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Internal problem ID [5045]
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Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.2, ODEs with constant Coefficients.
page 307
Problem number: 10.2.4.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff", "second_order_ode_can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

x′′ − ω2x = 0

1.1.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = 0
Where in the above A = 1, B = 0, C = −ω2. Let the solution be x = eλt. Substituting
this into the ODE gives

λ2eλt − ω2eλt = 0 (1)
Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 − ω2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC
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Substituting A = 1, B = 0, C = −ω2 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (−ω2)

= ±
√
ω2

Hence
λ1 = +

√
ω2

λ2 = −
√
ω2

Which simplifies to

λ1 =
√
ω2

λ2 = −
√
ω2

Since roots are real and distinct, then the solution is

x = c1e
λ1t + c2e

λ2t

x = c1e

(√
ω2
)
t + c2e

(
−
√
ω2
)
t

Or
x = c1e

√
ω2 t + c2e−

√
ω2 t

Summary
The solution(s) found are the following

(1)x = c1e
√
ω2 t + c2e−

√
ω2 t

Verification of solutions

x = c1e
√
ω2 t + c2e−

√
ω2 t

Verified OK.
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1.1.2 Solving as second order ode can be made integrable ode

Multiplying the ode by x′ gives

x′x′′ − ω2x′x = 0

Integrating the above w.r.t t gives∫ (
x′x′′ − ω2x′x

)
dt = 0

x′2

2 − ω2x2

2 = c2

Which is now solved for x. Solving the given ode for x′ results in 2 differential equations
to solve. Each one of these will generate a solution. The equations generated are

x′ =
√
ω2x2 + 2c1 (1)

x′ = −
√

ω2x2 + 2c1 (2)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives ∫ 1√
ω2x2 + 2c1

dx =
∫

dt

ln
(

ω2x√
ω2 +

√
ω2x2 + 2c1

)
√
ω2

= t+ c2

Raising both side to exponential gives

e
ln

(
ω2x√
ω2

+
√

ω2x2+2c1
)

√
ω2 = et+c2

Which simplifies to (
ωx csgn (ω) +

√
ω2x2 + 2c1

) 1√
ω2 = c3et

Simplifying the solution x =
csgn(ω)

((
c3et

)csgn(ω)ω−2
(
c3et

)− csgn(ω)ω
c1
)

2ω to x =
(
c3et

)ω−2
(
c3et

)−ω
c1

2ω
Solving equation (2)

Integrating both sides gives ∫
− 1√

ω2x2 + 2c1
dx =

∫
dt

−
ln
(

ω2x√
ω2 +

√
ω2x2 + 2c1

)
√
ω2

= t+ c4
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Raising both side to exponential gives

e−
ln

(
ω2x√
ω2

+
√

ω2x2+2c1
)

√
ω2 = et+c4

Which simplifies to (
ωx csgn (ω) +

√
ω2x2 + 2c1

)− csgn(ω)
ω = c5et

Simplifying the solution x = −
csgn(ω)

(
2
(
c5et

)csgn(ω)ω
c1−

(
c5et

)− csgn(ω)ω
)

2ω to x = −2
(
c5et

)ω
c1−

(
c5et

)−ω

2ω
Summary
The solution(s) found are the following

(1)x = (c3et)ω − 2(c3et)−ω c1
2ω

(2)x = −2(c5et)ω c1 − (c5et)−ω

2ω
Verification of solutions

x = (c3et)ω − 2(c3et)−ω c1
2ω

Verified OK.

x = −2(c5et)ω c1 − (c5et)−ω

2ω

Verified OK.

1.1.3 Solving using Kovacic algorithm

Writing the ode as

x′′ − ω2x = 0 (1)
Ax′′ +Bx′ + Cx = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = −ω2

Applying the Liouville transformation on the dependent variable gives

z(t) = xe
∫

B
2A dt
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Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = ω2

1 (6)

Comparing the above to (5) shows that

s = ω2

t = 1

Therefore eq. (4) becomes

z′′(t) =
(
ω2) z(t) (7)

Equation (7) is now solved. After finding z(t) then x is found using the inverse trans-
formation

x = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 1: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = ω2 is not a function of t, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(t) = e
√
ω2 t

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in x is found from

x1 = z1e
∫
− 1

2
B
A

dt

Since B = 0 then the above reduces to
x1 = z1

= e
√
ω2 t

Which simplifies to

x1 = e
√
ω2 t

The second solution x2 to the original ode is found using reduction of order

x2 = x1

∫
e
∫
−B

A
dt

x2
1

dt

Since B = 0 then the above becomes

x2 = x1

∫ 1
x2
1
dt

= e
√
ω2 t

∫ 1
e2

√
ω2 t

dt

= e
√
ω2 t

(
−csgn (ω) e−2 csgn(ω)ωt

2ω

)

8



Therefore the solution is

x = c1x1 + c2x2

= c1
(
e
√
ω2 t
)
+ c2

(
e
√
ω2 t

(
−csgn (ω) e−2 csgn(ω)ωt

2ω

))

Simplifying the solution x = c1e
√
ω2 t − c2 csgn(ω)e− csgn(ω)ωt

2ω to x = c1e
√
ω2 t − c2e−ωt

2ω
Summary
The solution(s) found are the following

(1)x = c1e
√
ω2 t − c2e−ωt

2ω
Verification of solutions

x = c1e
√
ω2 t − c2e−ωt

2ω

Verified OK.

1.1.4 Maple step by step solution

Let’s solve
x′′ − ω2x = 0

• Highest derivative means the order of the ODE is 2
x′′

• Characteristic polynomial of ODE
−ω2 + r2 = 0

• Factor the characteristic polynomial
−(ω − r) (ω + r) = 0

• Roots of the characteristic polynomial
r = (ω,−ω)

• 1st solution of the ODE
x1(t) = eωt

• 2nd solution of the ODE
x2(t) = e−ωt
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• General solution of the ODE
x = c1x1(t) + c2x2(t)

• Substitute in solutions
x = c1eωt + c2e−ωt

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve(diff(x(t),t$2)-omega^2*x(t)=0,x(t), singsol=all)� �

x(t) = c1eωt + c2e−ωt

3 Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 23� �
DSolve[x''[t]-\[Omega]^2*x[t]==0,x[t],t,IncludeSingularSolutions -> True]� �

x(t) → c1e
tω + c2e

−tω
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1.2 problem 10.2.5
1.2.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 12

Internal problem ID [5046]
Internal file name [OUTPUT/4539_Sunday_June_05_2022_03_00_33_PM_16585502/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.2, ODEs with constant Coefficients.
page 307
Problem number: 10.2.5.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _missing_x ]]

x′′′ − x′′ + x′ − x = 0

The characteristic equation is

λ3 − λ2 + λ− 1 = 0

The roots of the above equation are

λ1 = 1
λ2 = i

λ3 = −i

Therefore the homogeneous solution is

xh(t) = c1et + e−itc2 + eitc3

The fundamental set of solutions for the homogeneous solution are the following

x1 = et

x2 = e−it

x3 = eit
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Summary
The solution(s) found are the following

(1)x = c1et + e−itc2 + eitc3
Verification of solutions

x = c1et + e−itc2 + eitc3

Verified OK.

