\right)+\sqrt{3}\left(c_{2}-c_{3}\right) \sin \left(\frac{\sqrt{3} t}{10}\right)\right) \\
& \begin{aligned}
y(t) \rightarrow \frac{1}{3} e^{-t / 10} & \left(\left(2 c_{1}+c_{2}+c_{3}\right) e^{t / 10} \sqrt[5]{e^{t}}\right.
\end{aligned} \\
&\left.\quad-\left(2 c_{1}-2 c_{2}+c_{3}\right) \cos \left(\frac{\sqrt{3} t}{10}\right)-\sqrt{3}\left(2 c_{1}-c_{3}\right) \sin \left(\frac{\sqrt{3} t}{10}\right)\right) \\
& \begin{aligned}
z(t) \rightarrow \frac{1}{3} e^{-t / 10}(& \left(2 c_{1}+c_{2}+c_{3}\right) e^{t / 10} \sqrt[5]{e^{t}}
\end{aligned} \\
&\left.\quad-\left(2 c_{1}+c_{2}-2 c_{3}\right) \cos \left(\frac{\sqrt{3} t}{10}\right)+\sqrt{3}\left(2 c_{1}-c_{2}\right) \sin \left(\frac{\sqrt{3} t}{10}\right)\right)
\end{aligned}
$$

14.2 problem 4

14.2.1 Solution using Matrix exponential method 2239
14.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2240
14.2.3 Maple step by step solution . 2247

Internal problem ID [13129]
Internal file name [OUTPUT/11784_Sunday_December_03_2023_07_16_35_PM_23060983/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =y \\
y^{\prime} & =-x(t) \\
z^{\prime}(t) & =2 z(t)
\end{aligned}
$$

14.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime} \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\cos (t) & \sin (t) & 0 \\
-\sin (t) & \cos (t) & 0 \\
0 & 0 & \mathrm{e}^{2 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\cos (t) & \sin (t) & 0 \\
-\sin (t) & \cos (t) & 0 \\
0 & 0 & \mathrm{e}^{2 t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\cos (t) c_{1}+\sin (t) c_{2} \\
-\sin (t) c_{1}+\cos (t) c_{2} \\
\mathrm{e}^{2 t} c_{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

14.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime} \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 2
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-\lambda & 1 & 0 \\
-1 & -\lambda & 0 \\
0 & 0 & 2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-2 \lambda^{2}+\lambda-2=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i \\
& \lambda_{3}=2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
2	1	real eigenvalue
i	1	complex eigenvalue
$-i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 2
\end{array}\right]-(2)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
-2 & 1 & 0 & 0 \\
-1 & -2 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
& R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & 1 & 0 & 0 \\
0 & -\frac{5}{2} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -\frac{5}{2} & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 2
\end{array}\right]-(-i)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
i & 1 & 0 \\
-1 & i & 0 \\
0 & 0 & 2+i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
i & 1 & 0 & 0 \\
-1 & i & 0 & 0 \\
0 & 0 & 2+i & 0
\end{array}\right]} \\
R_{2}=-i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
i & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 2+i & 0
\end{array}\right]
\end{gathered}
$$

Since the current pivot $A(2,3)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{ccc|c}
i & 1 & 0 & 0 \\
0 & 0 & 2+i & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
i & 1 & 0 \\
0 & 0 & 2+i \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=i t, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
i t \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
i \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
i \\
1 \\
0
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 2
\end{array}\right]-(i)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ccc}
-i & 1 & 0 \\
-1 & -i & 0 \\
0 & 0 & 2-i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
-i & 1 & 0 & 0 \\
-1 & -i & 0 & 0 \\
0 & 0 & 2-i & 0
\end{array}\right]} \\
& R_{2}=i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-i & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 2-i & 0
\end{array}\right]
\end{aligned}
$$

Since the current pivot $A(2,3)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{ccc|c}
-i & 1 & 0 & 0 \\
0 & 0 & 2-i & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-i & 1 & 0 \\
0 & 0 & 2-i \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-i t, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
-i t \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t \\
0
\end{array}\right]=t\left[\begin{array}{c}
-i \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
-i \\
1 \\
0
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity		defective?	eigenvectors
	algebraic m	geometric k		
i	1	1	No	$\left[\begin{array}{c}-i \\ 1 \\ 0\end{array}\right]$
$-i$	1	1	No	$\left[\begin{array}{l}i \\ 1 \\ 0\end{array}\right]$
2	1	1	No	$\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{2 t} \\
& =\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-i \mathrm{e}^{i t} \\
\mathrm{e}^{i t} \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
i \mathrm{e}^{-i t} \\
\mathrm{e}^{-i t} \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
0 \\
0 \\
\mathrm{e}^{2 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
i\left(c_{2} \mathrm{e}^{-i t}-c_{1} \mathrm{e}^{i t}\right) \\
c_{1} \mathrm{e}^{i t}+c_{2} \mathrm{e}^{-i t} \\
c_{3} \mathrm{e}^{2 t}
\end{array}\right]
$$

14.2.3 Maple step by step solution

Let's solve
$\left[x^{\prime}(t)=y, y^{\prime}=-x(t), z^{\prime}(t)=2 z(t)\right]$

- Define vector
$\vec{x}(t)=\left[\begin{array}{c}x(t) \\ y \\ z(t)\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 2\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
- System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 2
\end{array}\right] \cdot \vec{x}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[2,\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right],\left[-\mathrm{I},\left[\begin{array}{l}
\mathrm{I} \\
1 \\
0
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
1 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\mathrm{e}^{2 t} \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I},\left[\begin{array}{l}
\mathrm{I} \\
1 \\
0
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{I} t} \cdot\left[\begin{array}{l}
\mathrm{I} \\
1 \\
0
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
(\cos (t)-\mathrm{I} \sin (t)) \cdot\left[\begin{array}{l}
\mathrm{I} \\
1 \\
0
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
\mathrm{I}(\cos (t)-\mathrm{I} \sin (t)) \\
\cos (t)-\mathrm{I} \sin (t) \\
0
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{x}_{2}(t)=\left[\begin{array}{c}
\sin (t) \\
\cos (t) \\
0
\end{array}\right], \vec{x}_{3}(t)=\left[\begin{array}{c}
\cos (t) \\
-\sin (t) \\
0
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{2 t} \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
c_{3} \cos (t)+c_{2} \sin (t) \\
c_{2} \cos (t)-c_{3} \sin (t) \\
0
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
c_{3} \cos (t)+c_{2} \sin (t) \\
c_{2} \cos (t)-c_{3} \sin (t) \\
c_{1} \mathrm{e}^{2 t}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=c_{3} \cos (t)+c_{2} \sin (t), y=c_{2} \cos (t)-c_{3} \sin (t), z(t)=c_{1} \mathrm{e}^{2 t}\right\}
$$

Solution by Maple
Time used: 0.015 (sec). Leaf size: 36

```
dsolve([diff (x (t),t)=0*x (t)+1*y(t)+0*z(t), diff (y (t),t)=-1*x (t)+0*y (t)+0*z(t), diff (z(t),t)=0*
```

$$
\begin{aligned}
& x(t)=c_{1} \sin (t)+c_{2} \cos (t) \\
& y(t)=c_{1} \cos (t)-c_{2} \sin (t) \\
& z(t)=c_{3} \mathrm{e}^{2 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 76
DSolve $\left[\left\{\mathrm{x}^{\prime}[\mathrm{t}]==0 * \mathrm{x}[\mathrm{t}]+1 * \mathrm{y}[\mathrm{t}]+0 * \mathrm{z}[\mathrm{t}], \mathrm{y}^{\prime}[\mathrm{t}]==-1 * \mathrm{x}[\mathrm{t}]+0 * \mathrm{y}[\mathrm{t}]+0 * \mathrm{z}[\mathrm{t}], \mathrm{z} \mathrm{z}^{\prime}[\mathrm{t}]==0 * \mathrm{x}[\mathrm{t}]+0 * \mathrm{y}[\mathrm{t}]+2 * \mathrm{z}[\mathrm{t}]\right.\right.$

$$
\begin{aligned}
& x(t) \rightarrow c_{1} \cos (t)+c_{2} \sin (t) \\
& y(t) \rightarrow c_{2} \cos (t)-c_{1} \sin (t) \\
& z(t) \rightarrow c_{3} e^{2 t} \\
& x(t) \rightarrow c_{1} \cos (t)+c_{2} \sin (t) \\
& y(t) \rightarrow c_{2} \cos (t)-c_{1} \sin (t) \\
& z(t) \rightarrow 0
\end{aligned}
$$

14.3 problem 5

14.3.1 Solution using Matrix exponential method 2251
14.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2252
14.3.3 Maple step by step solution . 2259

Internal problem ID [13130]
Internal file name [OUTPUT/11785_Sunday_December_03_2023_07_16_35_PM_48437138/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-2 x(t)+3 y \\
y^{\prime} & =3 x(t)-2 y \\
z^{\prime}(t) & =-z(t)
\end{aligned}
$$

14.3.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime} \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 3 & 0 \\
3 & -2 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\frac{\left(\mathrm{e}^{6 t}+1\right) \mathrm{e}^{-5 t}}{2} & \frac{\left(\mathrm{e}^{6 t}-1\right) \mathrm{e}^{-5 t}}{2} & 0 \\
\frac{\left(\mathrm{e}^{6 t}-1\right) \mathrm{e}^{-5 t}}{2} & \frac{\left(\mathrm{e}^{6 t}+1\right) \mathrm{e}^{-5 t}}{2} & 0 \\
0 & 0 & \mathrm{e}^{-t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\frac{\left(\mathrm{e}^{6 t}+1\right) \mathrm{e}^{-5 t}}{2} & \frac{\left(\mathrm{e}^{6 t}-1\right) \mathrm{e}^{-5 t}}{2} & 0 \\
\frac{\left(\mathrm{e}^{6 t}-1\right) \mathrm{e}^{-5 t}}{2} & \frac{\left(\mathrm{e}^{6 t}+1\right) \mathrm{e}^{-5 t}}{2} & 0 \\
0 & 0 & \mathrm{e}^{-t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(\mathrm{e}^{6 t}+1\right) \mathrm{e}^{-5 t} c_{1}}{2}+\frac{\left(\mathrm{e}^{6 t}-1\right) \mathrm{e}^{-5 t} c_{2}}{2} \\
\frac{\left(\mathrm{e}^{6 t}-1\right) \mathrm{e}^{-5 t} c_{1}}{2}+\frac{\left(\mathrm{e}^{6 t}+1\right) \mathrm{e}^{-5 t} c_{2}}{2} \\
\mathrm{e}^{-t} c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(\left(c_{1}+c_{2}\right) \mathrm{e}^{6 t}-c_{2}+c_{1}\right) \mathrm{e}^{-5 t}}{2} \\
\frac{\mathrm{e}^{-5 t}\left(\left(c_{1}+c_{2}\right) \mathrm{e}^{6 t}+c_{2}-c_{1}\right)}{2} \\
\mathrm{e}^{-t} c_{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

14.3.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime} \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 3 & 0 \\
3 & -2 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-2 & 3 & 0 \\
3 & -2 & 0 \\
0 & 0 & -1
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-2-\lambda & 3 & 0 \\
3 & -2-\lambda & 0 \\
0 & 0 & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}+5 \lambda^{2}-\lambda-5=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =-5 \\
\lambda_{2} & =1 \\
\lambda_{3} & =-1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
1	1	real eigenvalue
-5	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-5$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-2 & 3 & 0 \\
3 & -2 & 0 \\
0 & 0 & -1
\end{array}\right]-(-5)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=}
\end{aligned}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{lll|l}
3 & 3 & 0 & 0 \\
3 & 3 & 0 & 0 \\
0 & 0 & 4 & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{lll|l}
3 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 4 & 0
\end{array}\right]
$$

Since the current pivot $A(2,3)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{lll|l}
3 & 3 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{lll}
3 & 3 & 0 \\
0 & 0 & 4 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-2 & 3 & 0 \\
3 & -2 & 0 \\
0 & 0 & -1
\end{array}\right]-(-1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-1 & 3 & 0 & 0 \\
3 & -1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
R_{2}=R_{2}+3 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & 3 & 0 & 0 \\
0 & 8 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-1 & 3 & 0 \\
0 & 8 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-2 & 3 & 0 \\
3 & -2 & 0 \\
0 & 0 & -1
\end{array}\right]-(1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-3 & 3 & 0 & 0 \\
3 & -3 & 0 & 0 \\
0 & 0 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-3 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -2 & 0
\end{array}\right]
\end{gathered}
$$

Since the current pivot $A(2,3)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{ccc|c}
-3 & 3 & 0 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-3 & 3 & 0 \\
0 & 0 & -2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
t \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
t \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
1	1		No	$\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$
	1		No	$\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$
	1	1	No	$\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -5 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-5 t} \\
& =\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] e^{-5 t}
\end{aligned}
$$

Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{t} \\
& =\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] e^{t}
\end{aligned}
$$

Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{-t} \\
& =\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] e^{-t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{-5 t} \\
\mathrm{e}^{-5 t} \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{t} \\
\mathrm{e}^{t} \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
0 \\
0 \\
\mathrm{e}^{-t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
-\left(-c_{2} \mathrm{e}^{6 t}+c_{1}\right) \mathrm{e}^{-5 t} \\
\left(c_{2} \mathrm{e}^{6 t}+c_{1}\right) \mathrm{e}^{-5 t} \\
c_{3} \mathrm{e}^{-t}
\end{array}\right]
$$

14.3.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=-2 x(t)+3 y, y^{\prime}=3 x(t)-2 y, z^{\prime}(t)=-z(t)\right]
$$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{ccc}
-2 & 3 & 0 \\
3 & -2 & 0 \\
0 & 0 & -1
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{ccc}
-2 & 3 & 0 \\
3 & -2 & 0 \\
0 & 0 & -1
\end{array}\right] \cdot \vec{x}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
-2 & 3 & 0 \\
3 & -2 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\left[-5,\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right],\left[-1,\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right]\right]\right.
$$

- Consider eigenpair

$$
\left[-5,\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\mathrm{e}^{-5 t} \cdot\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{2}=\mathrm{e}^{-t} \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[1,\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair
$\vec{x}_{3}=\mathrm{e}^{t} .\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$
- General solution to the system of ODEs
$\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+c_{3} \vec{x}_{3}$
- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{-5 t} \cdot\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+c_{2} \mathrm{e}^{-t} \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{t} \cdot\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
-\left(-c_{3} \mathrm{e}^{6 t}+c_{1}\right) \mathrm{e}^{-5 t} \\
\left(c_{3} \mathrm{e}^{6 t}+c_{1}\right) \mathrm{e}^{-5 t} \\
c_{2} \mathrm{e}^{-t}
\end{array}\right]
$$

- Solution to the system of ODEs
$\left\{x(t)=-\left(-c_{3} \mathrm{e}^{6 t}+c_{1}\right) \mathrm{e}^{-5 t}, y=\left(c_{3} \mathrm{e}^{6 t}+c_{1}\right) \mathrm{e}^{-5 t}, z(t)=c_{2} \mathrm{e}^{-t}\right\}$
\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 40

```
dsolve([diff (x (t),t)=-2*x (t)+3*y (t)+0*z(t),\operatorname{diff}(y(t),t)=3*x(t)-2*y(t)+0*z(t),\operatorname{diff}(z(t),t)=0*
```

$$
\begin{aligned}
& x(t)=c_{1} \mathrm{e}^{-5 t}+c_{2} \mathrm{e}^{t} \\
& y(t)=-c_{1} \mathrm{e}^{-5 t}+c_{2} \mathrm{e}^{t} \\
& z(t)=c_{3} \mathrm{e}^{-t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 150
DSolve $\left[\left\{x^{\prime}[t]==-2 * x[t]+3 * y[t]+0 * z[t], y^{\prime}[t]==3 * x[t]-2 * y[t]+0 * z[t], z^{\prime}[t]==0 * x[t]+0 * y[t]-1 * z[t]\right.\right.$

$$
\begin{aligned}
x(t) & \rightarrow \frac{1}{2} e^{-5 t}\left(c_{1}\left(e^{6 t}+1\right)+c_{2}\left(e^{6 t}-1\right)\right) \\
y(t) & \rightarrow \frac{1}{2} e^{-5 t}\left(c_{1}\left(e^{6 t}-1\right)+c_{2}\left(e^{6 t}+1\right)\right) \\
z(t) & \rightarrow c_{3} e^{-t} \\
x(t) & \rightarrow \frac{1}{2} e^{-5 t}\left(c_{1}\left(e^{6 t}+1\right)+c_{2}\left(e^{6 t}-1\right)\right) \\
y(t) & \rightarrow \frac{1}{2} e^{-5 t}\left(c_{1}\left(e^{6 t}-1\right)+c_{2}\left(e^{6 t}+1\right)\right) \\
z(t) & \rightarrow 0
\end{aligned}
$$

14.4 problem 6

14.4.1 Solution using Matrix exponential method 2263
14.4.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2264
14.4.3 Maple step by step solution . 2271

Internal problem ID [13131]
Internal file name [OUTPUT/11786_Sunday_December_03_2023_07_16_36_PM_56995902/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =x(t)+3 z(t) \\
y^{\prime} & =-y \\
z^{\prime}(t) & =-3 x(t)+z(t)
\end{aligned}
$$

14.4.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime} \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & -1 & 0 \\
-3 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\mathrm{e}^{t} \cos (3 t) & 0 & \mathrm{e}^{t} \sin (3 t) \\
0 & \mathrm{e}^{-t} & 0 \\
-\mathrm{e}^{t} \sin (3 t) & 0 & \mathrm{e}^{t} \cos (3 t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{t} \cos (3 t) & 0 & \mathrm{e}^{t} \sin (3 t) \\
0 & \mathrm{e}^{-t} & 0 \\
-\mathrm{e}^{t} \sin (3 t) & 0 & \mathrm{e}^{t} \cos (3 t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t} \cos (3 t) c_{1}+\mathrm{e}^{t} \sin (3 t) c_{3} \\
\mathrm{e}^{-t} c_{2} \\
-\mathrm{e}^{t} \sin (3 t) c_{1}+\mathrm{e}^{t} \cos (3 t) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t}\left(\cos (3 t) c_{1}+\sin (3 t) c_{3}\right) \\
\mathrm{e}^{-t} c_{2} \\
-\mathrm{e}^{t}\left(\sin (3 t) c_{1}-\cos (3 t) c_{3}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

14.4.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime} \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & -1 & 0 \\
-3 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & -1 & 0 \\
-3 & 0 & 1
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
1-\lambda & 0 & 3 \\
0 & -1-\lambda & 0 \\
-3 & 0 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-\lambda^{2}+8 \lambda+10=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=1+3 i \\
& \lambda_{3}=1-3 i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
$1+3 i$	1	complex eigenvalue
$1-3 i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & -1 & 0 \\
-3 & 0 & 1
\end{array}\right]-(-1)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
2 & 0 & 3 \\
0 & 0 & 0 \\
-3 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
2 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 \\
-3 & 0 & 2 & 0
\end{array}\right]
$$

$$
R_{3}=R_{3}+\frac{3 R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
2 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \frac{13}{2} & 0
\end{array}\right]
$$

Since the current pivot $A(2,3)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{ccc|c}
2 & 0 & 3 & 0 \\
0 & 0 & \frac{13}{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
2 & 0 & 3 \\
0 & 0 & \frac{13}{2} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
t \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
t \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=1-3 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & -1 & 0 \\
-3 & 0 & 1
\end{array}\right]-(1-3 i)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
&\left(\left[\begin{array}{ccc}
3 i & 0 & 3 \\
0 & -2+3 i & 0 \\
-3 & 0 & 3 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right.
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
3 i & 0 & 3 & 0 \\
0 & -2+3 i & 0 & 0 \\
-3 & 0 & 3 i & 0
\end{array}\right]} \\
R_{3}=-i R_{1}+R_{3} \Longrightarrow\left[\begin{array}{ccc|c}
3 i & 0 & 3 & 0 \\
0 & -2+3 i & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
3 i & 0 & 3 \\
0 & -2+3 i & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=i t, v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\mathrm{I} t \\
0 \\
t
\end{array}\right]=\left[\begin{array}{c}
i t \\
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\mathrm{I} t \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{c}
i \\
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\mathrm{I} t \\
0 \\
t
\end{array}\right]=\left[\begin{array}{c}
i \\
0 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=1+3 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & -1 & 0 \\
-3 & 0 & 1
\end{array}\right]-(1+3 i)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
&\left(\left[\begin{array}{ccc}
-3 i & 0 & 3 \\
0 & -2-3 i & 0 \\
-3 & 0 & -3 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right.
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-3 i & 0 & 3 & 0 \\
0 & -2-3 i & 0 & 0 \\
-3 & 0 & -3 i & 0
\end{array}\right]} \\
R_{3}=i R_{1}+R_{3} \Longrightarrow\left[\begin{array}{ccc|c}
-3 i & 0 & 3 & 0 \\
0 & -2-3 i & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-3 i & 0 & 3 \\
0 & -2-3 i & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-i t, v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
0 \\
t
\end{array}\right]=\left[\begin{array}{c}
-i t \\
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{c}
-i \\
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
0 \\
t
\end{array}\right]=\left[\begin{array}{c}
-i \\
0 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-1	1	1	No	$\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$
$1+3 i$	1	1	No	$\left[\begin{array}{c}-i \\ 0 \\ 1\end{array}\right]$
$1-3 i$	1	1	No	$\left[\begin{array}{c}i \\ 0 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-t} \\
& =\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] e^{-t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
\mathrm{e}^{-t} \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
-i \mathrm{e}^{(1+3 i) t} \\
0 \\
\mathrm{e}^{(1+3 i) t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
i \mathrm{e}^{(1-3 i) t} \\
0 \\
\mathrm{e}^{(1-3 i) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
i\left(c_{3} \mathrm{e}^{(1-3 i) t}-c_{2} \mathrm{e}^{(1+3 i) t}\right) \\
c_{1} \mathrm{e}^{-t} \\
c_{2} \mathrm{e}^{(1+3 i) t}+c_{3} \mathrm{e}^{(1-3 i) t}
\end{array}\right]
$$

14.4.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=x(t)+3 z(t), y^{\prime}=-y, z^{\prime}(t)=-3 x(t)+z(t)\right]
$$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & -1 & 0 \\
-3 & 0 & 1
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & -1 & 0 \\
-3 & 0 & 1
\end{array}\right] \cdot \vec{x}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & 3 \\
0 & -1 & 0 \\
-3 & 0 & 1
\end{array}\right]
$$

- Rewrite the system as
$\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right],\left[1-3 \mathrm{I},\left[\begin{array}{l}
\mathrm{I} \\
0 \\
1
\end{array}\right]\right],\left[1+3 \mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
0 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\mathrm{e}^{-t} \cdot\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[1-3 \mathrm{I},\left[\begin{array}{l}
\mathrm{I} \\
0 \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(1-3 \mathrm{I}) t} \cdot\left[\begin{array}{l}
\mathrm{I} \\
0 \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{t} \cdot(\cos (3 t)-\mathrm{I} \sin (3 t)) \cdot\left[\begin{array}{l}
\mathrm{I} \\
0 \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{t} \cdot\left[\begin{array}{c}
\mathrm{I}(\cos (3 t)-\mathrm{I} \sin (3 t)) \\
0 \\
\cos (3 t)-\mathrm{I} \sin (3 t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{x}_{2}(t)=\mathrm{e}^{t} \cdot\left[\begin{array}{c}
\sin (3 t) \\
0 \\
\cos (3 t)
\end{array}\right], \vec{x}_{3}(t)=\mathrm{e}^{t} \cdot\left[\begin{array}{c}
\cos (3 t) \\
0 \\
-\sin (3 t)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{-t} \cdot\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+c_{2} \mathrm{e}^{t} \cdot\left[\begin{array}{c}
\sin (3 t) \\
0 \\
\cos (3 t)
\end{array}\right]+c_{3} \mathrm{e}^{t} \cdot\left[\begin{array}{c}
\cos (3 t) \\
0 \\
-\sin (3 t)
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{t}\left(c_{2} \sin (3 t)+c_{3} \cos (3 t)\right) \\
c_{1} \mathrm{e}^{-t} \\
\mathrm{e}^{t}\left(c_{2} \cos (3 t)-c_{3} \sin (3 t)\right)
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=\mathrm{e}^{t}\left(c_{2} \sin (3 t)+c_{3} \cos (3 t)\right), y=c_{1} \mathrm{e}^{-t}, z(t)=\mathrm{e}^{t}\left(c_{2} \cos (3 t)-c_{3} \sin (3 t)\right)\right\}
$$

Solution by Maple
Time used: 0.016 (sec). Leaf size: 50

```
dsolve([diff (x(t),t)=1*x(t)+0*y(t)+3*z(t), diff (y(t),t)=0*x(t)-1*y(t)+0*z(t), diff (z (t),t)=-3*
```

$$
\begin{aligned}
& x(t)=\mathrm{e}^{t}\left(c_{1} \sin (3 t)+c_{2} \cos (3 t)\right) \\
& y(t)=c_{3} \mathrm{e}^{-t} \\
& z(t)=\mathrm{e}^{t}\left(c_{1} \cos (3 t)-c_{2} \sin (3 t)\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 108
DSolve $\left[\left\{x^{\prime}[t]==1 * x[t]+0 * y[t]+3 * z[t], y^{\prime}[t]==0 * x[t]-1 * y[t]+0 * z[t], z^{\prime}[t]==-3 * x[t]+0 * y[t]+1 * z[t]\right.\right.$

$$
\begin{aligned}
x(t) & \rightarrow e^{t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right) \\
z(t) & \rightarrow e^{t}\left(c_{2} \cos (3 t)-c_{1} \sin (3 t)\right) \\
y(t) & \rightarrow c_{3} e^{-t} \\
x(t) & \rightarrow e^{t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right) \\
z(t) & \rightarrow e^{t}\left(c_{2} \cos (3 t)-c_{1} \sin (3 t)\right) \\
y(t) & \rightarrow 0
\end{aligned}
$$

14.5 problem 7

14.5.1 Solution using Matrix exponential method 2275
14.5.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2276

Internal problem ID [13132]
Internal file name [OUTPUT/11787_Sunday_December_03_2023_07_16_37_PM_85458287/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =x(t) \\
y^{\prime} & =2 y-z(t) \\
z^{\prime}(t) & =-y+2 z(t)
\end{aligned}
$$

14.5.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime} \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\mathrm{e}^{t} & 0 & 0 \\
0 & \frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{3 t}}{2} & -\frac{\mathrm{e}^{3 t}}{2}+\frac{\mathrm{e}^{t}}{2} \\
0 & -\frac{\mathrm{e}^{3 t}}{2}+\frac{\mathrm{e}^{t}}{2} & \frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{3 t}}{2}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{t} & 0 & 0 \\
0 & \frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{3 t}}{2} & -\frac{\mathrm{e}^{3 t}}{2}+\frac{\mathrm{e}^{t}}{2} \\
0 & -\frac{\mathrm{e}^{3 t}}{2}+\frac{\mathrm{e}^{t}}{2} & \frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{3 t}}{2}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t} c_{1} \\
\left(\frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{3 t}}{2}\right) c_{2}+\left(-\frac{\mathrm{e}^{3 t}}{2}+\frac{\mathrm{e}^{t}}{2}\right) c_{3} \\
\left(-\frac{\mathrm{e}^{3 t}}{2}+\frac{\mathrm{e}^{t}}{2}\right) c_{2}+\left(\frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{3 t}}{2}\right) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t} c_{1} \\
\frac{\left(-c_{3}+c_{2}\right) \mathrm{e}^{3 t}}{2}+\frac{\mathrm{e}^{t}\left(c_{2}+c_{3}\right)}{2} \\
\frac{\left(c_{3}-c_{2}\right) \mathrm{e}^{3 t}}{2}+\frac{\mathrm{e}^{t}\left(c_{2}+c_{3}\right)}{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

14.5.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime} \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
1-\lambda & 0 & 0 \\
0 & 2-\lambda & -1 \\
0 & -1 & 2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-5 \lambda^{2}+7 \lambda-3=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=3
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue
3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]-(1)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0
\end{array}\right]
$$

Since the current pivot $A(1,2)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0
\end{array}\right]} \\
R_{3}=R_{3}+R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
0 & 1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{1}, v_{3}\right\}$ and the leading variables are $\left\{v_{2}\right\}$. Let $v_{1}=t$. Let $v_{3}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{2}=s\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
s \\
s
\end{array}\right]=\left[\begin{array}{l}
t \\
s \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{l}
t \\
s \\
s
\end{array}\right] } & =\left[\begin{array}{l}
t \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
s \\
s
\end{array}\right] \\
& =t\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{l}
t \\
s \\
s
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right)
$$

Considering the eigenvalue $\lambda_{2}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]-(3)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & -1 & -1 \\
0 & -1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-2 & 0 & 0 & 0 \\
0 & -1 & -1 & 0 \\
0 & -1 & -1 & 0
\end{array}\right]} \\
R_{3}=R_{3}-R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & 0 & 0 & 0 \\
0 & -1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & -1 & -1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
0 \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
0 \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
2	2	No	$\left[\begin{array}{cc}0 & 1 \\ 1 & 0 \\ 1 & 0\end{array}\right]$	
3	1	1	No	$\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 1 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 454: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric multiplicity 2 , then it is complete eigenvalue and this falls into case 1 shown above. Hence the corresponding eigenvector basis are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{t} \\
& =\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] e^{t}
\end{aligned}
$$

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{t} \\
& =\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] e^{t}
\end{aligned}
$$

Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{3 t} \\
& =\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right] e^{3 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
\mathrm{e}^{t} \\
\mathrm{e}^{t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{t} \\
0 \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
0 \\
-\mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
c_{2} \mathrm{e}^{t} \\
c_{1} \mathrm{e}^{t}-c_{3} \mathrm{e}^{3 t} \\
c_{1} \mathrm{e}^{t}+c_{3} \mathrm{e}^{3 t}
\end{array}\right]
$$

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 38
$\operatorname{dsolve}([\operatorname{diff}(x(t), t)=1 * x(t)+0 * y(t)+0 * z(t), \operatorname{diff}(y(t), t)=0 * x(t)+2 * y(t)-1 * z(t), \operatorname{diff}(z(t), t)=0 * x$

$$
\begin{aligned}
& x(t)=c_{3} \mathrm{e}^{t} \\
& y(t)=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{3 t} \\
& z(t)=c_{1} \mathrm{e}^{t}-c_{2} \mathrm{e}^{3 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 144
DSolve $\left[\left\{x^{\prime}[t]==1 * x[t]+0 * y[t]+0 * z[t], y^{\prime}[t]==0 * x[t]+2 * y[t]-1 * z[t], z^{\prime}[t]==0 * x[t]-1 * y[t]+2 * z[t]\right\}\right.$

$$
\begin{aligned}
x(t) & \rightarrow c_{1} e^{t} \\
y(t) & \rightarrow \frac{1}{2} e^{t}\left(c_{2} e^{2 t}-c_{3} e^{2 t}+c_{2}+c_{3}\right) \\
z(t) & \rightarrow \frac{1}{2} e^{t}\left(c_{2}\left(-e^{2 t}\right)+c_{3} e^{2 t}+c_{2}+c_{3}\right) \\
x(t) & \rightarrow 0 \\
y(t) & \rightarrow \frac{1}{2} e^{t}\left(c_{2} e^{2 t}-c_{3} e^{2 t}+c_{2}+c_{3}\right) \\
z(t) & \rightarrow \frac{1}{2} e^{t}\left(c_{2}\left(-e^{2 t}\right)+c_{3} e^{2 t}+c_{2}+c_{3}\right)
\end{aligned}
$$

14.6 problem 10

14.6.1 Solution using Matrix exponential method 2284
14.6.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2285

Internal problem ID [13133]
Internal file name [OUTPUT/11788_Sunday_December_03_2023_07_16_37_PM_79513523/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371
Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-2 x(t)+y \\
y^{\prime} & =-2 y \\
z^{\prime}(t) & =-z(t)
\end{aligned}
$$

14.6.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime} \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -2 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\mathrm{e}^{-2 t} & t \mathrm{e}^{-2 t} & 0 \\
0 & \mathrm{e}^{-2 t} & 0 \\
0 & 0 & \mathrm{e}^{-t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{-2 t} & t \mathrm{e}^{-2 t} & 0 \\
0 & \mathrm{e}^{-2 t} & 0 \\
0 & 0 & \mathrm{e}^{-t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-2 t} c_{1}+t \mathrm{e}^{-2 t} c_{2} \\
\mathrm{e}^{-2 t} c_{2} \\
\mathrm{e}^{-t} c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-2 t}\left(c_{2} t+c_{1}\right) \\
\mathrm{e}^{-2 t} c_{2} \\
\mathrm{e}^{-t} c_{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

14.6.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime} \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -2 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -2 & 0 \\
0 & 0 & -1
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-2-\lambda & 1 & 0 \\
0 & -2-\lambda & 0 \\
0 & 0 & -1-\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(-2-\lambda)(-2-\lambda)(-1-\lambda)=0
$$

The roots of the above are the eigenvalues.

$$
\begin{gathered}
\lambda_{1}=-2 \\
\lambda_{2}=-1
\end{gathered}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
-2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -2 & 0 \\
0 & 0 & -1
\end{array}\right]-(-2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=}
\end{aligned}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{lll|l}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Since the current pivot $A(2,3)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{lll|l}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{1}\right\}$ and the leading variables are $\left\{v_{2}, v_{3}\right\}$. Let $v_{1}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{2}=0, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
t \\
0 \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
0 \\
0
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-1$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -2 & 0 \\
0 & 0 & -1
\end{array}\right]-(-1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
-1 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-2	2	1	Yes	$\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
-1	1	1	No	$\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue -2 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 455: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -2 & 0 \\
0 & 0 & -1
\end{array}\right]-(-2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=}
\end{aligned}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue -2 . Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \mathrm{e}^{-2 t} \\
& =\left[\begin{array}{c}
\mathrm{e}^{-2 t} \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] t+\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right) \mathrm{e}^{-2 t} \\
& =\left[\begin{array}{c}
\mathrm{e}^{-2 t}(1+t) \\
\mathrm{e}^{-2 t} \\
0
\end{array}\right]
\end{aligned}
$$

Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{-t} \\
& =\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] e^{-t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{-2 t} \\
0 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{-2 t}(1+t) \\
\mathrm{e}^{-2 t} \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
0 \\
0 \\
\mathrm{e}^{-t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{-2 t}\left(c_{2} t+c_{1}+c_{2}\right) \\
c_{2} \mathrm{e}^{-2 t} \\
c_{3} \mathrm{e}^{-t}
\end{array}\right]
$$

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 33

```
dsolve([diff (x (t),t)=-2*x (t)+1*y(t)+0*z(t), diff (y(t),t)=0*x(t)-2*y(t)+0*z(t), diff (z (t),t)=0*
```

$$
\begin{aligned}
& x(t)=\left(c_{2} t+c_{1}\right) \mathrm{e}^{-2 t} \\
& y(t)=c_{2} \mathrm{e}^{-2 t} \\
& z(t)=c_{3} \mathrm{e}^{-t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 72
DSolve $\left[\left\{x^{\prime}[t]==-2 * x[t]+1 * y[t]+0 * z[t], y^{\prime}[t]==0 * x[t]-2 * y[t]+0 * z[t], z^{\prime}[t]==0 * x[t]+0 * y[t]-1 * z[t]\right.\right.$

$$
\begin{aligned}
& x(t) \rightarrow e^{-2 t}\left(c_{2} t+c_{1}\right) \\
& y(t) \rightarrow c_{2} e^{-2 t} \\
& z(t) \rightarrow c_{3} e^{-t} \\
& x(t) \rightarrow e^{-2 t}\left(c_{2} t+c_{1}\right) \\
& y(t) \rightarrow c_{2} e^{-2 t} \\
& z(t) \rightarrow 0
\end{aligned}
$$

14.7 problem 11

14.7.1 Solution using Matrix exponential method 2293
14.7.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2294

Internal problem ID [13134]
Internal file name [OUTPUT/11789_Sunday_December_03_2023_07_16_38_PM_61681793/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371
Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-2 x(t)+y \\
y^{\prime} & =-2 y \\
z^{\prime}(t) & =z(t)
\end{aligned}
$$

14.7.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime} \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\mathrm{e}^{-2 t} & t \mathrm{e}^{-2 t} & 0 \\
0 & \mathrm{e}^{-2 t} & 0 \\
0 & 0 & \mathrm{e}^{t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{-2 t} & t \mathrm{e}^{-2 t} & 0 \\
0 & \mathrm{e}^{-2 t} & 0 \\
0 & 0 & \mathrm{e}^{t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-2 t} c_{1}+t \mathrm{e}^{-2 t} c_{2} \\
\mathrm{e}^{-2 t} c_{2} \\
\mathrm{e}^{t} c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-2 t}\left(c_{2} t+c_{1}\right) \\
\mathrm{e}^{-2 t} c_{2} \\
\mathrm{e}^{t} c_{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

14.7.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime} \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-2-\lambda & 1 & 0 \\
0 & -2-\lambda & 0 \\
0 & 0 & 1-\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(-2-\lambda)(-2-\lambda)(1-\lambda)=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-2 \\
& \lambda_{2}=1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-2	1	real eigenvalue
1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{array}\right]-(-2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=}
\end{array} \begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{lll|l}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 3 & 0
\end{array}\right]
$$

Since the current pivot $A(2,3)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{lll|l}
0 & 1 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 3 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{1}\right\}$ and the leading variables are $\left\{v_{2}, v_{3}\right\}$. Let $v_{1}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{2}=0, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
t \\
0 \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
0 \\
0
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=1$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{array}\right]-(1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
-3 & 1 & 0 \\
0 & -3 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
-3 & 1 & 0 & 0 \\
0 & -3 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-3 & 1 & 0 \\
0 & -3 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-2	2	1	Yes	$\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
1	1	1	No	$\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue -2 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 456: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{array}\right]-(-2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=}
\end{array} \begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue -2 . Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \mathrm{e}^{-2 t} \\
& =\left[\begin{array}{c}
\mathrm{e}^{-2 t} \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] t+\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right) \mathrm{e}^{-2 t} \\
& =\left[\begin{array}{c}
\mathrm{e}^{-2 t}(1+t) \\
\mathrm{e}^{-2 t} \\
0
\end{array}\right]
\end{aligned}
$$

Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{t} \\
& =\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] e^{t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{-2 t} \\
0 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{-2 t}(1+t) \\
\mathrm{e}^{-2 t} \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
0 \\
0 \\
\mathrm{e}^{t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{-2 t}\left(c_{2} t+c_{1}+c_{2}\right) \\
c_{2} \mathrm{e}^{-2 t} \\
c_{3} \mathrm{e}^{t}
\end{array}\right]
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 31

```
dsolve([diff (x (t),t)=-2*x (t)+1*y(t)+0*z(t), diff (y (t),t)=0*x(t)-2*y(t)+0*z(t), diff (z (t),t)=0*
```

$$
\begin{aligned}
& x(t)=\left(c_{2} t+c_{1}\right) \mathrm{e}^{-2 t} \\
& y(t)=c_{2} \mathrm{e}^{-2 t} \\
& z(t)=c_{3} \mathrm{e}^{t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 70
DSolve $\left[\left\{x^{\prime}[t]==-2 * x[t]+1 * y[t]+0 * z[t], y^{\prime}[t]==0 * x[t]-2 * y[t]+0 * z[t], z^{\prime}[t]==0 * x[t]+0 * y[t]+1 * z[t]\right.\right.$

$$
\begin{aligned}
& x(t) \rightarrow e^{-2 t}\left(c_{2} t+c_{1}\right) \\
& y(t) \rightarrow c_{2} e^{-2 t} \\
& z(t) \rightarrow c_{3} e^{t} \\
& x(t) \rightarrow e^{-2 t}\left(c_{2} t+c_{1}\right) \\
& y(t) \rightarrow c_{2} e^{-2 t} \\
& z(t) \rightarrow 0
\end{aligned}
$$

14.8 problem 12

14.8.1 Solution using Matrix exponential method 2302
14.8.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2303
14.8.3 Maple step by step solution . 2310

Internal problem ID [13135]
Internal file name [0UTPUT/11790_Sunday_December_03_2023_07_16_38_PM_74909972/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371
Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-x(t)+2 y \\
y^{\prime} & =2 x(t)-4 y \\
z^{\prime}(t) & =-z(t)
\end{aligned}
$$

14.8.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime} \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 2 & 0 \\
2 & -4 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\frac{4}{5}+\frac{\mathrm{e}^{-5 t}}{5} & \frac{2}{5}-\frac{2 \mathrm{e}^{-5 t}}{5} & 0 \\
\frac{2}{5}-\frac{2 \mathrm{e}^{-5 t}}{5} & \frac{4 \mathrm{e}^{-5 t}}{5}+\frac{1}{5} & 0 \\
0 & 0 & \mathrm{e}^{-t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\frac{4}{5}+\frac{\mathrm{e}^{-5 t}}{5} & \frac{2}{5}-\frac{2 \mathrm{e}^{-5 t}}{5} & 0 \\
\frac{2}{5}-\frac{2 \mathrm{e}^{-5 t}}{5} & \frac{4 \mathrm{e}^{-5 t}}{5}+\frac{1}{5} & 0 \\
0 & 0 & \mathrm{e}^{-t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{4}{5}+\frac{\mathrm{e}^{-5 t}}{5}\right) c_{1}+\left(\frac{2}{5}-\frac{2 \mathrm{e}^{-5 t}}{5}\right) c_{2} \\
\left(\frac{2}{5}-\frac{2 \mathrm{e}^{-5 t}}{5}\right) c_{1}+\left(\frac{4 \mathrm{e}^{-5 t}}{5}+\frac{1}{5}\right) c_{2} \\
\mathrm{e}^{-t} c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(c_{1}-2 c_{2}\right) \mathrm{e}^{-5 t}}{5}+\frac{4 c_{1}}{5}+\frac{2 c_{2}}{5} \\
\frac{\left(-2 c_{1}+4 c_{2}\right) \mathrm{e}^{-5 t}}{5}+\frac{2 c_{1}}{5}+\frac{c_{2}}{5} \\
\mathrm{e}^{-t} c_{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

14.8.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime} \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 2 & 0 \\
2 & -4 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-1 & 2 & 0 \\
2 & -4 & 0 \\
0 & 0 & -1
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-1-\lambda & 2 & 0 \\
2 & -4-\lambda & 0 \\
0 & 0 & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}+6 \lambda^{2}+5 \lambda=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =-1 \\
\lambda_{2} & =-5 \\
\lambda_{3} & =0
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
0	1	real eigenvalue
-5	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-5$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-1 & 2 & 0 \\
2 & -4 & 0 \\
0 & 0 & -1
\end{array}\right]-(-5)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=}
\end{aligned}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{lll|l}
4 & 2 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & 0 & 4 & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{lll|l}
4 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 4 & 0
\end{array}\right]
$$

Since the current pivot $A(2,3)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{lll|l}
4 & 2 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{lll}
4 & 2 & 0 \\
0 & 0 & 4 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{2}, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{2} \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t \\
0
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{2} \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
1 \\
0
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-1 & 2 & 0 \\
2 & -4 & 0 \\
0 & 0 & -1
\end{array}\right]-(-1)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
0 & 2 & 0 \\
2 & -3 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
0 & 2 & 0 & 0 \\
2 & -3 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{ccc|c}
2 & -3 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
2 & -3 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=0$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
-1 & 2 & 0 \\
2 & -4 & 0 \\
0 & 0 & -1
\end{array}\right]-(0)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
&\left(\left[\begin{array}{ccc}
-1 & 2 & 0 \\
2 & -4 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right.
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-1 & 2 & 0 & 0 \\
2 & -4 & 0 & 0 \\
0 & 0 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+2 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0
\end{array}\right]
\end{gathered}
$$

Since the current pivot $A(2,3)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{ccc|c}
-1 & 2 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-1 & 2 & 0 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=2 t, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
2 t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
2 t \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
2 t \\
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
2 t \\
t \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-1	1	1	No	$\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
-5	1	1	No	$\left[\begin{array}{c}-\frac{1}{2} \\ 1 \\ 0\end{array}\right]$
0	1	1	No	$\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-t} \\
& =\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] e^{-t}
\end{aligned}
$$

Since eigenvalue -5 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-5 t} \\
& =\left[\begin{array}{c}
-\frac{1}{2} \\
1 \\
0
\end{array}\right] e^{-5 t}
\end{aligned}
$$

Since eigenvalue 0 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{0} \\
& =\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right] e^{0}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
0 \\
\mathrm{e}^{-t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{\mathrm{e}^{-5 t}}{2} \\
\mathrm{e}^{-5 t} \\
0
\end{array}\right]+c_{3}\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{c_{2} \mathrm{e}^{-5 t}}{2}+2 c_{3} \\
c_{2} \mathrm{e}^{-5 t}+c_{3} \\
c_{1} \mathrm{e}^{-t}
\end{array}\right]
$$

14.8.3 Maple step by step solution

Let's solve
$\left[x^{\prime}(t)=-x(t)+2 y, y^{\prime}=2 x(t)-4 y, z^{\prime}(t)=-z(t)\right]$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{ccc}
-1 & 2 & 0 \\
2 & -4 & 0 \\
0 & 0 & -1
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{ccc}
-1 & 2 & 0 \\
2 & -4 & 0 \\
0 & 0 & -1
\end{array}\right] \cdot \vec{x}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
-1 & 2 & 0 \\
2 & -4 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\left[-5,\left[\begin{array}{c}
-\frac{1}{2} \\
1 \\
0
\end{array}\right]\right],\left[-1,\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]\right]\right]\right.
$$

- Consider eigenpair

$$
\left[-5,\left[\begin{array}{c}
-\frac{1}{2} \\
1 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\mathrm{e}^{-5 t} \cdot\left[\begin{array}{c}
-\frac{1}{2} \\
1 \\
0
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{2}=\mathrm{e}^{-t} .\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[0,\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair
$\vec{x}_{3}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$
- General solution to the system of ODEs
$\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+c_{3} \vec{x}_{3}$
- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{-5 t} \cdot\left[\begin{array}{c}
-\frac{1}{2} \\
1 \\
0
\end{array}\right]+c_{2} \mathrm{e}^{-t} \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
2 c_{3} \\
c_{3} \\
0
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{c_{1} \mathrm{e}^{-5 t}}{2}+2 c_{3} \\
c_{1} \mathrm{e}^{-5 t}+c_{3} \\
c_{2} \mathrm{e}^{-t}
\end{array}\right]
$$

- Solution to the system of ODEs
$\left\{x(t)=-\frac{c_{1} \mathrm{e}^{-5 t}}{2}+2 c_{3}, y=c_{1} \mathrm{e}^{-5 t}+c_{3}, z(t)=c_{2} \mathrm{e}^{-t}\right\}$
\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 36
$\operatorname{dsolve}([\operatorname{diff}(x(t), t)=-1 * x(t)+2 * y(t)+0 * z(t), \operatorname{diff}(y(t), t)=2 * x(t)-4 * y(t)+0 * z(t), \operatorname{diff}(z(t), t)=0 *$

$$
\begin{aligned}
& x(t)=c_{1}+c_{2} \mathrm{e}^{-5 t} \\
& y(t)=-2 c_{2} \mathrm{e}^{-5 t}+\frac{c_{1}}{2} \\
& z(t)=c_{3} \mathrm{e}^{-t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 158
DSolve $\left[\left\{x^{\prime}[t]==-1 * x[t]+2 * y[t]+0 * z[t], y^{\prime}[t]==2 * x[t]-4 * y[t]+0 * z[t], z^{\prime}[t]==0 * x[t]+0 * y[t]-1 * z[t]\right.\right.$

$$
\begin{aligned}
x(t) & \rightarrow \frac{1}{5} e^{-5 t}\left(c_{1}\left(4 e^{5 t}+1\right)+2 c_{2}\left(e^{5 t}-1\right)\right) \\
y(t) & \rightarrow \frac{1}{5} e^{-5 t}\left(2 c_{1}\left(e^{5 t}-1\right)+c_{2}\left(e^{5 t}+4\right)\right) \\
z(t) & \rightarrow c_{3} e^{-t} \\
x(t) & \rightarrow \frac{1}{5} e^{-5 t}\left(c_{1}\left(4 e^{5 t}+1\right)+2 c_{2}\left(e^{5 t}-1\right)\right) \\
y(t) & \rightarrow \frac{1}{5} e^{-5 t}\left(2 c_{1}\left(e^{5 t}-1\right)+c_{2}\left(e^{5 t}+4\right)\right) \\
z(t) & \rightarrow 0
\end{aligned}
$$

14.9 problem 13

14.9.1 Solution using Matrix exponential method 2314
14.9.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2315
14.9.3 Maple step by step solution . 2322

Internal problem ID [13136]
Internal file name [OUTPUT/11791_Sunday_December_03_2023_07_16_39_PM_16858110/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-x(t)+2 y \\
y^{\prime} & =2 x(t)-4 y \\
z^{\prime}(t) & =0
\end{aligned}
$$

14.9.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime} \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 2 & 0 \\
2 & -4 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\frac{4}{5}+\frac{\mathrm{e}^{-5 t}}{5} & \frac{2}{5}-\frac{2 \mathrm{e}^{-5 t}}{5} & 0 \\
\frac{2}{5}-\frac{2 \mathrm{e}^{-5 t}}{5} & \frac{4 \mathrm{e}^{-5 t}}{5}+\frac{1}{5} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\frac{4}{5}+\frac{\mathrm{e}^{-5 t}}{5} & \frac{2}{5}-\frac{2 \mathrm{e}^{-5 t}}{5} & 0 \\
\frac{2}{5}-\frac{2 \mathrm{e}^{-5 t}}{5} & \frac{4 \mathrm{e}^{-5 t}}{5}+\frac{1}{5} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{4}{5}+\frac{\mathrm{e}^{-5 t}}{5}\right) c_{1}+\left(\frac{2}{5}-\frac{2 \mathrm{e}^{-5 t}}{5}\right) c_{2} \\
\left(\frac{2}{5}-\frac{2 \mathrm{e}^{-5 t}}{5}\right) c_{1}+\left(\frac{4 \mathrm{e}^{-5 t}}{5}+\frac{1}{5}\right) c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(c_{1}-2 c_{2}\right) \mathrm{e}^{-5 t}}{5}+\frac{4 c_{1}}{5}+\frac{2 c_{2}}{5} \\
\frac{\left(-2 c_{1}+4 c_{2}\right) \mathrm{e}^{-5 t}}{5}+\frac{2 c_{1}}{5}+\frac{c_{2}}{5} \\
c_{3}
\end{array}\right.
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

14.9.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime} \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 2 & 0 \\
2 & -4 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-1 & 2 & 0 \\
2 & -4 & 0 \\
0 & 0 & 0
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-1-\lambda & 2 & 0 \\
2 & -4-\lambda & 0 \\
0 & 0 & -\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}+5 \lambda^{2}=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =0 \\
\lambda_{2} & =-5
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
0	1	real eigenvalue
-5	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-5$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{ccc}
-1 & 2 & 0 \\
2 & -4 & 0 \\
0 & 0 & 0
\end{array}\right]-(-5)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=}
\end{array} \begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{lll|l}
4 & 2 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & 0 & 5 & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{lll|l}
4 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 5 & 0
\end{array}\right]
$$

Since the current pivot $A(2,3)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{lll|l}
4 & 2 & 0 & 0 \\
0 & 0 & 5 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{lll}
4 & 2 & 0 \\
0 & 0 & 5 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{2}, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{2} \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t \\
0
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{2} \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
1 \\
0
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=0$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
-1 & 2 & 0 \\
2 & -4 & 0 \\
0 & 0 & 0
\end{array}\right]-(0)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ccc}
-1 & 2 & 0 \\
2 & -4 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-1 & 2 & 0 & 0 \\
2 & -4 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
R_{2}=R_{2}+2 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-1 & 2 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}, v_{3}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Let $v_{3}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
2 t \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
2 t \\
t \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
2 t \\
t \\
s
\end{array}\right] } & =\left[\begin{array}{l}
2 t \\
t \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{c}
2 t \\
t \\
s
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
0	2	2	No	$\left[\begin{array}{cc}0 & 2 \\ 0 & 1 \\ 1 & 0\end{array}\right]$
-5	1	1	No	$\left[\begin{array}{c}-\frac{1}{2} \\ 1 \\ 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 0 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 457: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric
multiplicity 2 , then it is complete eigenvalue and this falls into case 1 shown above. Hence the corresponding eigenvector basis are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{0} \\
& =\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] e^{0} \\
\vec{x}_{2}(t) & =\vec{v}_{2} e^{0} \\
& =\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right] e^{0}
\end{aligned}
$$

Since eigenvalue -5 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{-5 t} \\
& =\left[\begin{array}{c}
-\frac{1}{2} \\
1 \\
0
\end{array}\right] e^{-5 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=c_{1}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
-\frac{\mathrm{e}^{-5 t}}{2} \\
\mathrm{e}^{-5 t} \\
0
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
2 c_{2}-\frac{c_{3} e^{-5 t}}{2} \\
c_{2}+c_{3} \mathrm{e}^{-5 t} \\
c_{1}
\end{array}\right]
$$

14.9.3 Maple step by step solution

Let's solve
$\left[x^{\prime}(t)=-x(t)+2 y, y^{\prime}=2 x(t)-4 y, z^{\prime}(t)=0\right]$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{ccc}-1 & 2 & 0 \\ 2 & -4 & 0 \\ 0 & 0 & 0\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
- System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{ccc}
-1 & 2 & 0 \\
2 & -4 & 0 \\
0 & 0 & 0
\end{array}\right] \cdot \vec{x}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
-1 & 2 & 0 \\
2 & -4 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

- Rewrite the system as
$\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-5,\left[\begin{array}{c}
-\frac{1}{2} \\
1 \\
0
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-5,\left[\begin{array}{c}
-\frac{1}{2} \\
1 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\mathrm{e}^{-5 t} \cdot\left[\begin{array}{c}
-\frac{1}{2} \\
1 \\
0
\end{array}\right]
$$

- Consider eigenpair
$\left[0,\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{x}_{2}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[0,\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair
$\vec{x}_{3}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$
- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+c_{3} \vec{x}_{3}
$$

- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{-5 t} \cdot\left[\begin{array}{c}
-\frac{1}{2} \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
2 c_{3} \\
c_{3} \\
c_{2}
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{c_{1} \mathrm{e}^{-5 t}}{2}+2 c_{3} \\
c_{1} \mathrm{e}^{-5 t}+c_{3} \\
c_{2}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=-\frac{c_{1} \mathrm{e}^{-5 t}}{2}+2 c_{3}, y=c_{1} \mathrm{e}^{-5 t}+c_{3}, z(t)=c_{2}\right\}
$$

Solution by Maple
Time used: 0.031 (sec). Leaf size: 31

```
dsolve([diff (x (t),t)=-1*x (t)+2*y(t)+0*z(t), diff (y (t),t)=2*x (t)-4*y (t)+0*z(t), diff (z (t),t)=0*
```

$$
\begin{aligned}
& x(t)=c_{1}+c_{2} \mathrm{e}^{-5 t} \\
& y(t)=-2 c_{2} \mathrm{e}^{-5 t}+\frac{c_{1}}{2} \\
& z(t)=c_{3}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 77
DSolve $\left[\left\{x^{\prime}[t]==-1 * x[t]+2 * y[t]+0 * z[t], y^{\prime}[t]==2 * x[t]-4 * y[t]+0 * z[t], z^{\prime}[t]==0 * x[t]+0 * y[t]+0 * z[t]\right.\right.$

$$
\begin{aligned}
x(t) & \rightarrow \frac{1}{5} e^{-5 t}\left(c_{1}\left(4 e^{5 t}+1\right)+2 c_{2}\left(e^{5 t}-1\right)\right) \\
y(t) & \rightarrow \frac{1}{5} e^{-5 t}\left(2 c_{1}\left(e^{5 t}-1\right)+c_{2}\left(e^{5 t}+4\right)\right) \\
z(t) & \rightarrow c_{3}
\end{aligned}
$$

14.10 problem 14

14.10.1 Solution using Matrix exponential method 2325
14.10.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2326

Internal problem ID [13137]
Internal file name [OUTPUT/11792_Sunday_December_03_2023_07_16_39_PM_6009185/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371
Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-2 x(t)+y \\
y^{\prime} & =-2 y+z(t) \\
z^{\prime}(t) & =-2 z(t)
\end{aligned}
$$

14.10.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime} \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -2 & 1 \\
0 & 0 & -2
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\mathrm{e}^{-2 t} & t \mathrm{e}^{-2 t} & \frac{\mathrm{e}^{-2 t} t^{2}}{2} \\
0 & \mathrm{e}^{-2 t} & t \mathrm{e}^{-2 t} \\
0 & 0 & \mathrm{e}^{-2 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{-2 t} & t \mathrm{e}^{-2 t} & \frac{\mathrm{e}^{-2 t} t^{2}}{2} \\
0 & \mathrm{e}^{-2 t} & t \mathrm{e}^{-2 t} \\
0 & 0 & \mathrm{e}^{-2 t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-2 t} c_{1}+t \mathrm{e}^{-2 t} c_{2}+\frac{\mathrm{e}^{-2 t} t^{2} c_{3}}{2} \\
\mathrm{e}^{-2 t} c_{2}+t \mathrm{e}^{-2 t} c_{3} \\
\mathrm{e}^{-2 t} c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-2 t}\left(c_{1}+c_{2} t+\frac{1}{2} c_{3} t^{2}\right) \\
\mathrm{e}^{-2 t}\left(c_{3} t+c_{2}\right) \\
\mathrm{e}^{-2 t} c_{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

14.10.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime} \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -2 & 1 \\
0 & 0 & -2
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -2 & 1 \\
0 & 0 & -2
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-2-\lambda & 1 & 0 \\
0 & -2-\lambda & 1 \\
0 & 0 & -2-\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(-2-\lambda)(-2-\lambda)(-2-\lambda)=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=-2
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -2 & 1 \\
0 & 0 & -2
\end{array}\right]-(-2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=}
\end{aligned}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{lll|l}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{1}\right\}$ and the leading variables are $\left\{v_{2}, v_{3}\right\}$. Let $v_{1}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{2}=0, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
t \\
0 \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
0 \\
0
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-2	3			
		1	Yes	$\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue -2 is real and repated eigenvalue of multiplicity 3.There are three possible cases that can happen. This is illustrated in this diagram

Figure 458: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 2 . This falls into case 3 shown above. First we find generalized eigenvector \vec{v}_{2} of rank 2 and then use this to find generalized eigenvector
\vec{v}_{3} of rank $3 . \vec{v}_{2}$ is found by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -2 & 1 \\
0 & 0 & -2
\end{array}\right]-(-2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=}
\end{aligned}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

Now \vec{v}_{3} is found by solving

$$
(A-\lambda I) \vec{v}_{3}=\vec{v}_{2}
$$

Where \vec{v}_{2} is the (rank 2) generalized eigenvector found above. Hence

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-2 & 1 & 0 \\
0 & -2 & 1 \\
0 & 0 & -2
\end{array}\right]-(-2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=}
\end{aligned}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

Solving for \vec{v}_{3} gives

$$
\vec{v}_{3}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

We have found three generalized eigenvectors for eigenvalue -2 . Therefore the three basis solutions associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \mathrm{e}^{-2 t} \\
& =\left[\begin{array}{c}
\mathrm{e}^{-2 t} \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =e^{\lambda t}\left(\vec{v}_{1} t+\vec{v}_{2}\right) \\
& =\mathrm{e}^{-2 t}\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] t+\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
\mathrm{e}^{-2 t}(1+t) \\
\mathrm{e}^{-2 t} \\
0
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{3}(t) & =\left(\vec{v}_{1} \frac{t^{2}}{2}+\vec{v}_{2} t+\vec{v}_{3}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \frac{t^{2}}{2}+\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] t+\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right) \mathrm{e}^{-2 t} \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{-2 t}\left(t^{2}+2 t+2\right)}{2} \\
\mathrm{e}^{-2 t}(1+t) \\
\mathrm{e}^{-2 t}
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{-2 t} \\
0 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{-2 t}(1+t) \\
\mathrm{e}^{-2 t} \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
\mathrm{e}^{-2 t}\left(t+\frac{1}{2} t^{2}+1\right) \\
\mathrm{e}^{-2 t}(1+t) \\
\mathrm{e}^{-2 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\mathrm{e}^{-2 t}\left(\left(t^{2}+2 t+2\right) c_{3}+2 c_{2} t+2 c_{1}+2 c_{2}\right)}{2} \\
\mathrm{e}^{-2 t}\left(c_{3} t+c_{2}+c_{3}\right) \\
c_{3} \mathrm{e}^{-2 t}
\end{array}\right]
$$

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 46

```
dsolve([diff (x (t),t)=-2*x(t)+1*y(t)+0*z(t), diff (y (t),t)=0*x (t)-2*y (t)+1*z(t),\operatorname{diff}(z(t),t)=0*
```

$$
\begin{aligned}
& x(t)=\frac{\left(c_{3} t^{2}+2 c_{2} t+2 c_{1}\right) \mathrm{e}^{-2 t}}{2} \\
& y(t)=\left(c_{3} t+c_{2}\right) \mathrm{e}^{-2 t} \\
& z(t)=c_{3} \mathrm{e}^{-2 t}
\end{aligned}
$$

Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 57
DSolve $\left[\left\{x^{\prime}[t]==-2 * x[t]+1 * y[t]+0 * z[t], y^{\prime}[t]==0 * x[t]-2 * y[t]+1 * z[t], z^{\prime}[t]==0 * x[t]+0 * y[t]-2 * z[t]\right.\right.$

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{2} e^{-2 t}\left(t\left(c_{3} t+2 c_{2}\right)+2 c_{1}\right) \\
& y(t) \rightarrow e^{-2 t}\left(c_{3} t+c_{2}\right) \\
& z(t) \rightarrow c_{3} e^{-2 t}
\end{aligned}
$$

14.11 problem 15

14.11.1 Solution using Matrix exponential method 2333
14.11.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2334
14.11.3 Maple step by step solution . 2340

Internal problem ID [13138]
Internal file name [OUTPUT/11793_Sunday_December_03_2023_07_16_40_PM_54813/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371
Problem number: 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =y \\
y^{\prime} & =z(t) \\
z^{\prime}(t) & =0
\end{aligned}
$$

14.11.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime} \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
1 & t & \frac{t^{2}}{2} \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{lll}
1 & t & \frac{t^{2}}{2} \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
c_{1}+t c_{2}+\frac{1}{2} t^{2} c_{3} \\
t c_{3}+c_{2} \\
c_{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

14.11.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime} \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-\lambda & 1 & 0 \\
0 & -\lambda & 1 \\
0 & 0 & -\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(-\lambda)(-\lambda)(-\lambda)=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=0
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
0	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=0$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]-(0)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=}
\end{array} \begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{lll|l}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{1}\right\}$ and the leading variables are $\left\{v_{2}, v_{3}\right\}$. Let $v_{1}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{2}=0, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
t \\
0 \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
0 \\
0
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
0	3			$\left.\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 0 is real and repated eigenvalue of multiplicity 3.There are three possible cases that can happen. This is illustrated in this diagram

Figure 459: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 2 . This falls into case 3 shown above. First we find generalized eigenvector \vec{v}_{2} of rank 2 and then use this to find generalized eigenvector \vec{v}_{3} of rank $3 . \vec{v}_{2}$ is found by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]-(0)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=}
\end{array} \begin{array}{l}
1 \\
0 \\
0
\end{array}\right] .
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

Now \vec{v}_{3} is found by solving

$$
(A-\lambda I) \vec{v}_{3}=\vec{v}_{2}
$$

Where \vec{v}_{2} is the (rank 2) generalized eigenvector found above. Hence

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]-(0)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=}
\end{array} \begin{array}{l}
1 \\
1 \\
0
\end{array}\right] .
$$

Solving for \vec{v}_{3} gives

$$
\vec{v}_{3}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

We have found three generalized eigenvectors for eigenvalue 0 . Therefore the three basis
solutions associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] 1 \\
& =\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =e^{\lambda t}\left(\vec{v}_{1} t+\vec{v}_{2}\right) \\
& =1\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] t+\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
1+t \\
1 \\
0
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{3}(t) & =\left(\vec{v}_{1} \frac{t^{2}}{2}+\vec{v}_{2} t+\vec{v}_{3}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \frac{t^{2}}{2}+\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] t+\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right) 1 \\
& =\left[\begin{array}{c}
t+\frac{1}{2} t^{2}+1 \\
1+t \\
1
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=c_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
1+t \\
1 \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
t+\frac{1}{2} t^{2}+1 \\
1+t \\
1
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(t^{2}+2 t+2\right) c_{3}}{2}+c_{2} t+c_{1}+c_{2} \\
c_{3} t+c_{2}+c_{3} \\
c_{3}
\end{array}\right]
$$

14.11.3 Maple step by step solution

Let's solve
$\left[x^{\prime}(t)=y, y^{\prime}=z(t), z^{\prime}(t)=0\right]$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- \quad System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \cdot \vec{x}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair
$\left[0,\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{x}_{2}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{3}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+c_{3} \vec{x}_{3}
$$

- Substitute solutions into the general solution

$$
\vec{x}=\left[\begin{array}{c}
c_{1} \\
0 \\
0
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \\
0 \\
0
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=c_{1}, y=0, z(t)=0\right\}
$$

\checkmark Solution by Maple

Time used: 0.016 (sec). Leaf size: 28

```
dsolve([diff (x (t),t)=0*x (t)+1*y (t)+0*z(t),\operatorname{diff}(y(t),t)=0*x(t)+0*y(t)+1*z(t),\operatorname{diff}(z(t),t)=0*x
```

$$
\begin{aligned}
& x(t)=\frac{1}{2} c_{3} t^{2}+c_{2} t+c_{1} \\
& y(t)=c_{3} t+c_{2} \\
& z(t)=c_{3}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 36
DSolve $\left[\left\{x^{\prime}[t]==0 * x[t]+1 * y[t]+0 * z[t], y^{\prime}[t]==0 * x[t]+0 * y[t]+1 * z[t], z^{\prime}[t]==0 * x[t]+0 * y[t]+0 * z[t]\right\}\right.$

$$
\begin{aligned}
& x(t) \rightarrow \frac{c_{3} t^{2}}{2}+c_{2} t+c_{1} \\
& y(t) \rightarrow c_{3} t+c_{2} \\
& z(t) \rightarrow c_{3}
\end{aligned}
$$

14.12 problem 16

14.12.1 Solution using Matrix exponential method 2344
14.12.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2346
14.12.3 Maple step by step solution . 2353

Internal problem ID [13139]
Internal file name [OUTPUT/11794_Sunday_December_03_2023_07_16_40_PM_17857581/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371
Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =2 x(t)-y \\
y^{\prime} & =-2 y+3 z(t) \\
z^{\prime}(t) & =-x(t)+3 y-z(t)
\end{aligned}
$$

14.12.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime} \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
2 & -1 & 0 \\
0 & -2 & 3 \\
-1 & 3 & -1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{lll}
\frac{3 \mathrm{e}^{t}}{8}+\frac{(5+3 \sqrt{3}) \mathrm{e}^{(-1+2 \sqrt{3}) t}}{16}+\frac{(-3 \sqrt{3}+5) \mathrm{e}^{(-1-2 \sqrt{3}) t}}{16} & \frac{(-1-\sqrt{3}) \mathrm{e}^{(-1+2 \sqrt{3}) t}}{8}+\frac{(\sqrt{3}-1) \mathrm{e}^{(-1-2 \sqrt{3}) t}}{8}+\frac{\mathrm{e}^{t}}{4} \\
\frac{(-\sqrt{3}-3) \mathrm{e}^{(-1+2 \sqrt{3}) t}}{16}+\frac{(\sqrt{3}-3) \mathrm{e}^{(-1-2 \sqrt{3}) t}}{16}+\frac{3 \mathrm{e}^{t}}{8} & \frac{(-\sqrt{3}+3) \mathrm{e}^{(-1+2 \sqrt{3}) t}}{8}+\frac{(\sqrt{3}+3) \mathrm{e}^{(-1-2 \sqrt{3}) t}}{8}+\frac{\mathrm{e}^{t}}{4} & \frac{(3 \sqrt{3}-3)}{48}+ \\
\frac{(-7 \sqrt{3}-9) \mathrm{e}^{(-1+2 \sqrt{3}) t}}{48}+\frac{(7 \sqrt{3}-9) \mathrm{e}^{(-1-2 \sqrt{3}) t}}{48}+\frac{3 \mathrm{e}^{t}}{8} & \frac{(5 \sqrt{3}-3) \mathrm{e}^{(-1+2 \sqrt{3}) t}}{24}+\frac{(-5 \sqrt{3}-3) \mathrm{e}^{(-1-2 \sqrt{3}) t}}{24}+\frac{\mathrm{e}^{t}}{4} & \frac{(-\sqrt{3}+}{}
\end{array}\right.
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& \vec{x}_{h}(t)=e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{t}}{8}+\frac{(5+3 \sqrt{3}) \mathrm{e}^{(-1+2 \sqrt{3}) t}}{16}+\frac{(-3 \sqrt{3}+5) \mathrm{e}^{(-1-2 \sqrt{3}) t}}{16} & \frac{(-1-\sqrt{3}) \mathrm{e}^{(-1+2 \sqrt{3}) t}}{8}+\frac{(\sqrt{3}-1) \mathrm{e}^{(-1-2 \sqrt{3}) t}}{8}+\frac{\mathrm{e}^{t}}{4} \\
\frac{(-\sqrt{3}-3) \mathrm{e}^{(-1+2 \sqrt{3}) t}}{16}+\frac{(\sqrt{3}-3) \mathrm{e}^{(-1-2 \sqrt{3}) t}}{16}+\frac{3 \mathrm{e}^{t}}{8} & \frac{(-\sqrt{3}+3) \mathrm{e}^{(-1+2 \sqrt{3}) t}}{8}+\frac{(\sqrt{3}+3) \mathrm{e}^{(-1-2 \sqrt{3}) t}}{8}+\frac{\mathrm{e}^{t}}{4} \\
\frac{(-7 \sqrt{3}-9) \mathrm{e}^{(-1+2 \sqrt{3}) t}}{48}+\frac{(7 \sqrt{3}-9) \mathrm{e}^{(-1-2 \sqrt{3}) t}}{48}+\frac{3 \sqrt{3}-}{8} & \frac{(5 \sqrt{3}-3) \mathrm{e}^{(-1+2 \sqrt{3}) t}}{24}+\frac{(-5 \sqrt{3}-3) \mathrm{e}^{(-1-2 \sqrt{3}) t}}{24}+\frac{\mathrm{e}^{t}}{4}
\end{array}\right. \\
& =\left[\begin{array}{l}
\left(\frac{3 \mathrm{e}^{t}}{8}+\frac{(5+3 \sqrt{3}) \mathrm{e}^{(-1+2 \sqrt{3}) t}}{16}+\frac{(-3 \sqrt{3}+5) \mathrm{e}^{(-1-2 \sqrt{3}) t}}{16}\right) c_{1}+\left(\frac{(-1-\sqrt{3}) \mathrm{e}^{(-1+2 \sqrt{3}) t}}{8}+\frac{(\sqrt{3}-1) \mathrm{e}^{(-1-2 \sqrt{3}) t}}{8}+\frac{\mathrm{e}}{4}\right. \\
\left(\frac{(-\sqrt{3}-3) \mathrm{e}^{(-1+2 \sqrt{3}) t}}{16}+\frac{(\sqrt{3}-3) \mathrm{e}^{(-1-2 \sqrt{3}) t}}{16}+\frac{3 \mathrm{e}^{t}}{8}\right) c_{1}+\left(\frac{(-\sqrt{3}+3) \mathrm{e}^{(-1+2 \sqrt{3}) t}}{8}+\frac{(\sqrt{3}+3) \mathrm{e}^{(-1-2 \sqrt{3}) t}}{8}+\frac{\mathrm{e}^{t}}{4}\right.
\end{array}\right) \\
& =\left[\begin{array}{l}
\frac{\left(\left(3 c_{1}-2 c_{2}-c_{3}\right) \sqrt{3}+5 c_{1}-2 c_{2}-3 c_{3}\right) \mathrm{e}^{(-1+2 \sqrt{3}) t}}{16}+\frac{\left(\left(-3 c_{1}+2 c_{2}+c_{3}\right) \sqrt{3}+5 c_{1}-2 c_{2}-3 c_{3}\right) \mathrm{e}^{(-1-2 \sqrt{3}) t}}{16}+\frac{3 \mathrm{e}^{t}\left(c_{1}+\frac{2 c_{2}}{3}+c_{3}\right)}{8} \\
\frac{\left(\left(-c_{1}-2 c_{2}+3 c_{3}\right) \sqrt{3}-3 c_{1}+6 c_{2}-3 c_{3}\right) \mathrm{e}^{(-1+2 \sqrt{3}) t}}{16}+\frac{\left(\left(c_{1}+2 c_{2}-3 c_{3}\right) \sqrt{3}-3 c_{1}+6 c_{2}-3 c_{3}\right) \mathrm{e}^{(-1-2 \sqrt{3}) t}}{16}+\frac{3 \mathrm{e}^{t}\left(c_{1}+\frac{2 c_{2}}{3}+c_{3}\right)}{8} \\
\frac{\left(\left(-7 c_{1}+10 c_{2}-3 c_{3}\right) \sqrt{3}-9 c_{1}-6 c_{2}+15 c_{3}\right) \mathrm{e}^{(-1+2 \sqrt{3}) t}}{48}+\frac{\left(\left(7 c_{1}-10 c_{2}+3 c_{3}\right) \sqrt{3}-9 c_{1}-6 c_{2}+15 c_{3}\right) \mathrm{e}^{(-1-2 \sqrt{3}) t}}{48}+\frac{3 \mathrm{e}^{t}\left(c_{1}+\frac{2 c_{2}}{3}+c_{3}\right.}{8}
\end{array}\right.
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

14.12.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime} \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
2 & -1 & 0 \\
0 & -2 & 3 \\
-1 & 3 & -1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
2 & -1 & 0 \\
0 & -2 & 3 \\
-1 & 3 & -1
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
2-\lambda & -1 & 0 \\
0 & -2-\lambda & 3 \\
-1 & 3 & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}+\lambda^{2}-13 \lambda+11=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1+2 \sqrt{3} \\
& \lambda_{2}=-1-2 \sqrt{3} \\
& \lambda_{3}=1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue
$-1-2 \sqrt{3}$	1	real eigenvalue
$-1+2 \sqrt{3}$	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
2 & -1 & 0 \\
0 & -2 & 3 \\
-1 & 3 & -1
\end{array}\right]-(1)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
1 & -1 & 0 & 0 \\
0 & -3 & 3 & 0 \\
-1 & 3 & -2 & 0
\end{array}\right]} \\
R_{3}=R_{3}+R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
1 & -1 & 0 & 0 \\
0 & -3 & 3 & 0 \\
0 & 2 & -2 & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{2 R_{2}}{3} \Longrightarrow\left[\begin{array}{ccc|c}
1 & -1 & 0 & 0 \\
0 & -3 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & -3 & 3 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-1-2 \sqrt{3}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
2 & -1 & 0 \\
0 & -2 & 3 \\
-1 & 3 & -1
\end{array}\right]-(-1-2 \sqrt{3})\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
3+2 \sqrt{3} & -1 & 0 & 0 \\
0 & -1+2 \sqrt{3} & 3 & 0 \\
-1 & 3 & 2 \sqrt{3} & 0
\end{array}\right]
$$

$$
\begin{gathered}
R_{3}=R_{3}+\frac{R_{1}}{3+2 \sqrt{3}} \Longrightarrow\left[\begin{array}{ccc|c}
3+2 \sqrt{3} & -1 & 0 & 0 \\
0 & -1+2 \sqrt{3} & 3 & 0 \\
0 & \frac{8+6 \sqrt{3}}{3+2 \sqrt{3}} & 2 \sqrt{3} & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{(8+6 \sqrt{3}) R_{2}}{(3+2 \sqrt{3})(-1+2 \sqrt{3})} \Longrightarrow\left[\begin{array}{ccc|c}
3+2 \sqrt{3} & -1 & 0 & 0 \\
0 & -1+2 \sqrt{3} & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
3+2 \sqrt{3} & -1 & 0 \\
0 & -1+2 \sqrt{3} & 3 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{(4 \sqrt{3}-9) t}{11}, v_{2}=-\frac{3(1+2 \sqrt{3}) t}{11}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{(4 \sqrt{3}-9) t}{11} \\
-\frac{3(1+2 \sqrt{3}) t}{11} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{(4 \sqrt{3}-9) t}{11} \\
-\frac{3(1+2 \sqrt{3}) t}{11} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{(4 \sqrt{3}-9) t}{11} \\
-\frac{3(1+2 \sqrt{3}) t}{11} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{4 \sqrt{3}}{11}-\frac{9}{11} \\
-\frac{3}{11}-\frac{6 \sqrt{3}}{11} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{(4 \sqrt{3}-9) t}{11} \\
-\frac{3(1+2 \sqrt{3}) t}{11} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{4 \sqrt{3}}{11}-\frac{9}{11} \\
-\frac{3}{11}-\frac{6 \sqrt{3}}{11} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{(4 \sqrt{3}-9) t}{11} \\
-\frac{3(1+2 \sqrt{3}) t}{11} \\
t
\end{array}\right]=\left[\begin{array}{c}
4 \sqrt{3}-9 \\
-3-6 \sqrt{3} \\
11
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=-1+2 \sqrt{3}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rc}
\left(\left[\begin{array}{ccc}
2 & -1 & 0 \\
0 & -2 & 3 \\
-1 & 3 & -1
\end{array}\right]-(-1+2 \sqrt{3})\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=}
\end{array} \begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
3-2 \sqrt{3} & -1 & 0 & 0 \\
0 & -1-2 \sqrt{3} & 3 & 0 \\
-1 & 3 & -2 \sqrt{3} & 0
\end{array}\right]} \\
R_{3}=R_{3}+\frac{R_{1}}{3-2 \sqrt{3}} \Longrightarrow\left[\begin{array}{ccc|c}
3-2 \sqrt{3} & -1 & 0 & 0 \\
0 & -1-2 \sqrt{3} & 3 & 0 \\
0 & \frac{-8+6 \sqrt{3}}{-3+2 \sqrt{3}} & -2 \sqrt{3} & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{(-8+6 \sqrt{3}) R_{2}}{(-3+2 \sqrt{3})(-1-2 \sqrt{3})} \Longrightarrow\left[\begin{array}{ccc|c}
3-2 \sqrt{3} & -1 & 0 & 0 \\
0 & -1-2 \sqrt{3} & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
3-2 \sqrt{3} & -1 & 0 \\
0 & -1-2 \sqrt{3} & 3 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{(9+4 \sqrt{3}) t}{11}, v_{2}=\frac{3(-1+2 \sqrt{3}) t}{11}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{(9+4 \sqrt{3}) t}{11} \\
\frac{3(-1+2 \sqrt{3}) t}{11} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{(9+4 \sqrt{3}) t}{11} \\
\frac{3(-1+2 \sqrt{3}) t}{11} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{(9+4 \sqrt{3}) t}{11} \\
\frac{3(-1+2 \sqrt{3}) t}{11} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{9}{11}-\frac{4 \sqrt{3}}{11} \\
\frac{6 \sqrt{3}}{11}-\frac{3}{11} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{(9+4 \sqrt{3}) t}{11} \\
\frac{3(-1+2 \sqrt{3}) t}{11} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{9}{11}-\frac{4 \sqrt{3}}{11} \\
\frac{6 \sqrt{3}}{11}-\frac{3}{11} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{(9+4 \sqrt{3}) t}{11} \\
\frac{3(-1+2 \sqrt{3}) t}{11} \\
t
\end{array}\right]=\left[\begin{array}{c}
-9-4 \sqrt{3} \\
6 \sqrt{3}-3 \\
11
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$-1+2 \sqrt{3}$	1	1	No	$\left[\begin{array}{c}-\frac{3}{(1+2 \sqrt{3})(-3+2 \sqrt{3})} \\ \frac{3}{1+2 \sqrt{3}} \\ 1\end{array}\right]$
$-1-2 \sqrt{3}$	1	1	No	$\left[\begin{array}{c}-\frac{3}{(1-2 \sqrt{3})(-3-2 \sqrt{3})} \\ \frac{3}{1-2 \sqrt{3}} \\ 1\end{array}\right]$
1	1	1	No	$\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue $-1+2 \sqrt{3}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{(-1+2 \sqrt{3}) t} \\
& =\left[\begin{array}{c}
-\frac{3}{(1+2 \sqrt{3})(-3+2 \sqrt{3})} \\
\frac{3}{1+2 \sqrt{3}} \\
1
\end{array}\right] e^{(-1+2 \sqrt{3}) t}
\end{aligned}
$$

Since eigenvalue $-1-2 \sqrt{3}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{(-1-2 \sqrt{3}) t} \\
& =\left[\begin{array}{c}
-\frac{3}{(1-2 \sqrt{3})(-3-2 \sqrt{3})} \\
\frac{3}{1-2 \sqrt{3}} \\
1
\end{array}\right] e^{(-1-2 \sqrt{3}) t}
\end{aligned}
$$

Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{t} \\
& =\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] e^{t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{3 \mathrm{e}^{(-1+2 \sqrt{3}) t}}{(1+2 \sqrt{3})(-3+2 \sqrt{3})} \\
\frac{3 \mathrm{e}^{(-1+2 \sqrt{3}) t}}{1+2 \sqrt{3}} \\
\mathrm{e}^{(-1+2 \sqrt{3}) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{3 \mathrm{e}^{(-1-2 \sqrt{3}) t}}{(1-2 \sqrt{3})(-3-2 \sqrt{3})} \\
\frac{3 \mathrm{e}^{(-1-2 \sqrt{3}) t}}{1-2 \sqrt{3}} \\
\mathrm{e}^{(-1-2 \sqrt{3}) t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
\mathrm{e}^{t} \\
\mathrm{e}^{t} \\
\mathrm{e}^{t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{1}(-9-4 \sqrt{3}) \mathrm{e}^{(-1+2 \sqrt{3}) t}}{11}+\frac{c_{2}(4 \sqrt{3}-9) \mathrm{e}^{(-1-2 \sqrt{3}) t}}{11}+c_{3} \mathrm{e}^{t} \\
\frac{3 c_{1}(-1+2 \sqrt{3}) \mathrm{e}^{(-1+2 \sqrt{3}) t}}{11}+\frac{3 c_{2}(-1-2 \sqrt{3}) \mathrm{e}^{(-1-2 \sqrt{3}) t}}{11}+c_{3} \mathrm{e}^{t} \\
c_{1} \mathrm{e}^{(-1+2 \sqrt{3}) t}+c_{2} \mathrm{e}^{(-1-2 \sqrt{3}) t}+c_{3} \mathrm{e}^{t}
\end{array}\right]
$$

14.12.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=2 x(t)-y, y^{\prime}=-2 y+3 z(t), z^{\prime}(t)=-x(t)+3 y-z(t)\right]
$$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{ccc}
2 & -1 & 0 \\
0 & -2 & 3 \\
-1 & 3 & -1
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{ccc}2 & -1 & 0 \\ 0 & -2 & 3 \\ -1 & 3 & -1\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix
$A=\left[\begin{array}{ccc}2 & -1 & 0 \\ 0 & -2 & 3 \\ -1 & 3 & -1\end{array}\right]$
- Rewrite the system as
$\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[-1-2 \sqrt{3},\left[\begin{array}{c}
-\frac{3}{(1-2 \sqrt{3})(-3-2 \sqrt{3})} \\
\frac{3}{1-2 \sqrt{3}} \\
1
\end{array}\right]\right],\left[-1+2 \sqrt{3},\left[\begin{array}{c}
-\frac{3}{(1+2 \sqrt{3})(-3+2 \sqrt{3})} \\
\frac{3}{1+2 \sqrt{3}} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair
$\left[1,\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\mathrm{e}^{t} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-1-2 \sqrt{3},\left[\begin{array}{c}
-\frac{3}{(1-2 \sqrt{3})(-3-2 \sqrt{3})} \\
\frac{3}{1-2 \sqrt{3}} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{2}=\mathrm{e}^{(-1-2 \sqrt{3}) t} \cdot\left[\begin{array}{c}
-\frac{3}{(1-2 \sqrt{3})(-3-2 \sqrt{3})} \\
\frac{3}{1-2 \sqrt{3}} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-1+2 \sqrt{3},\left[\begin{array}{c}
-\frac{3}{(1+2 \sqrt{3})(-3+2 \sqrt{3})} \\
\frac{3}{1+2 \sqrt{3}} \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{x}_{3}=\mathrm{e}^{(-1+2 \sqrt{3}) t} \cdot\left[\begin{array}{c}
-\frac{3}{(1+2 \sqrt{3})(-3+2 \sqrt{3})} \\
\frac{3}{1+2 \sqrt{3}} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs
$\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+c_{3} \vec{x}_{3}$
- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{t} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{(-1-2 \sqrt{3}) t} \cdot\left[\begin{array}{c}
-\frac{3}{(1-2 \sqrt{3})(-3-2 \sqrt{3})} \\
\frac{3}{1-2 \sqrt{3}} \\
1
\end{array}\right]+c_{3} \mathrm{e}^{(-1+2 \sqrt{3}) t} \cdot\left[\begin{array}{c}
-\frac{3}{(1+2 \sqrt{3})(-3+2 \sqrt{3})} \\
\frac{3}{1+2 \sqrt{3}} \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{3}(-9-4 \sqrt{3}) \mathrm{e}^{(-1+2 \sqrt{3}) t}}{11}+\frac{c_{2}(4 \sqrt{3}-9) \mathrm{e}^{(-1-2 \sqrt{3}) t}}{11}+c_{1} \mathrm{e}^{t} \\
\frac{3 c_{3}(-1+2 \sqrt{3}) \mathrm{e}^{(-1+2 \sqrt{3}) t}}{11}+\frac{3 c_{2}(-1-2 \sqrt{3}) \mathrm{e}^{(-1-2 \sqrt{3}) t}}{11}+c_{1} \mathrm{e}^{t} \\
c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{(-1-2 \sqrt{3}) t}+c_{3} \mathrm{e}^{(-1+2 \sqrt{3}) t}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x(t)=\frac{c_{3}(-9-4 \sqrt{3}) \mathrm{e}^{(-1+2 \sqrt{3}) t}}{11}+\frac{c_{2}(4 \sqrt{3}-9) \mathrm{e}^{(-1-2 \sqrt{3}) t}}{11}+c_{1} \mathrm{e}^{t}, y=\frac{3 c_{3}(-1+2 \sqrt{3}) \mathrm{e}^{(-1+2 \sqrt{3}) t}}{11}+\frac{3 c_{2}(-1-2 \sqrt{3}) \mathrm{e}^{(-}}{11}\right.
$$

Solution by Maple
Time used: 0.047 (sec). Leaf size: 171

```
dsolve([diff (x (t),t)=2*x(t)-1*y (t)+0*z(t),\operatorname{diff}(y(t),t)=0*x(t)-2*y(t)+3*z(t),\operatorname{diff}(z(t),t)=-1*
```

$$
\begin{aligned}
& x(t)=-c_{2} \mathrm{e}^{(-1+2 \sqrt{3}) t}-c_{3} \mathrm{e}^{-(1+2 \sqrt{3}) t}-\frac{2 c_{2} \mathrm{e}^{(-1+2 \sqrt{3}) t} \sqrt{3}}{3}+\frac{2 c_{3} \mathrm{e}^{-(1+2 \sqrt{3}) t} \sqrt{3}}{3}+c_{1} \mathrm{e}^{t} \\
& y(t)=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{(-1+2 \sqrt{3}) t}+c_{3} \mathrm{e}^{-(1+2 \sqrt{3}) t} \\
& z(t)=\frac{2 c_{2} \mathrm{e}^{(-1+2 \sqrt{3}) t} \sqrt{3}}{3}-\frac{2 c_{3} \mathrm{e}^{-(1+2 \sqrt{3}) t} \sqrt{3}}{3}+\frac{c_{2} \mathrm{e}^{(-1+2 \sqrt{3}) t}}{3}+\frac{c_{3} \mathrm{e}^{-(1+2 \sqrt{3}) t}}{3}+c_{1} \mathrm{e}^{t}
\end{aligned}
$$

Solution by Mathematica

Time used: 0.054 (sec). Leaf size: 474
DSolve [\{x' $[\mathrm{t}]==2 * x[\mathrm{t}]-1 * \mathrm{y}[\mathrm{t}]+0 * \mathrm{z}[\mathrm{t}], \mathrm{y}$ ' $[\mathrm{t}]==0 * \mathrm{x}[\mathrm{t}]-2 * \mathrm{y}[\mathrm{t}]+3 * \mathrm{z}[\mathrm{t}], \mathrm{z} \mathrm{z}^{\prime}[\mathrm{t}]==-1 * \mathrm{x}[\mathrm{t}]+3 * \mathrm{y}[\mathrm{t}]-1 * \mathrm{z}[\mathrm{t}]$

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{16} e^{-((1+2 \sqrt{3}) t)}\left(c_{1}\left((5+3 \sqrt{3}) e^{4 \sqrt{3} t}+6 e^{2(1+\sqrt{3}) t}+5-3 \sqrt{3}\right)\right. \\
& -2 c_{2}\left((1+\sqrt{3}) e^{4 \sqrt{3} t}-2 e^{2(1+\sqrt{3}) t}+1-\sqrt{3}\right) \\
& \left.-c_{3}\left((3+\sqrt{3}) e^{4 \sqrt{3} t}-6 e^{2(1+\sqrt{3}) t}+3-\sqrt{3}\right)\right) \\
& y(t) \rightarrow \frac{1}{16} e^{-((1+2 \sqrt{3}) t)}\left(c_{1}\left(-(3+\sqrt{3}) e^{4 \sqrt{3} t}+6 e^{2(1+\sqrt{3}) t}-3+\sqrt{3}\right)\right. \\
& +2 c_{2}\left(-(\sqrt{3}-3) e^{4 \sqrt{3} t}+2 e^{2(1+\sqrt{3}) t}+3+\sqrt{3}\right) \\
& \left.+3 c_{3}\left((\sqrt{3}-1) e^{4 \sqrt{3} t}+2 e^{2(1+\sqrt{3}) t}-1-\sqrt{3}\right)\right) \\
& z(t) \rightarrow-\frac{1}{48} e^{-((1+2 \sqrt{3}) t)}\left(c_{1}\left((9+7 \sqrt{3}) e^{4 \sqrt{3} t}-18 e^{2(1+\sqrt{3}) t}+9-7 \sqrt{3}\right)\right. \\
& -2 c_{2}\left((5 \sqrt{3}-3) e^{4 \sqrt{3} t}+6 e^{2(1+\sqrt{3}) t}-3-5 \sqrt{3}\right) \\
& \left.+3 c_{3}\left((\sqrt{3}-5) e^{4 \sqrt{3} t}-6 e^{2(1+\sqrt{3}) t}-5-\sqrt{3}\right)\right)
\end{aligned}
$$

14.13 problem 17

14.13.1 Solution using Matrix exponential method 2358
14.13.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2359
14.13.3 Maple step by step solution . 2367

Internal problem ID [13140]
Internal file name [OUTPUT/11795_Sunday_December_03_2023_07_16_42_PM_89067/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371
Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs" Solve

$$
\begin{aligned}
x^{\prime}(t) & =-4 x(t)+3 y \\
y^{\prime} & =-y+z(t) \\
z^{\prime}(t) & =5 x(t)-5 y
\end{aligned}
$$

14.13.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime} \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-4 & 3 & 0 \\
0 & -1 & 1 \\
5 & -5 & 0
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{ccc}
\frac{5 \mathrm{e}^{-t}}{2}-\frac{3 \cos (t) \mathrm{e}^{-2 t}}{2}-\frac{9 \sin (t) \mathrm{e}^{-2 t}}{2} & \frac{3 \cos (t) \mathrm{e}^{-2 t}}{2}+\frac{9 \sin (t) \mathrm{e}^{-2 t}}{2}-\frac{3 \mathrm{e}^{-t}}{2} & -\frac{3 \cos (t) \mathrm{e}^{-2 t}}{2}-\frac{3 \sin (t) \mathrm{e}^{-2 t}}{2}+\frac{3 \mathrm{e}^{-t}}{2} \\
-\frac{5 \cos (t) \mathrm{e}^{-2 t}}{2}-\frac{5 \sin (t) \mathrm{e}^{-2 t}}{2}+\frac{5 \mathrm{e}^{-t}}{2} & -\frac{3 \mathrm{e}^{-t}}{2}+\frac{5 \cos (t) \mathrm{e}^{-2 t}}{2}+\frac{5 \sin (t) \mathrm{e}^{-2 t}}{2} & -\frac{3 \cos (t) \mathrm{e}^{-2 t}}{2}-\frac{\sin (t) \mathrm{e}^{-2 t}}{2}+\frac{3 \mathrm{e}^{-t}}{2} \\
5 \sin (t) \mathrm{e}^{-2 t} & -5 \sin (t) \mathrm{e}^{-2 t} & \cos (t) \mathrm{e}^{-2 t}+2 \sin (t) \mathrm{e}^{-2 t}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\frac{(-3 \cos (t)-9 \sin (t)) \mathrm{e}^{-2 t}}{2}+\frac{5 \mathrm{e}^{-t}}{2} & \frac{(3 \cos (t)+9 \sin (t)) \mathrm{e}^{-2 t}}{2}-\frac{3 \mathrm{e}^{-t}}{2} & \frac{(-3 \cos (t)-3 \sin (t)) \mathrm{e}^{-2 t}}{2}+\frac{3 \mathrm{e}^{-t}}{2} \\
\frac{(-5 \cos (t)-5 \sin (t)) \mathrm{e}^{-2 t}}{2}+\frac{5 \mathrm{e}^{-t}}{2} & \frac{(5 \cos (t)+5 \sin (t)) \mathrm{e}^{-2 t}}{2}-\frac{3 \mathrm{e}^{-t}}{2} & \frac{(-3 \cos (t)-\sin (t)) \mathrm{e}^{-2 t}}{2}+\frac{3 \mathrm{e}^{-t}}{2} \\
5 \sin (t) \mathrm{e}^{-2 t} & -5 \sin (t) \mathrm{e}^{-2 t} & \mathrm{e}^{-2 t}(\cos (t)+2 \sin (t))
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\left.\begin{array}{rl}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\frac{(-3 \cos (t)-9 \sin (t)) \mathrm{e}^{-2 t}}{2}+\frac{5 \mathrm{e}^{-t}}{2} & \frac{(3 \cos (t)+9 \sin (t)) \mathrm{e}^{-2 t}}{2}-\frac{3 \mathrm{e}^{-t}}{2} & \frac{(-3 \cos (t)-3 \sin (t)) \mathrm{e}^{-2 t}}{2}+\frac{3 \mathrm{e}^{-t}}{2} \\
\frac{(-5 \cos (t)-5 \sin (t)) \mathrm{e}^{-2 t}}{2}+\frac{5 \mathrm{e}^{-t}}{2} & \frac{(5 \cos (t)+5 \sin (t)) \mathrm{e}^{-2 t}}{2}-\frac{3 \mathrm{e}^{-t}}{2} & \frac{(-3 \cos (t)-\sin (t)) \mathrm{e}^{-2 t}}{2}+\frac{3 \mathrm{e}^{-t}}{2} \\
5 \sin (t) \mathrm{e}^{-2 t} & -5 \sin (t) \mathrm{e}^{-2 t} & \mathrm{e}^{-2 t}(\cos (t)+2 \sin (t))
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\left(\frac{(-3 \cos (t)-9 \sin (t)) \mathrm{e}^{-2 t}}{2}+\frac{5 \mathrm{e}^{-t}}{2}\right) c_{1}+\left(\frac{(3 \cos (t)+9 \sin (t)) \mathrm{e}^{-2 t}}{2}-\frac{3 \mathrm{e}^{-t}}{2}\right) c_{2}+\left(\frac{(-3 \cos (t)-3 \sin (t)) \mathrm{e}^{-2 t}}{2}+\frac{3 \mathrm{e}^{-t}}{2}\right) \\
\left(\frac{(-5 \cos (t)-5 \sin (t)) \mathrm{e}^{-2 t}}{2}+\frac{5 \mathrm{e}^{-t}}{2}\right) c_{1}+\left(\frac{(5 \cos (t)+5 \sin (t)) \mathrm{e}^{-2 t}}{2}-\frac{3 \mathrm{e}^{-t}}{2}\right) c_{2}+\left(\frac{(-3 \cos (t)-\sin (t)) \mathrm{e}^{-2 t}}{2}+\frac{3 \mathrm{e}^{-t}}{2}\right)
\end{array}\right) c \\
5 \sin (t) \mathrm{e}^{-2 t} c_{1}-5 \sin (t) \mathrm{e}^{-2 t} c_{2}+\mathrm{e}^{-2 t}(\cos (t)+2 \sin (t)) c_{3} \\
\frac{5 c^{2}}{2}
\end{array}\right] .
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

14.13.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime} \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-4 & 3 & 0 \\
0 & -1 & 1 \\
5 & -5 & 0
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-4 & 3 & 0 \\
0 & -1 & 1 \\
5 & -5 & 0
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-4-\lambda & 3 & 0 \\
0 & -1-\lambda & 1 \\
5 & -5 & -\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}+5 \lambda^{2}+9 \lambda+5=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =-2+i \\
\lambda_{2} & =-2-i \\
\lambda_{3} & =-1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
$-2-i$	1	complex eigenvalue
$-2+i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-4 & 3 & 0 \\
0 & -1 & 1 \\
5 & -5 & 0
\end{array}\right]-(-1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-3 & 3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
5 & -5 & 1 & 0
\end{array}\right]} \\
R_{3}=R_{3}+\frac{5 R_{1}}{3} \Longrightarrow\left[\begin{array}{ccc|c}
-3 & 3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \\
R_{3}=R_{3}-R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-3 & 3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-3 & 3 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
t \\
0
\end{array}\right]=\left[\begin{array}{l}
t \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
t \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-2-i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-4 & 3 & 0 \\
0 & -1 & 1 \\
5 & -5 & 0
\end{array}\right]-(-2-i)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
-2+i & 3 & 0 \\
0 & 1+i & 1 \\
5 & -5 & 2+i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-2+i & 3 & 0 & 0 \\
0 & 1+i & 1 & 0 \\
5 & -5 & 2+i & 0
\end{array}\right]} \\
R_{3}=R_{3}+(2+i) R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-2+i & 3 & 0 & 0 \\
0 & 1+i & 1 & 0 \\
0 & 1+3 i & 2+i & 0
\end{array}\right] \\
R_{3}=R_{3}+(-2-i) R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2+i & 3 & 0 & 0 \\
0 & 1+i & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-2+i & 3 & 0 \\
0 & 1+i & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(-\frac{9}{10}+\frac{3 i}{10}\right) t, v_{2}=\left(-\frac{1}{2}+\frac{i}{2}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(-\frac{9}{10}+\frac{3 \mathrm{I}}{10}\right) t \\
\left(-\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{9}{10}+\frac{3 i}{10}\right) t \\
\left(-\frac{1}{2}+\frac{i}{2}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(-\frac{9}{10}+\frac{3 \mathrm{I}}{10}\right) t \\
\left(-\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{9}{10}+\frac{3 i}{10} \\
-\frac{1}{2}+\frac{i}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(-\frac{9}{10}+\frac{3 \mathrm{I}}{10}\right) t \\
\left(-\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{9}{10}+\frac{3 i}{10} \\
-\frac{1}{2}+\frac{i}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(-\frac{9}{10}+\frac{3 \mathrm{I}}{10}\right) t \\
\left(-\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-9+3 i \\
-5+5 i \\
10
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=-2+i$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
-4 & 3 & 0 \\
0 & -1 & 1 \\
5 & -5 & 0
\end{array}\right]-(-2+i)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
-2-i & 3 & 0 \\
0 & 1-i & 1 \\
5 & -5 & 2-i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-2-i & 3 & 0 & 0 \\
0 & 1-i & 1 & 0 \\
5 & -5 & 2-i & 0
\end{array}\right]} \\
R_{3}=R_{3}+(2-i) R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-2-i & 3 & 0 & 0 \\
0 & 1-i & 1 & 0 \\
0 & 1-3 i & 2-i & 0
\end{array}\right] \\
R_{3}=R_{3}+(-2+i) R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2-i & 3 & 0 & 0 \\
0 & 1-i & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-2-i & 3 & 0 \\
0 & 1-i & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(-\frac{9}{10}-\frac{3 i}{10}\right) t, v_{2}=\left(-\frac{1}{2}-\frac{i}{2}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(-\frac{9}{10}-\frac{3 \mathrm{I}}{10}\right) t \\
\left(-\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{9}{10}-\frac{3 i}{10}\right) t \\
\left(-\frac{1}{2}-\frac{i}{2}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(-\frac{9}{10}-\frac{3 \mathrm{I}}{10}\right) t \\
\left(-\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{9}{10}-\frac{3 i}{10} \\
-\frac{1}{2}-\frac{i}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(-\frac{9}{10}-\frac{3 \mathrm{I}}{10}\right) t \\
\left(-\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{9}{10}-\frac{3 i}{10} \\
-\frac{1}{2}-\frac{i}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(-\frac{9}{10}-\frac{3 \mathrm{I}}{10}\right) t \\
\left(-\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-9-3 i \\
-5-5 i \\
10
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$-2+i$	1	1	No	$\left[\begin{array}{c}-\frac{9}{10}-\frac{3 i}{10} \\ -\frac{1}{2}-\frac{i}{2} \\ 1\end{array}\right]$
$-2-i$	1	1	No	$\left[\begin{array}{c}-\frac{9}{10}+\frac{3 i}{10} \\ -\frac{1}{2}+\frac{i}{2} \\ 1\end{array}\right]$
-1	1	1	No	$\left[\begin{array}{c}1 \\ 1 \\ 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-t} \\
& =\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] e^{-t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\left(-\frac{9}{10}-\frac{3 i}{10}\right) \mathrm{e}^{(-2+i) t} \\
\left(-\frac{1}{2}-\frac{i}{2}\right) \mathrm{e}^{(-2+i) t} \\
\mathrm{e}^{(-2+i) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\left(-\frac{9}{10}+\frac{3 i}{10}\right) \mathrm{e}^{(-2-i) t} \\
\left(-\frac{1}{2}+\frac{i}{2}\right) \mathrm{e}^{(-2-i) t} \\
\mathrm{e}^{(-2-i) t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
\mathrm{e}^{-t} \\
\mathrm{e}^{-t} \\
0
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{9}{10}-\frac{3 i}{10}\right) c_{1} \mathrm{e}^{(-2+i) t}+\left(-\frac{9}{10}+\frac{3 i}{10}\right) c_{2} \mathrm{e}^{(-2-i) t}+c_{3} \mathrm{e}^{-t} \\
\left(-\frac{1}{2}-\frac{i}{2}\right) c_{1} \mathrm{e}^{(-2+i) t}+\left(-\frac{1}{2}+\frac{i}{2}\right) c_{2} \mathrm{e}^{(-2-i) t}+c_{3} \mathrm{e}^{-t} \\
c_{1} \mathrm{e}^{(-2+i) t}+c_{2} \mathrm{e}^{(-2-i) t}
\end{array}\right]
$$

14.13.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=-4 x(t)+3 y, y^{\prime}=-y+z(t), z^{\prime}(t)=5 x(t)-5 y\right]
$$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{ccc}
-4 & 3 & 0 \\
0 & -1 & 1 \\
5 & -5 & 0
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- \quad System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{ccc}
-4 & 3 & 0 \\
0 & -1 & 1 \\
5 & -5 & 0
\end{array}\right] \cdot \vec{x}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
-4 & 3 & 0 \\
0 & -1 & 1 \\
5 & -5 & 0
\end{array}\right]
$$

- Rewrite the system as
$\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right],\left[-2-\mathrm{I},\left[\begin{array}{c}
-\frac{9}{10}+\frac{3 \mathrm{I}}{10} \\
-\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right],\left[-2+\mathrm{I},\left[\begin{array}{c}
-\frac{9}{10}-\frac{3 \mathrm{I}}{10} \\
-\frac{1}{2}-\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\mathrm{e}^{-t} \cdot\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-2-\mathrm{I},\left[\begin{array}{c}
-\frac{9}{10}+\frac{3 \mathrm{I}}{10} \\
-\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(-2-\mathrm{I}) t} \cdot\left[\begin{array}{c}
-\frac{9}{10}+\frac{3 \mathrm{I}}{10} \\
-\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{-2 t} \cdot(\cos (t)-\mathrm{I} \sin (t)) \cdot\left[\begin{array}{c}
-\frac{9}{10}+\frac{3 \mathrm{I}}{10} \\
-\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
\left(-\frac{9}{10}+\frac{3 \mathrm{I}}{10}\right)(\cos (t)-\mathrm{I} \sin (t)) \\
\left(-\frac{1}{2}+\frac{\mathrm{I}}{2}\right)(\cos (t)-\mathrm{I} \sin (t)) \\
\cos (t)-\mathrm{I} \sin (t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{x}_{2}(t)=\mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
-\frac{9 \cos (t)}{10}+\frac{3 \sin (t)}{10} \\
\frac{\sin (t)}{2}-\frac{\cos (t)}{2} \\
\cos (t)
\end{array}\right], \vec{x}_{3}(t)=\mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
\frac{9 \sin (t)}{10}+\frac{3 \cos (t)}{10} \\
\frac{\cos (t)}{2}+\frac{\sin (t)}{2} \\
-\sin (t)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{-t} \cdot\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+c_{2} \mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
-\frac{9 \cos (t)}{10}+\frac{3 \sin (t)}{10} \\
\frac{\sin (t)}{2}-\frac{\cos (t)}{2} \\
\cos (t)
\end{array}\right]+c_{3} \mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
\frac{9 \sin (t)}{10}+\frac{3 \cos (t)}{10} \\
\frac{\cos (t)}{2}+\frac{\sin (t)}{2} \\
-\sin (t)
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(\left(-9 c_{2}+3 c_{3}\right) \cos (t)+3 \sin (t)\left(c_{2}+3 c_{3}\right)\right) \mathrm{e}^{-2 t}}{10}+c_{1} \mathrm{e}^{-t} \\
\frac{\left(\left(-c_{2}+c_{3}\right) \cos (t)+\sin (t)\left(c_{2}+c_{3}\right)\right) \mathrm{e}^{-2 t}}{2}+c_{1} \mathrm{e}^{-t} \\
\mathrm{e}^{-2 t}\left(c_{2} \cos (t)-c_{3} \sin (t)\right)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x(t)=\frac{\left(\left(-9 c_{2}+3 c_{3}\right) \cos (t)+3 \sin (t)\left(c_{2}+3 c_{3}\right)\right) \mathrm{e}^{-2 t}}{10}+c_{1} \mathrm{e}^{-t}, y=\frac{\left(\left(-c_{2}+c_{3}\right) \cos (t)+\sin (t)\left(c_{2}+c_{3}\right)\right) \mathrm{e}^{-2 t}}{2}+c_{1} \mathrm{e}^{-t}, z(t)=\mathrm{e}\right.
$$

Solution by Maple

Time used: 0.031 (sec). Leaf size: 101

```
dsolve([diff (x (t),t)=-4*x(t)+3*y(t)+0*z(t), diff (y (t),t)=0*x (t)-1*y (t)+1*z(t), diff (z(t),t)=5*
```

$$
\begin{aligned}
& x(t)=\mathrm{e}^{-t} c_{1}+\frac{6 c_{2} \mathrm{e}^{-2 t} \sin (t)}{5}-\frac{3 c_{2} \mathrm{e}^{-2 t} \cos (t)}{5}+\frac{6 \mathrm{e}^{-2 t} \cos (t) c_{3}}{5}+\frac{3 \mathrm{e}^{-2 t} \sin (t) c_{3}}{5} \\
& y(t)=\mathrm{e}^{-t} c_{1}+c_{2} \mathrm{e}^{-2 t} \sin (t)+\mathrm{e}^{-2 t} \cos (t) c_{3} \\
& z(t)=-\mathrm{e}^{-2 t}\left(c_{2} \sin (t)+c_{3} \sin (t)-c_{2} \cos (t)+c_{3} \cos (t)\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 152
DSolve $\left[\left\{x^{\prime}[t]==-4 * x[t]+3 * y[t]+0 * z[t], y^{\prime}[t]==0 * x[t]-1 * y[t]+1 * z[t], z^{\prime}[t]==5 * x[t]-5 * y[t]+0 * z[t]\right.\right.$
$x(t) \rightarrow \frac{1}{2} e^{-2 t}\left(\left(5 c_{1}-3 c_{2}+3 c_{3}\right) e^{t}-3\left(c_{1}-c_{2}+c_{3}\right) \cos (t)-3\left(3 c_{1}-3 c_{2}+c_{3}\right) \sin (t)\right)$
$y(t) \rightarrow \frac{1}{2} e^{-2 t}\left(\left(5 c_{1}-3 c_{2}+3 c_{3}\right) e^{t}+\left(-5 c_{1}+5 c_{2}-3 c_{3}\right) \cos (t)-\left(5 c_{1}-5 c_{2}+c_{3}\right) \sin (t)\right)$
$z(t) \rightarrow e^{-2 t}\left(c_{3} \cos (t)+\left(5 c_{1}-5 c_{2}+2 c_{3}\right) \sin (t)\right)$

14.14 problem 18

14.14.1 Solution using Matrix exponential method 2371
14.14.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2373
14.14.3 Maple step by step solution . 2381

Internal problem ID [13141]
Internal file name [OUTPUT/11796_Sunday_December_03_2023_07_16_43_PM_66458785/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371
Problem number: 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-10 x(t)+10 y \\
y^{\prime} & =28 x(t)-y \\
z^{\prime}(t) & =-\frac{8 z(t)}{3}
\end{aligned}
$$

14.14.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime} \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-10 & 10 & 0 \\
28 & -1 & 0 \\
0 & 0 & -\frac{8}{3}
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{(-9 \sqrt{1201}+1201) \mathrm{e}^{\frac{(-11+\sqrt{1201}) t}{2}}}{2402}+\frac{\mathrm{e}^{-\frac{(11+\sqrt{1201}) t}{2}}(9 \sqrt{1201}+1201)}{2402} & -\frac{10\left(-\mathrm{e}^{\frac{(-11+\sqrt{1201}) t}{2}}+\mathrm{e}^{\left.-\frac{(11+\sqrt{1201}) t}{2}\right) \sqrt{2}}\right.}{22\left(-\mathrm{e}^{\frac{(-11+\sqrt{1201}) t}{2}}+\mathrm{e}^{\left.-\frac{(11+\sqrt{1201}) t}{2}\right) \sqrt{1201}}\right.} \begin{array}{cc}
1201 & \frac{(9 \sqrt{1201}+1201)}{} \mathrm{e}^{\frac{(-11+\sqrt{1201}) t}{2}} \\
-\frac{2402}{201} \\
0 & \frac{(-9 \sqrt{1201}+1201) \mathrm{e}}{2402} \\
2
\end{array} \\
0
\end{array}\right.
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& \vec{x}_{h}(t)=e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{(-9 \sqrt{1201}+1201) \mathrm{e}^{\frac{(-11+\sqrt{1201}) t}{2}}}{2402}+\frac{\mathrm{e}^{-\frac{(11+\sqrt{1201}) t}{2}}(9 \sqrt{1201}+1201)}{2402} & -\frac{10\left(-\mathrm{e}^{\frac{(-11+\sqrt{1201}) t}{2}}+\mathrm{e}^{\left.-\frac{(11+\sqrt{1201}) t}{2}\right)}\right.}{1201} \\
28\left(-\mathrm{e}^{\frac{(-11+\sqrt{1201}) t}{2}}+\mathrm{e}^{\left.-\frac{(11+\sqrt{1201}) t}{2}\right) \sqrt{1201}}\right. & 1201
\end{array} \quad \frac{(9 \sqrt{1201}+1201) \mathrm{e}^{\frac{(-11+\sqrt{1201}) t}{2}}}{2402}+\frac{(-9 \sqrt{1201}+120}{24}\right. \\
& =\left[\begin{array}{c}
\left(\frac{(-9 \sqrt{1201}+1201) \mathrm{e}^{\frac{(-11+\sqrt{1201}) t}{2}}}{2402}+\frac{\mathrm{e}^{-\frac{(11+\sqrt{1201}) t}{2}}(9 \sqrt{1201}+1201)}{2402}\right) c_{1}-\frac{10\left(-\mathrm{e}^{\frac{(-11+\sqrt{1201}) t}{2}}+\mathrm{e}^{-\frac{(11+\sqrt{1201}) t}{2}}\right)}{1201} \\
-\frac{28\left(-\mathrm{e} \frac{(-11+\sqrt{1201}) t}{2}\right.}{2}+\mathrm{e}^{\left.-\frac{(11+\sqrt{1201}) t}{2}\right) \sqrt{1201} c_{1}} \\
1201 \\
\mathrm{e}^{-\frac{8 t}{3}} c_{3}
\end{array}\right. \\
& =\left[\begin{array}{c}
\frac{\left(\left(-9 c_{1}+20 c_{2}\right) \sqrt{1201}+1201 c_{1}\right) \mathrm{e}^{\frac{(-11+\sqrt{1201}) t}{2}}}{2402}+\frac{9 \mathrm{e}^{-\frac{(11+\sqrt{1201}) t}{2}}\left(\left(c_{1}-\frac{20 c_{2}}{9}\right) \sqrt{1201}+\frac{1201 c_{1}}{9}\right)}{2402} \\
\frac{\left(\left(56 c_{1}+9 c_{2}\right) \sqrt{1201}+1201 c_{2}\right) \mathrm{e}^{\frac{(-11+\sqrt{1201}) t}{2}}}{2402}-\frac{28 \mathrm{e}^{-\frac{(11+\sqrt{1201}) t}{2}}\left(\left(c_{1}+\frac{9 c_{2}}{56}\right) \sqrt{1201}-\frac{1201 c_{2}}{56}\right)}{1201} \\
\mathrm{e}^{-\frac{8 t}{3}} c_{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

14.14.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime} \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-10 & 10 & 0 \\
28 & -1 & 0 \\
0 & 0 & -\frac{8}{3}
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-10 & 10 & 0 \\
28 & -1 & 0 \\
0 & 0 & -\frac{8}{3}
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-10-\lambda & 10 & 0 \\
28 & -1-\lambda & 0 \\
0 & 0 & -\frac{8}{3}-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}+\frac{41}{3} \lambda^{2}-\frac{722}{3} \lambda-720=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-\frac{11}{2}+\frac{\sqrt{1201}}{2} \\
& \lambda_{2}=-\frac{11}{2}-\frac{\sqrt{1201}}{2} \\
& \lambda_{3}=-\frac{8}{3}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-\frac{11}{2}+\frac{\sqrt{1201}}{2}$	1	real eigenvalue
$-\frac{11}{2}-\frac{\sqrt{1201}}{2}$	1	real eigenvalue
$-\frac{8}{3}$	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-\frac{8}{3}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-10 & 10 & 0 \\
28 & -1 & 0 \\
0 & 0 & -\frac{8}{3}
\end{array}\right]-\left(-\frac{8}{3}\right)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-\frac{22}{3} & 10 & 0 & 0 \\
28 & \frac{5}{3} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{42 R_{1}}{11} \Longrightarrow\left[\begin{array}{ccc|c}
-\frac{22}{3} & 10 & 0 & 0 \\
0 & \frac{1315}{33} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-\frac{22}{3} & 10 & 0 \\
0 & \frac{1315}{33} & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-\frac{11}{2}-\frac{\sqrt{1201}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\left.\begin{array}{r}
\left(\left[\begin{array}{ccc}
-10 & 10 & 0 \\
28 & -1 & 0 \\
0 & 0 & -\frac{8}{3}
\end{array}\right]-\left(-\frac{11}{2}-\frac{\sqrt{1201}}{2}\right)\right.
\end{array} \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-\frac{9}{2}+\frac{\sqrt{1201}}{2} & 10 & 0 & 0 \\
28 & \frac{9}{2}+\frac{\sqrt{1201}}{2} & 0 & 0 \\
0 & 0 & \frac{17}{6}+\frac{\sqrt{1201}}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{28 R_{1}}{-\frac{9}{2}+\frac{\sqrt{1201}}{2}} \Longrightarrow\left[\begin{array}{cccc|c}
-\frac{9}{2}+\frac{\sqrt{1201}}{2} & 10 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \frac{17}{6}+\frac{\sqrt{1201}}{2} & 0
\end{array}\right]
\end{gathered}
$$

Since the current pivot $A(2,3)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{ccc|c}
-\frac{9}{2}+\frac{\sqrt{1201}}{2} & 10 & 0 & 0 \\
0 & 0 & \frac{17}{6}+\frac{\sqrt{1201}}{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-\frac{9}{2}+\frac{\sqrt{1201}}{2} & 10 & 0 \\
0 & 0 & \frac{17}{6}+\frac{\sqrt{1201}}{2} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{(9+\sqrt{1201}) t}{56}, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{(9+\sqrt{1201}) t}{56} \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
-\frac{(9+\sqrt{1201}) t}{56} \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{(9+\sqrt{1201}) t}{56} \\
t \\
0
\end{array}\right]=t\left[\begin{array}{c}
-\frac{9}{56}-\frac{\sqrt{1201}}{56} \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{(9+\sqrt{1201}) t}{56} \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
-\frac{9}{56}-\frac{\sqrt{1201}}{56} \\
1 \\
0
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{(9+\sqrt{1201}) t}{56} \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
-9-\sqrt{1201} \\
56 \\
0
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=-\frac{11}{2}+\frac{\sqrt{1201}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\left.\begin{array}{r}
\left(\left[\begin{array}{ccc}
-10 & 10 & 0 \\
28 & -1 & 0 \\
0 & 0 & -\frac{8}{3}
\end{array}\right]-\left(-\frac{11}{2}+\frac{\sqrt{1201}}{2}\right)\right.
\end{array} \begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-\frac{9}{2}-\frac{\sqrt{1201}}{2} & 10 & 0 & 0 \\
28 & \frac{9}{2}-\frac{\sqrt{1201}}{2} & 0 & 0 \\
0 & 0 & \frac{17}{6}-\frac{\sqrt{1201}}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{28 R_{1}}{-\frac{9}{2}-\frac{\sqrt{1201}}{2}} \Longrightarrow\left[\begin{array}{cccc|c}
-\frac{9}{2}-\frac{\sqrt{1201}}{2} & 10 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \frac{17}{6}-\frac{\sqrt{1201}}{2} & 0
\end{array}\right]
\end{gathered}
$$

Since the current pivot $A(2,3)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{ccc|c}
-\frac{9}{2}-\frac{\sqrt{1201}}{2} & 10 & 0 & 0 \\
0 & 0 & \frac{17}{6}-\frac{\sqrt{1201}}{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-\frac{9}{2}-\frac{\sqrt{1201}}{2} & 10 & 0 \\
0 & 0 & \frac{17}{6}-\frac{\sqrt{1201}}{2} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{(-9+\sqrt{1201}) t}{56}, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{(-9+\sqrt{1201}) t}{56} \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{(-9+\sqrt{1201}) t}{56} \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{(-9+\sqrt{1201}) t}{56} \\
t \\
0
\end{array}\right]=t\left[\begin{array}{c}
\frac{\sqrt{1201}}{56}-\frac{9}{56} \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{(-9+\sqrt{1201}) t}{56} \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{\sqrt{1201}}{56}-\frac{9}{56} \\
1 \\
0
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{(-9+\sqrt{1201}) t}{56} \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
-9+\sqrt{1201} \\
56 \\
0
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$-\frac{11}{2}+\frac{\sqrt{1201}}{2}$	1	1	No	$\left[\begin{array}{c}\frac{10}{\frac{9}{2}+\frac{\sqrt{1201}}{2}} \\ 1 \\ 0\end{array}\right]$
$-\frac{11}{2}-\frac{\sqrt{1201}}{2}$	1	1	No	$\left[\begin{array}{c}\frac{10}{\frac{9}{2}-\frac{\sqrt{1201}}{2}} \\ 1 \\ 0\end{array}\right]$
$-\frac{8}{3}$	1	1	No	$\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue $-\frac{11}{2}+\frac{\sqrt{1201}}{2}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\left(-\frac{11}{2}+\frac{\sqrt{1201}}{2}\right) t} \\
& =\left[\begin{array}{c}
\frac{10}{\frac{9}{2}+\frac{\sqrt{1201}}{2}} \\
1 \\
0
\end{array}\right] e^{\left(-\frac{11}{2}+\frac{\sqrt{1201}}{2}\right) t}
\end{aligned}
$$

Since eigenvalue $-\frac{11}{2}-\frac{\sqrt{1201}}{2}$ is real and distinct then the corresponding eigenvector
solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{\left(-\frac{11}{2}-\frac{\sqrt{1201}}{2}\right) t} \\
& =\left[\begin{array}{c}
\frac{10}{\frac{9}{2}-\frac{\sqrt{1201}}{2}} \\
1 \\
0
\end{array}\right] e^{\left(-\frac{11}{2}-\frac{\sqrt{1201}}{2}\right) t}
\end{aligned}
$$

Since eigenvalue $-\frac{8}{3}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{-\frac{8 t}{3}} \\
& =\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] e^{-\frac{8 t}{3}}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\left.\frac{10 \mathrm{e}\left(-\frac{11}{2}+\sqrt{1201}\right.}{2}\right) t \\
\frac{9}{2}+\frac{\sqrt{1201}}{2} \\
\mathrm{e}^{\left(-\frac{11}{2}+\frac{\sqrt{1201}}{2}\right) t} \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{10 \mathrm{e}\left(-\frac{11}{2}-\frac{\sqrt{1201}}{2}\right) t}{\frac{9}{2}-\frac{\sqrt{1201}}{2}} \\
\mathrm{e}^{\left(-\frac{11}{2}-\frac{\sqrt{1201}}{2}\right) t} \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
0 \\
0 \\
\mathrm{e}^{-\frac{8 t}{3}}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{1}(-9+\sqrt{1201}) \mathrm{e}^{\frac{(-11+\sqrt{1201}) t}{2}}}{56}-\frac{\mathrm{e}^{-\frac{(11+\sqrt{1201}) t}{2}} c_{2}(9+\sqrt{1201})}{56} \\
c_{1} \mathrm{e}^{\frac{(-11+\sqrt{1201}) t}{2}}+c_{2} \mathrm{e}^{-\frac{(11+\sqrt{1201}) t}{2}} \\
c_{3} \mathrm{e}^{-\frac{8 t}{3}}
\end{array}\right]
$$

14.14.3 Maple step by step solution

Let's solve
$\left[x^{\prime}(t)=-10 x(t)+10 y, y^{\prime}=28 x(t)-y, z^{\prime}(t)=-\frac{8 z(t)}{3}\right]$

- Define vector
$\vec{x}(t)=\left[\begin{array}{c}x(t) \\ y \\ z(t)\end{array}\right]$
- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{ccc}
-10 & 10 & 0 \\
28 & -1 & 0 \\
0 & 0 & -\frac{8}{3}
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{ccc}-10 & 10 & 0 \\ 28 & -1 & 0 \\ 0 & 0 & -\frac{8}{3}\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
-10 & 10 & 0 \\
28 & -1 & 0 \\
0 & 0 & -\frac{8}{3}
\end{array}\right]
$$

- Rewrite the system as
$\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-\frac{8}{3},\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right],\left[-\frac{11}{2}-\frac{\sqrt{1201}}{2},\left[\begin{array}{c}
\frac{10}{\frac{9}{2}-\frac{\sqrt{1201}}{2}} \\
1 \\
0
\end{array}\right]\right],\left[-\frac{11}{2}+\frac{\sqrt{1201}}{2},\left[\begin{array}{c}
\frac{10}{\frac{9}{2}+\frac{\sqrt{1201}}{2}} \\
1 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-\frac{8}{3},\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\mathrm{e}^{-\frac{8 t}{3}} \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-\frac{11}{2}-\frac{\sqrt{1201}}{2},\left[\begin{array}{c}
\frac{10}{\frac{9}{2}-\frac{\sqrt{1201}}{2}} \\
1 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{2}=\mathrm{e}^{\left(-\frac{11}{2}-\frac{\sqrt{1201}}{2}\right) t} \cdot\left[\begin{array}{c}
\frac{10}{\frac{9}{2}-\frac{\sqrt{1201}}{2}} \\
1 \\
0
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-\frac{11}{2}+\frac{\sqrt{1201}}{2},\left[\begin{array}{c}
\frac{10}{\frac{9}{2}+\frac{\sqrt{1201}}{2}} \\
1 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair
$\vec{x}_{3}=\mathrm{e}^{\left(-\frac{11}{2}+\frac{\sqrt{1201}}{2}\right) t} \cdot\left[\begin{array}{c}\frac{10}{\frac{9}{2}+\frac{\sqrt{1201}}{2}} \\ 1 \\ 0\end{array}\right]$
- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+c_{3} \vec{x}_{3}
$$

- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{-\frac{8 t}{3}} \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{\left(-\frac{11}{2}-\frac{\sqrt{1201}}{2}\right) t} \cdot\left[\begin{array}{c}
\frac{10}{\frac{9}{2}-\frac{\sqrt{1201}}{2}} \\
1 \\
0
\end{array}\right]+c_{3} \mathrm{e}^{\left(-\frac{11}{2}+\frac{\sqrt{1201}}{2}\right) t} \cdot\left[\begin{array}{c}
\frac{10}{\frac{9}{2}+\frac{\sqrt{1201}}{2}} \\
1 \\
0
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{3}(-9+\sqrt{1201}) \mathrm{e}^{\frac{(-11+\sqrt{1201}) t}{2}}}{56}-\frac{\mathrm{e}^{-\frac{(11+\sqrt{1201}) t}{2}} c_{2}(9+\sqrt{1201})}{56} \\
c_{2} \mathrm{e}^{-\frac{(11+\sqrt{1201}) t}{2}}+c_{3} \mathrm{e}^{\frac{(-11+\sqrt{1201}) t}{2}} \\
c_{1} \mathrm{e}^{-\frac{8 t}{3}}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x(t)=\frac{c_{3}(-9+\sqrt{1201}) \mathrm{e}^{\frac{(-11+\sqrt{1201}) t}{2}}}{56}-\frac{\mathrm{e}^{-\frac{(11+\sqrt{1201}) t}{2}} c_{2}(9+\sqrt{1201})}{56}, y=c_{2} \mathrm{e}^{-\frac{(11+\sqrt{1201}) t}{2}}+c_{3} \mathrm{e}^{\frac{(-11+\sqrt{1201}) t}{2}}, z(t\right.
$$

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 95

```
dsolve([diff (x (t),t)=-10*x (t)+10*y(t)+0*z(t), diff (y (t),t)=28*x(t)-1*y(t)+0*z(t), diff (z(t),t)
```

$x(t)=c_{1} \mathrm{e}^{\frac{(-11+\sqrt{1201}) t}{2}}+c_{2} \mathrm{e}^{-\frac{(11+\sqrt{1201}) t}{2}}$
$y(t)=\frac{c_{1} \mathrm{e}^{\frac{(-11+\sqrt{1201}) t}{2}} \sqrt{1201}}{20}-\frac{c_{2} \mathrm{e}^{-\frac{(11+\sqrt{1201}) t}{2}} \sqrt{1201}}{20}+\frac{9 c_{1} \mathrm{e}^{\frac{(-11+\sqrt{1201}) t}{2}}}{20}+\frac{9 c_{2} \mathrm{e}^{-\frac{(11+\sqrt{1201}) t}{2}}}{20}$
$z(t)=c_{3} \mathrm{e}^{-\frac{8 t}{3}}$

Solution by Mathematica

Time used: 0.047 (sec). Leaf size: 312

```
DSolve[{x'[t]==-10*x[t]+10*y[t]+0*z[t],y'[t]==28*x[t]-1*y[t]+0*z[t],z'[t]==0*x[t]+0*y[t]-8/3
```

$x(t)$
$\rightarrow \frac{e^{-\frac{1}{2}(11+\sqrt{1201}) t}\left(c_{1}\left((1201-9 \sqrt{1201}) e^{\sqrt{1201} t}+1201+9 \sqrt{1201}\right)+20 \sqrt{1201} c_{2}\left(e^{\sqrt{1201} t}-1\right)\right)}{2402}$
$y(t)$
$\rightarrow \frac{e^{-\frac{1}{2}(11+\sqrt{1201}) t}\left(56 \sqrt{1201} c_{1}\left(e^{\sqrt{1201} t}-1\right)+c_{2}\left((1201+9 \sqrt{1201}) e^{\sqrt{1201} t}+1201-9 \sqrt{1201}\right)\right)}{2402}$
$z(t) \rightarrow c_{3} e^{-8 t / 3}$
$x(t)$
$\rightarrow \frac{e^{-\frac{1}{2}(11+\sqrt{1201}) t}\left(c_{1}\left((1201-9 \sqrt{1201}) e^{\sqrt{1201} t}+1201+9 \sqrt{1201}\right)+20 \sqrt{1201} c_{2}\left(e^{\sqrt{1201} t}-1\right)\right)}{2402}$
$y(t)$
$\rightarrow \frac{e^{-\frac{1}{2}(11+\sqrt{1201}) t}\left(56 \sqrt{1201} c_{1}\left(e^{\sqrt{1201} t}-1\right)+c_{2}\left((1201+9 \sqrt{1201}) e^{\sqrt{1201 t}}+1201-9 \sqrt{1201}\right)\right)}{2402}$
$z(t) \rightarrow 0$

14.15 problem 20

14.15.1 Solution using Matrix exponential method 2385
14.15.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2386
14.15.3 Maple step by step solution

Internal problem ID [13142]
Internal file name [OUTPUT/11797_Sunday_December_03_2023_07_16_43_PM_32031629/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Exercises section 3.8 page 371
Problem number: 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-y+z(t) \\
y^{\prime} & =-x(t)+z(t) \\
z^{\prime}(t) & =z(t)
\end{aligned}
$$

14.15.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime} \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
0 & -1 & 1 \\
-1 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{t}}{2} & -\frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{-t}}{2} & \frac{\mathrm{e}^{t}}{2}-\frac{\mathrm{e}^{-t}}{2} \\
-\frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{-t}}{2} & \frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{t}}{2} & \frac{\mathrm{e}^{t}}{2}-\frac{\mathrm{e}^{-t}}{2} \\
0 & 0 & \mathrm{e}^{t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{t}}{2} & -\frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{-t}}{2} & \frac{\mathrm{e}^{t}}{2}-\frac{\mathrm{e}^{-t}}{2} \\
-\frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{-t}}{2} & \frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{t}}{2} & \frac{\mathrm{e}^{t}}{2}-\frac{\mathrm{e}^{-t}}{2} \\
0 & 0 & \mathrm{e}^{t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{t}}{2}\right) c_{1}+\left(-\frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{-t}}{2}\right) c_{2}+\left(\frac{\mathrm{e}^{t}}{2}-\frac{\mathrm{e}^{-t}}{2}\right) c_{3} \\
\left(-\frac{\mathrm{e}^{t}}{2}+\frac{\mathrm{e}^{-t}}{2}\right) c_{1}+\left(\frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{t}}{2}\right) c_{2}+\left(\frac{\mathrm{e}^{t}}{2}-\frac{\mathrm{e}^{-t}}{2}\right) c_{3} \\
\mathrm{e}^{t} c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(c_{1}+c_{2}-c_{3}\right) \mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{t}\left(c_{1}-c_{2}+c_{3}\right)}{2} \\
\frac{\left(c_{1}+c_{2}-c_{3}\right) \mathrm{e}^{-t}}{2}-\frac{\mathrm{e}^{t}\left(c_{1}-c_{2}-c_{3}\right)}{2} \\
\mathrm{e}^{t} c_{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

14.15.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime} \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
0 & -1 & 1 \\
-1 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
0 & -1 & 1 \\
-1 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-\lambda & -1 & 1 \\
-1 & -\lambda & 1 \\
0 & 0 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-\lambda^{2}-\lambda+1=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
0 & -1 & 1 \\
-1 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]-(-1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
1 & -1 & 1 & 0 \\
-1 & 1 & 1 & 0 \\
0 & 0 & 2 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
1 & -1 & 1 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 2 & 0
\end{array}\right] \\
& R_{3}=R_{3}-R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
1 & -1 & 1 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
t \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
t \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=1$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
0 & -1 & 1 \\
-1 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]-(1)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ccc}
-1 & -1 & 1 \\
-1 & -1 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-1 & -1 & 1 & 0 \\
-1 & -1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-1 & -1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}, v_{3}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Let $v_{3}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t+s\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t+s \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-t+s \\
t \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
-t+s \\
t \\
s
\end{array}\right] } & =\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]+\left[\begin{array}{l}
s \\
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{c}
-t+s \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right)
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-1	1	1	No	$\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$
1	2	2	No	$\left[\begin{array}{cc}1 & -1 \\ 0 & 1 \\ 1 & 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-t} \\
& =\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] e^{-t}
\end{aligned}
$$

eigenvalue 1 is real and repated eigenvalue of multiplicity 2 .There are two possible cases that can happen. This is illustrated in this diagram

Figure 460: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric multiplicity 2 , then it is complete eigenvalue and this falls into case 1 shown above.

Hence the corresponding eigenvector basis are

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{t} \\
& =\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] e^{t} \\
\vec{x}_{3}(t) & =\vec{v}_{3} e^{t} \\
& =\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] e^{t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{-t} \\
\mathrm{e}^{-t} \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{t} \\
0 \\
\mathrm{e}^{t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
-\mathrm{e}^{t} \\
\mathrm{e}^{t} \\
0
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \mathrm{e}^{-t}+\mathrm{e}^{t}\left(c_{2}-c_{3}\right) \\
c_{1} \mathrm{e}^{-t}+c_{3} \mathrm{e}^{t} \\
c_{2} \mathrm{e}^{t}
\end{array}\right]
$$

14.15.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=-y+z(t), y^{\prime}=-x(t)+z(t), z^{\prime}(t)=z(t)\right]
$$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{ccc}
0 & -1 & 1 \\
-1 & 0 & 1 \\
0 & 0 & 1
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{ccc}
0 & -1 & 1 \\
-1 & 0 & 1 \\
0 & 0 & 1
\end{array}\right] \cdot \vec{x}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & -1 & 1 \\
-1 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\mathrm{e}^{-t} \cdot\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[1,\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue 1
$\vec{x}_{2}(t)=\mathrm{e}^{t} \cdot\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$
- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=1$ is the eigenvalue, and
$\vec{x}_{3}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- \quad Note that the t multiplying \vec{v} makes this solution linearly independent to the 1st solution obtai
- \quad Substitute $\vec{x}_{3}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation

$$
\lambda \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $\vec{x}_{3}(t)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 1

$$
\left(\left[\begin{array}{ccc}
0 & -1 & 1 \\
-1 & 0 & 1 \\
0 & 0 & 1
\end{array}\right]-1 \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]
$$

- Second solution from eigenvalue 1

$$
\vec{x}_{3}(t)=\mathrm{e}^{t} \cdot\left(t \cdot\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs
$\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)$
- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{-t} \cdot\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+c_{2} \mathrm{e}^{t} \cdot\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{t} \cdot\left(t \cdot\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]\right)
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \mathrm{e}^{-t}+\mathrm{e}^{t}\left((t-1) c_{3}+c_{2}\right) \\
c_{1} \mathrm{e}^{-t} \\
\mathrm{e}^{t}\left(c_{3} t+c_{2}\right)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x(t)=c_{1} \mathrm{e}^{-t}+\mathrm{e}^{t}\left((t-1) c_{3}+c_{2}\right), y=c_{1} \mathrm{e}^{-t}, z(t)=\mathrm{e}^{t}\left(c_{3} t+c_{2}\right)\right\}
$$

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 42
dsolve([diff $(x(t), t)=-y(t)+z(t), \operatorname{diff}(y(t), t)=-x(t)+z(t), \operatorname{diff}(z(t), t)=z(t)]$, singsol=all)

$$
\begin{aligned}
& x(t)=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{-t} \\
& y(t)=-c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{-t}+c_{3} \mathrm{e}^{t} \\
& z(t)=c_{3} \mathrm{e}^{t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 94
DSolve $\left[\left\{x^{\prime}[t]==-y[t]+z[t], y^{\prime}[t]==-x[t]+z[t], z^{\prime}[t]==z[t]\right\},\{x[t], y[t], z[t]\}, t\right.$, IncludeSingulars

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{2} e^{-t}\left(c_{1}\left(e^{2 t}+1\right)-\left(c_{2}-c_{3}\right)\left(e^{2 t}-1\right)\right) \\
& y(t) \rightarrow \frac{1}{2} e^{-t}\left(-\left(c_{1}\left(e^{2 t}-1\right)\right)+c_{2}\left(e^{2 t}+1\right)+c_{3}\left(e^{2 t}-1\right)\right) \\
& z(t) \rightarrow c_{3} e^{t}
\end{aligned}
$$

15 Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376
15.1 problem 1 2398
15.2 problem 2 2402
15.3 problem 3 2407
15.4 problem 4 2416
15.5 problem 6 2421
15.6 problem 7 2430
15.7 problem 19(i) 2439
15.8 problem 19 (ii) 2448
15.9 problem 19 (iii) 2457
15.10problem 19 (iv) 2466
15.11problem 19 (v) 2475
15.12problem 19 (vi) 2484
15.13problem 19 (vii) 2493
15.14problem 19 (viii) 2503
15.15problem 23 2512
15.16problem 24 2522
15.17 problem 25 2532
15.18problem 26 2544

15.1 problem 1

Internal problem ID [13143]
Internal file name [OUTPUT/11798_Sunday_December_03_2023_07_16_44_PM_86889940/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "find eigenvalues and eigenvectors"
Find the eigenvalues and associated eigenvectors of the matrix

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]
$$

The first step is to determine the characteristic polynomial of the matrix in order to find the eigenvalues of the matrix A. This is given by

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\operatorname{det}\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & =0 \\
\operatorname{det}\left[\begin{array}{cc}
1-\lambda & 0 \\
0 & 2-\lambda
\end{array}\right] & =0 \\
(-1+\lambda)(-2+\lambda) & =0
\end{aligned}
$$

The eigenvalues are the roots of the above characteristic polynomial. Solving for the roots gives

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue
2	1	real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Considering $\lambda=1$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\left[\begin{array}{ll|l}
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Since the current pivot $A(1,2)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{ll|l}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{1}\right\}$ and the leading variables are $\left\{v_{2}\right\}$. Let $v_{1}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=\left[\begin{array}{l}
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Considering $\lambda=2$
We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]-(2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]-\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\left[\begin{array}{cc|c}
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

The following table summarises the result found above.

λ	algebraic multiplicity	geometric multiplicity	defective eigenvalue?	associated eigenvectors
1	1	2	No	$\left[\begin{array}{l}1 \\ 0\end{array}\right]$
2	1	2	No	$\left[\begin{array}{l}0 \\ 1\end{array}\right]$

Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues at its diagonal. Then we can write

$$
A=P D P^{-1}
$$

Where

$$
\begin{aligned}
& D=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \\
& P=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Therefore

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]^{-1}
$$

15.2 problem 2

Internal problem ID [13144]
Internal file name [OUTPUT/11799_Sunday_December_03_2023_07_16_44_PM_33469809/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "find eigenvalues and eigenvectors"
Find the eigenvalues and associated eigenvectors of the matrix

$$
\left[\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right]
$$

The first step is to determine the characteristic polynomial of the matrix in order to find the eigenvalues of the matrix A. This is given by

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\operatorname{det}\left(\left[\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & =0 \\
\operatorname{det}\left[\begin{array}{cc}
-\lambda & 1 \\
2 & -\lambda
\end{array}\right] & =0 \\
\lambda^{2}-2 & =0
\end{aligned}
$$

The eigenvalues are the roots of the above characteristic polynomial. Solving for the roots gives

$$
\begin{aligned}
& \lambda_{1}=\sqrt{2} \\
& \lambda_{2}=-\sqrt{2}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$\sqrt{2}$	1	real eigenvalue
$-\sqrt{2}$	1	real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Considering $\lambda=\sqrt{2}$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right]-(\sqrt{2})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right]-\left[\begin{array}{cc}
\sqrt{2} & 0 \\
0 & \sqrt{2}
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-\sqrt{2} & 1 \\
2 & -\sqrt{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-\sqrt{2} & 1 & 0 \\
2 & -\sqrt{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}+\sqrt{2} R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-\sqrt{2} & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-\sqrt{2} & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{\sqrt{2} t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{\sqrt{2} t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{\sqrt{2} t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{\sqrt{2} t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{\sqrt{2}}{2} \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
\frac{\sqrt{2} t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{\sqrt{2}}{2} \\
1
\end{array}\right]
$$

Which can be normalized to

$$
\left[\begin{array}{c}
\frac{\sqrt{2} t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\sqrt{2} \\
2
\end{array}\right]
$$

Considering $\lambda=-\sqrt{2}$
We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right]-(-\sqrt{2})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right]-\left[\begin{array}{cc}
-\sqrt{2} & 0 \\
0 & -\sqrt{2}
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
\sqrt{2} & 1 \\
2 & \sqrt{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
\sqrt{2} & 1 & 0 \\
2 & \sqrt{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}-\sqrt{2} R_{1} \Longrightarrow\left[\begin{array}{cc|c}
\sqrt{2} & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\sqrt{2} & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{\sqrt{2} t}{2}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{\sqrt{2} t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{\sqrt{2} t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{\sqrt{2} t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{\sqrt{2}}{2} \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
-\frac{\sqrt{2} t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{\sqrt{2}}{2} \\
1
\end{array}\right]
$$

Which can be normalized to

$$
\left[\begin{array}{c}
-\frac{\sqrt{2} t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\sqrt{2} \\
2
\end{array}\right]
$$

The following table summarises the result found above.

λ	algebraic multiplicity	geometric multiplicity	defective eigenvalue?	associated eigenvectors
$\sqrt{2}$	1	2	No	$\left[\begin{array}{c}\sqrt{2} \\ 2\end{array}\right]$
$-\sqrt{2}$	1	2	No	$\left[\begin{array}{c}-\sqrt{2} \\ 2\end{array}\right]$

Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues at its diagonal. Then we can write

$$
A=P D P^{-1}
$$

Where

$$
\begin{aligned}
& D=\left[\begin{array}{cc}
\sqrt{2} & 0 \\
0 & -\sqrt{2}
\end{array}\right] \\
& P=\left[\begin{array}{cc}
\sqrt{2} & -\sqrt{2} \\
2 & 2
\end{array}\right]
\end{aligned}
$$

Therefore

$$
\left[\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right]=\left[\begin{array}{cc}
\sqrt{2} & -\sqrt{2} \\
2 & 2
\end{array}\right]\left[\begin{array}{cc}
\sqrt{2} & 0 \\
0 & -\sqrt{2}
\end{array}\right]\left[\begin{array}{cc}
\sqrt{2} & -\sqrt{2} \\
2 & 2
\end{array}\right]^{-1}
$$

15.3 problem 3

15.3.1 Solution using Matrix exponential method 2407
15.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2408
15.3.3 Maple step by step solution . 2413

Internal problem ID [13145]
Internal file name [OUTPUT/11800_Sunday_December_03_2023_07_16_45_PM_2968719/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs" Solve

$$
\begin{aligned}
x^{\prime}(t) & =3 x(t) \\
y^{\prime} & =-2 y
\end{aligned}
$$

15.3.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
3 & 0 \\
0 & -2
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{3 t} & 0 \\
0 & \mathrm{e}^{-2 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{3 t} & 0 \\
0 & \mathrm{e}^{-2 t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{3 t} c_{1} \\
\mathrm{e}^{-2 t} c_{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

15.3.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
3 & 0 \\
0 & -2
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3 & 0 \\
0 & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3-\lambda & 0 \\
0 & -2-\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(3-\lambda)(-2-\lambda)=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =-2 \\
\lambda_{2} & =3
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-2	1	real eigenvalue
3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
3 & 0 \\
0 & -2
\end{array}\right]-(-2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ll|l}
5 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
5 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
3 & 0 \\
0 & -2
\end{array}\right]-(3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
0 & 0 \\
0 & -5
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
0 & 0 & 0 \\
0 & -5 & 0
\end{array}\right]
$$

Since the current pivot $A(1,2)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{cc|c}
0 & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
0 & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{1}\right\}$ and the leading variables are $\left\{v_{2}\right\}$. Let $v_{1}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=\left[\begin{array}{l}
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-2	1	1	No	$\left[\begin{array}{l}0 \\ 1\end{array}\right]$
3	1	1	No	$\left[\begin{array}{l}1 \\ 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-2 t} \\
& =\left[\begin{array}{l}
0 \\
1
\end{array}\right] e^{-2 t}
\end{aligned}
$$

Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{3 t} \\
& =\left[\begin{array}{l}
1 \\
0
\end{array}\right] e^{3 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
\mathrm{e}^{-2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{3 t} \\
0
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
c_{2} \mathrm{e}^{3 t} \\
c_{1} \mathrm{e}^{-2 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 461: Phase plot

15.3.3 Maple step by step solution

Let's solve
$\left[x^{\prime}(t)=3 x(t), y^{\prime}=-2 y\right]$

- Define vector
$\vec{x}(t)=\left[\begin{array}{c}x(t) \\ y\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}3 & 0 \\ 0 & -2\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}3 & 0 \\ 0 & -2\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
3 & 0 \\
0 & -2
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-2,\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair
$\vec{x}_{1}=\mathrm{e}^{-2 t} \cdot\left[\begin{array}{l}0 \\ 1\end{array}\right]$
- Consider eigenpair

$$
\left[3,\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{2}=\mathrm{e}^{3 t} \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
$$

- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{-2 t} \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{3 t} \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
c_{2} \mathrm{e}^{3 t} \\
c_{1} \mathrm{e}^{-2 t}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x(t)=c_{2} \mathrm{e}^{3 t}, y=c_{1} \mathrm{e}^{-2 t}\right\}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 20
dsolve([diff $(x(t), t)=3 * x(t)+0 * y(t), \operatorname{diff}(y(t), t)=0 * x(t)-2 * y(t)]$, singsol $=a l l)$

$$
\begin{aligned}
& x(t)=c_{2} \mathrm{e}^{3 t} \\
& y(t)=c_{1} \mathrm{e}^{-2 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.064 (sec). Leaf size: 65
DSolve[\{x' $\left.[t]==3 * x[t]+0 * y[t], y^{\prime}[t]==0 * x[t]-2 * y[t]\right\},\{x[t], y[t]\}, t$, IncludeSingularSolutions

$$
\begin{aligned}
& x(t) \rightarrow c_{1} e^{3 t} \\
& y(t) \rightarrow c_{2} e^{-2 t} \\
& x(t) \rightarrow c_{1} e^{3 t} \\
& y(t) \rightarrow 0 \\
& x(t) \rightarrow 0 \\
& y(t) \rightarrow c_{2} e^{-2 t} \\
& x(t) \rightarrow 0 \\
& y(t) \rightarrow 0
\end{aligned}
$$

15.4 problem 4

Internal problem ID [13146]
Internal file name [OUTPUT/11801_Sunday_December_03_2023_07_16_45_PM_69760170/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "find eigenvalues and eigenvectors"
Find the eigenvalues and associated eigenvectors of the matrix

$$
\left[\begin{array}{ll}
1 & 0 \\
2 & 3
\end{array}\right]
$$

The first step is to determine the characteristic polynomial of the matrix in order to find the eigenvalues of the matrix A. This is given by

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\operatorname{det}\left(\left[\begin{array}{ll}
1 & 0 \\
2 & 3
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & =0 \\
\operatorname{det}\left[\begin{array}{cc}
1-\lambda & 0 \\
2 & 3-\lambda
\end{array}\right] & =0 \\
(-1+\lambda)(-3+\lambda) & =0
\end{aligned}
$$

The eigenvalues are the roots of the above characteristic polynomial. Solving for the roots gives

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=3
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue
3	1	real eigenvalue

For each eigenvalue λ found above, we now find the corresponding eigenvector. Considering $\lambda=1$

We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ll}
1 & 0 \\
2 & 3
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ll}
1 & 0 \\
2 & 3
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ll}
0 & 0 \\
2 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\left[\begin{array}{ll|l}
0 & 0 & 0 \\
2 & 2 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{ll|l}
2 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
2 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Considering $\lambda=3$
We need now to determine the eigenvector \boldsymbol{v} where

$$
\begin{aligned}
A \boldsymbol{v} & =\lambda \boldsymbol{v} \\
A \boldsymbol{v}-\lambda \boldsymbol{v} & =\mathbf{0} \\
(A-\lambda I) \boldsymbol{v} & =\mathbf{0} \\
\left(\left[\begin{array}{ll}
1 & 0 \\
2 & 3
\end{array}\right]-(3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{ll}
1 & 0 \\
2 & 3
\end{array}\right]-\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-2 & 0 \\
2 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

We will now do Gaussian elimination in order to solve for the eigenvector. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2 & 0 & 0 \\
2 & 0 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-2 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Or, by letting $t=1$ then the eigenvector is

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

The following table summarises the result found above.

λ	algebraic multiplicity	geometric multiplicity	defective eigenvalue?	associated eigenvectors
1	1	2	No	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
3	1	2	No	$\left[\begin{array}{c}0 \\ 1\end{array}\right]$

Since the matrix is not defective, then it is diagonalizable. Let P the matrix whose columns are the eigenvectors found, and let D be diagonal matrix with the eigenvalues at its diagonal. Then we can write

$$
A=P D P^{-1}
$$

Where

$$
\begin{aligned}
& D=\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right] \\
& P=\left[\begin{array}{cc}
-1 & 0 \\
1 & 1
\end{array}\right]
\end{aligned}
$$

Therefore

$$
\left[\begin{array}{ll}
1 & 0 \\
2 & 3
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
1 & 1
\end{array}\right]^{-1}
$$

15.5 problem 6

15.5.1 Solution using Matrix exponential method 2421
15.5.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2422
15.5.3 Maple step by step solution . 2427

Internal problem ID [13147]
Internal file name [OUTPUT/11802_Sunday_December_03_2023_07_16_45_PM_86155900/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs" Solve

$$
\begin{aligned}
x^{\prime}(t) & =0 \\
y^{\prime} & =x(t)-y
\end{aligned}
$$

15.5.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
1 & 0 \\
1-\mathrm{e}^{-t} & \mathrm{e}^{-t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
1 & 0 \\
1-\mathrm{e}^{-t} & \mathrm{e}^{-t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
c_{1} \\
\left(1-\mathrm{e}^{-t}\right) c_{1}+\mathrm{e}^{-t} c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
c_{1} \\
\left(-c_{1}+c_{2}\right) \mathrm{e}^{-t}+c_{1}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

15.5.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & 0 \\
1 & -1-\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(-\lambda)(-1-\lambda)=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=0
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
0	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=0$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right]-(0)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
0 & 0 & 0 \\
1 & -1 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{cc|c}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-1	1	1	No	$\left[\begin{array}{l}0 \\ 1\end{array}\right]$
0	1	1	No	$\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-t} \\
& =\left[\begin{array}{l}
0 \\
1
\end{array}\right] e^{-t}
\end{aligned}
$$

Since eigenvalue 0 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{0} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{0}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
\mathrm{e}^{-t}
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
c_{2} \\
c_{1} \mathrm{e}^{-t}+c_{2}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 462: Phase plot

15.5.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=0, y^{\prime}=x(t)-y\right]
$$

- Define vector
$\vec{x}(t)=\left[\begin{array}{c}x(t) \\ y\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}0 & 0 \\ 1 & -1\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}0 & 0 \\ 1 & -1\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\mathrm{e}^{-t} \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[0,\left[\begin{array}{l}1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{x}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
$$

- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{-t} \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
c_{2} \\
c_{2}
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
c_{2} \\
c_{1} \mathrm{e}^{-t}+c_{2}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=c_{2}, y=c_{1} \mathrm{e}^{-t}+c_{2}\right\}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 17

```
dsolve([diff (x (t),t)=0*x (t)+0*y(t), diff (y (t),t)=1*x (t)-1*y(t)],singsol=all)
```

$$
\begin{aligned}
& x(t)=c_{2} \\
& y(t)=c_{2}+\mathrm{e}^{-t} c_{1}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 27
DSolve $\left[\left\{x^{\prime}[t]==0 * x[t]+0 * y[t], y^{\prime}[t]==1 * x[t]-1 * y[t]\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions $->$

$$
\begin{aligned}
& x(t) \rightarrow c_{1} \\
& y(t) \rightarrow e^{-t}\left(c_{1}\left(e^{t}-1\right)+c_{2}\right)
\end{aligned}
$$

15.6 problem 7

15.6.1 Solution using Matrix exponential method 2430
15.6.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2431

Internal problem ID [13148]
Internal file name [OUTPUT/11803_Sunday_December_03_2023_07_16_46_PM_40371899/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =\pi^{2} x(t)+\frac{187 y}{5} \\
y^{\prime} & =\sqrt{555} x(t)+\frac{400617 y}{5000}
\end{aligned}
$$

With initial conditions

$$
[x(0)=0, y(0)=0]
$$

15.6.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\pi^{2} & \frac{187}{5} \\
\sqrt{555} & \frac{400617}{5000}
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be
$e^{A t}=\left[\begin{array}{c}\frac{\left(-5000 \pi^{2}+\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555}+160493980689}+400617\right) \mathrm{e}^{\frac{\left(5000 \pi^{2}-\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+374000}\right.}{10000}}}{2 \sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555}+160493980689}} \\ -5000 \sqrt{555}\left(-\mathrm{e}^{\frac{\left(5000 \pi^{2}+\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+37}\right.}{1000}}\right. \\ -\end{array}\right.$
Therefore the homogeneous solution is
$\vec{x}_{h}(t)=e^{A t} \vec{x}_{0}$

$$
\begin{aligned}
& =\left[\begin{array}{r}
\frac{\left(-5000 \pi^{2}+\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555}+160493980689}+400617\right) \mathrm{e}^{\frac{\left(5000 \pi^{2}-\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3744}\right.}{10000}}}{2 \sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+374000000 \sqrt{555}+160493980689}} \\
5000 \sqrt{555}\left(-e^{\frac{\left(5000 \pi^{2}+\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+}\right.}{1}}\right. \\
-
\end{array}\right. \\
& =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

15.6.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\pi^{2} & \frac{187}{5} \\
\sqrt{555} & \frac{400617}{5000}
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
\pi^{2} & \frac{187}{5} \\
\sqrt{555} & \frac{400617}{5000}
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
\pi^{2}-\lambda & \frac{187}{5} \\
\sqrt{555} & \frac{400617}{5000}-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+\left(-\frac{400617}{5000}-\pi^{2}\right) \lambda-\frac{187 \sqrt{555}}{5}+\frac{400617 \pi^{2}}{5000}=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=\frac{\pi^{2}}{2}+\frac{400617}{10000}+\frac{\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555}+160493980689}}{10000} \\
& \lambda_{2}=\frac{\pi^{2}}{2}+\frac{400617}{10000}-\frac{\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555}+160493980689}}{10000}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenval
$\frac{\pi^{2}}{2}+\frac{400617}{10000}+\frac{\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555}+160493980689}}{10000}$	1	real eigenvalue
$\frac{\pi^{2}}{2}+\frac{400617}{10000}-\frac{\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555}+160493980689}}{10000}$	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=\frac{\pi^{2}}{2}+\frac{400617}{10000}-\frac{\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555}+160493980689}}{10000}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{gathered}
\left(\left[\begin{array}{cc}
\pi^{2} & \frac{187}{5} \\
\sqrt{555} & \frac{400617}{5000}
\end{array}\right]-\left(\frac{\pi^{2}}{2}+\frac{400617}{10000}-\frac{\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555}+160}}{10000}\right.\right. \\
{\left[\frac{\pi^{2}}{2}-\frac{400617}{10000}+\frac{\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555}+160493980689}}{10000}\right.} \\
\sqrt{555}
\end{gathered}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{c}
\frac{\pi^{2}}{2}-\frac{400617}{10000}+\frac{\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555}+160493980689}}{10000} \\
\sqrt{555}
\end{array}\right.
$$

$$
\frac{\frac{187}{5}}{100000}-\frac{\pi^{2}}{2}+\frac{\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3744}}{10000}
$$

$$
R_{2}=R_{2}-\frac{\sqrt{555} R_{1}}{\frac{\pi^{2}}{2}-\frac{400617}{10000}+\frac{\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555}+160493980689}}{10000}} \Longrightarrow\left[\frac{\pi^{2}}{2}-\frac{400617}{10000}+\frac{\sqrt{25000000 \pi^{4}}}{}\right.
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{\pi^{2}}{2}-\frac{400617}{10000}+\frac{\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555}+160493980689}}{10000} & \frac{187}{5} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{374000 t}{5000 \pi^{2}+\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555}+160493980689}-400617}\right\}$
Hence the solution is

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{374000 t}{5000 \pi^{2}+\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555+160493980689}-400617}} \\
t
\end{array}\right]=t\left[-\frac{32}{5000 \pi^{2}+\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}}}\right.
$$

Let $t=1$ the eigenvector becomes

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{374000 t}{5000 \pi^{2}+\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555+160493980689}-400617}} \\
t
\end{array}\right]=\left[\begin{array}{r}
-\frac{37}{5000 \pi^{2}+\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+}} 1
\end{array}\right.
$$

Considering the eigenvalue $\lambda_{2}=\frac{\pi^{2}}{2}+\frac{400617}{10000}+\frac{\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555}+160493980689}}{10000}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{gathered}
\left(\left[\begin{array}{cc}
\pi^{2} & \frac{187}{5} \\
\sqrt{555} & \frac{400617}{5000}
\end{array}\right]-\left(\frac{\pi^{2}}{2}+\frac{400617}{10000}+\frac{\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+37400000000 \sqrt{555}+1}}{10000}\right.\right. \\
{\left[\frac{\pi^{2}}{2}-\frac{400617}{10000}-\frac{\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555+160493980689}}}{10000}\right.} \\
\sqrt{555}
\end{gathered}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{l}
\frac{\pi^{2}}{2}-\frac{400617}{10000}-\frac{\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555}+160493980689}}{10000} \\
\sqrt{555}
\end{array}-\frac{\pi^{2}}{2}-\frac{\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 v}}{10000}\right.} \\
& R_{2}=R_{2}-\frac{\sqrt{555} R_{1}}{\frac{\pi^{2}}{2}-\frac{400617}{10000}-\frac{\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555}+160493980689}}{10000}} \Longrightarrow\left[\frac{\pi^{2}}{2}-\frac{400617}{10000}-\frac{\sqrt{25000000 \pi^{4}}}{}\right.
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{\pi^{2}}{2}-\frac{400617}{10000}-\frac{\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555}+160493980689}}{10000} & \frac{187}{5} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{374000 t}{5000 \pi^{2}-\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555}+160493980689}-400617}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{374000 t}{5000 \pi^{2}-\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555}+160493980689}-400617} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{374}{5000 \pi^{2}-\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}}+} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
$\left[\begin{array}{c}-\frac{374000 t}{5000 \pi^{2}-\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555+160493980689}-400617}} \\ t\end{array}\right]=t\left[-\frac{3}{5000 \pi^{2}-\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}}}\right.$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{374000 t}{5000 \pi^{2}-\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555+160493980689}-400617}} \\
t
\end{array}\right]=\left[\begin{array}{r}
-\frac{37}{5000 \pi^{2}-\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+}} \\
1
\end{array}\right.
$$

Which is normalized to
$\left[\begin{array}{c}-\frac{374000 t}{5000 \pi^{2}-\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555}+160493980689}-400617} \\ t\end{array}\right]=\left[\begin{array}{r}-\frac{37}{5000 \pi^{2}-\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+}} 1 \\ 1\end{array}\right.$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity		
	algebraic m	geometric k	defective?
	1		
$\frac{\pi^{2}}{2}+\frac{400617}{10000}-\frac{\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555}+160493980689}}{10000}$	1	No	

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue $\frac{\pi^{2}}{2}+\frac{400617}{10000}+\frac{\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555}+160493980689}}{10000}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\left(\frac{\pi^{2}}{2}+\frac{400617}{10000}+\frac{\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555}+160493980689}}{10000}\right) t} \\
& =\left[\begin{array}{c}
-\frac{187}{5\left(\frac{\pi^{2}}{2}-\frac{400617}{10000}-\frac{\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555}+160493980689}}{100000}\right)} \\
1
\end{array}\right] e^{\left(\frac{\pi^{2}}{2}+\frac{400617}{10000}+\frac{\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+374}}{10000}\right.}
\end{aligned}
$$

Since eigenvalue $\frac{\pi^{2}}{2}+\frac{400617}{10000}-\frac{\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555}+160493980689}}{10000}$ is real and distinct then the corresponding eigenvector solution is
$\vec{x}_{2}(t)=\vec{v}_{2} e^{\left(\frac{\pi^{2}}{2}+\frac{400617}{10000}-\frac{\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555}+160493980689}}{10000}\right) t}$

$$
=\left[\begin{array}{c}
-\frac{187}{5\left(\frac{\pi^{2}}{2}-\frac{400617}{10000}+\frac{\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555+160493980689}}}{10000}\right)} \\
1
\end{array}\right] e^{\left(\frac{\pi^{2}}{2}+\frac{400617}{10000}-\frac{\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+374}}{10000}\right.}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\frac{\sqrt{555}\left(c_{2}\left(-\frac{400617}{5000}+\pi^{2}-\frac{\left.\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+374000000 \sqrt{555+160493980689}} 5\right)}{5070}\right) \mathrm{e}^{\frac{\left(5000 \pi^{2}-\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+5}\right.}{100}}\right.}{c_{1} \mathrm{e}^{\frac{\left(5000 \pi^{2}+\sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+374000}\right.}{10000}}}\right.
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x(0)=0 \tag{1}\\
y(0)=0
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(\frac{\left(c_{1}-c_{2}\right) \sqrt{25000000 \pi^{4}-4006170000 \pi^{2}+3740000000 \sqrt{555}+160493980689}}{5000}+\left(c_{2}+c_{1}\right)\left(\pi^{2}-\frac{400617}{5000}\right)\right) \sqrt{555}}{1110} \\
c_{2}+c_{1}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{l}
c_{1}=0 \\
c_{2}=0
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 463: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 10
dsolve([diff $(x(t), t)=P_{i}{ }^{\wedge} 2 * x(t)+187 / 5 * y(t), \operatorname{diff}(y(t), t)=555^{\wedge}(1 / 2) * x(t)+400617 / 5000 * y(t)$,

$$
\begin{aligned}
& x(t)=0 \\
& y(t)=0
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 10
DSolve $\left[\left\{x^{\prime}[t]==\mathrm{Pi}^{\wedge} 2 * x[\mathrm{t}]+374 / 10 * y[\mathrm{t}], \mathrm{y}^{\prime}[\mathrm{t}]==\operatorname{Sqrt}[555] * \mathrm{x}[\mathrm{t}]+801234 / 10000 * y[\mathrm{t}]\right\},\{\mathrm{x}[0]==0, \mathrm{y}[0]=\right.$

$$
\begin{aligned}
x(t) & \rightarrow 0 \\
y(t) & \rightarrow 0
\end{aligned}
$$

15.7 problem 19(i)

15.7.1 Solution using Matrix exponential method 2439
15.7.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2440
15.7.3 Maple step by step solution . 2445

Internal problem ID [13149]
Internal file name [OUTPUT/11804_Sunday_December_03_2023_07_16_47_PM_29840161/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376
Problem number: 19(i).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =x(t)+y \\
y^{\prime} & =-2 x(t)-y
\end{aligned}
$$

15.7.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
-2 & -1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\cos (t)+\sin (t) & \sin (t) \\
-2 \sin (t) & \cos (t)-\sin (t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\cos (t)+\sin (t) & \sin (t) \\
-2 \sin (t) & \cos (t)-\sin (t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
(\cos (t)+\sin (t)) c_{1}+\sin (t) c_{2} \\
-2 \sin (t) c_{1}+(\cos (t)-\sin (t)) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(c_{1}+c_{2}\right) \sin (t)+c_{1} \cos (t) \\
\left(-2 c_{1}-c_{2}\right) \sin (t)+c_{2} \cos (t)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

15.7.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
-2 & -1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1 & 1 \\
-2 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 1 \\
-2 & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+1=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =i \\
\lambda_{2} & =-i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
i	1	complex eigenvalue
$-i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & 1 \\
-2 & -1
\end{array}\right]-(-i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
1+i & 1 \\
-2 & -1+i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
1+i & 1 & 0 \\
-2 & -1+i & 0
\end{array}\right]} \\
R_{2}=R_{2}+(1-i) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1+i & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1+i & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(-\frac{1}{2}+\frac{i}{2}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{i}{2}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{2}+\frac{i}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2}+\frac{i}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1+i \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
1 & 1 \\
-2 & -1
\end{array}\right]-(i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
1-i & 1 & 0 \\
-2 & -1-i & 0
\end{array}\right]} \\
R_{2}=R_{2}+(1+i) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1-i & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1-i & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(-\frac{1}{2}-\frac{i}{2}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{i}{2}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{2}-\frac{i}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2}-\frac{i}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1-i \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k		eigenvectors
i	1	1	No	$\left[\begin{array}{c}-\frac{1}{2}-\frac{i}{2} \\ 1\end{array}\right]$
$-i$	1	1	No	$\left[\begin{array}{c}-\frac{1}{2}+\frac{i}{2} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{i}{2}\right) \mathrm{e}^{i t} \\
\mathrm{e}^{i t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{i}{2}\right) \mathrm{e}^{-i t} \\
\mathrm{e}^{-i t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{i}{2}\right) c_{1} \mathrm{e}^{i t}+\left(-\frac{1}{2}+\frac{i}{2}\right) c_{2} \mathrm{e}^{-i t} \\
c_{1} \mathrm{e}^{i t}+c_{2} \mathrm{e}^{-i t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 464: Phase plot

15.7.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=x(t)+y, y^{\prime}=-2 x(t)-y\right]
$$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
1 & 1 \\
-2 & -1
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
1 & 1 \\
-2 & -1
\end{array}\right] \cdot \vec{x}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
1 & 1 \\
-2 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-\mathrm{I},\left[\begin{array}{c}
-\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
-\frac{1}{2}-\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I},\left[\begin{array}{c}
-\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{I} t} \cdot\left[\begin{array}{c}
-\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
(\cos (t)-\mathrm{I} \sin (t)) \cdot\left[\begin{array}{c}
-\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{\mathrm{I}}{2}\right)(\cos (t)-\mathrm{I} \sin (t)) \\
\cos (t)-\mathrm{I} \sin (t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{x}_{1}(t)=\left[\begin{array}{c}
\frac{\sin (t)}{2}-\frac{\cos (t)}{2} \\
\cos (t)
\end{array}\right], \vec{x}_{2}(t)=\left[\begin{array}{c}
\frac{\cos (t)}{2}+\frac{\sin (t)}{2} \\
-\sin (t)
\end{array}\right]\right]
$$

- General solution to the system of ODEs
$\vec{x}=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)$
- Substitute solutions into the general solution

$$
\vec{x}=\left[\begin{array}{c}
c_{2}\left(\frac{\cos (t)}{2}+\frac{\sin (t)}{2}\right)+c_{1}\left(\frac{\sin (t)}{2}-\frac{\cos (t)}{2}\right) \\
c_{1} \cos (t)-c_{2} \sin (t)
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(-c_{1}+c_{2}\right) \cos (t)}{2}+\frac{\left(c_{1}+c_{2}\right) \sin (t)}{2} \\
c_{1} \cos (t)-c_{2} \sin (t)
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=\frac{\left(-c_{1}+c_{2}\right) \cos (t)}{2}+\frac{\left(c_{1}+c_{2}\right) \sin (t)}{2}, y=c_{1} \cos (t)-c_{2} \sin (t)\right\}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 37

```
dsolve([diff(x(t),t)=1*x(t)+1*y(t), diff (y(t),t)=-2*x(t)-y(t)],singsol=all)
```

$$
\begin{aligned}
x(t) & =c_{1} \sin (t)+c_{2} \cos (t) \\
y(t) & =c_{1} \cos (t)-c_{2} \sin (t)-c_{1} \sin (t)-c_{2} \cos (t)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 39
DSolve $\left[\left\{x^{\prime}[t]==1 * x[t]+1 * y[t], y^{\prime}[t]==-2 * x[t]-y[t]\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions $->$

$$
\begin{aligned}
& x(t) \rightarrow c_{1} \cos (t)+\left(c_{1}+c_{2}\right) \sin (t) \\
& y(t) \rightarrow c_{2} \cos (t)-\left(2 c_{1}+c_{2}\right) \sin (t)
\end{aligned}
$$

15.8 problem 19 (ii)

15.8.1 Solution using Matrix exponential method 2448
15.8.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2449
15.8.3 Maple step by step solution . 2454

Internal problem ID [13150]
Internal file name [OUTPUT/11805_Sunday_December_03_2023_07_16_47_PM_22126226/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376
Problem number: 19 (ii).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-3 x(t)+y \\
y^{\prime} & =-x(t)+y
\end{aligned}
$$

15.8.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-3 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{(3+2 \sqrt{3}) \mathrm{e}^{-t(1+\sqrt{3})}}{6}+\frac{(3-2 \sqrt{3}) \mathrm{e}^{t(\sqrt{3}-1)}}{6} & -\frac{\left(-\mathrm{e}^{t(\sqrt{3}-1)}+\mathrm{e}^{-t(1+\sqrt{3})}\right) \sqrt{3}}{6} \\
\frac{\left(-\mathrm{e}^{t(\sqrt{3}-1)}+\mathrm{e}^{-t(1+\sqrt{3})}\right) \sqrt{3}}{6} & \frac{(3-2 \sqrt{3}) \mathrm{e}^{-t(1+\sqrt{3})}}{6}+\frac{\mathrm{e}^{t(\sqrt{3}-1)}(3+2 \sqrt{3})}{6}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\left.\begin{array}{rl}
\vec{x}_{h}(t) & =e^{A t \vec{c}} \\
& =\left[\begin{array}{cc}
\frac{(3+2 \sqrt{3}) \mathrm{e}^{-t(1+\sqrt{3})}}{6}+\frac{(3-2 \sqrt{3}) \mathrm{e}^{t(\sqrt{3}-1)}}{6} & -\frac{\left(-\mathrm{e}^{t(\sqrt{3}-1)}+\mathrm{e}^{-t(1+\sqrt{3})}\right) \sqrt{3}}{6} \\
\frac{\left(-\mathrm{e}^{t(\sqrt{3}-1)}+\mathrm{e}^{-t(1+\sqrt{3})}\right) \sqrt{3}}{6} & \frac{(3-2 \sqrt{3}) \mathrm{e}^{-t(1+\sqrt{3})}}{6}+\frac{\mathrm{e}^{t(\sqrt{3}-1)}(3+2 \sqrt{3})}{6}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{\left((3+2 \sqrt{3}) \mathrm{e}^{-t(1+\sqrt{3})}\right.}{6}+\frac{(3-2 \sqrt{3}) \mathrm{e}^{t(\sqrt{3}-1)}}{6}\right) c_{1}-\frac{\left(-\mathrm{e}^{t(\sqrt{3}-1)}+\mathrm{e}^{-t(1+\sqrt{3})}\right) \sqrt{3} c_{2}}{6} \\
\frac{\left(-\mathrm{e}^{t(\sqrt{3}-1)}+\mathrm{e}^{-t(1+\sqrt{3})}\right) \sqrt{3} c_{1}}{6}+\left(\frac{(3-2 \sqrt{3}) \mathrm{e}^{-t(1+\sqrt{3})}}{6}+\frac{\mathrm{e}^{t(\sqrt{3}-1)}(3+2 \sqrt{3})}{6}\right) c_{2}
\end{array}\right]
\end{array}\right] .
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

15.8.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
-3 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
-3 & 1 \\
-1 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-3-\lambda & 1 \\
-1 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+2 \lambda-2=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=\sqrt{3}-1 \\
& \lambda_{2}=-1-\sqrt{3}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$\sqrt{3}-1$	1	real eigenvalue
$-1-\sqrt{3}$	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1-\sqrt{3}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
-3 & 1 \\
-1 & 1
\end{array}\right]-(-1-\sqrt{3})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
\sqrt{3}-2 & 1 & 0 \\
-1 & 2+\sqrt{3} & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{R_{1}}{\sqrt{3}-2} \Longrightarrow\left[\begin{array}{cc|c}
\sqrt{3}-2 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\sqrt{3}-2 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{\sqrt{3}-2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{\sqrt{3}-2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{\sqrt{3}-2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{t}{\sqrt{3}-2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{\sqrt{3}-2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{t}{\sqrt{3}-2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{\sqrt{3}-2} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=\sqrt{3}-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-3 & 1 \\
-1 & 1
\end{array}\right]-(\sqrt{3}-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-2-\sqrt{3} & 1 \\
-1 & 2-\sqrt{3}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2-\sqrt{3} & 1 & 0 \\
-1 & 2-\sqrt{3} & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{R_{1}}{-2-\sqrt{3}} \Longrightarrow\left[\begin{array}{cc|c}
-2-\sqrt{3} & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2-\sqrt{3} & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{2+\sqrt{3}}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{2+\sqrt{3}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{2+\sqrt{3}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{2+\sqrt{3}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2+\sqrt{3}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{2+\sqrt{3}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2+\sqrt{3}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{t}{2+\sqrt{3}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2+\sqrt{3}} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$\sqrt{3}-1$	1	1	No	$\left[\begin{array}{c}\frac{1}{2+\sqrt{3}} \\ 1\end{array}\right]$
$-1-\sqrt{3}$	1	1	No	$\left[\begin{array}{c}\frac{1}{2-\sqrt{3}} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue $\sqrt{3}-1$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{t(\sqrt{3}-1)} \\
& =\left[\begin{array}{c}
\frac{1}{2+\sqrt{3}} \\
1
\end{array}\right] e^{t(\sqrt{3}-1)}
\end{aligned}
$$

Since eigenvalue $-1-\sqrt{3}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{(-1-\sqrt{3}) t} \\
& =\left[\begin{array}{c}
\frac{1}{2-\sqrt{3}} \\
1
\end{array}\right] e^{(-1-\sqrt{3}) t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{\mathrm{e}^{t(\sqrt{3}-1)}}{2+\sqrt{3}} \\
\mathrm{e}^{t(\sqrt{3}-1)}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{\mathrm{e}^{(-1-\sqrt{3}) t}}{2-\sqrt{3}} \\
\mathrm{e}^{(-1-\sqrt{3}) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
c_{2}(2+\sqrt{3}) \mathrm{e}^{-t(1+\sqrt{3})}-c_{1} \mathrm{e}^{t(\sqrt{3}-1)}(\sqrt{3}-2) \\
c_{1} \mathrm{e}^{t(\sqrt{3}-1)}+c_{2} \mathrm{e}^{-t(1+\sqrt{3})}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 465: Phase plot

15.8.3 Maple step by step solution

Let's solve
$\left[x^{\prime}(t)=-3 x(t)+y, y^{\prime}=-x(t)+y\right]$

- Define vector
$\vec{x}(t)=\left[\begin{array}{c}x(t) \\ y\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{ll}-3 & 1 \\ -1 & 1\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{ll}-3 & 1 \\ -1 & 1\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix
$A=\left[\begin{array}{ll}-3 & 1 \\ -1 & 1\end{array}\right]$
- Rewrite the system as
$\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1-\sqrt{3},\left[\begin{array}{c}
\frac{1}{2-\sqrt{3}} \\
1
\end{array}\right]\right],\left[\sqrt{3}-1,\left[\begin{array}{c}
\frac{1}{2+\sqrt{3}} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1-\sqrt{3},\left[\begin{array}{c}
\frac{1}{2-\sqrt{3}} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\mathrm{e}^{(-1-\sqrt{3}) t} \cdot\left[\begin{array}{c}
\frac{1}{2-\sqrt{3}} \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[\sqrt{3}-1,\left[\begin{array}{c}\frac{1}{2+\sqrt{3}} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{x}_{2}=\mathrm{e}^{t(\sqrt{3}-1)} \cdot\left[\begin{array}{c}
\frac{1}{2+\sqrt{3}} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
$$

- Substitute solutions into the general solution
$\vec{x}=c_{1} \mathrm{e}^{(-1-\sqrt{3}) t} \cdot\left[\begin{array}{c}\frac{1}{2-\sqrt{3}} \\ 1\end{array}\right]+c_{2} \mathrm{e}^{t(\sqrt{3}-1)} \cdot\left[\begin{array}{c}\frac{1}{2+\sqrt{3}} \\ 1\end{array}\right]$
- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
c_{1}(2+\sqrt{3}) \mathrm{e}^{-t(1+\sqrt{3})}-c_{2} \mathrm{e}^{t(\sqrt{3}-1)}(\sqrt{3}-2) \\
c_{1} \mathrm{e}^{-t(1+\sqrt{3})}+c_{2} \mathrm{e}^{t(\sqrt{3}-1)}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=c_{1}(2+\sqrt{3}) \mathrm{e}^{-t(1+\sqrt{3})}-c_{2} \mathrm{e}^{t(\sqrt{3}-1)}(\sqrt{3}-2), y=c_{1} \mathrm{e}^{-t(1+\sqrt{3})}+c_{2} \mathrm{e}^{t(\sqrt{3}-1)}\right\}
$$

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 82

```
dsolve([diff(x(t),t)=-3*x(t)+1*y(t), diff(y(t),t)=-1*x(t)+1*y(t)],singsol=all)
```

$$
\begin{aligned}
& x(t)=c_{1} \mathrm{e}^{(\sqrt{3}-1) t}+c_{2} \mathrm{e}^{-(1+\sqrt{3}) t} \\
& y(t)=c_{1} \mathrm{e}^{(\sqrt{3}-1) t} \sqrt{3}-c_{2} \mathrm{e}^{-(1+\sqrt{3}) t} \sqrt{3}+2 c_{1} \mathrm{e}^{(\sqrt{3}-1) t}+2 c_{2} \mathrm{e}^{-(1+\sqrt{3}) t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 147
DSolve $\left[\left\{x^{\prime}[t]==-3 * x[t]+1 * y[t], y^{\prime}[t]==-1 * x[t]+1 * y[t]\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{6} e^{-((1+\sqrt{3}) t)}\left(c_{1}\left((3-2 \sqrt{3}) e^{2 \sqrt{3} t}+3+2 \sqrt{3}\right)+\sqrt{3} c_{2}\left(e^{2 \sqrt{3} t}-1\right)\right) \\
& y(t) \rightarrow \frac{1}{6} e^{-((1+\sqrt{3}) t)}\left(c_{2}\left((3+2 \sqrt{3}) e^{2 \sqrt{3} t}+3-2 \sqrt{3}\right)-\sqrt{3} c_{1}\left(e^{2 \sqrt{3} t}-1\right)\right)
\end{aligned}
$$

15.9 problem 19 (iii)

15.9.1 Solution using Matrix exponential method 2457
15.9.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2458
15.9.3 Maple step by step solution . 2463

Internal problem ID [13151]
Internal file name [OUTPUT/11806_Sunday_December_03_2023_07_16_48_PM_38837053/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376
Problem number: 19 (iii).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-3 x(t)+y \\
y^{\prime} & =-x(t)
\end{aligned}
$$

15.9.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
-3 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{(3 \sqrt{5}+5) \mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}}}{10}+\frac{(-3 \sqrt{5}+5) \mathrm{e}^{\frac{(\sqrt{5}-3) t}{2}}}{10} & -\frac{\left(-\mathrm{e}^{\frac{(\sqrt{5}-3) t}{2}}+\mathrm{e}^{\left.-\frac{(3+\sqrt{5}) t}{2}\right) \sqrt{5}}\right.}{5} \\
\frac{\left(-\mathrm{e}^{\frac{(\sqrt{5}-3) t}{2}}+\mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}}\right) \sqrt{5}}{5} & \frac{(-3 \sqrt{5}+5) \mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}}}{10}+\frac{\mathrm{e}^{\frac{(\sqrt{5}-3) t}{2}}(3 \sqrt{5}+5)}{10}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& \vec{x}_{h}(t)=e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{(3 \sqrt{5}+5) \mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}}}{10}+\frac{(-3 \sqrt{5}+5) \mathrm{e}^{\frac{(\sqrt{5}-3) t}{2}}}{10} & -\frac{\left(-\frac{(\sqrt{5}-3) t}{2}+\mathrm{e}^{\left.-\frac{(3+\sqrt{5}) t}{2}\right)} \sqrt{5}\right.}{5} \\
\frac{\left(-\mathrm{e}^{\frac{(\sqrt{5}-3) t}{2}}+\mathrm{e}^{\left.-\frac{(3+\sqrt{5}) t}{2}\right) \sqrt{5}}\right.}{5} & \frac{(-3 \sqrt{5}+5) \mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}}}{10}+\frac{\mathrm{e}^{\frac{(\sqrt{5}-3) t}{2}}(3 \sqrt{5}+5)}{10}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{(3 \sqrt{5}+5) \mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}}}{10}+\frac{(-3 \sqrt{5}+5) \mathrm{e}^{\frac{(\sqrt{5}-3) t}{2}}}{10}\right) c_{1}-\frac{\left(-\mathrm{e}^{\frac{(\sqrt{5}-3) t}{2}}+\mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}}\right) \sqrt{5} c_{2}}{5} \\
\frac{\left(-\mathrm{e}^{\frac{(\sqrt{5}-3) t}{2}}+\mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}}\right) \sqrt{5} c_{1}}{5}+\left(\frac{(-3 \sqrt{5}+5) \mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}}}{10}+\frac{\mathrm{e}^{\frac{(\sqrt{5}-3) t}{2}}(3 \sqrt{5}+5)}{10}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(\left(3 c_{1}-2 c_{2}\right) \sqrt{5}+5 c_{1}\right) \mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}}}{10}-\frac{3 \mathrm{e}^{\frac{(\sqrt{5}-3) t}{2}}\left(\left(c_{1}-\frac{2 c_{2}}{3}\right) \sqrt{5}-\frac{5 c_{1}}{3}\right)}{10} \\
\frac{\left(\left(2 c_{1}-3 c_{2}\right) \sqrt{5}+5 c_{2}\right) \mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}}}{10}-\frac{\mathrm{e}^{\frac{(\sqrt{5}-3) t}{2}}\left(\left(c_{1}-\frac{3 c_{2}}{2}\right) \sqrt{5}-\frac{5 c_{2}}{2}\right)}{5}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

15.9.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
-3 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
-3 & 1 \\
-1 & 0
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-3-\lambda & 1 \\
-1 & -\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+3 \lambda+1=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=\frac{\sqrt{5}}{2}-\frac{3}{2} \\
& \lambda_{2}=-\frac{3}{2}-\frac{\sqrt{5}}{2}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-\frac{3}{2}-\frac{\sqrt{5}}{2}$	1	real eigenvalue
$\frac{\sqrt{5}}{2}-\frac{3}{2}$	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-\frac{3}{2}-\frac{\sqrt{5}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
-3 & 1 \\
-1 & 0
\end{array}\right]-\left(-\frac{3}{2}-\frac{\sqrt{5}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
\frac{\sqrt{5}}{2}-\frac{3}{2} & 1 & 0 \\
-1 & \frac{3}{2}+\frac{\sqrt{5}}{2} & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}+\frac{R_{1}}{\frac{\sqrt{5}}{2}-\frac{3}{2}} \Longrightarrow\left[\begin{array}{cc|c}
\frac{\sqrt{5}}{2}-\frac{3}{2} & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{\sqrt{5}}{2}-\frac{3}{2} & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{2 t}{\sqrt{5}-3}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{2 t}{\sqrt{5}-3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 t}{\sqrt{5}-3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{2 t}{\sqrt{5}-3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{2}{\sqrt{5}-3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{2 t}{\sqrt{5}-3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{\sqrt{5}-3} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=\frac{\sqrt{5}}{2}-\frac{3}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-3 & 1 \\
-1 & 0
\end{array}\right]-\left(\frac{\sqrt{5}}{2}-\frac{3}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-\frac{3}{2}-\frac{\sqrt{5}}{2} & 1 \\
-1 & \frac{3}{2}-\frac{\sqrt{5}}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
-\frac{3}{2}-\frac{\sqrt{5}}{2} & 1 & 0 \\
-1 & \frac{3}{2}-\frac{\sqrt{5}}{2} & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}+\frac{R_{1}}{-\frac{3}{2}-\frac{\sqrt{5}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
-\frac{3}{2}-\frac{\sqrt{5}}{2} & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-\frac{3}{2}-\frac{\sqrt{5}}{2} & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{2 t}{3+\sqrt{5}}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{2 t}{3+\sqrt{5}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2 t}{3+\sqrt{5}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{2 t}{3+\sqrt{5}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{2}{3+\sqrt{5}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{2 t}{3+\sqrt{5}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{3+\sqrt{5}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{2 t}{3+\sqrt{5}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{3+\sqrt{5}} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$\frac{\sqrt{5}}{2}-\frac{3}{2}$	1	1	No	$\left[\begin{array}{c}\frac{1}{3}+\frac{\sqrt{5}}{2} \\ 1\end{array}\right]$
$-\frac{3}{2}-\frac{\sqrt{5}}{2}$	1	1	No	$\left[\begin{array}{c}\frac{1}{3}-\frac{\sqrt{5}}{2} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue $\frac{\sqrt{5}}{2}-\frac{3}{2}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\left(\frac{\sqrt{5}}{2}-\frac{3}{2}\right) t} \\
& =\left[\begin{array}{c}
\frac{1}{\frac{3}{2}+\frac{\sqrt{5}}{2}} \\
1
\end{array}\right] e^{\left(\frac{\sqrt{5}}{2}-\frac{3}{2}\right) t}
\end{aligned}
$$

Since eigenvalue $-\frac{3}{2}-\frac{\sqrt{5}}{2}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{\left(-\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t} \\
& =\left[\begin{array}{c}
\frac{1}{\frac{3}{2}-\frac{\sqrt{5}}{2}} \\
1
\end{array}\right] e^{\left(-\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{\mathrm{e}^{\left(\frac{\sqrt{5}}{2}-\frac{3}{2}\right) t}}{\frac{3}{2}+\frac{\sqrt{5}}{2}} \\
\mathrm{e}^{\left(\frac{\sqrt{5}}{2}-\frac{3}{2}\right) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{\mathrm{e}^{\left(-\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t}}{\frac{3}{2}-\frac{\sqrt{5}}{2}} \\
\mathrm{e}^{\left(-\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{2}(3+\sqrt{5}) \mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}}}{2}-\frac{c_{1} \mathrm{e}^{\frac{(\sqrt{5}-3) t}{2}}(\sqrt{5}-3)}{2} \\
c_{1} \mathrm{e}^{\frac{(\sqrt{5}-3) t}{2}}+c_{2} \mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 466: Phase plot

15.9.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=-3 x(t)+y, y^{\prime}=-x(t)\right]
$$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
-3 & 1 \\
-1 & 0
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
-3 & 1 \\
-1 & 0
\end{array}\right] \cdot \vec{x}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
-3 & 1 \\
-1 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-\frac{3}{2}-\frac{\sqrt{5}}{2},\left[\begin{array}{c}
\frac{1}{2}-\frac{\sqrt{5}}{2} \\
1
\end{array}\right]\right],\left[\frac{\sqrt{5}}{2}-\frac{3}{2},\left[\begin{array}{c}
\frac{1}{\frac{3}{2}+\frac{\sqrt{5}}{2}} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-\frac{3}{2}-\frac{\sqrt{5}}{2},\left[\begin{array}{c}
\frac{1}{\frac{3}{2}-\frac{\sqrt{5}}{2}} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair
$\vec{x}_{1}=\mathrm{e}^{\left(-\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t} \cdot\left[\begin{array}{c}\frac{1}{\frac{3}{2}-\frac{\sqrt{5}}{2}} \\ 1\end{array}\right]$
- Consider eigenpair

$$
\left[\frac{\sqrt{5}}{2}-\frac{3}{2},\left[\begin{array}{c}
\frac{1}{\frac{3}{2}+\frac{\sqrt{5}}{2}} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair
$\vec{x}_{2}=\mathrm{e}^{\left(\frac{\sqrt{5}}{2}-\frac{3}{2}\right) t} \cdot\left[\begin{array}{c}\frac{1}{\frac{3}{2}+\frac{\sqrt{5}}{2}} \\ 1\end{array}\right]$
- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
$$

- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{\left(-\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t} \cdot\left[\begin{array}{c}
\frac{1}{\frac{3}{2}-\frac{\sqrt{5}}{2}} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{\left(\frac{\sqrt{5}}{2}-\frac{3}{2}\right) t} \cdot\left[\begin{array}{c}
\frac{1}{\frac{3}{2}+\frac{\sqrt{5}}{2}} \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{1}(3+\sqrt{5}) \mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}}}{2}-\frac{\mathrm{e}^{\frac{(\sqrt{5}-3) t}{2}} c_{2}(\sqrt{5}-3)}{2} \\
c_{1} \mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}}+c_{2} \mathrm{e}^{\frac{(\sqrt{5}-3) t}{2}}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=\frac{c_{1}(3+\sqrt{5}) \mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}}}{2}-\frac{\mathrm{e}^{\frac{(\sqrt{5}-3) t}{2}} c_{2}(\sqrt{5}-3)}{2}, y=c_{1} \mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}}+c_{2} \mathrm{e}^{\frac{(\sqrt{5}-3) t}{2}}\right\}
$$

\checkmark Solution by Maple

Time used: 0.016 (sec). Leaf size: 68

```
dsolve([diff(x(t),t)=-3*x(t)+1*y(t), diff(y(t),t)=-1*x(t)+0*y(t)],singsol=all)
```

$$
\begin{aligned}
& x(t)=\left(-\frac{\sqrt{5}}{2}+\frac{3}{2}\right) c_{1} \mathrm{e}^{\frac{(\sqrt{5}-3) t}{2}}+\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) c_{2} \mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}} \\
& y(t)=c_{1} \mathrm{e}^{\frac{(\sqrt{5}-3) t}{2}}+c_{2} \mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 148
DSolve $\left[\left\{x^{\prime}[t]==-3 * x[t]+1 * y[t], y^{\prime}[t]==-1 * x[t]+0 * y[t]\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{10} e^{-\frac{1}{2}(3+\sqrt{5}) t}\left(c_{1}\left((5-3 \sqrt{5}) e^{\sqrt{5} t}+5+3 \sqrt{5}\right)+2 \sqrt{5} c_{2}\left(e^{\sqrt{5} t}-1\right)\right) \\
& y(t) \rightarrow \frac{1}{10} e^{-\frac{1}{2}(3+\sqrt{5}) t}\left(c_{2}\left((5+3 \sqrt{5}) e^{\sqrt{5} t}+5-3 \sqrt{5}\right)-2 \sqrt{5} c_{1}\left(e^{\sqrt{5} t}-1\right)\right)
\end{aligned}
$$

15.10 problem 19 (iv)

15.10.1 Solution using Matrix exponential method 2466
15.10.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2467
15.10.3 Maple step by step solution . 2472

Internal problem ID [13152]
Internal file name [OUTPUT/11807_Sunday_December_03_2023_07_16_48_PM_99156758/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376
Problem number: 19 (iv).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-x(t)+y \\
y^{\prime} & =-2 x(t)+y
\end{aligned}
$$

15.10.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
-1 & 1 \\
-2 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\cos (t)-\sin (t) & \sin (t) \\
-2 \sin (t) & \cos (t)+\sin (t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\cos (t)-\sin (t) & \sin (t) \\
-2 \sin (t) & \cos (t)+\sin (t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
(\cos (t)-\sin (t)) c_{1}+\sin (t) c_{2} \\
-2 \sin (t) c_{1}+(\cos (t)+\sin (t)) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-c_{1}+c_{2}\right) \sin (t)+c_{1} \cos (t) \\
\left(-2 c_{1}+c_{2}\right) \sin (t)+c_{2} \cos (t)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

15.10.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
-1 & 1 \\
-2 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
-1 & 1 \\
-2 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-1-\lambda & 1 \\
-2 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+1=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =i \\
\lambda_{2} & =-i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
i	1	complex eigenvalue
$-i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
-1 & 1 \\
-2 & 1
\end{array}\right]-(-i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1+i & 1 & 0 \\
-2 & 1+i & 0
\end{array}\right]} \\
R_{2}=R_{2}+(-1-i) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1+i & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1+i & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(\frac{1}{2}+\frac{i}{2}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{i}{2}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2}+\frac{i}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}+\frac{i}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
1+i \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
-1 & 1 \\
-2 & 1
\end{array}\right]-(i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-1-i & 1 \\
-2 & 1-i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1-i & 1 & 0 \\
-2 & 1-i & 0
\end{array}\right]} \\
R_{2}=R_{2}+(-1+i) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1-i & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1-i & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(\frac{1}{2}-\frac{i}{2}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{i}{2}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2}-\frac{i}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}-\frac{i}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
1-i \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
i	1	1	No	$\left[\begin{array}{c}\frac{1}{2}-\frac{i}{2} \\ 1\end{array}\right]$
$-i$	1	1	No	$\left[\begin{array}{c}\frac{1}{2}+\frac{i}{2} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{i}{2}\right) \mathrm{e}^{i t} \\
\mathrm{e}^{i t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{i}{2}\right) \mathrm{e}^{-i t} \\
\mathrm{e}^{-i t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{i}{2}\right) c_{1} \mathrm{e}^{i t}+\left(\frac{1}{2}+\frac{i}{2}\right) c_{2} \mathrm{e}^{-i t} \\
c_{1} \mathrm{e}^{i t}+c_{2} \mathrm{e}^{-i t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 467: Phase plot

15.10.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=-x(t)+y, y^{\prime}=-2 x(t)+y\right]
$$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
-1 & 1 \\
-2 & 1
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{ll}-1 & 1 \\ -2 & 1\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
-1 & 1 \\
-2 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-\mathrm{I},\left[\begin{array}{c}
\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
\frac{1}{2}-\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I},\left[\begin{array}{c}
\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{It}} \cdot\left[\begin{array}{c}
\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and cos

$$
(\cos (t)-\mathrm{I} \sin (t)) \cdot\left[\begin{array}{c}
\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right)(\cos (t)-\mathrm{I} \sin (t)) \\
\cos (t)-\mathrm{I} \sin (t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{x}_{1}(t)=\left[\begin{array}{c}
\frac{\cos (t)}{2}+\frac{\sin (t)}{2} \\
\cos (t)
\end{array}\right], \vec{x}_{2}(t)=\left[\begin{array}{c}
\frac{\cos (t)}{2}-\frac{\sin (t)}{2} \\
-\sin (t)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

- Substitute solutions into the general solution

$$
\vec{x}=\left[\begin{array}{c}
c_{2}\left(\frac{\cos (t)}{2}-\frac{\sin (t)}{2}\right)+c_{1}\left(\frac{\cos (t)}{2}+\frac{\sin (t)}{2}\right) \\
c_{1} \cos (t)-c_{2} \sin (t)
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\frac{\cos (t)\left(c_{1}+c_{2}\right)}{2}+\frac{\left(c_{1}-c_{2}\right) \sin (t)}{2} \\
c_{1} \cos (t)-c_{2} \sin (t)
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=\frac{\cos (t)\left(c_{1}+c_{2}\right)}{2}+\frac{\left(c_{1}-c_{2}\right) \sin (t)}{2}, y=c_{1} \cos (t)-c_{2} \sin (t)\right\}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 35

```
dsolve([diff(x(t),t)=-1*x(t)+1*y(t), diff(y(t),t)=-2*x(t)+1*y(t)],singsol=all)
```

$$
\begin{aligned}
x(t) & =c_{1} \sin (t)+c_{2} \cos (t) \\
y(t) & =c_{1} \sin (t)-c_{2} \sin (t)+c_{1} \cos (t)+c_{2} \cos (t)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 39
DSolve $\left[\left\{x^{\prime}[t]==-1 * x[t]+1 * y[t], y^{\prime}[t]==-2 * x[t]+1 * y[t]\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions

$$
\begin{aligned}
& x(t) \rightarrow c_{1} \cos (t)+\left(c_{2}-c_{1}\right) \sin (t) \\
& y(t) \rightarrow c_{2}(\sin (t)+\cos (t))-2 c_{1} \sin (t)
\end{aligned}
$$

15.11 problem 19 (v)

15.11.1 Solution using Matrix exponential method 2475
15.11.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2476
15.11.3 Maple step by step solution . 2481

Internal problem ID [13153]
Internal file name [OUTPUT/11808_Sunday_December_03_2023_07_16_49_PM_39563143/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376
Problem number: 19 (v).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =2 x(t) \\
y^{\prime} & =x(t)-y
\end{aligned}
$$

15.11.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
2 & 0 \\
1 & -1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{2 t} & 0 \\
\frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3} & \mathrm{e}^{-t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{2 t} & 0 \\
\frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3} & \mathrm{e}^{-t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{2 t} c_{1} \\
\left(\frac{\mathrm{e}^{2 t}}{3}-\frac{\mathrm{e}^{-t}}{3}\right) c_{1}+\mathrm{e}^{-t} c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{2 t} c_{1} \\
\frac{\left(-c_{1}+3 c_{2}\right) \mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{2 t} c_{1}}{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

15.11.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
2 & 0 \\
1 & -1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2 & 0 \\
1 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & 0 \\
1 & -1-\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(2-\lambda)(-1-\lambda)=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
2 & 0 \\
1 & -1
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
3 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
3 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{3} \Longrightarrow\left[\begin{array}{ll|l}
3 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
3 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
2 & 0 \\
1 & -1
\end{array}\right]-(2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
0 & 0 \\
1 & -3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
0 & 0 & 0 \\
1 & -3 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{cc|c}
1 & -3 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1 & -3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=3 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
3 t \\
t
\end{array}\right]=\left[\begin{array}{c}
3 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
3 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
3 t \\
t
\end{array}\right]=\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
2	1	1	No	$\left[\begin{array}{l}3 \\ 1\end{array}\right]$
-1	1	1	No	$\left[\begin{array}{l}0 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{2 t} \\
& =\left[\begin{array}{l}
3 \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-t} \\
& =\left[\begin{array}{l}
0 \\
1
\end{array}\right] e^{-t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
3 \mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
0 \\
\mathrm{e}^{-t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
3 c_{1} \mathrm{e}^{2 t} \\
c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{-t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 468: Phase plot

15.11.3 Maple step by step solution

Let's solve
$\left[x^{\prime}(t)=2 x(t), y^{\prime}=x(t)-y\right]$

- Define vector
$\vec{x}(t)=\left[\begin{array}{c}x(t) \\ y\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}2 & 0 \\ 1 & -1\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}2 & 0 \\ 1 & -1\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
2 & 0 \\
1 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{l}
3 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\mathrm{e}^{-t} \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{l}3 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{x}_{2}=\mathrm{e}^{2 t} \cdot\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
$$

- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{-t} \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{2 t} \cdot\left[\begin{array}{l}
3 \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
3 c_{2} \mathrm{e}^{2 t} \\
c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{2 t}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x(t)=3 c_{2} \mathrm{e}^{2 t}, y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{2 t}\right\}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 28
dsolve([diff $(x(t), t)=2 * x(t)+0 * y(t), \operatorname{diff}(y(t), t)=1 * x(t)-1 * y(t)]$, singsol=all)

$$
\begin{aligned}
& x(t)=c_{2} \mathrm{e}^{2 t} \\
& y(t)=\frac{c_{2} \mathrm{e}^{2 t}}{3}+\mathrm{e}^{-t} c_{1}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 40
DSolve $\left[\left\{x^{\prime}[t]==2 * x[t]+0 * y[t], y^{\prime}[t]==1 * x[t]-1 * y[t]\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions

$$
\begin{aligned}
x(t) & \rightarrow c_{1} e^{2 t} \\
y(t) & \rightarrow \frac{1}{3} e^{-t}\left(c_{1}\left(e^{3 t}-1\right)+3 c_{2}\right)
\end{aligned}
$$

15.12 problem 19 (vi)

15.12.1 Solution using Matrix exponential method 2484
15.12.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2485
15.12.3 Maple step by step solution . 2490

Internal problem ID [13154]
Internal file name [OUTPUT/11809_Sunday_December_03_2023_07_16_49_PM_75390535/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376
Problem number: 19 (vi).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =3 x(t)+y \\
y^{\prime} & =-x(t)
\end{aligned}
$$

15.12.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
3 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{(3 \sqrt{5}+5) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}+\frac{(-3 \sqrt{5}+5) \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}}{10} & -\frac{\left(-\mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+\mathrm{e}^{\left.-\frac{(\sqrt{5}-3) t}{2}\right) \sqrt{5}}\right.}{5} \\
\frac{\left(-\mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}\right) \sqrt{5}}{5} & \frac{(-3 \sqrt{5}+5) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}+\frac{\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(3 \sqrt{5}+5)}{10}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& \vec{x}_{h}(t)=e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{(3 \sqrt{5}+5) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}+\frac{(-3 \sqrt{5}+5) \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}}{10} & -\frac{\left(-\mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+\mathrm{e}^{\left.-\frac{(\sqrt{5}-3) t}{2}\right)} \sqrt{5}\right.}{5} \\
\frac{\left(-\mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+\mathrm{e}^{\left.-\frac{(\sqrt{5}-3) t}{2}\right) \sqrt{5}}\right.}{5} & \frac{(-3 \sqrt{5}+5) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}+\frac{\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(3 \sqrt{5}+5)}{10}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{(3 \sqrt{5}+5) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}+\frac{(-3 \sqrt{5}+5) \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}}{10}\right) c_{1}-\frac{\left(-\mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}\right) \sqrt{5} c_{2}}{5} \\
\frac{\left(-\mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}\right) \sqrt{5} c_{1}}{5}+\left(\frac{(-3 \sqrt{5}+5) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}+\frac{\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(3 \sqrt{5}+5)}{10}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(\left(3 c_{1}+2 c_{2}\right) \sqrt{5}+5 c_{1}\right) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}-\frac{3 \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}\left(\left(c_{1}+\frac{2 c_{2}}{3}\right) \sqrt{5}-\frac{5 c_{1}}{3}\right)}{10} \\
\frac{\left(\left(-2 c_{1}-3 c_{2}\right) \sqrt{5}+5 c_{2}\right) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{10}+\frac{\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}\left(\left(c_{1}+\frac{3 c_{2}}{2}\right) \sqrt{5}+\frac{5 c_{2}}{2}\right)}{5}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

15.12.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
3 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3 & 1 \\
-1 & 0
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3-\lambda & 1 \\
-1 & -\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-3 \lambda+1=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=\frac{3}{2}+\frac{\sqrt{5}}{2} \\
& \lambda_{2}=\frac{3}{2}-\frac{\sqrt{5}}{2}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$\frac{3}{2}-\frac{\sqrt{5}}{2}$	1	real eigenvalue
$\frac{3}{2}+\frac{\sqrt{5}}{2}$	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=\frac{3}{2}-\frac{\sqrt{5}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
3 & 1 \\
-1 & 0
\end{array}\right]-\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
\frac{3}{2}+\frac{\sqrt{5}}{2} & 1 & 0 \\
-1 & \frac{\sqrt{5}}{2}-\frac{3}{2} & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}+\frac{R_{1}}{\frac{3}{2}+\frac{\sqrt{5}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
\frac{3}{2}+\frac{\sqrt{5}}{2} & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{3}{2}+\frac{\sqrt{5}}{2} & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{2 t}{3+\sqrt{5}}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{2 t}{3+\sqrt{5}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 t}{3+\sqrt{5}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{2 t}{3+\sqrt{5}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{2}{3+\sqrt{5}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{2 t}{3+\sqrt{5}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{3+\sqrt{5}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{2 t}{3+\sqrt{5}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{3+\sqrt{5}} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=\frac{3}{2}+\frac{\sqrt{5}}{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{cc}
3 & 1 \\
-1 & 0
\end{array}\right]-\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=} \\
\left(\begin{array}{lc}
0 \\
0
\end{array}\right] \\
-1 & -\frac{3}{2}-\frac{\sqrt{5}}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
\frac{3}{2}-\frac{\sqrt{5}}{2} & 1 & 0 \\
-1 & -\frac{3}{2}-\frac{\sqrt{5}}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{R_{1}}{\frac{3}{2}-\frac{\sqrt{5}}{2}} \Longrightarrow\left[\begin{array}{ccc|c}
\frac{3}{2}-\frac{\sqrt{5}}{2} & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
\frac{3}{2}-\frac{\sqrt{5}}{2} & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{2 t}{\sqrt{5}-3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{2 t}{\sqrt{5}-3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2 t}{\sqrt{5}-3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{2 t}{\sqrt{5}-3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{2}{\sqrt{5}-3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{2 t}{\sqrt{5}-3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{\sqrt{5}-3} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$\frac{3}{2}+\frac{\sqrt{5}}{2}$	1	1	No	$\left[\begin{array}{c}\frac{1}{\sqrt{5}} 2-\frac{3}{2} \\ 1\end{array}\right]$
$\frac{3}{2}-\frac{\sqrt{5}}{2}$	1	1	No	$\left[\begin{array}{c}\frac{1}{-\frac{3}{2}-\frac{\sqrt{5}}{2}} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue $\frac{3}{2}+\frac{\sqrt{5}}{2}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) t} \\
& =\left[\begin{array}{c}
\frac{1}{\frac{\sqrt{5}}{2}-\frac{3}{2}} \\
1
\end{array}\right] e^{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) t}
\end{aligned}
$$

Since eigenvalue $\frac{3}{2}-\frac{\sqrt{5}}{2}$ is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t} \\
& =\left[\begin{array}{c}
\frac{1}{-\frac{3}{2}-\frac{\sqrt{5}}{2}} \\
1
\end{array}\right] e^{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{\mathrm{e}^{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) t}}{\frac{\sqrt{5}}{2}-\frac{3}{2}} \\
\mathrm{e}^{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{\mathrm{e}^{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t}}{-\frac{3}{2}-\frac{\sqrt{5}}{2}} \\
\mathrm{e}^{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-\frac{c_{1}(3+\sqrt{5}) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{2}+\frac{\mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}} c_{2}(\sqrt{5}-3)}{2} \\
c_{1} \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+c_{2} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 469: Phase plot