1.2.1 Maple step by step solution

Let’s solve
x′′′ − x′′ + x′ − x = 0

• Highest derivative means the order of the ODE is 3
x′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable x1(t)

x1(t) = x

◦ Define new variable x2(t)
x2(t) = x′

◦ Define new variable x3(t)
x3(t) = x′′

◦ Isolate for x′
3(t) using original ODE

x′
3(t) = x3(t)− x2(t) + x1(t)

Convert linear ODE into a system of first order ODEs
[x2(t) = x′

1(t) , x3(t) = x′
2(t) , x′

3(t) = x3(t)− x2(t) + x1(t)]
• Define vector

→
x(t) =


x1(t)
x2(t)
x3(t)


• System to solve
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→
x
′
(t) =


0 1 0
0 0 1
1 −1 1

 · →x(t)

• Define the coefficient matrix

A =


0 1 0
0 0 1
1 −1 1


• Rewrite the system as

→
x
′
(t) = A · →x(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

1,


1
1
1


 ,

−I,


−1
I
1


 ,

I,


−1
−I
1





• Consider eigenpair1,


1
1
1




• Solution to homogeneous system from eigenpair

→
x1 = et ·


1
1
1


• Consider complex eigenpair, complex conjugate eigenvalue can be ignored−I,


−1
I
1




• Solution from eigenpair
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e−It ·


−1
I
1


• Use Euler identity to write solution in terms of sin and cos

(cos (t)− I sin (t)) ·


−1
I
1


• Simplify expression

− cos (t) + I sin (t)
I(cos (t)− I sin (t))
cos (t)− I sin (t)


• Both real and imaginary parts are solutions to the homogeneous system→

x2(t) =


− cos (t)
sin (t)
cos (t)

 ,
→
x3(t) =


sin (t)
cos (t)
− sin (t)




• General solution to the system of ODEs
→
x = c1

→
x1 + c2

→
x2(t) + c3

→
x3(t)

• Substitute solutions into the general solution

→
x = c1et ·


1
1
1

+


−c2 cos (t) + c3 sin (t)
c2 sin (t) + c3 cos (t)
c2 cos (t)− c3 sin (t)


• First component of the vector is the solution to the ODE

x = c1et + c3 sin (t)− c2 cos (t)
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Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 17� �
dsolve(diff(x(t),t$3)-diff(x(t),t$2)+diff(x(t),t)-x(t)=0,x(t), singsol=all)� �

x(t) = c1et + c2 sin (t) + c3 cos (t)

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 22� �
DSolve[x'''[t]-x''[t]+x'[t]-x[t]==0,x[t],t,IncludeSingularSolutions -> True]� �

x(t) → c3e
t + c1 cos(t) + c2 sin(t)
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1.3 problem 10.2.8 part(1)
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Internal problem ID [5047]
Internal file name [OUTPUT/4540_Sunday_June_05_2022_03_00_33_PM_66076883/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.2, ODEs with constant Coefficients.
page 307
Problem number: 10.2.8 part(1).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _missing_x ]]

x′′ + 42x′ + x = 0

With initial conditions

[x(0) = 1, x′(0) = 0]

1.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

x′′ + p(t)x′ + q(t)x = F

Where here

p(t) = 42
q(t) = 1
F = 0
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Hence the ode is

x′′ + 42x′ + x = 0

The domain of p(t) = 42 is
{−∞ < t < ∞}

And the point t0 = 0 is inside this domain. The domain of q(t) = 1 is

{−∞ < t < ∞}

And the point t0 = 0 is also inside this domain. Hence solution exists and is unique.

1.3.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = 0

Where in the above A = 1, B = 42, C = 1. Let the solution be x = eλt. Substituting
this into the ODE gives

λ2eλt + 42λ eλt + eλt = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

λ2 + 42λ+ 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 42, C = 1 into the above gives

λ1,2 =
−42
(2) (1) ±

1
(2) (1)

√
422 − (4) (1) (1)

= −21± 2
√
110

Hence
λ1 = −21 + 2

√
110

λ2 = −21− 2
√
110
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Which simplifies to

λ1 = −21 + 2
√
110

λ2 = −21− 2
√
110

Since roots are real and distinct, then the solution is

x = c1e
λ1t + c2e

λ2t

x = c1e

(
−21+2

√
110
)
t + c2e

(
−21−2

√
110
)
t

Or

x = c1e
(
−21+2

√
110
)
t + c2e

(
−21−2

√
110
)
t

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

x = c1e
(
−21+2

√
110
)
t + c2e

(
−21−2

√
110
)
t (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting x = 1 and t = 0
in the above gives

1 = c1 + c2 (1A)

Taking derivative of the solution gives

x′ = c1
(
−21 + 2

√
110
)
e
(
−21+2

√
110
)
t + c2

(
−21− 2

√
110
)
e
(
−21−2

√
110
)
t

substituting x′ = 0 and t = 0 in the above gives

0 = (2c1 − 2c2)
√
110− 21c1 − 21c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 =
1
2 + 21

√
110

440

c2 =
1
2 − 21

√
110

440
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Substituting these values back in above solution results in

x = e
(
−21+2

√
110
)
t

2 + 21 e
(
−21+2

√
110
)
t√110

440 + e−
(
21+2

√
110
)
t

2 − 21 e−
(
21+2

√
110
)
t√110

440

Which simplifies to

x =
(
220 + 21

√
110
)
e
(
−21+2

√
110
)
t

440 +
(
220− 21

√
110
)
e
(
−21−2

√
110
)
t

440

Summary
The solution(s) found are the following

(1)x =
(
220 + 21

√
110
)
e
(
−21+2

√
110
)
t

440 +
(
220− 21

√
110
)
e
(
−21−2

√
110
)
t

440

(a) Solution plot (b) Slope field plot

Verification of solutions

x =
(
220 + 21

√
110
)
e
(
−21+2

√
110
)
t

440 +
(
220− 21

√
110
)
e
(
−21−2

√
110
)
t

440

Verified OK.
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1.3.3 Solving using Kovacic algorithm

Writing the ode as

x′′ + 42x′ + x = 0 (1)
Ax′′ +Bx′ + Cx = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 42 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(t) = xe
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 440
1 (6)

Comparing the above to (5) shows that

s = 440
t = 1

Therefore eq. (4) becomes

z′′(t) = 440z(t) (7)

Equation (7) is now solved. After finding z(t) then x is found using the inverse trans-
formation

x = z(t) e−
∫

B
2A dt
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 4: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 440 is not a function of t, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(t) = e−2t
√
110