15.12.3 Maple step by step solution

Let's solve

$$
\left[x^{\prime}(t)=3 x(t)+y, y^{\prime}=-x(t)\right]
$$

- Define vector

$$
\vec{x}(t)=\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

- Convert system into a vector equation

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
3 & 1 \\
-1 & 0
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
3 & 1 \\
-1 & 0
\end{array}\right] \cdot \vec{x}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
3 & 1 \\
-1 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[\frac{3}{2}-\frac{\sqrt{5}}{2},\left[\begin{array}{c}
\frac{1}{-\frac{3}{2}-\frac{\sqrt{5}}{2}} \\
1
\end{array}\right]\right],\left[\frac{3}{2}+\frac{\sqrt{5}}{2},\left[\begin{array}{c}
\frac{1}{\frac{\sqrt{5}}{2}-\frac{3}{2}} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[\frac{3}{2}-\frac{\sqrt{5}}{2},\left[\begin{array}{c}
\frac{1}{-\frac{3}{2}-\frac{\sqrt{5}}{2}} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{x}_{1}=\mathrm{e}^{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t} \cdot\left[\begin{array}{c}
\frac{1}{-\frac{3}{2}-\frac{\sqrt{5}}{2}} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[\frac{3}{2}+\frac{\sqrt{5}}{2},\left[\begin{array}{c}
\frac{1}{\frac{\sqrt{5}}{2}-\frac{3}{2}} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair
$\vec{x}_{2}=\mathrm{e}^{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) t} \cdot\left[\begin{array}{c}\frac{1}{\frac{\sqrt{5}}{2}-\frac{3}{2}} \\ 1\end{array}\right]$
- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
$$

- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t} \cdot\left[\begin{array}{c}
\frac{1}{-\frac{3}{2}-\frac{\sqrt{5}}{2}} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) t} \cdot\left[\begin{array}{c}
\frac{1}{\frac{\sqrt{5}}{2}-\frac{3}{2}} \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-\frac{c_{2}(3+\sqrt{5}) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{2}+\frac{c_{1} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(\sqrt{5}-3)}{2} \\
c_{1} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}+c_{2} \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=-\frac{c_{2}(3+\sqrt{5}) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}}{2}+\frac{c_{1} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}(\sqrt{5}-3)}{2}, y=c_{1} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}+c_{2} \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}\right\}
$$

\checkmark Solution by Maple

Time used: 0.016 (sec). Leaf size: 68

```
dsolve([diff(x(t),t)=3*x(t)+1*y(t), diff(y(t),t)=-1*x(t)+0*y(t)],singsol=all)
```

$$
\begin{aligned}
& x(t)=\left(\frac{\sqrt{5}}{2}-\frac{3}{2}\right) c_{2} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}+\left(-\frac{3}{2}-\frac{\sqrt{5}}{2}\right) c_{1} \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}} \\
& y(t)=c_{1} \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}}+c_{2} \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 148
DSolve $\left[\left\{x^{\prime}[t]==3 * x[t]+1 * y[t], y^{\prime}[t]==-1 * x[t]+0 * y[t]\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{10} e^{-\frac{1}{2}(\sqrt{5}-3) t}\left(c_{1}\left((5+3 \sqrt{5}) e^{\sqrt{5} t}+5-3 \sqrt{5}\right)+2 \sqrt{5} c_{2}\left(e^{\sqrt{5} t}-1\right)\right) \\
& y(t) \rightarrow-\frac{1}{10} e^{-\frac{1}{2}(\sqrt{5}-3) t}\left(2 \sqrt{5} c_{1}\left(e^{\sqrt{5} t}-1\right)+c_{2}\left((3 \sqrt{5}-5) e^{\sqrt{5} t}-5-3 \sqrt{5}\right)\right)
\end{aligned}
$$

15.13 problem 19 (vii)

15.13.1 Solution using Matrix exponential method 2493
15.13.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2494
15.13.3 Maple step by step solution . 2499

Internal problem ID [13155]
Internal file name [OUTPUT/11810_Sunday_December_03_2023_07_16_50_PM_48564082/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376
Problem number: 19 (vii).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =y \\
y^{\prime} & =-4 x(t)-4 y
\end{aligned}
$$

15.13.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-4 & -4
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
(2 t+1) \mathrm{e}^{-2 t} & t \mathrm{e}^{-2 t} \\
-4 t \mathrm{e}^{-2 t} & \mathrm{e}^{-2 t}(1-2 t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
(2 t+1) \mathrm{e}^{-2 t} & t \mathrm{e}^{-2 t} \\
-4 t \mathrm{e}^{-2 t} & \mathrm{e}^{-2 t}(1-2 t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
(2 t+1) \mathrm{e}^{-2 t} c_{1}+t \mathrm{e}^{-2 t} c_{2} \\
-4 t \mathrm{e}^{-2 t} c_{1}+\mathrm{e}^{-2 t}(1-2 t) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-2 t}\left(2 t c_{1}+c_{2} t+c_{1}\right) \\
\left(c_{2}(1-2 t)-4 t c_{1}\right) \mathrm{e}^{-2 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

15.13.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-4 & -4
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
0 & 1 \\
-4 & -4
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & 1 \\
-4 & -4-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+4 \lambda+4=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=-2
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
0 & 1 \\
-4 & -4
\end{array}\right]-(-2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
2 & 1 \\
-4 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2 & 1 & 0 \\
-4 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}+2 R_{1} \Longrightarrow\left[\begin{array}{ll|l}
2 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-2	2	1	Yes	$\left[\begin{array}{c}-\frac{1}{2} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue -2 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 470: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
0 & 1 \\
-4 & -4
\end{array}\right]-(-2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
1 \\
-\frac{5}{2}
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue -2 . Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right] \mathrm{e}^{-2 t} \\
& =\left[\begin{array}{c}
-\frac{\mathrm{e}^{-2 t}}{2} \\
\mathrm{e}^{-2 t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right] t+\left[\begin{array}{c}
1 \\
-\frac{5}{2}
\end{array}\right]\right) \mathrm{e}^{-2 t} \\
& =\left[\begin{array}{c}
-\frac{\mathrm{e}^{-2 t}(-2+t)}{2} \\
\frac{\mathrm{e}^{-2 t}(2 t-5)}{2}
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{\mathrm{e}^{-2 t}}{2} \\
\mathrm{e}^{-2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{-2 t}\left(-\frac{t}{2}+1\right) \\
\mathrm{e}^{-2 t}\left(t-\frac{5}{2}\right)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-\frac{\mathrm{e}^{-2 t}\left((-2+t) c_{2}+c_{1}\right)}{2} \\
\mathrm{e}^{-2 t}\left(c_{1}+c_{2} t-\frac{5}{2} c_{2}\right)
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 471: Phase plot

15.13.3 Maple step by step solution

Let's solve
$\left[x^{\prime}(t)=y, y^{\prime}=-4 x(t)-4 y\right]$

- Define vector
$\vec{x}(t)=\left[\begin{array}{c}x(t) \\ y\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}0 & 1 \\ -4 & -4\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- \quad System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}0 & 1 \\ -4 & -4\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-4 & -4
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-2,\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]\right],\left[-2,\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[-2,\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue - 2
$\vec{x}_{1}(t)=\mathrm{e}^{-2 t} .\left[\begin{array}{c}-\frac{1}{2} \\ 1\end{array}\right]$
- Form of the 2nd homogeneous solution where \vec{p} is to be solved for, $\lambda=-2$ is the eigenvalue, an
$\vec{x}_{2}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- Note that the t multiplying \vec{v} makes this solution linearly independent to the 1 st solution obtair
- Substitute $\vec{x}_{2}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition \vec{p} must meet for $\vec{x}_{2}(t)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue -2

$$
\left(\left[\begin{array}{cc}
0 & 1 \\
-4 & -4
\end{array}\right]-(-2) \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
-\frac{1}{4} \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue -2
$\vec{x}_{2}(t)=\mathrm{e}^{-2 t} \cdot\left(t \cdot\left[\begin{array}{c}-\frac{1}{2} \\ 1\end{array}\right]+\left[\begin{array}{c}-\frac{1}{4} \\ 0\end{array}\right]\right)$
- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-2 t} \cdot\left(t \cdot\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{1}{4} \\
0
\end{array}\right]\right)
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-\frac{\mathrm{e}^{-2 t}\left(2 c_{2} t+2 c_{1}+c_{2}\right)}{4} \\
\mathrm{e}^{-2 t}\left(c_{2} t+c_{1}\right)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x(t)=-\frac{\mathrm{e}^{-2 t}\left(2 c_{2} t+2 c_{1}+c_{2}\right)}{4}, y=\mathrm{e}^{-2 t}\left(c_{2} t+c_{1}\right)\right\}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 35

```
dsolve([diff(x(t),t)=0*x(t)+1*y(t),\operatorname{diff}(y(t),t)=-4*x(t)-4*y(t)],singsol=all)
```

$$
\begin{aligned}
x(t) & =\left(c_{2} t+c_{1}\right) \mathrm{e}^{-2 t} \\
y(t) & =-\mathrm{e}^{-2 t}\left(2 c_{2} t+2 c_{1}-c_{2}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 45
DSolve $\left[\left\{x^{\prime}[t]==0 * x[t]+1 * y[t], y^{\prime}[t]==-4 * x[t]-4 * y[t]\right\},\{x[t], y[t]\}, t\right.$, IncludeSingularSolutions

$$
\begin{aligned}
& x(t) \rightarrow e^{-2 t}\left(2 c_{1} t+c_{2} t+c_{1}\right) \\
& y(t) \rightarrow e^{-2 t}\left(c_{2}-2\left(2 c_{1}+c_{2}\right) t\right)
\end{aligned}
$$

15.14 problem 19 (viii)

15.14.1 Solution using Matrix exponential method 2503
15.14.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2504
15.14.3 Maple step by step solution 2509

Internal problem ID [13156]
Internal file name [OUTPUT/11811_Sunday_December_03_2023_07_16_50_PM_5340378/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376
Problem number: 19 (viii).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x^{\prime}(t) & =-3 x(t)-3 y \\
y^{\prime} & =2 x(t)+y
\end{aligned}
$$

15.14.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-3 & -3 \\
2 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\cos (\sqrt{2} t) \mathrm{e}^{-t}-\sin (\sqrt{2} t) \sqrt{2} \mathrm{e}^{-t} & -\frac{3 \sin (\sqrt{2} t) \sqrt{2} \mathrm{e}^{-t}}{2} \\
\sin (\sqrt{2} t) \sqrt{2} \mathrm{e}^{-t} & \cos (\sqrt{2} t) \mathrm{e}^{-t}+\sin (\sqrt{2} t) \sqrt{2} \mathrm{e}^{-t}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-t}(-\sqrt{2} \sin (\sqrt{2} t)+\cos (\sqrt{2} t)) & -\frac{3 \sin (\sqrt{2} t) \sqrt{2} \mathrm{e}^{-t}}{2} \\
\sin (\sqrt{2} t) \sqrt{2} \mathrm{e}^{-t} & \mathrm{e}^{-t}(\cos (\sqrt{2} t)+\sqrt{2} \sin (\sqrt{2} t))
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-t}(-\sqrt{2} \sin (\sqrt{2} t)+\cos (\sqrt{2} t)) & -\frac{3 \sin (\sqrt{2} t) \sqrt{2} \mathrm{e}^{-t}}{2} \\
\sin (\sqrt{2} t) \sqrt{2} \mathrm{e}^{-t} & \mathrm{e}^{-t}(\cos (\sqrt{2} t)+\sqrt{2} \sin (\sqrt{2} t))
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-t}(-\sqrt{2} \sin (\sqrt{2} t)+\cos (\sqrt{2} t)) c_{1}-\frac{3 \sin (\sqrt{2} t) \sqrt{2} \mathrm{e}^{-t} c_{2}}{2} \\
\sin (\sqrt{2} t) \sqrt{2} \mathrm{e}^{-t} c_{1}+\mathrm{e}^{-t}(\cos (\sqrt{2} t)+\sqrt{2} \sin (\sqrt{2} t)) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
-\left(\left(c_{1}+\frac{3 c_{2}}{2}\right) \sqrt{2} \sin (\sqrt{2} t)-\cos (\sqrt{2} t) c_{1}\right) \mathrm{e}^{-t} \\
\left(\sqrt{2}\left(c_{1}+c_{2}\right) \sin (\sqrt{2} t)+\cos (\sqrt{2} t) c_{2}\right) \mathrm{e}^{-t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

15.14.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
-3 & -3 \\
2 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-3 & -3 \\
2 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-3-\lambda & -3 \\
2 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+2 \lambda+3=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=i \sqrt{2}-1 \\
& \lambda_{2}=-1-i \sqrt{2}
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$i \sqrt{2}-1$	1	complex eigenvalue
$-1-i \sqrt{2}$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1-i \sqrt{2}$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-3 & -3 \\
2 & 1
\end{array}\right]-(-1-i \sqrt{2})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
i \sqrt{2}-2 & -3 \\
2 & 2+i \sqrt{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
i \sqrt{2}-2 & -3 & 0 \\
2 & 2+i \sqrt{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{2 R_{1}}{i \sqrt{2}-2} \Longrightarrow\left[\begin{array}{cc|c}
i \sqrt{2}-2 & -3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
i \sqrt{2}-2 & -3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{3 t}{i \sqrt{2}-2}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{3 t}{\mathrm{I} \sqrt{2}-2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{3 t}{i \sqrt{2}-2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{3 t}{\mathrm{I} \sqrt{2}-2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{3}{i \sqrt{2}-2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{3 t}{\mathrm{I} \sqrt{2}-2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{i \sqrt{2}-2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{3 t}{\mathrm{I} \sqrt{2}-2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{i \sqrt{2}-2} \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=i \sqrt{2}-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-3 & -3 \\
2 & 1
\end{array}\right]-(i \sqrt{2}-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-2-i \sqrt{2} & -3 \\
2 & 2-i \sqrt{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2-i \sqrt{2} & -3 & 0 \\
2 & 2-i \sqrt{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{2 R_{1}}{-2-i \sqrt{2}} \Longrightarrow\left[\begin{array}{cc|c}
-2-i \sqrt{2} & -3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2-i \sqrt{2} & -3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{3 t}{2+i \sqrt{2}}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{3 t}{2+\mathrm{I} \sqrt{2}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{3 t}{2+i \sqrt{2}} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{3 t}{2+\mathrm{I} \sqrt{2}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{3}{2+i \sqrt{2}} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{3 t}{2+\mathrm{I} \sqrt{2}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{3}{2+i \sqrt{2}} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{3 t}{2+\mathrm{I} \sqrt{2}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{3}{2+i \sqrt{2}} \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$\sqrt{2}-1$	1	1	No	$\left[\begin{array}{c}-\frac{3}{2+i \sqrt{2}} \\ 1\end{array}\right]$
$-1-i \sqrt{2}$	1	1	No	$\left[\begin{array}{c}-\frac{3}{2-i \sqrt{2}} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{3 \mathrm{e}^{(i \sqrt{2}-1) t}}{2+i \sqrt{2}} \\
\mathrm{e}^{(i \sqrt{2}-1) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{3 \mathrm{e}^{(-1-i \sqrt{2}) t}}{2-i \sqrt{2}} \\
\mathrm{e}^{(-1-i \sqrt{2}) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{2}(-2-i \sqrt{2}) \mathrm{e}^{-(1+i \sqrt{2}) t}}{2}+\frac{\mathrm{e}^{(i \sqrt{2}-1) t} c_{1}(i \sqrt{2}-2)}{2} \\
c_{1} \mathrm{e}^{(i \sqrt{2}-1) t}+c_{2} \mathrm{e}^{-(1+i \sqrt{2}) t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 472: Phase plot

15.14.3 Maple step by step solution

Let's solve
$\left[x^{\prime}(t)=-3 x(t)-3 y, y^{\prime}=2 x(t)+y\right]$

- Define vector
$\vec{x}(t)=\left[\begin{array}{c}x(t) \\ y\end{array}\right]$
- Convert system into a vector equation
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}-3 & -3 \\ 2 & 1\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve
$\vec{x}^{\prime}(t)=\left[\begin{array}{cc}-3 & -3 \\ 2 & 1\end{array}\right] \cdot \vec{x}(t)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
-3 & -3 \\
2 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1-\mathrm{I} \sqrt{2},\left[\begin{array}{c}
-\frac{3}{2-\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]\right],\left[\mathrm{I} \sqrt{2}-1,\left[\begin{array}{c}
-\frac{3}{2+\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-1-\mathrm{I} \sqrt{2},\left[\begin{array}{c}
-\frac{3}{2-\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(-1-\mathrm{I} \sqrt{2}) t} \cdot\left[\begin{array}{c}
-\frac{3}{2-\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{-t} \cdot(\cos (\sqrt{2} t)-\mathrm{I} \sin (\sqrt{2} t)) \cdot\left[\begin{array}{c}
-\frac{3}{2-\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-\frac{3(\cos (\sqrt{2} t)-\mathrm{I} \sin (\sqrt{2} t))}{2-\mathrm{I} \sqrt{2}} \\
\cos (\sqrt{2} t)-\mathrm{I} \sin (\sqrt{2} t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{x}_{1}(t)=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-\cos (\sqrt{2} t)-\frac{\sqrt{2} \sin (\sqrt{2} t)}{2} \\
\cos (\sqrt{2} t)
\end{array}\right], \vec{x}_{2}(t)=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-\frac{\sqrt{2} \cos (\sqrt{2} t)}{2}+\sin (\sqrt{2} t) \\
-\sin (\sqrt{2} t)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{x}=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

- Substitute solutions into the general solution

$$
\vec{x}=c_{1} \mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-\cos (\sqrt{2} t)-\frac{\sqrt{2} \sin (\sqrt{2} t)}{2} \\
\cos (\sqrt{2} t)
\end{array}\right]+c_{2} \mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-\frac{\sqrt{2} \cos (\sqrt{2} t)}{2}+\sin (\sqrt{2} t) \\
-\sin (\sqrt{2} t)
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x(t) \\
y
\end{array}\right]=\left[\begin{array}{c}
-\frac{\mathrm{e}^{-t}\left(\left(2 c_{1}+\sqrt{2} c_{2}\right) \cos (\sqrt{2} t)+\sin (\sqrt{2} t)\left(\sqrt{2} c_{1}-2 c_{2}\right)\right)}{2} \\
\mathrm{e}^{-t}\left(\cos (\sqrt{2} t) c_{1}-c_{2} \sin (\sqrt{2} t)\right)
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x(t)=-\frac{\mathrm{e}^{-t}\left(\left(2 c_{1}+\sqrt{2} c_{2}\right) \cos (\sqrt{2} t)+\sin (\sqrt{2} t)\left(\sqrt{2} c_{1}-2 c_{2}\right)\right)}{2}, y=\mathrm{e}^{-t}\left(\cos (\sqrt{2} t) c_{1}-c_{2} \sin (\sqrt{2} t)\right)\right\}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 78

```
dsolve([diff(x(t),t)=-3*x(t)-3*y(t), diff (y (t),t)=2*x(t)+1*y(t)], singsol=all)
```

$$
\begin{aligned}
x(t) & =\mathrm{e}^{-t}\left(c_{1} \sin (\sqrt{2} t)+c_{2} \cos (\sqrt{2} t)\right) \\
y(t) & =\frac{\mathrm{e}^{-t}\left(\sin (\sqrt{2} t) \sqrt{2} c_{2}-\cos (\sqrt{2} t) \sqrt{2} c_{1}-2 c_{1} \sin (\sqrt{2} t)-2 c_{2} \cos (\sqrt{2} t)\right)}{3}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 91

```
DSolve[{x'[t]==-3*x[t]-3*y[t],y'[t]==2*x[t]+1*y[t]},{x[t],y[t]},t,IncludeSingularSolutions
```

$$
\begin{aligned}
& x(t) \rightarrow \frac{1}{2} e^{-t}\left(2 c_{1} \cos (\sqrt{2} t)-\sqrt{2}\left(2 c_{1}+3 c_{2}\right) \sin (\sqrt{2} t)\right) \\
& y(t) \rightarrow e^{-t}\left(c_{2} \cos (\sqrt{2} t)+\sqrt{2}\left(c_{1}+c_{2}\right) \sin (\sqrt{2} t)\right)
\end{aligned}
$$

15.15 problem 23

15.15.1 Existence and uniqueness analysis 2512
15.15.2 Solving as second order linear constant coeff ode 2513
15.15.3 Solving using Kovacic algorithm 2515
15.15.4 Maple step by step solution . 2519

Internal problem ID [13157]
Internal file name [OUTPUT/11812_Sunday_December_03_2023_07_16_51_PM_34869035/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376
Problem number: 23.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=2\right]
$$

15.15.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =5 \\
q(t) & =6 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0
$$

The domain of $p(t)=5$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=6$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

15.15.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=5, C=6$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+5 \lambda \mathrm{e}^{\lambda t}+6 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+5 \lambda+6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=5, C=6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-5}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{5^{2}-(4)(1)(6)} \\
& =-\frac{5}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{5}{2}+\frac{1}{2} \\
& \lambda_{2}=-\frac{5}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-2 \\
& \lambda_{2}=-3
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(-2) t}+c_{2} e^{(-3) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-3 t}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-3 t} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 t}-3 c_{2} \mathrm{e}^{-3 t}
$$

substituting $y^{\prime}=2$ and $t=0$ in the above gives

$$
\begin{equation*}
2=-2 c_{1}-3 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=-2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 \mathrm{e}^{-2 t}-2 \mathrm{e}^{-3 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{-2 t}-2 \mathrm{e}^{-3 t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2 \mathrm{e}^{-2 t}-2 \mathrm{e}^{-3 t}
$$

Verified OK.

15.15.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+5 y^{\prime}+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=5 \tag{3}\\
& C=6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\frac{z(t)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 403: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-\frac{t}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{5}{1} d t} \\
& =z_{1} e^{-\frac{5 t}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{5 t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{5}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-5 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\mathrm{e}^{t}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 t}\right)+c_{2}\left(\mathrm{e}^{-3 t}\left(\mathrm{e}^{t}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{-2 t} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 \mathrm{e}^{-3 t} c_{1}-2 c_{2} \mathrm{e}^{-2 t}
$$

substituting $y^{\prime}=2$ and $t=0$ in the above gives

$$
\begin{equation*}
2=-3 c_{1}-2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-2 \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 \mathrm{e}^{-2 t}-2 \mathrm{e}^{-3 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{-2 t}-2 \mathrm{e}^{-3 t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=2 \mathrm{e}^{-2 t}-2 \mathrm{e}^{-3 t}
$$

Verified OK.

15.15.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+5 y^{\prime}+6 y=0, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=2\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+5 r+6=0
$$

- Factor the characteristic polynomial

$$
(r+3)(r+2)=0
$$

- Roots of the characteristic polynomial

$$
r=(-3,-2)
$$

- 1st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{-3 t}
$$

- $\quad 2$ nd solution of the ODE
$y_{2}(t)=\mathrm{e}^{-2 t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Substitute in solutions
$y=\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{-2 t}$
\square
Check validity of solution $y=\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{-2 t}$
- Use initial condition $y(0)=0$
$0=c_{1}+c_{2}$
- Compute derivative of the solution
$y^{\prime}=-3 \mathrm{e}^{-3 t} c_{1}-2 c_{2} \mathrm{e}^{-2 t}$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=2$
$2=-3 c_{1}-2 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=-2, c_{2}=2\right\}$
- Substitute constant values into general solution and simplify $y=2 \mathrm{e}^{-2 t}-2 \mathrm{e}^{-3 t}$
- \quad Solution to the IVP

$$
y=2 \mathrm{e}^{-2 t}-2 \mathrm{e}^{-3 t}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve([diff($y(t), t \$ 2)+5 * \operatorname{diff}(y(t), t)+6 * y(t)=0, y(0)=0, D(y)(0)=2], y(t)$, singsol=all)

$$
y(t)=-2 \mathrm{e}^{-3 t}+2 \mathrm{e}^{-2 t}
$$

\checkmark Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 17
DSolve $\left[\left\{y^{\prime \prime}[t]+5 * y\right.\right.$ ' $\left.[t]+6 * y[t]==0,\left\{y[0]==0, y^{\prime}[0]==2\right\}\right\}, y[t], t$, IncludeSingularSolutions $->$ True

$$
y(t) \rightarrow 2 e^{-3 t}\left(e^{t}-1\right)
$$

15.16 problem 24

15.16.1 Existence and uniqueness analysis 2522
15.16.2 Solving as second order linear constant coeff ode 2523
15.16.3 Solving using Kovacic algorithm 2525
15.16.4 Maple step by step solution . 2529

Internal problem ID [13158]
Internal file name [OUTPUT/11813_Sunday_December_03_2023_07_16_54_PM_32728918/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376
Problem number: 24.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0
$$

With initial conditions

$$
\left[y(0)=3, y^{\prime}(0)=-1\right]
$$

15.16.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =2 \\
q(t) & =5 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0
$$

The domain of $p(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=5$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

15.16.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=2, C=5$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+2 \lambda \mathrm{e}^{\lambda t}+5 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda+5=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=5$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2^{2}-(4)(1)(5)} \\
& =-1 \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-1+2 i \\
& \lambda_{2}=-1-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-1+2 i \\
\lambda_{2}=-1-2 i
\end{gathered}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-1$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{-t}\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-t}\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $t=0$ in the above gives

$$
\begin{equation*}
3=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\mathrm{e}^{-t}\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)+\mathrm{e}^{-t}\left(-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t)\right)
$$

substituting $y^{\prime}=-1$ and $t=0$ in the above gives

$$
\begin{equation*}
-1=-c_{1}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=(3 \cos (2 t)+\sin (2 t)) \mathrm{e}^{-t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(3 \cos (2 t)+\sin (2 t)) \mathrm{e}^{-t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=(3 \cos (2 t)+\sin (2 t)) \mathrm{e}^{-t}
$$

Verified OK.

15.16.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=5
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-4 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 405: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (2 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d t} \\
& =z_{1} e^{-t} \\
& =z_{1}\left(\mathrm{e}^{-t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-t} \cos (2 t)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1}} d t}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-2 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\tan (2 t)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-t} \cos (2 t)\right)+c_{2}\left(\mathrm{e}^{-t} \cos (2 t)\left(\frac{\tan (2 t)}{2}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-t} \cos (2 t)+\frac{c_{2} \mathrm{e}^{-t} \sin (2 t)}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $t=0$ in the above gives

$$
\begin{equation*}
3=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-t} \cos (2 t)-2 c_{1} \mathrm{e}^{-t} \sin (2 t)-\frac{c_{2} \mathrm{e}^{-t} \sin (2 t)}{2}+c_{2} \mathrm{e}^{-t} \cos (2 t)
$$

substituting $y^{\prime}=-1$ and $t=0$ in the above gives

$$
\begin{equation*}
-1=-c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=3 \mathrm{e}^{-t} \cos (2 t)+\mathrm{e}^{-t} \sin (2 t)
$$

Which simplifies to

$$
y=(3 \cos (2 t)+\sin (2 t)) \mathrm{e}^{-t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(3 \cos (2 t)+\sin (2 t)) \mathrm{e}^{-t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=(3 \cos (2 t)+\sin (2 t)) \mathrm{e}^{-t}
$$

Verified OK.

15.16.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+2 y^{\prime}+5 y=0, y(0)=3,\left.y^{\prime}\right|_{\{t=0\}}=-1\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}+2 r+5=0$
- Use quadratic formula to solve for r
$r=\frac{(-2) \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial

$$
r=(-1-2 \mathrm{I},-1+2 \mathrm{I})
$$

- 1st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{-t} \cos (2 t)
$$

- $\quad 2 n d$ solution of the ODE
$y_{2}(t)=\mathrm{e}^{-t} \sin (2 t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- \quad Substitute in solutions
$y=c_{1} \mathrm{e}^{-t} \cos (2 t)+c_{2} \mathrm{e}^{-t} \sin (2 t)$
Check validity of solution $y=c_{1} \mathrm{e}^{-t} \cos (2 t)+c_{2} \mathrm{e}^{-t} \sin (2 t)$
- Use initial condition $y(0)=3$
$3=c_{1}$
- Compute derivative of the solution
$y^{\prime}=-c_{1} \mathrm{e}^{-t} \cos (2 t)-2 c_{1} \mathrm{e}^{-t} \sin (2 t)-c_{2} \mathrm{e}^{-t} \sin (2 t)+2 c_{2} \mathrm{e}^{-t} \cos (2 t)$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=-1$
$-1=-c_{1}+2 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=3, c_{2}=1\right\}$
- Substitute constant values into general solution and simplify $y=(3 \cos (2 t)+\sin (2 t)) \mathrm{e}^{-t}$
- \quad Solution to the IVP

$$
y=(3 \cos (2 t)+\sin (2 t)) \mathrm{e}^{-t}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 20
dsolve([diff $(y(t), t \$ 2)+2 * \operatorname{diff}(y(t), t)+5 * y(t)=0, y(0)=3, D(y)(0)=-1], y(t)$, singsol=all)

$$
y(t)=\mathrm{e}^{-t}(\sin (2 t)+3 \cos (2 t))
$$

\checkmark Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 22
DSolve $\left[\left\{y y^{\prime} '[t]+2 * y\right.\right.$ ' $\left.[t]+5 * y[t]==0,\left\{y[0]==3, y^{\prime}[0]==-1\right\}\right\}, y[t], t$, IncludeSingularSolutions \rightarrow Tru

$$
y(t) \rightarrow e^{-t}(\sin (2 t)+3 \cos (2 t))
$$

15.17 problem 25

15.17.1 Existence and uniqueness analysis 2532
15.17.2 Solving as second order linear constant coeff ode 2533
15.17.3 Solving as linear second order ode solved by an integrating factor ode 2535
15.17.4 Solving using Kovacic algorithm 2537
15.17.5 Maple step by step solution . 2541

Internal problem ID [13159]
Internal file name [OUTPUT/11814_Sunday_December_03_2023_07_16_57_PM_16437271/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376
Problem number: 25.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=1\right]
$$

15.17.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =2 \\
q(t) & =1 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

The domain of $p(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

15.17.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=2, C=1$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+2 \lambda \mathrm{e}^{\lambda t}+\mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(2)^{2}-(4)(1)(1)} \\
& =-1
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=1$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-t}+c_{2} t \mathrm{e}^{-t} \tag{1}
\end{equation*}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-t}+c_{2} t \mathrm{e}^{-t} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $t=0$ in the above gives

$$
\begin{equation*}
1=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-t}-c_{2} t \mathrm{e}^{-t}
$$

substituting $y^{\prime}=1$ and $t=0$ in the above gives

$$
\begin{equation*}
1=-c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\mathrm{e}^{-t}+2 t \mathrm{e}^{-t}
$$

Which simplifies to

$$
y=\mathrm{e}^{-t}(2 t+1)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-t}(2 t+1) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-t}(2 t+1)
$$

Verified OK.
15.17.3 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(t) y^{\prime}+\frac{\left(p(t)^{2}+p^{\prime}(t)\right) y}{2}=f(t)
$$

Where $p(t)=2$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 2 d x} \\
& =\mathrm{e}^{t}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\mathrm{e}^{t} y\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{t} y\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{t} y\right)=c_{1} t+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} t+c_{2}}{\mathrm{e}^{t}}
$$

Or

$$
y=t \mathrm{e}^{-t} c_{1}+c_{2} \mathrm{e}^{-t}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=t \mathrm{e}^{-t} c_{1}+c_{2} \mathrm{e}^{-t} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $t=0$ in the above gives

$$
\begin{equation*}
1=c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \mathrm{e}^{-t}-t \mathrm{e}^{-t} c_{1}-c_{2} \mathrm{e}^{-t}
$$

substituting $y^{\prime}=1$ and $t=0$ in the above gives

$$
\begin{equation*}
1=c_{1}-c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\mathrm{e}^{-t}+2 t \mathrm{e}^{-t}
$$

Which simplifies to

$$
y=\mathrm{e}^{-t}(2 t+1)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-t}(2 t+1) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-t}(2 t+1)
$$

Verified OK.

15.17.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 407: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d t} \\
& =z_{1} e^{-t} \\
& =z_{1}\left(\mathrm{e}^{-t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-2 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}(t)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-t}\right)+c_{2}\left(\mathrm{e}^{-t}(t)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-t}+c_{2} t \mathrm{e}^{-t} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $t=0$ in the above gives

$$
\begin{equation*}
1=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-t}-c_{2} t \mathrm{e}^{-t}
$$

substituting $y^{\prime}=1$ and $t=0$ in the above gives

$$
\begin{equation*}
1=-c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\mathrm{e}^{-t}+2 t \mathrm{e}^{-t}
$$

Which simplifies to

$$
y=\mathrm{e}^{-t}(2 t+1)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-t}(2 t+1) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-t}(2 t+1)
$$

Verified OK.

15.17.5 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}+2 y^{\prime}+y=0, y(0)=1,\left.y^{\prime}\right|_{\{t=0\}}=1\right]$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}+2 r+1=0$
- Factor the characteristic polynomial

$$
(r+1)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=-1
$$

- 1st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{-t}
$$

- Repeated root, multiply $y_{1}(t)$ by t to ensure linear independence
$y_{2}(t)=t \mathrm{e}^{-t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-t}+c_{2} t \mathrm{e}^{-t}
$$

$\square \quad$ Check validity of solution $y=c_{1} \mathrm{e}^{-t}+c_{2} t \mathrm{e}^{-t}$

- Use initial condition $y(0)=1$
$1=c_{1}$
- Compute derivative of the solution
$y^{\prime}=-c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-t}-c_{2} t \mathrm{e}^{-t}$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=1$
$1=-c_{1}+c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=1, c_{2}=2\right\}
$$

- Substitute constant values into general solution and simplify $y=\mathrm{e}^{-t}(2 t+1)$
- Solution to the IVP

$$
y=\mathrm{e}^{-t}(2 t+1)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
dsolve([diff $(y(t), t \$ 2)+2 * \operatorname{diff}(y(t), t)+y(t)=0, y(0)=1, D(y)(0)=1], y(t)$, singsol=all)

$$
y(t)=\mathrm{e}^{-t}(2 t+1)
$$

\checkmark Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 16
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[t]+2 * y\right.\right.$ ' $\left.[t]+y[t]==0,\left\{y[0]==1, y^{\prime}[0]==1\right\}\right\}, y[t], t$, IncludeSingularSolutions $->$ True $]$

$$
y(t) \rightarrow e^{-t}(2 t+1)
$$

15.18 problem 26

15.18.1 Existence and uniqueness analysis 2544
15.18.2 Solving as second order linear constant coeff ode 2545
15.18.3 Solving as second order ode can be made integrable ode 2548
15.18.4 Solving using Kovacic algorithm 2550
15.18.5 Maple step by step solution . 2554

Internal problem ID [13160]
Internal file name [OUTPUT/11815_Sunday_December_03_2023_07_16_59_PM_10625611/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 3. Linear Systems. Review Exercises for chapter 3. page 376
Problem number: 26.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant__coeff", "second_order_ode_can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+2 y=0
$$

With initial conditions

$$
\left[y(0)=3, y^{\prime}(0)=-\sqrt{2}\right]
$$

15.18.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =2 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+2 y=0
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

15.18.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=0, C=2$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+2 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(2)} \\
& = \pm i \sqrt{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \sqrt{2} \\
& \lambda_{2}=-i \sqrt{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \sqrt{2} \\
& \lambda_{2}=-i \sqrt{2}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=\sqrt{2}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{0}\left(\cos (\sqrt{2} t) c_{1}+c_{2} \sin (\sqrt{2} t)\right)
$$

Or

$$
y=\cos (\sqrt{2} t) c_{1}+c_{2} \sin (\sqrt{2} t)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\cos (\sqrt{2} t) c_{1}+c_{2} \sin (\sqrt{2} t) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $t=0$ in the above gives

$$
\begin{equation*}
3=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\sqrt{2} \sin (\sqrt{2} t) c_{1}+\sqrt{2} \cos (\sqrt{2} t) c_{2}
$$

substituting $y^{\prime}=-\sqrt{2}$ and $t=0$ in the above gives

$$
\begin{equation*}
-\sqrt{2}=\sqrt{2} c_{2} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=3 \cos (\sqrt{2} t)-\sin (\sqrt{2} t)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=3 \cos (\sqrt{2} t)-\sin (\sqrt{2} t) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=3 \cos (\sqrt{2} t)-\sin (\sqrt{2} t)
$$

Verified OK.

15.18.3 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}+2 y^{\prime} y=0
$$

Integrating the above w.r.t t gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+2 y^{\prime} y\right) d t=0 \\
\frac{y^{\prime 2}}{2}+y^{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{-2 y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{-2 y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{-2 y^{2}+2 c_{1}}} d y & =\int d t \\
\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2} y}{\sqrt{-2 y^{2}+2 c_{1}}}\right)}{2} & =t+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{-2 y^{2}+2 c_{1}}} d y & =\int d t \\
-\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2} y}{\sqrt{-2 y^{2}+2 c_{1}}}\right)}{2} & =t+c_{3}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the First solution

$$
\begin{equation*}
\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2} y}{\sqrt{-2 y^{2}+2 c_{1}}}\right)}{2}=t+c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $t=0$ in the above gives

$$
\begin{equation*}
\frac{\arctan \left(\frac{3}{\sqrt{-9+c_{1}}}\right) \sqrt{2}}{2}=c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\sqrt{2}\left(\tan \left(\left(t+c_{2}\right) \sqrt{2}\right)^{2}+1\right) \sqrt{\frac{c_{1}}{\tan \left(\left(t+c_{2}\right) \sqrt{2}\right)^{2}+1}}-\frac{\tan \left(\left(t+c_{2}\right) \sqrt{2}\right)^{2} c_{1} \sqrt{2}}{\sqrt{\frac{c_{1}}{\tan \left(\left(t+c_{2}\right) \sqrt{2}\right)^{2}+1}}\left(\tan \left(\left(t+c_{2}\right) \sqrt{2}\right)^{2}+1\right.}
$$

substituting $y^{\prime}=-\sqrt{2}$ and $t=0$ in the above gives

$$
\begin{equation*}
-\sqrt{2}=\frac{\cos \left(\sqrt{2} c_{2}\right)^{2} \sqrt{2} c_{1}}{\sqrt{\cos \left(\sqrt{2} c_{2}\right)^{2} c_{1}}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Looking at the Second solution

$$
\begin{equation*}
-\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2} y}{\sqrt{-2 y^{2}+2 c_{1}}}\right)}{2}=t+c_{3} \tag{2}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $t=0$ in the above gives

$$
\begin{equation*}
-\frac{\arctan \left(\frac{3}{\sqrt{-9+c_{1}}}\right) \sqrt{2}}{2}=c_{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$y^{\prime}=-\sqrt{2}\left(\tan \left(\left(t+c_{3}\right) \sqrt{2}\right)^{2}+1\right) \sqrt{\frac{c_{1}}{\tan \left(\left(t+c_{3}\right) \sqrt{2}\right)^{2}+1}}+\frac{\tan \left(\left(t+c_{3}\right) \sqrt{2}\right)^{2} c_{1} \sqrt{2}}{\sqrt{\frac{c_{1}}{\tan \left(\left(t+c_{3}\right) \sqrt{2}\right)^{2}+1}}\left(\tan \left(\left(t+c_{3}\right) \sqrt{2}\right)^{2}+\right.}$
substituting $y^{\prime}=-\sqrt{2}$ and $t=0$ in the above gives

$$
\begin{equation*}
-\sqrt{2}=-\frac{\cos \left(\sqrt{2} c_{3}\right)^{2} \sqrt{2} c_{1}}{\sqrt{\cos \left(\sqrt{2} c_{3}\right)^{2} c_{1}}} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=10 \\
& c_{3}=-\frac{\arctan (3) \sqrt{2}}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
-\frac{\arctan \left(\frac{y}{\sqrt{-y^{2}+10}}\right) \sqrt{2}}{2}=t-\frac{\arctan (3) \sqrt{2}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{\arctan \left(\frac{y}{\sqrt{-y^{2}+10}}\right) \sqrt{2}}{2}=t-\frac{\arctan (3) \sqrt{2}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\frac{\arctan \left(\frac{y}{\sqrt{-y^{2}+10}}\right) \sqrt{2}}{2}=t-\frac{\arctan (3) \sqrt{2}}{2}
$$

Verified OK.

15.18.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-2}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-2 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-2 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 409: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-2$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (\sqrt{2} t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (\sqrt{2} t)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (\sqrt{2} t)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d t \\
& =\cos (\sqrt{2} t) \int \frac{1}{\cos (\sqrt{2} t)^{2}} d t \\
& =\cos (\sqrt{2} t)\left(\frac{\sqrt{2} \tan (\sqrt{2} t)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (\sqrt{2} t))+c_{2}\left(\cos (\sqrt{2} t)\left(\frac{\sqrt{2} \tan (\sqrt{2} t)}{2}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\cos (\sqrt{2} t) c_{1}+\frac{c_{2} \sqrt{2} \sin (\sqrt{2} t)}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $t=0$ in the above gives

$$
\begin{equation*}
3=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\sqrt{2} \sin (\sqrt{2} t) c_{1}+c_{2} \cos (\sqrt{2} t)
$$

substituting $y^{\prime}=-\sqrt{2}$ and $t=0$ in the above gives

$$
\begin{equation*}
-\sqrt{2}=c_{2} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=-\sqrt{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=3 \cos (\sqrt{2} t)-\sin (\sqrt{2} t)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 \cos (\sqrt{2} t)-\sin (\sqrt{2} t) \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=3 \cos (\sqrt{2} t)-\sin (\sqrt{2} t)
$$

Verified OK.

15.18.5 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}+2 y=0, y(0)=3,\left.y^{\prime}\right|_{\{t=0\}}=-\sqrt{2}\right]$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE

$$
r^{2}+2=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-8})}{2}$
- Roots of the characteristic polynomial

$$
r=(-\mathrm{I} \sqrt{2}, \mathrm{I} \sqrt{2})
$$

- 1st solution of the ODE

$$
y_{1}(t)=\cos (\sqrt{2} t)
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(t)=\sin (\sqrt{2} t)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

- \quad Substitute in solutions

$$
y=\cos (\sqrt{2} t) c_{1}+c_{2} \sin (\sqrt{2} t)
$$

Check validity of solution $y=\cos (\sqrt{2} t) c_{1}+c_{2} \sin (\sqrt{2} t)$

- Use initial condition $y(0)=3$

$$
3=c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=-\sqrt{2} \sin (\sqrt{2} t) c_{1}+\sqrt{2} \cos (\sqrt{2} t) c_{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=-\sqrt{2}$
$-\sqrt{2}=\sqrt{2} c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=3, c_{2}=-1\right\}$
- Substitute constant values into general solution and simplify

$$
y=3 \cos (\sqrt{2} t)-\sin (\sqrt{2} t)
$$

- \quad Solution to the IVP

$$
y=3 \cos (\sqrt{2} t)-\sin (\sqrt{2} t)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 21
dsolve([diff $(y(t), t \$ 2)+2 * y(t)=0, y(0)=3, D(y)(0)=-\operatorname{sqrt}(2)], y(t)$, singsol=all)

$$
y(t)=-\sin (\sqrt{2} t)+3 \cos (\sqrt{2} t)
$$

\checkmark Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 26
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[t]+2 * y[t]==0,\left\{y[0]==3, y^{\prime}[0]==-S q r t[2]\right\}\right\}, y[t], t\right.$, IncludeSingularSolutions $->$ True $]$

$$
y(t) \rightarrow 3 \cos (\sqrt{2} t)-\sin (\sqrt{2} t)
$$

16 Chapter 4. Forcing and Resonance. Section 4.1 page 399
16.1 problem 1 2559
16.2 problem 2 2570
16.3 problem 3 2581
16.4 problem 4 2592
16.5 problem 5 2603
16.6 problem 6 2614
16.7 problem 7 2626
16.8 problem 8 2638
16.9 problem 9 2649
16.10problem 10 2662
16.11problem 11 2675
16.12problem 12 2689
16.13problem 13 2704
16.14problem 14 2717
16.15problem 15 2730
16.16problem 16 2743
16.17problem 17 2757
16.18problem 18 2771
16.19problem 19 2785
16.20problem 21 2798
16.21problem 22 2812
16.22problem 23 2825
16.23problem 24 2838
16.24 problem 25 2851
16.25problem 26 2864
16.26problem 27 2877
16.27problem 28 2893
16.28problem 29 2906
16.29problem 30 2921
16.30problem 31 2935
16.31problem 32 2948
16.32problem 33 2974
16.33problem 34 3000
16.34problem 35 3013
16.35problem 37 3026
16.36problem 38 3039
16.37problem 39 3052
16.38problem 40 3065
16.39problem 41 3078
16.40problem 42 3091

16.1 problem 1

16.1.1 Solving as second order linear constant coeff ode

16.1.2 Solving using Kovacic algorithm 2562
16.1.3 Maple step by step solution 2567

Internal problem ID [13161]
Internal file name [OUTPUT/11816_Sunday_December_03_2023_07_17_02_PM_73348288/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-y^{\prime}-6 y=\mathrm{e}^{4 t}
$$

16.1.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=-1, C=-6, f(t)=\mathrm{e}^{4 t}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}-y^{\prime}-6 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=-1, C=-6$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}-\lambda \mathrm{e}^{\lambda t}-6 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}-\lambda-6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-1, C=-6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-1^{2}-(4)(1)(-6)} \\
& =\frac{1}{2} \pm \frac{5}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{5}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{5}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =3 \\
\lambda_{2} & =-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(3) t}+c_{2} e^{(-2) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{-2 t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{-2 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{4 t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{4 t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 t}, \mathrm{e}^{3 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{4 t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
6 A_{1} \mathrm{e}^{4 t}=\mathrm{e}^{4 t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{6}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{4 t}}{6}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{-2 t}\right)+\left(\frac{\mathrm{e}^{4 t}}{6}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{-2 t}+\frac{\mathrm{e}^{4 t}}{6} \tag{1}
\end{equation*}
$$

Figure 482: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{-2 t}+\frac{\mathrm{e}^{4 t}}{6}
$$

Verified OK.

16.1.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-y^{\prime}-6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-1 \tag{3}\\
& C=-6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{25}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=25 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\frac{25 z(t)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 411: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{25}{4}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-\frac{5 t}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d t} \\
& =z_{1} e^{\frac{t}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1}{1}} d t}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\mathrm{e}^{5 t}}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 t}\right)+c_{2}\left(\mathrm{e}^{-2 t}\left(\frac{\mathrm{e}^{5 t}}{5}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}-y^{\prime}-6 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 t}+\frac{c_{2} \mathrm{e}^{3 t}}{5}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{4 t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{4 t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{3 t}}{5}, \mathrm{e}^{-2 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{4 t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
6 A_{1} \mathrm{e}^{4 t}=\mathrm{e}^{4 t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{6}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{4 t}}{6}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 t}+\frac{c_{2} \mathrm{e}^{3 t}}{5}\right)+\left(\frac{\mathrm{e}^{4 t}}{6}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 t}+\frac{c_{2} \mathrm{e}^{3 t}}{5}+\frac{\mathrm{e}^{4 t}}{6} \tag{1}
\end{equation*}
$$

Figure 483: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 t}+\frac{c_{2} \mathrm{e}^{3 t}}{5}+\frac{\mathrm{e}^{4 t}}{6}
$$

Verified OK.

16.1.3 Maple step by step solution

Let's solve
$y^{\prime \prime}-y^{\prime}-6 y=\mathrm{e}^{4 t}$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}-r-6=0
$$

- Factor the characteristic polynomial

$$
(r+2)(r-3)=0
$$

- Roots of the characteristic polynomial
$r=(-2,3)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-2 t}$
- 2nd solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{3 t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{3 t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\mathrm{e}^{4 t}\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\mathrm{e}^{-2 t} & \mathrm{e}^{3 t} \\ -2 \mathrm{e}^{-2 t} & 3 \mathrm{e}^{3 t}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=5 \mathrm{e}^{t}$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=\frac{\left(\mathrm{e}^{5 t}\left(\int \mathrm{e}^{t} d t\right)-\left(\int \mathrm{e}^{6 t} d t\right)\right) \mathrm{e}^{-2 t}}{5}$
- Compute integrals
$y_{p}(t)=\frac{\mathrm{e}^{4 t}}{6}$
- Substitute particular solution into general solution to ODE $y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{3 t}+\frac{\mathrm{e}^{4 t}}{6}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 25

```
dsolve(diff(y(t),t$2)-diff(y(t),t)-6*y(t)=exp(4*t),y(t), singsol=all)
```

$$
y(t)=\frac{\left(\mathrm{e}^{6 t}+6 c_{2} \mathrm{e}^{5 t}+6 c_{1}\right) \mathrm{e}^{-2 t}}{6}
$$

\checkmark Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 31
DSolve[y''[t]-y'[t]-6*y[t]==Exp[4*t],y[t],t,IncludeSingularSolutions -> True]

$$
y(t) \rightarrow \frac{e^{4 t}}{6}+c_{1} e^{-2 t}+c_{2} e^{3 t}
$$

16.2 problem 2

16.2.1 Solving as second order linear constant coeff ode 2570
16.2.2 Solving using Kovacic algorithm 2573
16.2.3 Maple step by step solution . 2578

Internal problem ID [13162]
Internal file name [OUTPUT/11817_Sunday_December_03_2023_07_17_04_PM_49833966/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+6 y^{\prime}+8 y=2 \mathrm{e}^{-3 t}
$$

16.2.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=6, C=8, f(t)=2 \mathrm{e}^{-3 t}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+8 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=6, C=8$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+6 \lambda \mathrm{e}^{\lambda t}+8 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+6 \lambda+8=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=6, C=8$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{6^{2}-(4)(1)(8)} \\
& =-3 \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-3+1 \\
& \lambda_{2}=-3-1
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-2 \\
& \lambda_{2}=-4
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(-2) t}+c_{2} e^{(-4) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \mathrm{e}^{-3 t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-3 t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-4 t}, \mathrm{e}^{-2 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-3 t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-A_{1} \mathrm{e}^{-3 t}=2 \mathrm{e}^{-3 t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-2 \mathrm{e}^{-3 t}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}\right)+\left(-2 \mathrm{e}^{-3 t}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}-2 \mathrm{e}^{-3 t} \tag{1}
\end{equation*}
$$

Figure 484: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}-2 \mathrm{e}^{-3 t}
$$

Verified OK.

16.2.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+6 y^{\prime}+8 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=6 \tag{3}\\
& C=8
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 413: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-t}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{6}{1} d t} \\
& =z_{1} e^{-3 t} \\
& =z_{1}\left(\mathrm{e}^{-3 t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-4 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-6 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\mathrm{e}^{2 t}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-4 t}\right)+c_{2}\left(\mathrm{e}^{-4 t}\left(\frac{\mathrm{e}^{2 t}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+8 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-4 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \mathrm{e}^{-3 t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-3 t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{-2 t}}{2}, \mathrm{e}^{-4 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-3 t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-A_{1} \mathrm{e}^{-3 t}=2 \mathrm{e}^{-3 t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-2\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-2 \mathrm{e}^{-3 t}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-4 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{2}\right)+\left(-2 \mathrm{e}^{-3 t}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-4 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{2}-2 \mathrm{e}^{-3 t} \tag{1}
\end{equation*}
$$

Figure 485: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-4 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{2}-2 \mathrm{e}^{-3 t}
$$

Verified OK.

16.2.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+6 y^{\prime}+8 y=2 \mathrm{e}^{-3 t}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+6 r+8=0
$$

- Factor the characteristic polynomial

$$
(r+4)(r+2)=0
$$

- Roots of the characteristic polynomial
$r=(-4,-2)$
- 1st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-4 t}$
- $\quad 2$ nd solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{-2 t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-2 t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function
$\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=2 \mathrm{e}^{-3 t}\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-4 t} & \mathrm{e}^{-2 t} \\
-4 \mathrm{e}^{-4 t} & -2 \mathrm{e}^{-2 t}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=2 \mathrm{e}^{-6 t}$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\mathrm{e}^{-4 t}\left(\int \mathrm{e}^{t} d t\right)+\mathrm{e}^{-2 t}\left(\int \mathrm{e}^{-t} d t\right)
$$

- Compute integrals

$$
y_{p}(t)=-2 \mathrm{e}^{-3 t}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-2 t}-2 \mathrm{e}^{-3 t}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

```
dsolve(diff(y(t),t$2)+6*diff(y(t),t)+8*y(t)=2*exp(-3*t),y(t), singsol=all)
```

$$
y(t)=-\frac{\left(\mathrm{e}^{-2 t} c_{1}+4 \mathrm{e}^{-t}-2 c_{2}\right) \mathrm{e}^{-2 t}}{2}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 27
DSolve[y''[t] $+6 * y$ ' $[t]+8 * y[t]==2 * \operatorname{Exp}[-3 * t], y[t], t$, IncludeSingularSolutions \rightarrow True $]$

$$
y(t) \rightarrow e^{-4 t}\left(-2 e^{t}+c_{2} e^{2 t}+c_{1}\right)
$$

16.3 problem 3

16.3.1 Solving as second order linear constant coeff ode 2581
16.3.2 Solving using Kovacic algorithm 2584
16.3.3 Maple step by step solution . 2589

Internal problem ID [13163]
Internal file name [OUTPUT/11818_Sunday_December_03_2023_07_17_06_PM_16485240/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-y^{\prime}-2 y=5 \mathrm{e}^{3 t}
$$

16.3.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=-1, C=-2, f(t)=5 \mathrm{e}^{3 t}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}-y^{\prime}-2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=-1, C=-2$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}-\lambda \mathrm{e}^{\lambda t}-2 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}-\lambda-2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-1, C=-2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-1^{2}-(4)(1)(-2)} \\
& =\frac{1}{2} \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{3}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(2) t}+c_{2} e^{(-1) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{-t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{-t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
5 \mathrm{e}^{3 t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{3 t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-t}, \mathrm{e}^{2 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{3 t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
4 A_{1} \mathrm{e}^{3 t}=5 \mathrm{e}^{3 t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{5}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{5 \mathrm{e}^{3 t}}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{-t}\right)+\left(\frac{5 \mathrm{e}^{3 t}}{4}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{-t}+\frac{5 \mathrm{e}^{3 t}}{4} \tag{1}
\end{equation*}
$$

Figure 486: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{-t}+\frac{5 \mathrm{e}^{3 t}}{4}
$$

Verified OK.

16.3.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-y^{\prime}-2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-1 \tag{3}\\
& C=-2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\frac{9 z(t)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 415: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-\frac{3 t}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d t} \\
& =z_{1} e^{\frac{t}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1}{1}} d t}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\mathrm{e}^{3 t}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-t}\right)+c_{2}\left(\mathrm{e}^{-t}\left(\frac{\mathrm{e}^{3 t}}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}-y^{\prime}-2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-t}+\frac{c_{2} \mathrm{e}^{2 t}}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
5 \mathrm{e}^{3 t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{3 t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{2 t}}{3}, \mathrm{e}^{-t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{3 t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
4 A_{1} \mathrm{e}^{3 t}=5 \mathrm{e}^{3 t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{5}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{5 \mathrm{e}^{3 t}}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-t}+\frac{c_{2} \mathrm{e}^{2 t}}{3}\right)+\left(\frac{5 \mathrm{e}^{3 t}}{4}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-t}+\frac{c_{2} \mathrm{e}^{2 t}}{3}+\frac{5 \mathrm{e}^{3 t}}{4} \tag{1}
\end{equation*}
$$

Figure 487: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-t}+\frac{c_{2} \mathrm{e}^{2 t}}{3}+\frac{5 \mathrm{e}^{3 t}}{4}
$$

Verified OK.

16.3.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-y^{\prime}-2 y=5 \mathrm{e}^{3 t}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-r-2=0
$$

- Factor the characteristic polynomial

$$
(r+1)(r-2)=0
$$

- Roots of the characteristic polynomial

$$
r=(-1,2)
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-t}$
- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{2 t}
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{2 t}+y_{p}(t)
$$

Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=5 \mathrm{e}^{3 t}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-t} & \mathrm{e}^{2 t} \\
-\mathrm{e}^{-t} & 2 \mathrm{e}^{2 t}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=3 \mathrm{e}^{t}
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\frac{5 \mathrm{e}^{-t}\left(\int \mathrm{e}^{4 t} d t\right)}{3}+\frac{5 \mathrm{e}^{2 t}\left(\int \mathrm{e}^{t} d t\right)}{3}
$$

- Compute integrals

$$
y_{p}(t)=\frac{5 \mathrm{e}^{3 t}}{4}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{2 t}+\frac{5 \mathrm{e}^{3 t}}{4}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(diff(y(t),t$2)-diff(y(t),t)-2*y(t)=5*exp(3*t),y(t), singsol=all)
```

$$
y(t)=c_{2} \mathrm{e}^{-t}+c_{1} \mathrm{e}^{2 t}+\frac{5 \mathrm{e}^{3 t}}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 31
DSolve[y''[t]-y'[t]-2*y[t]==5*Exp[3*t],y[t],t,IncludeSingularSolutions -> True]

$$
y(t) \rightarrow \frac{5 e^{3 t}}{4}+c_{1} e^{-t}+c_{2} e^{2 t}
$$

16.4 problem 4

16.4.1 Solving as second order linear constant coeff ode 2592
16.4.2 Solving using Kovacic algorithm 2595
16.4.3 Maple step by step solution . 2600

Internal problem ID [13164]
Internal file name [OUTPUT/11819_Sunday_December_03_2023_07_17_08_PM_79892913/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+4 y^{\prime}+13 y=\mathrm{e}^{-t}
$$

16.4.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=4, C=13, f(t)=\mathrm{e}^{-t}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+13 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=4, C=13$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+4 \lambda \mathrm{e}^{\lambda t}+13 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing Eq(2) throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda+13=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=13$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{4^{2}-(4)(1)(13)} \\
& =-2 \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-2+3 i \\
& \lambda_{2}=-2-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-2+3 i \\
\lambda_{2}=-2-3 i
\end{gathered}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-2$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{-2 t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-2 t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{-t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 t} \cos (3 t), \mathrm{e}^{-2 t} \sin (3 t)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
10 A_{1} \mathrm{e}^{-t}=\mathrm{e}^{-t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{10}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{-t}}{10}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-2 t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)\right)+\left(\frac{\mathrm{e}^{-t}}{10}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)+\frac{\mathrm{e}^{-t}}{10} \tag{1}
\end{equation*}
$$

Figure 488: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)+\frac{\mathrm{e}^{-t}}{10}
$$

Verified OK.

16.4.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+4 y^{\prime}+13 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=4 \tag{3}\\
& C=13
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-9 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-9 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 417: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (3 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d t} \\
& =z_{1} e^{-2 t} \\
& =z_{1}\left(\mathrm{e}^{-2 t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 t} \cos (3 t)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-4 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\tan (3 t)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 t} \cos (3 t)\right)+c_{2}\left(\mathrm{e}^{-2 t} \cos (3 t)\left(\frac{\tan (3 t)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+13 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{-2 t} \cos (3 t) c_{1}+\frac{\mathrm{e}^{-2 t} \sin (3 t) c_{2}}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{-t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 t} \cos (3 t), \frac{\mathrm{e}^{-2 t} \sin (3 t)}{3}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
10 A_{1} \mathrm{e}^{-t}=\mathrm{e}^{-t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{10}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{-t}}{10}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-2 t} \cos (3 t) c_{1}+\frac{\mathrm{e}^{-2 t} \sin (3 t) c_{2}}{3}\right)+\left(\frac{\mathrm{e}^{-t}}{10}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 t} \cos (3 t) c_{1}+\frac{\mathrm{e}^{-2 t} \sin (3 t) c_{2}}{3}+\frac{\mathrm{e}^{-t}}{10} \tag{1}
\end{equation*}
$$

Figure 489: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 t} \cos (3 t) c_{1}+\frac{\mathrm{e}^{-2 t} \sin (3 t) c_{2}}{3}+\frac{\mathrm{e}^{-t}}{10}
$$

Verified OK.

16.4.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y^{\prime}+13 y=\mathrm{e}^{-t}
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE $r^{2}+4 r+13=0$
- Use quadratic formula to solve for r

$$
r=\frac{(-4) \pm(\sqrt{-36})}{2}
$$

- Roots of the characteristic polynomial
$r=(-2-3 \mathrm{I},-2+3 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-2 t} \cos (3 t)$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{-2 t} \sin (3 t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=\mathrm{e}^{-2 t} \cos (3 t) c_{1}+\mathrm{e}^{-2 t} \sin (3 t) c_{2}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function
$\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\mathrm{e}^{-t}\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 t} \cos (3 t) & \mathrm{e}^{-2 t} \sin (3 t) \\
-2 \mathrm{e}^{-2 t} \cos (3 t)-3 \mathrm{e}^{-2 t} \sin (3 t) & -2 \mathrm{e}^{-2 t} \sin (3 t)+3 \mathrm{e}^{-2 t} \cos (3 t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=3 \mathrm{e}^{-4 t}$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{\mathrm{e}^{-2 t}\left(\cos (3 t)\left(\int \mathrm{e}^{t} \sin (3 t) d t\right)-\sin (3 t)\left(\int \mathrm{e}^{t} \cos (3 t) d t\right)\right)}{3}$
- Compute integrals
$y_{p}(t)=\frac{\mathrm{e}^{-t}}{10}$
- Substitute particular solution into general solution to ODE
$y=\mathrm{e}^{-2 t} \cos (3 t) c_{1}+\mathrm{e}^{-2 t} \sin (3 t) c_{2}+\frac{\mathrm{e}^{-t}}{10}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 31

```
dsolve(diff(y(t),t$2)+4*diff(y(t),t)+13*y(t)=exp(-t),y(t), singsol=all)
```

$$
y(t)=c_{2} \mathrm{e}^{-2 t} \sin (3 t)+c_{1} \mathrm{e}^{-2 t} \cos (3 t)+\frac{\mathrm{e}^{-t}}{10}
$$

\checkmark Solution by Mathematica
Time used: 0.115 (sec). Leaf size: 34
DSolve[y''[t]+4*y'[t]+13*y[t]==Exp[-t],y[t],t,IncludeSingularSolutions -> True]

$$
y(t) \rightarrow \frac{1}{10} e^{-2 t}\left(e^{t}+10 c_{2} \cos (3 t)+10 c_{1} \sin (3 t)\right)
$$

16.5 problem 5

16.5.1 Solving as second order linear constant coeff ode 2603
16.5.2 Solving using Kovacic algorithm 2606
16.5.3 Maple step by step solution . 2611

Internal problem ID [13165]
Internal file name [OUTPUT/11820_Sunday_December_03_2023_07_17_13_PM_4275737/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 5 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+4 y^{\prime}+13 y=-3 \mathrm{e}^{-2 t}
$$

16.5.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=4, C=13, f(t)=-3 \mathrm{e}^{-2 t}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+13 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=4, C=13$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+4 \lambda \mathrm{e}^{\lambda t}+13 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing Eq(2) throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda+13=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=13$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{4^{2}-(4)(1)(13)} \\
& =-2 \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-2+3 i \\
& \lambda_{2}=-2-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-2+3 i \\
\lambda_{2}=-2-3 i
\end{gathered}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-2$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{-2 t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-2 t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
-3 \mathrm{e}^{-2 t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-2 t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 t} \cos (3 t), \mathrm{e}^{-2 t} \sin (3 t)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-2 t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
9 A_{1} \mathrm{e}^{-2 t}=-3 \mathrm{e}^{-2 t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{\mathrm{e}^{-2 t}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-2 t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)\right)+\left(-\frac{\mathrm{e}^{-2 t}}{3}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)-\frac{\mathrm{e}^{-2 t}}{3} \tag{1}
\end{equation*}
$$

Figure 490: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)-\frac{\mathrm{e}^{-2 t}}{3}
$$

Verified OK.

16.5.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+4 y^{\prime}+13 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=4 \tag{3}\\
& C=13
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-9 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-9 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 419: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (3 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d t} \\
& =z_{1} e^{-2 t} \\
& =z_{1}\left(\mathrm{e}^{-2 t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 t} \cos (3 t)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-4 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\tan (3 t)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 t} \cos (3 t)\right)+c_{2}\left(\mathrm{e}^{-2 t} \cos (3 t)\left(\frac{\tan (3 t)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+13 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{-2 t} \cos (3 t) c_{1}+\frac{\mathrm{e}^{-2 t} \sin (3 t) c_{2}}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
-3 \mathrm{e}^{-2 t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-2 t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 t} \cos (3 t), \frac{\mathrm{e}^{-2 t} \sin (3 t)}{3}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-2 t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
9 A_{1} \mathrm{e}^{-2 t}=-3 \mathrm{e}^{-2 t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{\mathrm{e}^{-2 t}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-2 t} \cos (3 t) c_{1}+\frac{\mathrm{e}^{-2 t} \sin (3 t) c_{2}}{3}\right)+\left(-\frac{\mathrm{e}^{-2 t}}{3}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 t} \cos (3 t) c_{1}+\frac{\mathrm{e}^{-2 t} \sin (3 t) c_{2}}{3}-\frac{\mathrm{e}^{-2 t}}{3} \tag{1}
\end{equation*}
$$

Figure 491: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 t} \cos (3 t) c_{1}+\frac{\mathrm{e}^{-2 t} \sin (3 t) c_{2}}{3}-\frac{\mathrm{e}^{-2 t}}{3}
$$

Verified OK.

16.5.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y^{\prime}+13 y=-3 \mathrm{e}^{-2 t}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+4 r+13=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{(-4) \pm(\sqrt{-36})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-2-3 \mathrm{I},-2+3 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-2 t} \cos (3 t)$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{-2 t} \sin (3 t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- \quad Substitute in solutions of the homogeneous ODE
$y=\mathrm{e}^{-2 t} \cos (3 t) c_{1}+\mathrm{e}^{-2 t} \sin (3 t) c_{2}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=-3 \mathrm{e}^{-2 t}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 t} \cos (3 t) & \mathrm{e}^{-2 t} \sin (3 t) \\
-2 \mathrm{e}^{-2 t} \cos (3 t)-3 \mathrm{e}^{-2 t} \sin (3 t) & -2 \mathrm{e}^{-2 t} \sin (3 t)+3 \mathrm{e}^{-2 t} \cos (3 t)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=3 \mathrm{e}^{-4 t}
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=\mathrm{e}^{-2 t}\left(\cos (3 t)\left(\int \sin (3 t) d t\right)-\sin (3 t)\left(\int \cos (3 t) d t\right)\right)
$$

- Compute integrals

$$
y_{p}(t)=-\frac{\mathrm{e}^{-2 t}}{3}
$$

- Substitute particular solution into general solution to ODE

$$
y=\mathrm{e}^{-2 t} \cos (3 t) c_{1}+\mathrm{e}^{-2 t} \sin (3 t) c_{2}-\frac{\mathrm{e}^{-2 t}}{3}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

```
dsolve(diff(y(t),t$2)+4*diff(y(t),t)+13*y(t)=-3*exp(-2*t),y(t), singsol=all)
```

$$
y(t)=\frac{\mathrm{e}^{-2 t}\left(3 c_{1} \cos (3 t)+3 c_{2} \sin (3 t)-1\right)}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 32

$$
\begin{gathered}
\text { DSolve }[\mathrm{y} ' \cdot[\mathrm{t}]+4 * \mathrm{y} \text { ' }[\mathrm{t}]+13 * \mathrm{y}[\mathrm{t}]==-3 * \operatorname{Exp}[-2 * \mathrm{t}], \mathrm{y}[\mathrm{t}], \mathrm{t}, \text { IncludeSingularSolutions } \rightarrow \text { True }] \\
y(t) \rightarrow \frac{1}{3} e^{-2 t}\left(3 c_{2} \cos (3 t)+3 c_{1} \sin (3 t)-1\right)
\end{gathered}
$$

16.6 problem 6

16.6.1 Solving as second order linear constant coeff ode 2614
16.6.2 Solving using Kovacic algorithm 2617
16.6.3 Maple step by step solution . 2623

Internal problem ID [13166]
Internal file name [OUTPUT/11821_Sunday_December_03_2023_07_17_16_PM_98285266/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+7 y^{\prime}+10 y=\mathrm{e}^{-2 t}
$$

16.6.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=7, C=10, f(t)=\mathrm{e}^{-2 t}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+7 y^{\prime}+10 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=7, C=10$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+7 \lambda \mathrm{e}^{\lambda t}+10 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+7 \lambda+10=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=7, C=10$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-7}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{7^{2}-(4)(1)(10)} \\
& =-\frac{7}{2} \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{7}{2}+\frac{3}{2} \\
& \lambda_{2}=-\frac{7}{2}-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-2 \\
\lambda_{2}=-5
\end{gathered}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(-2) t}+c_{2} e^{(-5) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-5 t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-5 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{-2 t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-2 t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-5 t}, \mathrm{e}^{-2 t}\right\}
$$

Since $\mathrm{e}^{-2 t}$ is duplicated in the UC_set, then this basis is multiplied by extra t. The UC_set becomes

$$
\left[\left\{t \mathrm{e}^{-2 t}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} t \mathrm{e}^{-2 t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
3 A_{1} \mathrm{e}^{-2 t}=\mathrm{e}^{-2 t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{t \mathrm{e}^{-2 t}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-5 t}\right)+\left(\frac{t \mathrm{e}^{-2 t}}{3}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-5 t}+\frac{t \mathrm{e}^{-2 t}}{3} \tag{1}
\end{equation*}
$$

Figure 492: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-5 t}+\frac{t \mathrm{e}^{-2 t}}{3}
$$

Verified OK.

16.6.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+7 y^{\prime}+10 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=7 \tag{3}\\
& C=10
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\frac{9 z(t)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 421: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-\frac{3 t}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{7}{1} d t} \\
& =z_{1} e^{-\frac{7 t}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{7 t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-5 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{7}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-7 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\mathrm{e}^{3 t}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-5 t}\right)+c_{2}\left(\mathrm{e}^{-5 t}\left(\frac{\mathrm{e}^{3 t}}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+7 y^{\prime}+10 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-5 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-5 t} \\
& y_{2}=\frac{\mathrm{e}^{-2 t}}{3}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-5 t} & \frac{\mathrm{e}^{-2 t}}{3} \\
\frac{d}{d t}\left(\mathrm{e}^{-5 t}\right) & \frac{d}{d t}\left(\frac{\mathrm{e}^{-2 t}}{3}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-5 t} & \frac{\mathrm{e}^{-2 t}}{3} \\
-5 \mathrm{e}^{-5 t} & -\frac{2 \mathrm{e}^{-2 t}}{3}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-5 t}\right)\left(-\frac{2 \mathrm{e}^{-2 t}}{3}\right)-\left(\frac{\mathrm{e}^{-2 t}}{3}\right)\left(-5 \mathrm{e}^{-5 t}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-5 t} \mathrm{e}^{-2 t}
$$

Which simplifies to

$$
W=\mathrm{e}^{-7 t}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{-4 t}}{3}}{\mathrm{e}^{-7 t}} d t
$$

Which simplifies to

$$
u_{1}=-\int \frac{\mathrm{e}^{3 t}}{3} d t
$$

Hence

$$
u_{1}=-\frac{\mathrm{e}^{3 t}}{9}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{-5 t} \mathrm{e}^{-2 t}}{\mathrm{e}^{-7 t}} d t
$$

Which simplifies to

$$
u_{2}=\int 1 d t
$$

Hence

$$
u_{2}=t
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-\frac{\mathrm{e}^{-5 t} \mathrm{e}^{3 t}}{9}+\frac{t \mathrm{e}^{-2 t}}{3}
$$

Which simplifies to

$$
y_{p}(t)=\frac{\mathrm{e}^{-2 t}(-1+3 t)}{9}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-5 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{3}\right)+\left(\frac{\mathrm{e}^{-2 t}(-1+3 t)}{9}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-5 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{3}+\frac{\mathrm{e}^{-2 t}(-1+3 t)}{9} \tag{1}
\end{equation*}
$$

Figure 493: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-5 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{3}+\frac{\mathrm{e}^{-2 t}(-1+3 t)}{9}
$$

Verified OK.

16.6.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+7 y^{\prime}+10 y=\mathrm{e}^{-2 t}
$$

- Highest derivative means the order of the ODE is 2
- $\quad y^{\prime \prime}$
$r^{2}+7 r+10=0$
- Factor the characteristic polynomial
$(r+5)(r+2)=0$
- Roots of the characteristic polynomial
$r=(-5,-2)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-5 t}$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{-2 t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-5 t}+c_{2} \mathrm{e}^{-2 t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function $\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\mathrm{e}^{-2 t}\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-5 t} & \mathrm{e}^{-2 t} \\
-5 \mathrm{e}^{-5 t} & -2 \mathrm{e}^{-2 t}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=3 \mathrm{e}^{-7 t}$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\frac{\mathrm{e}^{-5 t}\left(\int \mathrm{e}^{3 t} d t\right)}{3}+\frac{\mathrm{e}^{-2 t}\left(\int 1 d t\right)}{3}
$$

- Compute integrals

$$
y_{p}(t)=\frac{\mathrm{e}^{-2 t}(-1+3 t)}{9}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-5 t}+c_{2} \mathrm{e}^{-2 t}+\frac{\mathrm{e}^{-2 t}(-1+3 t)}{9}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 22
dsolve(diff $(y(t), t \$ 2)+7 * \operatorname{diff}(y(t), t)+10 * y(t)=\exp (-2 * t), y(t)$, singsol=all)

$$
y(t)=\frac{\left(t+3 c_{1}\right) \mathrm{e}^{-2 t}}{3}+c_{2} \mathrm{e}^{-5 t}
$$

\checkmark Solution by Mathematica
Time used: 0.054 (sec). Leaf size: 31
DSolve[y'' $[\mathrm{t}]+7 * \mathrm{y}$ ' $[\mathrm{t}]+10 * y[\mathrm{t}]==\operatorname{Exp}[-2 * \mathrm{t}], \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow e^{-5 t}\left(e^{3 t}\left(\frac{t}{3}-\frac{1}{9}+c_{2}\right)+c_{1}\right)
$$

16.7 problem 7

16.7.1 Solving as second order linear constant coeff ode 2626
16.7.2 Solving using Kovacic algorithm 2629
16.7.3 Maple step by step solution . 2635

Internal problem ID [13167]
Internal file name [OUTPUT/11822_Sunday_December_03_2023_07_17_18_PM_89583894/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 7 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-5 y^{\prime}+4 y=\mathrm{e}^{4 t}
$$

16.7.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=-5, C=4, f(t)=\mathrm{e}^{4 t}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}-5 y^{\prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=-5, C=4$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}-5 \lambda \mathrm{e}^{\lambda t}+4 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}-5 \lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-5, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{5}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-5^{2}-(4)(1)(4)} \\
& =\frac{5}{2} \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{5}{2}+\frac{3}{2} \\
& \lambda_{2}=\frac{5}{2}-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=4 \\
& \lambda_{2}=1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(4) t}+c_{2} e^{(1) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{4 t}+c_{2} \mathrm{e}^{t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{4 t}+c_{2} \mathrm{e}^{t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{4 t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{4 t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{t}, \mathrm{e}^{4 t}\right\}
$$

Since $\mathrm{e}^{4 t}$ is duplicated in the UC_set, then this basis is multiplied by extra t. The UC__set becomes

$$
\left[\left\{\mathrm{e}^{4 t} t\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{4 t} t
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
3 A_{1} \mathrm{e}^{4 t}=\mathrm{e}^{4 t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{4 t} t}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{4 t}+c_{2} \mathrm{e}^{t}\right)+\left(\frac{\mathrm{e}^{4 t} t}{3}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{4 t}+c_{2} \mathrm{e}^{t}+\frac{\mathrm{e}^{4 t} t}{3} \tag{1}
\end{equation*}
$$

Figure 494: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{4 t}+c_{2} \mathrm{e}^{t}+\frac{\mathrm{e}^{4 t} t}{3}
$$

Verified OK.

16.7.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-5 y^{\prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-5 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\frac{9 z(t)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 423: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-\frac{3 t}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-5}{1} d t} \\
& =z_{1} e^{\frac{5 t}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{5 t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-5}{1}} d t}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{5 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\mathrm{e}^{3 t}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{t}\right)+c_{2}\left(\mathrm{e}^{t}\left(\frac{\mathrm{e}^{3 t}}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}-5 y^{\prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{t}+\frac{c_{2} \mathrm{e}^{4 t}}{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{t} \\
& y_{2}=\frac{\mathrm{e}^{4 t}}{3}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{t} & \frac{\mathrm{e}^{4 t}}{3} \\
\frac{d}{d t}\left(\mathrm{e}^{t}\right) & \frac{d}{d t}\left(\frac{\mathrm{e}^{4 t}}{3}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{t} & \frac{\mathrm{e}^{4 t}}{3} \\
\mathrm{e}^{t} & \frac{4 \mathrm{e}^{4 t}}{3}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{t}\right)\left(\frac{4 \mathrm{e}^{4 t}}{3}\right)-\left(\frac{\mathrm{e}^{4 t}}{3}\right)\left(\mathrm{e}^{t}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{t} \mathrm{e}^{4 t}
$$

Which simplifies to

$$
W=\mathrm{e}^{5 t}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{8 t}}{3}}{\mathrm{e}^{5 t}} d t
$$

Which simplifies to

$$
u_{1}=-\int \frac{\mathrm{e}^{3 t}}{3} d t
$$

Hence

$$
u_{1}=-\frac{\mathrm{e}^{3 t}}{9}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{t} \mathrm{e}^{4 t}}{\mathrm{e}^{5 t}} d t
$$

Which simplifies to

$$
u_{2}=\int 1 d t
$$

Hence

$$
u_{2}=t
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-\frac{\mathrm{e}^{t} \mathrm{e}^{3 t}}{9}+\frac{\mathrm{e}^{4 t} t}{3}
$$

Which simplifies to

$$
y_{p}(t)=\frac{\mathrm{e}^{4 t}(-1+3 t)}{9}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{t}+\frac{c_{2} \mathrm{e}^{4 t}}{3}\right)+\left(\frac{\mathrm{e}^{4 t}(-1+3 t)}{9}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{t}+\frac{c_{2} \mathrm{e}^{4 t}}{3}+\frac{\mathrm{e}^{4 t}(-1+3 t)}{9} \tag{1}
\end{equation*}
$$

Figure 495: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{t}+\frac{c_{2} \mathrm{e}^{4 t}}{3}+\frac{\mathrm{e}^{4 t}(-1+3 t)}{9}
$$

Verified OK.

16.7.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-5 y^{\prime}+4 y=\mathrm{e}^{4 t}
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}-5 r+4=0$
- Factor the characteristic polynomial
$(r-1)(r-4)=0$
- Roots of the characteristic polynomial

$$
r=(1,4)
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{t}$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{4 t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{4 t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function $\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\mathrm{e}^{4 t}\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\mathrm{e}^{t} & \mathrm{e}^{4 t} \\ \mathrm{e}^{t} & 4 \mathrm{e}^{4 t}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=3 \mathrm{e}^{5 t}$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{\mathrm{e}^{t}\left(\int \mathrm{e}^{3 t} d t\right)}{3}+\frac{\mathrm{e}^{4 t}\left(\int 1 d t\right)}{3}$
- Compute integrals
$y_{p}(t)=\frac{\mathrm{e}^{4 t}(-1+3 t)}{9}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{4 t}+\frac{\mathrm{e}^{4 t}(-1+3 t)}{9}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

```
dsolve(diff(y(t),t$2)-5*diff(y(t),t)+4*y(t)=exp(4*t),y(t), singsol=all)
```

$$
y(t)=\frac{\left(t+3 c_{2}\right) \mathrm{e}^{4 t}}{3}+c_{1} \mathrm{e}^{t}
$$

\checkmark Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 29
DSolve[y''[t]-5*y'[t]+4*y[t]==Exp[4*t],y[t],t,IncludeSingularSolutions -> True]

$$
y(t) \rightarrow c_{1} e^{t}+e^{4 t}\left(\frac{t}{3}-\frac{1}{9}+c_{2}\right)
$$

16.8 problem 8

16.8.1 Solving as second order linear constant coeff ode 2638
16.8.2 Solving using Kovacic algorithm 2641
16.8.3 Maple step by step solution . 2646

Internal problem ID [13168]
Internal file name [OUTPUT/11823_Sunday_December_03_2023_07_17_20_PM_58380412/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 8.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+y^{\prime}-6 y=4 \mathrm{e}^{-3 t}
$$

16.8.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=1, C=-6, f(t)=4 \mathrm{e}^{-3 t}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+y^{\prime}-6 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=1, C=-6$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+\lambda \mathrm{e}^{\lambda t}-6 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+\lambda-6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=1, C=-6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)(-6)} \\
& =-\frac{1}{2} \pm \frac{5}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{5}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{5}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-3
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(2) t}+c_{2} e^{(-3) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{-3 t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{-3 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
4 \mathrm{e}^{-3 t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-3 t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-3 t}, \mathrm{e}^{2 t}\right\}
$$

Since $\mathrm{e}^{-3 t}$ is duplicated in the UC_set, then this basis is multiplied by extra t. The UC_set becomes

$$
\left[\left\{t \mathrm{e}^{-3 t}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} t \mathrm{e}^{-3 t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-5 A_{1} \mathrm{e}^{-3 t}=4 \mathrm{e}^{-3 t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{4}{5}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{4 t \mathrm{e}^{-3 t}}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{-3 t}\right)+\left(-\frac{4 t \mathrm{e}^{-3 t}}{5}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{-3 t}-\frac{4 t \mathrm{e}^{-3 t}}{5} \tag{1}
\end{equation*}
$$

Figure 496: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{-3 t}-\frac{4 t \mathrm{e}^{-3 t}}{5}
$$

Verified OK.

16.8.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y^{\prime}-6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=1 \tag{3}\\
& C=-6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{25}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=25 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\frac{25 z(t)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 425: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{25}{4}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-\frac{5 t}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d t} \\
& =z_{1} e^{-\frac{t}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\mathrm{e}^{5 t}}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 t}\right)+c_{2}\left(\mathrm{e}^{-3 t}\left(\frac{\mathrm{e}^{5 t}}{5}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+y^{\prime}-6 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{-3 t} c_{1}+\frac{c_{2} \mathrm{e}^{2 t}}{5}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
4 \mathrm{e}^{-3 t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-3 t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{2 t}}{5}, \mathrm{e}^{-3 t}\right\}
$$

Since $\mathrm{e}^{-3 t}$ is duplicated in the UC_set, then this basis is multiplied by extra t. The UC_set becomes

$$
\left[\left\{t \mathrm{e}^{-3 t}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} t \mathrm{e}^{-3 t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-5 A_{1} \mathrm{e}^{-3 t}=4 \mathrm{e}^{-3 t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{4}{5}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{4 t \mathrm{e}^{-3 t}}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-3 t} c_{1}+\frac{c_{2} \mathrm{e}^{2 t}}{5}\right)+\left(-\frac{4 t \mathrm{e}^{-3 t}}{5}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 t} c_{1}+\frac{c_{2} \mathrm{e}^{2 t}}{5}-\frac{4 t \mathrm{e}^{-3 t}}{5} \tag{1}
\end{equation*}
$$

Figure 497: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-3 t} c_{1}+\frac{c_{2} \mathrm{e}^{2 t}}{5}-\frac{4 t \mathrm{e}^{-3 t}}{5}
$$

Verified OK.

16.8.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y^{\prime}-6 y=4 \mathrm{e}^{-3 t}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+r-6=0
$$

- Factor the characteristic polynomial

$$
(r+3)(r-2)=0
$$

- Roots of the characteristic polynomial
$r=(-3,2)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-3 t}$
- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{2 t}
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{2 t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function $\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=4 \mathrm{e}^{-3 t}\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\mathrm{e}^{-3 t} & \mathrm{e}^{2 t} \\ -3 \mathrm{e}^{-3 t} & 2 \mathrm{e}^{2 t}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=5 \mathrm{e}^{-t}$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{4\left(-\mathrm{e}^{5 t}\left(\int \mathrm{e}^{-5 t} d t\right)+\int 1 d t\right) \mathrm{e}^{-3 t}}{5}$
- Compute integrals
$y_{p}(t)=-\frac{4(5 t+1) \mathrm{e}^{-3 t}}{25}$
- Substitute particular solution into general solution to ODE
$y=\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{2 t}-\frac{4(5 t+1) \mathrm{e}^{-3 t}}{25}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
dsolve(diff(y(t),t$2)+diff(y(t),t)-6*y(t)=4*exp(-3*t),y(t), singsol=all)
```

$$
y(t)=\frac{\left(5 c_{1} \mathrm{e}^{5 t}+5 c_{2}-4 t\right) \mathrm{e}^{-3 t}}{5}
$$

\checkmark Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 32
DSolve[y''[t]+y'[t]-6*y[t]==4*Exp[-3*t],y[t],t,IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow \frac{1}{25} e^{-3 t}\left(-20 t+25 c_{2} e^{5 t}-4+25 c_{1}\right)
$$

16.9 problem 9

16.9.1 Existence and uniqueness analysis 2649
16.9.2 Solving as second order linear constant coeff ode 2650
16.9.3 Solving using Kovacic algorithm 2654
16.9.4 Maple step by step solution . 2659

Internal problem ID [13169]
Internal file name [OUTPUT/11824_Sunday_December_03_2023_07_17_22_PM_69823683/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 9 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+6 y^{\prime}+8 y=\mathrm{e}^{-t}
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

16.9.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =6 \\
q(t) & =8 \\
F & =\mathrm{e}^{-t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+6 y^{\prime}+8 y=\mathrm{e}^{-t}
$$

The domain of $p(t)=6$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=8$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=\mathrm{e}^{-t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.9.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=6, C=8, f(t)=\mathrm{e}^{-t}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+8 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=6, C=8$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+6 \lambda \mathrm{e}^{\lambda t}+8 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+6 \lambda+8=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=6, C=8$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{6^{2}-(4)(1)(8)} \\
& =-3 \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-3+1 \\
& \lambda_{2}=-3-1
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-2 \\
\lambda_{2}=-4
\end{gathered}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(-2) t}+c_{2} e^{(-4) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{-t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-4 t}, \mathrm{e}^{-2 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
3 A_{1} \mathrm{e}^{-t}=\mathrm{e}^{-t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{-t}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}\right)+\left(\frac{\mathrm{e}^{-t}}{3}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}+\frac{\mathrm{e}^{-t}}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}+\frac{1}{3} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 t}-4 c_{2} \mathrm{e}^{-4 t}-\frac{\mathrm{e}^{-t}}{3}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-2 c_{1}-4 c_{2}-\frac{1}{3} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{2} \\
& c_{2}=\frac{1}{6}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{-4 t}}{6}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{-4 t}}{6} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{-4 t}}{6}
$$

Verified OK.

16.9.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+6 y^{\prime}+8 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=6 \tag{3}\\
& C=8
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 427: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-t}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{d}{1} d t}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{-3 t} \\
& =z_{1}\left(\mathrm{e}^{-3 t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-4 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-6 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\mathrm{e}^{2 t}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-4 t}\right)+c_{2}\left(\mathrm{e}^{-4 t}\left(\frac{\mathrm{e}^{2 t}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+8 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-4 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{-t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{-2 t}}{2}, \mathrm{e}^{-4 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
3 A_{1} \mathrm{e}^{-t}=\mathrm{e}^{-t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{-t}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-4 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{2}\right)+\left(\frac{\mathrm{e}^{-t}}{3}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-4 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{-t}}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{c_{2}}{2}+\frac{1}{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-4 c_{1} \mathrm{e}^{-4 t}-c_{2} \mathrm{e}^{-2 t}-\frac{\mathrm{e}^{-t}}{3}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-4 c_{1}-c_{2}-\frac{1}{3} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{6} \\
& c_{2}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{-4 t}}{6}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{-4 t}}{6} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{-4 t}}{6}
$$

Verified OK.

16.9.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+6 y^{\prime}+8 y=\mathrm{e}^{-t}, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}+6 r+8=0
$$

- Factor the characteristic polynomial

$$
(r+4)(r+2)=0
$$

- Roots of the characteristic polynomial

$$
r=(-4,-2)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{-4 t}
$$

- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{-2 t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-2 t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function $\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\mathrm{e}^{-t}\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\mathrm{e}^{-4 t} & \mathrm{e}^{-2 t} \\ -4 \mathrm{e}^{-4 t} & -2 \mathrm{e}^{-2 t}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=2 \mathrm{e}^{-6 t}$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{\mathrm{e}^{-4 t}\left(\int \mathrm{e}^{3 t} d t\right)}{2}+\frac{\mathrm{e}^{-2 t}\left(\int \mathrm{e}^{t} d t\right)}{2}$
- Compute integrals
$y_{p}(t)=\frac{\mathrm{e}^{-t}}{3}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-2 t}+\frac{\mathrm{e}^{-t}}{3}$
Check validity of solution $y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-2 t}+\frac{\mathrm{e}^{-t}}{3}$
- Use initial condition $y(0)=0$
$0=c_{1}+c_{2}+\frac{1}{3}$
- Compute derivative of the solution

$$
y^{\prime}=-4 c_{1} \mathrm{e}^{-4 t}-2 c_{2} \mathrm{e}^{-2 t}-\frac{\mathrm{e}^{-t}}{3}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=-4 c_{1}-2 c_{2}-\frac{1}{3}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{1}{6}, c_{2}=-\frac{1}{2}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{-4 t}}{6}
$$

- \quad Solution to the IVP

$$
y=-\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{-t}}{3}+\frac{\mathrm{e}^{-4 t}}{6}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 24

```
dsolve([\operatorname{diff}(y(t),t$2)+6*\operatorname{diff}(y(t),t)+8*y(t)=exp(-t),y(0)=0,D(y)(0)=0],y(t), singsol=al
```

$$
y(t)=\frac{\left(2 \mathrm{e}^{3 t}-3 \mathrm{e}^{2 t}+1\right) \mathrm{e}^{-4 t}}{6}
$$

Solution by Mathematica
Time used: 0.054 (sec). Leaf size: 28

```
DSolve[{y''[t]+6*y'[t]+8*y[t]==Exp[-t],{y[0]==0, y'[0]==0}},y[t],t,IncludeSingularSolutions
```

$$
y(t) \rightarrow \frac{1}{6} e^{-4 t}\left(e^{t}-1\right)^{2}\left(2 e^{t}+1\right)
$$

16.10 problem 10

16.10.1 Existence and uniqueness analysis 2662
16.10.2 Solving as second order linear constant coeff ode 2663
16.10.3 Solving using Kovacic algorithm 2667
16.10.4 Maple step by step solution . 2672

Internal problem ID [13170]
Internal file name [OUTPUT/11825_Sunday_December_03_2023_07_17_25_PM_8196642/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+7 y^{\prime}+12 y=3 \mathrm{e}^{-t}
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=1\right]
$$

16.10.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =7 \\
q(t) & =12 \\
F & =3 \mathrm{e}^{-t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+7 y^{\prime}+12 y=3 \mathrm{e}^{-t}
$$

The domain of $p(t)=7$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=12$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=3 \mathrm{e}^{-t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.10.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=7, C=12, f(t)=3 \mathrm{e}^{-t}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+7 y^{\prime}+12 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=7, C=12$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+7 \lambda \mathrm{e}^{\lambda t}+12 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+7 \lambda+12=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=7, C=12$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-7}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{7^{2}-(4)(1)(12)} \\
& =-\frac{7}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{7}{2}+\frac{1}{2} \\
& \lambda_{2}=-\frac{7}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-3 \\
& \lambda_{2}=-4
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(-3) t}+c_{2} e^{(-4) t}
\end{aligned}
$$

Or

$$
y=\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{-4 t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{-4 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 \mathrm{e}^{-t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-4 t}, \mathrm{e}^{-3 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
6 A_{1} \mathrm{e}^{-t}=3 \mathrm{e}^{-t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{-t}}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{-4 t}\right)+\left(\frac{\mathrm{e}^{-t}}{2}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{-4 t}+\frac{\mathrm{e}^{-t}}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $t=0$ in the above gives

$$
\begin{equation*}
2=c_{1}+c_{2}+\frac{1}{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 \mathrm{e}^{-3 t} c_{1}-4 c_{2} \mathrm{e}^{-4 t}-\frac{\mathrm{e}^{-t}}{2}
$$

substituting $y^{\prime}=1$ and $t=0$ in the above gives

$$
\begin{equation*}
1=-3 c_{1}-4 c_{2}-\frac{1}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{15}{2} \\
& c_{2}=-6
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{15 \mathrm{e}^{-3 t}}{2}-6 \mathrm{e}^{-4 t}+\frac{\mathrm{e}^{-t}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{15 \mathrm{e}^{-3 t}}{2}-6 \mathrm{e}^{-4 t}+\frac{\mathrm{e}^{-t}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{15 \mathrm{e}^{-3 t}}{2}-6 \mathrm{e}^{-4 t}+\frac{\mathrm{e}^{-t}}{2}
$$

Verified OK.

16.10.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+7 y^{\prime}+12 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=7 \tag{3}\\
& C=12
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\frac{z(t)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 429: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-\frac{t}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{7}{1} d t} \\
& =z_{1} e^{-\frac{7 t}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{7 t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-4 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{7}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-7 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\mathrm{e}^{t}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-4 t}\right)+c_{2}\left(\mathrm{e}^{-4 t}\left(\mathrm{e}^{t}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+7 y^{\prime}+12 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-3 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 \mathrm{e}^{-t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-4 t}, \mathrm{e}^{-3 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
6 A_{1} \mathrm{e}^{-t}=3 \mathrm{e}^{-t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{-t}}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-3 t}\right)+\left(\frac{\mathrm{e}^{-t}}{2}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-3 t}+\frac{\mathrm{e}^{-t}}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $t=0$ in the above gives

$$
\begin{equation*}
2=c_{1}+c_{2}+\frac{1}{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-4 c_{1} \mathrm{e}^{-4 t}-3 c_{2} \mathrm{e}^{-3 t}-\frac{\mathrm{e}^{-t}}{2}
$$

substituting $y^{\prime}=1$ and $t=0$ in the above gives

$$
\begin{equation*}
1=-4 c_{1}-3 c_{2}-\frac{1}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-6 \\
& c_{2}=\frac{15}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{15 \mathrm{e}^{-3 t}}{2}-6 \mathrm{e}^{-4 t}+\frac{\mathrm{e}^{-t}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{15 \mathrm{e}^{-3 t}}{2}-6 \mathrm{e}^{-4 t}+\frac{\mathrm{e}^{-t}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=\frac{15 \mathrm{e}^{-3 t}}{2}-6 \mathrm{e}^{-4 t}+\frac{\mathrm{e}^{-t}}{2}
$$

Verified OK.

16.10.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+7 y^{\prime}+12 y=3 \mathrm{e}^{-t}, y(0)=2,\left.y^{\prime}\right|_{\{t=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+7 r+12=0
$$

- \quad Factor the characteristic polynomial

$$
(r+4)(r+3)=0
$$

- Roots of the characteristic polynomial

$$
r=(-4,-3)
$$

- \quad 1st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{-4 t}
$$

- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{-3 t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-3 t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function
$\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=3 \mathrm{e}^{-t}\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\mathrm{e}^{-4 t} & \mathrm{e}^{-3 t} \\ -4 \mathrm{e}^{-4 t} & -3 \mathrm{e}^{-3 t}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=\mathrm{e}^{-7 t}$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-3 \mathrm{e}^{-4 t}\left(\int \mathrm{e}^{3 t} d t\right)+3 \mathrm{e}^{-3 t}\left(\int \mathrm{e}^{2 t} d t\right)$
- Compute integrals
$y_{p}(t)=\frac{\mathrm{e}^{-t}}{2}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-3 t}+\frac{\mathrm{e}^{-t}}{2}$
$\square \quad$ Check validity of solution $y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-3 t}+\frac{\mathrm{e}^{-t}}{2}$
- Use initial condition $y(0)=2$

$$
2=c_{1}+c_{2}+\frac{1}{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=-4 c_{1} \mathrm{e}^{-4 t}-3 c_{2} \mathrm{e}^{-3 t}-\frac{\mathrm{e}^{-t}}{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=1$

$$
1=-4 c_{1}-3 c_{2}-\frac{1}{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-6, c_{2}=\frac{15}{2}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{15 \mathrm{e}^{-3 t}}{2}-6 \mathrm{e}^{-4 t}+\frac{\mathrm{e}^{-t}}{2}
$$

- \quad Solution to the IVP

$$
y=\frac{15 \mathrm{e}^{-3 t}}{2}-6 \mathrm{e}^{-4 t}+\frac{\mathrm{e}^{-t}}{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 23

```
dsolve([diff(y(t),t$2)+7*\operatorname{diff}(y(t),t)+12*y(t)=3*exp(-t),y(0) = 2, D (y) (0) = 1],y(t), singsol
```

$$
y(t)=\frac{15 \mathrm{e}^{-3 t}}{2}-6 \mathrm{e}^{-4 t}+\frac{\mathrm{e}^{-t}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 26
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[t]+7 * y\right.\right.$ ' $\left.[t]+12 * y[t]==3 * \operatorname{Exp}[-t],\left\{y[0]==2, y^{\prime}[0]==1\right\}\right\}, y[t], t$, IncludeSingularSolution

$$
y(t) \rightarrow \frac{1}{2} e^{-4 t}\left(15 e^{t}+e^{3 t}-12\right)
$$

16.11 problem 11

16.11.1 Existence and uniqueness analysis 2675
16.11.2 Solving as second order linear constant coeff ode 2676
16.11.3 Solving using Kovacic algorithm 2680
16.11.4 Maple step by step solution . 2686

Internal problem ID [13171]
Internal file name [OUTPUT/11826_Sunday_December_03_2023_07_17_49_PM_2894948/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 11.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+4 y^{\prime}+13 y=-3 \mathrm{e}^{-2 t}
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

16.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =4 \\
q(t) & =13 \\
F & =-3 \mathrm{e}^{-2 t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y^{\prime}+13 y=-3 \mathrm{e}^{-2 t}
$$

The domain of $p(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=13$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=-3 \mathrm{e}^{-2 t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.11.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=4, C=13, f(t)=-3 \mathrm{e}^{-2 t}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+13 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=4, C=13$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+4 \lambda \mathrm{e}^{\lambda t}+13 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda+13=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=13$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{4^{2}-(4)(1)(13)} \\
& =-2 \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=-2+3 i \\
\lambda_{2}=-2-3 i
\end{gathered}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-2+3 i \\
\lambda_{2}=-2-3 i
\end{gathered}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-2$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{-2 t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-2 t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
-3 \mathrm{e}^{-2 t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-2 t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 t} \cos (3 t), \mathrm{e}^{-2 t} \sin (3 t)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-2 t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
9 A_{1} \mathrm{e}^{-2 t}=-3 \mathrm{e}^{-2 t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{\mathrm{e}^{-2 t}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-2 t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)\right)+\left(-\frac{\mathrm{e}^{-2 t}}{3}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-2 t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)-\frac{\mathrm{e}^{-2 t}}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-\frac{1}{3}+c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 \mathrm{e}^{-2 t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)+\mathrm{e}^{-2 t}\left(-3 c_{1} \sin (3 t)+3 c_{2} \cos (3 t)\right)+\frac{2 \mathrm{e}^{-2 t}}{3}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-2 c_{1}+\frac{2}{3}+3 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{3} \\
& c_{2}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\mathrm{e}^{-2 t} \cos (3 t)}{3}-\frac{\mathrm{e}^{-2 t}}{3}
$$

Which simplifies to

$$
y=\frac{\mathrm{e}^{-2 t}(-1+\cos (3 t))}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-2 t}(-1+\cos (3 t))}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-2 t}(-1+\cos (3 t))}{3}
$$

Verified OK.

16.11.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+4 y^{\prime}+13 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=4 \tag{3}\\
& C=13
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-9 \\
t & =1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-9 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 431: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (3 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d t} \\
& =z_{1} e^{-2 t} \\
& =z_{1}\left(\mathrm{e}^{-2 t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 t} \cos (3 t)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-4 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\tan (3 t)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 t} \cos (3 t)\right)+c_{2}\left(\mathrm{e}^{-2 t} \cos (3 t)\left(\frac{\tan (3 t)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+13 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{-2 t} \cos (3 t) c_{1}+\frac{\mathrm{e}^{-2 t} \sin (3 t) c_{2}}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
-3 \mathrm{e}^{-2 t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-2 t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 t} \cos (3 t), \frac{\mathrm{e}^{-2 t} \sin (3 t)}{3}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-2 t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
9 A_{1} \mathrm{e}^{-2 t}=-3 \mathrm{e}^{-2 t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{\mathrm{e}^{-2 t}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-2 t} \cos (3 t) c_{1}+\frac{\mathrm{e}^{-2 t} \sin (3 t) c_{2}}{3}\right)+\left(-\frac{\mathrm{e}^{-2 t}}{3}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-2 t} \cos (3 t) c_{1}+\frac{\mathrm{e}^{-2 t} \sin (3 t) c_{2}}{3}-\frac{\mathrm{e}^{-2 t}}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-\frac{1}{3}+c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 \mathrm{e}^{-2 t} \cos (3 t) c_{1}-3 \mathrm{e}^{-2 t} \sin (3 t) c_{1}-\frac{2 \mathrm{e}^{-2 t} \sin (3 t) c_{2}}{3}+\mathrm{e}^{-2 t} \cos (3 t) c_{2}+\frac{2 \mathrm{e}^{-2 t}}{3}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-2 c_{1}+\frac{2}{3}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{3} \\
& c_{2}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\mathrm{e}^{-2 t} \cos (3 t)}{3}-\frac{\mathrm{e}^{-2 t}}{3}
$$

Which simplifies to

$$
y=\frac{\mathrm{e}^{-2 t}(-1+\cos (3 t))}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-2 t}(-1+\cos (3 t))}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-2 t}(-1+\cos (3 t))}{3}
$$

Verified OK.