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in x is found from

x1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
42
1 dt
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= z1e
−21t

= z1
(
e−21t)

Which simplifies to

x1 = e
(
−21−2

√
110
)
t

The second solution x2 to the original ode is found using reduction of order

x2 = x1

∫
e
∫
−B

A
dt

x2
1

dt

Substituting gives

x2 = x1

∫
e
∫
− 42

1 dt

(x1)2
dt

= x1

∫
e−42t

(x1)2
dt

= x1

(√
110 e4t

√
110

440

)

Therefore the solution is

x = c1x1 + c2x2

= c1

(
e
(
−21−2

√
110
)
t

)
+ c2

(
e
(
−21−2

√
110
)
t

(√
110 e4t

√
110

440

))

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

x = c1e
(
−21−2

√
110
)
t + c2e

(
−21+2

√
110
)
t√110

440 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting x = 1 and t = 0
in the above gives

1 = c1 +
c2
√
110

440 (1A)
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Taking derivative of the solution gives

x′ = c1
(
−21− 2

√
110
)
e
(
−21−2

√
110
)
t +

c2
(
−21 + 2

√
110
)
e
(
−21+2

√
110
)
t√110

440

substituting x′ = 0 and t = 0 in the above gives

0 = (−880c1 − 21c2)
√
110

440 − 21c1 +
c2
2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 =
1
2 − 21

√
110

440
c2 = 21 + 2

√
110

Substituting these values back in above solution results in

x = e
(
−21+2

√
110
)
t

2 + 21 e
(
−21+2

√
110
)
t√110

440 + e−
(
21+2

√
110
)
t

2 − 21 e−
(
21+2

√
110
)
t√110

440

Which simplifies to

x =
(
220 + 21

√
110
)
e
(
−21+2

√
110
)
t

440 +
(
220− 21

√
110
)
e
(
−21−2

√
110
)
t

440

Summary
The solution(s) found are the following

(1)x =
(
220 + 21

√
110
)
e
(
−21+2

√
110
)
t

440 +
(
220− 21

√
110
)
e
(
−21−2

√
110
)
t

440
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(a) Solution plot (b) Slope field plot

Verification of solutions

x =
(
220 + 21

√
110
)
e
(
−21+2

√
110
)
t

440 +
(
220− 21

√
110
)
e
(
−21−2

√
110
)
t

440

Verified OK.

1.3.4 Maple step by step solution

Let’s solve[
x′′ + 42x′ + x = 0, x(0) = 1, x′∣∣∣{t=0}

= 0
]

• Highest derivative means the order of the ODE is 2
x′′

• Characteristic polynomial of ODE
r2 + 42r + 1 = 0

• Use quadratic formula to solve for r

r =
(−42)±

(√
1760

)
2

• Roots of the characteristic polynomial
r =

(
−21− 2

√
110,−21 + 2

√
110
)
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• 1st solution of the ODE

x1(t) = e
(
−21−2

√
110
)
t

• 2nd solution of the ODE

x2(t) = e
(
−21+2

√
110
)
t

• General solution of the ODE
x = c1x1(t) + c2x2(t)

• Substitute in solutions

x = c1e
(
−21−2

√
110
)
t + c2e

(
−21+2

√
110
)
t

� Check validity of solution x = c1e
(
−21−2

√
110
)
t + c2e

(
−21+2

√
110
)
t

◦ Use initial condition x(0) = 1
1 = c1 + c2

◦ Compute derivative of the solution

x′ = c1
(
−21− 2

√
110
)
e
(
−21−2

√
110
)
t + c2

(
−21 + 2

√
110
)
e
(
−21+2

√
110
)
t

◦ Use the initial condition x′∣∣∣{t=0}
= 0

0 = c1
(
−21− 2

√
110
)
+
(
−21 + 2

√
110
)
c2

◦ Solve for c1 and c2{
c1 = 1

2 −
21

√
110

440 , c2 = 1
2 +

21
√
110

440

}
◦ Substitute constant values into general solution and simplify

x =
(
220+21

√
110
)
e
(
−21+2

√
110

)
t

440 +
(
220−21

√
110
)
e
(
−21−2

√
110

)
t

440

• Solution to the IVP

x =
(
220+21

√
110
)
e
(
−21+2

√
110

)
t

440 +
(
220−21

√
110
)
e
(
−21−2

√
110

)
t

440
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.078 (sec). Leaf size: 43� �
dsolve([diff(x(t),t$2)+42*diff(x(t),t)+x(t)=0,x(0) = 1, D(x)(0) = 0],x(t), singsol=all)� �

x(t) =
(
220 + 21

√
110
)
e
(
−21+2

√
110
)
t

440 +
(
220− 21

√
110
)
e
(
−21−2

√
110
)
t

440

3 Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 53� �
DSolve[{x''[t]+42*x'[t]+x[t]==0,{x[0]==1,x'[0]==0}},x[t],t,IncludeSingularSolutions -> True]� �

x(t) →
e
−
((

21+2
√
110
)
t
)((

881 + 84
√
110
)
e4

√
110t − 1

)
880 + 84

√
110
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1.4 problem 10.2.8 part(2)
1.4.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 28

Internal problem ID [5048]
Internal file name [OUTPUT/4541_Sunday_June_05_2022_03_00_34_PM_44292396/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.2, ODEs with constant Coefficients.
page 307
Problem number: 10.2.8 part(2).
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[ _high_order , _missing_x ]]

x′′′′ + x = 0

The characteristic equation is
λ4 + 1 = 0

The roots of the above equation are

λ1 =
√
2
2 + i

√
2

2

λ2 = −
√
2
2 + i

√
2

2

λ3 = −
√
2
2 − i

√
2

2

λ4 =
√
2
2 − i

√
2

2

Therefore the homogeneous solution is

xh(t) = e
(
−

√
2

2 + i
√
2

2

)
t
c1 + e

(√
2

2 + i
√
2

2

)
t
c2 + e

(
−

√
2

2 − i
√
2

2

)
t
c3 + e

(√
2

2 − i
√
2

2

)
t
c4
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The fundamental set of solutions for the homogeneous solution are the following

x1 = e
(
−

√
2
2 + i

√
2

2

)
t

x2 = e
(√

2
2 + i

√
2

2

)
t

x3 = e
(
−

√
2
2 − i

√
2

2

)
t

x4 = e
(√

2
2 − i

√
2

2

)
t

Summary
The solution(s) found are the following

(1)x = e
(
−

√
2

2 + i
√
2

2

)
t
c1 + e

(√
2

2 + i
√
2

2

)
t
c2 + e

(
−

√
2

2 − i
√
2

2

)
t
c3 + e

(√
2

2 − i
√
2

2

)
t
c4

Verification of solutions

x = e
(
−

√
2

2 + i
√
2

2

)
t
c1 + e

(√
2

2 + i
√
2

2

)
t
c2 + e

(
−

√
2

2 − i
√
2

2

)
t
c3 + e

(√
2

2 − i
√
2

2

)
t
c4

Verified OK.

1.4.1 Maple step by step solution

Let’s solve
x′′′′ + x = 0

• Highest derivative means the order of the ODE is 4
x′′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable x1(t)

x1(t) = x

◦ Define new variable x2(t)
x2(t) = x′

◦ Define new variable x3(t)
x3(t) = x′′

◦ Define new variable x4(t)
x4(t) = x′′′

◦ Isolate for x′
4(t) using original ODE

x′
4(t) = −x1(t)
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Convert linear ODE into a system of first order ODEs
[x2(t) = x′

1(t) , x3(t) = x′
2(t) , x4(t) = x′

3(t) , x′
4(t) = −x1(t)]

• Define vector

→
x(t) =


x1(t)
x2(t)
x3(t)
x4(t)


• System to solve

→
x
′
(t) =


0 1 0 0
0 0 1 0
0 0 0 1
−1 0 0 0

 · →x(t)

• Define the coefficient matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
−1 0 0 0


• Rewrite the system as

→
x
′
(t) = A · →x(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A


−

√
2
2 − I

√
2

2 ,



1(
−

√
2
2 − I

√
2

2

)3
1(

−
√
2
2 − I

√
2

2

)2
1

−
√
2

2 − I
√
2

2

1




,


−

√
2
2 + I

√
2

2 ,



1(
−

√
2

2 + I
√
2

2

)3
1(

−
√
2

2 + I
√
2

2

)2
1

−
√
2

2 + I
√
2

2

1




,


√
2
2 − I

√
2

2 ,



1(√
2

2 − I
√
2

2

)3
1(√

2
2 − I

√
2

2

)2
1√

2
2 − I

√
2

2

1




,


√
2
2 + I

√
2

2 ,



1(√
2
2 + I

√
2

2

)3
1(√

2
2 + I

√
2

2

)2
1√

2
2 + I

√
2

2

1






• Consider complex eigenpair, complex conjugate eigenvalue can be ignored
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
−

√
2
2 − I

√
2

2 ,



1(
−

√
2

2 − I
√

2
2

)3
1(

−
√
2

2 − I
√

2
2

)2
1

−
√
2

2 − I
√
2

2

1




• Solution from eigenpair

e
(
−

√
2
2 − I

√
2

2

)
t ·



1(
−

√
2
2 − I

√
2

2

)3
1(

−
√
2
2 − I

√
2

2

)2
1

−
√

2
2 − I

√
2

2

1


• Use Euler identity to write solution in terms of sin and cos

e− t
√
2

2 ·
(
cos
(

t
√
2

2

)
− I sin

(
t
√
2

2

))
·



1(
−

√
2

2 − I
√
2

2

)3
1(

−
√
2

2 − I
√
2

2

)2
1

−
√
2

2 − I
√
2

2

1


• Simplify expression

e− t
√
2

2 ·



cos
(

t
√
2

2

)
−I sin

(
t
√
2

2

)
(
−

√
2
2 − I

√
2

2

)3
cos
(

t
√
2

2

)
−I sin

(
t
√
2

2

)
(
−

√
2
2 − I

√
2

2

)2
cos
(

t
√
2

2

)
−I sin

(
t
√
2

2

)
−

√
2

2 − I
√
2

2

cos
(

t
√
2

2

)
− I sin

(
t
√
2

2

)


• Both real and imaginary parts are solutions to the homogeneous system
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
→
x1(t) = e− t

√
2

2 ·



cos
(

t
√
2

2

)√
2

2 +
sin
(

t
√
2

2

)√
2

2

− sin
(

t
√
2

2

)
−

cos
(

t
√
2

2

)√
2

2 +
sin
(

t
√
2

2

)√
2

2

cos
(

t
√
2

2

)


,
→
x2(t) = e− t

√
2

2 ·



cos
(

t
√
2

2

)√
2

2 −
sin
(

t
√
2

2

)√
2

2

− cos
(

t
√
2

2

)
cos
(

t
√
2

2

)√
2

2 +
sin
(

t
√
2

2

)√
2

2

− sin
(

t
√
2

2

)




• Consider complex eigenpair, complex conjugate eigenvalue can be ignored

√
2
2 − I

√
2

2 ,



1(√
2

2 − I
√
2

2

)3
1(√

2
2 − I

√
2

2

)2
1√

2
2 − I

√
2

2

1




• Solution from eigenpair

e
(√

2
2 − I

√
2

2

)
t ·



1(√
2
2 − I

√
2

2

)3
1(√

2
2 − I

√
2

2

)2
1√

2
2 − I

√
2

2

1


• Use Euler identity to write solution in terms of sin and cos

e t
√
2

2 ·
(
cos
(

t
√
2

2

)
− I sin

(
t
√
2

2

))
·



1(√
2

2 − I
√
2

2

)3
1(√

2
2 − I

√
2

2

)2
1√

2
2 − I

√
2

2

1


• Simplify expression
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e t
√
2

2 ·



cos
(

t
√
2

2

)
−I sin

(
t
√
2

2

)
(√

2
2 − I

√
2

2

)3
cos
(

t
√
2

2

)
−I sin

(
t
√
2

2

)
(√

2
2 − I

√
2

2

)2
cos
(

t
√
2

2

)
−I sin

(
t
√
2

2

)
√
2

2 − I
√
2

2

cos
(

t
√
2

2

)
− I sin

(
t
√
2

2

)


• Both real and imaginary parts are solutions to the homogeneous system

→
x3(t) = e t

√
2

2 ·



−
cos
(

t
√
2

2

)√
2

2 +
sin
(

t
√
2

2

)√
2

2

sin
(

t
√
2

2

)
cos
(

t
√
2

2

)√
2

2 +
sin
(

t
√
2

2

)√
2

2

cos
(

t
√
2

2

)


,
→
x4(t) = e t

√
2

2 ·



cos
(

t
√
2

2

)√
2

2 +
sin
(

t
√
2

2

)√
2

2

cos
(

t
√
2

2

)
cos
(

t
√

2
2

)√
2

2 −
sin
(

t
√
2

2

)√
2

2

− sin
(

t
√
2

2

)




• General solution to the system of ODEs

→
x = c1

→
x1(t) + c2

→
x2(t) + c3

→
x3(t) + c4

→
x4(t)

• Substitute solutions into the general solution

→
x = c1e−

t
√
2

2 ·



cos
(

t
√
2

2

)√
2

2 +
sin
(

t
√
2

2

)√
2

2

− sin
(

t
√
2

2

)
−

cos
(

t
√
2

2

)√
2

2 +
sin
(

t
√
2

2

)√
2

2

cos
(

t
√
2

2

)