16.11.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+4 y^{\prime}+13 y=-3 \mathrm{e}^{-2 t}, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+4 r+13=0$
- Use quadratic formula to solve for r
$r=\frac{(-4) \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial
$r=(-2-3 \mathrm{I},-2+3 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-2 t} \cos (3 t)$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{-2 t} \sin (3 t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=\mathrm{e}^{-2 t} \cos (3 t) c_{1}+\mathrm{e}^{-2 t} \sin (3 t) c_{2}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=-3 \mathrm{e}^{-2 t}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 t} \cos (3 t) & \mathrm{e}^{-2 t} \sin (3 t) \\
-2 \mathrm{e}^{-2 t} \cos (3 t)-3 \mathrm{e}^{-2 t} \sin (3 t) & -2 \mathrm{e}^{-2 t} \sin (3 t)+3 \mathrm{e}^{-2 t} \cos (3 t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=3 \mathrm{e}^{-4 t}$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=\mathrm{e}^{-2 t}\left(\cos (3 t)\left(\int \sin (3 t) d t\right)-\sin (3 t)\left(\int \cos (3 t) d t\right)\right)
$$

- Compute integrals
$y_{p}(t)=-\frac{\mathrm{e}^{-2 t}}{3}$
- Substitute particular solution into general solution to ODE $y=\mathrm{e}^{-2 t} \cos (3 t) c_{1}+\mathrm{e}^{-2 t} \sin (3 t) c_{2}-\frac{\mathrm{e}^{-2 t}}{3}$
Check validity of solution $y=\mathrm{e}^{-2 t} \cos (3 t) c_{1}+\mathrm{e}^{-2 t} \sin (3 t) c_{2}-\frac{\mathrm{e}^{-2 t}}{3}$
- Use initial condition $y(0)=0$

$$
0=-\frac{1}{3}+c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=-2 \mathrm{e}^{-2 t} \cos (3 t) c_{1}-3 \mathrm{e}^{-2 t} \sin (3 t) c_{1}-2 \mathrm{e}^{-2 t} \sin (3 t) c_{2}+3 \mathrm{e}^{-2 t} \cos (3 t) c_{2}+\frac{2 \mathrm{e}^{-2 t}}{3}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=-2 c_{1}+\frac{2}{3}+3 c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{1}{3}, c_{2}=0\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{\mathrm{e}^{-2 t}(-1+\cos (3 t))}{3}
$$

- Solution to the IVP

$$
y=\frac{\mathrm{e}^{-2 t}(-1+\cos (3 t))}{3}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 16
dsolve $([\operatorname{diff}(y(t), t \$ 2)+4 * \operatorname{diff}(y(t), t)+13 * y(t)=-3 * \exp (-2 * t), y(0)=0, D(y)(0)=0], y(t)$, sing

$$
y(t)=\frac{\mathrm{e}^{-2 t}(\cos (3 t)-1)}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 20
DSolve $\left[\left\{y\right.\right.$ ' ' $[\mathrm{t}]+4 * y$ ' $\left.[\mathrm{t}]+13 * y[\mathrm{t}]==-3 * \operatorname{Exp}[-2 * \mathrm{t}],\left\{y[0]==0, \mathrm{y}^{\prime}[0]==0\right\}\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolut

$$
y(t) \rightarrow \frac{1}{3} e^{-2 t}(\cos (3 t)-1)
$$

16.12 problem 12

16.12.1 Existence and uniqueness analysis 2689
16.12.2 Solving as second order linear constant coeff ode 2690
16.12.3 Solving using Kovacic algorithm 2694
16.12.4 Maple step by step solution . 2701

Internal problem ID [13172]
Internal file name [OUTPUT/11827_Sunday_December_03_2023_07_17_53_PM_92935846/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+7 y^{\prime}+10 y=\mathrm{e}^{-2 t}
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

16.12.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =7 \\
q(t) & =10 \\
F & =\mathrm{e}^{-2 t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+7 y^{\prime}+10 y=\mathrm{e}^{-2 t}
$$

The domain of $p(t)=7$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=10$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=\mathrm{e}^{-2 t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.12.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=7, C=10, f(t)=\mathrm{e}^{-2 t}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+7 y^{\prime}+10 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=7, C=10$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+7 \lambda \mathrm{e}^{\lambda t}+10 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+7 \lambda+10=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=7, C=10$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-7}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{7^{2}-(4)(1)(10)} \\
& =-\frac{7}{2} \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{7}{2}+\frac{3}{2} \\
& \lambda_{2}=-\frac{7}{2}-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-2 \\
& \lambda_{2}=-5
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(-2) t}+c_{2} e^{(-5) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-5 t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-5 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{-2 t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-2 t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-5 t}, \mathrm{e}^{-2 t}\right\}
$$

Since $\mathrm{e}^{-2 t}$ is duplicated in the UC_set, then this basis is multiplied by extra t. The UC_set becomes

$$
\left[\left\{t \mathrm{e}^{-2 t}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} t \mathrm{e}^{-2 t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
3 A_{1} \mathrm{e}^{-2 t}=\mathrm{e}^{-2 t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{t \mathrm{e}^{-2 t}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-5 t}\right)+\left(\frac{t \mathrm{e}^{-2 t}}{3}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-5 t}+\frac{t \mathrm{e}^{-2 t}}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 t}-5 c_{2} \mathrm{e}^{-5 t}+\frac{\mathrm{e}^{-2 t}}{3}-\frac{2 t \mathrm{e}^{-2 t}}{3}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-2 c_{1}-5 c_{2}+\frac{1}{3} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{9} \\
& c_{2}=\frac{1}{9}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{\mathrm{e}^{-2 t}}{9}+\frac{\mathrm{e}^{-5 t}}{9}+\frac{t \mathrm{e}^{-2 t}}{3}
$$

Which simplifies to

$$
y=\frac{\mathrm{e}^{-2 t}(-1+3 t)}{9}+\frac{\mathrm{e}^{-5 t}}{9}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-2 t}(-1+3 t)}{9}+\frac{\mathrm{e}^{-5 t}}{9} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-2 t}(-1+3 t)}{9}+\frac{\mathrm{e}^{-5 t}}{9}
$$

Verified OK.

16.12.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+7 y^{\prime}+10 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=7 \tag{3}\\
& C=10
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\frac{9 z(t)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 433: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-\frac{3 t}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{7}{1} d t} \\
& =z_{1} e^{-\frac{7 t}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{7 t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-5 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{7}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-7 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\mathrm{e}^{3 t}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-5 t}\right)+c_{2}\left(\mathrm{e}^{-5 t}\left(\frac{\mathrm{e}^{3 t}}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+7 y^{\prime}+10 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-5 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{3}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-5 t} \\
& y_{2}=\frac{\mathrm{e}^{-2 t}}{3}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-5 t} & \frac{\mathrm{e}^{-2 t}}{3} \\
\frac{d}{d t}\left(\mathrm{e}^{-5 t}\right) & \frac{d}{d t}\left(\frac{\mathrm{e}^{-2 t}}{3}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-5 t} & \frac{\mathrm{e}^{-2 t}}{3} \\
-5 \mathrm{e}^{-5 t} & -\frac{2 \mathrm{e}^{-2 t}}{3}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-5 t}\right)\left(-\frac{2 \mathrm{e}^{-2 t}}{3}\right)-\left(\frac{\mathrm{e}^{-2 t}}{3}\right)\left(-5 \mathrm{e}^{-5 t}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-5 t} \mathrm{e}^{-2 t}
$$

Which simplifies to

$$
W=\mathrm{e}^{-7 t}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{-4 t}}{3}}{\mathrm{e}^{-7 t}} d t
$$

Which simplifies to

$$
u_{1}=-\int \frac{\mathrm{e}^{3 t}}{3} d t
$$

Hence

$$
u_{1}=-\frac{\mathrm{e}^{3 t}}{9}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{-5 t} \mathrm{e}^{-2 t}}{\mathrm{e}^{-7 t}} d t
$$

Which simplifies to

$$
u_{2}=\int 1 d t
$$

Hence

$$
u_{2}=t
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-\frac{\mathrm{e}^{-5 t} \mathrm{e}^{3 t}}{9}+\frac{t \mathrm{e}^{-2 t}}{3}
$$

Which simplifies to

$$
y_{p}(t)=\frac{\mathrm{e}^{-2 t}(-1+3 t)}{9}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-5 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{3}\right)+\left(\frac{\mathrm{e}^{-2 t}(-1+3 t)}{9}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-5 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{3}+\frac{\mathrm{e}^{-2 t}(-1+3 t)}{9} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{c_{2}}{3}-\frac{1}{9} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-5 c_{1} \mathrm{e}^{-5 t}-\frac{2 c_{2} \mathrm{e}^{-2 t}}{3}-\frac{2 \mathrm{e}^{-2 t}(-1+3 t)}{9}+\frac{\mathrm{e}^{-2 t}}{3}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-5 c_{1}-\frac{2 c_{2}}{3}+\frac{5}{9} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{9} \\
& c_{2}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{\mathrm{e}^{-2 t}}{9}+\frac{\mathrm{e}^{-5 t}}{9}+\frac{t \mathrm{e}^{-2 t}}{3}
$$

Which simplifies to

$$
y=\frac{\mathrm{e}^{-2 t}(-1+3 t)}{9}+\frac{\mathrm{e}^{-5 t}}{9}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-2 t}(-1+3 t)}{9}+\frac{\mathrm{e}^{-5 t}}{9} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-2 t}(-1+3 t)}{9}+\frac{\mathrm{e}^{-5 t}}{9}
$$

Verified OK.

16.12.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+7 y^{\prime}+10 y=\mathrm{e}^{-2 t}, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+7 r+10=0
$$

- Factor the characteristic polynomial
$(r+5)(r+2)=0$
- Roots of the characteristic polynomial

$$
r=(-5,-2)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{-5 t}
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{-2 t}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)
$$

- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-5 t}+c_{2} \mathrm{e}^{-2 t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function $\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\mathrm{e}^{-2 t}\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-5 t} & \mathrm{e}^{-2 t} \\
-5 \mathrm{e}^{-5 t} & -2 \mathrm{e}^{-2 t}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=3 \mathrm{e}^{-7 t}$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\frac{\mathrm{e}^{-5 t}\left(\int \mathrm{e}^{3 t} d t\right)}{3}+\frac{\mathrm{e}^{-2 t}\left(\int 1 d t\right)}{3}
$$

- Compute integrals
$y_{p}(t)=\frac{\mathrm{e}^{-2 t}(-1+3 t)}{9}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-5 t}+c_{2} \mathrm{e}^{-2 t}+\frac{\mathrm{e}^{-2 t}(-1+3 t)}{9}$
Check validity of solution $y=c_{1} \mathrm{e}^{-5 t}+c_{2} \mathrm{e}^{-2 t}+\frac{\mathrm{e}^{-2 t}(-1+3 t)}{9}$
- Use initial condition $y(0)=0$

$$
0=c_{1}+c_{2}-\frac{1}{9}
$$

- Compute derivative of the solution

$$
y^{\prime}=-5 c_{1} \mathrm{e}^{-5 t}-2 c_{2} \mathrm{e}^{-2 t}-\frac{2 \mathrm{e}^{-2 t}(-1+3 t)}{9}+\frac{\mathrm{e}^{-2 t}}{3}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$

$$
0=-5 c_{1}-2 c_{2}+\frac{5}{9}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{1}{9}, c_{2}=0\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{\mathrm{e}^{-2 t}(-1+3 t)}{9}+\frac{\mathrm{e}^{-5 t}}{9}
$$

- \quad Solution to the IVP
$y=\frac{\mathrm{e}^{-2 t}(-1+3 t)}{9}+\frac{\mathrm{e}^{-5 t}}{9}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 22
dsolve ([diff $(y(t), t \$ 2)+7 * \operatorname{diff}(y(t), t)+10 * y(t)=\exp (-2 * t), y(0)=0, D(y)(0)=0], y(t)$, singsol

$$
y(t)=\frac{(3 t-1) \mathrm{e}^{-2 t}}{9}+\frac{\mathrm{e}^{-5 t}}{9}
$$

\checkmark Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 27
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[t]+7 * y\right.\right.$ ' $\left.[t]+10 * y[t]==\operatorname{Exp}[-2 * t],\left\{y[0]==0, y^{\prime}[0]==0\right\}\right\}, y[t], t$, IncludeSingularSolution

$$
y(t) \rightarrow \frac{1}{9} e^{-5 t}\left(e^{3 t}(3 t-1)+1\right)
$$

16.13 problem 13

16.13.1 Existence and uniqueness analysis 2704
16.13.2 Solving as second order linear constant coeff ode 2705
16.13.3 Solving using Kovacic algorithm 2709
16.13.4 Maple step by step solution . 2714

Internal problem ID [13173]
Internal file name [OUTPUT/11828_Sunday_December_03_2023_07_18_11_PM_73207322/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+4 y^{\prime}+3 y=\mathrm{e}^{-\frac{t}{2}}
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

16.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =4 \\
q(t) & =3 \\
F & =\mathrm{e}^{-\frac{t}{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y^{\prime}+3 y=\mathrm{e}^{-\frac{t}{2}}
$$

The domain of $p(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=3$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=\mathrm{e}^{-\frac{t}{2}}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.13.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=4, C=3, f(t)=\mathrm{e}^{-\frac{t}{2}}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+3 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=4, C=3$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+4 \lambda \mathrm{e}^{\lambda t}+3 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda+3=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=3$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{4^{2}-(4)(1)(3)} \\
& =-2 \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-2+1 \\
& \lambda_{2}=-2-1
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=-3
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(-1) t}+c_{2} e^{(-3) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-3 t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-3 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{-\frac{t}{2}}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-\frac{t}{2}}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-3 t}, \mathrm{e}^{-t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-\frac{t}{2}}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\frac{5 A_{1} \mathrm{e}^{-\frac{t}{2}}}{4}=\mathrm{e}^{-\frac{t}{2}}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{4}{5}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{4 \mathrm{e}^{-\frac{t}{2}}}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-3 t}\right)+\left(\frac{4 \mathrm{e}^{-\frac{t}{2}}}{5}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-3 t}+\frac{4 \mathrm{e}^{-\frac{t}{2}}}{5} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}+\frac{4}{5} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-t}-3 c_{2} \mathrm{e}^{-3 t}-\frac{2 \mathrm{e}^{-\frac{t}{2}}}{5}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-c_{1}-3 c_{2}-\frac{2}{5} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=\frac{1}{5}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\mathrm{e}^{-t}+\frac{\mathrm{e}^{-3 t}}{5}+\frac{4 \mathrm{e}^{-\frac{t}{2}}}{5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\mathrm{e}^{-t}+\frac{\mathrm{e}^{-3 t}}{5}+\frac{4 \mathrm{e}^{-\frac{t}{2}}}{5} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\mathrm{e}^{-t}+\frac{\mathrm{e}^{-3 t}}{5}+\frac{4 \mathrm{e}^{-\frac{t}{2}}}{5}
$$

Verified OK.

16.13.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y^{\prime}+3 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=4 \tag{3}\\
& C=3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 435: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-t}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d t}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{-2 t} \\
& =z_{1}\left(\mathrm{e}^{-2 t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-4 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\mathrm{e}^{2 t}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 t}\right)+c_{2}\left(\mathrm{e}^{-3 t}\left(\frac{\mathrm{e}^{2 t}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+3 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{-3 t} c_{1}+\frac{c_{2} \mathrm{e}^{-t}}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{-\frac{t}{2}}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-\frac{t}{2}}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{-t}}{2}, \mathrm{e}^{-3 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-\frac{t}{2}}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\frac{5 A_{1} \mathrm{e}^{-\frac{t}{2}}}{4}=\mathrm{e}^{-\frac{t}{2}}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{4}{5}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{4 \mathrm{e}^{-\frac{t}{2}}}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-3 t} c_{1}+\frac{c_{2} \mathrm{e}^{-t}}{2}\right)+\left(\frac{4 \mathrm{e}^{-\frac{t}{2}}}{5}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-3 t} c_{1}+\frac{c_{2} \mathrm{e}^{-t}}{2}+\frac{4 \mathrm{e}^{-\frac{t}{2}}}{5} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{c_{2}}{2}+\frac{4}{5} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 \mathrm{e}^{-3 t} c_{1}-\frac{c_{2} \mathrm{e}^{-t}}{2}-\frac{2 \mathrm{e}^{-\frac{t}{2}}}{5}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-3 c_{1}-\frac{c_{2}}{2}-\frac{2}{5} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{5} \\
& c_{2}=-2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\mathrm{e}^{-t}+\frac{\mathrm{e}^{-3 t}}{5}+\frac{4 \mathrm{e}^{-\frac{t}{2}}}{5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\mathrm{e}^{-t}+\frac{\mathrm{e}^{-3 t}}{5}+\frac{4 \mathrm{e}^{-\frac{t}{2}}}{5} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\mathrm{e}^{-t}+\frac{\mathrm{e}^{-3 t}}{5}+\frac{4 \mathrm{e}^{-\frac{t}{2}}}{5}
$$

Verified OK.

16.13.4 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}+4 y^{\prime}+3 y=\mathrm{e}^{-\frac{t}{2}}, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+4 r+3=0$
- Factor the characteristic polynomial
$(r+3)(r+1)=0$
- Roots of the characteristic polynomial
$r=(-3,-1)$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{-3 t}
$$

- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{-t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{-t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function $\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\mathrm{e}^{-\frac{t}{2}}\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\mathrm{e}^{-3 t} & \mathrm{e}^{-t} \\ -3 \mathrm{e}^{-3 t} & -\mathrm{e}^{-t}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=2 \mathrm{e}^{-4 t}$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{\mathrm{e}^{-3 t}\left(\int \mathrm{e}^{\frac{5 t}{2}} d t\right)}{2}+\frac{\mathrm{e}^{-t}\left(\int \mathrm{e}^{\frac{t}{2}} d t\right)}{2}$
- Compute integrals
$y_{p}(t)=\frac{4 \mathrm{e}^{-\frac{t}{2}}}{5}$
- Substitute particular solution into general solution to ODE
$y=\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{-t}+\frac{4 \mathrm{e}^{-\frac{t}{2}}}{5}$
Check validity of solution $y=\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{-t}+\frac{4 \mathrm{e}^{-\frac{t}{2}}}{5}$
- Use initial condition $y(0)=0$
$0=c_{1}+c_{2}+\frac{4}{5}$
- Compute derivative of the solution
$y^{\prime}=-3 \mathrm{e}^{-3 t} c_{1}-c_{2} \mathrm{e}^{-t}-\frac{2 \mathrm{e}^{-\frac{t}{2}}}{5}$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$

$$
0=-3 c_{1}-c_{2}-\frac{2}{5}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{1}{5}, c_{2}=-1\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-\mathrm{e}^{-t}+\frac{\mathrm{e}^{-3 t}}{5}+\frac{4 \mathrm{e}^{-\frac{t}{2}}}{5}
$$

- \quad Solution to the IVP

$$
y=-\mathrm{e}^{-t}+\frac{\mathrm{e}^{-3 t}}{5}+\frac{4 \mathrm{e}^{-\frac{t}{2}}}{5}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 23

```
dsolve([diff(y(t),t$2)+4*\operatorname{diff}(y(t),t)+3*y(t)=exp(-t/2),y(0) = 0, D(y)(0) = 0],y(t), singsol=
```

$$
y(t)=\frac{\mathrm{e}^{-3 t}}{5}-\mathrm{e}^{-t}+\frac{4 \mathrm{e}^{-\frac{t}{2}}}{5}
$$

Solution by Mathematica
Time used: 0.083 (sec). Leaf size: 32
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[t]+4 * y\right.\right.$ ' $\left.[t]+3 * y[t]==\operatorname{Exp}[-t / 2],\left\{y[0]==0, y^{\prime}[0]==0\right\}\right\}, y[t], t$, IncludeSingularSolutions

$$
y(t) \rightarrow \frac{1}{5} e^{-3 t}\left(-5 e^{2 t}+4 e^{5 t / 2}+1\right)
$$

16.14 problem 14

16.14.1 Existence and uniqueness analysis 2717
16.14.2 Solving as second order linear constant coeff ode 2718
16.14.3 Solving using Kovacic algorithm 2722
16.14.4 Maple step by step solution . 2727

Internal problem ID [13174]
Internal file name [OUTPUT/11829_Sunday_December_03_2023_07_18_14_PM_54963002/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 14.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+4 y^{\prime}+3 y=\mathrm{e}^{-2 t}
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

16.14.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =4 \\
q(t) & =3 \\
F & =\mathrm{e}^{-2 t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y^{\prime}+3 y=\mathrm{e}^{-2 t}
$$

The domain of $p(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=3$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=\mathrm{e}^{-2 t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.14.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=4, C=3, f(t)=\mathrm{e}^{-2 t}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+3 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=4, C=3$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+4 \lambda \mathrm{e}^{\lambda t}+3 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda+3=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=3$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{4^{2}-(4)(1)(3)} \\
& =-2 \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-2+1 \\
& \lambda_{2}=-2-1
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=-3
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(-1) t}+c_{2} e^{(-3) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-3 t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-3 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{-2 t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-2 t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-3 t}, \mathrm{e}^{-t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-2 t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-A_{1} \mathrm{e}^{-2 t}=\mathrm{e}^{-2 t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\mathrm{e}^{-2 t}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-3 t}\right)+\left(-\mathrm{e}^{-2 t}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-3 t}-\mathrm{e}^{-2 t} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}-1 \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-t}-3 c_{2} \mathrm{e}^{-3 t}+2 \mathrm{e}^{-2 t}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-c_{1}-3 c_{2}+2 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{2} \\
& c_{2}=\frac{1}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{-3 t}}{2}-\mathrm{e}^{-2 t}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{-3 t}}{2}-\mathrm{e}^{-2 t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{-3 t}}{2}-\mathrm{e}^{-2 t}
$$

Verified OK.

16.14.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y^{\prime}+3 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=4 \tag{3}\\
& C=3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 437: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-t}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d t}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{-2 t} \\
& =z_{1}\left(\mathrm{e}^{-2 t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-4 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\mathrm{e}^{2 t}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 t}\right)+c_{2}\left(\mathrm{e}^{-3 t}\left(\frac{\mathrm{e}^{2 t}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+3 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{-3 t} c_{1}+\frac{c_{2} \mathrm{e}^{-t}}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{-2 t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-2 t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{-t}}{2}, \mathrm{e}^{-3 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-2 t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-A_{1} \mathrm{e}^{-2 t}=\mathrm{e}^{-2 t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\mathrm{e}^{-2 t}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-3 t} c_{1}+\frac{c_{2} \mathrm{e}^{-t}}{2}\right)+\left(-\mathrm{e}^{-2 t}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-3 t} c_{1}+\frac{c_{2} \mathrm{e}^{-t}}{2}-\mathrm{e}^{-2 t} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{c_{2}}{2}-1 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 \mathrm{e}^{-3 t} c_{1}-\frac{c_{2} \mathrm{e}^{-t}}{2}+2 \mathrm{e}^{-2 t}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-3 c_{1}-\frac{c_{2}}{2}+2 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{2} \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{-3 t}}{2}-\mathrm{e}^{-2 t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{-3 t}}{2}-\mathrm{e}^{-2 t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{-3 t}}{2}-\mathrm{e}^{-2 t}
$$

Verified OK.

16.14.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+4 y^{\prime}+3 y=\mathrm{e}^{-2 t}, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}+4 r+3=0
$$

- Factor the characteristic polynomial
$(r+3)(r+1)=0$
- Roots of the characteristic polynomial

$$
r=(-3,-1)
$$

- \quad 1st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-3 t}$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{-t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{-t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function
$\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\mathrm{e}^{-2 t}\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\mathrm{e}^{-3 t} & \mathrm{e}^{-t} \\ -3 \mathrm{e}^{-3 t} & -\mathrm{e}^{-t}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=2 \mathrm{e}^{-4 t}$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\frac{\mathrm{e}^{-3 t}\left(\int \mathrm{e}^{t} d t\right)}{2}+\frac{\mathrm{e}^{-t}\left(\int \mathrm{e}^{-t} d t\right)}{2}
$$

- Compute integrals

$$
y_{p}(t)=-\mathrm{e}^{-2 t}
$$

- Substitute particular solution into general solution to ODE
$y=\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{-t}-\mathrm{e}^{-2 t}$
Check validity of solution $y=\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{-t}-\mathrm{e}^{-2 t}$
- Use initial condition $y(0)=0$
$0=c_{1}+c_{2}-1$
- Compute derivative of the solution
$y^{\prime}=-3 \mathrm{e}^{-3 t} c_{1}-c_{2} \mathrm{e}^{-t}+2 \mathrm{e}^{-2 t}$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=-3 c_{1}-c_{2}+2$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{1}{2}, c_{2}=\frac{1}{2}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{-3 t}}{2}-\mathrm{e}^{-2 t}
$$

- \quad Solution to the IVP

$$
y=\frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{-3 t}}{2}-\mathrm{e}^{-2 t}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 23

```
dsolve([diff (y (t),t$2)+4*\operatorname{diff}(y(t),t)+3*y(t)=exp(-2*t),y(0)=0,D(y)(0)=0],y(t), singsol=
```

$$
y(t)=\frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-t}}{2}-\mathrm{e}^{-2 t}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 21
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[t]+4 * y\right.\right.$ ' $\left.[t]+3 * y[t]==\operatorname{Exp}[-2 * t],\left\{y[0]==0, y^{\prime}[0]==0\right\}\right\}, y[t], t$, IncludeSingularSolutions

$$
y(t) \rightarrow \frac{1}{2} e^{-3 t}\left(e^{t}-1\right)^{2}
$$

16.15 problem 15

16.15.1 Existence and uniqueness analysis 2730
16.15.2 Solving as second order linear constant coeff ode 2731
16.15.3 Solving using Kovacic algorithm 2735
16.15.4 Maple step by step solution . 2740

Internal problem ID [13175]
Internal file name [OUTPUT/11830_Sunday_December_03_2023_07_18_17_PM_24795958/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 15.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+4 y^{\prime}+3 y=\mathrm{e}^{-4 t}
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

16.15.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =4 \\
q(t) & =3 \\
F & =\mathrm{e}^{-4 t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y^{\prime}+3 y=\mathrm{e}^{-4 t}
$$

The domain of $p(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=3$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=\mathrm{e}^{-4 t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.15.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=4, C=3, f(t)=\mathrm{e}^{-4 t}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+3 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=4, C=3$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+4 \lambda \mathrm{e}^{\lambda t}+3 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda+3=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=3$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{4^{2}-(4)(1)(3)} \\
& =-2 \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-2+1 \\
& \lambda_{2}=-2-1
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=-3
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(-1) t}+c_{2} e^{(-3) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-3 t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-3 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{-4 t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-4 t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-3 t}, \mathrm{e}^{-t}\right\}
$$

Since there is no duplication between the basis function in the UC__set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-4 t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
3 A_{1} \mathrm{e}^{-4 t}=\mathrm{e}^{-4 t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{-4 t}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-3 t}\right)+\left(\frac{\mathrm{e}^{-4 t}}{3}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-3 t}+\frac{\mathrm{e}^{-4 t}}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}+\frac{1}{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-t}-3 c_{2} \mathrm{e}^{-3 t}-\frac{4 \mathrm{e}^{-4 t}}{3}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-c_{1}-3 c_{2}-\frac{4}{3} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{6} \\
& c_{2}=-\frac{1}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\mathrm{e}^{-t}}{6}-\frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-4 t}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-t}}{6}-\frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-4 t}}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-t}}{6}-\frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-4 t}}{3}
$$

Verified OK.

16.15.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y^{\prime}+3 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=4 \tag{3}\\
& C=3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 439: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-t}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d t}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{-2 t} \\
& =z_{1}\left(\mathrm{e}^{-2 t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-4 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\mathrm{e}^{2 t}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 t}\right)+c_{2}\left(\mathrm{e}^{-3 t}\left(\frac{\mathrm{e}^{2 t}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+3 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{-3 t} c_{1}+\frac{c_{2} \mathrm{e}^{-t}}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{-4 t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-4 t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{-t}}{2}, \mathrm{e}^{-3 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-4 t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
3 A_{1} \mathrm{e}^{-4 t}=\mathrm{e}^{-4 t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{-4 t}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-3 t} c_{1}+\frac{c_{2} \mathrm{e}^{-t}}{2}\right)+\left(\frac{\mathrm{e}^{-4 t}}{3}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-3 t} c_{1}+\frac{c_{2} \mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{-4 t}}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{c_{2}}{2}+\frac{1}{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 \mathrm{e}^{-3 t} c_{1}-\frac{c_{2} \mathrm{e}^{-t}}{2}-\frac{4 \mathrm{e}^{-4 t}}{3}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-3 c_{1}-\frac{c_{2}}{2}-\frac{4}{3} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{2} \\
& c_{2}=\frac{1}{3}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\mathrm{e}^{-t}}{6}-\frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-4 t}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-t}}{6}-\frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-4 t}}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-t}}{6}-\frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-4 t}}{3}
$$

Verified OK.

16.15.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+4 y^{\prime}+3 y=\mathrm{e}^{-4 t}, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+4 r+3=0$
- Factor the characteristic polynomial
$(r+3)(r+1)=0$
- Roots of the characteristic polynomial

$$
r=(-3,-1)
$$

- \quad 1st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-3 t}$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{-t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{-t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function
$\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\mathrm{e}^{-4 t}\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\mathrm{e}^{-3 t} & \mathrm{e}^{-t} \\ -3 \mathrm{e}^{-3 t} & -\mathrm{e}^{-t}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=2 \mathrm{e}^{-4 t}$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\frac{\mathrm{e}^{-3 t}\left(\int \mathrm{e}^{-t} d t\right)}{2}+\frac{\mathrm{e}^{-t}\left(\int \mathrm{e}^{-3 t} d t\right)}{2}
$$

- Compute integrals

$$
y_{p}(t)=\frac{\mathrm{e}^{-4 t}}{3}
$$

- Substitute particular solution into general solution to ODE
$y=\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{-t}+\frac{\mathrm{e}^{-4 t}}{3}$
Check validity of solution $y=\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{-t}+\frac{\mathrm{e}^{-4 t}}{3}$
- Use initial condition $y(0)=0$

$$
0=c_{1}+c_{2}+\frac{1}{3}
$$

- Compute derivative of the solution

$$
y^{\prime}=-3 \mathrm{e}^{-3 t} c_{1}-c_{2} \mathrm{e}^{-t}-\frac{4 \mathrm{e}^{-4 t}}{3}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$

$$
0=-3 c_{1}-c_{2}-\frac{4}{3}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-\frac{1}{2}, c_{2}=\frac{1}{6}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{\mathrm{e}^{-t}}{6}-\frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-4 t}}{3}
$$

- \quad Solution to the IVP

$$
y=\frac{\mathrm{e}^{-t}}{6}-\frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-4 t}}{3}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve([diff (y (t),t$2)+4*\operatorname{diff}(y(t),t)+3*y(t)=exp(-4*t),y(0)=0,D(y)(0)=0],y(t), singsol=
```

$$
y(t)=-\frac{\mathrm{e}^{-3 t}}{2}+\frac{\mathrm{e}^{-t}}{6}+\frac{\mathrm{e}^{-4 t}}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.045 (sec). Leaf size: 26
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[t]+4 * y\right.\right.$ ' $\left.[t]+3 * y[t]==\operatorname{Exp}[-4 * t],\left\{y[0]==0, y^{\prime}[0]==0\right\}\right\}, y[t], t$, IncludeSingularSolutions

$$
y(t) \rightarrow \frac{1}{6} e^{-4 t}\left(e^{t}-1\right)^{2}\left(e^{t}+2\right)
$$

16.16 problem 16

16.16.1 Existence and uniqueness analysis 2743
16.16.2 Solving as second order linear constant coeff ode 2744
16.16.3 Solving using Kovacic algorithm 2748
16.16.4 Maple step by step solution . 2754

Internal problem ID [13176]
Internal file name [OUTPUT/11831_Sunday_December_03_2023_07_18_20_PM_5833124/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 16.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+4 y^{\prime}+20 y=\mathrm{e}^{-\frac{t}{2}}
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

16.16.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =4 \\
q(t) & =20 \\
F & =\mathrm{e}^{-\frac{t}{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y^{\prime}+20 y=\mathrm{e}^{-\frac{t}{2}}
$$

The domain of $p(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=20$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=\mathrm{e}^{-\frac{t}{2}}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.16.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=4, C=20, f(t)=\mathrm{e}^{-\frac{t}{2}}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+20 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=4, C=20$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+4 \lambda \mathrm{e}^{\lambda t}+20 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda+20=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=20$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{4^{2}-(4)(1)(20)} \\
& =-2 \pm 4 i
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=-2+4 i \\
\lambda_{2}=-2-4 i
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-2+4 i \\
& \lambda_{2}=-2-4 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-2$ and $\beta=4$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{-\frac{t}{2}}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-\frac{t}{2}}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\cos (4 t) \mathrm{e}^{-2 t}, \sin (4 t) \mathrm{e}^{-2 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-\frac{t}{2}}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\frac{73 A_{1} \mathrm{e}^{-\frac{t}{2}}}{4}=\mathrm{e}^{-\frac{t}{2}}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{4}{73}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{4 \mathrm{e}^{-\frac{t}{2}}}{73}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)\right)+\left(\frac{4 \mathrm{e}^{-\frac{t}{2}}}{73}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)+\frac{4 \mathrm{e}^{-\frac{t}{2}}}{73} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{4}{73} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 \mathrm{e}^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)+\mathrm{e}^{-2 t}\left(-4 c_{1} \sin (4 t)+4 c_{2} \cos (4 t)\right)-\frac{2 \mathrm{e}^{-\frac{t}{2}}}{73}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-2 c_{1}-\frac{2}{73}+4 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{4}{73} \\
& c_{2}=-\frac{3}{146}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{4 \cos (4 t) \mathrm{e}^{-2 t}}{73}-\frac{3 \sin (4 t) \mathrm{e}^{-2 t}}{146}+\frac{4 \mathrm{e}^{-\frac{t}{2}}}{73}
$$

Which simplifies to

$$
y=\frac{4 \mathrm{e}^{-\frac{t}{2}}}{73}+\frac{(-8 \cos (4 t)-3 \sin (4 t)) \mathrm{e}^{-2 t}}{146}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{4 \mathrm{e}^{-\frac{t}{2}}}{73}+\frac{(-8 \cos (4 t)-3 \sin (4 t)) \mathrm{e}^{-2 t}}{146} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=\frac{4 \mathrm{e}^{-\frac{t}{2}}}{73}+\frac{(-8 \cos (4 t)-3 \sin (4 t)) \mathrm{e}^{-2 t}}{146}
$$

Verified OK.

16.16.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y^{\prime}+20 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=4 \tag{3}\\
& C=20
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-16}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-16 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-16 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 441: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-16$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (4 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d t} \\
& =z_{1} e^{-2 t} \\
& =z_{1}\left(\mathrm{e}^{-2 t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (4 t) \mathrm{e}^{-2 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-4 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\tan (4 t)}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos (4 t) \mathrm{e}^{-2 t}\right)+c_{2}\left(\cos (4 t) \mathrm{e}^{-2 t}\left(\frac{\tan (4 t)}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+20 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (4 t) \mathrm{e}^{-2 t}+\frac{\mathrm{e}^{-2 t} c_{2} \sin (4 t)}{4}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{-\frac{t}{2}}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-\frac{t}{2}}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\cos (4 t) \mathrm{e}^{-2 t}, \frac{\sin (4 t) \mathrm{e}^{-2 t}}{4}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-\frac{t}{2}}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\frac{73 A_{1} \mathrm{e}^{-\frac{t}{2}}}{4}=\mathrm{e}^{-\frac{t}{2}}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{4}{73}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{4 \mathrm{e}^{-\frac{t}{2}}}{73}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (4 t) \mathrm{e}^{-2 t}+\frac{\mathrm{e}^{-2 t} c_{2} \sin (4 t)}{4}\right)+\left(\frac{4 \mathrm{e}^{-\frac{t}{2}}}{73}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (4 t) \mathrm{e}^{-2 t}+\frac{\mathrm{e}^{-2 t} c_{2} \sin (4 t)}{4}+\frac{4 \mathrm{e}^{-\frac{t}{2}}}{73} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{4}{73} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-4 c_{1} \sin (4 t) \mathrm{e}^{-2 t}-2 c_{1} \cos (4 t) \mathrm{e}^{-2 t}-\frac{\mathrm{e}^{-2 t} c_{2} \sin (4 t)}{2}+\mathrm{e}^{-2 t} c_{2} \cos (4 t)-\frac{2 \mathrm{e}^{-\frac{t}{2}}}{73}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-\frac{2}{73}-2 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
c_{1} & =-\frac{4}{73} \\
c_{2} & =-\frac{6}{73}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{4 \cos (4 t) \mathrm{e}^{-2 t}}{73}-\frac{3 \sin (4 t) \mathrm{e}^{-2 t}}{146}+\frac{4 \mathrm{e}^{-\frac{t}{2}}}{73}
$$

Which simplifies to

$$
y=\frac{4 \mathrm{e}^{-\frac{t}{2}}}{73}+\frac{(-8 \cos (4 t)-3 \sin (4 t)) \mathrm{e}^{-2 t}}{146}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{4 \mathrm{e}^{-\frac{t}{2}}}{73}+\frac{(-8 \cos (4 t)-3 \sin (4 t)) \mathrm{e}^{-2 t}}{146} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{4 \mathrm{e}^{-\frac{t}{2}}}{73}+\frac{(-8 \cos (4 t)-3 \sin (4 t)) \mathrm{e}^{-2 t}}{146}
$$

Verified OK.

16.16.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+4 y^{\prime}+20 y=\mathrm{e}^{-\frac{t}{2}}, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+4 r+20=0$
- Use quadratic formula to solve for r
$r=\frac{(-4) \pm(\sqrt{-64})}{2}$
- Roots of the characteristic polynomial
$r=(-2-4 \mathrm{I},-2+4 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\cos (4 t) \mathrm{e}^{-2 t}$
- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\sin (4 t) \mathrm{e}^{-2 t}
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (4 t) \mathrm{e}^{-2 t}+\mathrm{e}^{-2 t} c_{2} \sin (4 t)+y_{p}(t)
$$

Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\mathrm{e}^{-\frac{t}{2}}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (4 t) \mathrm{e}^{-2 t} & \sin (4 t) \mathrm{e}^{-2 t} \\
-4 \sin (4 t) \mathrm{e}^{-2 t}-2 \cos (4 t) \mathrm{e}^{-2 t} & 4 \cos (4 t) \mathrm{e}^{-2 t}-2 \sin (4 t) \mathrm{e}^{-2 t}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=4 \mathrm{e}^{-4 t}$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{\mathrm{e}^{-2 t}\left(\cos (4 t)\left(\int \sin (4 t) \mathrm{e}^{\frac{3 t}{2}} d t\right)-\sin (4 t)\left(\int \cos (4 t) \mathrm{e}^{\frac{3 t}{2}} d t\right)\right)}{4}$
- Compute integrals
$y_{p}(t)=\frac{4 \mathrm{e}^{-\frac{t}{2}}}{73}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (4 t) \mathrm{e}^{-2 t}+\mathrm{e}^{-2 t} c_{2} \sin (4 t)+\frac{4 \mathrm{e}^{-\frac{t}{2}}}{73}$
Check validity of solution $y=c_{1} \cos (4 t) \mathrm{e}^{-2 t}+\mathrm{e}^{-2 t} c_{2} \sin (4 t)+\frac{4 \mathrm{e}^{-\frac{t}{2}}}{73}$
- Use initial condition $y(0)=0$
$0=c_{1}+\frac{4}{73}$
- Compute derivative of the solution
$y^{\prime}=-4 c_{1} \sin (4 t) \mathrm{e}^{-2 t}-2 c_{1} \cos (4 t) \mathrm{e}^{-2 t}-2 \mathrm{e}^{-2 t} c_{2} \sin (4 t)+4 \mathrm{e}^{-2 t} c_{2} \cos (4 t)-\frac{2 \mathrm{e}^{-\frac{t}{2}}}{73}$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=-2 c_{1}-\frac{2}{73}+4 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=-\frac{4}{73}, c_{2}=-\frac{3}{146}\right\}$
- Substitute constant values into general solution and simplify
$y=\frac{4 \mathrm{e}^{-\frac{t}{2}}}{73}+\frac{(-8 \cos (4 t)-3 \sin (4 t)) \mathrm{e}^{-2 t}}{146}$
- Solution to the IVP

$$
y=\frac{4 \mathrm{e}^{-\frac{t}{2}}}{73}+\frac{(-8 \cos (4 t)-3 \sin (4 t)) \mathrm{e}^{-2 t}}{146}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 31

```
dsolve([diff(y(t),t$2)+4*\operatorname{diff}(y(t),t)+20*y(t)=exp(-t/2),y(0) = 0, D(y)(0) = 0],y(t), singsol
```

$$
y(t)=\frac{4 \mathrm{e}^{-\frac{t}{2}}}{73}+\frac{(-3 \sin (4 t)-8 \cos (4 t)) \mathrm{e}^{-2 t}}{146}
$$

Solution by Mathematica
Time used: 0.259 (sec). Leaf size: 36
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[t]+4 * y\right.\right.$ ' $\left.[t]+20 * y[t]==\operatorname{Exp}[-t / 2],\left\{y[0]==0, y^{\prime}[0]==0\right\}\right\}, y[t], t$, IncludeSingularSolution

$$
y(t) \rightarrow \frac{1}{146} e^{-2 t}\left(8 e^{3 t / 2}-3 \sin (4 t)-8 \cos (4 t)\right)
$$

16.17 problem 17

16.17.1 Existence and uniqueness analysis 2757
16.17.2 Solving as second order linear constant coeff ode 2758
16.17.3 Solving using Kovacic algorithm 2762
16.17.4 Maple step by step solution . 2768

Internal problem ID [13177]
Internal file name [OUTPUT/11832_Sunday_December_03_2023_07_18_27_PM_39793253/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 17.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+4 y^{\prime}+20 y=\mathrm{e}^{-2 t}
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

16.17.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =4 \\
q(t) & =20 \\
F & =\mathrm{e}^{-2 t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y^{\prime}+20 y=\mathrm{e}^{-2 t}
$$

The domain of $p(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=20$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=\mathrm{e}^{-2 t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.17.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=4, C=20, f(t)=\mathrm{e}^{-2 t}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+20 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=4, C=20$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+4 \lambda \mathrm{e}^{\lambda t}+20 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda+20=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=20$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{4^{2}-(4)(1)(20)} \\
& =-2 \pm 4 i
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=-2+4 i \\
\lambda_{2}=-2-4 i
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-2+4 i \\
& \lambda_{2}=-2-4 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-2$ and $\beta=4$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{-2 t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-2 t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\cos (4 t) \mathrm{e}^{-2 t}, \sin (4 t) \mathrm{e}^{-2 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-2 t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
16 A_{1} \mathrm{e}^{-2 t}=\mathrm{e}^{-2 t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{16}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{-2 t}}{16}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)\right)+\left(\frac{\mathrm{e}^{-2 t}}{16}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)+\frac{\mathrm{e}^{-2 t}}{16} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{1}{16} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 \mathrm{e}^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)+\mathrm{e}^{-2 t}\left(-4 c_{1} \sin (4 t)+4 c_{2} \cos (4 t)\right)-\frac{\mathrm{e}^{-2 t}}{8}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-2 c_{1}-\frac{1}{8}+4 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{16} \\
& c_{2}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{\cos (4 t) \mathrm{e}^{-2 t}}{16}+\frac{\mathrm{e}^{-2 t}}{16}
$$

Which simplifies to

$$
y=-\frac{\mathrm{e}^{-2 t}(-1+\cos (4 t))}{16}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-2 t}(-1+\cos (4 t))}{16} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-2 t}(-1+\cos (4 t))}{16}
$$

Verified OK.

16.17.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y^{\prime}+20 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=4 \tag{3}\\
& C=20
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-16}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-16 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-16 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 443: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-16$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (4 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d t} \\
& =z_{1} e^{-2 t} \\
& =z_{1}\left(\mathrm{e}^{-2 t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (4 t) \mathrm{e}^{-2 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-4 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\tan (4 t)}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos (4 t) \mathrm{e}^{-2 t}\right)+c_{2}\left(\cos (4 t) \mathrm{e}^{-2 t}\left(\frac{\tan (4 t)}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+20 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (4 t) \mathrm{e}^{-2 t}+\frac{\mathrm{e}^{-2 t} c_{2} \sin (4 t)}{4}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{-2 t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-2 t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\cos (4 t) \mathrm{e}^{-2 t}, \frac{\sin (4 t) \mathrm{e}^{-2 t}}{4}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-2 t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
16 A_{1} \mathrm{e}^{-2 t}=\mathrm{e}^{-2 t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{16}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{-2 t}}{16}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (4 t) \mathrm{e}^{-2 t}+\frac{\mathrm{e}^{-2 t} c_{2} \sin (4 t)}{4}\right)+\left(\frac{\mathrm{e}^{-2 t}}{16}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (4 t) \mathrm{e}^{-2 t}+\frac{\mathrm{e}^{-2 t} c_{2} \sin (4 t)}{4}+\frac{\mathrm{e}^{-2 t}}{16} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{1}{16} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-4 c_{1} \sin (4 t) \mathrm{e}^{-2 t}-2 c_{1} \cos (4 t) \mathrm{e}^{-2 t}-\frac{\mathrm{e}^{-2 t} c_{2} \sin (4 t)}{2}+\mathrm{e}^{-2 t} c_{2} \cos (4 t)-\frac{\mathrm{e}^{-2 t}}{8}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-\frac{1}{8}-2 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{16} \\
& c_{2}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{\cos (4 t) \mathrm{e}^{-2 t}}{16}+\frac{\mathrm{e}^{-2 t}}{16}
$$

Which simplifies to

$$
y=-\frac{\mathrm{e}^{-2 t}(-1+\cos (4 t))}{16}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-2 t}(-1+\cos (4 t))}{16} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-2 t}(-1+\cos (4 t))}{16}
$$

Verified OK.

16.17.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+4 y^{\prime}+20 y=\mathrm{e}^{-2 t}, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+4 r+20=0$
- Use quadratic formula to solve for r
$r=\frac{(-4) \pm(\sqrt{-64})}{2}$
- Roots of the characteristic polynomial
$r=(-2-4 \mathrm{I},-2+4 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\cos (4 t) \mathrm{e}^{-2 t}$
- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\sin (4 t) \mathrm{e}^{-2 t}
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (4 t) \mathrm{e}^{-2 t}+\mathrm{e}^{-2 t} c_{2} \sin (4 t)+y_{p}(t)
$$

Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\mathrm{e}^{-2 t}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (4 t) \mathrm{e}^{-2 t} & \sin (4 t) \mathrm{e}^{-2 t} \\
-4 \sin (4 t) \mathrm{e}^{-2 t}-2 \cos (4 t) \mathrm{e}^{-2 t} & 4 \cos (4 t) \mathrm{e}^{-2 t}-2 \sin (4 t) \mathrm{e}^{-2 t}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=4 \mathrm{e}^{-4 t}$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{\mathrm{e}^{-2 t}\left(\cos (4 t)\left(\int \sin (4 t) d t\right)-\sin (4 t)\left(\int \cos (4 t) d t\right)\right)}{4}$
- Compute integrals

$$
y_{p}(t)=\frac{\mathrm{e}^{-2 t}}{16}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (4 t) \mathrm{e}^{-2 t}+\mathrm{e}^{-2 t} c_{2} \sin (4 t)+\frac{\mathrm{e}^{-2 t}}{16}
$$

Check validity of solution $y=c_{1} \cos (4 t) \mathrm{e}^{-2 t}+\mathrm{e}^{-2 t} c_{2} \sin (4 t)+\frac{\mathrm{e}^{-2 t}}{16}$

- Use initial condition $y(0)=0$

$$
0=c_{1}+\frac{1}{16}
$$

- Compute derivative of the solution

$$
y^{\prime}=-4 c_{1} \sin (4 t) \mathrm{e}^{-2 t}-2 c_{1} \cos (4 t) \mathrm{e}^{-2 t}-2 \mathrm{e}^{-2 t} c_{2} \sin (4 t)+4 \mathrm{e}^{-2 t} c_{2} \cos (4 t)-\frac{\mathrm{e}^{-2 t}}{8}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=-2 c_{1}-\frac{1}{8}+4 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=-\frac{1}{16}, c_{2}=0\right\}$
- Substitute constant values into general solution and simplify
$y=-\frac{\mathrm{e}^{-2 t}(-1+\cos (4 t))}{16}$
- \quad Solution to the IVP
$y=-\frac{\mathrm{e}^{-2 t}(-1+\cos (4 t))}{16}$

Maple trace

```
-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 16
dsolve ([diff $(y(t), t \$ 2)+4 * \operatorname{diff}(y(t), t)+20 * y(t)=\exp (-2 * t), y(0)=0, D(y)(0)=0], y(t)$, singsol

$$
y(t)=-\frac{\mathrm{e}^{-2 t}(-1+\cos (4 t))}{16}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.086 (sec). Leaf size: 20
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[t]+4 * y\right.\right.$ ' $\left.[t]+20 * y[t]==\operatorname{Exp}[-2 * t],\left\{y[0]==0, y^{\prime}[0]==0\right\}\right\}, y[t], t$, IncludeSingularSolution

$$
y(t) \rightarrow \frac{1}{8} e^{-2 t} \sin ^{2}(2 t)
$$

16.18 problem 18

16.18.1 Existence and uniqueness analysis 2771
16.18.2 Solving as second order linear constant coeff ode 2772
16.18.3 Solving using Kovacic algorithm 2776
16.18.4 Maple step by step solution . 2782

Internal problem ID [13178]
Internal file name [OUTPUT/11833_Sunday_December_03_2023_07_18_35_PM_22075003/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 18.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+4 y^{\prime}+20 y=\mathrm{e}^{-4 t}
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

16.18.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =4 \\
q(t) & =20 \\
F & =\mathrm{e}^{-4 t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y^{\prime}+20 y=\mathrm{e}^{-4 t}
$$

The domain of $p(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=20$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=\mathrm{e}^{-4 t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.18.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=4, C=20, f(t)=\mathrm{e}^{-4 t}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+20 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=4, C=20$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+4 \lambda \mathrm{e}^{\lambda t}+20 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda+20=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=20$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{4^{2}-(4)(1)(20)} \\
& =-2 \pm 4 i
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=-2+4 i \\
\lambda_{2}=-2-4 i
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-2+4 i \\
& \lambda_{2}=-2-4 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-2$ and $\beta=4$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{-4 t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-4 t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\cos (4 t) \mathrm{e}^{-2 t}, \sin (4 t) \mathrm{e}^{-2 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-4 t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
20 A_{1} \mathrm{e}^{-4 t}=\mathrm{e}^{-4 t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{20}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{-4 t}}{20}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)\right)+\left(\frac{\mathrm{e}^{-4 t}}{20}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)+\frac{\mathrm{e}^{-4 t}}{20} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{1}{20} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 \mathrm{e}^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)+\mathrm{e}^{-2 t}\left(-4 c_{1} \sin (4 t)+4 c_{2} \cos (4 t)\right)-\frac{\mathrm{e}^{-4 t}}{5}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-2 c_{1}-\frac{1}{5}+4 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{20} \\
& c_{2}=\frac{1}{40}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{\cos (4 t) \mathrm{e}^{-2 t}}{20}+\frac{\sin (4 t) \mathrm{e}^{-2 t}}{40}+\frac{\mathrm{e}^{-4 t}}{20}
$$

Which simplifies to

$$
y=\frac{(-2 \cos (4 t)+\sin (4 t)) \mathrm{e}^{-2 t}}{40}+\frac{\mathrm{e}^{-4 t}}{20}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(-2 \cos (4 t)+\sin (4 t)) \mathrm{e}^{-2 t}}{40}+\frac{\mathrm{e}^{-4 t}}{20} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{(-2 \cos (4 t)+\sin (4 t)) \mathrm{e}^{-2 t}}{40}+\frac{\mathrm{e}^{-4 t}}{20}
$$

Verified OK.

16.18.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y^{\prime}+20 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=4 \tag{3}\\
& C=20
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-16}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-16 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-16 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 445: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-16$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (4 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d t} \\
& =z_{1} e^{-2 t} \\
& =z_{1}\left(\mathrm{e}^{-2 t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (4 t) \mathrm{e}^{-2 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-4 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\tan (4 t)}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos (4 t) \mathrm{e}^{-2 t}\right)+c_{2}\left(\cos (4 t) \mathrm{e}^{-2 t}\left(\frac{\tan (4 t)}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+20 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (4 t) \mathrm{e}^{-2 t}+\frac{\mathrm{e}^{-2 t} c_{2} \sin (4 t)}{4}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{-4 t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-4 t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\cos (4 t) \mathrm{e}^{-2 t}, \frac{\sin (4 t) \mathrm{e}^{-2 t}}{4}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-4 t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
20 A_{1} \mathrm{e}^{-4 t}=\mathrm{e}^{-4 t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{20}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{-4 t}}{20}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (4 t) \mathrm{e}^{-2 t}+\frac{\mathrm{e}^{-2 t} c_{2} \sin (4 t)}{4}\right)+\left(\frac{\mathrm{e}^{-4 t}}{20}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (4 t) \mathrm{e}^{-2 t}+\frac{\mathrm{e}^{-2 t} c_{2} \sin (4 t)}{4}+\frac{\mathrm{e}^{-4 t}}{20} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{1}{20} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-4 c_{1} \sin (4 t) \mathrm{e}^{-2 t}-2 c_{1} \cos (4 t) \mathrm{e}^{-2 t}-\frac{\mathrm{e}^{-2 t} c_{2} \sin (4 t)}{2}+\mathrm{e}^{-2 t} c_{2} \cos (4 t)-\frac{\mathrm{e}^{-4 t}}{5}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-\frac{1}{5}-2 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{20} \\
& c_{2}=\frac{1}{10}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{\cos (4 t) \mathrm{e}^{-2 t}}{20}+\frac{\sin (4 t) \mathrm{e}^{-2 t}}{40}+\frac{\mathrm{e}^{-4 t}}{20}
$$

Which simplifies to

$$
y=\frac{(-2 \cos (4 t)+\sin (4 t)) \mathrm{e}^{-2 t}}{40}+\frac{\mathrm{e}^{-4 t}}{20}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(-2 \cos (4 t)+\sin (4 t)) \mathrm{e}^{-2 t}}{40}+\frac{\mathrm{e}^{-4 t}}{20} \tag{1}
\end{equation*}
$$

(a) Solution plot

$$
y(t)
$$

Verification of solutions

$$
y=\frac{(-2 \cos (4 t)+\sin (4 t)) \mathrm{e}^{-2 t}}{40}+\frac{\mathrm{e}^{-4 t}}{20}
$$

Verified OK.

16.18.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+4 y^{\prime}+20 y=\mathrm{e}^{-4 t}, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+4 r+20=0$
- Use quadratic formula to solve for r
$r=\frac{(-4) \pm(\sqrt{-64})}{2}$
- Roots of the characteristic polynomial
$r=(-2-4 \mathrm{I},-2+4 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\cos (4 t) \mathrm{e}^{-2 t}$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\sin (4 t) \mathrm{e}^{-2 t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (4 t) \mathrm{e}^{-2 t}+\mathrm{e}^{-2 t} c_{2} \sin (4 t)+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\mathrm{e}^{-4 t}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (4 t) \mathrm{e}^{-2 t} & \sin (4 t) \mathrm{e}^{-2 t} \\
-4 \sin (4 t) \mathrm{e}^{-2 t}-2 \cos (4 t) \mathrm{e}^{-2 t} & 4 \cos (4 t) \mathrm{e}^{-2 t}-2 \sin (4 t) \mathrm{e}^{-2 t}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=4 \mathrm{e}^{-4 t}$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{\mathrm{e}^{-2 t}\left(\cos (4 t)\left(\int \sin (4 t) \mathrm{e}^{-2 t} d t\right)-\sin (4 t)\left(\int \cos (4 t) \mathrm{e}^{-2 t} d t\right)\right)}{4}$
- Compute integrals

$$
y_{p}(t)=\frac{\mathrm{e}^{-4 t}}{20}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (4 t) \mathrm{e}^{-2 t}+\mathrm{e}^{-2 t} c_{2} \sin (4 t)+\frac{\mathrm{e}^{-4 t}}{20}
$$

$\square \quad$ Check validity of solution $y=c_{1} \cos (4 t) \mathrm{e}^{-2 t}+\mathrm{e}^{-2 t} c_{2} \sin (4 t)+\frac{\mathrm{e}^{-4 t}}{20}$

- Use initial condition $y(0)=0$

$$
0=c_{1}+\frac{1}{20}
$$

- Compute derivative of the solution

$$
y^{\prime}=-4 c_{1} \sin (4 t) \mathrm{e}^{-2 t}-2 c_{1} \cos (4 t) \mathrm{e}^{-2 t}-2 \mathrm{e}^{-2 t} c_{2} \sin (4 t)+4 \mathrm{e}^{-2 t} c_{2} \cos (4 t)-\frac{\mathrm{e}^{-4 t}}{5}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=-2 c_{1}-\frac{1}{5}+4 c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-\frac{1}{20}, c_{2}=\frac{1}{40}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{(-2 \cos (4 t)+\sin (4 t)) \mathrm{e}^{-2 t}}{40}+\frac{\mathrm{e}^{-4 t}}{20}
$$

- \quad Solution to the IVP

$$
y=\frac{(-2 \cos (4 t)+\sin (4 t)) \mathrm{e}^{-2 t}}{40}+\frac{\mathrm{e}^{-4 t}}{20}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 28
dsolve $([\operatorname{diff}(y(t), t \$ 2)+4 * \operatorname{diff}(y(t), t)+20 * y(t)=\exp (-4 * t), y(0)=0, D(y)(0)=0], y(t)$, singsol

$$
y(t)=\frac{(\sin (4 t)-2 \cos (4 t)) \mathrm{e}^{-2 t}}{40}+\frac{\mathrm{e}^{-4 t}}{20}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.18 (sec). Leaf size: 37
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[t]+4 * y\right.\right.$ ' $\left.[t]+20 * y[t]==\operatorname{Exp}[-4 * t],\left\{y[0]==0, y^{\prime}[0]==0\right\}\right\}, y[t], t$, IncludeSingularSolution

$$
y(t) \rightarrow \frac{1}{40} e^{-4 t}\left(e^{2 t} \sin (4 t)-2 e^{2 t} \cos (4 t)+2\right)
$$

16.19 problem 19

16.19.1 Solving as second order linear constant coeff ode 2785
16.19.2 Solving as linear second order ode solved by an integrating factor
ode . 2788
16.19.3 Solving using Kovacic algorithm 2790
16.19.4 Maple step by step solution . 2795

Internal problem ID [13179]
Internal file name [OUTPUT/11834_Sunday_December_03_2023_07_18_42_PM_42690196/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 19.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+2 y^{\prime}+y=\mathrm{e}^{-t}
$$

16.19.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=2, C=1, f(t)=\mathrm{e}^{-t}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=2, C=1$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+2 \lambda \mathrm{e}^{\lambda t}+\mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(2)^{2}-(4)(1)(1)} \\
& =-1
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=1$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-t}+c_{2} t \mathrm{e}^{-t} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-t}+c_{2} t \mathrm{e}^{-t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{-t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{t \mathrm{e}^{-t}, \mathrm{e}^{-t}\right\}
$$

Since e^{-t} is duplicated in the UC_set, then this basis is multiplied by extra t. The UC_set becomes

$$
\left[\left\{t \mathrm{e}^{-t}\right\}\right]
$$

Since $t \mathrm{e}^{-t}$ is duplicated in the UC_set, then this basis is multiplied by extra t. The UC_set becomes

$$
\left[\left\{t^{2} \mathrm{e}^{-t}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} t^{2} \mathrm{e}^{-t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{-t}=\mathrm{e}^{-t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{t^{2} \mathrm{e}^{-t}}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-t}+c_{2} t \mathrm{e}^{-t}\right)+\left(\frac{t^{2} \mathrm{e}^{-t}}{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-t}\left(c_{2} t+c_{1}\right)+\frac{t^{2} \mathrm{e}^{-t}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-t}\left(c_{2} t+c_{1}\right)+\frac{t^{2} \mathrm{e}^{-t}}{2} \tag{1}
\end{equation*}
$$

Figure 518: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-t}\left(c_{2} t+c_{1}\right)+\frac{t^{2} \mathrm{e}^{-t}}{2}
$$

Verified OK.
16.19.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(t) y^{\prime}+\frac{\left(p(t)^{2}+p^{\prime}(t)\right) y}{2}=f(t)
$$

Where $p(t)=2$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 2 d x} \\
& =\mathrm{e}^{t}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =\mathrm{e}^{t} \mathrm{e}^{-t} \\
\left(\mathrm{e}^{t} y\right)^{\prime \prime} & =\mathrm{e}^{t} \mathrm{e}^{-t}
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{t} y\right)^{\prime}=t+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{t} y\right)=\frac{t\left(t+2 c_{1}\right)}{2}+c_{2}
$$

Hence the solution is

$$
y=\frac{\frac{t\left(t+2 c_{1}\right)}{2}+c_{2}}{\mathrm{e}^{t}}
$$

Or

$$
y=t \mathrm{e}^{-t} c_{1}+\frac{t^{2} \mathrm{e}^{-t}}{2}+c_{2} \mathrm{e}^{-t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=t \mathrm{e}^{-t} c_{1}+\frac{t^{2} \mathrm{e}^{-t}}{2}+c_{2} \mathrm{e}^{-t} \tag{1}
\end{equation*}
$$

Figure 519: Slope field plot

Verification of solutions

$$
y=t \mathrm{e}^{-t} c_{1}+\frac{t^{2} \mathrm{e}^{-t}}{2}+c_{2} \mathrm{e}^{-t}
$$

Verified OK.

16.19.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 447: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d t} \\
& =z_{1} e^{-t} \\
& =z_{1}\left(\mathrm{e}^{-t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-2 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}(t)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-t}\right)+c_{2}\left(\mathrm{e}^{-t}(t)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-t}+c_{2} t \mathrm{e}^{-t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{-t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{t \mathrm{e}^{-t}, \mathrm{e}^{-t}\right\}
$$

Since e^{-t} is duplicated in the UC_set, then this basis is multiplied by extra t. The UC_set becomes

$$
\left[\left\{t \mathrm{e}^{-t}\right\}\right]
$$

Since $t \mathrm{e}^{-t}$ is duplicated in the UC_set, then this basis is multiplied by extra t. The UC_set becomes

$$
\left[\left\{t^{2} \mathrm{e}^{-t}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} t^{2} \mathrm{e}^{-t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{-t}=\mathrm{e}^{-t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{t^{2} \mathrm{e}^{-t}}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-t}+c_{2} t \mathrm{e}^{-t}\right)+\left(\frac{t^{2} \mathrm{e}^{-t}}{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-t}\left(c_{2} t+c_{1}\right)+\frac{t^{2} \mathrm{e}^{-t}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-t}\left(c_{2} t+c_{1}\right)+\frac{t^{2} \mathrm{e}^{-t}}{2} \tag{1}
\end{equation*}
$$

Figure 520: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-t}\left(c_{2} t+c_{1}\right)+\frac{t^{2} \mathrm{e}^{-t}}{2}
$$

Verified OK.

16.19.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+2 y^{\prime}+y=\mathrm{e}^{-t}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+2 r+1=0
$$

- Factor the characteristic polynomial

$$
(r+1)^{2}=0
$$

- Root of the characteristic polynomial
$r=-1$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-t}$
- Repeated root, multiply $y_{1}(t)$ by t to ensure linear independence
$y_{2}(t)=t \mathrm{e}^{-t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-t}+c_{2} t \mathrm{e}^{-t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function
$\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\mathrm{e}^{-t}\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-t} & t \mathrm{e}^{-t} \\
-\mathrm{e}^{-t} & \mathrm{e}^{-t}-t \mathrm{e}^{-t}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=\mathrm{e}^{-2 t}$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=\mathrm{e}^{-t}\left(-\left(\int t d t\right)+\left(\int 1 d t\right) t\right)
$$

- Compute integrals

$$
y_{p}(t)=\frac{t^{2} e^{-t}}{2}
$$

- Substitute particular solution into general solution to ODE $y=c_{2} t \mathrm{e}^{-t}+c_{1} \mathrm{e}^{-t}+\frac{t^{2} \mathrm{e}^{-t}}{2}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(diff(y(t),t$2)+2*diff(y(t),t)+y(t)=exp(-t),y(t), singsol=all)
```

$$
y(t)=\mathrm{e}^{-t}\left(\frac{1}{2} t^{2}+c_{1} t+c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 27
DSolve[y'' $[t]+2 * y$ ' $[t]+y[t]==\operatorname{Exp}[-t], y[t], t$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow \frac{1}{2} e^{-t}\left(t^{2}+2 c_{2} t+2 c_{1}\right)
$$

16.20 problem 21

16.20.1 Existence and uniqueness analysis 2798
16.20.2 Solving as second order linear constant coeff ode 2799
16.20.3 Solving using Kovacic algorithm 2803
16.20.4 Maple step by step solution . 2808

Internal problem ID [13180]
Internal file name [OUTPUT/11835_Sunday_December_03_2023_07_18_45_PM_22357976/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 21.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-5 y^{\prime}+4 y=5
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

16.20.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =-5 \\
q(t) & =4 \\
F & =5
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-5 y^{\prime}+4 y=5
$$

The domain of $p(t)=-5$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=5$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.20.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=-5, C=4, f(t)=5$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}-5 y^{\prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=-5, C=4$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}-5 \lambda \mathrm{e}^{\lambda t}+4 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}-5 \lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-5, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{5}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-5^{2}-(4)(1)(4)} \\
& =\frac{5}{2} \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lambda_{1} & =\frac{5}{2}+\frac{3}{2} \\
\lambda_{2} & =\frac{5}{2}-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=4 \\
& \lambda_{2}=1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(4) t}+c_{2} e^{(1) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{4 t}+c_{2} \mathrm{e}^{t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{4 t}+c_{2} \mathrm{e}^{t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{e^{t}, e^{4 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
4 A_{1}=5
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{5}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{5}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{4 t}+c_{2} \mathrm{e}^{t}\right)+\left(\frac{5}{4}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{4 t}+c_{2} \mathrm{e}^{t}+\frac{5}{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}+\frac{5}{4} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=4 c_{1} \mathrm{e}^{4 t}+c_{2} \mathrm{e}^{t}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=4 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{5}{12} \\
& c_{2}=-\frac{5}{3}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{5}{4}+\frac{5 \mathrm{e}^{4 t}}{12}-\frac{5 \mathrm{e}^{t}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{5}{4}+\frac{5 \mathrm{e}^{4 t}}{12}-\frac{5 \mathrm{e}^{t}}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{5}{4}+\frac{5 \mathrm{e}^{4 t}}{12}-\frac{5 \mathrm{e}^{t}}{3}
$$

Verified OK.

16.20.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-5 y^{\prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-5 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\frac{9 z(t)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 449: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-\frac{3 t}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-5}{1} d t} \\
& =z_{1} e^{\frac{5 t}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{5 t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-5}{1}} d t}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{5 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{e^{3 t}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{t}\right)+c_{2}\left(\mathrm{e}^{t}\left(\frac{\mathrm{e}^{3 t}}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}-5 y^{\prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{t}+\frac{c_{2} \mathrm{e}^{4 t}}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{4 t}}{3}, \mathrm{e}^{t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
4 A_{1}=5
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{5}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{5}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{t}+\frac{c_{2} \mathrm{e}^{4 t}}{3}\right)+\left(\frac{5}{4}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{t}+\frac{c_{2} \mathrm{e}^{4 t}}{3}+\frac{5}{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{c_{2}}{3}+\frac{5}{4} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \mathrm{e}^{t}+\frac{4 c_{2} \mathrm{e}^{4 t}}{3}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{4 c_{2}}{3} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{5}{3} \\
& c_{2}=\frac{5}{4}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{5}{4}+\frac{5 \mathrm{e}^{4 t}}{12}-\frac{5 \mathrm{e}^{t}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{5}{4}+\frac{5 \mathrm{e}^{4 t}}{12}-\frac{5 \mathrm{e}^{t}}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{5}{4}+\frac{5 \mathrm{e}^{4 t}}{12}-\frac{5 \mathrm{e}^{t}}{3}
$$

Verified OK.

16.20.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-5 y^{\prime}+4 y=5, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}-5 r+4=0
$$

- Factor the characteristic polynomial

$$
(r-1)(r-4)=0
$$

- Roots of the characteristic polynomial $r=(1,4)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{t}$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{4 t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{4 t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function $\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=5\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\mathrm{e}^{t} & \mathrm{e}^{4 t} \\ \mathrm{e}^{t} & 4 \mathrm{e}^{4 t}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=3 \mathrm{e}^{5 t}$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{5 \mathrm{e}^{t}\left(\int \mathrm{e}^{-t} d t\right)}{3}+\frac{5 \mathrm{e}^{4 t}\left(\int \mathrm{e}^{-4 t} d t\right)}{3}$
- Compute integrals
$y_{p}(t)=\frac{5}{4}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{4 t}+\frac{5}{4}$
Check validity of solution $y=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{4 t}+\frac{5}{4}$
- Use initial condition $y(0)=0$
$0=c_{1}+c_{2}+\frac{5}{4}$
- Compute derivative of the solution

$$
y^{\prime}=c_{1} \mathrm{e}^{t}+4 c_{2} \mathrm{e}^{4 t}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$

$$
0=c_{1}+4 c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-\frac{5}{3}, c_{2}=\frac{5}{12}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{5}{4}+\frac{5 \mathrm{e}^{4 t}}{12}-\frac{5 \mathrm{e}^{t}}{3}
$$

- \quad Solution to the IVP

$$
y=\frac{5}{4}+\frac{5 \mathrm{e}^{4 t}}{12}-\frac{5 \mathrm{e}^{t}}{3}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 16

```
dsolve([diff(y(t),t$2)-5*diff(y(t),t)+4*y(t)=5,y(0) = 0, D(y)(0) = 0],y(t), singsol=all)
```

$$
y(t)=\frac{5 \mathrm{e}^{4 t}}{12}-\frac{5 \mathrm{e}^{t}}{3}+\frac{5}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 21
DSolve $\left[\left\{y^{\prime}\right.\right.$ ' $[t]-5 * y$ ' $\left.[t]+4 * y[t]==5,\left\{y[0]==0, y^{\prime}[0]==0\right\}\right\}, y[t], t$, IncludeSingularSolutions \rightarrow True

$$
y(t) \rightarrow \frac{5}{12}\left(-4 e^{t}+e^{4 t}+3\right)
$$

16.21 problem 22

16.21.1 Existence and uniqueness analysis 2812
16.21.2 Solving as second order linear constant coeff ode 2813
16.21.3 Solving using Kovacic algorithm 2817
16.21.4 Maple step by step solution . 2822

Internal problem ID [13181]
Internal file name [OUTPUT/11836_Sunday_December_03_2023_07_18_47_PM_63944662/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 22.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+5 y^{\prime}+6 y=2
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

16.21.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =5 \\
q(t) & =6 \\
F & =2
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+5 y^{\prime}+6 y=2
$$

The domain of $p(t)=5$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=6$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.21.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=5, C=6, f(t)=2$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=5, C=6$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+5 \lambda \mathrm{e}^{\lambda t}+6 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+5 \lambda+6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=5, C=6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-5}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{5^{2}-(4)(1)(6)} \\
& =-\frac{5}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{5}{2}+\frac{1}{2} \\
& \lambda_{2}=-\frac{5}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-2 \\
& \lambda_{2}=-3
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(-2) t}+c_{2} e^{(-3) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-3 t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-3 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-3 t}, \mathrm{e}^{-2 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
6 A_{1}=2
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{1}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-3 t}\right)+\left(\frac{1}{3}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-3 t}+\frac{1}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}+\frac{1}{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 t}-3 c_{2} \mathrm{e}^{-3 t}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-2 c_{1}-3 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=\frac{2}{3}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{1}{3}-\mathrm{e}^{-2 t}+\frac{2 \mathrm{e}^{-3 t}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{3}-\mathrm{e}^{-2 t}+\frac{2 \mathrm{e}^{-3 t}}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{1}{3}-\mathrm{e}^{-2 t}+\frac{2 \mathrm{e}^{-3 t}}{3}
$$

Verified OK.

16.21.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+5 y^{\prime}+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =5 \tag{3}\\
C & =6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\frac{z(t)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 451: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-\frac{t}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{5}{1} d t} \\
& =z_{1} e^{-\frac{5 t}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{5 t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{5}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-5 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\mathrm{e}^{t}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 t}\right)+c_{2}\left(\mathrm{e}^{-3 t}\left(\mathrm{e}^{t}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{-2 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

1
Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-3 t}, \mathrm{e}^{-2 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
6 A_{1}=2
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{1}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{-2 t}\right)+\left(\frac{1}{3}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{-2 t}+\frac{1}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}+\frac{1}{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 \mathrm{e}^{-3 t} c_{1}-2 c_{2} \mathrm{e}^{-2 t}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-3 c_{1}-2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{2}{3} \\
& c_{2}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{1}{3}-\mathrm{e}^{-2 t}+\frac{2 \mathrm{e}^{-3 t}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{3}-\mathrm{e}^{-2 t}+\frac{2 \mathrm{e}^{-3 t}}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{1}{3}-\mathrm{e}^{-2 t}+\frac{2 \mathrm{e}^{-3 t}}{3}
$$

Verified OK.

16.21.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+5 y^{\prime}+6 y=2, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+5 r+6=0$
- Factor the characteristic polynomial
$(r+3)(r+2)=0$
- Roots of the characteristic polynomial

$$
r=(-3,-2)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{-3 t}
$$

- $\quad 2$ nd solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{-2 t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{-2 t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function
$\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=2\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\mathrm{e}^{-3 t} & \mathrm{e}^{-2 t} \\ -3 \mathrm{e}^{-3 t} & -2 \mathrm{e}^{-2 t}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=\mathrm{e}^{-5 t}$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-2 \mathrm{e}^{-3 t}\left(\int \mathrm{e}^{3 t} d t\right)+2 \mathrm{e}^{-2 t}\left(\int \mathrm{e}^{2 t} d t\right)$
- Compute integrals
$y_{p}(t)=\frac{1}{3}$
- Substitute particular solution into general solution to ODE
$y=\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{-2 t}+\frac{1}{3}$
Check validity of solution $y=\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{-2 t}+\frac{1}{3}$
- Use initial condition $y(0)=0$

$$
0=c_{1}+c_{2}+\frac{1}{3}
$$

- Compute derivative of the solution
$y^{\prime}=-3 \mathrm{e}^{-3 t} c_{1}-2 c_{2} \mathrm{e}^{-2 t}$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=-3 c_{1}-2 c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{2}{3}, c_{2}=-1\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{1}{3}-\mathrm{e}^{-2 t}+\frac{2 \mathrm{e}^{-3 t}}{3}
$$

- \quad Solution to the IVP

$$
y=\frac{1}{3}-\mathrm{e}^{-2 t}+\frac{2 \mathrm{e}^{-3 t}}{3}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 18

```
dsolve([diff(y(t),t$2)+5*diff(y(t),t)+6*y(t)=2,y(0) = 0, D(y)(0) = 0],y(t), singsol=all)
```

$$
y(t)=\frac{2 \mathrm{e}^{-3 t}}{3}-\mathrm{e}^{-2 t}+\frac{1}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 26
DSolve $\left[\left\{y^{\prime}\right.\right.$ ' $[t]+5 * y$ ' $\left.[t]+6 * y[t]==2,\left\{y[0]==0, y^{\prime}[0]==0\right\}\right\}, y[t], t$, IncludeSingularSolutions \rightarrow True

$$
y(t) \rightarrow \frac{1}{3} e^{-3 t}\left(e^{t}-1\right)^{2}\left(e^{t}+2\right)
$$

16.22 problem 23

16.22.1 Existence and uniqueness analysis 2825
16.22.2 Solving as second order linear constant coeff ode 2826
16.22.3 Solving using Kovacic algorithm 2830
16.22.4 Maple step by step solution . 2835

Internal problem ID [13182]
Internal file name [OUTPUT/11837_Sunday_December_03_2023_07_18_51_PM_10590537/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 23.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+2 y^{\prime}+10 y=10
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

16.22.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =2 \\
q(t) & =10 \\
F & =10
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+2 y^{\prime}+10 y=10
$$

The domain of $p(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=10$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=10$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.22.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=2, C=10, f(t)=10$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+10 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=2, C=10$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+2 \lambda \mathrm{e}^{\lambda t}+10 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda+10=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=10$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2^{2}-(4)(1)(10)} \\
& =-1 \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-1+3 i \\
& \lambda_{2}=-1-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-1+3 i \\
\lambda_{2}=-1-3 i
\end{gathered}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-1$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{-t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-t} \cos (3 t), \mathrm{e}^{-t} \sin (3 t)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
10 A_{1}=10
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=1
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)\right)+(1)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)+1 \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=1+c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\mathrm{e}^{-t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)+\mathrm{e}^{-t}\left(-3 c_{1} \sin (3 t)+3 c_{2} \cos (3 t)\right)
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-c_{1}+3 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=-\frac{1}{3}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=1-\frac{\mathrm{e}^{-t} \sin (3 t)}{3}-\mathrm{e}^{-t} \cos (3 t)
$$

Which simplifies to

$$
y=1+\frac{(-3 \cos (3 t)-\sin (3 t)) \mathrm{e}^{-t}}{3}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=1+\frac{(-3 \cos (3 t)-\sin (3 t)) \mathrm{e}^{-t}}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=1+\frac{(-3 \cos (3 t)-\sin (3 t)) \mathrm{e}^{-t}}{3}
$$

Verified OK.

16.22.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}+10 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=10
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-9 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-9 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 453: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (3 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d t} \\
& =z_{1} e^{-t} \\
& =z_{1}\left(\mathrm{e}^{-t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-t} \cos (3 t)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-2 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\tan (3 t)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-t} \cos (3 t)\right)+c_{2}\left(\mathrm{e}^{-t} \cos (3 t)\left(\frac{\tan (3 t)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+10 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-t} \cos (3 t)+\frac{\mathrm{e}^{-t} \sin (3 t) c_{2}}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

1
Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-t} \cos (3 t), \frac{\mathrm{e}^{-t} \sin (3 t)}{3}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
10 A_{1}=10
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=1
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-t} \cos (3 t)+\frac{\mathrm{e}^{-t} \sin (3 t) c_{2}}{3}\right)+(1)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-t} \cos (3 t)+\frac{\mathrm{e}^{-t} \sin (3 t) c_{2}}{3}+1 \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=1+c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-t} \cos (3 t)-3 c_{1} \mathrm{e}^{-t} \sin (3 t)-\frac{\mathrm{e}^{-t} \sin (3 t) c_{2}}{3}+\mathrm{e}^{-t} \cos (3 t) c_{2}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=1-\frac{\mathrm{e}^{-t} \sin (3 t)}{3}-\mathrm{e}^{-t} \cos (3 t)
$$

Which simplifies to

$$
y=1+\frac{(-3 \cos (3 t)-\sin (3 t)) \mathrm{e}^{-t}}{3}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=1+\frac{(-3 \cos (3 t)-\sin (3 t)) \mathrm{e}^{-t}}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=1+\frac{(-3 \cos (3 t)-\sin (3 t)) \mathrm{e}^{-t}}{3}
$$

Verified OK.

16.22.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+2 y^{\prime}+10 y=10, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+2 r+10=0$
- Use quadratic formula to solve for r
$r=\frac{(-2) \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial
$r=(-1-3 \mathrm{I},-1+3 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{-t} \cos (3 t)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{-t} \sin (3 t)
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-t} \cos (3 t)+\mathrm{e}^{-t} \sin (3 t) c_{2}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=10\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-t} \cos (3 t) & \mathrm{e}^{-t} \sin (3 t) \\
-\mathrm{e}^{-t} \cos (3 t)-3 \mathrm{e}^{-t} \sin (3 t) & -\mathrm{e}^{-t} \sin (3 t)+3 \mathrm{e}^{-t} \cos (3 t)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=3 \mathrm{e}^{-2 t}
$$

- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{10 \mathrm{e}^{-t}\left(\cos (3 t)\left(\int \mathrm{e}^{t} \sin (3 t) d t\right)-\sin (3 t)\left(\int \mathrm{e}^{t} \cos (3 t) d t\right)\right)}{3}$
- Compute integrals
$y_{p}(t)=1$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-t} \cos (3 t)+\mathrm{e}^{-t} \sin (3 t) c_{2}+1$
Check validity of solution $y=c_{1} \mathrm{e}^{-t} \cos (3 t)+\mathrm{e}^{-t} \sin (3 t) c_{2}+1$
- Use initial condition $y(0)=0$

$$
0=1+c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \mathrm{e}^{-t} \cos (3 t)-3 c_{1} \mathrm{e}^{-t} \sin (3 t)-\mathrm{e}^{-t} \sin (3 t) c_{2}+3 \mathrm{e}^{-t} \cos (3 t) c_{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=-c_{1}+3 c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-1, c_{2}=-\frac{1}{3}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=1+\frac{(-3 \cos (3 t)-\sin (3 t)) \mathrm{e}^{-t}}{3}
$$

- \quad Solution to the IVP

$$
y=1+\frac{(-3 \cos (3 t)-\sin (3 t)) \mathrm{e}^{-t}}{3}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 26

```
dsolve([diff(y(t),t$2)+2*diff(y(t),t)+10*y(t)=10,y(0) = 0, D(y)(0) = 0],y(t), singsol=all)
```

$$
y(t)=1+\frac{(-3 \cos (3 t)-\sin (3 t)) \mathrm{e}^{-t}}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 32
DSolve $\left[\left\{y^{\prime \prime}[t]+2 * y\right.\right.$ ' $\left.[t]+10 * y[t]==10,\left\{y[0]==0, y^{\prime}[0]==0\right\}\right\}, y[t], t$, IncludeSingularSolutions $\rightarrow \mathrm{Tr}$

$$
y(t) \rightarrow \frac{1}{3} e^{-t}\left(3 e^{t}-\sin (3 t)-3 \cos (3 t)\right)
$$

16.23 problem 24

16.23.1 Existence and uniqueness analysis 2838
16.23.2 Solving as second order linear constant coeff ode 2839
16.23.3 Solving using Kovacic algorithm 2843
16.23.4 Maple step by step solution . 2848

Internal problem ID [13183]
Internal file name [OUTPUT/11838_Sunday_December_03_2023_07_18_58_PM_41684427/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 24.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+4 y^{\prime}+6 y=-8
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

16.23.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =4 \\
q(t) & =6 \\
F & =-8
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y^{\prime}+6 y=-8
$$

The domain of $p(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=6$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=-8$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.23.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=4, C=6, f(t)=-8$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+6 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=4, C=6$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+4 \lambda \mathrm{e}^{\lambda t}+6 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda+6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{4^{2}-(4)(1)(6)} \\
& =-2 \pm i \sqrt{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-2+i \sqrt{2} \\
& \lambda_{2}=-2-i \sqrt{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \sqrt{2}-2 \\
& \lambda_{2}=-2-i \sqrt{2}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-2$ and $\beta=\sqrt{2}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{-2 t}\left(\cos (\sqrt{2} t) c_{1}+c_{2} \sin (\sqrt{2} t)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-2 t}\left(\cos (\sqrt{2} t) c_{1}+c_{2} \sin (\sqrt{2} t)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 t} \cos (\sqrt{2} t), \mathrm{e}^{-2 t} \sin (\sqrt{2} t)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
6 A_{1}=-8
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{4}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{4}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-2 t}\left(\cos (\sqrt{2} t) c_{1}+c_{2} \sin (\sqrt{2} t)\right)\right)+\left(-\frac{4}{3}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-2 t}\left(\cos (\sqrt{2} t) c_{1}+c_{2} \sin (\sqrt{2} t)\right)-\frac{4}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}-\frac{4}{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$y^{\prime}=-2 \mathrm{e}^{-2 t}\left(\cos (\sqrt{2} t) c_{1}+c_{2} \sin (\sqrt{2} t)\right)+\mathrm{e}^{-2 t}\left(-\sqrt{2} \sin (\sqrt{2} t) c_{1}+\sqrt{2} \cos (\sqrt{2} t) c_{2}\right)$ substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-2 c_{1}+\sqrt{2} c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{4}{3} \\
& c_{2}=\frac{4 \sqrt{2}}{3}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{4 \mathrm{e}^{-2 t} \cos (\sqrt{2} t)}{3}+\frac{4 \mathrm{e}^{-2 t} \sin (\sqrt{2} t) \sqrt{2}}{3}-\frac{4}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{4 \mathrm{e}^{-2 t} \cos (\sqrt{2} t)}{3}+\frac{4 \mathrm{e}^{-2 t} \sin (\sqrt{2} t) \sqrt{2}}{3}-\frac{4}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{4 \mathrm{e}^{-2 t} \cos (\sqrt{2} t)}{3}+\frac{4 \mathrm{e}^{-2 t} \sin (\sqrt{2} t) \sqrt{2}}{3}-\frac{4}{3}
$$

Verified OK.

16.23.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y^{\prime}+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =4 \tag{3}\\
C & =6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-2}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-2 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-2 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is	no condition
allowed as long as the above condi-		
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 455: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-2$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (\sqrt{2} t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d t} \\
& =z_{1} e^{-2 t} \\
& =z_{1}\left(\mathrm{e}^{-2 t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 t} \cos (\sqrt{2} t)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-4 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\sqrt{2} \tan (\sqrt{2} t)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 t} \cos (\sqrt{2} t)\right)+c_{2}\left(\mathrm{e}^{-2 t} \cos (\sqrt{2} t)\left(\frac{\sqrt{2} \tan (\sqrt{2} t)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+6 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 t} \cos (\sqrt{2} t)+\frac{c_{2} \mathrm{e}^{-2 t} \sin (\sqrt{2} t) \sqrt{2}}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 t} \cos (\sqrt{2} t), \frac{\mathrm{e}^{-2 t} \sin (\sqrt{2} t) \sqrt{2}}{2}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
6 A_{1}=-8
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{4}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{4}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 t} \cos (\sqrt{2} t)+\frac{c_{2} \mathrm{e}^{-2 t} \sin (\sqrt{2} t) \sqrt{2}}{2}\right)+\left(-\frac{4}{3}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 t} \cos (\sqrt{2} t)+\frac{c_{2} \mathrm{e}^{-2 t} \sin (\sqrt{2} t) \sqrt{2}}{2}-\frac{4}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}-\frac{4}{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$y^{\prime}=-2 c_{1} \mathrm{e}^{-2 t} \cos (\sqrt{2} t)-c_{1} \mathrm{e}^{-2 t} \sqrt{2} \sin (\sqrt{2} t)-c_{2} \mathrm{e}^{-2 t} \sin (\sqrt{2} t) \sqrt{2}+c_{2} \mathrm{e}^{-2 t} \cos (\sqrt{2} t)$
substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-2 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{4}{3} \\
& c_{2}=\frac{8}{3}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{4 \mathrm{e}^{-2 t} \cos (\sqrt{2} t)}{3}+\frac{4 \mathrm{e}^{-2 t} \sin (\sqrt{2} t) \sqrt{2}}{3}-\frac{4}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{4 \mathrm{e}^{-2 t} \cos (\sqrt{2} t)}{3}+\frac{4 \mathrm{e}^{-2 t} \sin (\sqrt{2} t) \sqrt{2}}{3}-\frac{4}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{4 \mathrm{e}^{-2 t} \cos (\sqrt{2} t)}{3}+\frac{4 \mathrm{e}^{-2 t} \sin (\sqrt{2} t) \sqrt{2}}{3}-\frac{4}{3}
$$

Verified OK.

16.23.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+4 y^{\prime}+6 y=-8, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+4 r+6=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{(-4) \pm(\sqrt{-8})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-2-\mathrm{I} \sqrt{2}, \mathrm{I} \sqrt{2}-2)
$$

- \quad 1st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{-2 t} \cos (\sqrt{2} t)
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{-2 t} \sin (\sqrt{2} t)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-2 t} \cos (\sqrt{2} t)+\mathrm{e}^{-2 t} c_{2} \sin (\sqrt{2} t)+y_{p}(t)
$$

Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=-8\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 t} \cos (\sqrt{2} t) & \mathrm{e}^{-2 t} \sin (\sqrt{2} t) \\
-2 \mathrm{e}^{-2 t} \cos (\sqrt{2} t)-\mathrm{e}^{-2 t} \sin (\sqrt{2} t) \sqrt{2} & -2 \mathrm{e}^{-2 t} \sin (\sqrt{2} t)+\mathrm{e}^{-2 t} \sqrt{2} \cos (\sqrt{ }
\end{array}\right.
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=\sqrt{2} \mathrm{e}^{-4 t}
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=4 \sqrt{2} \mathrm{e}^{-2 t}\left(\cos (\sqrt{2} t)\left(\int \mathrm{e}^{2 t} \sin (\sqrt{2} t) d t\right)-\sin (\sqrt{2} t)\left(\int \mathrm{e}^{2 t} \cos (\sqrt{2} t) d t\right)\right)
$$

- Compute integrals

$$
y_{p}(t)=-\frac{4}{3}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-2 t} \cos (\sqrt{2} t)+\mathrm{e}^{-2 t} c_{2} \sin (\sqrt{2} t)-\frac{4}{3}$
Check validity of solution $y=c_{1} \mathrm{e}^{-2 t} \cos (\sqrt{2} t)+\mathrm{e}^{-2 t} c_{2} \sin (\sqrt{2} t)-\frac{4}{3}$
- Use initial condition $y(0)=0$
$0=c_{1}-\frac{4}{3}$
- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 t} \cos (\sqrt{2} t)-c_{1} \mathrm{e}^{-2 t} \sqrt{2} \sin (\sqrt{2} t)-2 \mathrm{e}^{-2 t} c_{2} \sin (\sqrt{2} t)+\mathrm{e}^{-2 t} c_{2} \sqrt{2} \cos (\sqrt{2} t)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=-2 c_{1}+\sqrt{2} c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{4}{3}, c_{2}=\frac{4 \sqrt{2}}{3}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{4 \mathrm{e}^{-2 t} \cos (\sqrt{2} t)}{3}+\frac{4 \mathrm{e}^{-2 t} \sin (\sqrt{2} t) \sqrt{2}}{3}-\frac{4}{3}
$$

- \quad Solution to the IVP

$$
y=\frac{4 \mathrm{e}^{-2 t} \cos (\sqrt{2} t)}{3}+\frac{4 \mathrm{e}^{-2 t} \sin (\sqrt{2} t) \sqrt{2}}{3}-\frac{4}{3}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```


\checkmark Solution by Maple

Time used: 0.016 (sec). Leaf size: 33

```
dsolve([diff(y(t),t$2)+4*diff(y(t),t)+6*y(t)=-8,y(0) = 0, D(y)(0) = 0],y(t), singsol=all)
```

$$
y(t)=\frac{4 \mathrm{e}^{-2 t} \sin (\sqrt{2} t) \sqrt{2}}{3}+\frac{4 \mathrm{e}^{-2 t} \cos (\sqrt{2} t)}{3}-\frac{4}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 44

```
DSolve[{y''[t]+4*y'[t]+6*y[t]==-8,{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> Tru
```

$$
y(t) \rightarrow \frac{4}{3} e^{-2 t}\left(-e^{2 t}+\sqrt{2} \sin (\sqrt{2} t)+\cos (\sqrt{2} t)\right)
$$

16.24 problem 25

16.24.1 Existence and uniqueness analysis 2851
16.24.2 Solving as second order linear constant coeff ode 2852
16.24.3 Solving using Kovacic algorithm 2856
16.24.4 Maple step by step solution . 2861

Internal problem ID [13184]
Internal file name [OUTPUT/11839_Sunday_December_03_2023_07_19_05_PM_62662093/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 25.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+9 y=\mathrm{e}^{-t}
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

16.24.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =9 \\
F & =\mathrm{e}^{-t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+9 y=\mathrm{e}^{-t}
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=9$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=\mathrm{e}^{-t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.24.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=0, C=9, f(t)=\mathrm{e}^{-t}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=0, C=9$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+9 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(9)} \\
& = \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)
$$

Or

$$
y=c_{1} \cos (3 t)+c_{2} \sin (3 t)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (3 t)+c_{2} \sin (3 t)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{-t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (3 t), \sin (3 t)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
10 A_{1} \mathrm{e}^{-t}=\mathrm{e}^{-t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{10}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{-t}}{10}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)+\left(\frac{\mathrm{e}^{-t}}{10}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (3 t)+c_{2} \sin (3 t)+\frac{\mathrm{e}^{-t}}{10} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{1}{10} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 c_{1} \sin (3 t)+3 c_{2} \cos (3 t)-\frac{\mathrm{e}^{-t}}{10}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-\frac{1}{10}+3 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{10} \\
& c_{2}=\frac{1}{30}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{\cos (3 t)}{10}+\frac{\sin (3 t)}{30}+\frac{\mathrm{e}^{-t}}{10}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\cos (3 t)}{10}+\frac{\sin (3 t)}{30}+\frac{\mathrm{e}^{-t}}{10} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{\cos (3 t)}{10}+\frac{\sin (3 t)}{30}+\frac{\mathrm{e}^{-t}}{10}
$$

Verified OK.

16.24.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-9 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-9 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 457: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (3 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (3 t)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (3 t)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d t \\
& =\cos (3 t) \int \frac{1}{\cos (3 t)^{2}} d t \\
& =\cos (3 t)\left(\frac{\tan (3 t)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (3 t))+c_{2}\left(\cos (3 t)\left(\frac{\tan (3 t)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (3 t)+\frac{c_{2} \sin (3 t)}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{-t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (3 t)}{3}, \cos (3 t)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
10 A_{1} \mathrm{e}^{-t}=\mathrm{e}^{-t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{10}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{-t}}{10}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 t)+\frac{c_{2} \sin (3 t)}{3}\right)+\left(\frac{\mathrm{e}^{-t}}{10}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (3 t)+\frac{c_{2} \sin (3 t)}{3}+\frac{\mathrm{e}^{-t}}{10} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{1}{10} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 c_{1} \sin (3 t)+c_{2} \cos (3 t)-\frac{\mathrm{e}^{-t}}{10}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-\frac{1}{10}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{10} \\
& c_{2}=\frac{1}{10}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{\cos (3 t)}{10}+\frac{\sin (3 t)}{30}+\frac{\mathrm{e}^{-t}}{10}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\cos (3 t)}{10}+\frac{\sin (3 t)}{30}+\frac{\mathrm{e}^{-t}}{10} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{\cos (3 t)}{10}+\frac{\sin (3 t)}{30}+\frac{\mathrm{e}^{-t}}{10}
$$

Verified OK.

16.24.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+9 y=\mathrm{e}^{-t}, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}+9=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial

$$
r=(-3 \mathrm{I}, 3 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\cos (3 t)
$$

- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\sin (3 t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (3 t)+c_{2} \sin (3 t)+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function $\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\mathrm{e}^{-t}\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\cos (3 t) & \sin (3 t) \\ -3 \sin (3 t) & 3 \cos (3 t)\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=3$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{\cos (3 t)\left(\int \mathrm{e}^{-t} \sin (3 t) d t\right)}{3}+\frac{\sin (3 t)\left(\int \mathrm{e}^{-t} \cos (3 t) d t\right)}{3}$
- Compute integrals
$y_{p}(t)=\frac{\mathrm{e}^{-t}}{10}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (3 t)+c_{2} \sin (3 t)+\frac{\mathrm{e}^{-t}}{10}$
Check validity of solution $y=c_{1} \cos (3 t)+c_{2} \sin (3 t)+\frac{\mathrm{e}^{-t}}{10}$
- Use initial condition $y(0)=0$
$0=c_{1}+\frac{1}{10}$
- Compute derivative of the solution

$$
y^{\prime}=-3 c_{1} \sin (3 t)+3 c_{2} \cos (3 t)-\frac{\mathrm{e}^{-t}}{10}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=-\frac{1}{10}+3 c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-\frac{1}{10}, c_{2}=\frac{1}{30}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-\frac{\cos (3 t)}{10}+\frac{\sin (3 t)}{30}+\frac{\mathrm{e}^{-t}}{10}
$$

- \quad Solution to the IVP

$$
y=-\frac{\cos (3 t)}{10}+\frac{\sin (3 t)}{30}+\frac{\mathrm{e}^{-t}}{10}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 23

```
dsolve([diff(y(t),t$2)+9*y(t)=exp(-t),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)
```

$$
y(t)=\frac{\sin (3 t)}{30}-\frac{\cos (3 t)}{10}+\frac{\mathrm{e}^{-t}}{10}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.121 (sec). Leaf size: 33

```
DSolve[{y''[t]+9*y[t]==Exp[-t],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow \frac{1}{30} e^{-t}\left(e^{t} \sin (3 t)-3 e^{t} \cos (3 t)+3\right)
$$

16.25 problem 26

16.25.1 Existence and uniqueness analysis 2864
16.25.2 Solving as second order linear constant coeff ode 2865
16.25.3 Solving using Kovacic algorithm 2869
16.25.4 Maple step by step solution . 2874

Internal problem ID [13185]
Internal file name [OUTPUT/11840_Sunday_December_03_2023_07_19_09_PM_11004804/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 26.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+4 y=2 \mathrm{e}^{-2 t}
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

16.25.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =4 \\
F & =2 \mathrm{e}^{-2 t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y=2 \mathrm{e}^{-2 t}
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=2 \mathrm{e}^{-2 t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.25.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=0, C=4, f(t)=2 \mathrm{e}^{-2 t}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+4 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)
$$

Or

$$
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (2 t)+c_{2} \sin (2 t)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \mathrm{e}^{-2 t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-2 t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (2 t), \sin (2 t)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-2 t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
8 A_{1} \mathrm{e}^{-2 t}=2 \mathrm{e}^{-2 t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{-2 t}}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)+\left(\frac{\mathrm{e}^{-2 t}}{4}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+\frac{\mathrm{e}^{-2 t}}{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=\frac{1}{4}+c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t)-\frac{\mathrm{e}^{-2 t}}{2}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-\frac{1}{2}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{4} \\
& c_{2}=\frac{1}{4}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{\cos (2 t)}{4}+\frac{\sin (2 t)}{4}+\frac{\mathrm{e}^{-2 t}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\cos (2 t)}{4}+\frac{\sin (2 t)}{4}+\frac{\mathrm{e}^{-2 t}}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{\cos (2 t)}{4}+\frac{\sin (2 t)}{4}+\frac{\mathrm{e}^{-2 t}}{4}
$$

Verified OK.

16.25.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-4 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 459: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (2 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 t)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 t)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d t \\
& =\cos (2 t) \int \frac{1}{\cos (2 t)^{2}} d t \\
& =\cos (2 t)\left(\frac{\tan (2 t)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 t))+c_{2}\left(\cos (2 t)\left(\frac{\tan (2 t)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \mathrm{e}^{-2 t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-2 t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (2 t)}{2}, \cos (2 t)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-2 t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
8 A_{1} \mathrm{e}^{-2 t}=2 \mathrm{e}^{-2 t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{-2 t}}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}\right)+\left(\frac{\mathrm{e}^{-2 t}}{4}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}+\frac{\mathrm{e}^{-2 t}}{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=\frac{1}{4}+c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \sin (2 t)+c_{2} \cos (2 t)-\frac{\mathrm{e}^{-2 t}}{2}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-\frac{1}{2}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{4} \\
& c_{2}=\frac{1}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{\cos (2 t)}{4}+\frac{\sin (2 t)}{4}+\frac{\mathrm{e}^{-2 t}}{4}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\cos (2 t)}{4}+\frac{\sin (2 t)}{4}+\frac{\mathrm{e}^{-2 t}}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=-\frac{\cos (2 t)}{4}+\frac{\sin (2 t)}{4}+\frac{\mathrm{e}^{-2 t}}{4}
$$

Verified OK.

16.25.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+4 y=2 \mathrm{e}^{-2 t}, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}+4=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-16})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-2 \mathrm{I}, 2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\cos (2 t)
$$

- $\quad 2$ nd solution of the homogeneous ODE
$y_{2}(t)=\sin (2 t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function $\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=2 \mathrm{e}^{-2 t}\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\cos (2 t) & \sin (2 t) \\ -2 \sin (2 t) & 2 \cos (2 t)\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=2$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\cos (2 t)\left(\int \mathrm{e}^{-2 t} \sin (2 t) d t\right)+\sin (2 t)\left(\int \mathrm{e}^{-2 t} \cos (2 t) d t\right)$
- Compute integrals
$y_{p}(t)=\frac{\mathrm{e}^{-2 t}}{4}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+\frac{\mathrm{e}^{-2 t}}{4}$
Check validity of solution $y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+\frac{\mathrm{e}^{-2 t}}{4}$
- Use initial condition $y(0)=0$
$0=\frac{1}{4}+c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t)-\frac{\mathrm{e}^{-2 t}}{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=-\frac{1}{2}+2 c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-\frac{1}{4}, c_{2}=\frac{1}{4}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-\frac{\cos (2 t)}{4}+\frac{\sin (2 t)}{4}+\frac{\mathrm{e}^{-2 t}}{4}
$$

- \quad Solution to the IVP

$$
y=-\frac{\cos (2 t)}{4}+\frac{\sin (2 t)}{4}+\frac{\mathrm{e}^{-2 t}}{4}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 23

```
dsolve([diff(y(t),t$2)+4*y(t)=2*exp(-2*t),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)
```

$$
y(t)=\frac{\sin (2 t)}{4}-\frac{\cos (2 t)}{4}+\frac{\mathrm{e}^{-2 t}}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 25
DSolve $\left[\left\{y^{\prime \prime}[t]+4 * y[t]==2 * \operatorname{Exp}[-2 * t],\{y[0]==0, y\right.\right.$ ' $\left.[0]==0\}\right\}, y[t], t$, IncludeSingularSolutions $->\operatorname{Tr}$

$$
y(t) \rightarrow \frac{1}{4}\left(e^{-2 t}+\sin (2 t)-\cos (2 t)\right)
$$

16.26 problem 27

16.26.1 Existence and uniqueness analysis 2877
16.26.2 Solving as second order linear constant coeff ode 2878
16.26.3 Solving as second order ode can be made integrable ode 2882
16.26.4 Solving using Kovacic algorithm 2884
16.26.5 Maple step by step solution . 2890

Internal problem ID [13186]
Internal file name [OUTPUT/11841_Sunday_December_03_2023_07_19_13_PM_43696469/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 27.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant__coeff", "second__order_ode_can_be__made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+2 y=-3
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

16.26.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =2 \\
F & =-3
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+2 y=-3
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=-3$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.26.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=0, C=2, f(t)=-3$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=0, C=2$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+2 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(2)} \\
& = \pm i \sqrt{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \sqrt{2} \\
& \lambda_{2}=-i \sqrt{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \sqrt{2} \\
& \lambda_{2}=-i \sqrt{2}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=\sqrt{2}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{0}\left(\cos (\sqrt{2} t) c_{1}+c_{2} \sin (\sqrt{2} t)\right)
$$

Or

$$
y=\cos (\sqrt{2} t) c_{1}+c_{2} \sin (\sqrt{2} t)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\cos (\sqrt{2} t) c_{1}+c_{2} \sin (\sqrt{2} t)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (\sqrt{2} t), \sin (\sqrt{2} t)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1}=-3
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{3}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{3}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (\sqrt{2} t) c_{1}+c_{2} \sin (\sqrt{2} t)\right)+\left(-\frac{3}{2}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=\cos (\sqrt{2} t) c_{1}+c_{2} \sin (\sqrt{2} t)-\frac{3}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-\frac{3}{2}+c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\sqrt{2} \sin (\sqrt{2} t) c_{1}+\sqrt{2} \cos (\sqrt{2} t) c_{2}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=\sqrt{2} c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{3}{2} \\
& c_{2}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{3 \cos (\sqrt{2} t)}{2}-\frac{3}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 \cos (\sqrt{2} t)}{2}-\frac{3}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{3 \cos (\sqrt{2} t)}{2}-\frac{3}{2}
$$

Verified OK.

16.26.3 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}+2 y^{\prime} y+3 y^{\prime}=0
$$

Integrating the above w.r.t t gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+2 y^{\prime} y+3 y^{\prime}\right) d t=0 \\
\frac{y^{\prime 2}}{2}+y^{2}+3 y=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{-2 y^{2}-6 y+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{-2 y^{2}-6 y+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.

Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{-2 y^{2}+2 c_{1}-6 y}} d y & =\int d t \\
\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2}\left(y+\frac{3}{2}\right)}{\sqrt{-2 y^{2}-6 y+2 c_{1}}}\right)}{2} & =t+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{-2 y^{2}+2 c_{1}-6 y}} d y & =\int d t \\
-\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2}\left(y+\frac{3}{2}\right)}{\sqrt{-2 y^{2}-6 y+2 c_{1}}}\right)}{2} & =t+c_{3}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the First solution

$$
\begin{equation*}
\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2}\left(y+\frac{3}{2}\right)}{\sqrt{-2 y^{2}-6 y+2 c_{1}}}\right)}{2}=t+c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
\frac{\arctan \left(\frac{3}{2 \sqrt{c_{1}}}\right) \sqrt{2}}{2}=c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$y^{\prime}=-\frac{\tan \left(\left(t+c_{2}\right) \sqrt{2}\right)^{2}\left(9+4 c_{1}\right) \sqrt{2}}{2 \sqrt{\frac{9+4 c_{1}}{\tan \left(\left(t+c_{2}\right) \sqrt{2}\right)^{2}+1}}\left(\tan \left(\left(t+c_{2}\right) \sqrt{2}\right)^{2}+1\right)}+\frac{\sqrt{\frac{9+4 c_{1}}{\tan \left(\left(t+c_{2}\right) \sqrt{2}\right)^{2}+1}} \sqrt{2}\left(\tan \left(\left(t+c_{2}\right) \sqrt{2}\right)^{2}+1\right)}{2}$
substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=\frac{\cos \left(\sqrt{2} c_{2}\right)^{2}\left(9+4 c_{1}\right) \sqrt{2}}{2 \sqrt{\cos \left(\sqrt{2} c_{2}\right)^{2}\left(9+4 c_{1}\right)}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Looking at the Second solution

$$
\begin{equation*}
-\frac{\sqrt{2} \arctan \left(\frac{\sqrt{2}\left(y+\frac{3}{2}\right)}{\sqrt{-2 y^{2}-6 y+2 c_{1}}}\right)}{2}=t+c_{3} \tag{2}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
-\frac{\arctan \left(\frac{3}{2 \sqrt{c_{1}}}\right) \sqrt{2}}{2}=c_{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$y^{\prime}=\frac{\tan \left(\left(t+c_{3}\right) \sqrt{2}\right)^{2}\left(9+4 c_{1}\right) \sqrt{2}}{2 \sqrt{\frac{9+4 c_{1}}{\tan \left(\left(t+c_{3}\right) \sqrt{2}\right)^{2}+1}}\left(\tan \left(\left(t+c_{3}\right) \sqrt{2}\right)^{2}+1\right)}-\frac{\sqrt{\frac{9+4 c_{1}}{\tan \left(\left(t+c_{3}\right) \sqrt{2}\right)^{2}+1}} \sqrt{2}\left(\tan \left(\left(t+c_{3}\right) \sqrt{2}\right)^{2}+1\right)}{2}$
substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-\frac{\cos \left(\sqrt{2} c_{3}\right)^{2}\left(9+4 c_{1}\right) \sqrt{2}}{2 \sqrt{\cos \left(\sqrt{2} c_{3}\right)^{2}\left(9+4 c_{1}\right)}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Verification of solutions N/A

16.26.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-2}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-2 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-2 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 461: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-2$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (\sqrt{2} t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (\sqrt{2} t)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (\sqrt{2} t)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d t \\
& =\cos (\sqrt{2} t) \int \frac{1}{\cos (\sqrt{2} t)^{2}} d t \\
& =\cos (\sqrt{2} t)\left(\frac{\sqrt{2} \tan (\sqrt{2} t)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (\sqrt{2} t))+c_{2}\left(\cos (\sqrt{2} t)\left(\frac{\sqrt{2} \tan (\sqrt{2} t)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\cos (\sqrt{2} t) c_{1}+\frac{c_{2} \sqrt{2} \sin (\sqrt{2} t)}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sqrt{2} \sin (\sqrt{2} t)}{2}, \cos (\sqrt{2} t)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1}=-3
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{3}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{3}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (\sqrt{2} t) c_{1}+\frac{c_{2} \sqrt{2} \sin (\sqrt{2} t)}{2}\right)+\left(-\frac{3}{2}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=\cos (\sqrt{2} t) c_{1}+\frac{c_{2} \sqrt{2} \sin (\sqrt{2} t)}{2}-\frac{3}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-\frac{3}{2}+c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\sqrt{2} \sin (\sqrt{2} t) c_{1}+c_{2} \cos (\sqrt{2} t)
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{3}{2} \\
& c_{2}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{3 \cos (\sqrt{2} t)}{2}-\frac{3}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 \cos (\sqrt{2} t)}{2}-\frac{3}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{3 \cos (\sqrt{2} t)}{2}-\frac{3}{2}
$$

Verified OK.

16.26.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+2 y=-3, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+2=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-8})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-\mathrm{I} \sqrt{2}, \mathrm{I} \sqrt{2})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\cos (\sqrt{2} t)
$$

- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\sin (\sqrt{2} t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=\cos (\sqrt{2} t) c_{1}+c_{2} \sin (\sqrt{2} t)+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function $\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=-3\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (\sqrt{2} t) & \sin (\sqrt{2} t) \\
-\sqrt{2} \sin (\sqrt{2} t) & \sqrt{2} \cos (\sqrt{2} t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=\sqrt{2}$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=\frac{3 \sqrt{2}\left(\cos (\sqrt{2} t)\left(\int \sin (\sqrt{2} t) d t\right)-\sin (\sqrt{2} t)\left(\int \cos (\sqrt{2} t) d t\right)\right)}{2}
$$

- Compute integrals

$$
y_{p}(t)=-\frac{3}{2}
$$

- Substitute particular solution into general solution to ODE
$y=\cos (\sqrt{2} t) c_{1}+c_{2} \sin (\sqrt{2} t)-\frac{3}{2}$
Check validity of solution $y=\cos (\sqrt{2} t) c_{1}+c_{2} \sin (\sqrt{2} t)-\frac{3}{2}$
- Use initial condition $y(0)=0$
$0=-\frac{3}{2}+c_{1}$
- Compute derivative of the solution $y^{\prime}=-\sqrt{2} \sin (\sqrt{2} t) c_{1}+\sqrt{2} \cos (\sqrt{2} t) c_{2}$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=\sqrt{2} c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{3}{2}, c_{2}=0\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{3 \cos (\sqrt{2} t)}{2}-\frac{3}{2}
$$

- \quad Solution to the IVP

$$
y=\frac{3 \cos (\sqrt{2} t)}{2}-\frac{3}{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

```
dsolve([diff(y(t),t$2)+2*y(t)=-3,y(0) = 0, D(y)(0) = 0],y(t), singsol=all)
```

$$
y(t)=-\frac{3}{2}+\frac{3 \cos (\sqrt{2} t)}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 17

```
DSolve[{y''[t]+2*y[t]==-3,{y[0]==0, y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow-3 \sin ^{2}\left(\frac{t}{\sqrt{2}}\right)
$$

16.27 problem 28

16.27.1 Existence and uniqueness analysis 2893
16.27.2 Solving as second order linear constant coeff ode 2894
16.27.3 Solving using Kovacic algorithm 2898
16.27.4 Maple step by step solution . 2903

Internal problem ID [13187]
Internal file name [OUTPUT/11842_Sunday_December_03_2023_07_19_17_PM_68362535/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 28.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+4 y=\mathrm{e}^{t}
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

16.27.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =4 \\
F & =\mathrm{e}^{t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y=\mathrm{e}^{t}
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=\mathrm{e}^{t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.27.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=0, C=4, f(t)=\mathrm{e}^{t}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+4 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)
$$

Or

$$
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (2 t)+c_{2} \sin (2 t)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (2 t), \sin (2 t)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
5 A_{1} \mathrm{e}^{t}=\mathrm{e}^{t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{5}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{t}}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)+\left(\frac{\mathrm{e}^{t}}{5}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+\frac{\mathrm{e}^{t}}{5} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=\frac{1}{5}+c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t)+\frac{\mathrm{e}^{t}}{5}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=\frac{1}{5}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{5} \\
& c_{2}=-\frac{1}{10}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\mathrm{e}^{t}}{5}-\frac{\cos (2 t)}{5}-\frac{\sin (2 t)}{10}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{t}}{5}-\frac{\cos (2 t)}{5}-\frac{\sin (2 t)}{10} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{t}}{5}-\frac{\cos (2 t)}{5}-\frac{\sin (2 t)}{10}
$$

Verified OK.

16.27.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-4 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 463: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (2 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 t)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 t)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d t \\
& =\cos (2 t) \int \frac{1}{\cos (2 t)^{2}} d t \\
& =\cos (2 t)\left(\frac{\tan (2 t)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 t))+c_{2}\left(\cos (2 t)\left(\frac{\tan (2 t)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (2 t)}{2}, \cos (2 t)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
5 A_{1} \mathrm{e}^{t}=\mathrm{e}^{t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{5}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{t}}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}\right)+\left(\frac{\mathrm{e}^{t}}{5}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}+\frac{\mathrm{e}^{t}}{5} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=\frac{1}{5}+c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \sin (2 t)+c_{2} \cos (2 t)+\frac{\mathrm{e}^{t}}{5}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=\frac{1}{5}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{5} \\
& c_{2}=-\frac{1}{5}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\mathrm{e}^{t}}{5}-\frac{\cos (2 t)}{5}-\frac{\sin (2 t)}{10}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{t}}{5}-\frac{\cos (2 t)}{5}-\frac{\sin (2 t)}{10} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{t}}{5}-\frac{\cos (2 t)}{5}-\frac{\sin (2 t)}{10}
$$

Verified OK.

16.27.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+4 y=\mathrm{e}^{t}, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}+4=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial

$$
r=(-2 \mathrm{I}, 2 \mathrm{I})
$$

- \quad 1st solution of the homogeneous ODE

$$
y_{1}(t)=\cos (2 t)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\sin (2 t)
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+y_{p}(t)
$$

Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function $\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\mathrm{e}^{t}\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (2 t) & \sin (2 t) \\
-2 \sin (2 t) & 2 \cos (2 t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=2$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\frac{\cos (2 t)\left(\int \mathrm{e}^{t} \sin (2 t) d t\right)}{2}+\frac{\sin (2 t)\left(\int \mathrm{e}^{t} \cos (2 t) d t\right)}{2}
$$

- Compute integrals

$$
y_{p}(t)=\frac{\mathrm{e}^{t}}{5}
$$

- \quad Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+\frac{\mathrm{e}^{t}}{5}
$$

Check validity of solution $y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+\frac{\mathrm{e}^{t}}{5}$

- Use initial condition $y(0)=0$
$0=\frac{1}{5}+c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t)+\frac{\mathrm{e}^{t}}{5}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$

$$
0=\frac{1}{5}+2 c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-\frac{1}{5}, c_{2}=-\frac{1}{10}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{\mathrm{e}^{t}}{5}-\frac{\cos (2 t)}{5}-\frac{\sin (2 t)}{10}
$$

- \quad Solution to the IVP

$$
y=\frac{\mathrm{e}^{t}}{5}-\frac{\cos (2 t)}{5}-\frac{\sin (2 t)}{10}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 21

```
dsolve([diff(y(t),t$2)+4*y(t)=exp(t),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)
```

$$
y(t)=-\frac{\sin (2 t)}{10}-\frac{\cos (2 t)}{5}+\frac{\mathrm{e}^{t}}{5}
$$

\checkmark Solution by Mathematica
Time used: 0.082 (sec). Leaf size: 27

```
DSolve[{y''[t]+4*y[t]==Exp[t],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow \frac{1}{10}\left(2 e^{t}-\sin (2 t)-2 \cos (2 t)\right)
$$

16.28 problem 29

16.28.1 Existence and uniqueness analysis 2906
16.28.2 Solving as second order linear constant coeff ode 2907
16.28.3 Solving as second order ode can be made integrable ode 2911
16.28.4 Solving using Kovacic algorithm 2913
16.28.5 Maple step by step solution . 2918

Internal problem ID [13188]
Internal file name [OUTPUT/11843_Sunday_December_03_2023_07_19_21_PM_11694891/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 29.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant__coeff", "second__order_ode_can_be__made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+9 y=6
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

16.28.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =9 \\
F & =6
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+9 y=6
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=9$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=6$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.28.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=0, C=9, f(t)=6$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=0, C=9$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+9 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(9)} \\
& = \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)
$$

Or

$$
y=c_{1} \cos (3 t)+c_{2} \sin (3 t)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (3 t)+c_{2} \sin (3 t)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (3 t), \sin (3 t)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
9 A_{1}=6
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{2}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{2}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)+\left(\frac{2}{3}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (3 t)+c_{2} \sin (3 t)+\frac{2}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{2}{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 c_{1} \sin (3 t)+3 c_{2} \cos (3 t)
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=3 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{2}{3} \\
& c_{2}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{2}{3}-\frac{2 \cos (3 t)}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2}{3}-\frac{2 \cos (3 t)}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{2}{3}-\frac{2 \cos (3 t)}{3}
$$

Verified OK.

16.28.3 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}+9 y^{\prime} y-6 y^{\prime}=0
$$

Integrating the above w.r.t t gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+9 y^{\prime} y-6 y^{\prime}\right) d t=0 \\
\frac{y^{\prime 2}}{2}+\frac{9 y^{2}}{2}-6 y=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{-9 y^{2}+12 y+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{-9 y^{2}+12 y+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{-9 y^{2}+2 c_{1}+12 y}} d y & =\int d t \\
\frac{\arctan \left(\frac{3 y-2}{\sqrt{-9 y^{2}+12 y+2 c_{1}}}\right)}{3} & =t+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{-9 y^{2}+2 c_{1}+12 y}} d y & =\int d t \\
-\frac{\arctan \left(\frac{3 y-2}{\sqrt{-9 y^{2}+12 y+2 c_{1}}}\right)}{3} & =t+c_{3}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the First solution

$$
\begin{equation*}
\frac{\arctan \left(\frac{3 y-2}{\sqrt{-9 y^{2}+12 y+2 c_{1}}}\right)}{3}=t+c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
-\frac{\arctan \left(\frac{\sqrt{2}}{\sqrt{c_{1}}}\right)}{3}=c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$y^{\prime}=\frac{\left(3 \tan \left(3 t+3 c_{2}\right)^{2}+3\right) \sqrt{2} \sqrt{\frac{c_{1}+2}{\tan \left(3 t+3 c_{2}\right)^{2}+1}}}{3}-\frac{\tan \left(3 t+3 c_{2}\right)^{2} \sqrt{2}\left(c_{1}+2\right)\left(3 \tan \left(3 t+3 c_{2}\right)^{2}+3\right)}{3 \sqrt{\frac{c_{1}+2}{\tan \left(3 t+3 c_{2}\right)^{2}+1}}\left(\tan \left(3 t+3 c_{2}\right)^{2}+1\right)^{2}}$
substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=\frac{\cos \left(3 c_{2}\right)^{2}\left(c_{1}+2\right) \sqrt{2}}{\sqrt{\cos \left(3 c_{2}\right)^{2}\left(c_{1}+2\right)}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Looking at the Second solution

$$
\begin{equation*}
-\frac{\arctan \left(\frac{3 y-2}{\sqrt{-9 y^{2}+12 y+2 c_{1}}}\right)}{3}=t+c_{3} \tag{2}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
\frac{\arctan \left(\frac{\sqrt{2}}{\sqrt{c_{1}}}\right)}{3}=c_{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$y^{\prime}=-\frac{\left(3 \tan \left(3 t+3 c_{3}\right)^{2}+3\right) \sqrt{2} \sqrt{\frac{c_{1}+2}{\tan \left(3 t+3 c_{3}\right)^{2}+1}}}{3}+\frac{\tan \left(3 t+3 c_{3}\right)^{2} \sqrt{2}\left(c_{1}+2\right)\left(3 \tan \left(3 t+3 c_{3}\right)^{2}+3\right)}{3 \sqrt{\frac{c_{1}+2}{\tan \left(3 t+3 c_{3}\right)^{2}+1}}\left(\tan \left(3 t+3 c_{3}\right)^{2}+1\right)^{2}}$
substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=\frac{\cos \left(3 c_{3}\right)^{2} \sqrt{2}\left(-2-c_{1}\right)}{\sqrt{\cos \left(3 c_{3}\right)^{2}\left(c_{1}+2\right)}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Verification of solutions N/A

16.28.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-9 \\
t & =1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-9 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 465: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (3 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (3 t)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (3 t)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d t \\
& =\cos (3 t) \int \frac{1}{\cos (3 t)^{2}} d t \\
& =\cos (3 t)\left(\frac{\tan (3 t)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (3 t))+c_{2}\left(\cos (3 t)\left(\frac{\tan (3 t)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (3 t)+\frac{c_{2} \sin (3 t)}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

1

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (3 t)}{3}, \cos (3 t)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
9 A_{1}=6
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{2}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{2}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 t)+\frac{c_{2} \sin (3 t)}{3}\right)+\left(\frac{2}{3}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (3 t)+\frac{c_{2} \sin (3 t)}{3}+\frac{2}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{2}{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 c_{1} \sin (3 t)+c_{2} \cos (3 t)
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{2}{3} \\
& c_{2}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{2}{3}-\frac{2 \cos (3 t)}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2}{3}-\frac{2 \cos (3 t)}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{2}{3}-\frac{2 \cos (3 t)}{3}
$$

Verified OK.

16.28.5 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}+9 y=6, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+9=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial
$r=(-3 \mathrm{I}, 3 \mathrm{I})$
- \quad 1st solution of the homogeneous ODE
$y_{1}(t)=\cos (3 t)$
- $\quad 2$ nd solution of the homogeneous ODE
$y_{2}(t)=\sin (3 t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (3 t)+c_{2} \sin (3 t)+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function $\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=6\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\cos (3 t) & \sin (3 t) \\ -3 \sin (3 t) & 3 \cos (3 t)\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=3$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-2 \cos (3 t)\left(\int \sin (3 t) d t\right)+2 \sin (3 t)\left(\int \cos (3 t) d t\right)
$$

- Compute integrals

$$
y_{p}(t)=\frac{2}{3}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (3 t)+c_{2} \sin (3 t)+\frac{2}{3}$
Check validity of solution $y=c_{1} \cos (3 t)+c_{2} \sin (3 t)+\frac{2}{3}$
- Use initial condition $y(0)=0$
$0=c_{1}+\frac{2}{3}$
- Compute derivative of the solution
$y^{\prime}=-3 c_{1} \sin (3 t)+3 c_{2} \cos (3 t)$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=3 c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-\frac{2}{3}, c_{2}=0\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{2}{3}-\frac{2 \cos (3 t)}{3}
$$

- \quad Solution to the IVP

$$
y=\frac{2}{3}-\frac{2 \cos (3 t)}{3}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve([diff(y(t),t$2)+9*y(t)=6,y(0) = 0, D(y)(0) = 0],y(t), singsol=all)
```

$$
y(t)=\frac{2}{3}-\frac{2 \cos (3 t)}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 17

```
DSolve[\{y' ' \(\left.[\mathrm{t}]+9 * y[\mathrm{t}]==6,\left\{\mathrm{y}[0]==0, \mathrm{y}^{\prime}[0]==0\right\}\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}\), IncludeSingularSolutions \(\rightarrow\) True]
```

$$
y(t) \rightarrow \frac{4}{3} \sin ^{2}\left(\frac{3 t}{2}\right)
$$

16.29 problem 30

16.29.1 Existence and uniqueness analysis 2921
16.29.2 Solving as second order linear constant coeff ode 2922
16.29.3 Solving using Kovacic algorithm 2926
16.29.4 Maple step by step solution . 2932

Internal problem ID [13189]
Internal file name [OUTPUT/11844_Sunday_December_03_2023_07_19_25_PM_12119771/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 30 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+2 y=-\mathrm{e}^{t}
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

16.29.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =2 \\
F & =-\mathrm{e}^{t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+2 y=-\mathrm{e}^{t}
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=-\mathrm{e}^{t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.29.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=0, C=2, f(t)=-\mathrm{e}^{t}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=0, C=2$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+2 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(2)} \\
& = \pm i \sqrt{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \sqrt{2} \\
& \lambda_{2}=-i \sqrt{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \sqrt{2} \\
& \lambda_{2}=-i \sqrt{2}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=\sqrt{2}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{0}\left(\cos (\sqrt{2} t) c_{1}+c_{2} \sin (\sqrt{2} t)\right)
$$

Or

$$
y=\cos (\sqrt{2} t) c_{1}+c_{2} \sin (\sqrt{2} t)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\cos (\sqrt{2} t) c_{1}+c_{2} \sin (\sqrt{2} t)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
-e^{t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (\sqrt{2} t), \sin (\sqrt{2} t)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
3 A_{1} \mathrm{e}^{t}=-\mathrm{e}^{t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{\mathrm{e}^{t}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (\sqrt{2} t) c_{1}+c_{2} \sin (\sqrt{2} t)\right)+\left(-\frac{\mathrm{e}^{t}}{3}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=\cos (\sqrt{2} t) c_{1}+c_{2} \sin (\sqrt{2} t)-\frac{\mathrm{e}^{t}}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-\frac{1}{3}+c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\sqrt{2} \sin (\sqrt{2} t) c_{1}+\sqrt{2} \cos (\sqrt{2} t) c_{2}-\frac{\mathrm{e}^{t}}{3}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=\sqrt{2} c_{2}-\frac{1}{3} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{3} \\
& c_{2}=\frac{\sqrt{2}}{6}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\cos (\sqrt{2} t)}{3}+\frac{\sqrt{2} \sin (\sqrt{2} t)}{6}-\frac{\mathrm{e}^{t}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\cos (\sqrt{2} t)}{3}+\frac{\sqrt{2} \sin (\sqrt{2} t)}{6}-\frac{\mathrm{e}^{t}}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\cos (\sqrt{2} t)}{3}+\frac{\sqrt{2} \sin (\sqrt{2} t)}{6}-\frac{\mathrm{e}^{t}}{3}
$$

Verified OK.

16.29.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-2}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-2 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-2 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 467: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-2$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (\sqrt{2} t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (\sqrt{2} t)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (\sqrt{2} t)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d t \\
& =\cos (\sqrt{2} t) \int \frac{1}{\cos (\sqrt{2} t)^{2}} d t \\
& =\cos (\sqrt{2} t)\left(\frac{\sqrt{2} \tan (\sqrt{2} t)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (\sqrt{2} t))+c_{2}\left(\cos (\sqrt{2} t)\left(\frac{\sqrt{2} \tan (\sqrt{2} t)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\cos (\sqrt{2} t) c_{1}+\frac{c_{2} \sqrt{2} \sin (\sqrt{2} t)}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
-e^{t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sqrt{2} \sin (\sqrt{2} t)}{2}, \cos (\sqrt{2} t)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{t}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
3 A_{1} \mathrm{e}^{t}=-\mathrm{e}^{t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{\mathrm{e}^{t}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (\sqrt{2} t) c_{1}+\frac{c_{2} \sqrt{2} \sin (\sqrt{2} t)}{2}\right)+\left(-\frac{\mathrm{e}^{t}}{3}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\cos (\sqrt{2} t) c_{1}+\frac{c_{2} \sqrt{2} \sin (\sqrt{2} t)}{2}-\frac{\mathrm{e}^{t}}{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-\frac{1}{3}+c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\sqrt{2} \sin (\sqrt{2} t) c_{1}+c_{2} \cos (\sqrt{2} t)-\frac{\mathrm{e}^{t}}{3}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{2}-\frac{1}{3} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{3} \\
& c_{2}=\frac{1}{3}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\cos (\sqrt{2} t)}{3}+\frac{\sqrt{2} \sin (\sqrt{2} t)}{6}-\frac{\mathrm{e}^{t}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\cos (\sqrt{2} t)}{3}+\frac{\sqrt{2} \sin (\sqrt{2} t)}{6}-\frac{\mathrm{e}^{t}}{3} \tag{1}
\end{equation*}
$$

(b) Slope field plot
(a) Solution plot

Verification of solutions

$$
y=\frac{\cos (\sqrt{2} t)}{3}+\frac{\sqrt{2} \sin (\sqrt{2} t)}{6}-\frac{\mathrm{e}^{t}}{3}
$$

Verified OK.

16.29.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+2 y=-\mathrm{e}^{t}, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+2=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-8})}{2}$
- Roots of the characteristic polynomial
$r=(-\mathrm{I} \sqrt{2}, \mathrm{I} \sqrt{2})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\cos (\sqrt{2} t)$
- $\quad 2$ nd solution of the homogeneous ODE
$y_{2}(t)=\sin (\sqrt{2} t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=\cos (\sqrt{2} t) c_{1}+c_{2} \sin (\sqrt{2} t)+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function $\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=-\mathrm{e}^{t}\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (\sqrt{2} t) & \sin (\sqrt{2} t) \\
-\sqrt{2} \sin (\sqrt{2} t) & \sqrt{2} \cos (\sqrt{2} t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=\sqrt{2}$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\frac{\sqrt{2}\left(\sin (\sqrt{2} t)\left(\int \mathrm{e}^{t} \cos (\sqrt{2} t) d t\right)-\cos (\sqrt{2} t)\left(\int \mathrm{e}^{t} \sin (\sqrt{2} t) d t\right)\right)}{2}
$$

- Compute integrals
$y_{p}(t)=-\frac{\mathrm{e}^{t}}{3}$
- Substitute particular solution into general solution to ODE $y=\cos (\sqrt{2} t) c_{1}+c_{2} \sin (\sqrt{2} t)-\frac{\mathrm{e}^{t}}{3}$
Check validity of solution $y=\cos (\sqrt{2} t) c_{1}+c_{2} \sin (\sqrt{2} t)-\frac{\mathrm{e}^{t}}{3}$
- Use initial condition $y(0)=0$
$0=-\frac{1}{3}+c_{1}$
- Compute derivative of the solution
$y^{\prime}=-\sqrt{2} \sin (\sqrt{2} t) c_{1}+\sqrt{2} \cos (\sqrt{2} t) c_{2}-\frac{\mathrm{e}^{t}}{3}$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=\sqrt{2} c_{2}-\frac{1}{3}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=\frac{1}{3}, c_{2}=\frac{\sqrt{2}}{6}\right\}$
- Substitute constant values into general solution and simplify
$y=\frac{\cos (\sqrt{2} t)}{3}+\frac{\sqrt{2} \sin (\sqrt{2} t)}{6}-\frac{\mathrm{e}^{t}}{3}$
- \quad Solution to the IVP

$$
y=\frac{\cos (\sqrt{2} t)}{3}+\frac{\sqrt{2} \sin (\sqrt{2} t)}{6}-\frac{\mathrm{e}^{t}}{3}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 28
dsolve([diff $(y(t), t \$ 2)+2 * y(t)=-\exp (t), y(0)=0, D(y)(0)=0], y(t)$, singsol=all)

$$
y(t)=\frac{\sqrt{2} \sin (\sqrt{2} t)}{6}+\frac{\cos (\sqrt{2} t)}{3}-\frac{\mathrm{e}^{t}}{3}
$$

Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 39
DSolve[\{y'' $\left.[t]+2 * y[t]==-\operatorname{Exp}[t],\left\{y[0]==0, y^{\prime}[0]==0\right\}\right\}, y[t], t$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow \frac{1}{6}\left(-2 e^{t}+\sqrt{2} \sin (\sqrt{2} t)+2 \cos (\sqrt{2} t)\right)
$$

16.30 problem 31

16.30.1 Existence and uniqueness analysis 2935
16.30.2 Solving as second order linear constant coeff ode 2936
16.30.3 Solving using Kovacic algorithm 2940
16.30.4 Maple step by step solution . 2945

Internal problem ID [13190]
Internal file name [OUTPUT/11845_Sunday_December_03_2023_07_19_29_PM_37466865/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 31 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+4 y=-3 t^{2}+2 t+3
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=0\right]
$$

16.30.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =4 \\
F & =-3 t^{2}+2 t+3
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y=-3 t^{2}+2 t+3
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=-3 t^{2}+2 t+3$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.30.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=0, C=4, f(t)=-3 t^{2}+2 t+3$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+4 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)
$$

Or

$$
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (2 t)+c_{2} \sin (2 t)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
t^{2}+t+1
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{1, t, t^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (2 t), \sin (2 t)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{3} t^{2}+A_{2} t+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
4 A_{3} t^{2}+4 A_{2} t+4 A_{1}+2 A_{3}=-3 t^{2}+2 t+3
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{9}{8}, A_{2}=\frac{1}{2}, A_{3}=-\frac{3}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{3}{4} t^{2}+\frac{1}{2} t+\frac{9}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)+\left(-\frac{3}{4} t^{2}+\frac{1}{2} t+\frac{9}{8}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)-\frac{3 t^{2}}{4}+\frac{t}{2}+\frac{9}{8} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $t=0$ in the above gives

$$
\begin{equation*}
2=c_{1}+\frac{9}{8} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t)-\frac{3 t}{2}+\frac{1}{2}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=\frac{1}{2}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{7}{8} \\
& c_{2}=-\frac{1}{4}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{9}{8}+\frac{7 \cos (2 t)}{8}-\frac{\sin (2 t)}{4}-\frac{3 t^{2}}{4}+\frac{t}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{9}{8}+\frac{7 \cos (2 t)}{8}-\frac{\sin (2 t)}{4}-\frac{3 t^{2}}{4}+\frac{t}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{9}{8}+\frac{7 \cos (2 t)}{8}-\frac{\sin (2 t)}{4}-\frac{3 t^{2}}{4}+\frac{t}{2}
$$

Verified OK.

16.30.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-4 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 469: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (2 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 t)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 t)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d t \\
& =\cos (2 t) \int \frac{1}{\cos (2 t)^{2}} d t \\
& =\cos (2 t)\left(\frac{\tan (2 t)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 t))+c_{2}\left(\cos (2 t)\left(\frac{\tan (2 t)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
t^{2}+t+1
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{1, t, t^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (2 t)}{2}, \cos (2 t)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{3} t^{2}+A_{2} t+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
4 A_{3} t^{2}+4 A_{2} t+4 A_{1}+2 A_{3}=-3 t^{2}+2 t+3
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{9}{8}, A_{2}=\frac{1}{2}, A_{3}=-\frac{3}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{3}{4} t^{2}+\frac{1}{2} t+\frac{9}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}\right)+\left(-\frac{3}{4} t^{2}+\frac{1}{2} t+\frac{9}{8}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}-\frac{3 t^{2}}{4}+\frac{t}{2}+\frac{9}{8} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $t=0$ in the above gives

$$
\begin{equation*}
2=c_{1}+\frac{9}{8} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \sin (2 t)+c_{2} \cos (2 t)-\frac{3 t}{2}+\frac{1}{2}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=\frac{1}{2}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{7}{8} \\
& c_{2}=-\frac{1}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{9}{8}+\frac{7 \cos (2 t)}{8}-\frac{\sin (2 t)}{4}-\frac{3 t^{2}}{4}+\frac{t}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{9}{8}+\frac{7 \cos (2 t)}{8}-\frac{\sin (2 t)}{4}-\frac{3 t^{2}}{4}+\frac{t}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{9}{8}+\frac{7 \cos (2 t)}{8}-\frac{\sin (2 t)}{4}-\frac{3 t^{2}}{4}+\frac{t}{2}
$$

Verified OK.

16.30.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+4 y=-3 t^{2}+2 t+3, y(0)=2,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+4=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial
$r=(-2 \mathrm{I}, 2 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\cos (2 t)
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(t)=\sin (2 t)
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=-3 t^{2}+2 t+3\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (2 t) & \sin (2 t) \\
-2 \sin (2 t) & 2 \cos (2 t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=2$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=\frac{\cos (2 t)\left(\int \sin (2 t)\left(3 t^{2}-2 t-3\right) d t\right)}{2}-\frac{\sin (2 t)\left(\int \cos (2 t)\left(3 t^{2}-2 t-3\right) d t\right)}{2}
$$

- Compute integrals

$$
y_{p}(t)=-\frac{3}{4} t^{2}+\frac{1}{2} t+\frac{9}{8}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (2 t)+c_{2} \sin (2 t)-\frac{3 t^{2}}{4}+\frac{t}{2}+\frac{9}{8}$
Check validity of solution $y=c_{1} \cos (2 t)+c_{2} \sin (2 t)-\frac{3 t^{2}}{4}+\frac{t}{2}+\frac{9}{8}$
- Use initial condition $y(0)=2$
$2=c_{1}+\frac{9}{8}$
- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t)-\frac{3 t}{2}+\frac{1}{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$

$$
0=\frac{1}{2}+2 c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{7}{8}, c_{2}=-\frac{1}{4}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{9}{8}+\frac{7 \cos (2 t)}{8}-\frac{\sin (2 t)}{4}-\frac{3 t^{2}}{4}+\frac{t}{2}
$$

- \quad Solution to the IVP

$$
y=\frac{9}{8}+\frac{7 \cos (2 t)}{8}-\frac{\sin (2 t)}{4}-\frac{3 t^{2}}{4}+\frac{t}{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 26

```
dsolve([diff(y(t),t$2)+4*y(t)=-3*t^2+2*t+3,y(0) = 2, D(y)(0) = 0],y(t), singsol=all)
```

$$
y(t)=-\frac{\sin (2 t)}{4}+\frac{7 \cos (2 t)}{8}-\frac{3 t^{2}}{4}+\frac{t}{2}+\frac{9}{8}
$$

\checkmark Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 31

```
DSolve[{y''[t]+4*y[t]==-3*t^2+2*t+3,{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> T
```

$$
y(t) \rightarrow \frac{1}{8}\left(-6 t^{2}+4 t-2 \sin (2 t)-9 \cos (2 t)+9\right)
$$

16.31 problem 32

16.31.1 Existence and uniqueness analysis 2949
16.31.2 Solving as second order linear constant coeff ode 2949
16.31.3 Solving as second order integrable as is ode 2953
16.31.4 Solving as second order ode missing y ode 2956
16.31.5 Solving as type second_order_integrable_as_is (not using ABC
version) . 2958
16.31.6 Solving using Kovacic algorithm 2961
16.31.7 Solving as exact linear second order ode ode 2967
16.31.8 Maple step by step solution . 2971

Internal problem ID [13191]
Internal file name [0UTPUT/11846_Sunday_December_03_2023_07_19_35_PM_55571381/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 32 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
y^{\prime \prime}+2 y^{\prime}=3 t+2
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

16.31.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =2 \\
q(t) & =0 \\
F & =3 t+2
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+2 y^{\prime}=3 t+2
$$

The domain of $p(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $F=3 t+2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.31.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=2, C=0, f(t)=3 t+2$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=2, C=0$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+2 \lambda \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=0$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2^{2}-(4)(1)(0)} \\
& =-1 \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-1+1 \\
& \lambda_{2}=-1-1
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(0) t}+c_{2} e^{(-2) t}
\end{aligned}
$$

Or

$$
y=c_{1}+c_{2} \mathrm{e}^{-2 t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1}+c_{2} \mathrm{e}^{-2 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
1+t
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, t\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{1, \mathrm{e}^{-2 t}\right\}
$$

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra t. The UC_set becomes

$$
\left[\left\{t, t^{2}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{2} t^{2}+A_{1} t
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
4 t A_{2}+2 A_{1}+2 A_{2}=3 t+2
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{4}, A_{2}=\frac{3}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{3}{4} t^{2}+\frac{1}{4} t
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1}+c_{2} \mathrm{e}^{-2 t}\right)+\left(\frac{3}{4} t^{2}+\frac{1}{4} t\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1}+c_{2} \mathrm{e}^{-2 t}+\frac{3 t^{2}}{4}+\frac{t}{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{2} \mathrm{e}^{-2 t}+\frac{3 t}{2}+\frac{1}{4}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-2 c_{2}+\frac{1}{4} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{8} \\
& c_{2}=\frac{1}{8}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{1}{8}+\frac{\mathrm{e}^{-2 t}}{8}+\frac{3 t^{2}}{4}+\frac{t}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{8}+\frac{\mathrm{e}^{-2 t}}{8}+\frac{3 t^{2}}{4}+\frac{t}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{1}{8}+\frac{\mathrm{e}^{-2 t}}{8}+\frac{3 t^{2}}{4}+\frac{t}{4}
$$

Verified OK.

16.31.3 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t t gives

$$
\begin{aligned}
& \int\left(y^{\prime \prime}+2 y^{\prime}\right) d t=\int(3 t+2) d t \\
& y^{\prime}+2 y=\frac{3}{2} t^{2}+2 t+c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=2 \\
& q(t)=\frac{3}{2} t^{2}+2 t+c_{1}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+2 y=\frac{3}{2} t^{2}+2 t+c_{1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 2 d t} \\
& =\mathrm{e}^{2 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{3}{2} t^{2}+2 t+c_{1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{2 t} y\right) & =\left(\mathrm{e}^{2 t}\right)\left(\frac{3}{2} t^{2}+2 t+c_{1}\right) \\
\mathrm{d}\left(\mathrm{e}^{2 t} y\right) & =\left(\frac{\left(3 t^{2}+2 c_{1}+4 t\right) \mathrm{e}^{2 t}}{2}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{2 t} y=\int \frac{\left(3 t^{2}+2 c_{1}+4 t\right) \mathrm{e}^{2 t}}{2} \mathrm{~d} t \\
& \mathrm{e}^{2 t} y=\frac{\left(6 t^{2}+4 c_{1}+2 t-1\right) \mathrm{e}^{2 t}}{8}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{2 t}$ results in

$$
y=\frac{\mathrm{e}^{-2 t}\left(6 t^{2}+4 c_{1}+2 t-1\right) \mathrm{e}^{2 t}}{8}+c_{2} \mathrm{e}^{-2 t}
$$

which simplifies to

$$
y=\frac{3 t^{2}}{4}+\frac{c_{1}}{2}+\frac{t}{4}-\frac{1}{8}+c_{2} \mathrm{e}^{-2 t}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{3 t^{2}}{4}+\frac{c_{1}}{2}+\frac{t}{4}-\frac{1}{8}+c_{2} \mathrm{e}^{-2 t} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-\frac{1}{8}+\frac{c_{1}}{2}+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{2} \mathrm{e}^{-2 t}+\frac{3 t}{2}+\frac{1}{4}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-2 c_{2}+\frac{1}{4} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=\frac{1}{8}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{1}{8}+\frac{\mathrm{e}^{-2 t}}{8}+\frac{3 t^{2}}{4}+\frac{t}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{8}+\frac{\mathrm{e}^{-2 t}}{8}+\frac{3 t^{2}}{4}+\frac{t}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{1}{8}+\frac{\mathrm{e}^{-2 t}}{8}+\frac{3 t^{2}}{4}+\frac{t}{4}
$$

Verified OK.

16.31.4 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(t)=y^{\prime}
$$

Then

$$
p^{\prime}(t)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(t)+2 p(t)-3 t-2=0
$$

Which is now solve for $p(t)$ as first order ode.
Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 2 d t} \\
& =\mathrm{e}^{2 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu p) & =(\mu)(3 t+2) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{2 t} p\right) & =\left(\mathrm{e}^{2 t}\right)(3 t+2) \\
\mathrm{d}\left(\mathrm{e}^{2 t} p\right) & =\left((3 t+2) \mathrm{e}^{2 t}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{2 t} p=\int(3 t+2) \mathrm{e}^{2 t} \mathrm{~d} t \\
& \mathrm{e}^{2 t} p=\frac{(1+6 t) \mathrm{e}^{2 t}}{4}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{2 t}$ results in

$$
p(t)=\frac{\mathrm{e}^{-2 t}(1+6 t) \mathrm{e}^{2 t}}{4}+c_{1} \mathrm{e}^{-2 t}
$$

which simplifies to

$$
p(t)=\frac{3 t}{2}+\frac{1}{4}+c_{1} \mathrm{e}^{-2 t}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $p=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{1}{4}+c_{1} \\
c_{1}=-\frac{1}{4}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
p(t)=-\frac{\mathrm{e}^{-2 t}}{4}+\frac{3 t}{2}+\frac{1}{4}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=-\frac{\mathrm{e}^{-2 t}}{4}+\frac{3 t}{2}+\frac{1}{4}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int-\frac{\mathrm{e}^{-2 t}}{4}+\frac{3 t}{2}+\frac{1}{4} \mathrm{~d} t \\
& =\frac{\mathrm{e}^{-2 t}}{8}+\frac{3 t^{2}}{4}+\frac{t}{4}+c_{2}
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{1}{8}+c_{2} \\
c_{2}=-\frac{1}{8}
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=-\frac{1}{8}+\frac{\mathrm{e}^{-2 t}}{8}+\frac{3 t^{2}}{4}+\frac{t}{4}
$$

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{8}+\frac{\mathrm{e}^{-2 t}}{8}+\frac{3 t^{2}}{4}+\frac{t}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{1}{8}+\frac{\mathrm{e}^{-2 t}}{8}+\frac{3 t^{2}}{4}+\frac{t}{4}
$$

Verified OK.

16.31.5 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
y^{\prime \prime}+2 y^{\prime}=3 t+2
$$

Integrating both sides of the ODE w.r.t t gives

$$
\begin{aligned}
& \int\left(y^{\prime \prime}+2 y^{\prime}\right) d t=\int(3 t+2) d t \\
& y^{\prime}+2 y=\frac{3}{2} t^{2}+2 t+c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=2 \\
& q(t)=\frac{3}{2} t^{2}+2 t+c_{1}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+2 y=\frac{3}{2} t^{2}+2 t+c_{1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 2 d t} \\
& =\mathrm{e}^{2 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{3}{2} t^{2}+2 t+c_{1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{2 t} y\right) & =\left(\mathrm{e}^{2 t}\right)\left(\frac{3}{2} t^{2}+2 t+c_{1}\right) \\
\mathrm{d}\left(\mathrm{e}^{2 t} y\right) & =\left(\frac{\left(3 t^{2}+2 c_{1}+4 t\right) \mathrm{e}^{2 t}}{2}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{2 t} y=\int \frac{\left(3 t^{2}+2 c_{1}+4 t\right) \mathrm{e}^{2 t}}{2} \mathrm{~d} t \\
& \mathrm{e}^{2 t} y=\frac{\left(6 t^{2}+4 c_{1}+2 t-1\right) \mathrm{e}^{2 t}}{8}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{2 t}$ results in

$$
y=\frac{\mathrm{e}^{-2 t}\left(6 t^{2}+4 c_{1}+2 t-1\right) \mathrm{e}^{2 t}}{8}+c_{2} \mathrm{e}^{-2 t}
$$

which simplifies to

$$
y=\frac{3 t^{2}}{4}+\frac{c_{1}}{2}+\frac{t}{4}-\frac{1}{8}+c_{2} \mathrm{e}^{-2 t}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{3 t^{2}}{4}+\frac{c_{1}}{2}+\frac{t}{4}-\frac{1}{8}+c_{2} \mathrm{e}^{-2 t} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-\frac{1}{8}+\frac{c_{1}}{2}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{2} \mathrm{e}^{-2 t}+\frac{3 t}{2}+\frac{1}{4}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-2 c_{2}+\frac{1}{4} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=\frac{1}{8}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{1}{8}+\frac{\mathrm{e}^{-2 t}}{8}+\frac{3 t^{2}}{4}+\frac{t}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{8}+\frac{\mathrm{e}^{-2 t}}{8}+\frac{3 t^{2}}{4}+\frac{t}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{1}{8}+\frac{\mathrm{e}^{-2 t}}{8}+\frac{3 t^{2}}{4}+\frac{t}{4}
$$

Verified OK.

16.31.6 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+2 y^{\prime}=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 471: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-t}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d t} \\
& =z_{1} e^{-t} \\
& =z_{1}\left(\mathrm{e}^{-t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-2 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\mathrm{e}^{2 t}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 t}\right)+c_{2}\left(\mathrm{e}^{-2 t}\left(\frac{\mathrm{e}^{2 t}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 t}+\frac{c_{2}}{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 t} \\
& y_{2}=\frac{1}{2}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 t} & \frac{1}{2} \\
\frac{d}{d t}\left(\mathrm{e}^{-2 t}\right) & \frac{d}{d t}\left(\frac{1}{2}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 t} & \frac{1}{2} \\
-2 \mathrm{e}^{-2 t} & 0
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-2 t}\right)(0)-\left(\frac{1}{2}\right)\left(-2 \mathrm{e}^{-2 t}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-2 t}
$$

Which simplifies to

$$
W=\mathrm{e}^{-2 t}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{3 t}{2}+1}{\mathrm{e}^{-2 t}} d t
$$

Which simplifies to

$$
u_{1}=-\int \frac{(3 t+2) \mathrm{e}^{2 t}}{2} d t
$$

Hence

$$
u_{1}=-\frac{(1+6 t) \mathrm{e}^{2 t}}{8}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{-2 t}(3 t+2)}{\mathrm{e}^{-2 t}} d t
$$

Which simplifies to

$$
u_{2}=\int(3 t+2) d t
$$

Hence

$$
u_{2}=\frac{3}{2} t^{2}+2 t
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-\frac{\mathrm{e}^{-2 t}(1+6 t) \mathrm{e}^{2 t}}{8}+\frac{3 t^{2}}{4}+t
$$

Which simplifies to

$$
y_{p}(t)=-\frac{1}{8}+\frac{1}{4} t+\frac{3}{4} t^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 t}+\frac{c_{2}}{2}\right)+\left(-\frac{1}{8}+\frac{1}{4} t+\frac{3}{4} t^{2}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 t}+\frac{c_{2}}{2}-\frac{1}{8}+\frac{t}{4}+\frac{3 t^{2}}{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{c_{2}}{2}-\frac{1}{8} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 t}+\frac{1}{4}+\frac{3 t}{2}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-2 c_{1}+\frac{1}{4} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{8} \\
& c_{2}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{1}{8}+\frac{\mathrm{e}^{-2 t}}{8}+\frac{3 t^{2}}{4}+\frac{t}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{8}+\frac{\mathrm{e}^{-2 t}}{8}+\frac{3 t^{2}}{4}+\frac{t}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{1}{8}+\frac{\mathrm{e}^{-2 t}}{8}+\frac{3 t^{2}}{4}+\frac{t}{4}
$$

Verified OK.

16.31.7 Solving as exact linear second order ode ode

An ode of the form

$$
p(t) y^{\prime \prime}+q(t) y^{\prime}+r(t) y=s(t)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(t)-q^{\prime}(t)+r(t)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =2 \\
r(x) & =0 \\
s(x) & =3 t+2
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
0-(0)+(0)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(t) y^{\prime}+\left(q(t)-p^{\prime}(t)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(t) y^{\prime}+\left(q(t)-p^{\prime}(t)\right) y=\int s(t) d t
$$

Substituting the above values for p, q, r, s gives

$$
y^{\prime}+2 y=\int 3 t+2 d t
$$

We now have a first order ode to solve which is

$$
y^{\prime}+2 y=\frac{3}{2} t^{2}+2 t+c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=2 \\
& q(t)=\frac{3}{2} t^{2}+2 t+c_{1}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+2 y=\frac{3}{2} t^{2}+2 t+c_{1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 2 d t} \\
& =\mathrm{e}^{2 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{3}{2} t^{2}+2 t+c_{1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{2 t} y\right) & =\left(\mathrm{e}^{2 t}\right)\left(\frac{3}{2} t^{2}+2 t+c_{1}\right) \\
\mathrm{d}\left(\mathrm{e}^{2 t} y\right) & =\left(\frac{\left(3 t^{2}+2 c_{1}+4 t\right) \mathrm{e}^{2 t}}{2}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{2 t} y=\int \frac{\left(3 t^{2}+2 c_{1}+4 t\right) \mathrm{e}^{2 t}}{2} \mathrm{~d} t \\
& \mathrm{e}^{2 t} y=\frac{\left(6 t^{2}+4 c_{1}+2 t-1\right) \mathrm{e}^{2 t}}{8}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{2 t}$ results in

$$
y=\frac{\mathrm{e}^{-2 t}\left(6 t^{2}+4 c_{1}+2 t-1\right) \mathrm{e}^{2 t}}{8}+c_{2} \mathrm{e}^{-2 t}
$$

which simplifies to

$$
y=\frac{3 t^{2}}{4}+\frac{c_{1}}{2}+\frac{t}{4}-\frac{1}{8}+c_{2} \mathrm{e}^{-2 t}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{3 t^{2}}{4}+\frac{c_{1}}{2}+\frac{t}{4}-\frac{1}{8}+c_{2} \mathrm{e}^{-2 t} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-\frac{1}{8}+\frac{c_{1}}{2}+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{2} \mathrm{e}^{-2 t}+\frac{3 t}{2}+\frac{1}{4}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-2 c_{2}+\frac{1}{4} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=\frac{1}{8}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{1}{8}+\frac{\mathrm{e}^{-2 t}}{8}+\frac{3 t^{2}}{4}+\frac{t}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{8}+\frac{\mathrm{e}^{-2 t}}{8}+\frac{3 t^{2}}{4}+\frac{t}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{1}{8}+\frac{\mathrm{e}^{-2 t}}{8}+\frac{3 t^{2}}{4}+\frac{t}{4}
$$

Verified OK.

16.31.8 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}+2 y^{\prime}=3 t+2, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+2 r=0$
- Factor the characteristic polynomial
$r(r+2)=0$
- Roots of the characteristic polynomial
$r=(-2,0)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-2 t}$
- 2nd solution of the homogeneous ODE

$$
y_{2}(t)=1
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-2 t}+c_{2}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function $\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=3 t+2\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 t} & 1 \\
-2 \mathrm{e}^{-2 t} & 0
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=2 \mathrm{e}^{-2 t}$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\frac{\mathrm{e}^{-2 t}\left(\int(3 t+2) \mathrm{e}^{2 t} d t\right)}{2}+\frac{\left(\int(3 t+2) d t\right)}{2}
$$

- Compute integrals
$y_{p}(t)=-\frac{1}{8}+\frac{1}{4} t+\frac{3}{4} t^{2}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-2 t}+c_{2}-\frac{1}{8}+\frac{t}{4}+\frac{3 t^{2}}{4}$
Check validity of solution $y=c_{1} \mathrm{e}^{-2 t}+c_{2}-\frac{1}{8}+\frac{t}{4}+\frac{3 t^{2}}{4}$
- Use initial condition $y(0)=0$
$0=c_{1}+c_{2}-\frac{1}{8}$
- Compute derivative of the solution
$y^{\prime}=-2 c_{1} \mathrm{e}^{-2 t}+\frac{1}{4}+\frac{3 t}{2}$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=-2 c_{1}+\frac{1}{4}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=\frac{1}{8}, c_{2}=0\right\}$
- Substitute constant values into general solution and simplify
$y=-\frac{1}{8}+\frac{\mathrm{e}^{-2 t}}{8}+\frac{3 t^{2}}{4}+\frac{t}{4}$
- \quad Solution to the IVP
$y=-\frac{1}{8}+\frac{\mathrm{e}^{-2 t}}{8}+\frac{3 t^{2}}{4}+\frac{t}{4}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -2*_b(_a)+3*_a+2, _b(_a)
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
<- high order exact linear fully integrable successful`
```

Solution by Maple
Time used: 0.015 (sec). Leaf size: 20

```
dsolve([diff(y(t),t$2)+2*\operatorname{diff}(y(t),t)=3*t+2,y(0) = 0, D(y)(0) = 0],y(t), singsol=all)
```

$$
y(t)=\frac{3 t^{2}}{4}+\frac{\mathrm{e}^{-2 t}}{8}+\frac{t}{4}-\frac{1}{8}
$$

Solution by Mathematica
Time used: 0.131 (sec). Leaf size: 24
DSolve[\{y''[t]+2*y'[t]==3*t+2,\{y[0]==0,y'[0]==0\}\},y[t],t,IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{1}{8}\left(6 t^{2}+2 t+e^{-2 t}-1\right)
$$

16.32 problem 33

16.32.1 Existence and uniqueness analysis 2975
16.32.2 Solving as second order linear constant coeff ode 2975
16.32.3 Solving as second order integrable as is ode 2979
16.32.4 Solving as second order ode missing y ode 2982
16.32.5 Solving as type second_order_integrable_as_is (not using ABC
version) . 2984
16.32.6 Solving using Kovacic algorithm 2987
16.32.7 Solving as exact linear second order ode ode 2993
16.32.8 Maple step by step solution . 2997

Internal problem ID [13192]
Internal file name [0UTPUT/11847_Sunday_December_03_2023_07_19_37_PM_90849126/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 33.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
y^{\prime \prime}+4 y^{\prime}=3 t+2
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

16.32.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =4 \\
q(t) & =0 \\
F & =3 t+2
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y^{\prime}=3 t+2
$$

The domain of $p(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $F=3 t+2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.32.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=4, C=0, f(t)=3 t+2$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=4, C=0$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+4 \lambda \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=0$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{4^{2}-(4)(1)(0)} \\
& =-2 \pm 2
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-2+2 \\
& \lambda_{2}=-2-2
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =0 \\
\lambda_{2} & =-4
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(0) t}+c_{2} e^{(-4) t}
\end{aligned}
$$

Or

$$
y=c_{1}+c_{2} \mathrm{e}^{-4 t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1}+c_{2} \mathrm{e}^{-4 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
1+t
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, t\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{1, \mathrm{e}^{-4 t}\right\}
$$

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra t. The UC_set becomes

$$
\left[\left\{t, t^{2}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{2} t^{2}+A_{1} t
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
8 t A_{2}+4 A_{1}+2 A_{2}=3 t+2
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{5}{16}, A_{2}=\frac{3}{8}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{3}{8} t^{2}+\frac{5}{16} t
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1}+c_{2} \mathrm{e}^{-4 t}\right)+\left(\frac{3}{8} t^{2}+\frac{5}{16} t\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1}+c_{2} \mathrm{e}^{-4 t}+\frac{3 t^{2}}{8}+\frac{5 t}{16} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-4 c_{2} \mathrm{e}^{-4 t}+\frac{3 t}{4}+\frac{5}{16}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-4 c_{2}+\frac{5}{16} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{5}{64} \\
& c_{2}=\frac{5}{64}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{5}{64}+\frac{5 \mathrm{e}^{-4 t}}{64}+\frac{3 t^{2}}{8}+\frac{5 t}{16}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{5}{64}+\frac{5 \mathrm{e}^{-4 t}}{64}+\frac{3 t^{2}}{8}+\frac{5 t}{16} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=-\frac{5}{64}+\frac{5 \mathrm{e}^{-4 t}}{64}+\frac{3 t^{2}}{8}+\frac{5 t}{16}
$$

Verified OK.

16.32.3 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t t gives

$$
\begin{aligned}
& \int\left(y^{\prime \prime}+4 y^{\prime}\right) d t=\int(3 t+2) d t \\
& 4 y+y^{\prime}=\frac{3}{2} t^{2}+2 t+c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=4 \\
& q(t)=\frac{3}{2} t^{2}+2 t+c_{1}
\end{aligned}
$$

Hence the ode is

$$
4 y+y^{\prime}=\frac{3}{2} t^{2}+2 t+c_{1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 4 d t} \\
& =\mathrm{e}^{4 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{3}{2} t^{2}+2 t+c_{1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{4 t} y\right) & =\left(\mathrm{e}^{4 t}\right)\left(\frac{3}{2} t^{2}+2 t+c_{1}\right) \\
\mathrm{d}\left(\mathrm{e}^{4 t} y\right) & =\left(\frac{\left(3 t^{2}+2 c_{1}+4 t\right) \mathrm{e}^{4 t}}{2}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{4 t} y=\int \frac{\left(3 t^{2}+2 c_{1}+4 t\right) \mathrm{e}^{4 t}}{2} \mathrm{~d} t \\
& \mathrm{e}^{4 t} y=\frac{\left(24 t^{2}+16 c_{1}+20 t-5\right) \mathrm{e}^{4 t}}{64}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{4 t}$ results in

$$
y=\frac{\mathrm{e}^{-4 t}\left(24 t^{2}+16 c_{1}+20 t-5\right) \mathrm{e}^{4 t}}{64}+c_{2} \mathrm{e}^{-4 t}
$$

which simplifies to

$$
y=\frac{3 t^{2}}{8}+\frac{c_{1}}{4}+\frac{5 t}{16}-\frac{5}{64}+c_{2} \mathrm{e}^{-4 t}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{3 t^{2}}{8}+\frac{c_{1}}{4}+\frac{5 t}{16}-\frac{5}{64}+c_{2} \mathrm{e}^{-4 t} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-\frac{5}{64}+\frac{c_{1}}{4}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-4 c_{2} \mathrm{e}^{-4 t}+\frac{3 t}{4}+\frac{5}{16}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-4 c_{2}+\frac{5}{16} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=\frac{5}{64}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{5}{64}+\frac{5 \mathrm{e}^{-4 t}}{64}+\frac{3 t^{2}}{8}+\frac{5 t}{16}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{5}{64}+\frac{5 \mathrm{e}^{-4 t}}{64}+\frac{3 t^{2}}{8}+\frac{5 t}{16} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=-\frac{5}{64}+\frac{5 \mathrm{e}^{-4 t}}{64}+\frac{3 t^{2}}{8}+\frac{5 t}{16}
$$

Verified OK.

16.32.4 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(t)=y^{\prime}
$$

Then

$$
p^{\prime}(t)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(t)+4 p(t)-3 t-2=0
$$

Which is now solve for $p(t)$ as first order ode.
Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 4 d t} \\
& =\mathrm{e}^{4 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu p) & =(\mu)(3 t+2) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{4 t} p\right) & =\left(\mathrm{e}^{4 t}\right)(3 t+2) \\
\mathrm{d}\left(\mathrm{e}^{4 t} p\right) & =\left(\mathrm{e}^{4 t}(3 t+2)\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{4 t} p=\int \mathrm{e}^{4 t}(3 t+2) \mathrm{d} t \\
& \mathrm{e}^{4 t} p=\frac{(12 t+5) \mathrm{e}^{4 t}}{16}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{4 t}$ results in

$$
p(t)=\frac{\mathrm{e}^{-4 t}(12 t+5) \mathrm{e}^{4 t}}{16}+c_{1} \mathrm{e}^{-4 t}
$$

which simplifies to

$$
p(t)=\frac{3 t}{4}+\frac{5}{16}+c_{1} \mathrm{e}^{-4 t}
$$

Initial conditions are used to solve for c_{1}. Substituting $t=0$ and $p=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{5}{16}+c_{1} \\
c_{1}=-\frac{5}{16}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
p(t)=-\frac{5 \mathrm{e}^{-4 t}}{16}+\frac{3 t}{4}+\frac{5}{16}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=-\frac{5 \mathrm{e}^{-4 t}}{16}+\frac{3 t}{4}+\frac{5}{16}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int-\frac{5 \mathrm{e}^{-4 t}}{16}+\frac{3 t}{4}+\frac{5}{16} \mathrm{~d} t \\
& =\frac{5 \mathrm{e}^{-4 t}}{64}+\frac{3 t^{2}}{8}+\frac{5 t}{16}+c_{2}
\end{aligned}
$$

Initial conditions are used to solve for c_{2}. Substituting $t=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{5}{64}+c_{2} \\
c_{2}=-\frac{5}{64}
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=-\frac{5}{64}+\frac{5 \mathrm{e}^{-4 t}}{64}+\frac{3 t^{2}}{8}+\frac{5 t}{16}
$$

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{5}{64}+\frac{5 \mathrm{e}^{-4 t}}{64}+\frac{3 t^{2}}{8}+\frac{5 t}{16} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=-\frac{5}{64}+\frac{5 \mathrm{e}^{-4 t}}{64}+\frac{3 t^{2}}{8}+\frac{5 t}{16}
$$

Verified OK.

16.32.5 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
y^{\prime \prime}+4 y^{\prime}=3 t+2
$$

Integrating both sides of the ODE w.r.t t gives

$$
\begin{aligned}
& \int\left(y^{\prime \prime}+4 y^{\prime}\right) d t=\int(3 t+2) d t \\
& 4 y+y^{\prime}=\frac{3}{2} t^{2}+2 t+c_{1}
\end{aligned}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=4 \\
& q(t)=\frac{3}{2} t^{2}+2 t+c_{1}
\end{aligned}
$$

Hence the ode is

$$
4 y+y^{\prime}=\frac{3}{2} t^{2}+2 t+c_{1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 4 d t} \\
& =\mathrm{e}^{4 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{3}{2} t^{2}+2 t+c_{1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{4 t} y\right) & =\left(\mathrm{e}^{4 t}\right)\left(\frac{3}{2} t^{2}+2 t+c_{1}\right) \\
\mathrm{d}\left(\mathrm{e}^{4 t} y\right) & =\left(\frac{\left(3 t^{2}+2 c_{1}+4 t\right) \mathrm{e}^{4 t}}{2}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{4 t} y=\int \frac{\left(3 t^{2}+2 c_{1}+4 t\right) \mathrm{e}^{4 t}}{2} \mathrm{~d} t \\
& \mathrm{e}^{4 t} y=\frac{\left(24 t^{2}+16 c_{1}+20 t-5\right) \mathrm{e}^{4 t}}{64}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{4 t}$ results in

$$
y=\frac{\mathrm{e}^{-4 t}\left(24 t^{2}+16 c_{1}+20 t-5\right) \mathrm{e}^{4 t}}{64}+c_{2} \mathrm{e}^{-4 t}
$$

which simplifies to

$$
y=\frac{3 t^{2}}{8}+\frac{c_{1}}{4}+\frac{5 t}{16}-\frac{5}{64}+c_{2} \mathrm{e}^{-4 t}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{3 t^{2}}{8}+\frac{c_{1}}{4}+\frac{5 t}{16}-\frac{5}{64}+c_{2} \mathrm{e}^{-4 t} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-\frac{5}{64}+\frac{c_{1}}{4}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-4 c_{2} \mathrm{e}^{-4 t}+\frac{3 t}{4}+\frac{5}{16}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-4 c_{2}+\frac{5}{16} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=\frac{5}{64}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{5}{64}+\frac{5 \mathrm{e}^{-4 t}}{64}+\frac{3 t^{2}}{8}+\frac{5 t}{16}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{5}{64}+\frac{5 \mathrm{e}^{-4 t}}{64}+\frac{3 t^{2}}{8}+\frac{5 t}{16} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{5}{64}+\frac{5 \mathrm{e}^{-4 t}}{64}+\frac{3 t^{2}}{8}+\frac{5 t}{16}
$$

Verified OK.

16.32.6 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+4 y^{\prime}=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =4 \tag{3}\\
C & =0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=4 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 473: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=4$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-2 t}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d t} \\
& =z_{1} e^{-2 t} \\
& =z_{1}\left(\mathrm{e}^{-2 t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-4 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-4 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\mathrm{e}^{4 t}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-4 t}\right)+c_{2}\left(\mathrm{e}^{-4 t}\left(\frac{\mathrm{e}^{4 t}}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-4 t}+\frac{c_{2}}{4}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on t as well. Let

$$
\begin{equation*}
y_{p}(t)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-4 t} \\
& y_{2}=\frac{1}{4}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(t)}{a W(t)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(t)}{a W(t)} \tag{3}
\end{align*}
$$

Where $W(t)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-4 t} & \frac{1}{4} \\
\frac{d}{d t}\left(\mathrm{e}^{-4 t}\right) & \frac{d}{d t}\left(\frac{1}{4}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-4 t} & \frac{1}{4} \\
-4 \mathrm{e}^{-4 t} & 0
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-4 t}\right)(0)-\left(\frac{1}{4}\right)\left(-4 \mathrm{e}^{-4 t}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-4 t}
$$

Which simplifies to

$$
W=\mathrm{e}^{-4 t}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{3 t}{4}+\frac{1}{2}}{\mathrm{e}^{-4 t}} d t
$$

Which simplifies to

$$
u_{1}=-\int \frac{\mathrm{e}^{4 t}(3 t+2)}{4} d t
$$

Hence

$$
u_{1}=-\frac{(12 t+5) \mathrm{e}^{4 t}}{64}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{-4 t}(3 t+2)}{\mathrm{e}^{-4 t}} d t
$$

Which simplifies to

$$
u_{2}=\int(3 t+2) d t
$$

Hence

$$
u_{2}=\frac{3}{2} t^{2}+2 t
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(t)=-\frac{\mathrm{e}^{-4 t}(12 t+5) \mathrm{e}^{4 t}}{64}+\frac{3 t^{2}}{8}+\frac{t}{2}
$$

Which simplifies to

$$
y_{p}(t)=\frac{5}{16} t-\frac{5}{64}+\frac{3}{8} t^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-4 t}+\frac{c_{2}}{4}\right)+\left(\frac{5}{16} t-\frac{5}{64}+\frac{3}{8} t^{2}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-4 t}+\frac{c_{2}}{4}+\frac{5 t}{16}-\frac{5}{64}+\frac{3 t^{2}}{8} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{c_{2}}{4}-\frac{5}{64} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-4 c_{1} \mathrm{e}^{-4 t}+\frac{5}{16}+\frac{3 t}{4}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-4 c_{1}+\frac{5}{16} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{5}{64} \\
& c_{2}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{5}{64}+\frac{5 \mathrm{e}^{-4 t}}{64}+\frac{3 t^{2}}{8}+\frac{5 t}{16}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{5}{64}+\frac{5 \mathrm{e}^{-4 t}}{64}+\frac{3 t^{2}}{8}+\frac{5 t}{16} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{5}{64}+\frac{5 \mathrm{e}^{-4 t}}{64}+\frac{3 t^{2}}{8}+\frac{5 t}{16}
$$

Verified OK.

16.32.7 Solving as exact linear second order ode ode

An ode of the form

$$
p(t) y^{\prime \prime}+q(t) y^{\prime}+r(t) y=s(t)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(t)-q^{\prime}(t)+r(t)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =4 \\
r(x) & =0 \\
s(x) & =3 t+2
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
0-(0)+(0)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(t) y^{\prime}+\left(q(t)-p^{\prime}(t)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(t) y^{\prime}+\left(q(t)-p^{\prime}(t)\right) y=\int s(t) d t
$$

Substituting the above values for p, q, r, s gives

$$
4 y+y^{\prime}=\int 3 t+2 d t
$$

We now have a first order ode to solve which is

$$
4 y+y^{\prime}=\frac{3}{2} t^{2}+2 t+c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(t) y=q(t)
$$

Where here

$$
\begin{aligned}
& p(t)=4 \\
& q(t)=\frac{3}{2} t^{2}+2 t+c_{1}
\end{aligned}
$$

Hence the ode is

$$
4 y+y^{\prime}=\frac{3}{2} t^{2}+2 t+c_{1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 4 d t} \\
& =\mathrm{e}^{4 t}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mu y) & =(\mu)\left(\frac{3}{2} t^{2}+2 t+c_{1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\mathrm{e}^{4 t} y\right) & =\left(\mathrm{e}^{4 t}\right)\left(\frac{3}{2} t^{2}+2 t+c_{1}\right) \\
\mathrm{d}\left(\mathrm{e}^{4 t} y\right) & =\left(\frac{\left(3 t^{2}+2 c_{1}+4 t\right) \mathrm{e}^{4 t}}{2}\right) \mathrm{d} t
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{4 t} y=\int \frac{\left(3 t^{2}+2 c_{1}+4 t\right) \mathrm{e}^{4 t}}{2} \mathrm{~d} t \\
& \mathrm{e}^{4 t} y=\frac{\left(24 t^{2}+16 c_{1}+20 t-5\right) \mathrm{e}^{4 t}}{64}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{4 t}$ results in

$$
y=\frac{\mathrm{e}^{-4 t}\left(24 t^{2}+16 c_{1}+20 t-5\right) \mathrm{e}^{4 t}}{64}+c_{2} \mathrm{e}^{-4 t}
$$

which simplifies to

$$
y=\frac{3 t^{2}}{8}+\frac{c_{1}}{4}+\frac{5 t}{16}-\frac{5}{64}+c_{2} \mathrm{e}^{-4 t}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{3 t^{2}}{8}+\frac{c_{1}}{4}+\frac{5 t}{16}-\frac{5}{64}+c_{2} \mathrm{e}^{-4 t} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-\frac{5}{64}+\frac{c_{1}}{4}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-4 c_{2} \mathrm{e}^{-4 t}+\frac{3 t}{4}+\frac{5}{16}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-4 c_{2}+\frac{5}{16} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=\frac{5}{64}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{5}{64}+\frac{5 \mathrm{e}^{-4 t}}{64}+\frac{3 t^{2}}{8}+\frac{5 t}{16}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{5}{64}+\frac{5 \mathrm{e}^{-4 t}}{64}+\frac{3 t^{2}}{8}+\frac{5 t}{16} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=-\frac{5}{64}+\frac{5 \mathrm{e}^{-4 t}}{64}+\frac{3 t^{2}}{8}+\frac{5 t}{16}
$$

Verified OK.

16.32.8 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}+4 y^{\prime}=3 t+2, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+4 r=0$
- Factor the characteristic polynomial
$r(r+4)=0$
- Roots of the characteristic polynomial
$r=(-4,0)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-4 t}$
- 2nd solution of the homogeneous ODE

$$
y_{2}(t)=1
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-4 t}+c_{2}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function $\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=3 t+2\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-4 t} & 1 \\
-4 \mathrm{e}^{-4 t} & 0
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=4 \mathrm{e}^{-4 t}$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\frac{\mathrm{e}^{-4 t}\left(\int \mathrm{e}^{4 t}(3 t+2) d t\right)}{4}+\frac{\left(\int(3 t+2) d t\right)}{4}
$$

- Compute integrals
$y_{p}(t)=\frac{5}{16} t-\frac{5}{64}+\frac{3}{8} t^{2}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-4 t}+c_{2}+\frac{5 t}{16}-\frac{5}{64}+\frac{3 t^{2}}{8}$
Check validity of solution $y=c_{1} \mathrm{e}^{-4 t}+c_{2}+\frac{5 t}{16}-\frac{5}{64}+\frac{3 t^{2}}{8}$
- Use initial condition $y(0)=0$
$0=c_{1}+c_{2}-\frac{5}{64}$
- Compute derivative of the solution
$y^{\prime}=-4 c_{1} \mathrm{e}^{-4 t}+\frac{5}{16}+\frac{3 t}{4}$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=-4 c_{1}+\frac{5}{16}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=\frac{5}{64}, c_{2}=0\right\}$
- Substitute constant values into general solution and simplify
$y=-\frac{5}{64}+\frac{5 \mathrm{e}^{-4 t}}{64}+\frac{3 t^{2}}{8}+\frac{5 t}{16}$
- \quad Solution to the IVP
$y=-\frac{5}{64}+\frac{5 \mathrm{e}^{-4 t}}{64}+\frac{3 t^{2}}{8}+\frac{5 t}{16}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -4*_b(_a)+3*_a+2, _b(_a)
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    <- 1st order linear successful
<- high order exact linear fully integrable successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 20

```
dsolve([diff(y(t),t$2)+4*\operatorname{diff}(y(t),t)=3*t+2,y(0) = 0, D(y)(0) = 0],y(t), singsol=all)
```

$$
y(t)=\frac{3 t^{2}}{8}+\frac{5 \mathrm{e}^{-4 t}}{64}+\frac{5 t}{16}-\frac{5}{64}
$$

Solution by Mathematica
Time used: 0.136 (sec). Leaf size: 26
DSolve[\{y' $\left.[t]+4 * y{ }^{\prime}[t]==3 * t+2,\left\{y[0]==0, y^{\prime}[0]==0\right\}\right\}, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{1}{64}\left(24 t^{2}+20 t+5 e^{-4 t}-5\right)
$$

16.33 problem 34

16.33.1 Existence and uniqueness analysis 3000
16.33.2 Solving as second order linear constant coeff ode 3001
16.33.3 Solving using Kovacic algorithm 3005
16.33.4 Maple step by step solution . 3010

Internal problem ID [13193]
Internal file name [OUTPUT/11848_Sunday_December_03_2023_07_19_39_PM_4184284/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 34 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+3 y^{\prime}+2 y=t^{2}
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

16.33.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =3 \\
q(t) & =2 \\
F & =t^{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+3 y^{\prime}+2 y=t^{2}
$$

The domain of $p(t)=3$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=t^{2}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.33.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=3, C=2, f(t)=t^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=3, C=2$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+3 \lambda \mathrm{e}^{\lambda t}+2 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+3 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=3, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{3^{2}-(4)(1)(2)} \\
& =-\frac{3}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{3}{2}+\frac{1}{2} \\
& \lambda_{2}=-\frac{3}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(-1) t}+c_{2} e^{(-2) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{1, t, t^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 t}, \mathrm{e}^{-t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{3} t^{2}+A_{2} t+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{3} t^{2}+2 A_{2} t+6 t A_{3}+2 A_{1}+3 A_{2}+2 A_{3}=t^{2}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{7}{4}, A_{2}=-\frac{3}{2}, A_{3}=\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{1}{2} t^{2}-\frac{3}{2} t+\frac{7}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}\right)+\left(\frac{1}{2} t^{2}-\frac{3}{2} t+\frac{7}{4}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}+\frac{t^{2}}{2}-\frac{3 t}{2}+\frac{7}{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}+\frac{7}{4} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-t}-2 c_{2} \mathrm{e}^{-2 t}+t-\frac{3}{2}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-c_{1}-2 c_{2}-\frac{3}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-2 \\
& c_{2}=\frac{1}{4}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{7}{4}-2 \mathrm{e}^{-t}+\frac{\mathrm{e}^{-2 t}}{4}+\frac{t^{2}}{2}-\frac{3 t}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{7}{4}-2 \mathrm{e}^{-t}+\frac{\mathrm{e}^{-2 t}}{4}+\frac{t^{2}}{2}-\frac{3 t}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{7}{4}-2 \mathrm{e}^{-t}+\frac{\mathrm{e}^{-2 t}}{4}+\frac{t^{2}}{2}-\frac{3 t}{2}
$$

Verified OK.

16.33.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+3 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =3 \tag{3}\\
C & =2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\frac{z(t)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 475: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-\frac{t}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3}{1} d t} \\
& =z_{1} e^{-\frac{3 t}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{3 t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-3 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\mathrm{e}^{t}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 t}\right)+c_{2}\left(\mathrm{e}^{-2 t}\left(\mathrm{e}^{t}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
t^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{1, t, t^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 t}, \mathrm{e}^{-t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{3} t^{2}+A_{2} t+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{3} t^{2}+2 A_{2} t+6 t A_{3}+2 A_{1}+3 A_{2}+2 A_{3}=t^{2}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{7}{4}, A_{2}=-\frac{3}{2}, A_{3}=\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{1}{2} t^{2}-\frac{3}{2} t+\frac{7}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}\right)+\left(\frac{1}{2} t^{2}-\frac{3}{2} t+\frac{7}{4}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}+\frac{t^{2}}{2}-\frac{3 t}{2}+\frac{7}{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}+\frac{7}{4} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 t}-c_{2} \mathrm{e}^{-t}+t-\frac{3}{2}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-2 c_{1}-c_{2}-\frac{3}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{4} \\
& c_{2}=-2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{7}{4}-2 \mathrm{e}^{-t}+\frac{\mathrm{e}^{-2 t}}{4}+\frac{t^{2}}{2}-\frac{3 t}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{7}{4}-2 \mathrm{e}^{-t}+\frac{\mathrm{e}^{-2 t}}{4}+\frac{t^{2}}{2}-\frac{3 t}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=\frac{7}{4}-2 \mathrm{e}^{-t}+\frac{\mathrm{e}^{-2 t}}{4}+\frac{t^{2}}{2}-\frac{3 t}{2}
$$

Verified OK.

16.33.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+3 y^{\prime}+2 y=t^{2}, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+3 r+2=0
$$

- Factor the characteristic polynomial

$$
(r+2)(r+1)=0
$$

- Roots of the characteristic polynomial

$$
r=(-2,-1)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{-2 t}
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{-t}
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function
$\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=t^{2}\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 t} & \mathrm{e}^{-t} \\
-2 \mathrm{e}^{-2 t} & -\mathrm{e}^{-t}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=\mathrm{e}^{-3 t}
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\mathrm{e}^{-2 t}\left(\int \mathrm{e}^{2 t} t^{2} d t\right)+\mathrm{e}^{-t}\left(\int t^{2} \mathrm{e}^{t} d t\right)
$$

- Compute integrals

$$
y_{p}(t)=\frac{1}{2} t^{2}-\frac{3}{2} t+\frac{7}{4}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}+\frac{t^{2}}{2}-\frac{3 t}{2}+\frac{7}{4}
$$

Check validity of solution $y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}+\frac{t^{2}}{2}-\frac{3 t}{2}+\frac{7}{4}$

- Use initial condition $y(0)=0$

$$
0=c_{1}+c_{2}+\frac{7}{4}
$$

- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 t}-c_{2} \mathrm{e}^{-t}+t-\frac{3}{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$

$$
0=-2 c_{1}-c_{2}-\frac{3}{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{1}{4}, c_{2}=-2\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{7}{4}-2 \mathrm{e}^{-t}+\frac{\mathrm{e}^{-2 t}}{4}+\frac{t^{2}}{2}-\frac{3 t}{2}
$$

- \quad Solution to the IVP

$$
y=\frac{7}{4}-2 \mathrm{e}^{-t}+\frac{\mathrm{e}^{-2 t}}{4}+\frac{t^{2}}{2}-\frac{3 t}{2}
$$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form $[x i=0$, eta= $F(x)$] successful-

Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

$$
\underbrace{\text { dsolve }\left(\left[\operatorname{diff}(\mathrm{y}(\mathrm{t}), \mathrm{t} \$ 2)+3 * \operatorname{diff}(\mathrm{y}(\mathrm{t}), \mathrm{t})+2 * \mathrm{y}(\mathrm{t})=\mathrm{t}^{\wedge} 2, \mathrm{y}(0)=0, \mathrm{D}(\mathrm{y})(0)=0\right], \mathrm{y}(\mathrm{t}),\right.} \text { singsol=all) }
$$

Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 37
DSolve $\left[\left\{y^{\prime} '[t]+3 * y\right.\right.$ ' $\left.[t]+2 * y[t]==t \sim 2,\left\{y[0]==0, y^{\prime}[0]==0\right\}\right\}, y[t], t$, IncludeSingularSolutions $\rightarrow \mathrm{Tr}$

$$
y(t) \rightarrow \frac{1}{4} e^{-2 t}\left(e^{2 t}\left(2 t^{2}-6 t+7\right)-8 e^{t}+1\right)
$$

16.34 problem 35

16.34.1 Existence and uniqueness analysis 3013
16.34.2 Solving as second order linear constant coeff ode 3014
16.34.3 Solving using Kovacic algorithm 3018
16.34.4 Maple step by step solution . 3023

Internal problem ID [13194]
Internal file name [OUTPUT/11849_Sunday_December_03_2023_07_19_43_PM_85429344/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 35 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+4 y=t-\frac{1}{20} t^{2}
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

16.34.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =4 \\
F & =t-\frac{1}{20} t^{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y=t-\frac{1}{20} t^{2}
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=t-\frac{1}{20} t^{2}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.34.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=0, C=4, f(t)=t-\frac{1}{20} t^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+4 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)
$$

Or

$$
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (2 t)+c_{2} \sin (2 t)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
t^{2}+t
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{1, t, t^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (2 t), \sin (2 t)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{3} t^{2}+A_{2} t+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
4 A_{3} t^{2}+4 A_{2} t+4 A_{1}+2 A_{3}=t-\frac{1}{20} t^{2}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{160}, A_{2}=\frac{1}{4}, A_{3}=-\frac{1}{80}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{1}{80} t^{2}+\frac{1}{4} t+\frac{1}{160}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)+\left(-\frac{1}{80} t^{2}+\frac{1}{4} t+\frac{1}{160}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)-\frac{t^{2}}{80}+\frac{t}{4}+\frac{1}{160} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{1}{160} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t)-\frac{t}{40}+\frac{1}{4}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=\frac{1}{4}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{160} \\
& c_{2}=-\frac{1}{8}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{1}{160}-\frac{\cos (2 t)}{160}-\frac{\sin (2 t)}{8}-\frac{t^{2}}{80}+\frac{t}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{160}-\frac{\cos (2 t)}{160}-\frac{\sin (2 t)}{8}-\frac{t^{2}}{80}+\frac{t}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{1}{160}-\frac{\cos (2 t)}{160}-\frac{\sin (2 t)}{8}-\frac{t^{2}}{80}+\frac{t}{4}
$$

Verified OK.

16.34.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-4 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 477: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (2 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 t)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 t)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d t \\
& =\cos (2 t) \int \frac{1}{\cos (2 t)^{2}} d t \\
& =\cos (2 t)\left(\frac{\tan (2 t)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 t))+c_{2}\left(\cos (2 t)\left(\frac{\tan (2 t)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
t^{2}+t
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{1, t, t^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (2 t)}{2}, \cos (2 t)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{3} t^{2}+A_{2} t+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
4 A_{3} t^{2}+4 A_{2} t+4 A_{1}+2 A_{3}=t-\frac{1}{20} t^{2}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{160}, A_{2}=\frac{1}{4}, A_{3}=-\frac{1}{80}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{1}{80} t^{2}+\frac{1}{4} t+\frac{1}{160}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}\right)+\left(-\frac{1}{80} t^{2}+\frac{1}{4} t+\frac{1}{160}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}-\frac{t^{2}}{80}+\frac{t}{4}+\frac{1}{160} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{1}{160} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \sin (2 t)+c_{2} \cos (2 t)-\frac{t}{40}+\frac{1}{4}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=\frac{1}{4}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{160} \\
& c_{2}=-\frac{1}{4}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{1}{160}-\frac{\cos (2 t)}{160}-\frac{\sin (2 t)}{8}-\frac{t^{2}}{80}+\frac{t}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{160}-\frac{\cos (2 t)}{160}-\frac{\sin (2 t)}{8}-\frac{t^{2}}{80}+\frac{t}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=\frac{1}{160}-\frac{\cos (2 t)}{160}-\frac{\sin (2 t)}{8}-\frac{t^{2}}{80}+\frac{t}{4}
$$

Verified OK.

16.34.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+4 y=t-\frac{1}{20} t^{2}, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+4=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial
$r=(-2 \mathrm{I}, 2 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\cos (2 t)
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(t)=\sin (2 t)
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=t-\frac{1}{20} t^{2}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (2 t) & \sin (2 t) \\
-2 \sin (2 t) & 2 \cos (2 t)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=2
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=\frac{\cos (2 t)\left(\int \sin (2 t) t(-20+t) d t\right)}{40}-\frac{\sin (2 t)\left(\int \cos (2 t) t(-20+t) d t\right)}{40}
$$

- Compute integrals

$$
y_{p}(t)=-\frac{1}{80} t^{2}+\frac{1}{4} t+\frac{1}{160}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (2 t)+c_{2} \sin (2 t)-\frac{t^{2}}{80}+\frac{t}{4}+\frac{1}{160}$
Check validity of solution $y=c_{1} \cos (2 t)+c_{2} \sin (2 t)-\frac{t^{2}}{80}+\frac{t}{4}+\frac{1}{160}$
- Use initial condition $y(0)=0$
$0=c_{1}+\frac{1}{160}$
- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t)-\frac{t}{40}+\frac{1}{4}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=\frac{1}{4}+2 c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-\frac{1}{160}, c_{2}=-\frac{1}{8}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{1}{160}-\frac{\cos (2 t)}{160}-\frac{\sin (2 t)}{8}-\frac{t^{2}}{80}+\frac{t}{4}
$$

- \quad Solution to the IVP

$$
y=\frac{1}{160}-\frac{\cos (2 t)}{160}-\frac{\sin (2 t)}{8}-\frac{t^{2}}{80}+\frac{t}{4}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```


$\sqrt{ }$ Solution by Maple

Time used: 0.015 (sec). Leaf size: 26

$$
\begin{aligned}
& \text { dsolve }\left(\left[\operatorname{diff}(\mathrm{y}(\mathrm{t}), \mathrm{t} \$ 2)+4 * \mathrm{y}(\mathrm{t})=\mathrm{t}-\mathrm{t}^{\wedge} 2 / 20, \mathrm{y}(0)=0, \mathrm{D}(\mathrm{y})(0)=0\right], \mathrm{y}(\mathrm{t})\right. \text {, singsol=all) } \\
& y(t)=-\frac{\sin (2 t)}{8}-\frac{\cos (2 t)}{160}-\frac{t^{2}}{80}+\frac{t}{4}+\frac{1}{160}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 31

```
DSolve[{y''[t]+4*y[t]==t-t^2/20,{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow \frac{1}{160}\left(-2 t^{2}+40 t-20 \sin (2 t)-\cos (2 t)+1\right)
$$

16.35 problem 37

16.35.1 Existence and uniqueness analysis 3026
16.35.2 Solving as second order linear constant coeff ode 3027
16.35.3 Solving using Kovacic algorithm 3031
16.35.4 Maple step by step solution . 3036

Internal problem ID [13195]
Internal file name [OUTPUT/11850_Sunday_December_03_2023_07_19_47_PM_98969422/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 37.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+5 y^{\prime}+6 y=4+\mathrm{e}^{-t}
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

16.35.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =5 \\
q(t) & =6 \\
F & =4+\mathrm{e}^{-t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+5 y^{\prime}+6 y=4+\mathrm{e}^{-t}
$$

The domain of $p(t)=5$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=6$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=4+\mathrm{e}^{-t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.35.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=5, C=6, f(t)=4+\mathrm{e}^{-t}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=5, C=6$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+5 \lambda \mathrm{e}^{\lambda t}+6 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+5 \lambda+6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=5, C=6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-5}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{5^{2}-(4)(1)(6)} \\
& =-\frac{5}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{5}{2}+\frac{1}{2} \\
& \lambda_{2}=-\frac{5}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-2 \\
& \lambda_{2}=-3
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(-2) t}+c_{2} e^{(-3) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-3 t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-3 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
4+\mathrm{e}^{-t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\{1\},\left\{\mathrm{e}^{-t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-3 t}, \mathrm{e}^{-2 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}+A_{2} \mathrm{e}^{-t}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{2} \mathrm{e}^{-t}+6 A_{1}=4+\mathrm{e}^{-t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{2}{3}, A_{2}=\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{2}{3}+\frac{\mathrm{e}^{-t}}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-3 t}\right)+\left(\frac{2}{3}+\frac{\mathrm{e}^{-t}}{2}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-3 t}+\frac{2}{3}+\frac{\mathrm{e}^{-t}}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}+\frac{7}{6} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 t}-3 c_{2} \mathrm{e}^{-3 t}-\frac{\mathrm{e}^{-t}}{2}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-2 c_{1}-3 c_{2}-\frac{1}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-3 \\
& c_{2}=\frac{11}{6}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{2}{3}-3 \mathrm{e}^{-2 t}+\frac{11 \mathrm{e}^{-3 t}}{6}+\frac{\mathrm{e}^{-t}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2}{3}-3 \mathrm{e}^{-2 t}+\frac{11 \mathrm{e}^{-3 t}}{6}+\frac{\mathrm{e}^{-t}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{2}{3}-3 \mathrm{e}^{-2 t}+\frac{11 \mathrm{e}^{-3 t}}{6}+\frac{\mathrm{e}^{-t}}{2}
$$

Verified OK.

16.35.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+5 y^{\prime}+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=5 \tag{3}\\
& C=6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\frac{z(t)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 479: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-\frac{t}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{5}{1} d t} \\
& =z_{1} e^{-\frac{5 t}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{5 t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{5}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-5 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\mathrm{e}^{t}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 t}\right)+c_{2}\left(\mathrm{e}^{-3 t}\left(\mathrm{e}^{t}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+5 y^{\prime}+6 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{-2 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
4+\mathrm{e}^{-t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\{1\},\left\{\mathrm{e}^{-t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-3 t}, \mathrm{e}^{-2 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}+A_{2} \mathrm{e}^{-t}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{2} \mathrm{e}^{-t}+6 A_{1}=4+\mathrm{e}^{-t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{2}{3}, A_{2}=\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{2}{3}+\frac{\mathrm{e}^{-t}}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{-2 t}\right)+\left(\frac{2}{3}+\frac{\mathrm{e}^{-t}}{2}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{-2 t}+\frac{2}{3}+\frac{\mathrm{e}^{-t}}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}+\frac{7}{6} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 \mathrm{e}^{-3 t} c_{1}-2 c_{2} \mathrm{e}^{-2 t}-\frac{\mathrm{e}^{-t}}{2}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-3 c_{1}-2 c_{2}-\frac{1}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{11}{6} \\
& c_{2}=-3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{2}{3}-3 \mathrm{e}^{-2 t}+\frac{11 \mathrm{e}^{-3 t}}{6}+\frac{\mathrm{e}^{-t}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2}{3}-3 \mathrm{e}^{-2 t}+\frac{11 \mathrm{e}^{-3 t}}{6}+\frac{\mathrm{e}^{-t}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{2}{3}-3 \mathrm{e}^{-2 t}+\frac{11 \mathrm{e}^{-3 t}}{6}+\frac{\mathrm{e}^{-t}}{2}
$$

Verified OK.

16.35.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+5 y^{\prime}+6 y=4+\mathrm{e}^{-t}, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+5 r+6=0
$$

- Factor the characteristic polynomial

$$
(r+3)(r+2)=0
$$

- Roots of the characteristic polynomial

$$
r=(-3,-2)
$$

- \quad 1st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{-3 t}
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{-2 t}
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{-2 t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=4+\mathrm{e}^{-t}\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\mathrm{e}^{-3 t} & \mathrm{e}^{-2 t} \\ -3 \mathrm{e}^{-3 t} & -2 \mathrm{e}^{-2 t}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=\mathrm{e}^{-5 t}$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\mathrm{e}^{-3 t}\left(\int\left(4 \mathrm{e}^{3 t}+\mathrm{e}^{2 t}\right) d t\right)+\mathrm{e}^{-2 t}\left(\int\left(4 \mathrm{e}^{2 t}+\mathrm{e}^{t}\right) d t\right)
$$

- Compute integrals

$$
y_{p}(t)=\frac{2}{3}+\frac{\mathrm{e}^{-t}}{2}
$$

- Substitute particular solution into general solution to ODE
$y=\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{-2 t}+\frac{2}{3}+\frac{\mathrm{e}^{-t}}{2}$
Check validity of solution $y=\mathrm{e}^{-3 t} c_{1}+c_{2} \mathrm{e}^{-2 t}+\frac{2}{3}+\frac{\mathrm{e}^{-t}}{2}$
- Use initial condition $y(0)=0$

$$
0=c_{1}+c_{2}+\frac{7}{6}
$$

- Compute derivative of the solution

$$
y^{\prime}=-3 \mathrm{e}^{-3 t} c_{1}-2 c_{2} \mathrm{e}^{-2 t}-\frac{\mathrm{e}^{-t}}{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$

$$
0=-3 c_{1}-2 c_{2}-\frac{1}{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{11}{6}, c_{2}=-3\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{2}{3}-3 \mathrm{e}^{-2 t}+\frac{11 \mathrm{e}^{-3 t}}{6}+\frac{\mathrm{e}^{-t}}{2}
$$

- \quad Solution to the IVP

$$
y=\frac{2}{3}-3 \mathrm{e}^{-2 t}+\frac{11 \mathrm{e}^{-3 t}}{6}+\frac{\mathrm{e}^{-t}}{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 24

```
dsolve([diff (y (t),t$2)+5*\operatorname{diff}(y(t),t)+6*y(t)=4+exp(-t),y(0) = 0, D(y)(0) = 0],y(t), singsol=
```

$$
y(t)=\frac{11 \mathrm{e}^{-3 t}}{6}-3 \mathrm{e}^{-2 t}+\frac{\mathrm{e}^{-t}}{2}+\frac{2}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.106 (sec). Leaf size: 28
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[t]+5 * y\right.\right.$ ' $\left.[t]+6 * y[t]==4+\operatorname{Exp}[-t],\left\{y[0]==0, y^{\prime}[0]==0\right\}\right\}, y[t], t$, IncludeSingularSolutions

$$
y(t) \rightarrow \frac{1}{6} e^{-3 t}\left(e^{t}-1\right)^{2}\left(4 e^{t}+11\right)
$$

16.36 problem 38

16.36.1 Existence and uniqueness analysis 3039
16.36.2 Solving as second order linear constant coeff ode 3040
16.36.3 Solving using Kovacic algorithm 3044
16.36.4 Maple step by step solution . 3049

Internal problem ID [13196]
Internal file name [OUTPUT/11851_Sunday_December_03_2023_07_19_50_PM_86148490/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 38.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+3 y^{\prime}+2 y=\mathrm{e}^{-t}-4
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

16.36.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =3 \\
q(t) & =2 \\
F & =\mathrm{e}^{-t}-4
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+3 y^{\prime}+2 y=\mathrm{e}^{-t}-4
$$

The domain of $p(t)=3$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=\mathrm{e}^{-t}-4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.36.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=3, C=2, f(t)=\mathrm{e}^{-t}-4$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=3, C=2$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+3 \lambda \mathrm{e}^{\lambda t}+2 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+3 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=3, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{3^{2}-(4)(1)(2)} \\
& =-\frac{3}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{3}{2}+\frac{1}{2} \\
& \lambda_{2}=-\frac{3}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(-1) t}+c_{2} e^{(-2) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{-t}-4
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\{1\},\left\{\mathrm{e}^{-t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 t}, \mathrm{e}^{-t}\right\}
$$

Since e^{-t} is duplicated in the UC_set, then this basis is multiplied by extra t. The UC_set becomes

$$
\left[\{1\},\left\{t \mathrm{e}^{-t}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1}+A_{2} t \mathrm{e}^{-t}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
A_{2} \mathrm{e}^{-t}+2 A_{1}=\mathrm{e}^{-t}-4
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-2, A_{2}=1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-2+t \mathrm{e}^{-t}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}\right)+\left(-2+t \mathrm{e}^{-t}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}-2+t \mathrm{e}^{-t} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}-2 \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-t}-2 c_{2} \mathrm{e}^{-2 t}+\mathrm{e}^{-t}-t \mathrm{e}^{-t}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-c_{1}-2 c_{2}+1 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=3 \\
& c_{2}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=t \mathrm{e}^{-t}-2+3 \mathrm{e}^{-t}-\mathrm{e}^{-2 t}
$$

Which simplifies to

$$
y=(3+t) \mathrm{e}^{-t}-\mathrm{e}^{-2 t}-2
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(3+t) \mathrm{e}^{-t}-\mathrm{e}^{-2 t}-2 \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=(3+t) \mathrm{e}^{-t}-\mathrm{e}^{-2 t}-2
$$

Verified OK.

16.36.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+3 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =3 \tag{3}\\
C & =2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\frac{z(t)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 481: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-\frac{t}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3}{1} d t} \\
& =z_{1} e^{-\frac{3 t}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{3 t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-3 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\mathrm{e}^{t}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 t}\right)+c_{2}\left(\mathrm{e}^{-2 t}\left(\mathrm{e}^{t}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{-t}-4
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\{1\},\left\{\mathrm{e}^{-t}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 t}, \mathrm{e}^{-t}\right\}
$$

Since e^{-t} is duplicated in the UC_set, then this basis is multiplied by extra t. The UC_set becomes

$$
\left[\{1\},\left\{t \mathrm{e}^{-t}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1}+A_{2} t \mathrm{e}^{-t}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
A_{2} \mathrm{e}^{-t}+2 A_{1}=\mathrm{e}^{-t}-4
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-2, A_{2}=1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-2+t \mathrm{e}^{-t}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}\right)+\left(-2+t \mathrm{e}^{-t}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}-2+t \mathrm{e}^{-t} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}-2 \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 t}-c_{2} \mathrm{e}^{-t}+\mathrm{e}^{-t}-t \mathrm{e}^{-t}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-2 c_{1}-c_{2}+1 \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=t \mathrm{e}^{-t}-2+3 \mathrm{e}^{-t}-\mathrm{e}^{-2 t}
$$

Which simplifies to

$$
y=(3+t) \mathrm{e}^{-t}-\mathrm{e}^{-2 t}-2
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(3+t) \mathrm{e}^{-t}-\mathrm{e}^{-2 t}-2 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=(3+t) \mathrm{e}^{-t}-\mathrm{e}^{-2 t}-2
$$

Verified OK.

16.36.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+3 y^{\prime}+2 y=\mathrm{e}^{-t}-4, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+3 r+2=0$
- Factor the characteristic polynomial
$(r+2)(r+1)=0$
- Roots of the characteristic polynomial
$r=(-2,-1)$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{-2 t}
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{-t}
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\mathrm{e}^{-t}-4\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\mathrm{e}^{-2 t} & \mathrm{e}^{-t} \\ -2 \mathrm{e}^{-2 t} & -\mathrm{e}^{-t}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=\mathrm{e}^{-3 t}$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\mathrm{e}^{-2 t}\left(\int\left(-4 \mathrm{e}^{2 t}+\mathrm{e}^{t}\right) d t\right)+\mathrm{e}^{-t}\left(\int\left(1-4 \mathrm{e}^{t}\right) d t\right)$
- Compute integrals

$$
y_{p}(t)=-2+\mathrm{e}^{-t}(t-1)
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}-2+\mathrm{e}^{-t}(t-1)$
$\square \quad$ Check validity of solution $y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}-2+\mathrm{e}^{-t}(t-1)$
- Use initial condition $y(0)=0$
$0=c_{1}+c_{2}-3$
- Compute derivative of the solution
$y^{\prime}=-2 c_{1} \mathrm{e}^{-2 t}-c_{2} \mathrm{e}^{-t}-\mathrm{e}^{-t}(t-1)+\mathrm{e}^{-t}$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=2-2 c_{1}-c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-1, c_{2}=4\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=(3+t) \mathrm{e}^{-t}-\mathrm{e}^{-2 t}-2
$$

- \quad Solution to the IVP

$$
y=(3+t) \mathrm{e}^{-t}-\mathrm{e}^{-2 t}-2
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 30