+ c2e−

t
√
2

2 ·



cos
(

t
√

2
2

)√
2

2 −
sin
(

t
√
2

2

)√
2

2

− cos
(

t
√
2

2

)
cos
(

t
√
2

2

)√
2

2 +
sin
(

t
√
2

2

)√
2

2

− sin
(

t
√
2

2

)


+ c3e

t
√
2

2 ·



−
cos
(

t
√
2

2

)√
2

2 +
sin
(

t
√

2
2

)√
2

2

sin
(

t
√
2

2

)
cos
(

t
√
2

2

)√
2

2 +
sin
(

t
√

2
2

)√
2

2

cos
(

t
√
2

2

)


+ c4e

t
√
2

2 ·



cos
(

t
√
2

2

)√
2

2 +
sin
(

t
√
2

2

)√
2

2

cos
(

t
√
2

2

)
cos
(

t
√
2

2

)√
2

2 −
sin
(

t
√

2
2

)√
2

2

− sin
(

t
√
2

2

)


• First component of the vector is the solution to the ODE

x =

((
(c1+c2)e−

t
√
2

2 −e
t
√
2

2 (c3−c4)
)
cos
(

t
√
2

2

)
+sin

(
t
√
2

2

)(
(c1−c2)e−

t
√
2

2 +e
t
√
2

2 (c3+c4)
))√

2

2
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Maple trace

� �
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 61� �
dsolve(diff(x(t),t$4)+x(t)=0,x(t), singsol=all)� �

x(t) =
(
−c1e−

√
2 t
2 − c2e

√
2 t
2

)
sin
(√

2 t
2

)
+
(
c3e−

√
2 t
2 + c4e

√
2 t
2

)
cos
(√

2 t
2

)

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 65� �
DSolve[x''''[t]+x[t]==0,x[t],t,IncludeSingularSolutions -> True]� �

x(t) → e
− t√

2

((
c1e

√
2t + c2

)
cos
(

t√
2

)
+
(
c4e

√
2t + c3

)
sin
(

t√
2

))
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1.5 problem 10.2.8 part(3)
1.5.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 35

Internal problem ID [5049]
Internal file name [OUTPUT/4542_Sunday_June_05_2022_03_00_35_PM_42275176/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.2, ODEs with constant Coefficients.
page 307
Problem number: 10.2.8 part(3).
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_co-
efficients_ODE"

Maple gives the following as the ode type
[[_3rd_order , _missing_x ]]

x′′′ − 3x′′ − 9x′ − 5x = 0

The characteristic equation is

λ3 − 3λ2 − 9λ− 5 = 0

The roots of the above equation are

λ1 = 5
λ2 = −1
λ3 = −1

Therefore the homogeneous solution is

xh(t) = e−tc1 + t e−tc2 + e5tc3

The fundamental set of solutions for the homogeneous solution are the following

x1 = e−t

x2 = t e−t

x3 = e5t
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Summary
The solution(s) found are the following

(1)x = e−tc1 + t e−tc2 + e5tc3
Verification of solutions

x = e−tc1 + t e−tc2 + e5tc3

Verified OK.

1.5.1 Maple step by step solution

Let’s solve
x′′′ − 3x′′ − 9x′ − 5x = 0

• Highest derivative means the order of the ODE is 3
x′′′

� Convert linear ODE into a system of first order ODEs
◦ Define new variable x1(t)

x1(t) = x

◦ Define new variable x2(t)
x2(t) = x′

◦ Define new variable x3(t)
x3(t) = x′′

◦ Isolate for x′
3(t) using original ODE

x′
3(t) = 3x3(t) + 9x2(t) + 5x1(t)

Convert linear ODE into a system of first order ODEs
[x2(t) = x′

1(t) , x3(t) = x′
2(t) , x′

3(t) = 3x3(t) + 9x2(t) + 5x1(t)]
• Define vector

→
x(t) =


x1(t)
x2(t)
x3(t)


• System to solve
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→
x
′
(t) =


0 1 0
0 0 1
5 9 3

 · →x(t)

• Define the coefficient matrix

A =


0 1 0
0 0 1
5 9 3


• Rewrite the system as

→
x
′
(t) = A · →x(t)

• To solve the system, find the eigenvalues and eigenvectors of A
• Eigenpairs of A

−1,


1
−1
1


 ,

−1,


0
0
0


 ,

5,


1
25
1
5

1





• Consider eigenpair, with eigenvalue of algebraic multiplicity 2−1,


1
−1
1




• First solution from eigenvalue − 1

→
x1(t) = e−t ·


1
−1
1


• Form of the 2nd homogeneous solution where →

p is to be solved for, λ = −1 is the eigenvalue, and →
v is the eigenvector

→
x2(t) = eλt

(
t
→
v + →

p
)

• Note that the t multiplying →
v makes this solution linearly independent to the 1st solution obtained from λ = −1

• Substitute →
x2(t) into the homogeneous system

λ eλt
(
t
→
v + →

p
)
+ eλt→v =

(
eλtA

)
·
(
t
→
v + →

p
)
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• Use the fact that →
v is an eigenvector of A

λ eλt
(
t
→
v + →

p
)
+ eλt→v = eλt

(
λt

→
v + A · →p

)
• Simplify equation

λ
→
p + →

v = A · →p

• Make use of the identity matrix I

(λ · I) · →p + →
v = A · →p

• Condition →
p must meet for →

x2(t) to be a solution to the homogeneous system

(A− λ · I) · →p = →
v

• Choose →
p to use in the second solution to the homogeneous system from eigenvalue − 1


0 1 0
0 0 1
5 9 3

− (−1) ·


1 0 0
0 1 0
0 0 1


 · →p =


1
−1
1


• Choice of →

p

→
p =


1
0
0


• Second solution from eigenvalue − 1

→
x2(t) = e−t ·

t ·


1
−1
1

+


1
0
0




• Consider eigenpair5,


1
25
1
5

1




• Solution to homogeneous system from eigenpair

→
x3 = e5t ·


1
25
1
5

1


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• General solution to the system of ODEs
→
x = c1

→
x1(t) + c2

→
x2(t) + c3

→
x3

• Substitute solutions into the general solution

→
x = e−tc1 ·


1
−1
1

+ c2e−t ·

t ·


1
−1
1

+


1
0
0


+ e5tc3 ·


1
25
1
5

1


• First component of the vector is the solution to the ODE

x = ((t+ 1) c2 + c1) e−t + e5tc3
25

Maple trace

� �
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 21� �
dsolve(diff(x(t),t$3)-3*diff(x(t),t$2)-9*diff(x(t),t)-5*x(t)=0,x(t), singsol=all)� �

x(t) = (c3t+ c2) e−t + c1e5t

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 26� �
DSolve[x'''[t]-3*x''[t]-9*x'[t]-5*x[t]==0,x[t],t,IncludeSingularSolutions -> True]� �

x(t) → e−t
(
c2t+ c3e

6t + c1
)
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1.6 problem 10.2.10
1.6.1 Solving as second order linear constant coeff ode . . . . . . . . 39
1.6.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 42
1.6.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 47

Internal problem ID [5050]
Internal file name [OUTPUT/4543_Sunday_June_05_2022_03_00_36_PM_76937184/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.2, ODEs with constant Coefficients.
page 307
Problem number: 10.2.10.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

x′′ + 2γx′ + ω0x = F cos (ωt)

1.6.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = f(t)

Where A = 1, B = 2γ, C = ω0, f(t) = F cos (ωt). Let the solution be

x = xh + xp

Where xh is the solution to the homogeneous ODE Ax′′(t)+Bx′(t)+Cx(t) = 0, and xp

is a particular solution to the non-homogeneous ODE Ax′′(t) +Bx′(t) + Cx(t) = f(t).
xh is the solution to

x′′ + 2γx′ + ω0x = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ax′′(t) +Bx′(t) + Cx(t) = 0
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Where in the above A = 1, B = 2γ, C = ω0. Let the solution be x = eλt. Substituting
this into the ODE gives

λ2eλt + 2γλ eλt + ω0eλt = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλt gives

2γλ+ λ2 + ω0 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 2γ, C = ω0 into the above gives

λ1,2 =
−2γ
(2) (1) ±

1
(2) (1)

√
2γ2 − (4) (1) (ω0)

= −γ ±
√

γ2 − ω0

Hence
λ1 = −γ +

√
γ2 − ω0

λ2 = −γ −
√

γ2 − ω0

Which simplifies to

λ1 = −γ +
√

γ2 − ω0

λ2 = −γ −
√

γ2 − ω0

Since roots are real and distinct, then the solution is

x = c1e
λ1t + c2e

λ2t

x = c1e

(
−γ+

√
γ2−ω0

)
t + c2e

(
−γ−

√
γ2−ω0

)
t

Or

x = c1e
(
−γ+

√
γ2−ω0

)
t + c2e

(
−γ−

√
γ2−ω0

)
t

Therefore the homogeneous solution xh is

xh = c1e
(
−γ+

√
γ2−ω0

)
t + c2e

(
−γ−

√
γ2−ω0

)
t
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

F cos (ωt)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (ωt) , sin (ωt)}]

While the set of the basis functions for the homogeneous solution found earlier is{
e
(
−γ−

√
γ2−ω0

)
t
, e
(
−γ+

√
γ2−ω0

)
t

}
Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

xp = A1 cos (ωt) + A2 sin (ωt)

The unknowns {A1, A2} are found by substituting the above trial solution xp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−A1ω
2 cos (ωt)− A2ω

2 sin (ωt) + 2γ(−A1ω sin (ωt) + A2ω cos (ωt))
+ ω0(A1 cos (ωt) + A2 sin (ωt)) = F cos (ωt)

Solving for the unknowns by comparing coefficients results in[
A1 = − (ω2 − ω0)F

ω4 + (4γ2 − 2ω0)ω2 + ω2
0
, A2 =

2γFω

ω4 + (4γ2 − 2ω0)ω2 + ω2
0

]
Substituting the above back in the above trial solution xp, gives the particular solution

xp = − (ω2 − ω0)F cos (ωt)
ω4 + (4γ2 − 2ω0)ω2 + ω2

0
+ 2γFω sin (ωt)

ω4 + (4γ2 − 2ω0)ω2 + ω2
0

Therefore the general solution is

x = xh + xp

=
(
c1e

(
−γ+

√
γ2−ω0

)
t + c2e

(
−γ−

√
γ2−ω0

)
t

)
+
(
− (ω2 − ω0)F cos (ωt)
ω4 + (4γ2 − 2ω0)ω2 + ω2

0
+ 2γFω sin (ωt)

ω4 + (4γ2 − 2ω0)ω2 + ω2
0

)
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Which simplifies to

x = c1e
(
−γ+

√
γ2−ω0

)
t + c2e−

(
γ+
√

γ2−ω0
)
t

− (ω2 − ω0)F cos (ωt)
ω4 + (4γ2 − 2ω0)ω2 + ω2

0
+ 2γFω sin (ωt)

ω4 + (4γ2 − 2ω0)ω2 + ω2
0

Summary
The solution(s) found are the following

(1)
x = c1e

(
−γ+

√
γ2−ω0

)
t + c2e−

(
γ+
√

γ2−ω0
)
t

− (ω2 − ω0)F cos (ωt)
ω4 + (4γ2 − 2ω0)ω2 + ω2

0
+ 2γFω sin (ωt)

ω4 + (4γ2 − 2ω0)ω2 + ω2
0

Verification of solutions

x = c1e
(
−γ+

√
γ2−ω0

)
t + c2e−

(
γ+
√

γ2−ω0
)
t

− (ω2 − ω0)F cos (ωt)
ω4 + (4γ2 − 2ω0)ω2 + ω2

0
+ 2γFω sin (ωt)

ω4 + (4γ2 − 2ω0)ω2 + ω2
0

Verified OK.

1.6.2 Solving using Kovacic algorithm

Writing the ode as

x′′ + 2γx′ + ω0x = 0 (1)
Ax′′ +Bx′ + Cx = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 2γ (3)
C = ω0

Applying the Liouville transformation on the dependent variable gives

z(t) = xe
∫

B
2A dt

Then (2) becomes

z′′(t) = rz(t) (4)

42



Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = γ2 − ω0

1 (6)

Comparing the above to (5) shows that

s = γ2 − ω0

t = 1

Therefore eq. (4) becomes

z′′(t) =
(
γ2 − ω0

)
z(t) (7)

Equation (7) is now solved. After finding z(t) then x is found using the inverse trans-
formation

x = z(t) e−
∫

B
2A dt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 8: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = γ2 − ω0 is not a function of t, then there is no need run Kovacic algorithm
to obtain a solution for transformed ode z′′ = rz as one solution is

z1(t) = et
√

γ2−ω0

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in x is found from

x1 = z1e
∫
− 1

2
B
A

dt

= z1e
−
∫ 1

2
2γ
1 dt

= z1e
−tγ

= z1
(
e−tγ

)
Which simplifies to

x1 = e
(
−γ+

√
γ2−ω0

)
t

The second solution x2 to the original ode is found using reduction of order

x2 = x1

∫
e
∫
−B

A
dt

x2
1

dt

Substituting gives

x2 = x1

∫
e
∫
− 2γ

1 dt

(x1)2
dt

= x1

∫
e−2tγ

(x1)2
dt

= x1

(
− e−2t

√
γ2−ω0

2
√
γ2 − ω0

)
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Therefore the solution is

x = c1x1 + c2x2

= c1

(
e
(
−γ+

√
γ2−ω0

)
t

)
+ c2

(
e
(
−γ+

√
γ2−ω0

)
t

(
− e−2t

√
γ2−ω0

2
√
γ2 − ω0

))