```
dsolve([diff(y(t),t$2)+3*\operatorname{diff}(y(t),t)+2*y(t)=exp(-t)-4,y(0) = 0, D(y)(0) = 0],y(t), singsol=
```

$$
y(t)=-\left(2 \mathrm{e}^{2 t}+\ln \left(\mathrm{e}^{-t}\right) \mathrm{e}^{t}-3 \mathrm{e}^{t}+1\right) \mathrm{e}^{-2 t}
$$

\checkmark Solution by Mathematica
Time used: 0.077 (sec). Leaf size: 23
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[t]+3 * y\right.\right.$ ' $\left.[t]+2 * y[t]==\operatorname{Exp}[-t]-4,\left\{y[0]==0, y^{\prime}[0]==0\right\}\right\}, y[t], t$, IncludeSingularSolutions

$$
y(t) \rightarrow e^{-t}(t+3)-e^{-2 t}-2
$$

16.37 problem 39

16.37.1 Existence and uniqueness analysis 3052
16.37.2 Solving as second order linear constant coeff ode 3053
16.37.3 Solving using Kovacic algorithm 3057
16.37.4 Maple step by step solution . 3062

Internal problem ID [13197]
Internal file name [OUTPUT/11852_Sunday_December_03_2023_07_19_53_PM_65703945/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 39 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+6 y^{\prime}+8 y=2 t+\mathrm{e}^{-t}
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

16.37.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =6 \\
q(t) & =8 \\
F & =2 t+\mathrm{e}^{-t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+6 y^{\prime}+8 y=2 t+\mathrm{e}^{-t}
$$

The domain of $p(t)=6$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=8$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=2 t+\mathrm{e}^{-t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.37.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=6, C=8, f(t)=2 t+\mathrm{e}^{-t}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+8 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=6, C=8$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+6 \lambda \mathrm{e}^{\lambda t}+8 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+6 \lambda+8=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=6, C=8$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{6^{2}-(4)(1)(8)} \\
& =-3 \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-3+1 \\
& \lambda_{2}=-3-1
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-2 \\
\lambda_{2}=-4
\end{gathered}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(-2) t}+c_{2} e^{(-4) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 t+\mathrm{e}^{-t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-t}\right\},\{1, t\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-4 t}, \mathrm{e}^{-2 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-t}+A_{2}+A_{3} t
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
3 A_{1} \mathrm{e}^{-t}+6 A_{3}+8 A_{2}+8 A_{3} t=2 t+\mathrm{e}^{-t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{3}, A_{2}=-\frac{3}{16}, A_{3}=\frac{1}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{-t}}{3}-\frac{3}{16}+\frac{t}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}\right)+\left(\frac{\mathrm{e}^{-t}}{3}-\frac{3}{16}+\frac{t}{4}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}+\frac{\mathrm{e}^{-t}}{3}-\frac{3}{16}+\frac{t}{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}+\frac{7}{48} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 t}-4 c_{2} \mathrm{e}^{-4 t}-\frac{\mathrm{e}^{-t}}{3}+\frac{1}{4}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-2 c_{1}-4 c_{2}-\frac{1}{12} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{4} \\
& c_{2}=\frac{5}{48}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{3}{16}-\frac{\mathrm{e}^{-2 t}}{4}+\frac{5 \mathrm{e}^{-4 t}}{48}+\frac{\mathrm{e}^{-t}}{3}+\frac{t}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{3}{16}-\frac{\mathrm{e}^{-2 t}}{4}+\frac{5 \mathrm{e}^{-4 t}}{48}+\frac{\mathrm{e}^{-t}}{3}+\frac{t}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{3}{16}-\frac{\mathrm{e}^{-2 t}}{4}+\frac{5 \mathrm{e}^{-4 t}}{48}+\frac{\mathrm{e}^{-t}}{3}+\frac{t}{4}
$$

Verified OK.

16.37.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+6 y^{\prime}+8 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=6 \tag{3}\\
& C=8
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 483: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-t}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{d}{1} d t}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{-3 t} \\
& =z_{1}\left(\mathrm{e}^{-3 t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-4 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-6 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\mathrm{e}^{2 t}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-4 t}\right)+c_{2}\left(\mathrm{e}^{-4 t}\left(\frac{\mathrm{e}^{2 t}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+8 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-4 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 t+\mathrm{e}^{-t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-t}\right\},\{1, t\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{-2 t}}{2}, \mathrm{e}^{-4 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-t}+A_{2}+A_{3} t
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
3 A_{1} \mathrm{e}^{-t}+6 A_{3}+8 A_{2}+8 A_{3} t=2 t+\mathrm{e}^{-t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{3}, A_{2}=-\frac{3}{16}, A_{3}=\frac{1}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{-t}}{3}-\frac{3}{16}+\frac{t}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-4 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{2}\right)+\left(\frac{\mathrm{e}^{-t}}{3}-\frac{3}{16}+\frac{t}{4}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-4 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{-t}}{3}-\frac{3}{16}+\frac{t}{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{c_{2}}{2}+\frac{7}{48} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-4 c_{1} \mathrm{e}^{-4 t}-c_{2} \mathrm{e}^{-2 t}-\frac{\mathrm{e}^{-t}}{3}+\frac{1}{4}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-4 c_{1}-c_{2}-\frac{1}{12} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{5}{48} \\
& c_{2}=-\frac{1}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{3}{16}-\frac{\mathrm{e}^{-2 t}}{4}+\frac{5 \mathrm{e}^{-4 t}}{48}+\frac{\mathrm{e}^{-t}}{3}+\frac{t}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{3}{16}-\frac{\mathrm{e}^{-2 t}}{4}+\frac{5 \mathrm{e}^{-4 t}}{48}+\frac{\mathrm{e}^{-t}}{3}+\frac{t}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{3}{16}-\frac{\mathrm{e}^{-2 t}}{4}+\frac{5 \mathrm{e}^{-4 t}}{48}+\frac{\mathrm{e}^{-t}}{3}+\frac{t}{4}
$$

Verified OK.

16.37.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+6 y^{\prime}+8 y=2 t+\mathrm{e}^{-t}, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}+6 r+8=0
$$

- Factor the characteristic polynomial
$(r+4)(r+2)=0$
- Roots of the characteristic polynomial

$$
r=(-4,-2)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{-4 t}
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{-2 t}
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-2 t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=2 t+\mathrm{e}^{-t}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-4 t} & \mathrm{e}^{-2 t} \\
-4 \mathrm{e}^{-4 t} & -2 \mathrm{e}^{-2 t}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=2 \mathrm{e}^{-6 t}
$$

- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{\mathrm{e}^{-4 t}\left(\int\left(2 \mathrm{e}^{4 t} t+\mathrm{e}^{3 t}\right) d t\right)}{2}+\frac{\mathrm{e}^{-2 t}\left(\int\left(2 \mathrm{e}^{2 t} t+\mathrm{e}^{t}\right) d t\right)}{2}$
- Compute integrals

$$
y_{p}(t)=\frac{\mathrm{e}^{-t}}{3}-\frac{3}{16}+\frac{t}{4}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-2 t}+\frac{\mathrm{e}^{-t}}{3}-\frac{3}{16}+\frac{t}{4}$
Check validity of solution $y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-2 t}+\frac{\mathrm{e}^{-t}}{3}-\frac{3}{16}+\frac{t}{4}$
- Use initial condition $y(0)=0$
$0=c_{1}+c_{2}+\frac{7}{48}$
- Compute derivative of the solution

$$
y^{\prime}=-4 c_{1} \mathrm{e}^{-4 t}-2 c_{2} \mathrm{e}^{-2 t}-\frac{\mathrm{e}^{-t}}{3}+\frac{1}{4}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=-4 c_{1}-2 c_{2}-\frac{1}{12}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{5}{48}, c_{2}=-\frac{1}{4}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-\frac{3}{16}-\frac{\mathrm{e}^{-2 t}}{4}+\frac{5 \mathrm{e}^{-4 t}}{48}+\frac{\mathrm{e}^{-t}}{3}+\frac{t}{4}
$$

- \quad Solution to the IVP

$$
y=-\frac{3}{16}-\frac{\mathrm{e}^{-2 t}}{4}+\frac{5 \mathrm{e}^{-4 t}}{48}+\frac{\mathrm{e}^{-t}}{3}+\frac{t}{4}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 27

$$
\begin{aligned}
& \text { dsolve }([\operatorname{diff}(\mathrm{y}(\mathrm{t}), \mathrm{t} \$ 2)+6 * \operatorname{diff}(\mathrm{y}(\mathrm{t}), \mathrm{t})+8 * \mathrm{y}(\mathrm{t})=2 * \mathrm{t}+\exp (-\mathrm{t}), \mathrm{y}(0)=0, \mathrm{D}(\mathrm{y})(0)=0], \mathrm{y}(\mathrm{t}) \text {, singso } \\
& y(t)=\frac{5 \mathrm{e}^{-4 t}}{48}-\frac{3}{16}+\frac{t}{4}+\frac{\mathrm{e}^{-t}}{3}-\frac{\mathrm{e}^{-2 t}}{4}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.223 (sec). Leaf size: 42
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[t]+6 * y\right.\right.$ ' $\left.[t]+8 * y[t]==2 * t+\operatorname{Exp}[-t],\left\{y[0]==0, y^{\prime}[0]==0\right\}\right\}, y[t], t$, IncludeSingularSolutio

$$
y(t) \rightarrow \frac{1}{48} e^{-4 t}\left(3 e^{4 t}(4 t-3)-12 e^{2 t}+16 e^{3 t}+5\right)
$$

16.38 problem 40

16.38.1 Existence and uniqueness analysis 3065
16.38.2 Solving as second order linear constant coeff ode 3066
16.38.3 Solving using Kovacic algorithm 3070
16.38.4 Maple step by step solution . 3075

Internal problem ID [13198]
Internal file name [OUTPUT/11853_Sunday_December_03_2023_07_19_56_PM_91969336/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 40.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+6 y^{\prime}+8 y=2 t+\mathrm{e}^{t}
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

16.38.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =6 \\
q(t) & =8 \\
F & =2 t+\mathrm{e}^{t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+6 y^{\prime}+8 y=2 t+\mathrm{e}^{t}
$$

The domain of $p(t)=6$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=8$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=2 t+\mathrm{e}^{t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.38.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=6, C=8, f(t)=2 t+\mathrm{e}^{t}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+8 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=6, C=8$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+6 \lambda \mathrm{e}^{\lambda t}+8 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+6 \lambda+8=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=6, C=8$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{6^{2}-(4)(1)(8)} \\
& =-3 \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-3+1 \\
& \lambda_{2}=-3-1
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-2 \\
\lambda_{2}=-4
\end{gathered}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(-2) t}+c_{2} e^{(-4) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 t+\mathrm{e}^{t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{t}\right\},\{1, t\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-4 t}, \mathrm{e}^{-2 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{t}+A_{2}+A_{3} t
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
15 A_{1} \mathrm{e}^{t}+6 A_{3}+8 A_{2}+8 A_{3} t=2 t+\mathrm{e}^{t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{15}, A_{2}=-\frac{3}{16}, A_{3}=\frac{1}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{t}}{15}-\frac{3}{16}+\frac{t}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}\right)+\left(\frac{\mathrm{e}^{t}}{15}-\frac{3}{16}+\frac{t}{4}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}+\frac{\mathrm{e}^{t}}{15}-\frac{3}{16}+\frac{t}{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}-\frac{29}{240} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 t}-4 c_{2} \mathrm{e}^{-4 t}+\frac{\mathrm{e}^{t}}{15}+\frac{1}{4}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-2 c_{1}-4 c_{2}+\frac{19}{60} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{12} \\
& c_{2}=\frac{3}{80}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{3}{16}+\frac{\mathrm{e}^{-2 t}}{12}+\frac{3 \mathrm{e}^{-4 t}}{80}+\frac{\mathrm{e}^{t}}{15}+\frac{t}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{3}{16}+\frac{\mathrm{e}^{-2 t}}{12}+\frac{3 \mathrm{e}^{-4 t}}{80}+\frac{\mathrm{e}^{t}}{15}+\frac{t}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{3}{16}+\frac{\mathrm{e}^{-2 t}}{12}+\frac{3 \mathrm{e}^{-4 t}}{80}+\frac{\mathrm{e}^{t}}{15}+\frac{t}{4}
$$

Verified OK.

16.38.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+6 y^{\prime}+8 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=6 \tag{3}\\
& C=8
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 485: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-t}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{d}{1} d t}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{-3 t} \\
& =z_{1}\left(\mathrm{e}^{-3 t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-4 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-6 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\mathrm{e}^{2 t}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-4 t}\right)+c_{2}\left(\mathrm{e}^{-4 t}\left(\frac{\mathrm{e}^{2 t}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+8 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-4 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 t+\mathrm{e}^{t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{t}\right\},\{1, t\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{-2 t}}{2}, \mathrm{e}^{-4 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{t}+A_{2}+A_{3} t
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
15 A_{1} \mathrm{e}^{t}+6 A_{3}+8 A_{2}+8 A_{3} t=2 t+\mathrm{e}^{t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{15}, A_{2}=-\frac{3}{16}, A_{3}=\frac{1}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{t}}{15}-\frac{3}{16}+\frac{t}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-4 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{2}\right)+\left(\frac{\mathrm{e}^{t}}{15}-\frac{3}{16}+\frac{t}{4}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-4 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{t}}{15}-\frac{3}{16}+\frac{t}{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{c_{2}}{2}-\frac{29}{240} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-4 c_{1} \mathrm{e}^{-4 t}-c_{2} \mathrm{e}^{-2 t}+\frac{\mathrm{e}^{t}}{15}+\frac{1}{4}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-4 c_{1}-c_{2}+\frac{19}{60} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
c_{1} & =\frac{3}{80} \\
c_{2} & =\frac{1}{6}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{3}{16}+\frac{\mathrm{e}^{-2 t}}{12}+\frac{3 \mathrm{e}^{-4 t}}{80}+\frac{\mathrm{e}^{t}}{15}+\frac{t}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{3}{16}+\frac{\mathrm{e}^{-2 t}}{12}+\frac{3 \mathrm{e}^{-4 t}}{80}+\frac{\mathrm{e}^{t}}{15}+\frac{t}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{3}{16}+\frac{\mathrm{e}^{-2 t}}{12}+\frac{3 \mathrm{e}^{-4 t}}{80}+\frac{\mathrm{e}^{t}}{15}+\frac{t}{4}
$$

Verified OK.

16.38.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+6 y^{\prime}+8 y=2 t+\mathrm{e}^{t}, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+6 r+8=0
$$

- Factor the characteristic polynomial

$$
(r+4)(r+2)=0
$$

- Roots of the characteristic polynomial

$$
r=(-4,-2)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{-4 t}
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{-2 t}
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-2 t}+y_{p}(t)
$$

Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function $\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=2 t+\mathrm{e}^{t}\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-4 t} & \mathrm{e}^{-2 t} \\
-4 \mathrm{e}^{-4 t} & -2 \mathrm{e}^{-2 t}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=2 \mathrm{e}^{-6 t}$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\frac{\mathrm{e}^{-4 t}\left(\int\left(2 t+\mathrm{e}^{t}\right) \mathrm{e}^{4 t} d t\right)}{2}+\frac{\mathrm{e}^{-2 t}\left(\int\left(2 t+\mathrm{e}^{t}\right) \mathrm{e}^{2 t} d t\right)}{2}
$$

- Compute integrals

$$
y_{p}(t)=\frac{\mathrm{e}^{t}}{15}-\frac{3}{16}+\frac{t}{4}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-2 t}+\frac{\mathrm{e}^{t}}{15}-\frac{3}{16}+\frac{t}{4}
$$

Check validity of solution $y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-2 t}+\frac{\mathrm{e}^{t}}{15}-\frac{3}{16}+\frac{t}{4}$

- Use initial condition $y(0)=0$
$0=c_{1}+c_{2}-\frac{29}{240}$
- Compute derivative of the solution

$$
y^{\prime}=-4 c_{1} \mathrm{e}^{-4 t}-2 c_{2} \mathrm{e}^{-2 t}+\frac{\mathrm{e}^{t}}{15}+\frac{1}{4}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$

$$
0=-4 c_{1}-2 c_{2}+\frac{19}{60}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{3}{80}, c_{2}=\frac{1}{12}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{\left(16 \mathrm{e}^{5 t}+60 \mathrm{e}^{4 t} t-45 \mathrm{e}^{4 t}+20 \mathrm{e}^{2 t}+9\right) \mathrm{e}^{-4 t}}{240}
$$

- \quad Solution to the IVP

$$
y=\frac{\left(16 \mathrm{e}^{5 t}+60 \mathrm{e}^{4 t} t-45 \mathrm{e}^{4 t}+20 \mathrm{e}^{2 t}+9\right) \mathrm{e}^{-4 t}}{240}
$$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful-
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 25

```
dsolve([diff (y (t),t$2)+6*\operatorname{diff}(y(t),t)+8*y(t)=2*t+exp(t),y(0) = 0, D(y)(0) = 0],y(t), singsol
```

$$
y(t)=\frac{\left(16 \mathrm{e}^{5 t}+60 t \mathrm{e}^{4 t}-45 \mathrm{e}^{4 t}+20 \mathrm{e}^{2 t}+9\right) \mathrm{e}^{-4 t}}{240}
$$

\checkmark Solution by Mathematica
Time used: 0.2 (sec). Leaf size: 33
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[t]+6 * y\right.\right.$ ' $\left.[t]+8 * y[t]==2 * t+\operatorname{Exp}[t],\left\{y[0]==0, y^{\prime}[0]==0\right\}\right\}, y[t], t$, IncludeSingularSolution

$$
y(t) \rightarrow \frac{1}{240}\left(60 t+9 e^{-4 t}+20 e^{-2 t}+16 e^{t}-45\right)
$$

16.39 problem 41

16.39.1 Existence and uniqueness analysis 3078
16.39.2 Solving as second order linear constant coeff ode 3079
16.39.3 Solving using Kovacic algorithm 3083
16.39.4 Maple step by step solution . 3088

Internal problem ID [13199]
Internal file name [OUTPUT/11854_Sunday_December_03_2023_07_19_59_PM_10470501/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 41.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+4 y=t+\mathrm{e}^{-t}
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

16.39.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =4 \\
F & =t+\mathrm{e}^{-t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y=t+\mathrm{e}^{-t}
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=t+\mathrm{e}^{-t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.39.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=0, C=4, f(t)=t+\mathrm{e}^{-t}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+4 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)
$$

Or

$$
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (2 t)+c_{2} \sin (2 t)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
t+\mathrm{e}^{-t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-t}\right\},\{1, t\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (2 t), \sin (2 t)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-t}+A_{2}+A_{3} t
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
5 A_{1} \mathrm{e}^{-t}+4 A_{2}+4 A_{3} t=t+\mathrm{e}^{-t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{5}, A_{2}=0, A_{3}=\frac{1}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{-t}}{5}+\frac{t}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)+\left(\frac{\mathrm{e}^{-t}}{5}+\frac{t}{4}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+\frac{\mathrm{e}^{-t}}{5}+\frac{t}{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=\frac{1}{5}+c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t)-\frac{\mathrm{e}^{-t}}{5}+\frac{1}{4}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=\frac{1}{20}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{5} \\
& c_{2}=-\frac{1}{40}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{\cos (2 t)}{5}-\frac{\sin (2 t)}{40}+\frac{\mathrm{e}^{-t}}{5}+\frac{t}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\cos (2 t)}{5}-\frac{\sin (2 t)}{40}+\frac{\mathrm{e}^{-t}}{5}+\frac{t}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{\cos (2 t)}{5}-\frac{\sin (2 t)}{40}+\frac{\mathrm{e}^{-t}}{5}+\frac{t}{4}
$$

Verified OK.

16.39.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-4 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 487: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (2 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 t)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 t)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d t \\
& =\cos (2 t) \int \frac{1}{\cos (2 t)^{2}} d t \\
& =\cos (2 t)\left(\frac{\tan (2 t)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 t))+c_{2}\left(\cos (2 t)\left(\frac{\tan (2 t)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
t+\mathrm{e}^{-t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-t}\right\},\{1, t\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (2 t)}{2}, \cos (2 t)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-t}+A_{2}+A_{3} t
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
5 A_{1} \mathrm{e}^{-t}+4 A_{2}+4 A_{3} t=t+\mathrm{e}^{-t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{5}, A_{2}=0, A_{3}=\frac{1}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{-t}}{5}+\frac{t}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}\right)+\left(\frac{\mathrm{e}^{-t}}{5}+\frac{t}{4}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}+\frac{\mathrm{e}^{-t}}{5}+\frac{t}{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=\frac{1}{5}+c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \sin (2 t)+c_{2} \cos (2 t)-\frac{\mathrm{e}^{-t}}{5}+\frac{1}{4}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=\frac{1}{20}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{5} \\
& c_{2}=-\frac{1}{20}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{\cos (2 t)}{5}-\frac{\sin (2 t)}{40}+\frac{\mathrm{e}^{-t}}{5}+\frac{t}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\cos (2 t)}{5}-\frac{\sin (2 t)}{40}+\frac{\mathrm{e}^{-t}}{5}+\frac{t}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot

Verification of solutions

$$
y=-\frac{\cos (2 t)}{5}-\frac{\sin (2 t)}{40}+\frac{\mathrm{e}^{-t}}{5}+\frac{t}{4}
$$

Verified OK.

16.39.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+4 y=t+\mathrm{e}^{-t}, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+4=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial

$$
r=(-2 \mathrm{I}, 2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\cos (2 t)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\sin (2 t)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+y_{p}(t)
$$

Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function
$\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=t+\mathrm{e}^{-t}\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (2 t) & \sin (2 t) \\
-2 \sin (2 t) & 2 \cos (2 t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=2$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\frac{\cos (2 t)\left(\int \sin (2 t)\left(t+\mathrm{e}^{-t}\right) d t\right)}{2}+\frac{\sin (2 t)\left(\int \cos (2 t)\left(t+\mathrm{e}^{-t}\right) d t\right)}{2}
$$

- Compute integrals
$y_{p}(t)=\frac{t}{4}-\frac{\sin (2 t)}{8}+\frac{\mathrm{e}^{-t}}{5}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+\frac{t}{4}-\frac{\sin (2 t)}{8}+\frac{\mathrm{e}^{-t}}{5}$
Check validity of solution $y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+\frac{t}{4}-\frac{\sin (2 t)}{8}+\frac{\mathrm{e}^{-t}}{5}$
- Use initial condition $y(0)=0$
$0=\frac{1}{5}+c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t)+\frac{1}{4}-\frac{\cos (2 t)}{4}-\frac{\mathrm{e}^{-t}}{5}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=-\frac{1}{5}+2 c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-\frac{1}{5}, c_{2}=\frac{1}{10}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-\frac{\cos (2 t)}{5}-\frac{\sin (2 t)}{40}+\frac{\mathrm{e}^{-t}}{5}+\frac{t}{4}
$$

- \quad Solution to the IVP

$$
y=-\frac{\cos (2 t)}{5}-\frac{\sin (2 t)}{40}+\frac{\mathrm{e}^{-t}}{5}+\frac{t}{4}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 26

```
dsolve([diff(y(t),t$2)+4*y(t)=t+exp(-t),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)
```

$$
y(t)=-\frac{\sin (2 t)}{40}-\frac{\cos (2 t)}{5}+\frac{t}{4}+\frac{\mathrm{e}^{-t}}{5}
$$

\checkmark Solution by Mathematica
Time used: 0.794 (sec). Leaf size: 32

```
DSolve[{y''[t]+4*y[t]==t+Exp[-t],{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True
```

$$
y(t) \rightarrow \frac{1}{40}\left(10 t+8 e^{-t}-\sin (2 t)-8 \cos (2 t)\right)
$$

16.40 problem 42

16.40.1 Existence and uniqueness analysis 3091
16.40.2 Solving as second order linear constant coeff ode 3092
16.40.3 Solving using Kovacic algorithm 3096
16.40.4 Maple step by step solution . 3101

Internal problem ID [13200]
Internal file name [OUTPUT/11855_Sunday_December_03_2023_07_20_04_PM_77441081/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.1 page 399
Problem number: 42.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y=6+t^{2}+\mathrm{e}^{t}
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

16.40.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =4 \\
F & =6+t^{2}+\mathrm{e}^{t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y=6+t^{2}+\mathrm{e}^{t}
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=6+t^{2}+\mathrm{e}^{t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

16.40.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=0, C=4, f(t)=6+t^{2}+\mathrm{e}^{t}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+4 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)
$$

Or

$$
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (2 t)+c_{2} \sin (2 t)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
6+t^{2}+\mathrm{e}^{t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{t}\right\},\left\{1, t, t^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (2 t), \sin (2 t)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{t}+A_{2}+A_{3} t+A_{4} t^{2}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
5 A_{1} \mathrm{e}^{t}+2 A_{4}+4 A_{2}+4 A_{3} t+4 A_{4} t^{2}=6+t^{2}+\mathrm{e}^{t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{5}, A_{2}=\frac{11}{8}, A_{3}=0, A_{4}=\frac{1}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{t}}{5}+\frac{11}{8}+\frac{t^{2}}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)+\left(\frac{\mathrm{e}^{t}}{5}+\frac{11}{8}+\frac{t^{2}}{4}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+\frac{\mathrm{e}^{t}}{5}+\frac{11}{8}+\frac{t^{2}}{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{63}{40} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t)+\frac{\mathrm{e}^{t}}{5}+\frac{t}{2}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=\frac{1}{5}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{63}{40} \\
& c_{2}=-\frac{1}{10}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{11}{8}-\frac{63 \cos (2 t)}{40}-\frac{\sin (2 t)}{10}+\frac{\mathrm{e}^{t}}{5}+\frac{t^{2}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{11}{8}-\frac{63 \cos (2 t)}{40}-\frac{\sin (2 t)}{10}+\frac{\mathrm{e}^{t}}{5}+\frac{t^{2}}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{11}{8}-\frac{63 \cos (2 t)}{40}-\frac{\sin (2 t)}{10}+\frac{\mathrm{e}^{t}}{5}+\frac{t^{2}}{4}
$$

Verified OK.

16.40.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+4 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-4 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 489: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (2 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 t)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 t)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d t \\
& =\cos (2 t) \int \frac{1}{\cos (2 t)^{2}} d t \\
& =\cos (2 t)\left(\frac{\tan (2 t)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 t))+c_{2}\left(\cos (2 t)\left(\frac{\tan (2 t)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
6+t^{2}+\mathrm{e}^{t}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{e^{t}\right\},\left\{1, t, t^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (2 t)}{2}, \cos (2 t)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{t}+A_{2}+A_{3} t+A_{4} t^{2}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
5 A_{1} \mathrm{e}^{t}+2 A_{4}+4 A_{2}+4 A_{3} t+4 A_{4} t^{2}=6+t^{2}+\mathrm{e}^{t}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{5}, A_{2}=\frac{11}{8}, A_{3}=0, A_{4}=\frac{1}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{t}}{5}+\frac{11}{8}+\frac{t^{2}}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}\right)+\left(\frac{\mathrm{e}^{t}}{5}+\frac{11}{8}+\frac{t^{2}}{4}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}+\frac{\mathrm{e}^{t}}{5}+\frac{11}{8}+\frac{t^{2}}{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{63}{40} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \sin (2 t)+c_{2} \cos (2 t)+\frac{\mathrm{e}^{t}}{5}+\frac{t}{2}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=\frac{1}{5}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{63}{40} \\
& c_{2}=-\frac{1}{5}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{11}{8}-\frac{63 \cos (2 t)}{40}-\frac{\sin (2 t)}{10}+\frac{\mathrm{e}^{t}}{5}+\frac{t^{2}}{4}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{11}{8}-\frac{63 \cos (2 t)}{40}-\frac{\sin (2 t)}{10}+\frac{\mathrm{e}^{t}}{5}+\frac{t^{2}}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{11}{8}-\frac{63 \cos (2 t)}{40}-\frac{\sin (2 t)}{10}+\frac{\mathrm{e}^{t}}{5}+\frac{t^{2}}{4}
$$

Verified OK.

16.40.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+4 y=6+t^{2}+\mathrm{e}^{t}, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}+4=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-16})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-2 \mathrm{I}, 2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\cos (2 t)$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\sin (2 t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=6+t^{2}+\mathrm{e}^{t}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (2 t) & \sin (2 t) \\
-2 \sin (2 t) & 2 \cos (2 t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=2$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{\cos (2 t)\left(\int \sin (2 t)\left(6+t^{2}+\mathrm{e}^{t}\right) d t\right)}{2}+\frac{\sin (2 t)\left(\int \cos (2 t)\left(6+t^{2}+\mathrm{e}^{t}\right) d t\right)}{2}$
- Compute integrals

$$
y_{p}(t)=\frac{13 \cos (t)^{2}}{4}+\frac{t^{2}}{4}+\frac{\mathrm{e}^{t}}{5}-\frac{1}{4}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+\frac{13 \cos (t)^{2}}{4}+\frac{t^{2}}{4}+\frac{\mathrm{e}^{t}}{5}-\frac{1}{4}$
Check validity of solution $y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+\frac{13 \cos (t)^{2}}{4}+\frac{t^{2}}{4}+\frac{\mathrm{e}^{t}}{5}-\frac{1}{4}$
- Use initial condition $y(0)=0$

$$
0=c_{1}+\frac{16}{5}
$$

- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t)-\frac{13 \cos (t) \sin (t)}{2}+\frac{t}{2}+\frac{\mathrm{e}^{t}}{5}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=\frac{1}{5}+2 c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-\frac{16}{5}, c_{2}=-\frac{1}{10}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{11}{8}-\frac{63 \cos (2 t)}{40}-\frac{\sin (2 t)}{10}+\frac{\mathrm{e}^{t}}{5}+\frac{t^{2}}{4}
$$

- \quad Solution to the IVP

$$
y=\frac{11}{8}-\frac{63 \cos (2 t)}{40}-\frac{\sin (2 t)}{10}+\frac{\mathrm{e}^{t}}{5}+\frac{t^{2}}{4}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 27

```
dsolve([diff(y(t),t$2)+4*y(t)=6+t^2+exp(t),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)
    y(t)=-\frac{\operatorname{sin}(2t)}{10}-\frac{63\operatorname{cos}(2t)}{40}+\frac{11}{8}+\frac{\mp@subsup{t}{}{2}}{4}+\frac{\mp@subsup{\textrm{e}}{}{t}}{5}
```

\checkmark Solution by Mathematica
Time used: 0.352 (sec). Leaf size: 33
DSolve $\left[\left\{\mathrm{y}^{\prime}\right.\right.$ ' $\left.[\mathrm{t}]+4 * \mathrm{y}[\mathrm{t}]==6+\mathrm{t} \sim 2+\operatorname{Exp}[\mathrm{t}],\left\{\mathrm{y}[0]==0, \mathrm{y}^{\prime}[0]==0\right\}\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions $\rightarrow \mathrm{I}$

$$
y(t) \rightarrow \frac{1}{40}\left(10 t^{2}+8 e^{t}-4 \sin (2 t)-63 \cos (2 t)+55\right)
$$

17 Chapter 4. Forcing and Resonance. Section 4.2 page 412
17.1 problem 1 3106
17.2 problem 2 3117
17.3 problem 3 3128
17.4 problem 4 3139
17.5 problem 5 3150
17.6 problem 6 3161
17.7 problem 7 3172
17.8 problem 8 3183
17.9 problem 9 3194
17.10problem 10 3205
17.11problem 11 3218
17.12problem 12 3231
17.13problem 13 3244
17.14problem 14 3258
17.15problem 15 3274
17.16problem 18 3285
17.17problem 19 3296

17.1 problem 1

17.1.1 Solving as second order linear constant coeff ode 3106
17.1.2 Solving using Kovacic algorithm 3109
17.1.3 Maple step by step solution . 3114

Internal problem ID [13201]
Internal file name [OUTPUT/11856_Sunday_December_03_2023_07_20_09_PM_36210487/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412
Problem number: 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+3 y^{\prime}+2 y=\cos (t)
$$

17.1.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=3, C=2, f(t)=\cos (t)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=3, C=2$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+3 \lambda \mathrm{e}^{\lambda t}+2 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+3 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=3, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{3^{2}-(4)(1)(2)} \\
& =-\frac{3}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{3}{2}+\frac{1}{2} \\
& \lambda_{2}=-\frac{3}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-1 \\
\lambda_{2}=-2
\end{gathered}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(-1) t}+c_{2} e^{(-2) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\cos (t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (t), \sin (t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 t}, \mathrm{e}^{-t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (t)+A_{2} \sin (t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
A_{1} \cos (t)+A_{2} \sin (t)-3 A_{1} \sin (t)+3 A_{2} \cos (t)=\cos (t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{10}, A_{2}=\frac{3}{10}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\cos (t)}{10}+\frac{3 \sin (t)}{10}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}\right)+\left(\frac{\cos (t)}{10}+\frac{3 \sin (t)}{10}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}+\frac{\cos (t)}{10}+\frac{3 \sin (t)}{10} \tag{1}
\end{equation*}
$$

Figure 571: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}+\frac{\cos (t)}{10}+\frac{3 \sin (t)}{10}
$$

Verified OK.

17.1.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+3 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =3 \tag{3}\\
C & =2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\frac{z(t)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 491: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-\frac{t}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3}{1} d t} \\
& =z_{1} e^{-\frac{3 t}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{3 t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-3 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\mathrm{e}^{t}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 t}\right)+c_{2}\left(\mathrm{e}^{-2 t}\left(\mathrm{e}^{t}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\cos (t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (t), \sin (t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 t}, \mathrm{e}^{-t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (t)+A_{2} \sin (t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
A_{1} \cos (t)+A_{2} \sin (t)-3 A_{1} \sin (t)+3 A_{2} \cos (t)=\cos (t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{10}, A_{2}=\frac{3}{10}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\cos (t)}{10}+\frac{3 \sin (t)}{10}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}\right)+\left(\frac{\cos (t)}{10}+\frac{3 \sin (t)}{10}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}+\frac{\cos (t)}{10}+\frac{3 \sin (t)}{10} \tag{1}
\end{equation*}
$$

Figure 572: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}+\frac{\cos (t)}{10}+\frac{3 \sin (t)}{10}
$$

Verified OK.

17.1.3 Maple step by step solution

Let's solve
$y^{\prime \prime}+3 y^{\prime}+2 y=\cos (t)$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+3 r+2=0$
- Factor the characteristic polynomial
$(r+2)(r+1)=0$
- Roots of the characteristic polynomial
$r=(-2,-1)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-2 t}$
- \quad 2nd solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{-t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function $\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\cos (t)\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 t} & \mathrm{e}^{-t} \\
-2 \mathrm{e}^{-2 t} & -\mathrm{e}^{-t}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=\mathrm{e}^{-3 t}
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\mathrm{e}^{-2 t}\left(\int \mathrm{e}^{2 t} \cos (t) d t\right)+\mathrm{e}^{-t}\left(\int \mathrm{e}^{t} \cos (t) d t\right)
$$

- Compute integrals

$$
y_{p}(t)=\frac{\cos (t)}{10}+\frac{3 \sin (t)}{10}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}+\frac{\cos (t)}{10}+\frac{3 \sin (t)}{10}
$$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry $[0,1]$ trying a double symmetry of the form [xi=0, eta=F(x)] <- double symmetry of the form $[x i=0$, eta=F(x)] successful-
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

```
dsolve(diff(y(t),t$2)+3*diff(y(t),t)+2*y(t)=cos(t),y(t), singsol=all)
```

$$
y(t)=-\mathrm{e}^{-2 t} c_{1}+\frac{\cos (t)}{10}+\frac{3 \sin (t)}{10}+c_{2} \mathrm{e}^{-t}
$$

\checkmark Solution by Mathematica
Time used: 0.07 (sec). Leaf size: 32
DSolve[y''[t]+3*y'[t]+2*y[t]==Cos[t],y[t],t,IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{1}{10}\left(3 \sin (t)+\cos (t)+10 e^{-2 t}\left(c_{2} e^{t}+c_{1}\right)\right)
$$

17.2 problem 2

17.2.1 Solving as second order linear constant coeff ode 3117
17.2.2 Solving using Kovacic algorithm 3120
17.2.3 Maple step by step solution . 3125

Internal problem ID [13202]
Internal file name [OUTPUT/11857_Sunday_December_03_2023_07_20_12_PM_2281889/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+3 y^{\prime}+2 y=5 \cos (t)
$$

17.2.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=3, C=2, f(t)=5 \cos (t)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=3, C=2$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+3 \lambda \mathrm{e}^{\lambda t}+2 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+3 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=3, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{3^{2}-(4)(1)(2)} \\
& =-\frac{3}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{3}{2}+\frac{1}{2} \\
& \lambda_{2}=-\frac{3}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-1 \\
\lambda_{2}=-2
\end{gathered}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(-1) t}+c_{2} e^{(-2) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
5 \cos (t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (t), \sin (t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 t}, \mathrm{e}^{-t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (t)+A_{2} \sin (t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
A_{1} \cos (t)+A_{2} \sin (t)-3 A_{1} \sin (t)+3 A_{2} \cos (t)=5 \cos (t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{2}, A_{2}=\frac{3}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\cos (t)}{2}+\frac{3 \sin (t)}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}\right)+\left(\frac{\cos (t)}{2}+\frac{3 \sin (t)}{2}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}+\frac{\cos (t)}{2}+\frac{3 \sin (t)}{2} \tag{1}
\end{equation*}
$$

Figure 573: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}+\frac{\cos (t)}{2}+\frac{3 \sin (t)}{2}
$$

Verified OK.

17.2.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+3 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =3 \tag{3}\\
C & =2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\frac{z(t)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 493: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-\frac{t}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3}{1} d t} \\
& =z_{1} e^{-\frac{3 t}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{3 t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-3 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\mathrm{e}^{t}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 t}\right)+c_{2}\left(\mathrm{e}^{-2 t}\left(\mathrm{e}^{t}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
5 \cos (t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (t), \sin (t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 t}, \mathrm{e}^{-t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (t)+A_{2} \sin (t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
A_{1} \cos (t)+A_{2} \sin (t)-3 A_{1} \sin (t)+3 A_{2} \cos (t)=5 \cos (t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{2}, A_{2}=\frac{3}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\cos (t)}{2}+\frac{3 \sin (t)}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}\right)+\left(\frac{\cos (t)}{2}+\frac{3 \sin (t)}{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}+\frac{\cos (t)}{2}+\frac{3 \sin (t)}{2} \tag{1}
\end{equation*}
$$

Figure 574: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}+\frac{\cos (t)}{2}+\frac{3 \sin (t)}{2}
$$

Verified OK.

17.2.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+3 y^{\prime}+2 y=5 \cos (t)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+3 r+2=0
$$

- Factor the characteristic polynomial
$(r+2)(r+1)=0$
- Roots of the characteristic polynomial
$r=(-2,-1)$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{-2 t}
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{-t}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}+y_{p}(t)
$$

Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=5 \cos (t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 t} & \mathrm{e}^{-t} \\
-2 \mathrm{e}^{-2 t} & -\mathrm{e}^{-t}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=\mathrm{e}^{-3 t}
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-5 \mathrm{e}^{-2 t}\left(\int \mathrm{e}^{2 t} \cos (t) d t\right)+5 \mathrm{e}^{-t}\left(\int \mathrm{e}^{t} \cos (t) d t\right)
$$

- Compute integrals

$$
y_{p}(t)=\frac{\cos (t)}{2}+\frac{3 \sin (t)}{2}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}+\frac{\cos (t)}{2}+\frac{3 \sin (t)}{2}
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

```
dsolve(diff(y(t),t$2)+3*diff(y(t),t)+2*y(t)=5*\operatorname{cos}(t),y(t), singsol=all)
```

$$
y(t)=-\mathrm{e}^{-2 t} c_{1}+\frac{\cos (t)}{2}+\frac{3 \sin (t)}{2}+c_{2} \mathrm{e}^{-t}
$$

\checkmark Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 32
DSolve[y''[t]+3*y'[t]+2*y[t]==5*Cos[t],y[t],t,IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{1}{2}\left(3 \sin (t)+\cos (t)+2 e^{-2 t}\left(c_{2} e^{t}+c_{1}\right)\right)
$$

17.3 problem 3

17.3.1 Solving as second order linear constant coeff ode 3128
17.3.2 Solving using Kovacic algorithm 3131
17.3.3 Maple step by step solution . 3136

Internal problem ID [13203]
Internal file name [OUTPUT/11858_Sunday_December_03_2023_07_20_15_PM_21715495/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412
Problem number: 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+3 y^{\prime}+2 y=\sin (t)
$$

17.3.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=3, C=2, f(t)=\sin (t)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=3, C=2$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+3 \lambda \mathrm{e}^{\lambda t}+2 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+3 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=3, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{3^{2}-(4)(1)(2)} \\
& =-\frac{3}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{3}{2}+\frac{1}{2} \\
& \lambda_{2}=-\frac{3}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-1 \\
\lambda_{2}=-2
\end{gathered}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(-1) t}+c_{2} e^{(-2) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\sin (t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (t), \sin (t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 t}, \mathrm{e}^{-t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (t)+A_{2} \sin (t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
A_{1} \cos (t)+A_{2} \sin (t)-3 A_{1} \sin (t)+3 A_{2} \cos (t)=\sin (t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{3}{10}, A_{2}=\frac{1}{10}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{3 \cos (t)}{10}+\frac{\sin (t)}{10}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}\right)+\left(-\frac{3 \cos (t)}{10}+\frac{\sin (t)}{10}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}-\frac{3 \cos (t)}{10}+\frac{\sin (t)}{10} \tag{1}
\end{equation*}
$$

Figure 575: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}-\frac{3 \cos (t)}{10}+\frac{\sin (t)}{10}
$$

Verified OK.

17.3.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+3 y^{\prime}+2 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =3 \tag{3}\\
C & =2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\frac{z(t)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 495: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-\frac{t}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3}{1} d t} \\
& =z_{1} e^{-\frac{3 t}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{3 t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-3 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\mathrm{e}^{t}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 t}\right)+c_{2}\left(\mathrm{e}^{-2 t}\left(\mathrm{e}^{t}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\sin (t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (t), \sin (t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 t}, \mathrm{e}^{-t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (t)+A_{2} \sin (t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
A_{1} \cos (t)+A_{2} \sin (t)-3 A_{1} \sin (t)+3 A_{2} \cos (t)=\sin (t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{3}{10}, A_{2}=\frac{1}{10}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{3 \cos (t)}{10}+\frac{\sin (t)}{10}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}\right)+\left(-\frac{3 \cos (t)}{10}+\frac{\sin (t)}{10}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}-\frac{3 \cos (t)}{10}+\frac{\sin (t)}{10} \tag{1}
\end{equation*}
$$

Figure 576: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}-\frac{3 \cos (t)}{10}+\frac{\sin (t)}{10}
$$

Verified OK.

17.3.3 Maple step by step solution

Let's solve
$y^{\prime \prime}+3 y^{\prime}+2 y=\sin (t)$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+3 r+2=0$
- Factor the characteristic polynomial
$(r+2)(r+1)=0$
- Roots of the characteristic polynomial
$r=(-2,-1)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-2 t}$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{-t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function $\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\sin (t)\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 t} & \mathrm{e}^{-t} \\
-2 \mathrm{e}^{-2 t} & -\mathrm{e}^{-t}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=\mathrm{e}^{-3 t}
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\mathrm{e}^{-2 t}\left(\int \mathrm{e}^{2 t} \sin (t) d t\right)+\mathrm{e}^{-t}\left(\int \mathrm{e}^{t} \sin (t) d t\right)
$$

- Compute integrals

$$
y_{p}(t)=-\frac{3 \cos (t)}{10}+\frac{\sin (t)}{10}
$$

- \quad Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}-\frac{3 \cos (t)}{10}+\frac{\sin (t)}{10}
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

```
dsolve(diff(y(t),t$2)+3*diff(y(t),t)+2*y(t)=sin(t),y(t), singsol=all)
```

$$
y(t)=-\mathrm{e}^{-2 t} c_{1}-\frac{3 \cos (t)}{10}+\frac{\sin (t)}{10}+c_{2} \mathrm{e}^{-t}
$$

\checkmark Solution by Mathematica
Time used: 0.098 (sec). Leaf size: 32
DSolve[y''[t]+3*y'[t]+2*y[t]==Sin[t],y[t],t,IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{1}{10}\left(\sin (t)-3 \cos (t)+10 e^{-2 t}\left(c_{2} e^{t}+c_{1}\right)\right)
$$

17.4 problem 4

17.4.1 Solving as second order linear constant coeff ode 3139
17.4.2 Solving using Kovacic algorithm 3142
17.4.3 Maple step by step solution . 3147

Internal problem ID [13204]
Internal file name [OUTPUT/11859_Sunday_December_03_2023_07_20_17_PM_94733438/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+3 y^{\prime}+2 y=2 \sin (t)
$$

17.4.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=3, C=2, f(t)=2 \sin (t)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=3, C=2$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+3 \lambda \mathrm{e}^{\lambda t}+2 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+3 \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=3, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{3^{2}-(4)(1)(2)} \\
& =-\frac{3}{2} \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{3}{2}+\frac{1}{2} \\
& \lambda_{2}=-\frac{3}{2}-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-1 \\
\lambda_{2}=-2
\end{gathered}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(-1) t}+c_{2} e^{(-2) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \sin (t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (t), \sin (t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 t}, \mathrm{e}^{-t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (t)+A_{2} \sin (t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
A_{1} \cos (t)+A_{2} \sin (t)-3 A_{1} \sin (t)+3 A_{2} \cos (t)=2 \sin (t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{3}{5}, A_{2}=\frac{1}{5}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{3 \cos (t)}{5}+\frac{\sin (t)}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}\right)+\left(-\frac{3 \cos (t)}{5}+\frac{\sin (t)}{5}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}-\frac{3 \cos (t)}{5}+\frac{\sin (t)}{5} \tag{1}
\end{equation*}
$$

Figure 577: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-2 t}-\frac{3 \cos (t)}{5}+\frac{\sin (t)}{5}
$$

Verified OK.

17.4.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+3 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =3 \tag{3}\\
C & =2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\frac{z(t)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 497: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-\frac{t}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3}{1} d t} \\
& =z_{1} e^{-\frac{3 t}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{3 t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-3 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\mathrm{e}^{t}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 t}\right)+c_{2}\left(\mathrm{e}^{-2 t}\left(\mathrm{e}^{t}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \sin (t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (t), \sin (t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 t}, \mathrm{e}^{-t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (t)+A_{2} \sin (t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
A_{1} \cos (t)+A_{2} \sin (t)-3 A_{1} \sin (t)+3 A_{2} \cos (t)=2 \sin (t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{3}{5}, A_{2}=\frac{1}{5}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{3 \cos (t)}{5}+\frac{\sin (t)}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}\right)+\left(-\frac{3 \cos (t)}{5}+\frac{\sin (t)}{5}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}-\frac{3 \cos (t)}{5}+\frac{\sin (t)}{5} \tag{1}
\end{equation*}
$$

Figure 578: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}-\frac{3 \cos (t)}{5}+\frac{\sin (t)}{5}
$$

Verified OK.

17.4.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+3 y^{\prime}+2 y=2 \sin (t)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+3 r+2=0
$$

- Factor the characteristic polynomial
$(r+2)(r+1)=0$
- Roots of the characteristic polynomial

$$
r=(-2,-1)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{-2 t}
$$

- \quad 2nd solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{-t}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}+y_{p}(t)
$$

Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=2 \sin (t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 t} & \mathrm{e}^{-t} \\
-2 \mathrm{e}^{-2 t} & -\mathrm{e}^{-t}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=\mathrm{e}^{-3 t}
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-2 \mathrm{e}^{-2 t}\left(\int \mathrm{e}^{2 t} \sin (t) d t\right)+2 \mathrm{e}^{-t}\left(\int \mathrm{e}^{t} \sin (t) d t\right)
$$

- Compute integrals

$$
y_{p}(t)=-\frac{3 \cos (t)}{5}+\frac{\sin (t)}{5}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-t}-\frac{3 \cos (t)}{5}+\frac{\sin (t)}{5}
$$

Maple trace
-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] <- double symmetry of the form [xi=0, eta=F(x)] successful-
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

```
dsolve(diff(y(t),t$2)+3*diff(y(t),t)+2*y(t)=2*\operatorname{sin}(t),y(t), singsol=all)
```

$$
y(t)=-\mathrm{e}^{-2 t} c_{1}-\frac{3 \cos (t)}{5}+\frac{\sin (t)}{5}+c_{2} \mathrm{e}^{-t}
$$

\checkmark Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 32
DSolve[y''[t]+3*y'[t]+2*y[t]==2*Sin[t],y[t],t,IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{1}{5}\left(\sin (t)-3 \cos (t)+5 e^{-2 t}\left(c_{2} e^{t}+c_{1}\right)\right)
$$

17.5 problem 5

17.5.1 Solving as second order linear constant coeff ode 3150
17.5.2 Solving using Kovacic algorithm 3153
17.5.3 Maple step by step solution . 3158

Internal problem ID [13205]
Internal file name [OUTPUT/11860_Sunday_December_03_2023_07_20_20_PM_53181779/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412
Problem number: 5.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+6 y^{\prime}+8 y=\cos (t)
$$

17.5.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=6, C=8, f(t)=\cos (t)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+8 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=6, C=8$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+6 \lambda \mathrm{e}^{\lambda t}+8 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+6 \lambda+8=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=6, C=8$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{6^{2}-(4)(1)(8)} \\
& =-3 \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-3+1 \\
& \lambda_{2}=-3-1
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-2 \\
& \lambda_{2}=-4
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(-2) t}+c_{2} e^{(-4) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\cos (t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (t), \sin (t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-4 t}, \mathrm{e}^{-2 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (t)+A_{2} \sin (t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
7 A_{1} \cos (t)+7 A_{2} \sin (t)-6 A_{1} \sin (t)+6 A_{2} \cos (t)=\cos (t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{7}{85}, A_{2}=\frac{6}{85}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{7 \cos (t)}{85}+\frac{6 \sin (t)}{85}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}\right)+\left(\frac{7 \cos (t)}{85}+\frac{6 \sin (t)}{85}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}+\frac{7 \cos (t)}{85}+\frac{6 \sin (t)}{85} \tag{1}
\end{equation*}
$$

Figure 579: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}+\frac{7 \cos (t)}{85}+\frac{6 \sin (t)}{85}
$$

Verified OK.

17.5.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+6 y^{\prime}+8 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=6 \tag{3}\\
& C=8
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 499: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-t}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{6}{1} d t} \\
& =z_{1} e^{-3 t} \\
& =z_{1}\left(\mathrm{e}^{-3 t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-4 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-6 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\mathrm{e}^{2 t}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-4 t}\right)+c_{2}\left(\mathrm{e}^{-4 t}\left(\frac{\mathrm{e}^{2 t}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+8 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-4 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\cos (t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (t), \sin (t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{-2 t}}{2}, \mathrm{e}^{-4 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (t)+A_{2} \sin (t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
7 A_{1} \cos (t)+7 A_{2} \sin (t)-6 A_{1} \sin (t)+6 A_{2} \cos (t)=\cos (t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{7}{85}, A_{2}=\frac{6}{85}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{7 \cos (t)}{85}+\frac{6 \sin (t)}{85}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-4 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{2}\right)+\left(\frac{7 \cos (t)}{85}+\frac{6 \sin (t)}{85}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-4 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{2}+\frac{7 \cos (t)}{85}+\frac{6 \sin (t)}{85} \tag{1}
\end{equation*}
$$

Figure 580: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-4 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{2}+\frac{7 \cos (t)}{85}+\frac{6 \sin (t)}{85}
$$

Verified OK.

17.5.3 Maple step by step solution

Let's solve
$y^{\prime \prime}+6 y^{\prime}+8 y=\cos (t)$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+6 r+8=0
$$

- Factor the characteristic polynomial

$$
(r+4)(r+2)=0
$$

- Roots of the characteristic polynomial
$r=(-4,-2)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-4 t}$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{-2 t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-2 t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function
$\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\cos (t)\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\mathrm{e}^{-4 t} & \mathrm{e}^{-2 t} \\ -4 \mathrm{e}^{-4 t} & -2 \mathrm{e}^{-2 t}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=2 \mathrm{e}^{-6 t}$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{\mathrm{e}^{-4 t}\left(\int \cos (t) \mathrm{e}^{4 t} d t\right)}{2}+\frac{\mathrm{e}^{-2 t}\left(\int \mathrm{e}^{2 t} \cos (t) d t\right)}{2}$
- Compute integrals
$y_{p}(t)=\frac{7 \cos (t)}{85}+\frac{6 \sin (t)}{85}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-2 t}+\frac{7 \cos (t)}{85}+\frac{6 \sin (t)}{85}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

```
dsolve(diff(y(t),t$2)+6*diff(y(t),t)+8*y(t)=cos(t),y(t), singsol=all)
```

$$
y(t)=-\frac{\mathrm{e}^{-4 t} c_{1}}{2}+\frac{7 \cos (t)}{85}+\frac{6 \sin (t)}{85}+c_{2} \mathrm{e}^{-2 t}
$$

\checkmark Solution by Mathematica
Time used: 0.09 (sec). Leaf size: 35
DSolve[y''[t] $+6 * y$ ' $[t]+8 * y[t]==\operatorname{Cos}[t], y[t], t$, IncludeSingularSolutions $->$ True $]$

$$
y(t) \rightarrow \frac{6 \sin (t)}{85}+\frac{7 \cos (t)}{85}+e^{-4 t}\left(c_{2} e^{2 t}+c_{1}\right)
$$

17.6 problem 6

17.6.1 Solving as second order linear constant coeff ode 3161
17.6.2 Solving using Kovacic algorithm 3164
17.6.3 Maple step by step solution . 3169

Internal problem ID [13206]
Internal file name [OUTPUT/11861_Sunday_December_03_2023_07_20_24_PM_42746866/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412
Problem number: 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+6 y^{\prime}+8 y=-4 \cos (3 t)
$$

17.6.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=6, C=8, f(t)=-4 \cos (3 t)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+8 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=6, C=8$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+6 \lambda \mathrm{e}^{\lambda t}+8 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+6 \lambda+8=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=6, C=8$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{6^{2}-(4)(1)(8)} \\
& =-3 \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-3+1 \\
& \lambda_{2}=-3-1
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-2 \\
& \lambda_{2}=-4
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(-2) t}+c_{2} e^{(-4) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
-4 \cos (3 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 t), \sin (3 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-4 t}, \mathrm{e}^{-2 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (3 t)+A_{2} \sin (3 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-A_{1} \cos (3 t)-A_{2} \sin (3 t)-18 A_{1} \sin (3 t)+18 A_{2} \cos (3 t)=-4 \cos (3 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{4}{325}, A_{2}=-\frac{72}{325}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{4 \cos (3 t)}{325}-\frac{72 \sin (3 t)}{325}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}\right)+\left(\frac{4 \cos (3 t)}{325}-\frac{72 \sin (3 t)}{325}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}+\frac{4 \cos (3 t)}{325}-\frac{72 \sin (3 t)}{325} \tag{1}
\end{equation*}
$$

Figure 581: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}+\frac{4 \cos (3 t)}{325}-\frac{72 \sin (3 t)}{325}
$$

Verified OK.

17.6.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+6 y^{\prime}+8 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=6 \tag{3}\\
& C=8
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 501: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-t}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{6}{1} d t} \\
& =z_{1} e^{-3 t} \\
& =z_{1}\left(\mathrm{e}^{-3 t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-4 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-6 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\mathrm{e}^{2 t}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-4 t}\right)+c_{2}\left(\mathrm{e}^{-4 t}\left(\frac{\mathrm{e}^{2 t}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+8 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-4 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
-4 \cos (3 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 t), \sin (3 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{-2 t}}{2}, \mathrm{e}^{-4 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (3 t)+A_{2} \sin (3 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-A_{1} \cos (3 t)-A_{2} \sin (3 t)-18 A_{1} \sin (3 t)+18 A_{2} \cos (3 t)=-4 \cos (3 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{4}{325}, A_{2}=-\frac{72}{325}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{4 \cos (3 t)}{325}-\frac{72 \sin (3 t)}{325}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-4 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{2}\right)+\left(\frac{4 \cos (3 t)}{325}-\frac{72 \sin (3 t)}{325}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-4 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{2}+\frac{4 \cos (3 t)}{325}-\frac{72 \sin (3 t)}{325} \tag{1}
\end{equation*}
$$

Figure 582: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-4 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{2}+\frac{4 \cos (3 t)}{325}-\frac{72 \sin (3 t)}{325}
$$

Verified OK.

17.6.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+6 y^{\prime}+8 y=-4 \cos (3 t)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+6 r+8=0$
- Factor the characteristic polynomial
$(r+4)(r+2)=0$
- Roots of the characteristic polynomial
$r=(-4,-2)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-4 t}$
- \quad 2nd solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{-2 t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-2 t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=-4 \cos (3 t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-4 t} & \mathrm{e}^{-2 t} \\
-4 \mathrm{e}^{-4 t} & -2 \mathrm{e}^{-2 t}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=2 \mathrm{e}^{-6 t}$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=2 \mathrm{e}^{-4 t}\left(\int \cos (3 t) \mathrm{e}^{4 t} d t\right)-2 \mathrm{e}^{-2 t}\left(\int \mathrm{e}^{2 t} \cos (3 t) d t\right)$
- Compute integrals
$y_{p}(t)=\frac{4 \cos (3 t)}{325}-\frac{72 \sin (3 t)}{325}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-2 t}+\frac{4 \cos (3 t)}{325}-\frac{72 \sin (3 t)}{325}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 30

```
dsolve(diff(y(t),t$2)+6*diff(y(t),t)+8*y(t)=-4*\operatorname{cos}(3*t),y(t), singsol=all)
```

$$
y(t)=-\frac{\mathrm{e}^{-4 t} c_{1}}{2}+c_{2} \mathrm{e}^{-2 t}+\frac{4 \cos (3 t)}{325}-\frac{72 \sin (3 t)}{325}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 37
DSolve[y''[t] $+6 * y^{\prime}[t]+8 * y[t]==-4 * \operatorname{Cos}[3 * t], y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow c_{1} e^{-4 t}+c_{2} e^{-2 t}+\frac{4}{325}(\cos (3 t)-18 \sin (3 t))
$$

17.7 problem 7

17.7.1 Solving as second order linear constant coeff ode 3172
17.7.2 Solving using Kovacic algorithm 3175
17.7.3 Maple step by step solution 3180

Internal problem ID [13207]
Internal file name [OUTPUT/11862_Sunday_December_03_2023_07_20_28_PM_83117521/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412
Problem number: 7.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y^{\prime}+13 y=3 \cos (2 t)
$$

17.7.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=4, C=13, f(t)=3 \cos (2 t)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+13 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=4, C=13$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+4 \lambda \mathrm{e}^{\lambda t}+13 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing Eq(2) throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda+13=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=13$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{4^{2}-(4)(1)(13)} \\
& =-2 \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-2+3 i \\
& \lambda_{2}=-2-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-2+3 i \\
& \lambda_{2}=-2-3 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-2$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{-2 t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-2 t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 \cos (2 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 t), \sin (2 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 t} \cos (3 t), \mathrm{e}^{-2 t} \sin (3 t)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (2 t)+A_{2} \sin (2 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
9 A_{1} \cos (2 t)+9 A_{2} \sin (2 t)-8 A_{1} \sin (2 t)+8 A_{2} \cos (2 t)=3 \cos (2 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{27}{145}, A_{2}=\frac{24}{145}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{27 \cos (2 t)}{145}+\frac{24 \sin (2 t)}{145}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-2 t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)\right)+\left(\frac{27 \cos (2 t)}{145}+\frac{24 \sin (2 t)}{145}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)+\frac{27 \cos (2 t)}{145}+\frac{24 \sin (2 t)}{145} \tag{1}
\end{equation*}
$$

Figure 583: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 t}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)+\frac{27 \cos (2 t)}{145}+\frac{24 \sin (2 t)}{145}
$$

Verified OK.

17.7.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y^{\prime}+13 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=4 \tag{3}\\
& C=13
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-9 \\
t & =1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-9 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 503: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (3 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d t} \\
& =z_{1} e^{-2 t} \\
& =z_{1}\left(\mathrm{e}^{-2 t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 t} \cos (3 t)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-4 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\tan (3 t)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 t} \cos (3 t)\right)+c_{2}\left(\mathrm{e}^{-2 t} \cos (3 t)\left(\frac{\tan (3 t)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+13 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\mathrm{e}^{-2 t} \cos (3 t) c_{1}+\frac{\mathrm{e}^{-2 t} \sin (3 t) c_{2}}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 \cos (2 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 t), \sin (2 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 t} \cos (3 t), \frac{\mathrm{e}^{-2 t} \sin (3 t)}{3}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (2 t)+A_{2} \sin (2 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
9 A_{1} \cos (2 t)+9 A_{2} \sin (2 t)-8 A_{1} \sin (2 t)+8 A_{2} \cos (2 t)=3 \cos (2 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{27}{145}, A_{2}=\frac{24}{145}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{27 \cos (2 t)}{145}+\frac{24 \sin (2 t)}{145}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-2 t} \cos (3 t) c_{1}+\frac{\mathrm{e}^{-2 t} \sin (3 t) c_{2}}{3}\right)+\left(\frac{27 \cos (2 t)}{145}+\frac{24 \sin (2 t)}{145}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 t} \cos (3 t) c_{1}+\frac{\mathrm{e}^{-2 t} \sin (3 t) c_{2}}{3}+\frac{27 \cos (2 t)}{145}+\frac{24 \sin (2 t)}{145} \tag{1}
\end{equation*}
$$

Figure 584: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 t} \cos (3 t) c_{1}+\frac{\mathrm{e}^{-2 t} \sin (3 t) c_{2}}{3}+\frac{27 \cos (2 t)}{145}+\frac{24 \sin (2 t)}{145}
$$

Verified OK.

17.7.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y^{\prime}+13 y=3 \cos (2 t)
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}+4 r+13=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{(-4) \pm(\sqrt{-36})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-2-3 \mathrm{I},-2+3 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-2 t} \cos (3 t)$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{-2 t} \sin (3 t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- \quad Substitute in solutions of the homogeneous ODE
$y=\mathrm{e}^{-2 t} \cos (3 t) c_{1}+\mathrm{e}^{-2 t} \sin (3 t) c_{2}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=3 \cos (2 t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 t} \cos (3 t) & \mathrm{e}^{-2 t} \sin (3 t) \\
-2 \mathrm{e}^{-2 t} \cos (3 t)-3 \mathrm{e}^{-2 t} \sin (3 t) & -2 \mathrm{e}^{-2 t} \sin (3 t)+3 \mathrm{e}^{-2 t} \cos (3 t)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=3 \mathrm{e}^{-4 t}
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=\mathrm{e}^{-2 t}\left(-\cos (3 t)\left(\int \sin (3 t) \cos (2 t) \mathrm{e}^{2 t} d t\right)+\sin (3 t)\left(\int \cos (3 t) \cos (2 t) \mathrm{e}^{2 t} d t\right)\right)
$$

- Compute integrals

$$
y_{p}(t)=\frac{27 \cos (2 t)}{145}+\frac{24 \sin (2 t)}{145}
$$

- Substitute particular solution into general solution to ODE
$y=\mathrm{e}^{-2 t} \sin (3 t) c_{2}+\mathrm{e}^{-2 t} \cos (3 t) c_{1}+\frac{27 \cos (2 t)}{145}+\frac{24 \sin (2 t)}{145}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 37

```
dsolve(diff(y(t),t$2)+4*\operatorname{diff}(y(t),t)+13*y(t)=3*\operatorname{cos}(2*t),y(t), singsol=all)
```

$$
y(t)=c_{2} \mathrm{e}^{-2 t} \sin (3 t)+c_{1} \mathrm{e}^{-2 t} \cos (3 t)+\frac{24 \sin (2 t)}{145}+\frac{27 \cos (2 t)}{145}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 47
DSolve [y' $[\mathrm{t}]+4 * \mathrm{y}^{\prime}[\mathrm{t}]+13 * \mathrm{y}[\mathrm{t}]==3 * \operatorname{Cos}[2 * \mathrm{t}], \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True $]$

$$
y(t) \rightarrow \frac{3}{145}(8 \sin (2 t)+9 \cos (2 t))+c_{2} e^{-2 t} \cos (3 t)+c_{1} e^{-2 t} \sin (3 t)
$$

17.8 problem 8

17.8.1 Solving as second order linear constant coeff ode 3183
17.8.2 Solving using Kovacic algorithm 3186
17.8.3 Maple step by step solution . 3191

Internal problem ID [13208]
Internal file name [OUTPUT/11863_Sunday_December_03_2023_07_20_34_PM_83144681/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412
Problem number: 8.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y^{\prime}+20 y=-\cos (5 t)
$$

17.8.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=4, C=20, f(t)=-\cos (5 t)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+20 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=4, C=20$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+4 \lambda \mathrm{e}^{\lambda t}+20 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing Eq(2) throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda+20=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=20$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{4^{2}-(4)(1)(20)} \\
& =-2 \pm 4 i
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=-2+4 i \\
\lambda_{2}=-2-4 i
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-2+4 i \\
& \lambda_{2}=-2-4 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-2$ and $\beta=4$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
-\cos (5 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (5 t), \sin (5 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\cos (4 t) \mathrm{e}^{-2 t}, \sin (4 t) \mathrm{e}^{-2 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (5 t)+A_{2} \sin (5 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-5 A_{1} \cos (5 t)-5 A_{2} \sin (5 t)-20 A_{1} \sin (5 t)+20 A_{2} \cos (5 t)=-\cos (5 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{85}, A_{2}=-\frac{4}{85}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\cos (5 t)}{85}-\frac{4 \sin (5 t)}{85}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)\right)+\left(\frac{\cos (5 t)}{85}-\frac{4 \sin (5 t)}{85}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)+\frac{\cos (5 t)}{85}-\frac{4 \sin (5 t)}{85} \tag{1}
\end{equation*}
$$

Figure 585: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)+\frac{\cos (5 t)}{85}-\frac{4 \sin (5 t)}{85}
$$

Verified OK.

17.8.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y^{\prime}+20 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=4 \tag{3}\\
& C=20
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-16}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-16 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-16 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 505: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-16$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (4 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d t} \\
& =z_{1} e^{-2 t} \\
& =z_{1}\left(\mathrm{e}^{-2 t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (4 t) \mathrm{e}^{-2 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-4 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\tan (4 t)}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos (4 t) \mathrm{e}^{-2 t}\right)+c_{2}\left(\cos (4 t) \mathrm{e}^{-2 t}\left(\frac{\tan (4 t)}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+20 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\cos (4 t) \mathrm{e}^{-2 t} c_{1}+\frac{\sin (4 t) \mathrm{e}^{-2 t} c_{2}}{4}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
-\cos (5 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (5 t), \sin (5 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\cos (4 t) \mathrm{e}^{-2 t}, \frac{\sin (4 t) \mathrm{e}^{-2 t}}{4}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (5 t)+A_{2} \sin (5 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-5 A_{1} \cos (5 t)-5 A_{2} \sin (5 t)-20 A_{1} \sin (5 t)+20 A_{2} \cos (5 t)=-\cos (5 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{85}, A_{2}=-\frac{4}{85}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\cos (5 t)}{85}-\frac{4 \sin (5 t)}{85}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (4 t) \mathrm{e}^{-2 t} c_{1}+\frac{\sin (4 t) \mathrm{e}^{-2 t} c_{2}}{4}\right)+\left(\frac{\cos (5 t)}{85}-\frac{4 \sin (5 t)}{85}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\cos (4 t) \mathrm{e}^{-2 t} c_{1}+\frac{\sin (4 t) \mathrm{e}^{-2 t} c_{2}}{4}+\frac{\cos (5 t)}{85}-\frac{4 \sin (5 t)}{85} \tag{1}
\end{equation*}
$$

Figure 586: Slope field plot

Verification of solutions

$$
y=\cos (4 t) \mathrm{e}^{-2 t} c_{1}+\frac{\sin (4 t) \mathrm{e}^{-2 t} c_{2}}{4}+\frac{\cos (5 t)}{85}-\frac{4 \sin (5 t)}{85}
$$

Verified OK.

17.8.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y^{\prime}+20 y=-\cos (5 t)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE $r^{2}+4 r+20=0$
- Use quadratic formula to solve for r

$$
r=\frac{(-4) \pm(\sqrt{-64})}{2}
$$

- Roots of the characteristic polynomial
$r=(-2-4 \mathrm{I},-2+4 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\cos (4 t) \mathrm{e}^{-2 t}$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\sin (4 t) \mathrm{e}^{-2 t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- \quad Substitute in solutions of the homogeneous ODE
$y=\cos (4 t) \mathrm{e}^{-2 t} c_{1}+\sin (4 t) \mathrm{e}^{-2 t} c_{2}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=-\cos (5 t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (4 t) \mathrm{e}^{-2 t} & \sin (4 t) \mathrm{e}^{-2 t} \\
-4 \sin (4 t) \mathrm{e}^{-2 t}-2 \cos (4 t) \mathrm{e}^{-2 t} & 4 \cos (4 t) \mathrm{e}^{-2 t}-2 \sin (4 t) \mathrm{e}^{-2 t}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=4 \mathrm{e}^{-4 t}$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{\mathrm{e}^{-2 t}\left(\cos (4 t)\left(\int(-\sin (9 t)+\sin (t)) \mathrm{e}^{2 t} d t\right)+\sin (4 t)\left(\int(\cos (t)+\cos (9 t)) \mathrm{e}^{2 t} d t\right)\right)}{8}$
- Compute integrals
$y_{p}(t)=\frac{\cos (5 t)}{85}-\frac{4 \sin (5 t)}{85}$
- Substitute particular solution into general solution to ODE
$y=\sin (4 t) \mathrm{e}^{-2 t} c_{2}+\cos (4 t) \mathrm{e}^{-2 t} c_{1}+\frac{\cos (5 t)}{85}-\frac{4 \sin (5 t)}{85}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 37

```
dsolve(diff(y(t),t$2)+4*\operatorname{diff}(y(t),t)+20*y(t)=-cos(5*t),y(t), singsol=all)
```

$$
y(t)=\sin (4 t) \mathrm{e}^{-2 t} c_{2}+\cos (4 t) \mathrm{e}^{-2 t} c_{1}+\frac{\cos (5 t)}{85}-\frac{4 \sin (5 t)}{85}
$$

\checkmark Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 45
DSolve [y'' $[\mathrm{t}]+4 * \mathrm{y}$ ' $[\mathrm{t}]+20 * \mathrm{y}[\mathrm{t}]==-\operatorname{Cos}[5 * \mathrm{t}], \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow \frac{1}{85}(\cos (5 t)-4 \sin (5 t))+c_{2} e^{-2 t} \cos (4 t)+c_{1} e^{-2 t} \sin (4 t)
$$

17.9 problem 9

17.9.1 Solving as second order linear constant coeff ode 3194
17.9.2 Solving using Kovacic algorithm 3197
17.9.3 Maple step by step solution . 3202

Internal problem ID [13209]
Internal file name [OUTPUT/11864_Sunday_December_03_2023_07_20_42_PM_30836973/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412
Problem number: 9 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y^{\prime}+20 y=-3 \sin (2 t)
$$

17.9.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=4, C=20, f(t)=-3 \sin (2 t)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+20 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=4, C=20$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+4 \lambda \mathrm{e}^{\lambda t}+20 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing Eq(2) throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda+20=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=20$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{4^{2}-(4)(1)(20)} \\
& =-2 \pm 4 i
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=-2+4 i \\
\lambda_{2}=-2-4 i
\end{gathered}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-2+4 i \\
\lambda_{2}=-2-4 i
\end{gathered}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-2$ and $\beta=4$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
-3 \sin (2 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 t), \sin (2 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\cos (4 t) \mathrm{e}^{-2 t}, \sin (4 t) \mathrm{e}^{-2 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (2 t)+A_{2} \sin (2 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
16 A_{1} \cos (2 t)+16 A_{2} \sin (2 t)-8 A_{1} \sin (2 t)+8 A_{2} \cos (2 t)=-3 \sin (2 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{3}{40}, A_{2}=-\frac{3}{20}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{3 \cos (2 t)}{40}-\frac{3 \sin (2 t)}{20}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)\right)+\left(\frac{3 \cos (2 t)}{40}-\frac{3 \sin (2 t)}{20}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)+\frac{3 \cos (2 t)}{40}-\frac{3 \sin (2 t)}{20} \tag{1}
\end{equation*}
$$

Figure 587: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)+\frac{3 \cos (2 t)}{40}-\frac{3 \sin (2 t)}{20}
$$

Verified OK.

17.9.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y^{\prime}+20 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=4 \tag{3}\\
& C=20
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-16}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-16 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-16 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 507: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-16$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (4 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d t} \\
& =z_{1} e^{-2 t} \\
& =z_{1}\left(\mathrm{e}^{-2 t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (4 t) \mathrm{e}^{-2 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-4 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\tan (4 t)}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos (4 t) \mathrm{e}^{-2 t}\right)+c_{2}\left(\cos (4 t) \mathrm{e}^{-2 t}\left(\frac{\tan (4 t)}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+20 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\cos (4 t) \mathrm{e}^{-2 t} c_{1}+\frac{\sin (4 t) \mathrm{e}^{-2 t} c_{2}}{4}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
-3 \sin (2 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 t), \sin (2 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\cos (4 t) \mathrm{e}^{-2 t}, \frac{\sin (4 t) \mathrm{e}^{-2 t}}{4}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (2 t)+A_{2} \sin (2 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
16 A_{1} \cos (2 t)+16 A_{2} \sin (2 t)-8 A_{1} \sin (2 t)+8 A_{2} \cos (2 t)=-3 \sin (2 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{3}{40}, A_{2}=-\frac{3}{20}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{3 \cos (2 t)}{40}-\frac{3 \sin (2 t)}{20}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (4 t) \mathrm{e}^{-2 t} c_{1}+\frac{\sin (4 t) \mathrm{e}^{-2 t} c_{2}}{4}\right)+\left(\frac{3 \cos (2 t)}{40}-\frac{3 \sin (2 t)}{20}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\cos (4 t) \mathrm{e}^{-2 t} c_{1}+\frac{\sin (4 t) \mathrm{e}^{-2 t} c_{2}}{4}+\frac{3 \cos (2 t)}{40}-\frac{3 \sin (2 t)}{20} \tag{1}
\end{equation*}
$$

Figure 588: Slope field plot

Verification of solutions

$$
y=\cos (4 t) \mathrm{e}^{-2 t} c_{1}+\frac{\sin (4 t) \mathrm{e}^{-2 t} c_{2}}{4}+\frac{3 \cos (2 t)}{40}-\frac{3 \sin (2 t)}{20}
$$

Verified OK.

17.9.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y^{\prime}+20 y=-3 \sin (2 t)
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE $r^{2}+4 r+20=0$
- Use quadratic formula to solve for r

$$
r=\frac{(-4) \pm(\sqrt{-64})}{2}
$$

- Roots of the characteristic polynomial
$r=(-2-4 \mathrm{I},-2+4 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\cos (4 t) \mathrm{e}^{-2 t}$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\sin (4 t) \mathrm{e}^{-2 t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- \quad Substitute in solutions of the homogeneous ODE
$y=\cos (4 t) \mathrm{e}^{-2 t} c_{1}+\sin (4 t) \mathrm{e}^{-2 t} c_{2}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=-3 \sin (2 t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (4 t) \mathrm{e}^{-2 t} & \sin (4 t) \mathrm{e}^{-2 t} \\
-4 \sin (4 t) \mathrm{e}^{-2 t}-2 \cos (4 t) \mathrm{e}^{-2 t} & 4 \cos (4 t) \mathrm{e}^{-2 t}-2 \sin (4 t) \mathrm{e}^{-2 t}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=4 \mathrm{e}^{-4 t}$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{3 \mathrm{e}^{-2 t}\left(\sin (4 t)\left(\int \cos (4 t) \sin (2 t) \mathrm{e}^{2 t} d t\right)-\cos (4 t)\left(\int \sin (4 t) \sin (2 t) \mathrm{e}^{2 t} d t\right)\right)}{4}$
- Compute integrals
$y_{p}(t)=\frac{3 \cos (2 t)}{40}-\frac{3 \sin (2 t)}{20}$
- Substitute particular solution into general solution to ODE
$y=\sin (4 t) \mathrm{e}^{-2 t} c_{2}+\cos (4 t) \mathrm{e}^{-2 t} c_{1}-\frac{3 \sin (2 t)}{20}+\frac{3 \cos (2 t)}{40}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 37

```
dsolve(diff(y(t),t$2)+4*diff(y(t),t)+20*y(t)=-3*sin(2*t),y(t), singsol=all)
```

$$
y(t)=\sin (4 t) \mathrm{e}^{-2 t} c_{2}+\cos (4 t) \mathrm{e}^{-2 t} c_{1}-\frac{3 \sin (2 t)}{20}+\frac{3 \cos (2 t)}{40}
$$

\checkmark Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 45
DSolve $[y$ '' $[\mathrm{t}]+4 * \mathrm{y}$ ' $[\mathrm{t}]+20 * \mathrm{y}[\mathrm{t}]==-3 * \operatorname{Sin}[2 * \mathrm{t}], \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow \frac{3}{40}(\cos (2 t)-2 \sin (2 t))+c_{2} e^{-2 t} \cos (4 t)+c_{1} e^{-2 t} \sin (4 t)
$$

17.10 problem 10

17.10.1 Solving as second order linear constant coeff ode

3205
17.10.2 Solving as linear second order ode solved by an integrating factor
ode . 3208
17.10.3 Solving using Kovacic algorithm 3210
17.10.4 Maple step by step solution . 3215

Internal problem ID [13210]
Internal file name [OUTPUT/11865_Sunday_December_03_2023_07_20_48_PM_49887873/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412
Problem number: 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+2 y^{\prime}+y=\cos (3 t)
$$

17.10.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=2, C=1, f(t)=\cos (3 t)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=2, C=1$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+2 \lambda \mathrm{e}^{\lambda t}+\mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(2)^{2}-(4)(1)(1)} \\
& =-1
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=1$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-t}+c_{2} t \mathrm{e}^{-t} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-t}+c_{2} t \mathrm{e}^{-t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\cos (3 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 t), \sin (3 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{t \mathrm{e}^{-t}, \mathrm{e}^{-t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (3 t)+A_{2} \sin (3 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-8 A_{1} \cos (3 t)-8 A_{2} \sin (3 t)-6 A_{1} \sin (3 t)+6 A_{2} \cos (3 t)=\cos (3 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{2}{25}, A_{2}=\frac{3}{50}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{2 \cos (3 t)}{25}+\frac{3 \sin (3 t)}{50}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-t}+c_{2} t \mathrm{e}^{-t}\right)+\left(-\frac{2 \cos (3 t)}{25}+\frac{3 \sin (3 t)}{50}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-t}\left(c_{2} t+c_{1}\right)-\frac{2 \cos (3 t)}{25}+\frac{3 \sin (3 t)}{50}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-t}\left(c_{2} t+c_{1}\right)-\frac{2 \cos (3 t)}{25}+\frac{3 \sin (3 t)}{50} \tag{1}
\end{equation*}
$$

Figure 589: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-t}\left(c_{2} t+c_{1}\right)-\frac{2 \cos (3 t)}{25}+\frac{3 \sin (3 t)}{50}
$$

Verified OK.
17.10.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(t) y^{\prime}+\frac{\left(p(t)^{2}+p^{\prime}(t)\right) y}{2}=f(t)
$$

Where $p(t)=2$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 2 d x} \\
& =\mathrm{e}^{t}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{array}{r}
(M(x) y)^{\prime \prime}=\mathrm{e}^{t} \cos (3 t) \\
\left(\mathrm{e}^{t} y\right)^{\prime \prime}=\mathrm{e}^{t} \cos (3 t)
\end{array}
$$

Integrating once gives

$$
\left(\mathrm{e}^{t} y\right)^{\prime}=\frac{\mathrm{e}^{t}(\cos (3 t)+3 \sin (3 t))}{10}+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{t} y\right)=-\frac{2 \mathrm{e}^{t} \cos (3 t)}{25}+\frac{3 \mathrm{e}^{t} \sin (3 t)}{50}+c_{1} t+c_{2}
$$

Hence the solution is

$$
y=\frac{-\frac{2 \mathrm{e}^{t} \cos (3 t)}{25}+\frac{3 \mathrm{e}^{t} \sin (3 t)}{50}+c_{1} t+c_{2}}{\mathrm{e}^{t}}
$$

Or

$$
y=-\frac{8 \cos (t)^{3}}{25}+\frac{6 \cos (t)^{2} \sin (t)}{25}+t \mathrm{e}^{-t} c_{1}+\frac{6 \cos (t)}{25}-\frac{3 \sin (t)}{50}+c_{2} \mathrm{e}^{-t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{8 \cos (t)^{3}}{25}+\frac{6 \cos (t)^{2} \sin (t)}{25}+t \mathrm{e}^{-t} c_{1}+\frac{6 \cos (t)}{25}-\frac{3 \sin (t)}{50}+c_{2} \mathrm{e}^{-t} \tag{1}
\end{equation*}
$$

Figure 590: Slope field plot

Verification of solutions

$$
y=-\frac{8 \cos (t)^{3}}{25}+\frac{6 \cos (t)^{2} \sin (t)}{25}+t \mathrm{e}^{-t} c_{1}+\frac{6 \cos (t)}{25}-\frac{3 \sin (t)}{50}+c_{2} \mathrm{e}^{-t}
$$

Verified OK.

17.10.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+2 y^{\prime}+y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 509: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d t} \\
& =z_{1} e^{-t} \\
& =z_{1}\left(\mathrm{e}^{-t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-2 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}(t)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-t}\right)+c_{2}\left(\mathrm{e}^{-t}(t)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-t}+c_{2} t \mathrm{e}^{-t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\cos (3 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 t), \sin (3 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{t \mathrm{e}^{-t}, \mathrm{e}^{-t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (3 t)+A_{2} \sin (3 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-8 A_{1} \cos (3 t)-8 A_{2} \sin (3 t)-6 A_{1} \sin (3 t)+6 A_{2} \cos (3 t)=\cos (3 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{2}{25}, A_{2}=\frac{3}{50}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{2 \cos (3 t)}{25}+\frac{3 \sin (3 t)}{50}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-t}+c_{2} t \mathrm{e}^{-t}\right)+\left(-\frac{2 \cos (3 t)}{25}+\frac{3 \sin (3 t)}{50}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-t}\left(c_{2} t+c_{1}\right)-\frac{2 \cos (3 t)}{25}+\frac{3 \sin (3 t)}{50}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-t}\left(c_{2} t+c_{1}\right)-\frac{2 \cos (3 t)}{25}+\frac{3 \sin (3 t)}{50} \tag{1}
\end{equation*}
$$

Figure 591: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-t}\left(c_{2} t+c_{1}\right)-\frac{2 \cos (3 t)}{25}+\frac{3 \sin (3 t)}{50}
$$

Verified OK.

17.10.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+2 y^{\prime}+y=\cos (3 t)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+2 r+1=0
$$

- Factor the characteristic polynomial

$$
(r+1)^{2}=0
$$

- Root of the characteristic polynomial
$r=-1$
- 1st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-t}$
- Repeated root, multiply $y_{1}(t)$ by t to ensure linear independence
$y_{2}(t)=t \mathrm{e}^{-t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-t}+c_{2} t \mathrm{e}^{-t}+y_{p}(t)$Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\cos (3 t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-t} & t \mathrm{e}^{-t} \\
-\mathrm{e}^{-t} & \mathrm{e}^{-t}-t \mathrm{e}^{-t}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=\mathrm{e}^{-2 t}$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=\mathrm{e}^{-t}\left(-\left(\int t \cos (3 t) \mathrm{e}^{t} d t\right)+t\left(\int \mathrm{e}^{t} \cos (3 t) d t\right)\right)
$$

- Compute integrals

$$
y_{p}(t)=-\frac{2 \cos (3 t)}{25}+\frac{3 \sin (3 t)}{50}
$$

- Substitute particular solution into general solution to ODE $y=c_{2} t \mathrm{e}^{-t}+c_{1} \mathrm{e}^{-t}-\frac{2 \cos (3 t)}{25}+\frac{3 \sin (3 t)}{50}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 27

```
dsolve(diff(y(t),t$2)+2*diff(y(t),t)+y(t)=cos(3*t),y(t), singsol=all)
```

$$
y(t)=\left(c_{1} t+c_{2}\right) \mathrm{e}^{-t}-\frac{2 \cos (3 t)}{25}+\frac{3 \sin (3 t)}{50}
$$

\checkmark Solution by Mathematica
Time used: 0.22 (sec). Leaf size: 35
DSolve[y''[t]+2*y'[t]+y[t]==Cos[3*t],y[t],t,IncludeSingularSolutions -> True]

$$
y(t) \rightarrow \frac{3}{50} \sin (3 t)-\frac{2}{25} \cos (3 t)+e^{-t}\left(c_{2} t+c_{1}\right)
$$

17.11 problem 11

17.11.1 Existence and uniqueness analysis 3218
17.11.2 Solving as second order linear constant coeff ode 3219
17.11.3 Solving using Kovacic algorithm 3223
17.11.4 Maple step by step solution . 3228

Internal problem ID [13211]
Internal file name [OUTPUT/11866_Sunday_December_03_2023_07_20_52_PM_32862123/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412
Problem number: 11.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+6 y^{\prime}+8 y=\cos (t)
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

17.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =6 \\
q(t) & =8 \\
F & =\cos (t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+6 y^{\prime}+8 y=\cos (t)
$$

The domain of $p(t)=6$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=8$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=\cos (t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

17.11.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=6, C=8, f(t)=\cos (t)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+8 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=6, C=8$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+6 \lambda \mathrm{e}^{\lambda t}+8 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+6 \lambda+8=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=6, C=8$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{6^{2}-(4)(1)(8)} \\
& =-3 \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-3+1 \\
& \lambda_{2}=-3-1
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-2 \\
\lambda_{2}=-4
\end{gathered}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(-2) t}+c_{2} e^{(-4) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\cos (t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (t), \sin (t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-4 t}, \mathrm{e}^{-2 t}\right\}
$$

Since there is no duplication between the basis function in the UC__set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (t)+A_{2} \sin (t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
7 A_{1} \cos (t)+7 A_{2} \sin (t)-6 A_{1} \sin (t)+6 A_{2} \cos (t)=\cos (t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{7}{85}, A_{2}=\frac{6}{85}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{7 \cos (t)}{85}+\frac{6 \sin (t)}{85}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}\right)+\left(\frac{7 \cos (t)}{85}+\frac{6 \sin (t)}{85}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}+\frac{7 \cos (t)}{85}+\frac{6 \sin (t)}{85} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}+\frac{7}{85} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 t}-4 c_{2} \mathrm{e}^{-4 t}-\frac{7 \sin (t)}{85}+\frac{6 \cos (t)}{85}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-2 c_{1}-4 c_{2}+\frac{6}{85} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{5} \\
& c_{2}=\frac{2}{17}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{\mathrm{e}^{-2 t}}{5}+\frac{2 \mathrm{e}^{-4 t}}{17}+\frac{7 \cos (t)}{85}+\frac{6 \sin (t)}{85}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-2 t}}{5}+\frac{2 \mathrm{e}^{-4 t}}{17}+\frac{7 \cos (t)}{85}+\frac{6 \sin (t)}{85} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-2 t}}{5}+\frac{2 \mathrm{e}^{-4 t}}{17}+\frac{7 \cos (t)}{85}+\frac{6 \sin (t)}{85}
$$

Verified OK.

17.11.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+6 y^{\prime}+8 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=6 \tag{3}\\
& C=8
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 511: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-t}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{6}{1} d t}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{-3 t} \\
& =z_{1}\left(\mathrm{e}^{-3 t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-4 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-6 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\mathrm{e}^{2 t}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-4 t}\right)+c_{2}\left(\mathrm{e}^{-4 t}\left(\frac{\mathrm{e}^{2 t}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+8 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-4 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\cos (t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (t), \sin (t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{-2 t}}{2}, \mathrm{e}^{-4 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (t)+A_{2} \sin (t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
7 A_{1} \cos (t)+7 A_{2} \sin (t)-6 A_{1} \sin (t)+6 A_{2} \cos (t)=\cos (t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{7}{85}, A_{2}=\frac{6}{85}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{7 \cos (t)}{85}+\frac{6 \sin (t)}{85}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-4 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{2}\right)+\left(\frac{7 \cos (t)}{85}+\frac{6 \sin (t)}{85}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-4 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{2}+\frac{7 \cos (t)}{85}+\frac{6 \sin (t)}{85} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{c_{2}}{2}+\frac{7}{85} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-4 c_{1} \mathrm{e}^{-4 t}-c_{2} \mathrm{e}^{-2 t}-\frac{7 \sin (t)}{85}+\frac{6 \cos (t)}{85}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-4 c_{1}-c_{2}+\frac{6}{85} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
c_{1} & =\frac{2}{17} \\
c_{2} & =-\frac{2}{5}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{\mathrm{e}^{-2 t}}{5}+\frac{2 \mathrm{e}^{-4 t}}{17}+\frac{7 \cos (t)}{85}+\frac{6 \sin (t)}{85}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-2 t}}{5}+\frac{2 \mathrm{e}^{-4 t}}{17}+\frac{7 \cos (t)}{85}+\frac{6 \sin (t)}{85} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-2 t}}{5}+\frac{2 \mathrm{e}^{-4 t}}{17}+\frac{7 \cos (t)}{85}+\frac{6 \sin (t)}{85}
$$

Verified OK.

17.11.4 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}+6 y^{\prime}+8 y=\cos (t), y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+6 r+8=0$
- Factor the characteristic polynomial

$$
(r+4)(r+2)=0
$$

- Roots of the characteristic polynomial

$$
r=(-4,-2)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{-4 t}
$$

- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{-2 t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-2 t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function
$\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\cos (t)\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\mathrm{e}^{-4 t} & \mathrm{e}^{-2 t} \\ -4 \mathrm{e}^{-4 t} & -2 \mathrm{e}^{-2 t}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=2 \mathrm{e}^{-6 t}$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{\mathrm{e}^{-4 t}\left(\int \cos (t) \mathrm{e}^{4 t} d t\right)}{2}+\frac{\mathrm{e}^{-2 t}\left(\int \mathrm{e}^{2 t} \cos (t) d t\right)}{2}$
- Compute integrals
$y_{p}(t)=\frac{7 \cos (t)}{85}+\frac{6 \sin (t)}{85}$
- \quad Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-2 t}+\frac{7 \cos (t)}{85}+\frac{6 \sin (t)}{85}$
Check validity of solution $y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-2 t}+\frac{7 \cos (t)}{85}+\frac{6 \sin (t)}{85}$
- Use initial condition $y(0)=0$
$0=c_{1}+c_{2}+\frac{7}{85}$
- Compute derivative of the solution
$y^{\prime}=-4 c_{1} \mathrm{e}^{-4 t}-2 c_{2} \mathrm{e}^{-2 t}-\frac{7 \sin (t)}{85}+\frac{6 \cos (t)}{85}$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=-4 c_{1}-2 c_{2}+\frac{6}{85}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{2}{17}, c_{2}=-\frac{1}{5}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-\frac{\mathrm{e}^{-2 t}}{5}+\frac{2 \mathrm{e}^{-4 t}}{17}+\frac{7 \cos (t)}{85}+\frac{6 \sin (t)}{85}
$$

- \quad Solution to the IVP

$$
y=-\frac{\mathrm{e}^{-2 t}}{5}+\frac{2 \mathrm{e}^{-4 t}}{17}+\frac{7 \cos (t)}{85}+\frac{6 \sin (t)}{85}
$$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form $[x i=0$, eta= $F(x)$] successful`

Solution by Maple
Time used: 0.016 (sec). Leaf size: 25

```
dsolve([diff (y(t),t$2)+6*\operatorname{diff}(y(t),t)+8*y(t)=\operatorname{cos}(t),y(0)=0,D(y)(0)=0],y(t), singsol=all
```

$$
y(t)=\frac{2 \mathrm{e}^{-4 t}}{17}+\frac{7 \cos (t)}{85}+\frac{6 \sin (t)}{85}-\frac{\mathrm{e}^{-2 t}}{5}
$$

Solution by Mathematica
Time used: 2.147 (sec). Leaf size: 63
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[t]+5 * y\right.\right.$ ' $\left.[t]+8 * y[t]==\operatorname{Cos}[t],\left\{y[0]==0, y^{\prime}[0]==0\right\}\right\}, y[t], t$, IncludeSingularSolutions \rightarrow

$$
y(t) \rightarrow \frac{1}{518}\left(35 \sin (t)-45 \sqrt{7} e^{-5 t / 2} \sin \left(\frac{\sqrt{7} t}{2}\right)+49 \cos (t)-49 e^{-5 t / 2} \cos \left(\frac{\sqrt{7} t}{2}\right)\right)
$$

17.12 problem 12

17.12.1 Existence and uniqueness analysis 3231
17.12.2 Solving as second order linear constant coeff ode 3232
17.12.3 Solving using Kovacic algorithm 3236
17.12.4 Maple step by step solution . 3241

Internal problem ID [13212]
Internal file name [OUTPUT/11867_Sunday_December_03_2023_07_20_55_PM_55063930/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412
Problem number: 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+6 y^{\prime}+8 y=2 \cos (3 t)
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

17.12.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =6 \\
q(t) & =8 \\
F & =2 \cos (3 t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+6 y^{\prime}+8 y=2 \cos (3 t)
$$

The domain of $p(t)=6$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=8$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=2 \cos (3 t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

17.12.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=6, C=8, f(t)=2 \cos (3 t)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+8 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=6, C=8$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+6 \lambda \mathrm{e}^{\lambda t}+8 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+6 \lambda+8=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=6, C=8$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{6^{2}-(4)(1)(8)} \\
& =-3 \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-3+1 \\
& \lambda_{2}=-3-1
\end{aligned}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-2 \\
\lambda_{2}=-4
\end{gathered}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{(-2) t}+c_{2} e^{(-4) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \cos (3 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 t), \sin (3 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-4 t}, \mathrm{e}^{-2 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (3 t)+A_{2} \sin (3 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-A_{1} \cos (3 t)-A_{2} \sin (3 t)-18 A_{1} \sin (3 t)+18 A_{2} \cos (3 t)=2 \cos (3 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{2}{325}, A_{2}=\frac{36}{325}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{2 \cos (3 t)}{325}+\frac{36 \sin (3 t)}{325}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}\right)+\left(-\frac{2 \cos (3 t)}{325}+\frac{36 \sin (3 t)}{325}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{-4 t}-\frac{2 \cos (3 t)}{325}+\frac{36 \sin (3 t)}{325} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}-\frac{2}{325} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 t}-4 c_{2} \mathrm{e}^{-4 t}+\frac{6 \sin (3 t)}{325}+\frac{108 \cos (3 t)}{325}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-2 c_{1}-4 c_{2}+\frac{108}{325} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{2}{13} \\
& c_{2}=\frac{4}{25}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{2 \mathrm{e}^{-2 t}}{13}+\frac{4 \mathrm{e}^{-4 t}}{25}-\frac{2 \cos (3 t)}{325}+\frac{36 \sin (3 t)}{325}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2 \mathrm{e}^{-2 t}}{13}+\frac{4 \mathrm{e}^{-4 t}}{25}-\frac{2 \cos (3 t)}{325}+\frac{36 \sin (3 t)}{325} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{2 \mathrm{e}^{-2 t}}{13}+\frac{4 \mathrm{e}^{-4 t}}{25}-\frac{2 \cos (3 t)}{325}+\frac{36 \sin (3 t)}{325}
$$

Verified OK.

17.12.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+6 y^{\prime}+8 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=6 \tag{3}\\
& C=8
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 513: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-t}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{6}{1} d t}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{-3 t} \\
& =z_{1}\left(\mathrm{e}^{-3 t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-4 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-6 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\mathrm{e}^{2 t}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-4 t}\right)+c_{2}\left(\mathrm{e}^{-4 t}\left(\frac{\mathrm{e}^{2 t}}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+8 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-4 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \cos (3 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 t), \sin (3 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{-2 t}}{2}, \mathrm{e}^{-4 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (3 t)+A_{2} \sin (3 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-A_{1} \cos (3 t)-A_{2} \sin (3 t)-18 A_{1} \sin (3 t)+18 A_{2} \cos (3 t)=2 \cos (3 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{2}{325}, A_{2}=\frac{36}{325}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{2 \cos (3 t)}{325}+\frac{36 \sin (3 t)}{325}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-4 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{2}\right)+\left(-\frac{2 \cos (3 t)}{325}+\frac{36 \sin (3 t)}{325}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-4 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{2}-\frac{2 \cos (3 t)}{325}+\frac{36 \sin (3 t)}{325} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{c_{2}}{2}-\frac{2}{325} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-4 c_{1} \mathrm{e}^{-4 t}-c_{2} \mathrm{e}^{-2 t}+\frac{6 \sin (3 t)}{325}+\frac{108 \cos (3 t)}{325}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-4 c_{1}-c_{2}+\frac{108}{325} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{4}{25} \\
& c_{2}=-\frac{4}{13}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{2 \mathrm{e}^{-2 t}}{13}+\frac{4 \mathrm{e}^{-4 t}}{25}-\frac{2 \cos (3 t)}{325}+\frac{36 \sin (3 t)}{325}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2 \mathrm{e}^{-2 t}}{13}+\frac{4 \mathrm{e}^{-4 t}}{25}-\frac{2 \cos (3 t)}{325}+\frac{36 \sin (3 t)}{325} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{2 \mathrm{e}^{-2 t}}{13}+\frac{4 \mathrm{e}^{-4 t}}{25}-\frac{2 \cos (3 t)}{325}+\frac{36 \sin (3 t)}{325}
$$

Verified OK.

17.12.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+6 y^{\prime}+8 y=2 \cos (3 t), y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+6 r+8=0$
- Factor the characteristic polynomial
$(r+4)(r+2)=0$
- Roots of the characteristic polynomial

$$
r=(-4,-2)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{-4 t}
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{-2 t}
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-2 t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=2 \cos (3 t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-4 t} & \mathrm{e}^{-2 t} \\
-4 \mathrm{e}^{-4 t} & -2 \mathrm{e}^{-2 t}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=2 \mathrm{e}^{-6 t}
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\mathrm{e}^{-4 t}\left(\int \cos (3 t) \mathrm{e}^{4 t} d t\right)+\mathrm{e}^{-2 t}\left(\int \mathrm{e}^{2 t} \cos (3 t) d t\right)
$$

- Compute integrals

$$
y_{p}(t)=-\frac{2 \cos (3 t)}{325}+\frac{36 \sin (3 t)}{325}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-2 t}-\frac{2 \cos (3 t)}{325}+\frac{36 \sin (3 t)}{325}$
Check validity of solution $y=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{-2 t}-\frac{2 \cos (3 t)}{325}+\frac{36 \sin (3 t)}{325}$
- Use initial condition $y(0)=0$
$0=c_{1}+c_{2}-\frac{2}{325}$
- Compute derivative of the solution

$$
y^{\prime}=-4 c_{1} \mathrm{e}^{-4 t}-2 c_{2} \mathrm{e}^{-2 t}+\frac{6 \sin (3 t)}{325}+\frac{108 \cos (3 t)}{325}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$

$$
0=-4 c_{1}-2 c_{2}+\frac{108}{325}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{4}{25}, c_{2}=-\frac{2}{13}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-\frac{2 \mathrm{e}^{-2 t}}{13}+\frac{4 \mathrm{e}^{-4 t}}{25}-\frac{2 \cos (3 t)}{325}+\frac{36 \sin (3 t)}{325}
$$

- \quad Solution to the IVP

$$
y=-\frac{2 \mathrm{e}^{-2 t}}{13}+\frac{4 \mathrm{e}^{-4 t}}{25}-\frac{2 \cos (3 t)}{325}+\frac{36 \sin (3 t)}{325}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 29

```
dsolve([diff (y(t),t$2)+6*\operatorname{diff}(y(t),t)+8*y(t)=2*\operatorname{cos}(3*t),y(0)=0,D(y)(0)=0],y(t), singsol
```

$$
y(t)=\frac{4 \mathrm{e}^{-4 t}}{25}-\frac{2 \mathrm{e}^{-2 t}}{13}-\frac{2 \cos (3 t)}{325}+\frac{36 \sin (3 t)}{325}
$$

Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 74
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[t]+5 * y\right.\right.$ ' $\left.[t]+8 * y[t]==2 * \operatorname{Cos}[3 * t],\left\{y[0]==0, y^{\prime}[0]==0\right\}\right\}, y[t], t$, IncludeSingularSolution

$$
y(t) \rightarrow \frac{1}{791} e^{-5 t / 2}\left(105 e^{5 t / 2} \sin (3 t)-85 \sqrt{7} \sin \left(\frac{\sqrt{7} t}{2}\right)-7 e^{5 t / 2} \cos (3 t)+7 \cos \left(\frac{\sqrt{7} t}{2}\right)\right)
$$

17.13 problem 13

17.13.1 Existence and uniqueness analysis 3244
17.13.2 Solving as second order linear constant coeff ode 3245
17.13.3 Solving using Kovacic algorithm 3249
17.13.4 Maple step by step solution . 3255

Internal problem ID [13213]
Internal file name [OUTPUT/11868_Sunday_December_03_2023_07_21_00_PM_72067464/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412
Problem number: 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+6 y^{\prime}+20 y=-3 \sin (2 t)
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

17.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =6 \\
q(t) & =20 \\
F & =-3 \sin (2 t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+6 y^{\prime}+20 y=-3 \sin (2 t)
$$

The domain of $p(t)=6$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=20$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=-3 \sin (2 t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

17.13.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=6, C=20, f(t)=-3 \sin (2 t)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+20 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=6, C=20$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+6 \lambda \mathrm{e}^{\lambda t}+20 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+6 \lambda+20=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=6, C=20$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{6^{2}-(4)(1)(20)} \\
& =-3 \pm i \sqrt{11}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-3+i \sqrt{11} \\
& \lambda_{2}=-3-i \sqrt{11}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-3+i \sqrt{11} \\
& \lambda_{2}=-3-i \sqrt{11}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-3$ and $\beta=\sqrt{11}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{-3 t}\left(\cos (\sqrt{11} t) c_{1}+\sin (\sqrt{11} t) c_{2}\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-3 t}\left(\cos (\sqrt{11} t) c_{1}+\sin (\sqrt{11} t) c_{2}\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
-3 \sin (2 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 t), \sin (2 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-3 t} \cos (\sqrt{11} t), \mathrm{e}^{-3 t} \sin (\sqrt{11} t)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (2 t)+A_{2} \sin (2 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
16 A_{1} \cos (2 t)+16 A_{2} \sin (2 t)-12 A_{1} \sin (2 t)+12 A_{2} \cos (2 t)=-3 \sin (2 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{9}{100}, A_{2}=-\frac{3}{25}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{9 \cos (2 t)}{100}-\frac{3 \sin (2 t)}{25}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-3 t}\left(\cos (\sqrt{11} t) c_{1}+\sin (\sqrt{11} t) c_{2}\right)\right)+\left(\frac{9 \cos (2 t)}{100}-\frac{3 \sin (2 t)}{25}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-3 t}\left(\cos (\sqrt{11} t) c_{1}+\sin (\sqrt{11} t) c_{2}\right)+\frac{9 \cos (2 t)}{100}-\frac{3 \sin (2 t)}{25} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{9}{100} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$y^{\prime}=-3 \mathrm{e}^{-3 t}\left(\cos (\sqrt{11} t) c_{1}+\sin (\sqrt{11} t) c_{2}\right)+\mathrm{e}^{-3 t}\left(-\sqrt{11} \sin (\sqrt{11} t) c_{1}+\sqrt{11} \cos (\sqrt{11} t) c_{2}\right)-\frac{9 \mathrm{~s}}{}$ substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-3 c_{1}+\sqrt{11} c_{2}-\frac{6}{25} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{9}{100} \\
& c_{2}=-\frac{3 \sqrt{11}}{1100}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{9 \mathrm{e}^{-3 t} \cos (\sqrt{11} t)}{100}-\frac{3 \mathrm{e}^{-3 t} \sin (\sqrt{11} t) \sqrt{11}}{1100}+\frac{9 \cos (2 t)}{100}-\frac{3 \sin (2 t)}{25}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{9 \mathrm{e}^{-3 t} \cos (\sqrt{11} t)}{100}-\frac{3 \mathrm{e}^{-3 t} \sin (\sqrt{11} t) \sqrt{11}}{1100}+\frac{9 \cos (2 t)}{100}-\frac{3 \sin (2 t)}{25} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{9 \mathrm{e}^{-3 t} \cos (\sqrt{11} t)}{100}-\frac{3 \mathrm{e}^{-3 t} \sin (\sqrt{11} t) \sqrt{11}}{1100}+\frac{9 \cos (2 t)}{100}-\frac{3 \sin (2 t)}{25}
$$

Verified OK.

17.13.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+6 y^{\prime}+20 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=6 \tag{3}\\
& C=20
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-11}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-11 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-11 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 515: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-11$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (\sqrt{11} t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{6}{1} d t} \\
& =z_{1} e^{-3 t} \\
& =z_{1}\left(\mathrm{e}^{-3 t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 t} \cos (\sqrt{11} t)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-6 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\sqrt{11} \tan (\sqrt{11} t)}{11}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 t} \cos (\sqrt{11} t)\right)+c_{2}\left(\mathrm{e}^{-3 t} \cos (\sqrt{11} t)\left(\frac{\sqrt{11} \tan (\sqrt{11} t)}{11}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+6 y^{\prime}+20 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-3 t} \cos (\sqrt{11} t)+\frac{c_{2} \mathrm{e}^{-3 t} \sin (\sqrt{11} t) \sqrt{11}}{11}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
-3 \sin (2 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 t), \sin (2 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-3 t} \cos (\sqrt{11} t), \frac{\mathrm{e}^{-3 t} \sin (\sqrt{11} t) \sqrt{11}}{11}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (2 t)+A_{2} \sin (2 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
16 A_{1} \cos (2 t)+16 A_{2} \sin (2 t)-12 A_{1} \sin (2 t)+12 A_{2} \cos (2 t)=-3 \sin (2 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{9}{100}, A_{2}=-\frac{3}{25}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{9 \cos (2 t)}{100}-\frac{3 \sin (2 t)}{25}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-3 t} \cos (\sqrt{11} t)+\frac{c_{2} \mathrm{e}^{-3 t} \sin (\sqrt{11} t) \sqrt{11}}{11}\right)+\left(\frac{9 \cos (2 t)}{100}-\frac{3 \sin (2 t)}{25}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 t} \cos (\sqrt{11} t)+\frac{c_{2} \mathrm{e}^{-3 t} \sin (\sqrt{11} t) \sqrt{11}}{11}+\frac{9 \cos (2 t)}{100}-\frac{3 \sin (2 t)}{25} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{9}{100} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$y^{\prime}=-3 c_{1} \mathrm{e}^{-3 t} \cos (\sqrt{11} t)-c_{1} \mathrm{e}^{-3 t} \sin (\sqrt{11} t) \sqrt{11}-\frac{3 c_{2} \mathrm{e}^{-3 t} \sin (\sqrt{11} t) \sqrt{11}}{11}+c_{2} \mathrm{e}^{-3 t} \cos (\sqrt{11} t)-\frac{9 \mathrm{~s}}{}$
substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-\frac{6}{25}-3 c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{9}{100} \\
& c_{2}=-\frac{3}{100}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{9 \mathrm{e}^{-3 t} \cos (\sqrt{11} t)}{100}-\frac{3 \mathrm{e}^{-3 t} \sin (\sqrt{11} t) \sqrt{11}}{1100}+\frac{9 \cos (2 t)}{100}-\frac{3 \sin (2 t)}{25}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{9 \mathrm{e}^{-3 t} \cos (\sqrt{11} t)}{100}-\frac{3 \mathrm{e}^{-3 t} \sin (\sqrt{11} t) \sqrt{11}}{1100}+\frac{9 \cos (2 t)}{100}-\frac{3 \sin (2 t)}{25} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{9 \mathrm{e}^{-3 t} \cos (\sqrt{11} t)}{100}-\frac{3 \mathrm{e}^{-3 t} \sin (\sqrt{11} t) \sqrt{11}}{1100}+\frac{9 \cos (2 t)}{100}-\frac{3 \sin (2 t)}{25}
$$

Verified OK.

17.13.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+6 y^{\prime}+20 y=-3 \sin (2 t), y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+6 r+20=0$
- Use quadratic formula to solve for r
$r=\frac{(-6) \pm(\sqrt{-44})}{2}$
- Roots of the characteristic polynomial

$$
r=(-3-\mathrm{I} \sqrt{11},-3+\mathrm{I} \sqrt{11})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{-3 t} \cos (\sqrt{11} t)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{-3 t} \sin (\sqrt{11} t)
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-3 t} \cos (\sqrt{11} t)+\mathrm{e}^{-3 t} \sin (\sqrt{11} t) c_{2}+y_{p}(t)
$$

Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=-3 \sin (2 t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-3 t} \cos (\sqrt{11} t) & \mathrm{e}^{-3 t} \sin (\sqrt{11} t) \\
-3 \mathrm{e}^{-3 t} \cos (\sqrt{11} t)-\mathrm{e}^{-3 t} \sin (\sqrt{11} t) \sqrt{11} & -3 \mathrm{e}^{-3 t} \sin (\sqrt{11} t)+\mathrm{e}^{-3 t} \sqrt{11}
\end{array}\right.
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=\sqrt{11} \mathrm{e}^{-6 t}$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=\frac{3 \mathrm{e}^{-3 t} \sqrt{11}\left(\cos (\sqrt{11} t)\left(\int \mathrm{e}^{3 t} \sin (2 t) \sin (\sqrt{11} t) d t\right)-\sin (\sqrt{11} t)\left(\int \mathrm{e}^{3 t} \sin (2 t) \cos (\sqrt{11} t) d t\right)\right)}{11}
$$

- Compute integrals
$y_{p}(t)=\frac{9 \cos (2 t)}{100}-\frac{3 \sin (2 t)}{25}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-3 t} \cos (\sqrt{11} t)+\mathrm{e}^{-3 t} \sin (\sqrt{11} t) c_{2}+\frac{9 \cos (2 t)}{100}-\frac{3 \sin (2 t)}{25}$
Check validity of solution $y=c_{1} \mathrm{e}^{-3 t} \cos (\sqrt{11} t)+\mathrm{e}^{-3 t} \sin (\sqrt{11} t) c_{2}+\frac{9 \cos (2 t)}{100}-\frac{3 \sin (2 t)}{25}$
- Use initial condition $y(0)=0$

$$
0=c_{1}+\frac{9}{100}
$$

- Compute derivative of the solution

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 t} \cos (\sqrt{11} t)-c_{1} \mathrm{e}^{-3 t} \sin (\sqrt{11} t) \sqrt{11}-3 \mathrm{e}^{-3 t} \sin (\sqrt{11} t) c_{2}+\mathrm{e}^{-3 t} \sqrt{11} \cos (\sqrt{11} t)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=-3 c_{1}+\sqrt{11} c_{2}-\frac{6}{25}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=-\frac{9}{100}, c_{2}=-\frac{3 \sqrt{11}}{1100}\right\}$
- Substitute constant values into general solution and simplify
$y=-\frac{9 \mathrm{e}^{-3 t} \cos (\sqrt{11} t)}{100}-\frac{3 \mathrm{e}^{-3 t} \sin (\sqrt{11} t) \sqrt{11}}{1100}+\frac{9 \cos (2 t)}{100}-\frac{3 \sin (2 t)}{25}$
- \quad Solution to the IVP
$y=-\frac{9 \mathrm{e}^{-3 t} \cos (\sqrt{11} t)}{100}-\frac{3 \mathrm{e}^{-3 t} \sin (\sqrt{11} t) \sqrt{11}}{1100}+\frac{9 \cos (2 t)}{100}-\frac{3 \sin (2 t)}{25}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 44

```
dsolve([diff (y (t),t$2)+6*\operatorname{diff}(y(t),t)+20*y(t)=-3*\operatorname{sin}(2*t),y(0)=0,D(y)(0)=0],y(t), sings
```

$$
y(t)=-\frac{3 \mathrm{e}^{-3 t} \sqrt{11} \sin (\sqrt{11} t)}{1100}-\frac{9 \mathrm{e}^{-3 t} \cos (\sqrt{11} t)}{100}+\frac{9 \cos (2 t)}{100}-\frac{3 \sin (2 t)}{25}
$$

Solution by Mathematica
Time used: 0.052 (sec). Leaf size: 61
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[t]+6 * y\right.\right.$ ' $\left.[t]+20 * y[t]==-3 * \operatorname{Sin}[2 * t],\left\{y[0]==0, y^{\prime}[0]==0\right\}\right\}, y[t], t$, IncludeSingularSoluti

$$
y(t) \rightarrow-\frac{3 e^{-3 t}\left(44 e^{3 t} \sin (2 t)+\sqrt{11} \sin (\sqrt{11} t)-33 e^{3 t} \cos (2 t)+33 \cos (\sqrt{11} t)\right)}{1100}
$$

17.14 problem 14

17.14.1 Existence and uniqueness analysis 3259
17.14.2 Solving as second order linear constant coeff ode 3259
17.14.3 Solving as linear second order ode solved by an integrating factor
ode . 3263
17.14.4 Solving using Kovacic algorithm 3266
17.14.5 Maple step by step solution . 3271

Internal problem ID [13214]
Internal file name [OUTPUT/11869_Sunday_December_03_2023_07_22_11_PM_72682248/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412
Problem number: 14.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type

```
[[_2nd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime}+2 y^{\prime}+y=2 \cos (2 t)
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

17.14.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =2 \\
q(t) & =1 \\
F & =2 \cos (2 t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+2 y^{\prime}+y=2 \cos (2 t)
$$

The domain of $p(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=2 \cos (2 t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.