This is second order nonhomogeneous ODE. Let the solution be

x = xh + xp

Where xh is the solution to the homogeneous ODE Ax′′(t)+Bx′(t)+Cx(t) = 0, and xp

is a particular solution to the nonhomogeneous ODE Ax′′(t) + Bx′(t) + Cx(t) = f(t).
xh is the solution to

x′′ + 2γx′ + ω0x = 0

The homogeneous solution is found using the Kovacic algorithm which results in

xh = c1e
(
−γ+

√
γ2−ω0

)
t − c2e−

(
γ+
√

γ2−ω0
)
t

2
√
γ2 − ω0

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

F cos (ωt)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (ωt) , sin (ωt)}]

While the set of the basis functions for the homogeneous solution found earlier is−e−
(
γ+
√

γ2−ω0
)
t

2
√
γ2 − ω0

, e
(
−γ+

√
γ2−ω0

)
t


Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

xp = A1 cos (ωt) + A2 sin (ωt)
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The unknowns {A1, A2} are found by substituting the above trial solution xp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−A1ω
2 cos (ωt)− A2ω

2 sin (ωt) + 2γ(−A1ω sin (ωt) + A2ω cos (ωt))
+ ω0(A1 cos (ωt) + A2 sin (ωt)) = F cos (ωt)

Solving for the unknowns by comparing coefficients results in[
A1 = − (ω2 − ω0)F

ω4 + (4γ2 − 2ω0)ω2 + ω2
0
, A2 =

2γFω

ω4 + (4γ2 − 2ω0)ω2 + ω2
0

]
Substituting the above back in the above trial solution xp, gives the particular solution

xp = − (ω2 − ω0)F cos (ωt)
ω4 + (4γ2 − 2ω0)ω2 + ω2

0
+ 2γFω sin (ωt)

ω4 + (4γ2 − 2ω0)ω2 + ω2
0

Therefore the general solution is

x = xh + xp

=

c1e
(
−γ+

√
γ2−ω0

)
t − c2e−

(
γ+
√

γ2−ω0
)
t

2
√
γ2 − ω0


+
(
− (ω2 − ω0)F cos (ωt)
ω4 + (4γ2 − 2ω0)ω2 + ω2

0
+ 2γFω sin (ωt)

ω4 + (4γ2 − 2ω0)ω2 + ω2
0

)
Summary
The solution(s) found are the following

(1)
x = c1e

(
−γ+

√
γ2−ω0

)
t − c2e−

(
γ+
√

γ2−ω0
)
t

2
√
γ2 − ω0

− (ω2 − ω0)F cos (ωt)
ω4 + (4γ2 − 2ω0)ω2 + ω2

0
+ 2γFω sin (ωt)

ω4 + (4γ2 − 2ω0)ω2 + ω2
0

Verification of solutions

x = c1e
(
−γ+

√
γ2−ω0

)
t − c2e−

(
γ+
√

γ2−ω0
)
t

2
√
γ2 − ω0

− (ω2 − ω0)F cos (ωt)
ω4 + (4γ2 − 2ω0)ω2 + ω2

0
+ 2γFω sin (ωt)

ω4 + (4γ2 − 2ω0)ω2 + ω2
0

Verified OK.
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1.6.3 Maple step by step solution

Let’s solve
x′′ + 2γx′ + ω0x = F cos (ωt)

• Highest derivative means the order of the ODE is 2
x′′

• Characteristic polynomial of homogeneous ODE
2γr + r2 + ω0 = 0

• Use quadratic formula to solve for r

r =
(−2γ)±

(√
4γ2−4ω0

)
2

• Roots of the characteristic polynomial
r =

(
−γ −

√
γ2 − ω0,−γ +

√
γ2 − ω0

)
• 1st solution of the homogeneous ODE

x1(t) = e
(
−γ−

√
γ2−ω0

)
t

• 2nd solution of the homogeneous ODE

x2(t) = e
(
−γ+

√
γ2−ω0

)
t

• General solution of the ODE
x = c1x1(t) + c2x2(t) + xp(t)

• Substitute in solutions of the homogeneous ODE

x = c1e
(
−γ−

√
γ2−ω0

)
t + c2e

(
−γ+

√
γ2−ω0

)
t + xp(t)

� Find a particular solution xp(t) of the ODE
◦ Use variation of parameters to find xp here f(t) is the forcing function[

xp(t) = −x1(t)
(∫ x2(t)f(t)

W (x1(t),x2(t))dt
)
+ x2(t)

(∫ x1(t)f(t)
W (x1(t),x2(t))dt

)
, f(t) = F cos (ωt)

]
◦ Wronskian of solutions of the homogeneous equation

W (x1(t) , x2(t)) =

 e
(
−γ−

√
γ2−ω0

)
t e

(
−γ+

√
γ2−ω0

)
t(

−γ −
√
γ2 − ω0

)
e
(
−γ−

√
γ2−ω0

)
t (

−γ +
√
γ2 − ω0

)
e
(
−γ+

√
γ2−ω0

)
t


◦ Compute Wronskian

W (x1(t) , x2(t)) = 2
√
γ2 − ω0 e−2tγ
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◦ Substitute functions into equation for xp(t)

xp(t) =
F

(
e

(
−γ+

√
γ2−ω0

)
t
(∫

cos(ωt)e

(
γ−

√
γ2−ω0

)
t
dt

)
−e

−
(
γ+

√
γ2−ω0

)
t
(∫

cos(ωt)e

(
γ+

√
γ2−ω0

)
t
dt

))
2
√

γ2−ω0

◦ Compute integrals

xp(t) = F
((
−ω2+ω0

)
cos(ωt)+2γω sin(ωt)

)
ω4+2(2γ2−ω0)ω2+ω2

0

• Substitute particular solution into general solution to ODE

x = c1e
(
−γ−

√
γ2−ω0

)
t + c2e

(
−γ+

√
γ2−ω0

)
t + F

((
−ω2+ω0

)
cos(ωt)+2γω sin(ωt)

)
ω4+2(2γ2−ω0)ω2+ω2

0

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 111� �
dsolve(diff(x(t),t$2)+2*gamma*diff(x(t),t)+omega__0*x(t)=F*cos(omega*t),x(t), singsol=all)� �
x(t)

=
−F (ω2 − ω0) cos (ωt) + 2F sin (ωt) γω + 4

(
ω4

4 +
(
γ2 − ω0

2

)
ω2 + ω2

0
4

)(
e−
(
γ+
√

γ2−ω0
)
t
c1 + e

(
−γ+

√
γ2−ω0

)
t
c2

)
ω4 + (4γ2 − 2ω0)ω2 + ω2

0
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3 Solution by Mathematica
Time used: 0.509 (sec). Leaf size: 108� �
DSolve[x''[t]+2*\[Gamma]*x'[t]+Subscript[\[Omega],0]*x[t]==F*Cos[\[Omega]*t],x[t],t,IncludeSingularSolutions -> True]� �
x(t) → F (ω(2γ sin(tω)− ω cos(tω)) + ω0 cos(tω))