17.14.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=2, C=1, f(t)=2 \cos (2 t)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=2, C=1$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+2 \lambda \mathrm{e}^{\lambda t}+\mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+2 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(2)^{2}-(4)(1)(1)} \\
& =-1
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=1$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-t}+c_{2} t \mathrm{e}^{-t} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{-t}+c_{2} t \mathrm{e}^{-t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \cos (2 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 t), \sin (2 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{t \mathrm{e}^{-t}, \mathrm{e}^{-t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (2 t)+A_{2} \sin (2 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-3 A_{1} \cos (2 t)-3 A_{2} \sin (2 t)-4 A_{1} \sin (2 t)+4 A_{2} \cos (2 t)=2 \cos (2 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{6}{25}, A_{2}=\frac{8}{25}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{6 \cos (2 t)}{25}+\frac{8 \sin (2 t)}{25}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-t}+c_{2} t \mathrm{e}^{-t}\right)+\left(-\frac{6 \cos (2 t)}{25}+\frac{8 \sin (2 t)}{25}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-t}\left(c_{2} t+c_{1}\right)-\frac{6 \cos (2 t)}{25}+\frac{8 \sin (2 t)}{25}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-t}\left(c_{2} t+c_{1}\right)-\frac{6 \cos (2 t)}{25}+\frac{8 \sin (2 t)}{25} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-\frac{6}{25}+c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\mathrm{e}^{-t}\left(c_{2} t+c_{1}\right)+c_{2} \mathrm{e}^{-t}+\frac{12 \sin (2 t)}{25}+\frac{16 \cos (2 t)}{25}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=\frac{16}{25}-c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{6}{25} \\
& c_{2}=-\frac{2}{5}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{2 t \mathrm{e}^{-t}}{5}+\frac{6 \mathrm{e}^{-t}}{25}-\frac{6 \cos (2 t)}{25}+\frac{8 \sin (2 t)}{25}
$$

Which simplifies to

$$
y=\frac{2(3-5 t) \mathrm{e}^{-t}}{25}-\frac{6 \cos (2 t)}{25}+\frac{8 \sin (2 t)}{25}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2(3-5 t) \mathrm{e}^{-t}}{25}-\frac{6 \cos (2 t)}{25}+\frac{8 \sin (2 t)}{25} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{2(3-5 t) \mathrm{e}^{-t}}{25}-\frac{6 \cos (2 t)}{25}+\frac{8 \sin (2 t)}{25}
$$

Verified OK.

17.14.3 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(t) y^{\prime}+\frac{\left(p(t)^{2}+p^{\prime}(t)\right) y}{2}=f(t)
$$

Where $p(t)=2$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 2 d x} \\
& =\mathrm{e}^{t}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =2 \mathrm{e}^{t} \cos (2 t) \\
\left(\mathrm{e}^{t} y\right)^{\prime \prime} & =2 \mathrm{e}^{t} \cos (2 t)
\end{aligned}
$$

Integrating once gives

$$
\left(\mathrm{e}^{t} y\right)^{\prime}=\frac{2 \mathrm{e}^{t}(2 \sin (2 t)+\cos (2 t))}{5}+c_{1}
$$

Integrating again gives

$$
\left(\mathrm{e}^{t} y\right)=-\frac{6 \mathrm{e}^{t} \cos (2 t)}{25}+\frac{8 \mathrm{e}^{t} \sin (2 t)}{25}+c_{1} t+c_{2}
$$

Hence the solution is

$$
y=\frac{-\frac{6 \mathrm{e}^{t} \cos (2 t)}{25}+\frac{8 \mathrm{e}^{t} \sin (2 t)}{25}+c_{1} t+c_{2}}{\mathrm{e}^{t}}
$$

Or

$$
y=-\frac{12 \cos (t)^{2}}{25}+\frac{16 \cos (t) \sin (t)}{25}+t \mathrm{e}^{-t} c_{1}+c_{2} \mathrm{e}^{-t}+\frac{6}{25}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-\frac{12 \cos (t)^{2}}{25}+\frac{16 \cos (t) \sin (t)}{25}+t \mathrm{e}^{-t} c_{1}+c_{2} \mathrm{e}^{-t}+\frac{6}{25} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-\frac{6}{25}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{24 \cos (t) \sin (t)}{25}-\frac{16 \sin (t)^{2}}{25}+\frac{16 \cos (t)^{2}}{25}+c_{1} \mathrm{e}^{-t}-t \mathrm{e}^{-t} c_{1}-c_{2} \mathrm{e}^{-t}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=\frac{16}{25}-c_{2}+c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{2}{5} \\
& c_{2}=\frac{6}{25}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{2 t \mathrm{e}^{-t}}{5}+\frac{6 \mathrm{e}^{-t}}{25}-\frac{6 \cos (2 t)}{25}+\frac{8 \sin (2 t)}{25}
$$

Which simplifies to

$$
y=\frac{2(3-5 t) \mathrm{e}^{-t}}{25}-\frac{6 \cos (2 t)}{25}+\frac{8 \sin (2 t)}{25}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2(3-5 t) \mathrm{e}^{-t}}{25}-\frac{6 \cos (2 t)}{25}+\frac{8 \sin (2 t)}{25} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{2(3-5 t) \mathrm{e}^{-t}}{25}-\frac{6 \cos (2 t)}{25}+\frac{8 \sin (2 t)}{25}
$$

Verified OK.

17.14.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 517: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d t}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{-t} \\
& =z_{1}\left(\mathrm{e}^{-t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-2 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}(t)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-t}\right)+c_{2}\left(\mathrm{e}^{-t}(t)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-t}+c_{2} t \mathrm{e}^{-t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \cos (2 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 t), \sin (2 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{t \mathrm{e}^{-t}, \mathrm{e}^{-t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (2 t)+A_{2} \sin (2 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-3 A_{1} \cos (2 t)-3 A_{2} \sin (2 t)-4 A_{1} \sin (2 t)+4 A_{2} \cos (2 t)=2 \cos (2 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{6}{25}, A_{2}=\frac{8}{25}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{6 \cos (2 t)}{25}+\frac{8 \sin (2 t)}{25}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-t}+c_{2} t \mathrm{e}^{-t}\right)+\left(-\frac{6 \cos (2 t)}{25}+\frac{8 \sin (2 t)}{25}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-t}\left(c_{2} t+c_{1}\right)-\frac{6 \cos (2 t)}{25}+\frac{8 \sin (2 t)}{25}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{-t}\left(c_{2} t+c_{1}\right)-\frac{6 \cos (2 t)}{25}+\frac{8 \sin (2 t)}{25} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=-\frac{6}{25}+c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\mathrm{e}^{-t}\left(c_{2} t+c_{1}\right)+c_{2} \mathrm{e}^{-t}+\frac{12 \sin (2 t)}{25}+\frac{16 \cos (2 t)}{25}
$$

substituting $y^{\prime}=0$ and $t=0$ in the above gives

$$
\begin{equation*}
0=\frac{16}{25}-c_{1}+c_{2} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{6}{25} \\
& c_{2}=-\frac{2}{5}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{2 t \mathrm{e}^{-t}}{5}+\frac{6 \mathrm{e}^{-t}}{25}-\frac{6 \cos (2 t)}{25}+\frac{8 \sin (2 t)}{25}
$$

Which simplifies to

$$
y=\frac{2(3-5 t) \mathrm{e}^{-t}}{25}-\frac{6 \cos (2 t)}{25}+\frac{8 \sin (2 t)}{25}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2(3-5 t) \mathrm{e}^{-t}}{25}-\frac{6 \cos (2 t)}{25}+\frac{8 \sin (2 t)}{25} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{2(3-5 t) \mathrm{e}^{-t}}{25}-\frac{6 \cos (2 t)}{25}+\frac{8 \sin (2 t)}{25}
$$

Verified OK.

17.14.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+2 y^{\prime}+y=2 \cos (2 t), y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+2 r+1=0$
- Factor the characteristic polynomial
$(r+1)^{2}=0$
- Root of the characteristic polynomial

$$
r=-1
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-t}$
- Repeated root, multiply $y_{1}(t)$ by t to ensure linear independence $y_{2}(t)=t \mathrm{e}^{-t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-t}+c_{2} t \mathrm{e}^{-t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=2 \cos (2 t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-t} & t \mathrm{e}^{-t} \\
-\mathrm{e}^{-t} & \mathrm{e}^{-t}-t \mathrm{e}^{-t}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=\mathrm{e}^{-2 t}$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=2 \mathrm{e}^{-t}\left(-\left(\int t \mathrm{e}^{t} \cos (2 t) d t\right)+t\left(\int \mathrm{e}^{t} \cos (2 t) d t\right)\right)$
- Compute integrals
$y_{p}(t)=-\frac{6 \cos (2 t)}{25}+\frac{8 \sin (2 t)}{25}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-t}+c_{2} t \mathrm{e}^{-t}-\frac{6 \cos (2 t)}{25}+\frac{8 \sin (2 t)}{25}$
Check validity of solution $y=c_{1} \mathrm{e}^{-t}+c_{2} t \mathrm{e}^{-t}-\frac{6 \cos (2 t)}{25}+\frac{8 \sin (2 t)}{25}$
- Use initial condition $y(0)=0$
$0=-\frac{6}{25}+c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-t}-c_{2} t \mathrm{e}^{-t}+\frac{12 \sin (2 t)}{25}+\frac{16 \cos (2 t)}{25}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$

$$
0=\frac{16}{25}-c_{1}+c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{6}{25}, c_{2}=-\frac{2}{5}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{2(3-5 t) \mathrm{e}^{-t}}{25}-\frac{6 \cos (2 t)}{25}+\frac{8 \sin (2 t)}{25}
$$

- \quad Solution to the IVP

$$
y=\frac{2(3-5 t) \mathrm{e}^{-t}}{25}-\frac{6 \cos (2 t)}{25}+\frac{8 \sin (2 t)}{25}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```


\checkmark Solution by Maple

Time used: 0.015 (sec). Leaf size: 28

```
dsolve([diff(y(t),t$2)+2*\operatorname{diff}(y(t),t)+y(t)=2*\operatorname{cos}(2*t),y(0) = 0, D(y)(0) = 0],y(t), singsol=a
```

$$
y(t)=\frac{2(3-5 t) \mathrm{e}^{-t}}{25}-\frac{6 \cos (2 t)}{25}+\frac{8 \sin (2 t)}{25}
$$

\checkmark Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 37
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[t]+2 * y\right.\right.$ ' $\left.[t]+y[t]==2 * \operatorname{Cos}[2 * t],\left\{y[0]==0, y^{\prime}[0]==0\right\}\right\}, y[t], t$, IncludeSingularSolutions

$$
y(t) \rightarrow-\frac{2}{25} e^{-t}\left(5 t-4 e^{t} \sin (2 t)+3 e^{t} \cos (2 t)-3\right)
$$

17.15 problem 15

17.15.1 Solving as second order linear constant coeff ode 3274
17.15.2 Solving using Kovacic algorithm 3278
17.15.3 Maple step by step solution . 3283

Internal problem ID [13215]
Internal file name [OUTPUT/11870_Sunday_December_03_2023_07_22_16_PM_16939157/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412
Problem number: 15.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+3 y^{\prime}+y=\cos (3 t)
$$

17.15.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=3, C=1, f(t)=\cos (3 t)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+3 y^{\prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=3, C=1$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+3 \lambda \mathrm{e}^{\lambda t}+\mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+3 \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=3, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{3^{2}-(4)(1)(1)} \\
& =-\frac{3}{2} \pm \frac{\sqrt{5}}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{3}{2}+\frac{\sqrt{5}}{2} \\
& \lambda_{2}=-\frac{3}{2}-\frac{\sqrt{5}}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=\frac{\sqrt{5}}{2}-\frac{3}{2} \\
& \lambda_{2}=-\frac{3}{2}-\frac{\sqrt{5}}{2}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} t}+c_{2} e^{\lambda_{2} t} \\
& y=c_{1} e^{\left(\frac{\sqrt{5}}{2}-\frac{3}{2}\right) t}+c_{2} e^{\left(-\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{\left(\frac{\sqrt{5}}{2}-\frac{3}{2}\right) t}+c_{2} \mathrm{e}^{\left(-\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{\left(\frac{\sqrt{5}}{2}-\frac{3}{2}\right) t}+c_{2} \mathrm{e}^{\left(-\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\cos (3 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 t), \sin (3 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{\left(-\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t}, \mathrm{e}^{\left(\frac{\sqrt{5}}{2}-\frac{3}{2}\right) t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (3 t)+A_{2} \sin (3 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-8 A_{1} \cos (3 t)-8 A_{2} \sin (3 t)-9 A_{1} \sin (3 t)+9 A_{2} \cos (3 t)=\cos (3 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{8}{145}, A_{2}=\frac{9}{145}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{8 \cos (3 t)}{145}+\frac{9 \sin (3 t)}{145}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{\left(\frac{\sqrt{5}}{2}-\frac{3}{2}\right) t}+c_{2} \mathrm{e}^{\left(-\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t}\right)+\left(-\frac{8 \cos (3 t)}{145}+\frac{9 \sin (3 t)}{145}\right)
\end{aligned}
$$

Which simplifies to

$$
y=c_{1} \mathrm{e}^{\frac{(\sqrt{5}-3) t}{2}}+c_{2} \mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}}-\frac{8 \cos (3 t)}{145}+\frac{9 \sin (3 t)}{145}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{(\sqrt{5}-3) t}{2}}+c_{2} \mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}}-\frac{8 \cos (3 t)}{145}+\frac{9 \sin (3 t)}{145} \tag{1}
\end{equation*}
$$

Figure 601: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{(\sqrt{5}-3) t}{2}}+c_{2} \mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}}-\frac{8 \cos (3 t)}{145}+\frac{9 \sin (3 t)}{145}
$$

Verified OK.

17.15.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+3 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=3 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{5}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=5 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=\frac{5 z(t)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 519: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{5}{4}$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\mathrm{e}^{-\frac{t \sqrt{5}}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3}{1} d t}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{-\frac{3 t}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{3 t}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-3 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\sqrt{5} \mathrm{e}^{t \sqrt{5}}}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}}\right)+c_{2}\left(\mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}}\left(\frac{\sqrt{5} \mathrm{e}^{t \sqrt{5}}}{5}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+3 y^{\prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}}+\frac{c_{2} \mathrm{e}^{\frac{(\sqrt{5}-3) t}{2}} \sqrt{5}}{5}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\cos (3 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 t), \sin (3 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sqrt{5} \mathrm{e}^{\frac{(\sqrt{5}-3) t}{2}}}{5}, \mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (3 t)+A_{2} \sin (3 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-8 A_{1} \cos (3 t)-8 A_{2} \sin (3 t)-9 A_{1} \sin (3 t)+9 A_{2} \cos (3 t)=\cos (3 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{8}{145}, A_{2}=\frac{9}{145}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{8 \cos (3 t)}{145}+\frac{9 \sin (3 t)}{145}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}}+\frac{c_{2} \mathrm{e}^{\frac{(\sqrt{5}-3) t}{2}} \sqrt{5}}{5}\right)+\left(-\frac{8 \cos (3 t)}{145}+\frac{9 \sin (3 t)}{145}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}}+\frac{c_{2} \mathrm{e}^{\frac{(\sqrt{5}-3) t}{2}} \sqrt{5}}{5}-\frac{8 \cos (3 t)}{145}+\frac{9 \sin (3 t)}{145} \tag{1}
\end{equation*}
$$

Figure 602: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}}+\frac{c_{2} \mathrm{e}^{\frac{(\sqrt{5}-3) t}{2}} \sqrt{5}}{5}-\frac{8 \cos (3 t)}{145}+\frac{9 \sin (3 t)}{145}
$$

Verified OK.

17.15.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+3 y^{\prime}+y=\cos (3 t)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+3 r+1=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{(-3) \pm(\sqrt{5})}{2}
$$

- Roots of the characteristic polynomial

$$
r=\left(-\frac{3}{2}-\frac{\sqrt{5}}{2}, \frac{\sqrt{5}}{2}-\frac{3}{2}\right)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{\left(-\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t}
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{\left(\frac{\sqrt{5}}{2}-\frac{3}{2}\right) t}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)
$$

- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{\left(-\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t}+c_{2} \mathrm{e}^{\left(\frac{\sqrt{5}}{2}-\frac{3}{2}\right) t}+y_{p}(t)
$$

Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\cos (3 t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{\left(-\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t} & \mathrm{e}^{\left(\frac{\sqrt{5}}{2}-\frac{3}{2}\right) t} \\
\left(-\frac{3}{2}-\frac{\sqrt{5}}{2}\right) \mathrm{e}^{\left(-\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t} & \left(\frac{\sqrt{5}}{2}-\frac{3}{2}\right) \mathrm{e}^{\left(\frac{\sqrt{5}}{2}-\frac{3}{2}\right) t}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=\sqrt{5} \mathrm{e}^{-3 t}
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=\frac{\sqrt{5}\left(-\mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}}\left(\int \cos (3 t) \mathrm{e}^{\frac{(3+\sqrt{5}) t}{2}} d t\right)+\mathrm{e}^{\frac{(\sqrt{5}-3) t}{2}}\left(\int \cos (3 t) \mathrm{e}^{-\frac{(\sqrt{5}-3) t}{2}} d t\right)\right)}{5}
$$

- Compute integrals

$$
y_{p}(t)=-\frac{8 \cos (3 t)}{145}+\frac{9 \sin (3 t)}{145}
$$

- \quad Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{\left(-\frac{3}{2}-\frac{\sqrt{5}}{2}\right) t}+c_{2} \mathrm{e}^{\left(\frac{\sqrt{5}}{2}-\frac{3}{2}\right) t}-\frac{8 \cos (3 t)}{145}+\frac{9 \sin (3 t)}{145}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 39

```
dsolve(diff(y(t),t$2)+3*diff(y(t),t)+y(t)=cos(3*t),y(t), singsol=all)
```

$$
y(t)=\mathrm{e}^{\frac{(\sqrt{5}-3) t}{2}} c_{2}+\mathrm{e}^{-\frac{(3+\sqrt{5}) t}{2}} c_{1}-\frac{8 \cos (3 t)}{145}+\frac{9 \sin (3 t)}{145}
$$

\checkmark Solution by Mathematica
Time used: 0.674 (sec). Leaf size: 52

```
DSolve[y''[t]+3*y'[t]+y[t]==Cos[3*t],y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow \frac{9}{145} \sin (3 t)-\frac{8}{145} \cos (3 t)+e^{-\frac{1}{2}(3+\sqrt{5}) t}\left(c_{2} e^{\sqrt{5} t}+c_{1}\right)
$$

17.16 problem 18

17.16.1 Solving as second order linear constant coeff ode 3285
17.16.2 Solving using Kovacic algorithm 3288
17.16.3 Maple step by step solution . 3293

Internal problem ID [13216]
Internal file name [0UTPUT/11871_Sunday_December_03_2023_07_22_22_PM_53001441/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412
Problem number: 18.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y^{\prime}+20 y=3+2 \cos (2 t)
$$

17.16.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=4, C=20, f(t)=3+2 \cos (2 t)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+20 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=4, C=20$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+4 \lambda \mathrm{e}^{\lambda t}+20 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing Eq(2) throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda+20=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=20$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{4^{2}-(4)(1)(20)} \\
& =-2 \pm 4 i
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=-2+4 i \\
\lambda_{2}=-2-4 i
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-2+4 i \\
& \lambda_{2}=-2-4 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-2$ and $\beta=4$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3+2 \cos (2 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\},\{\cos (2 t), \sin (2 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\cos (4 t) \mathrm{e}^{-2 t}, \sin (4 t) \mathrm{e}^{-2 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}+A_{2} \cos (2 t)+A_{3} \sin (2 t)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
16 A_{2} \cos (2 t)+16 A_{3} \sin (2 t)-8 A_{2} \sin (2 t)+8 A_{3} \cos (2 t)+20 A_{1}=3+2 \cos (2 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{3}{20}, A_{2}=\frac{1}{10}, A_{3}=\frac{1}{20}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{3}{20}+\frac{\cos (2 t)}{10}+\frac{\sin (2 t)}{20}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)\right)+\left(\frac{3}{20}+\frac{\cos (2 t)}{10}+\frac{\sin (2 t)}{20}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)+\frac{3}{20}+\frac{\cos (2 t)}{10}+\frac{\sin (2 t)}{20} \tag{1}
\end{equation*}
$$

Figure 603: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)+\frac{3}{20}+\frac{\cos (2 t)}{10}+\frac{\sin (2 t)}{20}
$$

Verified OK.

17.16.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y^{\prime}+20 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=4 \tag{3}\\
& C=20
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-16}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-16 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-16 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 521: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-16$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (4 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d t} \\
& =z_{1} e^{-2 t} \\
& =z_{1}\left(\mathrm{e}^{-2 t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (4 t) \mathrm{e}^{-2 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-4 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\tan (4 t)}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos (4 t) \mathrm{e}^{-2 t}\right)+c_{2}\left(\cos (4 t) \mathrm{e}^{-2 t}\left(\frac{\tan (4 t)}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+20 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\cos (4 t) \mathrm{e}^{-2 t} c_{1}+\frac{\sin (4 t) \mathrm{e}^{-2 t} c_{2}}{4}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3+2 \cos (2 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1\},\{\cos (2 t), \sin (2 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\cos (4 t) \mathrm{e}^{-2 t}, \frac{\sin (4 t) \mathrm{e}^{-2 t}}{4}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1}+A_{2} \cos (2 t)+A_{3} \sin (2 t)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
16 A_{2} \cos (2 t)+16 A_{3} \sin (2 t)-8 A_{2} \sin (2 t)+8 A_{3} \cos (2 t)+20 A_{1}=3+2 \cos (2 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{3}{20}, A_{2}=\frac{1}{10}, A_{3}=\frac{1}{20}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{3}{20}+\frac{\cos (2 t)}{10}+\frac{\sin (2 t)}{20}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (4 t) \mathrm{e}^{-2 t} c_{1}+\frac{\sin (4 t) \mathrm{e}^{-2 t} c_{2}}{4}\right)+\left(\frac{3}{20}+\frac{\cos (2 t)}{10}+\frac{\sin (2 t)}{20}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\cos (4 t) \mathrm{e}^{-2 t} c_{1}+\frac{\sin (4 t) \mathrm{e}^{-2 t} c_{2}}{4}+\frac{3}{20}+\frac{\cos (2 t)}{10}+\frac{\sin (2 t)}{20} \tag{1}
\end{equation*}
$$

Figure 604: Slope field plot

Verification of solutions

$$
y=\cos (4 t) \mathrm{e}^{-2 t} c_{1}+\frac{\sin (4 t) \mathrm{e}^{-2 t} c_{2}}{4}+\frac{3}{20}+\frac{\cos (2 t)}{10}+\frac{\sin (2 t)}{20}
$$

Verified OK.

17.16.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y^{\prime}+20 y=3+2 \cos (2 t)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+4 r+20=0$
- Use quadratic formula to solve for r
$r=\frac{(-4) \pm(\sqrt{-64})}{2}$
- Roots of the characteristic polynomial
$r=(-2-4 \mathrm{I},-2+4 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\cos (4 t) \mathrm{e}^{-2 t}$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\sin (4 t) \mathrm{e}^{-2 t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- \quad Substitute in solutions of the homogeneous ODE
$y=\cos (4 t) \mathrm{e}^{-2 t} c_{1}+\sin (4 t) \mathrm{e}^{-2 t} c_{2}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=3+2 \cos (2 t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (4 t) \mathrm{e}^{-2 t} & \sin (4 t) \mathrm{e}^{-2 t} \\
-4 \sin (4 t) \mathrm{e}^{-2 t}-2 \cos (4 t) \mathrm{e}^{-2 t} & 4 \cos (4 t) \mathrm{e}^{-2 t}-2 \sin (4 t) \mathrm{e}^{-2 t}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=4 \mathrm{e}^{-4 t}$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=\frac{\mathrm{e}^{-2 t}\left(-\cos (4 t)\left(\int \sin (4 t)(3+2 \cos (2 t)) \mathrm{e}^{2 t} d t\right)+\sin (4 t)\left(\int \cos (4 t)(3+2 \cos (2 t)) \mathrm{e}^{2 t} d t\right)\right)}{4}$
- Compute integrals

$$
y_{p}(t)=\frac{3}{20}+\frac{\cos (2 t)}{10}+\frac{\sin (2 t)}{20}
$$

- Substitute particular solution into general solution to ODE
$y=\sin (4 t) \mathrm{e}^{-2 t} c_{2}+\cos (4 t) \mathrm{e}^{-2 t} c_{1}+\frac{\cos (2 t)}{10}+\frac{\sin (2 t)}{20}+\frac{3}{20}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 38

```
dsolve(diff(y(t),t$2)+4*diff(y(t),t)+20*y(t)=3+2*\operatorname{cos}(2*t),y(t), singsol=all)
```

$$
y(t)=\sin (4 t) \mathrm{e}^{-2 t} c_{2}+\cos (4 t) \mathrm{e}^{-2 t} c_{1}+\frac{3}{20}+\frac{\sin (2 t)}{20}+\frac{\cos (2 t)}{10}
$$

\checkmark Solution by Mathematica
Time used: 1.265 (sec). Leaf size: 47
DSolve [y' ' $[\mathrm{t}]+4 *$ y' $[\mathrm{t}]+20 * \mathrm{y}[\mathrm{t}]==3+2 * \operatorname{Cos}[2 * \mathrm{t}], \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{1}{20}\left(\sin (2 t)+2 \cos (2 t)+20 c_{2} e^{-2 t} \cos (4 t)+20 c_{1} e^{-2 t} \sin (4 t)+3\right)
$$

17.17 problem 19

17.17.1 Solving as second order linear constant coeff ode 3296
17.17.2 Solving using Kovacic algorithm 3299
17.17.3 Maple step by step solution . 3304

Internal problem ID [13217]
Internal file name [OUTPUT/11872_Sunday_December_03_2023_07_22_28_PM_67962004/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.2 page 412
Problem number: 19.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y^{\prime}+20 y=\mathrm{e}^{-t} \cos (t)
$$

17.17.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=4, C=20, f(t)=\mathrm{e}^{-t} \cos (t)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+20 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=4, C=20$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+4 \lambda \mathrm{e}^{\lambda t}+20 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing Eq(2) throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+4 \lambda+20=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=4, C=20$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{4^{2}-(4)(1)(20)} \\
& =-2 \pm 4 i
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=-2+4 i \\
\lambda_{2}=-2-4 i
\end{gathered}
$$

Which simplifies to

$$
\begin{gathered}
\lambda_{1}=-2+4 i \\
\lambda_{2}=-2-4 i
\end{gathered}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=-2$ and $\beta=4$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{-t} \cos (t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-t} \cos (t), \mathrm{e}^{-t} \sin (t)\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\cos (4 t) \mathrm{e}^{-2 t}, \sin (4 t) \mathrm{e}^{-2 t}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-t} \cos (t)+A_{2} \mathrm{e}^{-t} \sin (t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-2 A_{1} \mathrm{e}^{-t} \sin (t)+2 A_{2} \mathrm{e}^{-t} \cos (t)+16 A_{1} \mathrm{e}^{-t} \cos (t)+16 A_{2} \mathrm{e}^{-t} \sin (t)=\mathrm{e}^{-t} \cos (t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{4}{65}, A_{2}=\frac{1}{130}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{4 \mathrm{e}^{-t} \cos (t)}{65}+\frac{\mathrm{e}^{-t} \sin (t)}{130}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)\right)+\left(\frac{4 \mathrm{e}^{-t} \cos (t)}{65}+\frac{\mathrm{e}^{-t} \sin (t)}{130}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)+\frac{4 \mathrm{e}^{-t} \cos (t)}{65}+\frac{\mathrm{e}^{-t} \sin (t)}{130} \tag{1}
\end{equation*}
$$

Figure 605: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-2 t}\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right)+\frac{4 \mathrm{e}^{-t} \cos (t)}{65}+\frac{\mathrm{e}^{-t} \sin (t)}{130}
$$

Verified OK.

17.17.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y^{\prime}+20 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=4 \tag{3}\\
& C=20
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-16}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-16 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-16 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 523: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-16$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (4 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d t} \\
& =z_{1} e^{-2 t} \\
& =z_{1}\left(\mathrm{e}^{-2 t}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (4 t) \mathrm{e}^{-2 t}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1} \int \frac{e^{-4 t}}{\left(y_{1}\right)^{2}} d t \\
& =y_{1}\left(\frac{\tan (4 t)}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos (4 t) \mathrm{e}^{-2 t}\right)+c_{2}\left(\cos (4 t) \mathrm{e}^{-2 t}\left(\frac{\tan (4 t)}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y^{\prime}+20 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\cos (4 t) \mathrm{e}^{-2 t} c_{1}+\frac{\sin (4 t) \mathrm{e}^{-2 t} c_{2}}{4}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{-t} \cos (t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-t} \cos (t), \mathrm{e}^{-t} \sin (t)\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\cos (4 t) \mathrm{e}^{-2 t}, \frac{\sin (4 t) \mathrm{e}^{-2 t}}{4}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-t} \cos (t)+A_{2} \mathrm{e}^{-t} \sin (t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-2 A_{1} \mathrm{e}^{-t} \sin (t)+2 A_{2} \mathrm{e}^{-t} \cos (t)+16 A_{1} \mathrm{e}^{-t} \cos (t)+16 A_{2} \mathrm{e}^{-t} \sin (t)=\mathrm{e}^{-t} \cos (t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{4}{65}, A_{2}=\frac{1}{130}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{4 \mathrm{e}^{-t} \cos (t)}{65}+\frac{\mathrm{e}^{-t} \sin (t)}{130}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (4 t) \mathrm{e}^{-2 t} c_{1}+\frac{\sin (4 t) \mathrm{e}^{-2 t} c_{2}}{4}\right)+\left(\frac{4 \mathrm{e}^{-t} \cos (t)}{65}+\frac{\mathrm{e}^{-t} \sin (t)}{130}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\cos (4 t) \mathrm{e}^{-2 t} c_{1}+\frac{\sin (4 t) \mathrm{e}^{-2 t} c_{2}}{4}+\frac{4 \mathrm{e}^{-t} \cos (t)}{65}+\frac{\mathrm{e}^{-t} \sin (t)}{130} \tag{1}
\end{equation*}
$$

Figure 606: Slope field plot

Verification of solutions

$$
y=\cos (4 t) \mathrm{e}^{-2 t} c_{1}+\frac{\sin (4 t) \mathrm{e}^{-2 t} c_{2}}{4}+\frac{4 \mathrm{e}^{-t} \cos (t)}{65}+\frac{\mathrm{e}^{-t} \sin (t)}{130}
$$

Verified OK.

17.17.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y^{\prime}+20 y=\mathrm{e}^{-t} \cos (t)
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+4 r+20=0$
- Use quadratic formula to solve for r
$r=\frac{(-4) \pm(\sqrt{-64})}{2}$
- Roots of the characteristic polynomial
$r=(-2-4 \mathrm{I},-2+4 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\cos (4 t) \mathrm{e}^{-2 t}$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\sin (4 t) \mathrm{e}^{-2 t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- \quad Substitute in solutions of the homogeneous ODE
$y=\cos (4 t) \mathrm{e}^{-2 t} c_{1}+\sin (4 t) \mathrm{e}^{-2 t} c_{2}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\mathrm{e}^{-t} \cos (t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (4 t) \mathrm{e}^{-2 t} & \sin (4 t) \mathrm{e}^{-2 t} \\
-4 \sin (4 t) \mathrm{e}^{-2 t}-2 \cos (4 t) \mathrm{e}^{-2 t} & 4 \cos (4 t) \mathrm{e}^{-2 t}-2 \sin (4 t) \mathrm{e}^{-2 t}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=4 \mathrm{e}^{-4 t}$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{\mathrm{e}^{-2 t}\left(\cos (4 t)\left(\int \sin (4 t) \cos (t) \mathrm{e}^{t} d t\right)-\sin (4 t)\left(\int \cos (4 t) \cos (t) \mathrm{e}^{t} d t\right)\right)}{4}$
- Compute integrals
$y_{p}(t)=\frac{(8 \cos (t)+\sin (t)) \mathrm{e}^{-t}}{130}$
- Substitute particular solution into general solution to ODE
$y=\cos (4 t) \mathrm{e}^{-2 t} c_{1}+\sin (4 t) \mathrm{e}^{-2 t} c_{2}+\frac{(8 \cos (t)+\sin (t)) \mathrm{e}^{-t}}{130}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 36

```
dsolve(diff(y(t),t$2)+4*diff(y(t),t)+20*y(t)=exp(-t)*\operatorname{cos}(t),y(t), singsol=all)
```

$$
y(t)=\left(c_{1} \cos (4 t)+c_{2} \sin (4 t)\right) \mathrm{e}^{-2 t}+\frac{4\left(\cos (t)+\frac{\sin (t)}{8}\right) \mathrm{e}^{-t}}{65}
$$

Solution by Mathematica
Time used: 0.457 (sec). Leaf size: 44
DSolve[y'' [t$]+4 * \mathrm{y}^{\prime}[\mathrm{t}]+20 * \mathrm{y}[\mathrm{t}]==\operatorname{Exp}[-\mathrm{t}] * \operatorname{Cos}[\mathrm{t}], \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{1}{130} e^{-2 t}\left(e^{t} \sin (t)+8 e^{t} \cos (t)+130 c_{2} \cos (4 t)+130 c_{1} \sin (4 t)\right)
$$

18 Chapter 4. Forcing and Resonance. Section 4.3 page 424

18.1 problem 1 . 3308
18.2 problem 2 . 3319
18.3 problem 3 . 3330
18.4 problem 4 . 3341
18.5 problem 5 . 3352

18.1 problem 1

18.1.1 Solving as second order linear constant coeff ode 3308
18.1.2 Solving using Kovacic algorithm 3311
18.1.3 Maple step by step solution . 3316

Internal problem ID [13218]
Internal file name [OUTPUT/11873_Sunday_December_03_2023_07_22_35_PM_20933045/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.3 page 424
Problem number: 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+9 y=\cos (t)
$$

18.1.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=0, C=9, f(t)=\cos (t)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=0, C=9$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+9 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(9)} \\
& = \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)
$$

Or

$$
y=c_{1} \cos (3 t)+c_{2} \sin (3 t)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (3 t)+c_{2} \sin (3 t)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\cos (t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (t), \sin (t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (3 t), \sin (3 t)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (t)+A_{2} \sin (t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
8 A_{1} \cos (t)+8 A_{2} \sin (t)=\cos (t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{8}, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\cos (t)}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)+\left(\frac{\cos (t)}{8}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 t)+c_{2} \sin (3 t)+\frac{\cos (t)}{8} \tag{1}
\end{equation*}
$$

Figure 607: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (3 t)+c_{2} \sin (3 t)+\frac{\cos (t)}{8}
$$

Verified OK.

18.1.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-9 \\
t & =1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-9 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 525: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (3 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (3 t)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (3 t)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d t \\
& =\cos (3 t) \int \frac{1}{\cos (3 t)^{2}} d t \\
& =\cos (3 t)\left(\frac{\tan (3 t)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (3 t))+c_{2}\left(\cos (3 t)\left(\frac{\tan (3 t)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (3 t)+\frac{c_{2} \sin (3 t)}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\cos (t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (t), \sin (t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (3 t)}{3}, \cos (3 t)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (t)+A_{2} \sin (t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
8 A_{1} \cos (t)+8 A_{2} \sin (t)=\cos (t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{8}, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\cos (t)}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 t)+\frac{c_{2} \sin (3 t)}{3}\right)+\left(\frac{\cos (t)}{8}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 t)+\frac{c_{2} \sin (3 t)}{3}+\frac{\cos (t)}{8} \tag{1}
\end{equation*}
$$

Figure 608: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (3 t)+\frac{c_{2} \sin (3 t)}{3}+\frac{\cos (t)}{8}
$$

Verified OK.

18.1.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+9 y=\cos (t)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+9=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-36})}{2}
$$

- Roots of the characteristic polynomial
$r=(-3 \mathrm{I}, 3 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\cos (3 t)$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\sin (3 t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (3 t)+c_{2} \sin (3 t)+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function
$\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\cos (t)\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\cos (3 t) & \sin (3 t) \\ -3 \sin (3 t) & 3 \cos (3 t)\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=3$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{\cos (3 t)\left(\int \sin (3 t) \cos (t) d t\right)}{3}+\frac{\sin (3 t)\left(\int \cos (3 t) \cos (t) d t\right)}{3}$
- Compute integrals
$y_{p}(t)=\frac{\cos (t)}{8}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (3 t)+c_{2} \sin (3 t)+\frac{\cos (t)}{8}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 21

```
dsolve(diff(y(t),t$2)+9*y(t)=cos(t),y(t), singsol=all)
```

$$
y(t)=c_{2} \sin (3 t)+c_{1} \cos (3 t)+\frac{\cos (t)}{8}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.064 (sec). Leaf size: 30
DSolve[y''[t] $+9 * y[t]==\operatorname{Cos}[t], y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{\cos (t)}{8}+\left(\frac{1}{12}+c_{1}\right) \cos (3 t)+c_{2} \sin (3 t)
$$

18.2 problem 2

18.2.1 Solving as second order linear constant coeff ode 3319
18.2.2 Solving using Kovacic algorithm 3322
18.2.3 Maple step by step solution . 3327

Internal problem ID [13219]
Internal file name [OUTPUT/11874_Sunday_December_03_2023_07_22_38_PM_28158158/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.3 page 424
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+9 y=5 \sin (2 t)
$$

18.2.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=0, C=9, f(t)=5 \sin (2 t)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=0, C=9$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+9 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(9)} \\
& = \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)
$$

Or

$$
y=c_{1} \cos (3 t)+c_{2} \sin (3 t)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (3 t)+c_{2} \sin (3 t)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
5 \sin (2 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 t), \sin (2 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (3 t), \sin (3 t)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (2 t)+A_{2} \sin (2 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
5 A_{1} \cos (2 t)+5 A_{2} \sin (2 t)=5 \sin (2 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\sin (2 t)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)+(\sin (2 t))
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 t)+c_{2} \sin (3 t)+\sin (2 t) \tag{1}
\end{equation*}
$$

Figure 609: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (3 t)+c_{2} \sin (3 t)+\sin (2 t)
$$

Verified OK.

18.2.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+9 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-9 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-9 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 527: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (3 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (3 t)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (3 t)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d t \\
& =\cos (3 t) \int \frac{1}{\cos (3 t)^{2}} d t \\
& =\cos (3 t)\left(\frac{\tan (3 t)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (3 t))+c_{2}\left(\cos (3 t)\left(\frac{\tan (3 t)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (3 t)+\frac{c_{2} \sin (3 t)}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
5 \sin (2 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 t), \sin (2 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (3 t)}{3}, \cos (3 t)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (2 t)+A_{2} \sin (2 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
5 A_{1} \cos (2 t)+5 A_{2} \sin (2 t)=5 \sin (2 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\sin (2 t)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 t)+\frac{c_{2} \sin (3 t)}{3}\right)+(\sin (2 t))
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 t)+\frac{c_{2} \sin (3 t)}{3}+\sin (2 t) \tag{1}
\end{equation*}
$$

Figure 610: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (3 t)+\frac{c_{2} \sin (3 t)}{3}+\sin (2 t)
$$

Verified OK.

18.2.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+9 y=5 \sin (2 t)
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}+9=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial
$r=(-3 \mathrm{I}, 3 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\cos (3 t)$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\sin (3 t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (3 t)+c_{2} \sin (3 t)+y_{p}(t)$Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function
$\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=5 \sin (2 t)\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (3 t) & \sin (3 t) \\
-3 \sin (3 t) & 3 \cos (3 t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=3$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{5 \cos (3 t)\left(\int(\cos (t)-\cos (5 t)) d t\right)}{6}+\frac{5 \sin (3 t)\left(\int(\sin (5 t)-\sin (t)) d t\right)}{6}$
- Compute integrals
$y_{p}(t)=\sin (2 t)$
- Substitute particular solution into general solution to ODE $y=c_{1} \cos (3 t)+c_{2} \sin (3 t)+\sin (2 t)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

```
dsolve(diff(y(t),t$2)+9*y(t)=5*sin(2*t),y(t), singsol=all)
```

$$
y(t)=c_{2} \sin (3 t)+c_{1} \cos (3 t)+\sin (2 t)
$$

\checkmark Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 24
DSolve[y''[t]+9*y[t]==5*Sin[2*t],y[t],t,IncludeSingularSolutions -> True]

$$
y(t) \rightarrow \sin (2 t)+c_{1} \cos (3 t)+c_{2} \sin (3 t)
$$

18.3 problem 3

18.3.1 Solving as second order linear constant coeff ode 3330
18.3.2 Solving using Kovacic algorithm 3334
18.3.3 Maple step by step solution . 3339

Internal problem ID [13220]
Internal file name [OUTPUT/11875_Sunday_December_03_2023_07_22_40_PM_34995297/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.3 page 424
Problem number: 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y=-\cos \left(\frac{t}{2}\right)
$$

18.3.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=0, C=4, f(t)=-\cos \left(\frac{t}{2}\right)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+4 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)
$$

Or

$$
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (2 t)+c_{2} \sin (2 t)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
-\cos \left(\frac{t}{2}\right)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\cos \left(\frac{t}{2}\right), \sin \left(\frac{t}{2}\right)\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (2 t), \sin (2 t)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos \left(\frac{t}{2}\right)+A_{2} \sin \left(\frac{t}{2}\right)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\frac{15 A_{1} \cos \left(\frac{t}{2}\right)}{4}+\frac{15 A_{2} \sin \left(\frac{t}{2}\right)}{4}=-\cos \left(\frac{t}{2}\right)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{4}{15}, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{4 \cos \left(\frac{t}{2}\right)}{15}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)+\left(-\frac{4 \cos \left(\frac{t}{2}\right)}{15}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)-\frac{4 \cos \left(\frac{t}{2}\right)}{15} \tag{1}
\end{equation*}
$$

Figure 611: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)-\frac{4 \cos \left(\frac{t}{2}\right)}{15}
$$

Verified OK.

18.3.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-4 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 529: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (2 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 t)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 t)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d t \\
& =\cos (2 t) \int \frac{1}{\cos (2 t)^{2}} d t \\
& =\cos (2 t)\left(\frac{\tan (2 t)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 t))+c_{2}\left(\cos (2 t)\left(\frac{\tan (2 t)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
-\cos \left(\frac{t}{2}\right)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\cos \left(\frac{t}{2}\right), \sin \left(\frac{t}{2}\right)\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (2 t)}{2}, \cos (2 t)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos \left(\frac{t}{2}\right)+A_{2} \sin \left(\frac{t}{2}\right)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\frac{15 A_{1} \cos \left(\frac{t}{2}\right)}{4}+\frac{15 A_{2} \sin \left(\frac{t}{2}\right)}{4}=-\cos \left(\frac{t}{2}\right)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{4}{15}, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{4 \cos \left(\frac{t}{2}\right)}{15}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}\right)+\left(-\frac{4 \cos \left(\frac{t}{2}\right)}{15}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}-\frac{4 \cos \left(\frac{t}{2}\right)}{15} \tag{1}
\end{equation*}
$$

Figure 612: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}-\frac{4 \cos \left(\frac{t}{2}\right)}{15}
$$

Verified OK.

18.3.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y=-\cos \left(\frac{t}{2}\right)
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+4=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial

$$
r=(-2 \mathrm{I}, 2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\cos (2 t)$
- $\quad 2$ nd solution of the homogeneous ODE
$y_{2}(t)=\sin (2 t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=-\cos \left(\frac{t}{2}\right)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (2 t) & \sin (2 t) \\
-2 \sin (2 t) & 2 \cos (2 t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=2$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=\frac{\cos (2 t)\left(\int \sin (2 t) \cos \left(\frac{t}{2}\right) d t\right)}{2}-\frac{\sin (2 t)\left(\int \cos (2 t) \cos \left(\frac{t}{2}\right) d t\right)}{2}
$$

- Compute integrals

$$
y_{p}(t)=-\frac{4 \cos \left(\frac{t}{2}\right)}{15}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)-\frac{4 \cos \left(\frac{t}{2}\right)}{15}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(diff(y(t),t$2)+4*y(t)=-cos(t/2),y(t), singsol=all)
```

$$
y(t)=\sin (2 t) c_{2}+\cos (2 t) c_{1}-\frac{4 \cos \left(\frac{t}{2}\right)}{15}
$$

\checkmark Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 30
DSolve[y'' $[\mathrm{t}]+4 * \mathrm{y}[\mathrm{t}]==-\operatorname{Cos}[\mathrm{t} / 2], \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow-\frac{4}{15} \cos \left(\frac{t}{2}\right)+c_{1} \cos (2 t)+c_{2} \sin (2 t)
$$

18.4 problem 4

18.4.1 Solving as second order linear constant coeff ode 3341
18.4.2 Solving using Kovacic algorithm 3345
18.4.3 Maple step by step solution . 3350

Internal problem ID [13221]
Internal file name [OUTPUT/11876_Sunday_December_03_2023_07_22_44_PM_30650530/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.3 page 424
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y=3 \cos (2 t)
$$

18.4.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=0, C=4, f(t)=3 \cos (2 t)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+4 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)
$$

Or

$$
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (2 t)+c_{2} \sin (2 t)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 \cos (2 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 t), \sin (2 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (2 t), \sin (2 t)\}
$$

Since $\cos (2 t)$ is duplicated in the UC_set, then this basis is multiplied by extra t. The UC_set becomes

$$
[\{\cos (2 t) t, \sin (2 t) t\}]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} \cos (2 t) t+A_{2} \sin (2 t) t
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-4 A_{1} \sin (2 t)+4 A_{2} \cos (2 t)=3 \cos (2 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=\frac{3}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{3 \sin (2 t) t}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 t)+c_{2} \sin (2 t)\right)+\left(\frac{3 \sin (2 t) t}{4}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+\frac{3 \sin (2 t) t}{4} \tag{1}
\end{equation*}
$$

Figure 613: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+\frac{3 \sin (2 t) t}{4}
$$

Verified OK.

18.4.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-4 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 531: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (2 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 t)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 t)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d t \\
& =\cos (2 t) \int \frac{1}{\cos (2 t)^{2}} d t \\
& =\cos (2 t)\left(\frac{\tan (2 t)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 t))+c_{2}\left(\cos (2 t)\left(\frac{\tan (2 t)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 \cos (2 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 t), \sin (2 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (2 t)}{2}, \cos (2 t)\right\}
$$

Since $\cos (2 t)$ is duplicated in the UC_set, then this basis is multiplied by extra t. The UC_set becomes

$$
[\{\cos (2 t) t, \sin (2 t) t\}]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} \cos (2 t) t+A_{2} \sin (2 t) t
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-4 A_{1} \sin (2 t)+4 A_{2} \cos (2 t)=3 \cos (2 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=\frac{3}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{3 \sin (2 t) t}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}\right)+\left(\frac{3 \sin (2 t) t}{4}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}+\frac{3 \sin (2 t) t}{4} \tag{1}
\end{equation*}
$$

Figure 614: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 t)+\frac{c_{2} \sin (2 t)}{2}+\frac{3 \sin (2 t) t}{4}
$$

Verified OK.

18.4.3 Maple step by step solution

Let's solve
$y^{\prime \prime}+4 y=3 \cos (2 t)$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+4=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial

$$
r=(-2 \mathrm{I}, 2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\cos (2 t)$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\sin (2 t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+y_{p}(t)$Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=3 \cos (2 t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (2 t) & \sin (2 t) \\
-2 \sin (2 t) & 2 \cos (2 t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=2$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\frac{3 \cos (2 t)\left(\int \sin (4 t) d t\right)}{4}+\frac{3 \sin (2 t)\left(\int \cos (2 t)^{2} d t\right)}{2}
$$

- Compute integrals

$$
y_{p}(t)=\frac{3 \cos (2 t)}{16}+\frac{3 \sin (2 t) t}{4}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+\frac{3 \cos (2 t)}{16}+\frac{3 \sin (2 t) t}{4}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 29

```
dsolve(diff(y(t),t$2)+4*y(t)=3*\operatorname{cos}(2*t),y(t), singsol=all)
```

$$
y(t)=\frac{\left(6 t+8 c_{2}\right) \sin (2 t)}{8}+\frac{\left(8 c_{1}+3\right) \cos (2 t)}{8}
$$

Solution by Mathematica
Time used: 0.049 (sec). Leaf size: 33

```
DSolve[y''[t]+4*y[t]==3*Cos[2*t],y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow\left(\frac{3}{16}+c_{1}\right) \cos (2 t)+\frac{1}{4}\left(3 t+4 c_{2}\right) \sin (2 t)
$$

18.5 problem 5

18.5.1 Solving as second order linear constant coeff ode 3352
18.5.2 Solving using Kovacic algorithm 3356
18.5.3 Maple step by step solution . 3361

Internal problem ID [13222]
Internal file name [OUTPUT/11877_Sunday_December_03_2023_07_22_47_PM_72174500/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 4. Forcing and Resonance. Section 4.3 page 424
Problem number: 5 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+9 y=2 \cos (3 t)
$$

18.5.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)
$$

Where $A=1, B=0, C=9, f(t)=2 \cos (3 t)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0
$$

Where in the above $A=1, B=0, C=9$. Let the solution be $y=e^{\lambda t}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda t}+9 \mathrm{e}^{\lambda t}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda t}$ gives

$$
\begin{equation*}
\lambda^{2}+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(9)} \\
& = \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)
$$

Or

$$
y=c_{1} \cos (3 t)+c_{2} \sin (3 t)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (3 t)+c_{2} \sin (3 t)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \cos (3 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 t), \sin (3 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (3 t), \sin (3 t)\}
$$

Since $\cos (3 t)$ is duplicated in the UC_set, then this basis is multiplied by extra t. The UC_set becomes

$$
[\{t \cos (3 t), t \sin (3 t)\}]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} t \cos (3 t)+A_{2} t \sin (3 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-6 A_{1} \sin (3 t)+6 A_{2} \cos (3 t)=2 \cos (3 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=\frac{1}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{t \sin (3 t)}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 t)+c_{2} \sin (3 t)\right)+\left(\frac{t \sin (3 t)}{3}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 t)+c_{2} \sin (3 t)+\frac{t \sin (3 t)}{3} \tag{1}
\end{equation*}
$$

Figure 615: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (3 t)+c_{2} \sin (3 t)+\frac{t \sin (3 t)}{3}
$$

Verified OK.

18.5.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(t)=y e^{\int \frac{B}{2 A} d t}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=r z(t) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-9 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(t)=-9 z(t) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(t)$ then y is found using the inverse transformation

$$
y=z(t) e^{-\int \frac{B}{2 A} d t}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 533: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of t, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(t)=\cos (3 t)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d t}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (3 t)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (3 t)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d t}}{y_{1}^{2}} d t
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d t \\
& =\cos (3 t) \int \frac{1}{\cos (3 t)^{2}} d t \\
& =\cos (3 t)\left(\frac{\tan (3 t)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (3 t))+c_{2}\left(\cos (3 t)\left(\frac{\tan (3 t)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE~} A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(t)+B y^{\prime}(t)+C y(t)=f(t)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (3 t)+\frac{c_{2} \sin (3 t)}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \cos (3 t)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 t), \sin (3 t)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (3 t)}{3}, \cos (3 t)\right\}
$$

Since $\cos (3 t)$ is duplicated in the UC_set, then this basis is multiplied by extra t. The UC_set becomes

$$
[\{t \cos (3 t), t \sin (3 t)\}]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} t \cos (3 t)+A_{2} t \sin (3 t)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-6 A_{1} \sin (3 t)+6 A_{2} \cos (3 t)=2 \cos (3 t)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=\frac{1}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{t \sin (3 t)}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 t)+\frac{c_{2} \sin (3 t)}{3}\right)+\left(\frac{t \sin (3 t)}{3}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 t)+\frac{c_{2} \sin (3 t)}{3}+\frac{t \sin (3 t)}{3} \tag{1}
\end{equation*}
$$

Figure 616: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (3 t)+\frac{c_{2} \sin (3 t)}{3}+\frac{t \sin (3 t)}{3}
$$

Verified OK.

18.5.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+9 y=2 \cos (3 t)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+9=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial

$$
r=(-3 \mathrm{I}, 3 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\cos (3 t)$
- \quad 2nd solution of the homogeneous ODE
$y_{2}(t)=\sin (3 t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (3 t)+c_{2} \sin (3 t)+y_{p}(t)$Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=2 \cos (3 t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (3 t) & \sin (3 t) \\
-3 \sin (3 t) & 3 \cos (3 t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=3$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\frac{\cos (3 t)\left(\int \sin (6 t) d t\right)}{3}+\frac{2 \sin (3 t)\left(\int \cos (3 t)^{2} d t\right)}{3}
$$

- Compute integrals

$$
y_{p}(t)=\frac{\cos (3 t)}{18}+\frac{t \sin (3 t)}{3}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (3 t)+c_{2} \sin (3 t)+\frac{\cos (3 t)}{18}+\frac{t \sin (3 t)}{3}
$$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful-

Solution by Maple
Time used: 0.016 (sec). Leaf size: 27

```
dsolve(diff(y(t),t$2)+9*y(t)=2*\operatorname{cos}(3*t),y(t), singsol=all)
```

$$
y(t)=\frac{\left(9 c_{1}+1\right) \cos (3 t)}{9}+\frac{\left(t+3 c_{2}\right) \sin (3 t)}{3}
$$

Solution by Mathematica
Time used: 0.054 (sec). Leaf size: 31

```
DSolve[y''[t]+9*y[t]==2*Cos[3*t],y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow\left(\frac{1}{18}+c_{1}\right) \cos (3 t)+\frac{1}{3}\left(t+3 c_{2}\right) \sin (3 t)
$$

19 Chapter 6. Laplace transform. Section 6.3 page 600

19.1 problem 27 . 3364
19.2 problem 28 . 3370
19.3 problem 29 . 3376
19.4 problem 30 . 3382
19.5 problem 31 . 3388
19.6 problem 32 . 3394
19.7 problem 33 . 3400
19.8 problem 34 . 3407

19.1 problem 27

19.1.1 Existence and uniqueness analysis 3364
19.1.2 Maple step by step solution . 3367

Internal problem ID [13223]
Internal file name [OUTPUT/11878_Sunday_December_03_2023_07_22_50_PM_75951210/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 6. Laplace transform. Section 6.3 page 600
Problem number: 27.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant__coeff", "second_order_ode_can__be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+4 y=8
$$

With initial conditions

$$
\left[y(0)=11, y^{\prime}(0)=5\right]
$$

19.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =4 \\
F & =8
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y=8
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=8$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+4 Y(s)=\frac{8}{s} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =11 \\
y^{\prime}(0) & =5
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-5-11 s+4 Y(s)=\frac{8}{s}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{11 s^{2}+5 s+8}{s\left(s^{2}+4\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{\frac{9}{2}-\frac{5 i}{4}}{s-2 i}+\frac{\frac{9}{2}+\frac{5 i}{4}}{s+2 i}+\frac{2}{s}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{\frac{9}{2}-\frac{5 i}{4}}{s-2 i}\right) & =\left(\frac{9}{2}-\frac{5 i}{4}\right) \mathrm{e}^{2 i t} \\
\mathcal{L}^{-1}\left(\frac{\frac{9}{2}+\frac{5 i}{4}}{s+2 i}\right) & =\left(\frac{9}{2}+\frac{5 i}{4}\right) \mathrm{e}^{-2 i t} \\
\mathcal{L}^{-1}\left(\frac{2}{s}\right) & =2
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=9 \cos (2 t)+\frac{5 \sin (2 t)}{2}+2
$$

Simplifying the solution gives

$$
y=9 \cos (2 t)+\frac{5 \sin (2 t)}{2}+2
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=9 \cos (2 t)+\frac{5 \sin (2 t)}{2}+2 \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=9 \cos (2 t)+\frac{5 \sin (2 t)}{2}+2
$$

Verified OK.

19.1.2 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}+4 y=8, y(0)=11,\left.y^{\prime}\right|_{\{t=0\}}=5\right]$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+4=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial
$r=(-2 \mathrm{I}, 2 \mathrm{I})$
- 1st solution of the homogeneous ODE
$y_{1}(t)=\cos (2 t)$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\sin (2 t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=8\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (2 t) & \sin (2 t) \\
-2 \sin (2 t) & 2 \cos (2 t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=2$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-4 \cos (2 t)\left(\int \sin (2 t) d t\right)+4 \sin (2 t)\left(\int \cos (2 t) d t\right)
$$

- Compute integrals

$$
y_{p}(t)=2
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+2
$$

Check validity of solution $y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+2$

- Use initial condition $y(0)=11$
$11=c_{1}+2$
- Compute derivative of the solution
$y^{\prime}=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t)$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=5$
$5=2 c_{2}$
- Solve for c_{1} and c_{2} $\left\{c_{1}=9, c_{2}=\frac{5}{2}\right\}$
- Substitute constant values into general solution and simplify
$y=9 \cos (2 t)+\frac{5 \sin (2 t)}{2}+2$
- \quad Solution to the IVP
$y=9 \cos (2 t)+\frac{5 \sin (2 t)}{2}+2$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 4.797 (sec). Leaf size: 18
dsolve([diff $(y(t), t \$ 2)+4 * y(t)=8, y(0)=11, D(y)(0)=5], y(t)$, singsol=all)

$$
y(t)=9 \cos (2 t)+\frac{5 \sin (2 t)}{2}+2
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 19
DSolve[\{y' ' $\left.[t]+4 * y[t]==8,\left\{y[0]==11, y^{\prime}[0]==5\right\}\right\}, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow 9 \cos (2 t)+5 \sin (t) \cos (t)+2
$$

19.2 problem 28

19.2.1 Existence and uniqueness analysis 3370
19.2.2 Maple step by step solution . 3373

Internal problem ID [13224]
Internal file name [OUTPUT/11879_Tuesday_December_05_2023_12_12_38_PM_64086885/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 6. Laplace transform. Section 6.3 page 600
Problem number: 28.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second__order_laplace", "second__order_linear_constant__coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-4 y=\mathrm{e}^{2 t}
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=-1\right]
$$

19.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =-4 \\
F & =\mathrm{e}^{2 t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-4 y=\mathrm{e}^{2 t}
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=-4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=\mathrm{e}^{2 t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-4 Y(s)=\frac{1}{s-2} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =1 \\
y^{\prime}(0) & =-1
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)+1-s-4 Y(s)=\frac{1}{s-2}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{s^{2}-3 s+3}{(s-2)\left(s^{2}-4\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{1}{4(s-2)^{2}}+\frac{13}{16(s+2)}+\frac{3}{16(s-2)}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{1}{4(s-2)^{2}}\right) & =\frac{\mathrm{e}^{2 t} t}{4} \\
\mathcal{L}^{-1}\left(\frac{13}{16(s+2)}\right) & =\frac{13 \mathrm{e}^{-2 t}}{16} \\
\mathcal{L}^{-1}\left(\frac{3}{16(s-2)}\right) & =\frac{3 \mathrm{e}^{2 t}}{16}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=\frac{13 \mathrm{e}^{-2 t}}{16}+\frac{\mathrm{e}^{2 t}(3+4 t)}{16}
$$

Simplifying the solution gives

$$
y=\frac{13 \mathrm{e}^{-2 t}}{16}+\frac{\mathrm{e}^{2 t}(3+4 t)}{16}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{13 \mathrm{e}^{-2 t}}{16}+\frac{\mathrm{e}^{2 t}(3+4 t)}{16} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{13 \mathrm{e}^{-2 t}}{16}+\frac{\mathrm{e}^{2 t}(3+4 t)}{16}
$$

Verified OK.

19.2.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-4 y=\mathrm{e}^{2 t}, y(0)=1,\left.y^{\prime}\right|_{\{t=0\}}=-1\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}-4=0$
- Factor the characteristic polynomial
$(r-2)(r+2)=0$
- Roots of the characteristic polynomial
$r=(-2,2)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-2 t}$
- $\quad 2$ nd solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{2 t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{2 t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function $\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\mathrm{e}^{2 t}\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\mathrm{e}^{-2 t} & \mathrm{e}^{2 t} \\ -2 \mathrm{e}^{-2 t} & 2 \mathrm{e}^{2 t}\end{array}\right]$
- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=4
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\frac{\mathrm{e}^{-2 t}\left(\int \mathrm{e}^{4 t} d t\right)}{4}+\frac{\mathrm{e}^{2 t}\left(\int 1 d t\right)}{4}
$$

- Compute integrals
$y_{p}(t)=\frac{\mathrm{e}^{2 t}(-1+4 t)}{16}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{2 t}+\frac{\mathrm{e}^{2 t}(-1+4 t)}{16}$
Check validity of solution $y=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{2 t}+\frac{\mathrm{e}^{2 t}(-1+4 t)}{16}$
- Use initial condition $y(0)=1$
$1=c_{1}+c_{2}-\frac{1}{16}$
- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 t}+2 c_{2} \mathrm{e}^{2 t}+\frac{\mathrm{e}^{2 t}(-1+4 t)}{8}+\frac{\mathrm{e}^{2 t}}{4}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=-1$

$$
-1=-2 c_{1}+2 c_{2}+\frac{1}{8}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{13}{16}, c_{2}=\frac{1}{4}\right\}
$$

- Substitute constant values into general solution and simplify $y=\frac{13 \mathrm{e}^{-2 t}}{16}+\frac{\mathrm{e}^{2 t}(3+4 t)}{16}$
- \quad Solution to the IVP
$y=\frac{13 \mathrm{e}^{-2 t}}{16}+\frac{\mathrm{e}^{2 t}(3+4 t)}{16}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 5.0 (sec). Leaf size: 22

```
dsolve([diff(y(t),t$2)-4*y(t)=exp(2*t),y(0) = 1, D(y)(0) = -1],y(t), singsol=all)
```

$$
y(t)=\frac{13 \mathrm{e}^{-2 t}}{16}+\frac{\mathrm{e}^{2 t}(4 t+3)}{16}
$$

\checkmark Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 27
DSolve $\left[\left\{y^{\prime \prime}[t]-4 * y[t]==\operatorname{Exp}[2 * t],\left\{y[0]==1, y^{\prime}[0]==-1\right\}\right\}, y[t], t\right.$, IncludeSingularSolutions \rightarrow True

$$
y(t) \rightarrow \frac{1}{16} e^{-2 t}\left(e^{4 t}(4 t+3)+13\right)
$$

19.3 problem 29

19.3.1 Existence and uniqueness analysis 3376
19.3.2 Maple step by step solution . 3379

Internal problem ID [13225]
Internal file name [OUTPUT/11880_Tuesday_December_05_2023_12_12_41_PM_3851012/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 6. Laplace transform. Section 6.3 page 600
Problem number: 29.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second__order_linear_constant__coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-4 y^{\prime}+5 y=2 \mathrm{e}^{t}
$$

With initial conditions

$$
\left[y(0)=3, y^{\prime}(0)=1\right]
$$

19.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =-4 \\
q(t) & =5 \\
F & =2 \mathrm{e}^{t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-4 y^{\prime}+5 y=2 \mathrm{e}^{t}
$$

The domain of $p(t)=-4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=5$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=2 \mathrm{e}^{t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-4 s Y(s)+4 y(0)+5 Y(s)=\frac{2}{s-1} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =3 \\
y^{\prime}(0) & =1
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)+11-3 s-4 s Y(s)+5 Y(s)=\frac{2}{s-1}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{3 s^{2}-14 s+13}{(s-1)\left(s^{2}-4 s+5\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{1}{s-1}+\frac{1+2 i}{s-2-i}+\frac{1-2 i}{s-2+i}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{1}{s-1}\right) & =\mathrm{e}^{t} \\
\mathcal{L}^{-1}\left(\frac{1+2 i}{s-2-i}\right) & =(1+2 i) \mathrm{e}^{(2+i) t} \\
\mathcal{L}^{-1}\left(\frac{1-2 i}{s-2+i}\right) & =(1-2 i) \mathrm{e}^{(2-i) t}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=\mathrm{e}^{t}+2 \mathrm{e}^{2 t}(\cos (t)-2 \sin (t))
$$

Simplifying the solution gives

$$
y=\mathrm{e}^{t}+(2 \cos (t)-4 \sin (t)) \mathrm{e}^{2 t}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{t}+(2 \cos (t)-4 \sin (t)) \mathrm{e}^{2 t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{t}+(2 \cos (t)-4 \sin (t)) \mathrm{e}^{2 t}
$$

Verified OK.

19.3.2 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}-4 y^{\prime}+5 y=2 \mathrm{e}^{t}, y(0)=3,\left.y^{\prime}\right|_{\{t=0\}}=1\right]$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}-4 r+5=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{4 \pm(\sqrt{-4})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(2-\mathrm{I}, 2+\mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{2 t} \cos (t)$
- 2 nd solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{2 t} \sin (t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{2 t} \cos (t)+c_{2} \mathrm{e}^{2 t} \sin (t)+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function $\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=2 \mathrm{e}^{t}\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\mathrm{e}^{2 t} \cos (t) & \mathrm{e}^{2 t} \sin (t) \\ 2 \mathrm{e}^{2 t} \cos (t)-\mathrm{e}^{2 t} \sin (t) & 2 \mathrm{e}^{2 t} \sin (t)+\mathrm{e}^{2 t} \cos (t)\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=\mathrm{e}^{4 t}$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-2 \mathrm{e}^{2 t}\left(\cos (t)\left(\int \mathrm{e}^{-t} \sin (t) d t\right)-\sin (t)\left(\int \mathrm{e}^{-t} \cos (t) d t\right)\right)
$$

- Compute integrals

$$
y_{p}(t)=\mathrm{e}^{t}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{2 t} \cos (t)+c_{2} \mathrm{e}^{2 t} \sin (t)+\mathrm{e}^{t}
$$

Check validity of solution $y=c_{1} \mathrm{e}^{2 t} \cos (t)+c_{2} \mathrm{e}^{2 t} \sin (t)+\mathrm{e}^{t}$

- Use initial condition $y(0)=3$
$3=1+c_{1}$
- Compute derivative of the solution
$y^{\prime}=2 c_{1} \mathrm{e}^{2 t} \cos (t)-c_{1} \mathrm{e}^{2 t} \sin (t)+2 c_{2} \mathrm{e}^{2 t} \sin (t)+c_{2} \mathrm{e}^{2 t} \cos (t)+\mathrm{e}^{t}$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=1$
$1=2 c_{1}+1+c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=2, c_{2}=-4\right\}$
- Substitute constant values into general solution and simplify

$$
y=\mathrm{e}^{t}+(2 \cos (t)-4 \sin (t)) \mathrm{e}^{2 t}
$$

- \quad Solution to the IVP

$$
y=\mathrm{e}^{t}+(2 \cos (t)-4 \sin (t)) \mathrm{e}^{2 t}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 5.5 (sec). Leaf size: 20
dsolve ([diff $(y(t), t \$ 2)-4 * \operatorname{diff}(y(t), t)+5 * y(t)=2 * \exp (t), y(0)=3, D(y)(0)=1], y(t)$, singsol $=a$

$$
y(t)=\mathrm{e}^{t}+(2 \cos (t)-4 \sin (t)) \mathrm{e}^{2 t}
$$

\checkmark Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 25
DSolve $\left[\left\{y^{\prime}\right.\right.$ ' $[t]-4 * y$ ' $\left.[t]+5 * y[t]==2 * \operatorname{Exp}[t],\left\{y[0]==3, y^{\prime}[0]==1\right\}\right\}, y[t], t$, IncludeSingularSolutions

$$
y(t) \rightarrow e^{t}\left(-4 e^{t} \sin (t)+2 e^{t} \cos (t)+1\right)
$$

19.4 problem 30

19.4.1 Existence and uniqueness analysis 3382
19.4.2 Maple step by step solution . 3385

Internal problem ID [13226]
Internal file name [OUTPUT/11881_Tuesday_December_05_2023_12_12_41_PM_10656506/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 6. Laplace transform. Section 6.3 page 600
Problem number: 30.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+6 y^{\prime}+13 y=13 \text { Heaviside }(t-4)
$$

With initial conditions

$$
\left[y(0)=3, y^{\prime}(0)=1\right]
$$

19.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =6 \\
q(t) & =13 \\
F & =13 \text { Heaviside }(t-4)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+6 y^{\prime}+13 y=13 \text { Heaviside }(t-4)
$$

The domain of $p(t)=6$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=13$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=13$ Heaviside $(t-4)$ is

$$
\{t<4 \vee 4<t\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+6 s Y(s)-6 y(0)+13 Y(s)=\frac{13 \mathrm{e}^{-4 s}}{s} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =3 \\
y^{\prime}(0) & =1
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-19-3 s+6 s Y(s)+13 Y(s)=\frac{13 \mathrm{e}^{-4 s}}{s}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{3 s^{2}+13 \mathrm{e}^{-4 s}+19 s}{s\left(s^{2}+6 s+13\right)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{3 s^{2}+13 \mathrm{e}^{-4 s}+19 s}{s\left(s^{2}+6 s+13\right)}\right) \\
& =\mathrm{e}^{-3 t}(3 \cos (2 t)+5 \sin (2 t))+\left(\frac{1}{26}+\frac{3 i}{52}\right)\left(8-12 i-13 \mathrm{e}^{(-3-2 i)(t-4)}+(5+12 i) \mathrm{e}^{(-3+2 i)(t-4)}\right) \text { Heavisid }
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & \mathrm{e}^{-3 t}(3 \cos (2 t)+5 \sin (2 t)) \\
& +\left(\frac{1}{26}+\frac{3 i}{52}\right)\left(8-12 i-13 \mathrm{e}^{(-3-2 i)(t-4)}+(5+12 i) \mathrm{e}^{(-3+2 i)(t-4)}\right) \text { Heaviside }(t-4)
\end{aligned}
$$

Simplifying the solution gives
$y=\left(-\frac{1}{2}-\frac{3 i}{4}\right)$ Heaviside $(t-4) \mathrm{e}^{(-3-2 i)(t-4)}+\left(-\frac{1}{2}+\frac{3 i}{4}\right)$ Heaviside $(t-4) \mathrm{e}^{(-3+2 i)(t-4)}$
$+\operatorname{Heaviside}(t-4)+\mathrm{e}^{-3 t}(3 \cos (2 t)+5 \sin (2 t))$
Summary
The solution(s) found are the following

$$
\begin{align*}
y= & \left(-\frac{1}{2}-\frac{3 i}{4}\right) \text { Heaviside }(t-4) \mathrm{e}^{(-3-2 i)(t-4)} \\
& +\left(-\frac{1}{2}+\frac{3 i}{4}\right) \text { Heaviside }(t-4) \mathrm{e}^{(-3+2 i)(t-4)} \tag{1}\\
& + \text { Heaviside }(t-4)+\mathrm{e}^{-3 t}(3 \cos (2 t)+5 \sin (2 t))
\end{align*}
$$

Verification of solutions
$\begin{aligned} y= & \left(-\frac{1}{2}-\frac{3 i}{4}\right) \text { Heaviside }(t-4) \mathrm{e}^{(-3-2 i)(t-4)}+\left(-\frac{1}{2}+\frac{3 i}{4}\right) \text { Heaviside }(t-4) \mathrm{e}^{(-3+2 i)(t-4)} \\ & + \text { Heaviside }(t-4)+\mathrm{e}^{-3 t}(3 \cos (2 t)+5 \sin (2 t))\end{aligned}$
Verified OK.

19.4.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+6 y^{\prime}+13 y=13 H \operatorname{Heaviside}(t-4), y(0)=3,\left.y^{\prime}\right|_{\{t=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+6 r+13=0$
- Use quadratic formula to solve for r
$r=\frac{(-6) \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial
$r=(-3-2 \mathrm{I},-3+2 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-3 t} \cos (2 t)$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{-3 t} \sin (2 t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-3 t} \cos (2 t)+c_{2} \mathrm{e}^{-3 t} \sin (2 t)+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=13 \operatorname{Heaviside}(t-4)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-3 t} \cos (2 t) & \mathrm{e}^{-3 t} \sin (2 t) \\
-3 \mathrm{e}^{-3 t} \cos (2 t)-2 \mathrm{e}^{-3 t} \sin (2 t) & -3 \mathrm{e}^{-3 t} \sin (2 t)+2 \mathrm{e}^{-3 t} \cos (2 t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=2 \mathrm{e}^{-6 t}$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{13 \mathrm{e}^{-3 t}\left(\cos (2 t)\left(\int \sin (2 t) \text { Heaviside }(t-4) \mathrm{e}^{3 t} d t\right)-\sin (2 t)\left(\int \cos (2 t) \text { Heaviside }(t-4) \mathrm{e}^{3 t} d t\right)\right)}{2}$
- Compute integrals

$$
y_{p}(t)=-\left(-1+\left(\left(\cos (8)-\frac{3 \sin (8)}{2}\right) \cos (2 t)+\frac{3 \sin (2 t)\left(\cos (8)+\frac{2 \sin (8)}{3}\right)}{2}\right) \mathrm{e}^{-3 t+12}\right) \text { Heaviside }(t-4)
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-3 t} \cos (2 t)+c_{2} \mathrm{e}^{-3 t} \sin (2 t)-\left(-1+\left(\left(\cos (8)-\frac{3 \sin (8)}{2}\right) \cos (2 t)+\frac{3 \sin (2 t)\left(\cos (8)+\frac{2 \sin (8)}{3}\right)}{2}\right)\right.$
Check validity of solution $y=c_{1} \mathrm{e}^{-3 t} \cos (2 t)+c_{2} \mathrm{e}^{-3 t} \sin (2 t)-\left(-1+\left(\left(\cos (8)-\frac{3 \sin (8)}{2}\right) \cos (\right.\right.$
- Use initial condition $y(0)=3$
$3=c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 t} \cos (2 t)-2 c_{1} \mathrm{e}^{-3 t} \sin (2 t)-3 c_{2} \mathrm{e}^{-3 t} \sin (2 t)+2 c_{2} \mathrm{e}^{-3 t} \cos (2 t)-((-2(\cos (8)-3 \mathrm{~s}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=1$
$1=-3 c_{1}+2 c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=3, c_{2}=5\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-\left(\left(\cos (8)-\frac{3 \sin (8)}{2}\right) \cos (2 t)+\frac{3 \sin (2 t)\left(\cos (8)+\frac{2 \sin (8)}{3}\right)}{2}\right) \text { Heaviside }(t-4) \mathrm{e}^{-3 t+12}+3 \mathrm{e}^{-3 t} \cos (2
$$

- Solution to the IVP

$$
y=-\left(\left(\cos (8)-\frac{3 \sin (8)}{2}\right) \cos (2 t)+\frac{3 \sin (2 t)\left(\cos (8)+\frac{2 \sin (8)}{3}\right)}{2}\right) \text { Heaviside }(t-4) \mathrm{e}^{-3 t+12}+3 \mathrm{e}^{-3 t} \cos (2
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 7.156 (sec). Leaf size: 57

```
dsolve([diff(y(t),t$2)+6*diff(y(t),t)+13*y(t)=13*Heaviside(t-4),y(0) = 3, D(y)(0) = 1],y(t),
```

$$
\begin{aligned}
y(t)= & \left(-\frac{1}{2}-\frac{3 i}{4}\right) \text { Heaviside }(t-4) \mathrm{e}^{(-3-2 i)(t-4)} \\
& +\left(-\frac{1}{2}+\frac{3 i}{4}\right) \text { Heaviside }(t-4) \mathrm{e}^{(-3+2 i)(t-4)} \\
& + \text { Heaviside }(t-4)+\mathrm{e}^{-3 t}(3 \cos (2 t)+5 \sin (2 t))
\end{aligned}
$$

Solution by Mathematica

Time used: 0.057 (sec). Leaf size: 82

```
DSolve[{y''[t]-4*y'[t]+5*y[t]==UnitStep[t-4],{y[0]==3,y'[0]==1}},y[t],t,IncludeSingularSolut
```

$$
\begin{aligned}
& y(t) \\
& \rightarrow\left\{\begin{array}{cc}
e^{2 t}(3 \cos (t)-5 \sin (t)) & t \leq 4 \\
-\frac{1}{5} e^{2 t-8} \cos (4-t)+3 e^{2 t} \cos (t)-\frac{2}{5} e^{2 t-8} \sin (4-t)-5 e^{2 t} \sin (t)+\frac{1}{5} & \text { True }
\end{array}\right.
\end{aligned}
$$

19.5 problem 31

19.5.1 Existence and uniqueness analysis 3388
19.5.2 Maple step by step solution . 3391

Internal problem ID [13227]
Internal file name [OUTPUT/11882_Tuesday_December_05_2023_12_12_42_PM_12105076/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 6. Laplace transform. Section 6.3 page 600
Problem number: 31.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second__order_linear_constant__coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y=\cos (2 t)
$$

With initial conditions

$$
\left[y(0)=-2, y^{\prime}(0)=0\right]
$$

19.5.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =4 \\
F & =\cos (2 t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y=\cos (2 t)
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=\cos (2 t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+4 Y(s)=\frac{s}{s^{2}+4} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =-2 \\
y^{\prime}(0) & =0
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)+2 s+4 Y(s)=\frac{s}{s^{2}+4}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=-\frac{s\left(2 s^{2}+7\right)}{\left(s^{2}+4\right)^{2}}
$$

Applying partial fractions decomposition results in

$$
Y(s)=-\frac{i}{8(s-2 i)^{2}}+\frac{i}{8(s+2 i)^{2}}-\frac{1}{s-2 i}-\frac{1}{s+2 i}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(-\frac{i}{8(s-2 i)^{2}}\right) & =-\frac{i t \mathrm{e}^{2 i t}}{8} \\
\mathcal{L}^{-1}\left(\frac{i}{8(s+2 i)^{2}}\right) & =\frac{i t \mathrm{e}^{-2 i t}}{8} \\
\mathcal{L}^{-1}\left(-\frac{1}{s-2 i}\right) & =-\mathrm{e}^{2 i t} \\
\mathcal{L}^{-1}\left(-\frac{1}{s+2 i}\right) & =-\mathrm{e}^{-2 i t}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=-2 \cos (2 t)+\frac{\sin (2 t) t}{4}
$$

Simplifying the solution gives

$$
y=-2 \cos (2 t)+\frac{\sin (2 t) t}{4}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-2 \cos (2 t)+\frac{\sin (2 t) t}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-2 \cos (2 t)+\frac{\sin (2 t) t}{4}
$$

Verified OK.

19.5.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+4 y=\cos (2 t), y(0)=-2,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+4=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-16})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-2 \mathrm{I}, 2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\cos (2 t)
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(t)=\sin (2 t)
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+y_{p}(t)
$$

$\square \quad$ Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\cos (2 t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (2 t) & \sin (2 t) \\
-2 \sin (2 t) & 2 \cos (2 t)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=2
$$

- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{\cos (2 t)\left(\int \sin (4 t) d t\right)}{4}+\frac{\sin (2 t)\left(\int \cos (2 t)^{2} d t\right)}{2}$
- Compute integrals

$$
y_{p}(t)=\frac{\cos (2 t)}{16}+\frac{\sin (2 t) t}{4}
$$

- \quad Substitute particular solution into general solution to ODE $y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+\frac{\cos (2 t)}{16}+\frac{\sin (2 t) t}{4}$
Check validity of solution $y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+\frac{\cos (2 t)}{16}+\frac{\sin (2 t) t}{4}$
- Use initial condition $y(0)=-2$
$-2=c_{1}+\frac{1}{16}$
- Compute derivative of the solution
$y^{\prime}=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t)+\frac{\sin (2 t)}{8}+\frac{\cos (2 t) t}{2}$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=2 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=-\frac{33}{16}, c_{2}=0\right\}$
- Substitute constant values into general solution and simplify
$y=-2 \cos (2 t)+\frac{\sin (2 t) t}{4}$
- \quad Solution to the IVP
$y=-2 \cos (2 t)+\frac{\sin (2 t) t}{4}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 4.438 (sec). Leaf size: 18

```
dsolve([diff(y(t),t$2)+4*y(t)=cos(2*t),y(0) = -2, D(y)(0) = 0],y(t), singsol=all)
```

$$
y(t)=-2 \cos (2 t)+\frac{t \sin (2 t)}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.049 (sec). Leaf size: 21
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[t]+4 * y[t]==\operatorname{Cos}[2 * t],\left\{y[0]==-2, y^{\prime}[0]==0\right\}\right\}, y[t], t\right.$, IncludeSingularSolutions \rightarrow True

$$
y(t) \rightarrow \frac{1}{4} t \sin (2 t)-2 \cos (2 t)
$$

19.6 problem 32

19.6.1 Existence and uniqueness analysis 3394
19.6.2 Maple step by step solution . 3397

Internal problem ID [13228]
Internal file name [OUTPUT/11883_Tuesday_December_05_2023_12_12_43_PM_58150107/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 6. Laplace transform. Section 6.3 page 600
Problem number: 32.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second__order_linear_constant__coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+3 y=\operatorname{Heaviside}(t-4) \cos (5 t-20)
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=-2\right]
$$

19.6.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =3 \\
F & =\text { Heaviside }(t-4) \cos (5 t-20)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+3 y=\operatorname{Heaviside}(t-4) \cos (5 t-20)
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=3$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=\operatorname{Heaviside}(t-4) \cos (5 t-20)$ is

$$
\{t<4 \vee 4<t\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+3 Y(s)=\frac{\mathrm{e}^{-4 s} s}{s^{2}+25} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =-2
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)+2+3 Y(s)=\frac{\mathrm{e}^{-4 s} s}{s^{2}+25}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{\mathrm{e}^{-4 s} s-2 s^{2}-50}{\left(s^{2}+25\right)\left(s^{2}+3\right)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{\mathrm{e}^{-4 s} s-2 s^{2}-50}{\left(s^{2}+25\right)\left(s^{2}+3\right)}\right) \\
& =-\frac{2 \sin (\sqrt{3} t) \sqrt{3}}{3}+\frac{\text { Heaviside }(t-4)(\cos (\sqrt{3}(t-4))-\cos (5 t-20))}{22}
\end{aligned}
$$

Hence the final solution is

$$
y=-\frac{2 \sin (\sqrt{3} t) \sqrt{3}}{3}+\frac{\text { Heaviside }(t-4)(\cos (\sqrt{3}(t-4))-\cos (5 t-20))}{22}
$$

Simplifying the solution gives
$y=-\frac{\text { Heaviside }(t-4) \cos (5 t-20)}{22}+\frac{\text { Heaviside }(t-4) \cos (\sqrt{3}(t-4))}{22}-\frac{2 \sin (\sqrt{3} t) \sqrt{3}}{3}$
Summary
The solution(s) found are the following

$$
\begin{align*}
y= & -\frac{\text { Heaviside }(t-4) \cos (5 t-20)}{22} \tag{1}\\
& +\frac{\text { Heaviside }(t-4) \cos (\sqrt{3}(t-4))}{22}-\frac{2 \sin (\sqrt{3} t) \sqrt{3}}{3}
\end{align*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
\begin{aligned}
y= & -\frac{\operatorname{Heaviside}(t-4) \cos (5 t-20)}{22} \\
& +\frac{\operatorname{Heaviside}(t-4) \cos (\sqrt{3}(t-4))}{22}-\frac{2 \sin (\sqrt{3} t) \sqrt{3}}{3}
\end{aligned}
$$

Verified OK.

19.6.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+3 y=\operatorname{Heaviside}(t-4) \cos (5 t-20), y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=-2\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+3=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-12})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-\mathrm{I} \sqrt{3}, \mathrm{I} \sqrt{3})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\cos (\sqrt{3} t)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\sin (\sqrt{3} t)
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE

$$
y=\cos (\sqrt{3} t) c_{1}+\sin (\sqrt{3} t) c_{2}+y_{p}(t)
$$

Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\operatorname{Heaviside}(t-4) \cos (5 t-2\right.
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (\sqrt{3} t) & \sin (\sqrt{3} t) \\
-\sin (\sqrt{3} t) \sqrt{3} & \cos (\sqrt{3} t) \sqrt{3}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=\sqrt{3}
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\frac{\sqrt{3}\left(\cos (\sqrt{3} t)\left(\int \sin (\sqrt{3} t) \text { Heaviside }(t-4) \cos (5 t-20) d t\right)-\sin (\sqrt{3} t)\left(\int \cos (\sqrt{3} t) \text { Heaviside }(t-4) \cos (5 t-20) d t\right)\right)}{3}
$$

- Compute integrals

$$
y_{p}(t)=-\frac{\operatorname{Heaviside}(t-4)(-\cos (\sqrt{3}(t-4))+\cos (5 t-20))}{22}
$$

- Substitute particular solution into general solution to ODE
$y=\cos (\sqrt{3} t) c_{1}+\sin (\sqrt{3} t) c_{2}-\frac{\text { Heaviside }(t-4)(-\cos (\sqrt{3}(t-4))+\cos (5 t-20))}{22}$
Check validity of solution $y=\cos (\sqrt{3} t) c_{1}+\sin (\sqrt{3} t) c_{2}-\frac{\text { Heaviside }(t-4)(-\cos (\sqrt{3}(t-4))+\cos (5 t-20)}{22}$
- Use initial condition $y(0)=0$
$0=c_{1}$
- Compute derivative of the solution
$y^{\prime}=-\sqrt{3} \sin (\sqrt{3} t) c_{1}+\sqrt{3} \cos (\sqrt{3} t) c_{2}-\frac{\operatorname{Dirac}(t-4)(-\cos (\sqrt{3}(t-4))+\cos (5 t-20))}{22}-\frac{\text { Heaviside }(t-4)(\sqrt{3}}{2}$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=-2$
$-2=c_{2} \sqrt{3}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=0, c_{2}=-\frac{2 \sqrt{3}}{3}\right\}$
- Substitute constant values into general solution and simplify

$$
y=-\frac{\text { Heaviside }(t-4) \cos (5 t-20)}{22}+\frac{\text { Heaviside }(t-4) \cos (\sqrt{3}(t-4))}{22}-\frac{2 \sin (\sqrt{3} t) \sqrt{3}}{3}
$$

- \quad Solution to the IVP
$y=-\frac{\text { Heaviside }(t-4) \cos (5 t-20)}{22}+\frac{\text { Heaviside }(t-4) \cos (\sqrt{3}(t-4))}{22}-\frac{2 \sin (\sqrt{3} t) \sqrt{3}}{3}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 6.578 (sec). Leaf size: 39

```
dsolve([diff(y(t),t$2)+3*y(t)=Heaviside(t-4)*\operatorname{cos}(5*(t-4)),y(0) = 0, D(y)(0) = - 2],y(t), sing
```

$$
\begin{aligned}
y(t)= & -\frac{2 \sqrt{3} \sin (\sqrt{3} t)}{3}-\frac{\text { Heaviside }(t-4) \cos (5 t-20)}{22} \\
& +\frac{\text { Heaviside }(t-4) \cos (\sqrt{3}(t-4))}{22}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.797 (sec). Leaf size: 66
DSolve $\left[\left\{y^{\prime} \mathbf{' S}^{\prime}[t]+3 * y[t]==\right.\right.$ UnitStep $\left.[t-4] * \operatorname{Cos}[5 *(t-4)],\left\{y[0]==0, y^{\prime}[0]==-2\right\}\right\}, y[t], t$, IncludeSingula
$y(t) \rightarrow\{$

$$
\begin{array}{cc}
-\frac{2 \sin (\sqrt{3} t)}{\sqrt{3}} & t \leq 4 \\
\frac{1}{66}(-3 \cos (5(t-4))+3 \cos (\sqrt{3}(t-4))-44 \sqrt{3} \sin (\sqrt{3} t)) & \text { True }
\end{array}
$$

19.7 problem 33

19.7.1 Existence and uniqueness analysis 3400
19.7.2 Maple step by step solution . 3403

Internal problem ID [13229]
Internal file name [OUTPUT/11884_Tuesday_December_05_2023_12_12_43_PM_19494184/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 6. Laplace transform. Section 6.3 page 600
Problem number: 33 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y^{\prime}+9 y=20 \text { Heaviside }(-2+t) \sin (-2+t)
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=2\right]
$$

19.7.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =4 \\
q(t) & =9 \\
F & =20 \text { Heaviside }(-2+t) \sin (-2+t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y^{\prime}+9 y=20 \text { Heaviside }(-2+t) \sin (-2+t)
$$

The domain of $p(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=9$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=20$ Heaviside $(-2+t) \sin (-2+t)$ is

$$
\{t<2 \vee 2<t\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+4 s Y(s)-4 y(0)+9 Y(s)=\frac{20 \mathrm{e}^{-2 s}}{s^{2}+1} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =1 \\
y^{\prime}(0) & =2
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-6-s+4 s Y(s)+9 Y(s)=\frac{20 \mathrm{e}^{-2 s}}{s^{2}+1}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{s^{3}+6 s^{2}+20 \mathrm{e}^{-2 s}+s+6}{\left(s^{2}+1\right)\left(s^{2}+4 s+9\right)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{s^{3}+6 s^{2}+20 \mathrm{e}^{-2 s}+s+6}{\left(s^{2}+1\right)\left(s^{2}+4 s+9\right)}\right) \\
& =\frac{\mathrm{e}^{-2 t}(4 \sqrt{5} \sin (t \sqrt{5})+5 \cos (t \sqrt{5}))}{5}+\left(\mathrm{e}^{4-2 t} \cos (\sqrt{5}(-2+t))-\cos (-2+t)+2 \sin (-2+t)\right) \text { Нea }
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & \frac{\mathrm{e}^{-2 t}(4 \sqrt{5} \sin (t \sqrt{5})+5 \cos (t \sqrt{5}))}{5} \\
& +\left(\mathrm{e}^{4-2 t} \cos (\sqrt{5}(-2+t))-\cos (-2+t)+2 \sin (-2+t)\right) \text { Heaviside }(-2+t)
\end{aligned}
$$

Simplifying the solution gives

$$
\begin{aligned}
y= & \text { Heaviside }(-2+t) \cos (\sqrt{5}(-2+t)) \mathrm{e}^{4-2 t}+\cos (t \sqrt{5}) \mathrm{e}^{-2 t} \\
& +\frac{4 \sqrt{5} \sin (t \sqrt{5}) \mathrm{e}^{-2 t}}{5}-\text { Heaviside }(-2+t)(\cos (-2+t)-2 \sin (-2+t))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & \operatorname{Heaviside}(-2+t) \cos (\sqrt{5}(-2+t)) \mathrm{e}^{4-2 t}+\cos (t \sqrt{5}) \mathrm{e}^{-2 t} \\
& +\frac{4 \sqrt{5} \sin (t \sqrt{5}) \mathrm{e}^{-2 t}}{5}-\text { Heaviside }(-2+t)(\cos (-2+t)-2 \sin (-2+t)) \tag{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \text { Heaviside }(-2+t) \cos (\sqrt{5}(-2+t)) \mathrm{e}^{4-2 t}+\cos (t \sqrt{5}) \mathrm{e}^{-2 t} \\
& +\frac{4 \sqrt{5} \sin (t \sqrt{5}) \mathrm{e}^{-2 t}}{5}-\text { Heaviside }(-2+t)(\cos (-2+t)-2 \sin (-2+t))
\end{aligned}
$$

Verified OK.

19.7.2 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}+4 y^{\prime}+9 y=20\right.$ Heaviside $\left.(-2+t) \sin (-2+t), y(0)=1,\left.y^{\prime}\right|_{\{t=0\}}=2\right]$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+4 r+9=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{(-4) \pm(\sqrt{-20})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-2-\mathrm{I} \sqrt{5},-2+\mathrm{I} \sqrt{5})
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\cos (t \sqrt{5}) \mathrm{e}^{-2 t}$
- 2 nd solution of the homogeneous ODE
$y_{2}(t)=\sin (t \sqrt{5}) \mathrm{e}^{-2 t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (t \sqrt{5}) \mathrm{e}^{-2 t}+c_{2} \sin (t \sqrt{5}) \mathrm{e}^{-2 t}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=20 \text { Heaviside }(-2+t) \sin (-\right.
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (t \sqrt{5}) \mathrm{e}^{-2 t} & \sin (t \sqrt{5}) \mathrm{e}^{-2 t} \\
-\sqrt{5} \sin (t \sqrt{5}) \mathrm{e}^{-2 t}-2 \cos (t \sqrt{5}) \mathrm{e}^{-2 t} & \sqrt{5} \cos (t \sqrt{5}) \mathrm{e}^{-2 t}-2 \sin (t \sqrt{5}) \mathrm{e}^{-}
\end{array}\right.
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=\sqrt{5} \mathrm{e}^{-4 t}$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-4 \sqrt{5} \mathrm{e}^{-2 t}\left(\cos (t \sqrt{5})\left(\int \mathrm{e}^{2 t} \sin (-2+t) \sin (t \sqrt{5})\right.\right.$ Heaviside $\left.(-2+t) d t\right)-\sin (t \sqrt{5})\left(\int\right.$
- Compute integrals
$y_{p}(t)=-\left(-\mathrm{e}^{4-2 t} \cos (\sqrt{5}(-2+t))+\cos (-2+t)-2 \sin (-2+t)\right)$ Heaviside $(-2+t)$
- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (t \sqrt{5}) \mathrm{e}^{-2 t}+c_{2} \sin (t \sqrt{5}) \mathrm{e}^{-2 t}-\left(-\mathrm{e}^{4-2 t} \cos (\sqrt{5}(-2+t))+\cos (-2+t)-2 \sin (-2\right.$
Check validity of solution $y=c_{1} \cos (t \sqrt{5}) \mathrm{e}^{-2 t}+c_{2} \sin (t \sqrt{5}) \mathrm{e}^{-2 t}-\left(-\mathrm{e}^{4-2 t} \cos (\sqrt{5}(-2+t))\right.$
- Use initial condition $y(0)=1$

$$
1=c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \sqrt{5} \sin (t \sqrt{5}) \mathrm{e}^{-2 t}-2 c_{1} \cos (t \sqrt{5}) \mathrm{e}^{-2 t}+c_{2} \sqrt{5} \cos (t \sqrt{5}) \mathrm{e}^{-2 t}-2 c_{2} \sin (t \sqrt{5}) \mathrm{e}^{-2 t}-(2 \mathrm{e}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=2$

$$
2=-2 c_{1}+c_{2} \sqrt{5}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=1, c_{2}=\frac{4 \sqrt{5}}{5}\right\}
$$

- Substitute constant values into general solution and simplify $y=$ Heaviside $(-2+t) \cos (\sqrt{5}(-2+t)) \mathrm{e}^{4-2 t}+\cos (t \sqrt{5}) \mathrm{e}^{-2 t}+\frac{4 \sqrt{5} \sin (t \sqrt{5}) \mathrm{e}^{-2 t}}{5}-\operatorname{Heaviside}(-2$
- \quad Solution to the IVP
$y=$ Heaviside $(-2+t) \cos (\sqrt{5}(-2+t)) \mathrm{e}^{4-2 t}+\cos (t \sqrt{5}) \mathrm{e}^{-2 t}+\frac{4 \sqrt{5} \sin (t \sqrt{5}) \mathrm{e}^{-2 t}}{5}-$ Heaviside $(-$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```


\checkmark Solution by Maple

Time used: 6.953 (sec). Leaf size: 64

```
dsolve([diff(y(t),t$2)+4*\operatorname{diff}(y(t),t)+9*y(t)=20*Heaviside(t-2)*\operatorname{sin}(t-2),y(0)=1,D(y)(0)=
```

$$
\begin{aligned}
y(t)= & \cos (\sqrt{5}(t-2)) \text { Heaviside }(t-2) \mathrm{e}^{-2 t+4}+\mathrm{e}^{-2 t} \cos (t \sqrt{5}) \\
& +\frac{4 \mathrm{e}^{-2 t} \sqrt{5} \sin (t \sqrt{5})}{5}-\text { Heaviside }(t-2)(\cos (t-2)-2 \sin (t-2))
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 2.391 (sec). Leaf size: 115
DSolve $\left[\left\{\mathrm{y}^{\prime} \mathrm{'}^{\prime}[\mathrm{t}]+4 * \mathrm{y}\right.\right.$ ' $[\mathrm{t}]+9 * \mathrm{y}[\mathrm{t}]==20 *$ UnitStep $\left.[\mathrm{t}-2] * \operatorname{Sin}[\mathrm{t}-2],\left\{\mathrm{y}[0]==1, \mathrm{y}^{\prime}[0]==2\right\}\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeS
$y(t)$
$\rightarrow\left\{\begin{array}{cc}-\cos (2-t)+e^{4-2 t} \cos (\sqrt{5}(t-2))+e^{-2 t} \cos (\sqrt{5} t)-2 \sin (2-t)+\frac{4 e^{-2 t} \sin (\sqrt{5} t)}{\sqrt{5}} & t>2 \\ \frac{1}{5} e^{-2 t}(5 \cos (\sqrt{5} t)+4 \sqrt{5} \sin (\sqrt{5} t)) & \text { True }\end{array}\right.$

19.8 problem 34

19.8.1 Existence and uniqueness analysis 3407
19.8.2 Maple step by step solution . 3410

Internal problem ID [13230]
Internal file name [OUTPUT/11885_Tuesday_December_05_2023_12_12_44_PM_54095803/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 6. Laplace transform. Section 6.3 page 600
Problem number: 34 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second__order_linear_constant__coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+3 y=\left\{\begin{array}{cc}
t & 0 \leq t<1 \\
1 & 1 \leq t
\end{array}\right.
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=0\right]
$$

19.8.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =3 \\
F & = \begin{cases}0 & t<0 \\
t & t<1 \\
1 & 1 \leq t\end{cases}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+3 y=\left\{\begin{array}{cc}
0 & t<0 \\
t & t<1 \\
1 & 1 \leq t
\end{array}\right.
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=3$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=\left\{\begin{array}{ll}0 & t<0 \\ t & t<1 \\ 1 & 1 \leq t\end{array}\right.$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+3 Y(s)=\frac{-\mathrm{e}^{-s}+1}{s^{2}} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =2 \\
y^{\prime}(0) & =0
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-2 s+3 Y(s)=\frac{-\mathrm{e}^{-s}+1}{s^{2}}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=-\frac{-2 s^{3}+\mathrm{e}^{-s}-1}{s^{2}\left(s^{2}+3\right)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(-\frac{-2 s^{3}+\mathrm{e}^{-s}-1}{s^{2}\left(s^{2}+3\right)}\right) \\
& =2 \cos (\sqrt{3} t)-\frac{\sin (\sqrt{3} t) \sqrt{3}}{9}+\frac{t}{3}-\frac{\text { Heaviside }(t-1) \sqrt{3}(\sqrt{3} t-\sqrt{3}-\sin (\sqrt{3}(t-1)))}{9}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & 2 \cos (\sqrt{3} t)-\frac{\sin (\sqrt{3} t) \sqrt{3}}{9}+\frac{t}{3} \\
& -\frac{\operatorname{Heaviside}(t-1) \sqrt{3}(\sqrt{3} t-\sqrt{3}-\sin (\sqrt{3}(t-1)))}{9}
\end{aligned}
$$

Simplifying the solution gives

$$
\begin{aligned}
y= & \frac{\sin (\sqrt{3}(t-1)) \sqrt{3} \text { Heaviside }(t-1)}{9}+2 \cos (\sqrt{3} t) \\
& -\frac{\sin (\sqrt{3} t) \sqrt{3}}{9}+\frac{(-3 t+3) \operatorname{Heaviside}(t-1)}{9}+\frac{t}{3}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \frac{\sin (\sqrt{3}(t-1)) \sqrt{3} \operatorname{Heaviside}(t-1)}{9}+2 \cos (\sqrt{3} t) \tag{1}\\
& -\frac{\sin (\sqrt{3} t) \sqrt{3}}{9}+\frac{(-3 t+3) \operatorname{Heaviside}(t-1)}{9}+\frac{t}{3}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \frac{\sin (\sqrt{3}(t-1)) \sqrt{3} \text { Heaviside }(t-1)}{9}+2 \cos (\sqrt{3} t) \\
& -\frac{\sin (\sqrt{3} t) \sqrt{3}}{9}+\frac{(-3 t+3) \operatorname{Heaviside}(t-1)}{9}+\frac{t}{3}
\end{aligned}
$$

Verified OK.

19.8.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+3 y=\left\{\begin{array}{ll}
0 & t<0 \\
t & t<1 \\
1 & 1 \leq t
\end{array}, y(0)=2,\left.y^{\prime}\right|_{\{t=0\}}=0\right]\right.
$$

- Highest derivative means the order of the ODE is 2

- Characteristic polynomial of homogeneous ODE
$r^{2}+3=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-12})}{2}$
- Roots of the characteristic polynomial
$r=(-\mathrm{I} \sqrt{3}, \mathrm{I} \sqrt{3})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\cos (\sqrt{3} t)$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\sin (\sqrt{3} t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE

$$
y=\cos (\sqrt{3} t) c_{1}+\sin (\sqrt{3} t) c_{2}+y_{p}(t)
$$

$\square \quad$ Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\left\{\begin{array}{cc}
0 & t<0 \\
t & t<1 \\
1 & 1 \leq t
\end{array}\right]\right.
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (\sqrt{3} t) & \sin (\sqrt{3} t) \\
-\sin (\sqrt{3} t) \sqrt{3} & \cos (\sqrt{3} t) \sqrt{3}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=\sqrt{3}
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=\frac{\sqrt{3}\left(-\cos (\sqrt{3} t)\left(\int \sin (\sqrt{3} t)\left(\left\{\begin{array}{cc}
0 & t<0 \\
t & t<1 \\
1 & 1 \leq t
\end{array}\right) d t\right)+\sin (\sqrt{3} t)\left(\int \cos (\sqrt{3} t)\left(\left\{\begin{array}{cc}
0 & t<0 \\
t & t<1 \\
1 & 1 \leq t
\end{array}\right) d t\right)\right.\right.\right.}{3}
$$

- Compute integrals

$$
y_{p}(t)=\frac{\left(\left\{\begin{array}{cc}
0 & t \leq 0 \\
3 t-\sin (\sqrt{3} t) \sqrt{3} & t \leq 1 \\
3+\sqrt{3}(-1+\cos (\sqrt{3})) \sin (\sqrt{3} t)-\sqrt{3} \cos (\sqrt{3} t) \sin (\sqrt{3}) & 1<t
\end{array}\right)\right.}{9}
$$

- Substitute particular solution into general solution to ODE
$y=\cos (\sqrt{3} t) c_{1}+\sin (\sqrt{3} t) c_{2}+\frac{\left(\left\{\begin{array}{c}0 \\ 3 t-\sin (\sqrt{3} t) \sqrt{3}\end{array}\right.\right.}{\left\{\begin{array}{c} \\ 3+\sqrt{3}(-1+\cos (\sqrt{3})) \sin (\sqrt{3} t)-\sqrt{3} \cos (\sqrt{3} t) \sin (\end{array}\right.} \frac{9}{9}$

Check validity of solution $y=\cos (\sqrt{3} t) c_{1}+\sin (\sqrt{3} t) c_{2}+\begin{array}{r}3 t-\sin \\ 3+\sqrt{3}(-1+\cos (\sqrt{3})) \sin (\end{array}$

- Use initial condition $y(0)=2$

$$
2=c_{1}
$$

- Compute derivative of the solution
$y^{\prime}=-\sqrt{3} \sin (\sqrt{3} t) c_{1}+\sqrt{3} \cos (\sqrt{3} t) c_{2}+\frac{\left(\left\{\begin{array}{c}0 \\ 3-3 \cos (\sqrt{3} t)\end{array}\right.\right.}{\left\{\begin{array}{c} \\ 3(-1+\cos (\sqrt{3})) \cos (\sqrt{3} t)+3 \sin (\sqrt{3} t) \sin \end{array}\right.} \frac{9}{9}$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=c_{2} \sqrt{3}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=2, c_{2}=0\right\}$
- Substitute constant values into general solution and simplify

$$
y=2 \cos (\sqrt{3} t)+\frac{\left(\left\{\begin{array}{cc}
0 & t \leq 0 \\
3 t-\sin (\sqrt{3} t) \sqrt{3} & t \leq 1 \\
3+\sqrt{3}(-1+\cos (\sqrt{3})) \sin (\sqrt{3} t)-\sqrt{3} \cos (\sqrt{3} t) \sin (\sqrt{3}) & 1<t
\end{array}\right)\right.}{9}
$$

- \quad Solution to the IVP

$$
y=2 \cos (\sqrt{3} t)+\frac{\left(\left\{\begin{array}{cc}
0 & t \leq 0 \\
3 t-\sin (\sqrt{3} t) \sqrt{3} & t \leq 1 \\
3+\sqrt{3}(-1+\cos (\sqrt{3})) \sin (\sqrt{3} t)-\sqrt{3} \cos (\sqrt{3} t) \sin (\sqrt{3}) & 1<t
\end{array}\right)\right.}{9}
$$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
\rightarrow Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful-
\checkmark Solution by Maple
Time used: 7.829 (sec). Leaf size: 83
dsolve ([diff (y $(t), t \$ 2)+3 * y(t)=$ piecewise $(0<=t$ and $t<1, t, t>=1,1), y(0)=2, D(y)(0)=0], y(t)$,

$$
y(t)=2 \cos (\sqrt{3} t)-\frac{\sqrt{3} \sin (\sqrt{3} t)}{9}+\frac{\left(\left\{\begin{array}{cc}
t & t<1 \\
1+\frac{\sqrt{3} \sin (\sqrt{3}(t-1))}{3} & 1 \leq t
\end{array}\right)\right.}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.079 (sec). Leaf size: 108
DSolve [\{y' ' $[\mathrm{t}]+3 * y[\mathrm{t}]==$ Piecewise $[\{\{\mathrm{t}, 0<=\mathrm{t}\langle 1\},\{1, \mathrm{t}\rangle=1\}\}],\{y[0]==2, \mathrm{y}$ ' $[0]==0\}\}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSi

$$
y(t) \rightarrow\left\{\begin{array}{cc}
2 \cos (\sqrt{3} t) & t \leq 0 \\
& \left.\begin{array}{cc}
\frac{1}{9}(3 t+18 \cos (\sqrt{3} t)-\sqrt{3} \sin (\sqrt{3} t)) & 0<t \leq 1 \\
\frac{1}{9}(18 \cos (\sqrt{3} t)+\sqrt{3} \sin (\sqrt{3}(t-1))-\sqrt{3} \sin (\sqrt{3} t)+3) & \text { True }
\end{array} . . \begin{array}{cc}
\\
&
\end{array}\right)
\end{array}\right.
$$

20 Chapter 6. Laplace transform. Section 6.4. page 608
20.1 problem 2 3415
20.2 problem 3 3421
20.3 problem 4 3427
20.4 problem 5 3433

20.1 problem 2

20.1.1 Existence and uniqueness analysis 3415
20.1.2 Maple step by step solution . 3418

Internal problem ID [13231]
Internal file name [OUTPUT/11886_Tuesday_December_05_2023_12_12_45_PM_51119002/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 6. Laplace transform. Section 6.4. page 608
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant__coeff", "second_order_ode_can__be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+3 y=5 \delta(-2+t)
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

20.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =3 \\
F & =5 \delta(-2+t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+3 y=5 \delta(-2+t)
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=3$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=5 \delta(-2+t)$ is

$$
\{t<2 \vee 2<t\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+3 Y(s)=5 \mathrm{e}^{-2 s} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =0
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)+3 Y(s)=5 \mathrm{e}^{-2 s}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{5 \mathrm{e}^{-2 s}}{s^{2}+3}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{5 \mathrm{e}^{-2 s}}{s^{2}+3}\right) \\
& =\frac{5 \operatorname{Heaviside}(-2+t) \sin (\sqrt{3}(-2+t)) \sqrt{3}}{3}
\end{aligned}
$$

Hence the final solution is

$$
y=\frac{5 \text { Heaviside }(-2+t) \sin (\sqrt{3}(-2+t)) \sqrt{3}}{3}
$$

Simplifying the solution gives

$$
y=\frac{5 \text { Heaviside }(-2+t) \sin (\sqrt{3}(-2+t)) \sqrt{3}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{5 \text { Heaviside }(-2+t) \sin (\sqrt{3}(-2+t)) \sqrt{3}}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{5 \text { Heaviside }(-2+t) \sin (\sqrt{3}(-2+t)) \sqrt{3}}{3}
$$

Verified OK.

20.1.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+3 y=5 \operatorname{Dirac}(-2+t), y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+3=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-12})}{2}$
- Roots of the characteristic polynomial

$$
r=(-\mathrm{I} \sqrt{3}, \mathrm{I} \sqrt{3})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\cos (\sqrt{3} t)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\sin (\sqrt{3} t)
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- \quad Substitute in solutions of the homogeneous ODE

$$
y=\cos (\sqrt{3} t) c_{1}+\sin (\sqrt{3} t) c_{2}+y_{p}(t)
$$

$\square \quad$ Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=5 \operatorname{Dirac}(-2+t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (\sqrt{3} t) & \sin (\sqrt{3} t) \\
-\sin (\sqrt{3} t) \sqrt{3} & \cos (\sqrt{3} t) \sqrt{3}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=\sqrt{3}
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=\frac{5 \sqrt{3}\left(\int \operatorname{Dirac}(-2+t) d t\right)(\sin (\sqrt{3} t) \cos (2 \sqrt{3})-\cos (\sqrt{3} t) \sin (2 \sqrt{3}))}{3}
$$

- Compute integrals

$$
y_{p}(t)=\frac{5 \sqrt{3} \text { Heaviside }(-2+t)(\sin (\sqrt{3} t) \cos (2 \sqrt{3})-\cos (\sqrt{3} t) \sin (2 \sqrt{3}))}{3}
$$

- Substitute particular solution into general solution to ODE
$y=\cos (\sqrt{3} t) c_{1}+\sin (\sqrt{3} t) c_{2}+\frac{5 \sqrt{3} \text { Heaviside }(-2+t)(\sin (\sqrt{3} t) \cos (2 \sqrt{3})-\cos (\sqrt{3} t) \sin (2 \sqrt{3}))}{3}$
Check validity of solution $y=\cos (\sqrt{3} t) c_{1}+\sin (\sqrt{3} t) c_{2}+\frac{5 \sqrt{3} \text { Heaviside }(-2+t)(\sin (\sqrt{3} t) \cos (2 \sqrt{3})-\mathrm{c}}{3}$
- Use initial condition $y(0)=0$
$0=c_{1}$
- Compute derivative of the solution $y^{\prime}=-\sqrt{3} \sin (\sqrt{3} t) c_{1}+\sqrt{3} \cos (\sqrt{3} t) c_{2}+\frac{5 \sqrt{3} \operatorname{Dirac}(-2+t)(\sin (\sqrt{3} t) \cos (2 \sqrt{3})-\cos (\sqrt{3} t) \sin (2 \sqrt{3}))}{3}+\frac{5}{-}$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=c_{2} \sqrt{3}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=0, c_{2}=0\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{5 \sqrt{3} \text { Heaviside }(-2+t)(\sin (\sqrt{3} t) \cos (2 \sqrt{3})-\cos (\sqrt{3} t) \sin (2 \sqrt{3}))}{3}
$$

- \quad Solution to the IVP
$y=\frac{5 \sqrt{3} \text { Heaviside }(-2+t)(\sin (\sqrt{3} t) \cos (2 \sqrt{3})-\cos (\sqrt{3} t) \sin (2 \sqrt{3}))}{3}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 15.422 (sec). Leaf size: 21
dsolve([diff($y(t), t \$ 2)+3 * y(t)=5 * \operatorname{Dirac}(t-2), y(0)=0, D(y)(0)=0], y(t)$, singsol=all)

$$
y(t)=\frac{5 \sqrt{3} \text { Heaviside }(t-2) \sin (\sqrt{3}(t-2))}{3}
$$

Solution by Mathematica
Time used: 0.288 (sec). Leaf size: 36
DSolve[\{y' ' $\left.[t]+3 * y[t]==\operatorname{DiracDelta}[t-2],\left\{y[0]==2, y^{\prime}[0]==0\right\}\right\}, y[t], t$, IncludeSingularSolutions

$$
y(t) \rightarrow \frac{\theta(t-2) \sin (\sqrt{3}(t-2))}{\sqrt{3}}+2 \cos (\sqrt{3} t)
$$

20.2 problem 3

20.2.1 Existence and uniqueness analysis 3421
20.2.2 Maple step by step solution . 3424

Internal problem ID [13232]
Internal file name [OUTPUT/11887_Tuesday_December_05_2023_12_12_45_PM_35239012/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 6. Laplace transform. Section 6.4. page 608
Problem number: 3 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second__order_linear_constant__coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+2 y^{\prime}+5 y=\delta(-3+t)
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=1\right]
$$

20.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =2 \\
q(t) & =5 \\
F & =\delta(-3+t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+2 y^{\prime}+5 y=\delta(-3+t)
$$

The domain of $p(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=5$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=\delta(-3+t)$ is

$$
\{t<3 \vee 3<t\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+2 s Y(s)-2 y(0)+5 Y(s)=\mathrm{e}^{-3 s} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =1 \\
y^{\prime}(0) & =1
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-3-s+2 s Y(s)+5 Y(s)=\mathrm{e}^{-3 s}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{\mathrm{e}^{-3 s}+s+3}{s^{2}+2 s+5}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{\mathrm{e}^{-3 s}+s+3}{s^{2}+2 s+5}\right) \\
& =\mathrm{e}^{-t}(\sin (2 t)+\cos (2 t))+\frac{\text { Heaviside }(-3+t) \mathrm{e}^{3-t} \sin (-6+2 t)}{2}
\end{aligned}
$$

Hence the final solution is

$$
y=\mathrm{e}^{-t}(\sin (2 t)+\cos (2 t))+\frac{\text { Heaviside }(-3+t) \mathrm{e}^{3-t} \sin (-6+2 t)}{2}
$$

Simplifying the solution gives

$$
y=\mathrm{e}^{-t}(\sin (2 t)+\cos (2 t))+\frac{\text { Heaviside }(-3+t) \mathrm{e}^{3-t} \sin (-6+2 t)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-t}(\sin (2 t)+\cos (2 t))+\frac{\text { Heaviside }(-3+t) \mathrm{e}^{3-t} \sin (-6+2 t)}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-t}(\sin (2 t)+\cos (2 t))+\frac{\text { Heaviside }(-3+t) \mathrm{e}^{3-t} \sin (-6+2 t)}{2}
$$

Verified OK.

20.2.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+2 y^{\prime}+5 y=\operatorname{Dirac}(-3+t), y(0)=1,\left.y^{\prime}\right|_{\{t=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+2 r+5=0
$$

- Use quadratic formula to solve for r
$r=\frac{(-2) \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial

$$
r=(-1-2 \mathrm{I},-1+2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\mathrm{e}^{-t} \cos (2 t)
$$

- \quad 2nd solution of the homogeneous ODE

$$
y_{2}(t)=\mathrm{e}^{-t} \sin (2 t)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)
$$

- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-t} \cos (2 t)+c_{2} \mathrm{e}^{-t} \sin (2 t)+y_{p}(t)
$$

Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\operatorname{Dirac}(-3+t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-t} \cos (2 t) & \mathrm{e}^{-t} \sin (2 t) \\
-\mathrm{e}^{-t} \cos (2 t)-2 \mathrm{e}^{-t} \sin (2 t) & -\mathrm{e}^{-t} \sin (2 t)+2 \mathrm{e}^{-t} \cos (2 t)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=2 \mathrm{e}^{-2 t}
$$

- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=\frac{\left(\int \operatorname{Dirac}(-3+t) d t\right)(\sin (2 t) \cos (6)-\cos (2 t) \sin (6)) \mathrm{e}^{3-t}}{2}$
- Compute integrals
$y_{p}(t)=\frac{\text { Heaviside }(-3+t) \mathrm{e}^{3-t}(\sin (2 t) \cos (6)-\cos (2 t) \sin (6))}{2}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-t} \cos (2 t)+c_{2} \mathrm{e}^{-t} \sin (2 t)+\frac{\text { Heaviside }(-3+t) \mathrm{e}^{3-t}(\sin (2 t) \cos (6)-\cos (2 t) \sin (6))}{2}$
Check validity of solution $y=c_{1} \mathrm{e}^{-t} \cos (2 t)+c_{2} \mathrm{e}^{-t} \sin (2 t)+\frac{\text { Heaviside }(-3+t) \mathrm{e}^{3-t}(\sin (2 t) \cos (6)-\cos (2 t) \mathrm{s}}{2}$
- Use initial condition $y(0)=1$
$1=c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \mathrm{e}^{-t} \cos (2 t)-2 c_{1} \mathrm{e}^{-t} \sin (2 t)-c_{2} \mathrm{e}^{-t} \sin (2 t)+2 c_{2} \mathrm{e}^{-t} \cos (2 t)+\frac{D i r a c(-3+t) \mathrm{e}^{3-t}(\sin (2 t) \cos (6)-}{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=1$
$1=-c_{1}+2 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=1, c_{2}=1\right\}$
- Substitute constant values into general solution and simplify
$y=\mathrm{e}^{-t}(\sin (2 t)+\cos (2 t))+\frac{\text { Heaviside }(-3+t) \mathrm{e}^{3-t}(\sin (2 t) \cos (6)-\cos (2 t) \sin (6))}{2}$
- \quad Solution to the IVP
$y=\mathrm{e}^{-t}(\sin (2 t)+\cos (2 t))+\frac{\text { Heaviside }(-3+t) \mathrm{e}^{3-t}(\sin (2 t) \cos (6)-\cos (2 t) \sin (6))}{2}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 5.718 (sec). Leaf size: 37

```
dsolve([diff(y(t),t$2)+2*diff(y(t),t)+5*y(t)=\operatorname{Dirac}(t-3),y(0) = 1, D(y)(0) = 1],y(t), singsol
```

$$
y(t)=\mathrm{e}^{-t}(\cos (2 t)+\sin (2 t))+\frac{\mathrm{e}^{-t+3} \operatorname{Heaviside}(t-3) \sin (2 t-6)}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.179 (sec). Leaf size: 41
DSolve $\left[\left\{\mathrm{y}^{\prime}\right.\right.$ ' $[\mathrm{t}]+2 * \mathrm{y}$ ' $\left.[\mathrm{t}]+5 * \mathrm{y}[\mathrm{t}]==\operatorname{DiracDelta}[\mathrm{t}-3],\left\{\mathrm{y}[0]==1, \mathrm{y}^{\prime}[0]==1\right\}\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSol

$$
y(t) \rightarrow \frac{1}{2} e^{-t}\left(2(\sin (2 t)+\cos (2 t))-e^{3} \theta(t-3) \sin (6-2 t)\right)
$$

20.3 problem 4

20.3.1 Existence and uniqueness analysis 3427
20.3.2 Maple step by step solution . 3430

Internal problem ID [13233]
Internal file name [OUTPUT/11888_Tuesday_December_05_2023_12_12_46_PM_25479048/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 6. Laplace transform. Section 6.4. page 608
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second__order_linear_constant__coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+2 y^{\prime}+2 y=-2 \delta(-2+t)
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=0\right]
$$

20.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =2 \\
q(t) & =2 \\
F & =-2 \delta(-2+t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+2 y^{\prime}+2 y=-2 \delta(-2+t)
$$

The domain of $p(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=-2 \delta(-2+t)$ is

$$
\{t<2 \vee 2<t\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+2 s Y(s)-2 y(0)+2 Y(s)=-2 \mathrm{e}^{-2 s} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =2 \\
y^{\prime}(0) & =0
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-4-2 s+2 s Y(s)+2 Y(s)=-2 \mathrm{e}^{-2 s}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=-\frac{2\left(\mathrm{e}^{-2 s}-s-2\right)}{s^{2}+2 s+2}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(-\frac{2\left(\mathrm{e}^{-2 s}-s-2\right)}{s^{2}+2 s+2}\right) \\
& =-2 \text { Heaviside }(-2+t) \sin (-2+t) \mathrm{e}^{-t+2}+2(\cos (t)+\sin (t)) \mathrm{e}^{-t}
\end{aligned}
$$

Hence the final solution is

$$
y=-2 \text { Heaviside }(-2+t) \sin (-2+t) \mathrm{e}^{-t+2}+2(\cos (t)+\sin (t)) \mathrm{e}^{-t}
$$

Simplifying the solution gives

$$
y=-2 \text { Heaviside }(-2+t) \sin (-2+t) \mathrm{e}^{-t+2}+2(\cos (t)+\sin (t)) \mathrm{e}^{-t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-2 \text { Heaviside }(-2+t) \sin (-2+t) \mathrm{e}^{-t+2}+2(\cos (t)+\sin (t)) \mathrm{e}^{-t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-2 \text { Heaviside }(-2+t) \sin (-2+t) \mathrm{e}^{-t+2}+2(\cos (t)+\sin (t)) \mathrm{e}^{-t}
$$

Verified OK.

20.3.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+2 y^{\prime}+2 y=-2 \operatorname{Dirac}(-2+t), y(0)=2,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+2 r+2=0$
- Use quadratic formula to solve for r
$r=\frac{(-2) \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial
$r=(-1-\mathrm{I},-1+\mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-t} \cos (t)$
- \quad 2nd solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{-t} \sin (t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-t} \cos (t)+c_{2} \mathrm{e}^{-t} \sin (t)+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=-2 \operatorname{Dirac}(-2+t)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-t} \cos (t) & \mathrm{e}^{-t} \sin (t) \\
-\mathrm{e}^{-t} \cos (t)-\mathrm{e}^{-t} \sin (t) & -\mathrm{e}^{-t} \sin (t)+\mathrm{e}^{-t} \cos (t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=\mathrm{e}^{-2 t}$
- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=2\left(\int \operatorname{Dirac}(-2+t) d t\right)(\sin (2) \cos (t)-\cos (2) \sin (t)) \mathrm{e}^{-t+2}
$$

- Compute integrals

$$
y_{p}(t)=2 \text { Heaviside }(-2+t)(\sin (2) \cos (t)-\cos (2) \sin (t)) \mathrm{e}^{-t+2}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-t} \cos (t)+c_{2} \mathrm{e}^{-t} \sin (t)+2 \text { Heaviside }(-2+t)(\sin (2) \cos (t)-\cos (2) \sin (t)) \mathrm{e}^{-t+2}
$$

Check validity of solution $y=c_{1} \mathrm{e}^{-t} \cos (t)+c_{2} \mathrm{e}^{-t} \sin (t)+2$ Heaviside $(-2+t)(\sin (2) \cos (t)-$

- Use initial condition $y(0)=2$

$$
2=c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \mathrm{e}^{-t} \cos (t)-c_{1} \mathrm{e}^{-t} \sin (t)-c_{2} \mathrm{e}^{-t} \sin (t)+c_{2} \mathrm{e}^{-t} \cos (t)+2 \operatorname{Dirac}(-2+t)(\sin (2) \cos (t)-
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$

$$
0=-c_{1}+c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=2, c_{2}=2\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-2 \text { Heaviside }(-2+t)(-\sin (2) \cos (t)+\cos (2) \sin (t)) \mathrm{e}^{-t+2}+2(\cos (t)+\sin (t)) \mathrm{e}^{-t}
$$

- \quad Solution to the IVP

$$
y=-2 \text { Heaviside }(-2+t)(-\sin (2) \cos (t)+\cos (2) \sin (t)) \mathrm{e}^{-t+2}+2(\cos (t)+\sin (t)) \mathrm{e}^{-t}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 5.25 (sec). Leaf size: 32
dsolve $([\operatorname{diff}(y(t), t \$ 2)+2 * \operatorname{diff}(y(t), t)+2 * y(t)=-2 * \operatorname{Dirac}(t-2), y(0)=2, D(y)(0)=0], y(t), \operatorname{sing}$

$$
y(t)=-2 \text { Heaviside }(t-2) \mathrm{e}^{2-t} \sin (t-2)+2 \mathrm{e}^{-t}(\sin (t)+\cos (t))
$$

\checkmark Solution by Mathematica
Time used: 0.3 (sec). Leaf size: 31
DSolve[\{y' ' $[\mathrm{t}]+2 * \mathrm{y}^{\prime}[\mathrm{t}]+2 * \mathrm{y}[\mathrm{t}]==-2 * \operatorname{DiracDelta}[\mathrm{t}-2],\{\mathrm{y}[0]==2, \mathrm{y}$ ' $\left.[0]==0\}\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingular

$$
y(t) \rightarrow 2 e^{-t}\left(e^{2} \theta(t-2) \sin (2-t)+\sin (t)+\cos (t)\right)
$$

20.4 problem 5

20.4.1 Existence and uniqueness analysis 3433
20.4.2 Maple step by step solution . 34336

Internal problem ID [13234]
Internal file name [OUTPUT/11889_Tuesday_December_05_2023_12_12_46_PM_81295945/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 6. Laplace transform. Section 6.4. page 608
Problem number: 5 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second__order_linear_constant__coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+2 y^{\prime}+3 y=\delta(t-1)-3 \delta(t-4)
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

20.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =2 \\
q(t) & =3 \\
F & =\delta(t-1)-3 \delta(t-4)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+2 y^{\prime}+3 y=\delta(t-1)-3 \delta(t-4)
$$

The domain of $p(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=3$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=\delta(t-1)-3 \delta(t-4)$ is

$$
\{1 \leq t \leq 4,4 \leq t \leq \infty,-\infty \leq t \leq 1\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+2 s Y(s)-2 y(0)+3 Y(s)=\mathrm{e}^{-s}-3 \mathrm{e}^{-4 s} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =0
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)+2 s Y(s)+3 Y(s)=\mathrm{e}^{-s}-3 \mathrm{e}^{-4 s}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{\mathrm{e}^{-s}-3 \mathrm{e}^{-4 s}}{s^{2}+2 s+3}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{\mathrm{e}^{-s}-3 \mathrm{e}^{-4 s}}{s^{2}+2 s+3}\right) \\
& =\frac{\text { Heaviside }(t-1) \sqrt{2} \mathrm{e}^{1-t} \sin (\sqrt{2}(t-1))}{2}-\frac{3 \text { Heaviside }(t-4) \sqrt{2} \mathrm{e}^{-t+4} \sin (\sqrt{2}(t-4))}{2}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & \frac{\operatorname{Heaviside}(t-1) \sqrt{2} \mathrm{e}^{1-t} \sin (\sqrt{2}(t-1))}{2} \\
& -\frac{3 \text { Heaviside }(t-4) \sqrt{2} \mathrm{e}^{-t+4} \sin (\sqrt{2}(t-4))}{2}
\end{aligned}
$$

Simplifying the solution gives
$y=\frac{\sqrt{2}\left(\operatorname{Heaviside}(t-1) \mathrm{e}^{1-t} \sin (\sqrt{2}(t-1))-3 \text { Heaviside }(t-4) \mathrm{e}^{-t+4} \sin (\sqrt{2}(t-4))\right)}{2}$

Summary

The solution(s) found are the following
y
$=\frac{\sqrt{2}\left(\operatorname{Heaviside}(t-1) \mathrm{e}^{1-t} \sin (\sqrt{2}(t-1))-3 \text { Heaviside }(t-4) \mathrm{e}^{-t+4} \sin (\sqrt{2}(t-4))\right)}{2}$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$y=\frac{\sqrt{2}\left(\operatorname{Heaviside}(t-1) \mathrm{e}^{1-t} \sin (\sqrt{2}(t-1))-3 \text { Heaviside }(t-4) \mathrm{e}^{-t+4} \sin (\sqrt{2}(t-4))\right)}{2}$
Verified OK.

20.4.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+2 y^{\prime}+3 y=\operatorname{Dirac}(t-1)-3 \operatorname{Dirac}(t-4), y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+2 r+3=0$
- Use quadratic formula to solve for r

$$
r=\frac{(-2) \pm(\sqrt{-8})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-1-\mathrm{I} \sqrt{2}, \mathrm{I} \sqrt{2}-1)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\cos (\sqrt{2} t) \mathrm{e}^{-t}
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\sin (\sqrt{2} t) \mathrm{e}^{-t}
$$

- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (\sqrt{2} t) \mathrm{e}^{-t}+c_{2} \sin (\sqrt{2} t) \mathrm{e}^{-t}+y_{p}(t)
$$

$\square \quad$ Find a particular solution $y_{p}(t)$ of the ODE

- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\operatorname{Dirac}(t-1)-3 \operatorname{Dirac}(t-\right.
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (\sqrt{2} t) \mathrm{e}^{-t} & \sin (\sqrt{2} t) \mathrm{e}^{-t} \\
-\sin (\sqrt{2} t) \sqrt{2} \mathrm{e}^{-t}-\cos (\sqrt{2} t) \mathrm{e}^{-t} & \sqrt{2} \mathrm{e}^{-t} \cos (\sqrt{2} t)-\sin (\sqrt{2} t) \mathrm{e}^{-t}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=\sqrt{2} \mathrm{e}^{-2 t}
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=\frac{\sqrt{2} \mathrm{e}^{1-t}\left(\cos (\sqrt{2} t)\left(\int\left(3 \operatorname{Dirac}(t-4) \mathrm{e}^{3} \sin (4 \sqrt{2})-\operatorname{Dirac}(t-1) \sin (\sqrt{2})\right) d t\right)-\sin (\sqrt{2} t)\left(\int \left(3 \operatorname{Dirac}(t-4) \mathrm{e}^{3} \cos (4 \sqrt{2})-D\right.\right.\right.}{2}
$$

- Compute integrals

$$
y_{p}(t)=\frac{\left(3 \sin (4 \sqrt{2}) \text { Heaviside }(t-4) \mathrm{e}^{3} \cos (\sqrt{2} t)-3 \text { Heaviside }(t-4) \mathrm{e}^{3} \cos (4 \sqrt{2}) \sin (\sqrt{2} t)+\cos (\sqrt{2}) \text { Heaviside }(t-1) \sin (\sqrt{2} t)-\right.}{2}
$$

- Substitute particular solution into general solution to ODE $y=c_{1} \cos (\sqrt{2} t) \mathrm{e}^{-t}+c_{2} \sin (\sqrt{2} t) \mathrm{e}^{-t}+\frac{\left(3 \sin (4 \sqrt{2}) \text { Heaviside }(t-4) \mathrm{e}^{3} \cos (\sqrt{2} t)-3 \text { Heaviside }(t-4) \mathrm{e}^{3} \cos (4 \sqrt{2}) \operatorname{si}\right.}{\text { sit }}$
Check validity of solution $y=c_{1} \cos (\sqrt{2} t) \mathrm{e}^{-t}+c_{2} \sin (\sqrt{2} t) \mathrm{e}^{-t}+\frac{\left(3 \sin (4 \sqrt{2}) \text { Heaviside }(t-4) \mathrm{e}^{3} \cos (\sqrt{ }\right.}{}$
- Use initial condition $y(0)=0$
$0=c_{1}$
- Compute derivative of the solution
$y^{\prime}=-c_{1} \sqrt{2} \sin (\sqrt{2} t) \mathrm{e}^{-t}-c_{1} \cos (\sqrt{2} t) \mathrm{e}^{-t}+c_{2} \sqrt{2} \cos (\sqrt{2} t) \mathrm{e}^{-t}-c_{2} \sin (\sqrt{2} t) \mathrm{e}^{-t}+\frac{(3 \sin (4 \mathrm{v}}{}$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=-c_{1}+\sqrt{2} c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=0, c_{2}=0\right\}
$$

- Substitute constant values into general solution and simplify
$y=\frac{\left(3 \sin (4 \sqrt{2}) \text { Heaviside }(t-4) \mathrm{e}^{3} \cos (\sqrt{2} t)-3 \text { Heaviside }(t-4) \mathrm{e}^{3} \cos (4 \sqrt{2}) \sin (\sqrt{2} t)+\cos (\sqrt{2}) \text { Heaviside }(t-1) \sin (\sqrt{2} t)-\sin (1\right.}{2}$
- \quad Solution to the IVP
$y=\frac{\left(3 \sin (4 \sqrt{2}) \text { Heaviside }(t-4) \mathrm{e}^{3} \cos (\sqrt{2} t)-3 \text { Heaviside }(t-4) \mathrm{e}^{3} \cos (4 \sqrt{2}) \sin (\sqrt{2} t)+\cos (\sqrt{2}) \text { Heaviside }(t-1) \sin (\sqrt{2} t)-\sin (1\right.}{2}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 6.562 (sec). Leaf size: 51

```
dsolve([diff(y(t),t$2)+2*\operatorname{diff}(y(t),t)+3*y(t)=\operatorname{Dirac}(t-1)-3*\operatorname{Dirac}(t-4),y(0)=0,D(y)(0) = 0],
```

$$
y(t)=-\frac{3 \sqrt{2}\left(\operatorname{Heaviside}(t-4) \mathrm{e}^{4-t} \sin (\sqrt{2}(t-4))-\frac{\text { Heaviside }(t-1) \mathrm{e}^{-t+1} \sin (\sqrt{2}(t-1))}{3}\right)}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.371 (sec). Leaf size: 53
DSolve [\{y' ' $[\mathrm{t}]+2 * y$ ' $[\mathrm{t}]+3 * y[\mathrm{t}]==\operatorname{DiracDelta[t-1]-3*\operatorname {DiracDelta}[\mathrm {t}-4],\{ y[0]==0,\mathrm {y}\text {'}[0]==0\} \} ,y[\mathrm {t}],\mathrm {t},~}$

$$
y(t) \rightarrow \frac{e^{1-t}\left(\theta(t-1) \sin (\sqrt{2}(t-1))-3 e^{3} \theta(t-4) \sin (\sqrt{2}(t-4))\right)}{\sqrt{2}}
$$

21 Chapter 6. Laplace transform. Section 6.6. page624
21.1 problem 1 3440
21.2 problem 2 3447
21.3 problem 3 3454
21.4 problem 4 3462
21.5 problem 5 3470
21.6 problem 6 3475
21.7 problem 7 3481
21.8 problem 8 3486

21.1 problem 1

21.1.1 Existence and uniqueness analysis 3440
21.1.2 Maple step by step solution . 3443

Internal problem ID [13235]
Internal file name [OUTPUT/11890_Tuesday_December_05_2023_12_12_47_PM_52077065/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 6. Laplace transform. Section 6.6. page 624
Problem number: 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second__order_linear_constant__coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\sin (4 t) \mathrm{e}^{-2 t}
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=-2\right]
$$

21.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =2 \\
q(t) & =2 \\
F & =\sin (4 t) \mathrm{e}^{-2 t}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\sin (4 t) \mathrm{e}^{-2 t}
$$

The domain of $p(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=\sin (4 t) \mathrm{e}^{-2 t}$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+2 s Y(s)-2 y(0)+2 Y(s)=\frac{4}{(s+2)^{2}+16} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =2 \\
y^{\prime}(0) & =-2
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-2-2 s+2 s Y(s)+2 Y(s)=\frac{4}{(s+2)^{2}+16}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{2 s^{3}+10 s^{2}+48 s+44}{\left(s^{2}+4 s+20\right)\left(s^{2}+2 s+2\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{\frac{1}{65}+\frac{7 i}{260}}{s+2-4 i}+\frac{\frac{1}{65}-\frac{7 i}{260}}{s+2+4 i}+\frac{\frac{64}{65}-\frac{8 i}{65}}{s+1-i}+\frac{\frac{64}{65}+\frac{8 i}{65}}{s+1+i}
$$

The inverse Laplace of each term above is now found, which gives

$$
\left.\begin{array}{rl}
\mathcal{L}^{-1}\left(\frac{\frac{1}{65}+\frac{7 i}{260}}{s+2-4 i}\right) & =\left(\frac{1}{65}+\frac{7 i}{260}\right) \mathrm{e}^{(-2+4 i) t} \\
\mathcal{L}^{-1}\left(\frac{\frac{1}{65}-\frac{7 i}{260}}{s+2+4 i}\right) & =\left(\frac{1}{65}-\frac{7 i}{260}\right) \mathrm{e}^{(-2-4 i) t} \\
\mathcal{L}^{-1}\left(\frac{\frac{64}{65}-\frac{8 i}{65}}{s+1-i}\right) & =\left(\frac{64}{65}-\frac{8 i}{65}\right) \mathrm{e}^{(-1+i) t} \\
\mathcal{L}^{-1}\left(\frac{64}{65}+\frac{8 i}{65}\right. \\
s+1+i
\end{array}\right)=\left(\frac{64}{65}+\frac{8 i}{65}\right) \mathrm{e}^{(-1-i) t}, ~ l
$$

Adding the above results and simplifying gives

$$
y=\frac{\mathrm{e}^{-2 t}(4 \cos (4 t)-7 \sin (4 t))}{130}+\frac{16(8 \cos (t)+\sin (t)) \mathrm{e}^{-t}}{65}
$$

Simplifying the solution gives

$$
y=\frac{\mathrm{e}^{-2 t}(4 \cos (4 t)-7 \sin (4 t))}{130}+\frac{128 \mathrm{e}^{-t}\left(\cos (t)+\frac{\sin (t)}{8}\right)}{65}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-2 t}(4 \cos (4 t)-7 \sin (4 t))}{130}+\frac{128 \mathrm{e}^{-t}\left(\cos (t)+\frac{\sin (t)}{8}\right)}{65} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\mathrm{e}^{-2 t}(4 \cos (4 t)-7 \sin (4 t))}{130}+\frac{128 \mathrm{e}^{-t}\left(\cos (t)+\frac{\sin (t)}{8}\right)}{65}
$$

Verified OK.

21.1.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+2 y^{\prime}+2 y=\sin (4 t) \mathrm{e}^{-2 t}, y(0)=2,\left.y^{\prime}\right|_{\{t=0\}}=-2\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+2 r+2=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{(-2) \pm(\sqrt{-4})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-1-\mathrm{I},-1+\mathrm{I})
$$

- \quad 1st solution of the homogeneous ODE
$y_{1}(t)=\mathrm{e}^{-t} \cos (t)$
- 2nd solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{-t} \sin (t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-t} \cos (t)+c_{2} \mathrm{e}^{-t} \sin (t)+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\sin (4 t) \mathrm{e}^{-2 t}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-t} \cos (t) & \mathrm{e}^{-t} \sin (t) \\
-\mathrm{e}^{-t} \cos (t)-\mathrm{e}^{-t} \sin (t) & -\mathrm{e}^{-t} \sin (t)+\mathrm{e}^{-t} \cos (t)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=\mathrm{e}^{-2 t}
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=-\mathrm{e}^{-t}\left(\cos (t)\left(\int \mathrm{e}^{-t} \sin (t) \sin (4 t) d t\right)-\sin (t)\left(\int \mathrm{e}^{-t} \cos (t) \sin (4 t) d t\right)\right)
$$

- Compute integrals
$y_{p}(t)=-\frac{\mathrm{e}^{-2 t}(-4 \cos (4 t)+7 \sin (4 t))}{130}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-t} \cos (t)+c_{2} \mathrm{e}^{-t} \sin (t)-\frac{\mathrm{e}^{-2 t}(-4 \cos (4 t)+7 \sin (4 t))}{130}$
Check validity of solution $y=c_{1} \mathrm{e}^{-t} \cos (t)+c_{2} \mathrm{e}^{-t} \sin (t)-\frac{\mathrm{e}^{-2 t}(-4 \cos (4 t)+7 \sin (4 t))}{130}$
- Use initial condition $y(0)=2$

$$
2=c_{1}+\frac{2}{65}
$$

- Compute derivative of the solution
$y^{\prime}=-c_{1} \mathrm{e}^{-t} \cos (t)-c_{1} \mathrm{e}^{-t} \sin (t)-c_{2} \mathrm{e}^{-t} \sin (t)+c_{2} \mathrm{e}^{-t} \cos (t)+\frac{\mathrm{e}^{-2 t}(-4 \cos (4 t)+7 \sin (4 t))}{65}-\frac{\mathrm{e}^{-2 t}(16 \sin (}{}$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=-2$

$$
-2=-c_{1}-\frac{18}{65}+c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{128}{65}, c_{2}=\frac{16}{65}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{\mathrm{e}^{-2 t}(4 \cos (4 t)-7 \sin (4 t))}{130}+\frac{128 \mathrm{e}^{-t}\left(\cos (t)+\frac{\sin (t)}{8}\right)}{65}
$$

- \quad Solution to the IVP

$$
y=\frac{\mathrm{e}^{-2 t}(4 \cos (4 t)-7 \sin (4 t))}{130}+\frac{128 \mathrm{e}^{-t}\left(\cos (t)+\frac{\sin (t)}{8}\right)}{65}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 5.156 (sec). Leaf size: 37

```
dsolve([diff (y(t),t$2)+2*\operatorname{diff}(y(t),t)+2*y(t)=exp(-2*t)*\operatorname{sin}(4*t),y(0) = 2, D(y) (0) = -2],y(t)
```

$$
y(t)=\frac{\mathrm{e}^{-2 t}(-7 \sin (4 t)+4 \cos (4 t))}{130}+\frac{128\left(\cos (t)+\frac{\sin (t)}{8}\right) \mathrm{e}^{-t}}{65}
$$

\checkmark Solution by Mathematica
Time used: 0.379 (sec). Leaf size: 41
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[t]+2 * y\right.\right.$ ' $\left.[t]+2 * y[t]==\operatorname{Exp}[-2 * t] * \operatorname{Sin}[4 * t],\left\{y[0]==2, y^{\prime}[0]==-2\right\}\right\}, y[t], t$, IncludeSingula

$$
y(t) \rightarrow \frac{1}{130} e^{-2 t}\left(32 e^{t} \sin (t)-7 \sin (4 t)+256 e^{t} \cos (t)+4 \cos (4 t)\right)
$$

21.2 problem 2

21.2.1 Existence and uniqueness analysis 3447
21.2.2 Maple step by step solution . 3450

Internal problem ID [13236]
Internal file name [OUTPUT/11891_Tuesday_December_05_2023_12_12_48_PM_64669449/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 6. Laplace transform. Section 6.6. page 624
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second__order_linear_constant__coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y^{\prime}+5 y=\text { Heaviside }(-2+t) \sin (-8+4 t)
$$

With initial conditions

$$
\left[y(0)=-2, y^{\prime}(0)=0\right]
$$

21.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =1 \\
q(t) & =5 \\
F & =\text { Heaviside }(-2+t) \sin (-8+4 t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y^{\prime}+5 y=\text { Heaviside }(-2+t) \sin (-8+4 t)
$$

The domain of $p(t)=1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=5$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=\operatorname{Heaviside}(-2+t) \sin (-8+4 t)$ is

$$
\{t<2 \vee 2<t\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+s Y(s)-y(0)+5 Y(s)=\frac{4 \mathrm{e}^{-2 s}}{s^{2}+16} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =-2 \\
y^{\prime}(0) & =0
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)+2+2 s+s Y(s)+5 Y(s)=\frac{4 \mathrm{e}^{-2 s}}{s^{2}+16}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{-2 s^{3}-2 s^{2}+4 \mathrm{e}^{-2 s}-32 s-32}{\left(s^{2}+16\right)\left(s^{2}+s+5\right)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{-2 s^{3}-2 s^{2}+4 \mathrm{e}^{-2 s}-32 s-32}{\left(s^{2}+16\right)\left(s^{2}+s+5\right)}\right) \\
& =-\frac{2 \mathrm{e}^{-\frac{t}{2}}\left(\sqrt{19} \sin \left(\frac{\sqrt{19} t}{2}\right)+19 \cos \left(\frac{\sqrt{19} t}{2}\right)\right)}{19}+\frac{\left(-76 \cos (-8+4 t)-209 \sin (-8+4 t)+4 \mathrm{e}^{-\frac{t}{2}+1}(23 \sqrt{ }\right.}{}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y & =-\frac{2 \mathrm{e}^{-\frac{t}{2}}\left(\sqrt{19} \sin \left(\frac{\sqrt{19} t}{2}\right)+19 \cos \left(\frac{\sqrt{19} t}{2}\right)\right)}{19} \\
& +\frac{\left(-76 \cos (-8+4 t)-209 \sin (-8+4 t)+4 \mathrm{e}^{-\frac{t}{2}+1}\left(23 \sqrt{19} \sin \left(\frac{\sqrt{19}(-2+t)}{2}\right)+19 \cos \left(\frac{\sqrt{19}(-2+t)}{2}\right)\right)\right) \mathrm{I}}{2603}
\end{aligned}
$$

Simplifying the solution gives

$$
\begin{aligned}
y= & \frac{4 \text { Heaviside }(-2+t) \mathrm{e}^{-\frac{t}{2}+1} \cos \left(\frac{\sqrt{19}(-2+t)}{2}\right)}{137} \\
& +\frac{92 \operatorname{Heaviside}(-2+t) \sqrt{19} \mathrm{e}^{-\frac{t}{2}+1} \sin \left(\frac{\sqrt{19}(-2+t)}{2}\right)}{2603}-2 \cos \left(\frac{\sqrt{19} t}{2}\right) \mathrm{e}^{-\frac{t}{2}} \\
& -\frac{2 \sqrt{19} \mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{\sqrt{19} t}{2}\right)}{19}-\frac{4 \text { Heaviside }(-2+t)\left(\cos (-8+4 t)+\frac{11 \sin (-8+4 t)}{4}\right)}{137}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \frac{4 \text { Heaviside }(-2+t) \mathrm{e}^{-\frac{t}{2}+1} \cos \left(\frac{\sqrt{19}(-2+t)}{2}\right)}{137} \\
& +\frac{92 \operatorname{Heaviside}(-2+t) \sqrt{19} \mathrm{e}^{-\frac{t}{2}+1} \sin \left(\frac{\sqrt{19}(-2+t)}{2}\right)}{2603}-2 \cos \left(\frac{\sqrt{19} t}{2}\right) \mathrm{e}^{-\frac{t}{2}} \tag{1}\\
& -\frac{2 \sqrt{19} \mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{\sqrt{19} t}{2}\right)}{19}-\frac{4 \text { Heaviside }(-2+t)\left(\cos (-8+4 t)+\frac{11 \sin (-8+4 t)}{4}\right)}{137}
\end{align*}
$$

(a) Solution plot

Verification of solutions

$$
\begin{aligned}
y= & \frac{4 \text { Heaviside }(-2+t) \mathrm{e}^{-\frac{t}{2}+1} \cos \left(\frac{\sqrt{19}(-2+t)}{2}\right)}{137} \\
& +\frac{92 \operatorname{Heaviside}(-2+t) \sqrt{19} \mathrm{e}^{-\frac{t}{2}+1} \sin \left(\frac{\sqrt{19}(-2+t)}{2}\right)}{2603}-2 \cos \left(\frac{\sqrt{19} t}{2}\right) \mathrm{e}^{-\frac{t}{2}} \\
& -\frac{2 \sqrt{19} \mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{\sqrt{19} t}{2}\right)}{19}-\frac{4 \text { Heaviside }(-2+t)\left(\cos (-8+4 t)+\frac{11 \sin (-8+4 t)}{4}\right)}{137}
\end{aligned}
$$

Verified OK.

21.2.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+y^{\prime}+5 y=\text { Heaviside }(-2+t) \sin (-8+4 t), y(0)=-2,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}+r+5=0
$$

- Use quadratic formula to solve for r
$r=\frac{(-1) \pm(\sqrt{-19})}{2}$
- Roots of the characteristic polynomial

$$
r=\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{19}}{2},-\frac{1}{2}+\frac{\mathrm{I} \sqrt{19}}{2}\right)
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\cos \left(\frac{\sqrt{19} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}$
- 2nd solution of the homogeneous ODE
$y_{2}(t)=\mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{\sqrt{19} t}{2}\right)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos \left(\frac{\sqrt{19} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}+c_{2} \mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{\sqrt{19} t}{2}\right)+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\operatorname{Heaviside}(-2+t) \sin (-8\right.
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos \left(\frac{\sqrt{19} t}{2}\right) \mathrm{e}^{-\frac{t}{2}} & \mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{\sqrt{19} t}{2}\right) \\
-\frac{\sqrt{19} \mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{\sqrt{19} t}{2}\right)}{2}-\frac{\cos \left(\frac{\sqrt{19} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}}{2} & -\frac{\mathrm{e}^{-\frac{t}{2} \sin \left(\frac{\sqrt{19} t}{2}\right)}}{2}+\frac{\mathrm{e}^{-\frac{t}{2} \sqrt{19} \cos \left(\frac{\sqrt{19} t}{2}\right)}}{2}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=\frac{\sqrt{19} \mathrm{e}^{-t}}{2}
$$

- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{2 \sqrt{19} \mathrm{e}^{-\frac{t}{2}}\left(\cos \left(\frac{\sqrt{19} t}{2}\right)\left(\int \mathrm{e}^{\frac{t}{2}} \sin (-8+4 t) \text { Heaviside }(-2+t) \sin \left(\frac{\sqrt{19} t}{2}\right) d t\right)-\sin \left(\frac{\sqrt{19} t}{2}\right)\left(\int \mathrm{e}^{\frac{t}{2}} \sin (-8+4 t) \text { Heaviside }(-2-\right.\right.}{19}$
- Compute integrals
$y_{p}(t)=-\frac{\text { Heaviside }(-2+t)\left(-92 \mathrm{e}^{-\frac{t}{2}+1} \sqrt{19} \sin \left(\frac{\sqrt{19}(-2+t)}{2}\right)+209 \sin (-8+4 t)+76 \cos (-8+4 t)-76 \mathrm{e}^{-\frac{t}{2}+1} \cos \left(\frac{\sqrt{19}(-2+t)}{2}\right)\right)}{2603}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \cos \left(\frac{\sqrt{19} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}+c_{2} \mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{\sqrt{19} t}{2}\right)-\frac{\text { Heaviside }(-2+t)\left(-92 \mathrm{e}^{-\frac{t}{2}+1} \sqrt{19} \sin \left(\frac{\sqrt{19}(-2+t)}{2}\right)+209 \sin (-8+4 t)+\right.}{2603}$

Check validity of solution $y=c_{1} \cos \left(\frac{\sqrt{19} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}+c_{2} \mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{\sqrt{19} t}{2}\right)-\frac{\text { Heaviside }(-2+t)\left(-92 \mathrm{e}^{-\frac{t}{2}+1} \sqrt{19}\right.}{}$

- Use initial condition $y(0)=-2$
$-2=c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=-\frac{c_{1} \sqrt{19} \sin \left(\frac{\sqrt{19} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}}{2}-\frac{c_{1} \cos \left(\frac{\sqrt{19} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}}{2}-\frac{c_{2} \mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{\sqrt{19} t}{2}\right)}{2}+\frac{c_{2} \mathrm{e}^{-\frac{t}{2}} \sqrt{19} \cos \left(\frac{\sqrt{19} t}{2}\right)}{2}-\frac{\operatorname{Dirac}(-2+t)\left(-92 \mathrm{e}^{-}\right.}{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=-\frac{c_{1}}{2}+\frac{c_{2} \sqrt{19}}{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-2, c_{2}=-\frac{2 \sqrt{19}}{19}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{4 \text { Heaviside }(-2+t) \mathrm{e}^{-\frac{t}{2}+1} \cos \left(\frac{\sqrt{19}(-2+t)}{2}\right)}{137}+\frac{92 \text { Heaviside }(-2+t) \sqrt{19} \mathrm{e}^{-\frac{t}{2}+1} \sin \left(\frac{\sqrt{19}(-2+t)}{2}\right)}{2603}-2 \cos \left(\frac{\sqrt{19} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}-
$$

- \quad Solution to the IVP

$$
y=\frac{4 \text { Heaviside }(-2+t) \mathrm{e}^{-\frac{t}{2}+1} \cos \left(\frac{\sqrt{19}(-2+t)}{2}\right)}{137}+\frac{92 \text { Heaviside }(-2+t) \sqrt{19} \mathrm{e}^{-\frac{t}{2}+1} \sin \left(\frac{\sqrt{19}(-2+t)}{2}\right)}{2603}-2 \cos \left(\frac{\sqrt{19} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}-
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 6.703 (sec). Leaf size: 89

```
dsolve([diff(y(t),t$2)+diff(y(t),t)+5*y(t)=Heaviside(t-2)*\operatorname{sin}(4*(t-2)),y(0) = -2, D(y)(0) =
```

$$
\begin{aligned}
y(t)= & \frac{4 \cos \left(\frac{\sqrt{19}(t-2)}{2}\right) \operatorname{Heaviside}(t-2) \mathrm{e}^{1-\frac{t}{2}}}{137} \\
& +\frac{92 \sin \left(\frac{\sqrt{19}(t-2)}{2}\right) \operatorname{Heaviside}(t-2) \sqrt{19} \mathrm{e}^{1-\frac{t}{2}}}{2603}-2 \mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{\sqrt{19} t}{2}\right) \\
& -\frac{2 \mathrm{e}^{-\frac{t}{2}} \sqrt{19} \sin \left(\frac{\sqrt{19} t}{2}\right)}{19}-\frac{4\left(\cos (4 t-8)+\frac{11 \sin (4 t-8)}{4}\right) \text { Heaviside }(t-2)}{137}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 6.103 (sec). Leaf size: 163

$$
\begin{aligned}
& \text { DSolve }\left[\left\{y^{\prime} '^{\prime}[t]+y^{\prime}[t]+5 * y[t]==\text { UnitStep }[t-2] * \operatorname{Sin}[4 *(t-2)],\left\{y[0]==-2, y^{\prime}[0]==0\right\}\right\}, y[t], t,\right. \text { IncludeS } \\
& y(t) \\
& \rightarrow\left\{\quad-\frac{2}{19} e^{-t / 2}\left(19 \cos \left(\frac{\sqrt{19} t}{2}\right)+\sqrt{19} \sin \left(\frac{\sqrt{19} t}{2}\right)\right)\right. \\
& \\
& \frac{e^{-t / 2}\left(-76 e^{t / 2} \cos (8-4 t)+76 e \cos \left(\frac{1}{2} \sqrt{19}(t-2)\right)-5206 \cos \left(\frac{\sqrt{19} t}{2}\right)+209 e^{t / 2} \sin (8-4 t)+92 \sqrt{19} e \sin \left(\frac{1}{2} \sqrt{19}(t-2)\right)-274 \sqrt{19} \sin \left(\frac{\sqrt{19} t}{2}\right)\right.}{2603}
\end{aligned}
$$

21.3 problem 3

21.3.1 Existence and uniqueness analysis 3454
21.3.2 Maple step by step solution . 3458

Internal problem ID [13237]
Internal file name [OUTPUT/11892_Tuesday_December_05_2023_12_12_49_PM_88058161/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 6. Laplace transform. Section 6.6. page 624
Problem number: 3 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second__order_linear_constant__coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y^{\prime}+8 y=(1-\text { Heaviside }(t-4)) \cos (t-4)
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

21.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =1 \\
q(t) & =8 \\
F & =(1-\text { Heaviside }(t-4)) \cos (t-4)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y^{\prime}+8 y=(1-\text { Heaviside }(t-4)) \cos (t-4)
$$

The domain of $p(t)=1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=8$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=(1-\operatorname{Heaviside}(t-4)) \cos (t-4)$ is

$$
\{t<4 \vee 4<t\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+s Y(s)-y(0)+8 Y(s)=-\frac{-\sin (4)+s\left(\mathrm{e}^{-4 s}-\cos (4)\right)}{s^{2}+1} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =0
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)+s Y(s)+8 Y(s)=-\frac{-\sin (4)+s\left(\mathrm{e}^{-4 s}-\cos (4)\right)}{s^{2}+1}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{s \cos (4)-s \mathrm{e}^{-4 s}+\sin (4)}{\left(s^{2}+1\right)\left(s^{2}+s+8\right)}
$$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{s \cos (4)-s \mathrm{e}^{-4 s}+\sin (4)}{\left(s^{2}+1\right)\left(s^{2}+s+8\right)}\right) \\
& =\frac{\cos (t)(7 \cos (4)-\sin (4))}{50}+\frac{\left(-31 \cos \left(\frac{\sqrt{31} t}{2}\right)(7 \cos (4)-\sin (4))+\sin \left(\frac{\sqrt{31} t}{2}\right) \sqrt{31}(-9 \cos (4)-13\right.}{1550}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y & =\frac{\cos (t)(7 \cos (4)-\sin (4))}{50} \\
& +\frac{\left(-31 \cos \left(\frac{\sqrt{31} t}{2}\right)(7 \cos (4)-\sin (4))+\sin \left(\frac{\sqrt{31} t}{2}\right) \sqrt{31}(-9 \cos (4)-13 \sin (4))\right) \mathrm{e}^{-\frac{t}{2}}}{1550} \\
& -\frac{\sin (t)(-\cos (4)-7 \sin (4))}{50} \\
& +\frac{\left(-217 \cos (t-4)-31 \sin (t-4)+\mathrm{e}^{-\frac{t}{2}+2}\left(9 \sqrt{31} \sin \left(\frac{\sqrt{31}(t-4)}{2}\right)+217 \cos \left(\frac{\sqrt{31}(t-4)}{2}\right)\right)\right) \text { Heaviside }(t}{1550}
\end{aligned}
$$

Simplifying the solution gives

$$
\begin{aligned}
y= & 9\left(\left(\sqrt{31} \sin (2 \sqrt{31})-\frac{217 \cos (2 \sqrt{31})}{9}\right) \cos \left(\frac{\sqrt{31} t}{2}\right)-\frac{217 \sin \left(\frac{\sqrt{31} t}{2}\right)\left(\frac{9 \sqrt{31} \cos (2 \sqrt{31})}{217}+\sin (2 \sqrt{31})\right)}{9}\right) \text { Heaviside }(t \\
& -\frac{7\left(\cos (4)-\frac{\sin (4)}{7}\right) \mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{\sqrt{31} t}{2}\right)}{50}-\frac{9\left(\cos (4)+\frac{13 \sin (4)}{9}\right) \sqrt{31} \mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{\sqrt{31} t}{2}\right)}{1550} \\
& -\frac{7(-1+\text { Heaviside }(t-4))\left(\left(\cos (t)+\frac{\sin (t)}{7}\right) \cos (4)-\frac{\sin (4)(\cos (t)-7 \sin (t))}{7}\right)}{50}
\end{aligned}
$$

Summary

The solution(s) found are the following
$y=$

$$
\begin{align*}
& 9\left(\left(\sqrt{31} \sin (2 \sqrt{31})-\frac{217 \cos (2 \sqrt{31})}{9}\right) \cos \left(\frac{\sqrt{31} t}{2}\right)-\frac{217 \sin \left(\frac{\sqrt{31} t}{2}\right)\left(\frac{9 \sqrt{31} \cos (2 \sqrt{31})}{217}+\sin (2 \sqrt{31})\right)}{9}\right) \tag{1}\\
&- \text { Heaviside (} \\
&- \frac{7\left(\cos (4)-\frac{\sin (4)}{7}\right) \mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{\sqrt{31} t}{2}\right)}{50}-\frac{9\left(\cos (4)+\frac{13 \sin (4)}{9}\right) \sqrt{31} \mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{\sqrt{31} t}{2}\right)}{1550} \\
&- 7(-1+\text { Heaviside }(t-4))\left(\left(\cos (t)+\frac{\sin (t)}{7}\right) \cos (4)-\frac{\sin (4)(\cos (t)-7 \sin (t))}{7}\right) \\
& 50
\end{align*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
\begin{aligned}
y= & \\
& -\frac{9\left(\left(\sqrt{31} \sin (2 \sqrt{31})-\frac{217 \cos (2 \sqrt{31})}{9}\right) \cos \left(\frac{\sqrt{31} t}{2}\right)-\frac{217 \sin \left(\frac{\sqrt{31} t}{2}\right)\left(\frac{9 \sqrt{31} \cos (2 \sqrt{31})}{217}+\sin (2 \sqrt{31})\right)}{9}\right) \text { Heaviside }(t}{} \\
& -\frac{7\left(\cos (4)-\frac{\sin (4)}{7}\right) \mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{\sqrt{31} t}{2}\right)}{50}-\frac{9\left(\cos (4)+\frac{13 \sin (4)}{9}\right) \sqrt{31} \mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{\sqrt{31} t}{2}\right)}{1550} \\
& -\frac{7(-1+\text { Heaviside }(t-4))\left(\left(\cos (t)+\frac{\sin (t)}{7}\right) \cos (4)-\frac{\sin (4)(\cos (t)-7 \sin (t))}{7}\right)}{50}
\end{aligned}
$$

Verified OK.

21.3.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+y^{\prime}+8 y=(1-\text { Heaviside }(t-4)) \cos (t-4), y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\cos (t-4) \text { Heaviside }(t-4)+\cos (t-4)-8 y-y^{\prime}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+y^{\prime}+8 y=-(-1+\operatorname{Heaviside}(t-4)) \cos (t-4)
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+r+8=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{(-1) \pm(\sqrt{-31})}{2}
$$

- Roots of the characteristic polynomial

$$
r=\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{31}}{2},-\frac{1}{2}+\frac{\mathrm{I} \sqrt{31}}{2}\right)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\cos \left(\frac{\sqrt{31} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}
$$

- \quad 2nd solution of the homogeneous ODE
$y_{2}(t)=\sin \left(\frac{\sqrt{31} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos \left(\frac{\sqrt{31} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}+c_{2} \sin \left(\frac{\sqrt{31} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=-(-1+\operatorname{Heaviside}(t-4))\right.
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\cos \left(\frac{\sqrt{31} t}{2}\right) \mathrm{e}^{-\frac{t}{2}} & \sin \left(\frac{\sqrt{31} t}{2}\right) \mathrm{e}^{-\frac{t}{2}} \\ -\frac{\sqrt{31} \sin \left(\frac{\sqrt{31} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}}{2}-\frac{\cos \left(\frac{\sqrt{31} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}}{2} & \frac{\sqrt{31} \cos \left(\frac{\sqrt{31} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}}{2}-\frac{\sin \left(\frac{\sqrt{31} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}}{2}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=\frac{\sqrt{31} \mathrm{e}^{-t}}{2}$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=\frac{2 \sqrt{31} \mathrm{e}^{-\frac{t}{2}}\left(\cos \left(\frac{\sqrt{31} t}{2}\right)\left(\int \mathrm{e}^{\frac{t}{2}} \cos (t-4) \sin \left(\frac{\sqrt{31} t}{2}\right)(-1+\text { Heaviside }(t-4)) d t\right)-\sin \left(\frac{\sqrt{31} t}{2}\right)\left(\int \mathrm{e}^{\frac{t}{2}} \cos (t-4) \cos \left(\frac{\sqrt{31} t}{2}\right)(-1+\right.\right.}{31}$
- Compute integrals
$y_{p}(t)=\frac{7 \text { Heaviside }(t-4) \mathrm{e}^{-\frac{t}{2}+2} \cos \left(\frac{\sqrt{31}(t-4)}{2}\right)}{50}+\frac{9 \text { Heaviside }(t-4) \sqrt{31} \mathrm{e}^{-\frac{t}{2}+2} \sin \left(\frac{\sqrt{31}(t-4)}{2}\right)}{1550}-\frac{7(-1+\text { Heaviside }(t-4))(\cos (}{50}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \cos \left(\frac{\sqrt{31} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}+c_{2} \sin \left(\frac{\sqrt{31} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}+\frac{7 \text { Heaviside }(t-4) \mathrm{e}^{-\frac{t}{2}+2} \cos \left(\frac{\sqrt{31}(t-4)}{2}\right)}{50}+\frac{9 \text { Heaviside }(t-4) \sqrt{31} \mathrm{e}^{-\frac{t}{2}+}}{1550}$
Check validity of solution $y=c_{1} \cos \left(\frac{\sqrt{31} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}+c_{2} \sin \left(\frac{\sqrt{31} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}+\frac{7 \text { Heaviside }(t-4) \mathrm{e}^{-\frac{t}{2}+2} \cos \left(\frac{\sqrt{31}(}{2}\right.}{50}$
- Use initial condition $y(0)=0$
$0=c_{1}+\frac{7 \cos (4)}{50}-\frac{\sin (4)}{50}$
- Compute derivative of the solution

$$
y^{\prime}=-\frac{c_{1} \sqrt{31} \sin \left(\frac{\sqrt{31} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}}{2}-\frac{c_{1} \cos \left(\frac{\sqrt{31} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}}{2}+\frac{c_{2} \sqrt{31} \cos \left(\frac{\sqrt{31} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}}{2}-\frac{c_{2} \sin \left(\frac{\sqrt{31} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}}{2}+\frac{7 \operatorname{Dirac}(t-4) \mathrm{e}^{-\frac{t}{2}+2} \operatorname{co}}{50}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$

$$
0=-\frac{c_{1}}{2}+\frac{c_{2} \sqrt{31}}{2}+\frac{\cos (4)}{50}+\frac{7 \sin (4)}{50}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-\frac{7 \cos (4)}{50}+\frac{\sin (4)}{50}, c_{2}=-\frac{\sqrt{31}(9 \cos (4)+13 \sin (4))}{1550}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=-\frac{\left.9\left(\left(\sqrt{31} \sin (2 \sqrt{31})-\frac{217 \cos (2 \sqrt{31})}{9}\right) \cos \left(\frac{\sqrt{31} t}{2}\right)-\frac{217 \sin \left(\frac{\sqrt{31} t}{2}\right)\left(\frac{9 \sqrt{31} \cos (2 \sqrt{31})}{217}+\sin (2 \sqrt{31})\right)}{9}\right) \text { Heaviside }(t-4) \mathrm{e}^{-\frac{t}{2}+2}\right)}{1550}-
$$

- \quad Solution to the IVP

$$
y=-\frac{9\left(\left(\sqrt{31} \sin (2 \sqrt{31})-\frac{217 \cos (2 \sqrt{31})}{9}\right) \cos \left(\frac{\sqrt{31} t}{2}\right)-\frac{217 \sin \left(\frac{\sqrt{31} t}{2}\right)\left(\frac{9 \sqrt{31} \cos (2 \sqrt{31})}{217}+\sin (2 \sqrt{31})\right)}{9}\right) \text { Heaviside }(t-4) \mathrm{e}^{-\frac{t}{2}+2}}{1550} .
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 6.797 (sec). Leaf size: 128
dsolve $([\operatorname{diff}(y(t), t \$ 2)+\operatorname{diff}(y(t), t)+8 * y(t)=(1-H e a v i s i d e(t-4)) * \cos (t-4), y(0)=0, D(y)(0)=0$
$y(t)=$
$-\frac{9 \text { Heaviside }(t-4)\left(\left(\sin (2 \sqrt{31}) \sqrt{31}-\frac{217 \cos (2 \sqrt{31})}{9}\right) \cos \left(\frac{\sqrt{31} t}{2}\right)-\frac{217 \sin \left(\frac{\sqrt{31} t}{2}\right)\left(\frac{9 \sqrt{31} \cos (2 \sqrt{31})}{217}+\sin (2 \sqrt{3}\right.}{9}\right.}{-\frac{7 \mathrm{e}^{-\frac{t}{2}}\left(\cos (4)-\frac{\sin (4)}{7}\right) \cos \left(\frac{\sqrt{31} t}{2}\right)}{50}-\frac{9\left(\cos (4)+\frac{13 \sin (4)}{9}\right) \sqrt{31} \mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{\sqrt{311} t}{2}\right)}{1550}}$
$-\frac{7\left(\left(\cos (t)+\frac{\sin (t)}{7}\right) \cos (4)-\frac{\sin (4)(-7 \sin (t)+\cos (t)))(-1+\operatorname{Heaviside}(t-4))}{7}\right)}{50}$
\checkmark Solution by Mathematica
Time used: 4.688 (sec). Leaf size: 207
DSolve[\{y' ' $[t]+y$ ' $[t]+8 * y[t]==(1-$ UnitStep $\left.[t-4]) * \operatorname{Cos}[t-4],\left\{y[0]==0, y^{\prime}[0]==0\right\}\right\}, y[t], t$, IncludeSi
$y(t)$
$\rightarrow \underline{e^{-t / 2}\left(\theta(4-t)\left(-31 e^{t / 2} \sin (4-t)-9 \sqrt{31} e^{2} \sin \left(\frac{1}{2} \sqrt{31}(t-4)\right)+217 e^{t / 2} \cos (4-t)-217 e^{2} \cos \left(\frac{1}{2} \sqrt{31}\right.\right.\right.}$

21.4 problem 4

21.4.1 Existence and uniqueness analysis 3462
21.4.2 Maple step by step solution . 3466

Internal problem ID [13238]
Internal file name [OUTPUT/11893_Tuesday_December_05_2023_12_12_50_PM_50415031/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 6. Laplace transform. Section 6.6. page 624
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second__order_linear_constant__coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y^{\prime}+3 y=(1-\text { Heaviside }(-2+t)) \mathrm{e}^{\frac{1}{5}-\frac{t}{10}} \sin (-2+t)
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=2\right]
$$

21.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =1 \\
q(t) & =3 \\
F & =-(-1+\text { Heaviside }(-2+t)) \mathrm{e}^{\frac{1}{5}-\frac{t}{10}} \sin (-2+t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y^{\prime}+3 y=-(-1+\text { Heaviside }(-2+t)) \mathrm{e}^{\frac{1}{5}-\frac{t}{10}} \sin (-2+t)
$$

The domain of $p(t)=1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=3$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=-(-1+\operatorname{Heaviside}(-2+t)) \mathrm{e}^{\frac{1}{5}-\frac{t}{10}} \sin ($ is

$$
\{t<2 \vee 2<t\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain
$s^{2} Y(s)-y^{\prime}(0)-s y(0)+s Y(s)-y(0)+3 Y(s)=5 i\left(\frac{\mathrm{e}^{-2 s}-\mathrm{e}^{\frac{1}{5}-2 i}}{10 s+1-10 i}+\frac{-\mathrm{e}^{-2 s}+\mathrm{e}^{\frac{1}{5}+2 i}}{10 s+1+10 i}\right)$

But the initial conditions are

$$
\begin{aligned}
y(0) & =1 \\
y^{\prime}(0) & =2
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-3-s+s Y(s)+3 Y(s)=5 i\left(\frac{\mathrm{e}^{-2 s}-\mathrm{e}^{\frac{1}{5}-2 i}}{10 s+1-10 i}+\frac{-\mathrm{e}^{-2 s}+\mathrm{e}^{\frac{1}{5}+2 i}}{10 s+1+10 i}\right)
$$

Solving the above equation for $Y(s)$ results in
$Y(s)=\frac{50 i \mathrm{e}^{\frac{1}{5}-2 i} s-50 i \mathrm{e}^{\frac{1}{5}+2 i} s-100 s^{3}+5 i \mathrm{e}^{\frac{1}{5}-2 i}-5 i \mathrm{e}^{\frac{1}{5}+2 i}-320 s^{2}+100 \mathrm{e}^{-2 s}-50 \mathrm{e}^{\frac{1}{5}-2 i}-50 \mathrm{e}^{\frac{1}{5}+2 i}-161}{(-10 s-1+10 i)(10 s+1+10 i)\left(s^{2}+s+3\right)}$

Taking the inverse Laplace transform gives

$$
\begin{aligned}
y & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(\frac{50 i \mathrm{e}^{\frac{1}{5}-2 i} s-50 i \mathrm{e}^{\frac{1}{5}+2 i} s-100 s^{3}+5 i \mathrm{e}^{\frac{1}{5}-2 i}-5 i \mathrm{e}^{\frac{1}{5}+2 i}-320 s^{2}+100 \mathrm{e}^{-2 s}-50 \mathrm{e}^{\frac{1}{5}-2 i}-50 \mathrm{e}^{\frac{1}{5}+2 i}-1}{(-10 s-1+10 i)(10 s+1+10 i)\left(s^{2}+s+3\right)}\right. \\
& =\left(\frac{80}{1838780161}-\frac{191 i}{1838780161}\right)\left(2144050 \mathrm{e}^{\frac{1}{5}+2 i-\frac{t}{2}}+(3430480+8190271 i) \mathrm{e}^{-\frac{t}{2}}+(-1504050+152800\right.
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & \left(\frac{80}{1838780161}-\frac{191 i}{1838780161}\right)\left(2144050 \mathrm{e}^{\frac{1}{5}+2 i-\frac{t}{2}}+(3430480+8190271 i) \mathrm{e}^{-\frac{t}{2}}\right. \\
& \left.+(-1504050+1528000 i) \mathrm{e}^{\frac{1}{5}-2 i-\frac{t}{2}}\right) \cos \left(\frac{\sqrt{11} t}{2}\right) \\
+ & \left(-\frac{4000}{42881}+\frac{9550 i}{42881}\right) \mathrm{e}^{\left(-\frac{1}{10}-i\right)(-2+t)}+\left(-\frac{4000}{42881}-\frac{9550 i}{42881}\right) \mathrm{e}^{\left(-\frac{1}{10}+i\right)(-2+t)} \\
+ & \left(\frac{3975}{586570871359}+\frac{3910 i}{586570871359}\right) \sqrt{11}\left(-4974196 \mathrm{e}^{\frac{1}{5}+2 i-\frac{t}{2}}\right. \\
& \left.\quad+(34090395-33532942 i) \mathrm{e}^{-\frac{t}{2}}+(-82004+4973520 i) \mathrm{e}^{\frac{1}{5}-2 i-\frac{t}{2}}\right) \sin \left(\frac{\sqrt{11} t}{2}\right) \\
+ & \frac{100\left(2 \mathrm{e}^{-\frac{t}{2}+1}\left(159 \sqrt{11} \sin \left(\frac{\sqrt{11}(-2+t)}{2}\right)-440 \cos \left(\frac{\sqrt{11}(-2+t)}{2}\right)\right)+11(-191 \sin (-2+t)+80 \cos (-2+\right.}{471691}
\end{aligned}
$$

Simplifying the solution gives
y

$$
\begin{aligned}
= & \frac{8000 \text { Heaviside }(-2+t)\left(\left(\cos (t)-\frac{191 \sin (t)}{80}\right) \cos (2)+\frac{191\left(\cos (t)+\frac{80 \sin (t)}{191}\right) \sin (2)}{80}\right) \mathrm{e}^{\frac{1}{5}-\frac{t}{10}}}{42881} \\
& +\frac{100\left(11(191 \sin (2)+80 \cos (2)) \cos \left(\frac{\sqrt{11} t}{2}\right)-318 \sqrt{11}\left(\cos (2)-\frac{782 \sin (2)}{795}\right) \sin \left(\frac{\sqrt{11} t}{2}\right)\right) \mathrm{e}^{\frac{1}{5}-\frac{t}{2}}}{471691} \\
& +\left(-\frac{4000}{42881}+\frac{9550 i}{42881}\right) \mathrm{e}^{\left(-\frac{1}{10}-i\right)(-2+t)}+\left(-\frac{4000}{42881}-\frac{9550 i}{42881}\right) \mathrm{e}^{\left(-\frac{1}{10}+i\right)(-2+t)} \\
& +\frac{200 \text { Heaviside }(-2+t)\left((-159 \sqrt{11} \sin (\sqrt{11})-440 \cos (\sqrt{11})) \cos \left(\frac{\sqrt{11} t}{2}\right)+(159 \sqrt{11} \cos (\sqrt{11})-\right.}{471691} \\
& +\frac{5 \sqrt{11} \sin \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}}{11}+\cos \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
y & =\frac{8000 \text { Heaviside }(-2+t)\left(\left(\cos (t)-\frac{191 \sin (t)}{80}\right) \cos (2)+\frac{191\left(\cos (t)+\frac{80 \sin (t)}{191}\right) \sin (2)}{80}\right) \mathrm{e}^{\frac{1}{5}-\frac{t}{10}}}{(1)} \\
& +\frac{100\left(11(191 \sin (2)+80 \cos (2)) \cos \left(\frac{\sqrt{11} t}{2}\right)-318 \sqrt{11}\left(\cos (2)-\frac{782 \sin (2)}{795}\right) \sin \left(\frac{\sqrt{11} t}{2}\right)\right) \mathrm{e}^{\frac{1}{5}-\frac{t}{2}}}{471691} \\
& +\left(-\frac{4000}{42881}+\frac{9550 i}{42881}\right) \mathrm{e}^{\left(-\frac{1}{10}-i\right)(-2+t)}+\left(-\frac{4000}{42881}-\frac{9550 i}{42881}\right) \mathrm{e}^{\left(-\frac{1}{10}+i\right)(-2+t)} \\
& +\frac{200 \text { Heaviside }(-2+t)\left((-159 \sqrt{11} \sin (\sqrt{11})-440 \cos (\sqrt{11})) \cos \left(\frac{\sqrt{11} t}{2}\right)+(159 \sqrt{11} \cos (\sqrt{11})-\right.}{471691} \\
& +\frac{5 \sqrt{11} \sin \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}}{11}+\cos \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}
\end{aligned}
$$

Verification of solutions

y

$$
\begin{aligned}
= & \frac{8000 \text { Heaviside }(-2+t)\left(\left(\cos (t)-\frac{191 \sin (t)}{80}\right) \cos (2)+\frac{191\left(\cos (t)+\frac{80 \sin (t)}{191}\right) \sin (2)}{80}\right) \mathrm{e}^{\frac{1}{5}-\frac{t}{10}}}{42881} \\
& +\frac{100\left(11(191 \sin (2)+80 \cos (2)) \cos \left(\frac{\sqrt{11} t}{2}\right)-318 \sqrt{11}\left(\cos (2)-\frac{782 \sin (2)}{795}\right) \sin \left(\frac{\sqrt{11} t}{2}\right)\right) \mathrm{e}^{\frac{1}{5}-\frac{t}{2}}}{471691} \\
& +\left(-\frac{4000}{42881}+\frac{9550 i}{42881}\right) \mathrm{e}^{\left(-\frac{1}{10}-i\right)(-2+t)}+\left(-\frac{4000}{42881}-\frac{9550 i}{42881}\right) \mathrm{e}^{\left(-\frac{1}{10}+i\right)(-2+t)} \\
& +\frac{200 \text { Heaviside }(-2+t)\left((-159 \sqrt{11} \sin (\sqrt{11})-440 \cos (\sqrt{11})) \cos \left(\frac{\sqrt{11} t}{2}\right)+(159 \sqrt{11} \cos (\sqrt{11})-\right.}{471691} \\
& +\frac{5 \sqrt{11} \sin \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}}{11}+\cos \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}
\end{aligned}
$$

Verified OK.

21.4.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+y^{\prime}+3 y=(1-\text { Heaviside }(-2+t)) \mathrm{e}^{\frac{1}{5}-\frac{t}{10}} \sin (-2+t), y(0)=1,\left.y^{\prime}\right|_{\{t=0\}}=2\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-3 y-\mathrm{e}^{\frac{1}{5}-\frac{t}{10}} \sin (-2+t) \text { Heaviside }(-2+t)+\mathrm{e}^{\frac{1}{5}-\frac{t}{10}} \sin (-2+t)-y^{\prime}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+y^{\prime}+3 y=-(-1+$ Heaviside $(-2+t)) \mathrm{e}^{\frac{1}{5}-\frac{t}{10}} \sin (-2+t)$
- Characteristic polynomial of homogeneous ODE
$r^{2}+r+3=0$
- Use quadratic formula to solve for r
$r=\frac{(-1) \pm(\sqrt{-11})}{2}$
- Roots of the characteristic polynomial
$r=\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{11}}{2},-\frac{1}{2}+\frac{\mathrm{I} \sqrt{11}}{2}\right)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\cos \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}$
- 2nd solution of the homogeneous ODE
$y_{2}(t)=\sin \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}+c_{2} \sin \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function $\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=-(-1+\operatorname{Heaviside}(-2+t)\right.$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{t}{2}} & \sin \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{t}{2}} \\
-\frac{\sqrt{11} \sin \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}}{2}-\frac{\cos \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}}{2} & \frac{\sqrt{11} \cos \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}}{2}-\frac{\sin \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}}{2}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(t), y_{2}(t)\right)=\frac{\sqrt{11} \mathrm{e}^{-t}}{2}
$$

- Substitute functions into equation for $y_{p}(t)$

$$
y_{p}(t)=\frac{2 \sqrt{11} \mathrm{e}^{-\frac{t}{2}}\left(\cos \left(\frac{\sqrt{11} t}{2}\right)\left(\int \mathrm{e}^{\frac{2 t}{5}+\frac{1}{5}} \sin (-2+t) \sin \left(\frac{\sqrt{11} t}{2}\right)(-1+\text { Heaviside }(-2+t)) d t\right)-\sin \left(\frac{\sqrt{11} t}{2}\right)\left(\int \mathrm{e}^{\frac{2 t}{5}+\frac{1}{5}} \sin (-2+t) \cos (11\right.\right.}{11}
$$

- Compute integrals

$$
y_{p}(t)=\frac{31800 \mathrm{e}^{-\frac{t}{2}}\left(-\frac{440 \text { Heaviside }(-2+t) \mathrm{e} \cos \left(\frac{\sqrt{11}(-2+t)}{2}\right)}{159}+\text { Heaviside }(-2+t) \sqrt{11} \sin \left(\frac{\sqrt{11}(-2+t)}{2}\right) \mathrm{e}+\frac{440 \mathrm{e}^{\frac{2 t}{5}+\frac{1}{5}(-1+\text { Heaviside }(-2}}{471691}\right.}{4}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}+c_{2} \sin \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}+\frac{31800 \mathrm{e}^{-\frac{t}{2}}\left(-\frac{440 \text { Heaviside }(-2+t) \cos \left(\frac{\sqrt{11}(-2+t)}{2}\right)}{159}+\text { Heaviside }(-2+t) \mathrm{v}\right.}{}
$$

Check validity of solution $y=c_{1} \cos \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}+c_{2} \sin \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}+\frac{31800 \mathrm{e}^{-\frac{t}{2}}\left(-\frac{440 \text { Heaviside }(-2+t) \mathrm{e}}{159}\right.}{}$

- Use initial condition $y(0)=1$

$$
1=c_{1}-\frac{8000 \mathrm{e}^{\frac{1}{5}}\left(\cos (2)+\frac{191 \sin (2)}{80}\right)}{42881}
$$

- Compute derivative of the solution

$$
y^{\prime}=-\frac{c_{1} \sin \left(\frac{\sqrt{11} t}{2}\right) \sqrt{11} \mathrm{e}^{-\frac{t}{2}}}{2}-\frac{c_{1} \cos \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}}{2}+\frac{c_{2} \sqrt{11} \cos \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}}{2}-\frac{c_{2} \sin \left(\frac{\sqrt{11} t}{2}\right) \mathrm{e}^{-\frac{t}{2}}}{2}-\frac{15900 \mathrm{e}^{-\frac{t}{2}}\left(-\frac{440 \text { Hear }}{}\right.}{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=2$

$$
2=-\frac{c_{1}}{2}+\frac{\sqrt{11} c_{2}}{2}+\frac{800 \mathrm{e}^{\frac{1}{5}}\left(\cos (2)+\frac{191 \sin (2)}{80}\right)}{42881}-\frac{8000 \mathrm{e}^{\frac{1}{5}}\left(-\frac{191 \cos (2)}{80}+\sin (2)\right)}{42881}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{19100 \mathrm{e}^{\frac{1}{5}} \sin (2)}{42881}+\frac{8000 \mathrm{e}^{\frac{1}{5}} \cos (2)}{42881}+1, c_{2}=\frac{5\left(6256 \mathrm{e}^{\frac{1}{5}} \sin (2)-6360 \mathrm{e}^{\frac{1}{5}} \cos (2)+42881\right) \sqrt{11}}{471691}\right\}
$$

- Substitute constant values into general solution and simplify

$$
-8000 \mathrm{e}^{-\frac{t}{2}}\left(-(-1+\text { Heaviside }(-2+t))\left(\left(\cos (t)-\frac{191 \sin (t)}{80}\right) \cos (2)+\frac{191\left(\cos (t)+\frac{80 \sin (t)}{191}\right) \sin (2)}{80}\right) \mathrm{e}^{\frac{2 t}{5}+\frac{1}{5}}+\left(\mathrm { e } \left(\frac{159 \sqrt{11} \sin (\sqrt{11}}{440}\right.\right.\right.
$$

- \quad Solution to the IVP

$$
8000 \mathrm{e}^{-\frac{t}{2}}\left(-(-1+\text { Heaviside }(-2+t))\left(\left(\cos (t)-\frac{191 \sin (t)}{80}\right) \cos (2)+\frac{191\left(\cos (t)+\frac{80 \sin (t)}{191}\right) \sin (2)}{80}\right) \mathrm{e}^{\frac{2 t}{5}+\frac{1}{5}}+\left(\mathrm { e } \left(\frac{159 \sqrt{11} \sin (\sqrt{11}}{440}\right.\right.\right.
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```


\checkmark Solution by Maple

Time used: 6.812 (sec). Leaf size: 178

```
dsolve([diff (y (t),t$2)+diff(y(t),t)+3*y(t)=(1-Heaviside(t-2))*exp(-(t-2)/10)*sin(t-2),y(0)
```

$y(t)$

$$
\begin{aligned}
= & \frac{8000\left(\left(\cos (t)-\frac{191 \sin (t)}{80}\right) \cos (2)+\frac{191 \sin (2)\left(\cos (t)+\frac{80 \sin (t)}{191}\right)}{80}\right) \text { Heaviside }(t-2) \mathrm{e}^{-\frac{t}{10}+\frac{1}{5}}}{42881} \\
& +\frac{100\left(11(80 \cos (2)+191 \sin (2)) \cos \left(\frac{\sqrt{11} t}{2}\right)-318\left(\cos (2)-\frac{782 \sin (2)}{795}\right) \sin \left(\frac{\sqrt{11} t}{2}\right) \sqrt{11}\right) \mathrm{e}^{\frac{1}{5}-\frac{t}{2}}}{471691} \\
& +\left(-\frac{4000}{42881}+\frac{9550 i}{42881}\right) \mathrm{e}^{\left(-\frac{1}{10}-i\right)(t-2)}+\left(-\frac{4000}{42881}-\frac{9550 i}{42881}\right) \mathrm{e}^{\left(-\frac{1}{10}+i\right)(t-2)} \\
& +\frac{200 \text { Heaviside }(t-2)\left((-159 \sqrt{11} \sin (\sqrt{11})-440 \cos (\sqrt{11})) \cos \left(\frac{\sqrt{11} t}{2}\right)+(159 \cos (\sqrt{11}) \sqrt{11}-4\right.}{471691}
\end{aligned}
$$

$$
+\frac{5 \mathrm{e}^{-\frac{t}{2}} \sqrt{11} \sin \left(\frac{\sqrt{11} t}{2}\right)}{11}+\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{\sqrt{11} t}{2}\right)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 6.103 (sec). Leaf size: 243
DSolve [\{y' ' $[\mathrm{t}]+\mathrm{y}$ ' $[\mathrm{t}]+8 * y[\mathrm{t}]==(1-$ UnitStep $\left.[\mathrm{t}-2]) * \operatorname{Exp}[-(\mathrm{t}-2) / 10] * \operatorname{Sin}[\mathrm{t}-2],\left\{\mathrm{y}[0]==1, \mathrm{y}{ }^{\prime}[0]==2\right\}\right\}, \mathrm{y}$
$y(t)$

21.5 problem 5

21.5.1 Existence and uniqueness analysis 3470
21.5.2 Maple step by step solution . 3473

Internal problem ID [13239]
Internal file name [OUTPUT/11894_Tuesday_December_05_2023_12_12_51_PM_18318295/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 6. Laplace transform. Section 6.6. page 624
Problem number: 5 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_laplace", "second_order_linear_constant_coeff", "second_order_ode_can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+16 y=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=1\right]
$$

21.5.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =16 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+16 y=0
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=16$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
& \mathcal{L}\left(y^{\prime}\right)=s Y(s)-y(0) \\
& \mathcal{L}\left(y^{\prime \prime}\right)=s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+16 Y(s)=0 \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =1 \\
y^{\prime}(0) & =1
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-1-s+16 Y(s)=0
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{s+1}{s^{2}+16}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{\frac{1}{2}-\frac{i}{8}}{s-4 i}+\frac{\frac{1}{2}+\frac{i}{8}}{s+4 i}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{\frac{1}{2}-\frac{i}{8}}{s-4 i}\right) & =\left(\frac{1}{2}-\frac{i}{8}\right) \mathrm{e}^{4 i t} \\
\mathcal{L}^{-1}\left(\frac{\frac{1}{2}+\frac{i}{8}}{s+4 i}\right) & =\left(\frac{1}{2}+\frac{i}{8}\right) \mathrm{e}^{-4 i t}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=\cos (4 t)+\frac{\sin (4 t)}{4}
$$

Simplifying the solution gives

$$
y=\cos (4 t)+\frac{\sin (4 t)}{4}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\cos (4 t)+\frac{\sin (4 t)}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\cos (4 t)+\frac{\sin (4 t)}{4}
$$

Verified OK.

21.5.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+16 y=0, y(0)=1,\left.y^{\prime}\right|_{\{t=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+16=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-64})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-4 \mathrm{I}, 4 \mathrm{I})
$$

- 1st solution of the ODE

$$
y_{1}(t)=\cos (4 t)
$$

- $\quad 2 \mathrm{nd}$ solution of the ODE

$$
y_{2}(t)=\sin (4 t)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

- \quad Substitute in solutions

$$
y=c_{1} \cos (4 t)+c_{2} \sin (4 t)
$$

Check validity of solution $y=c_{1} \cos (4 t)+c_{2} \sin (4 t)$

- Use initial condition $y(0)=1$

$$
1=c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=-4 c_{1} \sin (4 t)+4 c_{2} \cos (4 t)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=1$

$$
1=4 c_{2}
$$

- Solve for c_{1} and c_{2}
$\left\{c_{1}=1, c_{2}=\frac{1}{4}\right\}$
- Substitute constant values into general solution and simplify

$$
y=\cos (4 t)+\frac{\sin (4 t)}{4}
$$

- \quad Solution to the IVP

$$
y=\cos (4 t)+\frac{\sin (4 t)}{4}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 4.594 (sec). Leaf size: 15

```
dsolve([diff(y(t),t$2)+16*y(t)=0,y(0) = 1, D(y)(0) = 1],y(t), singsol=all)
```

$$
y(t)=\cos (4 t)+\frac{\sin (4 t)}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 18
DSolve[\{y' ' $\left.[t]+16 * y[t]==0,\left\{y[0]==1, y^{\prime}[0]==1\right\}\right\}, y[t], t$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{1}{4} \sin (4 t)+\cos (4 t)
$$

21.6 problem 6

21.6.1 Existence and uniqueness analysis 3475
21.6.2 Maple step by step solution . 3478

Internal problem ID [13240]
Internal file name [OUTPUT/11895_Tuesday_December_05_2023_12_12_51_PM_74600233/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 6. Laplace transform. Section 6.6. page 624
Problem number: 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second__order_linear_constant__coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y=\sin (2 t)
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

21.6.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =4 \\
F & =\sin (2 t)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y=\sin (2 t)
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=4$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=\sin (2 t)$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+4 Y(s)=\frac{2}{s^{2}+4} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =0
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)+4 Y(s)=\frac{2}{s^{2}+4}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{2}{\left(s^{2}+4\right)^{2}}
$$

Applying partial fractions decomposition results in

$$
Y(s)=-\frac{1}{8(s-2 i)^{2}}-\frac{1}{8(s+2 i)^{2}}-\frac{i}{16(s-2 i)}+\frac{i}{16 s+32 i}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(-\frac{1}{8(s-2 i)^{2}}\right) & =-\frac{t \mathrm{e}^{2 i t}}{8} \\
\mathcal{L}^{-1}\left(-\frac{1}{8(s+2 i)^{2}}\right) & =-\frac{t \mathrm{e}^{-2 i t}}{8} \\
\mathcal{L}^{-1}\left(-\frac{i}{16(s-2 i)}\right) & =-\frac{i \mathrm{e}^{2 i t}}{16} \\
\mathcal{L}^{-1}\left(\frac{i}{16 s+32 i}\right) & =\frac{i \mathrm{e}^{-2 i t}}{16}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=\frac{\sin (2 t)}{8}-\frac{\cos (2 t) t}{4}
$$

Simplifying the solution gives

$$
y=\frac{\sin (2 t)}{8}-\frac{\cos (2 t) t}{4}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sin (2 t)}{8}-\frac{\cos (2 t) t}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\sin (2 t)}{8}-\frac{\cos (2 t) t}{4}
$$

Verified OK.

21.6.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+4 y=\sin (2 t), y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+4=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-16})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-2 \mathrm{I}, 2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(t)=\cos (2 t)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(t)=\sin (2 t)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)
$$

- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+y_{p}(t)$
$\square \quad$ Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function

$$
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=\sin (2 t)\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\cos (2 t) & \sin (2 t) \\ -2 \sin (2 t) & 2 \cos (2 t)\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=2$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{\cos (2 t)\left(\int \sin (2 t)^{2} d t\right)}{2}+\frac{\sin (2 t)\left(\int \sin (4 t) d t\right)}{4}$
- Compute integrals
$y_{p}(t)=\frac{\sin (2 t)}{16}-\frac{\cos (2 t) t}{4}$
- \quad Substitute particular solution into general solution to ODE
$y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+\frac{\sin (2 t)}{16}-\frac{\cos (2 t) t}{4}$
Check validity of solution $y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+\frac{\sin (2 t)}{16}-\frac{\cos (2 t) t}{4}$
- Use initial condition $y(0)=0$
$0=c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t)-\frac{\cos (2 t)}{8}+\frac{\sin (2 t) t}{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=0$
$0=-\frac{1}{8}+2 c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=0, c_{2}=\frac{1}{16}\right\}$
- Substitute constant values into general solution and simplify
$y=\frac{\sin (2 t)}{8}-\frac{\cos (2 t) t}{4}$
- \quad Solution to the IVP
$y=\frac{\sin (2 t)}{8}-\frac{\cos (2 t) t}{4}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 4.359 (sec). Leaf size: 18

```
dsolve([diff (y(t),t$2)+4*y(t)=sin(2*t),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)
```

$$
y(t)=\frac{\sin (2 t)}{8}-\frac{t \cos (2 t)}{4}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.055 (sec). Leaf size: 21
DSolve $\left[\left\{y^{\prime \prime}[t]+4 * y[t]==\operatorname{Sin}[2 * t],\left\{y[0]==0, y^{\prime}[0]==0\right\}\right\}, y[t], t\right.$, IncludeSingularSolutions $->$ True]

$$
y(t) \rightarrow \frac{1}{8}(\sin (2 t)-2 t \cos (2 t))
$$

21.7 problem 7

21.7.1 Existence and uniqueness analysis 3481
21.7.2 Maple step by step solution . 3484]

Internal problem ID [13241]
Internal file name [OUTPUT/11896_Tuesday_December_05_2023_12_12_51_PM_53853751/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall.
4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 6. Laplace transform. Section 6.6. page 624
Problem number: 7 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff", "linear_second_order_oode_solved__by_an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=2\right]
$$

21.7.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =2 \\
q(t) & =1 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

The domain of $p(t)=2$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=1$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+2 s Y(s)-2 y(0)+Y(s)=0 \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =1 \\
y^{\prime}(0) & =2
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-4-s+2 s Y(s)+Y(s)=0
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{s+4}{s^{2}+2 s+1}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{3}{(s+1)^{2}}+\frac{1}{s+1}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{3}{(s+1)^{2}}\right) & =3 t \mathrm{e}^{-t} \\
\mathcal{L}^{-1}\left(\frac{1}{s+1}\right) & =\mathrm{e}^{-t}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=(3 t+1) \mathrm{e}^{-t}
$$

Simplifying the solution gives

$$
y=(3 t+1) \mathrm{e}^{-t}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=(3 t+1) \mathrm{e}^{-t} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=(3 t+1) \mathrm{e}^{-t}
$$

Verified OK.

21.7.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+2 y^{\prime}+y=0, y(0)=1,\left.y^{\prime}\right|_{\{t=0\}}=2\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE

$$
r^{2}+2 r+1=0
$$

- Factor the characteristic polynomial
$(r+1)^{2}=0$
- Root of the characteristic polynomial
$r=-1$
- 1st solution of the ODE
$y_{1}(t)=\mathrm{e}^{-t}$
- Repeated root, multiply $y_{1}(t)$ by t to ensure linear independence $y_{2}(t)=t \mathrm{e}^{-t}$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{-t}+c_{2} t \mathrm{e}^{-t}$
Check validity of solution $y=c_{1} \mathrm{e}^{-t}+c_{2} t \mathrm{e}^{-t}$
- Use initial condition $y(0)=1$
$1=c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-t}-c_{2} t \mathrm{e}^{-t}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=2$
$2=-c_{1}+c_{2}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=1, c_{2}=3\right\}$
- Substitute constant values into general solution and simplify

$$
y=(3 t+1) \mathrm{e}^{-t}
$$

- \quad Solution to the IVP

$$
y=(3 t+1) \mathrm{e}^{-t}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 4.343 (sec). Leaf size: 14

```
dsolve([diff(y(t),t$2)+2*diff(y(t),t)+y(t)=0,y(0) = 1, D(y)(0) = 2],y(t), singsol=all)
```

$$
y(t)=(3 t+1) \mathrm{e}^{-t}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 16

```
DSolve[{y''[t]+2*y'[t]+y[t]==0,{y[0]==1,y'[0]==2}},y[t],t,IncludeSingularSolutions -> True]
```

$$
y(t) \rightarrow e^{-t}(3 t+1)
$$

21.8 problem 8

21.8.1 Existence and uniqueness analysis 3486
21.8.2 Maple step by step solution . 3489

Internal problem ID [13242]
Internal file name [OUTPUT/11897_Tuesday_December_05_2023_12_12_52_PM_9883834/index.tex]
Book: DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section: Chapter 6. Laplace transform. Section 6.6. page 624
Problem number: 8 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second__order_linear_constant__coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+16 y=t
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=1\right]
$$

21.8.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
$$

Where here

$$
\begin{aligned}
p(t) & =0 \\
q(t) & =16 \\
F & =t
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+16 y=t
$$

The domain of $p(t)=0$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is inside this domain. The domain of $q(t)=16$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. The domain of $F=t$ is

$$
\{-\infty<t<\infty\}
$$

And the point $t_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let

$$
\mathcal{L}(y)=Y(s)
$$

Taking the Laplace transform of the ode and using the relations that

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
$$

The given ode now becomes an algebraic equation in the Laplace domain

$$
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+16 Y(s)=\frac{1}{s^{2}} \tag{1}
\end{equation*}
$$

But the initial conditions are

$$
\begin{aligned}
y(0) & =1 \\
y^{\prime}(0) & =1
\end{aligned}
$$

Substituting these initial conditions in above in Eq (1) gives

$$
s^{2} Y(s)-1-s+16 Y(s)=\frac{1}{s^{2}}
$$

Solving the above equation for $Y(s)$ results in

$$
Y(s)=\frac{s^{3}+s^{2}+1}{s^{2}\left(s^{2}+16\right)}
$$

Applying partial fractions decomposition results in

$$
Y(s)=\frac{\frac{1}{2}-\frac{15 i}{128}}{s-4 i}+\frac{\frac{1}{2}+\frac{15 i}{128}}{s+4 i}+\frac{1}{16 s^{2}}
$$

The inverse Laplace of each term above is now found, which gives

$$
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{\frac{1}{2}-\frac{15 i}{128}}{s-4 i}\right) & =\left(\frac{1}{2}-\frac{15 i}{128}\right) \mathrm{e}^{4 i t} \\
\mathcal{L}^{-1}\left(\frac{\frac{1}{2}+\frac{15 i}{128}}{s+4 i}\right) & =\left(\frac{1}{2}+\frac{15 i}{128}\right) \mathrm{e}^{-4 i t} \\
\mathcal{L}^{-1}\left(\frac{1}{16 s^{2}}\right) & =\frac{t}{16}
\end{aligned}
$$

Adding the above results and simplifying gives

$$
y=\cos (4 t)+\frac{15 \sin (4 t)}{64}+\frac{t}{16}
$$

Simplifying the solution gives

$$
y=\cos (4 t)+\frac{15 \sin (4 t)}{64}+\frac{t}{16}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\cos (4 t)+\frac{15 \sin (4 t)}{64}+\frac{t}{16} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\cos (4 t)+\frac{15 \sin (4 t)}{64}+\frac{t}{16}
$$

Verified OK.

21.8.2 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}+16 y=t, y(0)=1,\left.y^{\prime}\right|_{\{t=0\}}=1\right]$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+16=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-64})}{2}$
- Roots of the characteristic polynomial
$r=(-4 \mathrm{I}, 4 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(t)=\cos (4 t)$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(t)=\sin (4 t)$
- General solution of the ODE
$y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (4 t)+c_{2} \sin (4 t)+y_{p}(t)$
Find a particular solution $y_{p}(t)$ of the ODE
- Use variation of parameters to find y_{p} here $f(t)$ is the forcing function $\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=t\right]$
- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\cos (4 t) & \sin (4 t) \\
-4 \sin (4 t) & 4 \cos (4 t)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(t), y_{2}(t)\right)=4$
- Substitute functions into equation for $y_{p}(t)$
$y_{p}(t)=-\frac{\cos (4 t)\left(\int t \sin (4 t) d t\right)}{4}+\frac{\sin (4 t)\left(\int \cos (4 t) t d t\right)}{4}$
- Compute integrals

$$
y_{p}(t)=\frac{t}{16}
$$

- Substitute particular solution into general solution to ODE $y=c_{1} \cos (4 t)+c_{2} \sin (4 t)+\frac{t}{16}$
Check validity of solution $y=c_{1} \cos (4 t)+c_{2} \sin (4 t)+\frac{t}{16}$
- Use initial condition $y(0)=1$
$1=c_{1}$
- Compute derivative of the solution
$y^{\prime}=-4 c_{1} \sin (4 t)+4 c_{2} \cos (4 t)+\frac{1}{16}$
- Use the initial condition $\left.y^{\prime}\right|_{\{t=0\}}=1$
$1=\frac{1}{16}+4 c_{2}$
- Solve for c_{1} and c_{2} $\left\{c_{1}=1, c_{2}=\frac{15}{64}\right\}$
- Substitute constant values into general solution and simplify
$y=\cos (4 t)+\frac{15 \sin (4 t)}{64}+\frac{t}{16}$
- \quad Solution to the IVP
$y=\cos (4 t)+\frac{15 \sin (4 t)}{64}+\frac{t}{16}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 4.344 (sec). Leaf size: 18

```
dsolve([diff(y(t),t$2)+16*y(t)=t,y(0) = 1, D(y)(0) = 1],y(t), singsol=all)
```

$$
y(t)=\cos (4 t)+\frac{15 \sin (4 t)}{64}+\frac{t}{16}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 24
DSolve[\{y' ' $\left.[\mathrm{t}]+16 * y[\mathrm{t}]==\mathrm{t},\left\{\mathrm{y}[0]==1, \mathrm{y}^{\prime}[0]==1\right\}\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}$, IncludeSingularSolutions \rightarrow True]

$$
y(t) \rightarrow \frac{1}{64}(4 t+15 \sin (4 t))+\cos (4 t)
$$