4γ2ω2 + ω4 − 2ω0ω2 + ω2
0

+ c1e
−t
(√

γ2−ω0+γ
)
+ c2e

t
(√

γ2−ω0−γ
)
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1.7 problem 10.2.11 (i)
1.7.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 50
1.7.2 Solving as second order linear constant coeff ode . . . . . . . . 51
1.7.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 55
1.7.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 62

Internal problem ID [5051]
Internal file name [OUTPUT/4544_Sunday_June_05_2022_03_00_37_PM_98654921/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.2, ODEs with constant Coefficients.
page 307
Problem number: 10.2.11 (i).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ − y′ − 2y = e2x

With initial conditions

[y(0) = 1, y′(0) = 0]

1.7.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = −1
q(x) = −2

F = e2x
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Hence the ode is

y′′ − y′ − 2y = e2x

The domain of p(x) = −1 is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = −2 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. The domain of F = e2x is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

1.7.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = −1, C = −2, f(x) = e2x. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − y′ − 2y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = −1, C = −2. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − λ eλx − 2 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − λ− 2 = 0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −1, C = −2 into the above gives

λ1,2 =
1

(2) (1) ±
1

(2) (1)
√

−12 − (4) (1) (−2)

= 1
2 ± 3

2

Hence

λ1 =
1
2 + 3

2

λ2 =
1
2 − 3

2

Which simplifies to
λ1 = 2
λ2 = −1

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(2)x + c2e

(−1)x

Or
y = c1e2x + c2e−x

Therefore the homogeneous solution yh is

yh = c1e2x + c2e−x

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

e2x
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Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e2x}]

While the set of the basis functions for the homogeneous solution found earlier is

{e−x, e2x}

Since e2x is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{e2xx}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1e2xx

The unknowns {A1} are found by substituting the above trial solution yp into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

3A1e2x = e2x

Solving for the unknowns by comparing coefficients results in[
A1 =

1
3

]
Substituting the above back in the above trial solution yp, gives the particular solution

yp =
e2xx
3

Therefore the general solution is

y = yh + yp

=
(
c1e2x + c2e−x

)
+
(
e2xx
3

)

Initial conditions are used to solve for the constants of integration.

53



Looking at the above solution

y = c1e2x + c2e−x + e2xx
3 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 1 and x = 0
in the above gives

1 = c1 + c2 (1A)

Taking derivative of the solution gives

y′ = 2c1e2x − c2e−x + 2 e2xx
3 + e2x

3

substituting y′ = 0 and x = 0 in the above gives

0 = 2c1 − c2 +
1
3 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 =
2
9

c2 =
7
9

Substituting these values back in above solution results in

y = 2 e2x
9 + 7 e−x

9 + e2xx
3

Which simplifies to

y = (2 + 3x) e2x
9 + 7 e−x

9

Summary
The solution(s) found are the following

(1)y = (2 + 3x) e2x
9 + 7 e−x

9
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = (2 + 3x) e2x
9 + 7 e−x

9

Verified OK.

1.7.3 Solving using Kovacic algorithm

Writing the ode as

y′′ − y′ − 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −1 (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)
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Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 9
4 (6)

Comparing the above to (5) shows that

s = 9
t = 4

Therefore eq. (4) becomes

z′′(x) = 9z(x)
4 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 10: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 9
4 is not a function of x, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = e− 3x
2

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−1
1 dx

= z1e
x
2

= z1
(
ex

2
)

Which simplifies to
y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−1

1 dx

(y1)2
dx

= y1

∫
ex

(y1)2
dx

= y1

(
e3x
3

)
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Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x

(
e3x
3

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − y′ − 2y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−x + c2e2x
3

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e−x

y2 =
e2x
3

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)
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Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣∣
e−x e2x

3

d
dx
(e−x) d

dx

(
e2x
3

)
∣∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣ e
−x e2x

3

−e−x 2 e2x
3

∣∣∣∣∣∣
Therefore

W =
(
e−x
)(2 e2x

3

)
−
(
e2x
3

)(
−e−x

)
Which simplifies to

W = e−xe2x

Which simplifies to
W = ex

Therefore Eq. (2) becomes

u1 = −
∫ e4x

3
ex dx

Which simplifies to

u1 = −
∫ e3x

3 dx

Hence

u1 = −e3x
9

And Eq. (3) becomes

u2 =
∫ e−xe2x

ex dx
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Which simplifies to

u2 =
∫

1dx

Hence
u2 = x

Therefore the particular solution, from equation (1) is

yp(x) = −e−xe3x
9 + e2xx

3

Which simplifies to

yp(x) =
(3x− 1) e2x

9

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2e2x

3

)
+
(
(3x− 1) e2x

9

)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1e−x + c2e2x
3 + (3x− 1) e2x

9 (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 1 and x = 0
in the above gives

1 = c1 +
c2
3 − 1

9 (1A)

Taking derivative of the solution gives

y′ = −c1e−x + 2c2e2x
3 + e2x

3 + 2(3x− 1) e2x
9

substituting y′ = 0 and x = 0 in the above gives

0 = −c1 +
2c2
3 + 1

9 (2A)
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Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 =
7
9

c2 = 1

Substituting these values back in above solution results in

y = 2 e2x
9 + 7 e−x

9 + e2xx
3

Which simplifies to

y = (2 + 3x) e2x
9 + 7 e−x

9

Summary
The solution(s) found are the following

(1)y = (2 + 3x) e2x
9 + 7 e−x

9

(a) Solution plot (b) Slope field plot

Verification of solutions

y = (2 + 3x) e2x
9 + 7 e−x

9

Verified OK.
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1.7.4 Maple step by step solution

Let’s solve[
y′′ − y′ − 2y = e2x, y(0) = 1, y′

∣∣∣{x=0}
= 0
]

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 − r − 2 = 0

• Factor the characteristic polynomial
(r + 1) (r − 2) = 0

• Roots of the characteristic polynomial
r = (−1, 2)

• 1st solution of the homogeneous ODE
y1(x) = e−x

• 2nd solution of the homogeneous ODE
y2(x) = e2x

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1e−x + c2e2x + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = e2x

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−x e2x

−e−x 2 e2x


◦ Compute Wronskian

W (y1(x) , y2(x)) = 3 ex

◦ Substitute functions into equation for yp(x)
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yp(x) = − e−x
(∫

e3xdx
)

3 + e2x
(∫

1dx
)

3

◦ Compute integrals

yp(x) = (3x−1)e2x
9

• Substitute particular solution into general solution to ODE

y = c1e−x + c2e2x + (3x−1)e2x
9

� Check validity of solution y = c1e−x + c2e2x + (3x−1)e2x
9

◦ Use initial condition y(0) = 1
1 = c1 + c2 − 1

9

◦ Compute derivative of the solution

y′ = −c1e−x + 2c2e2x + e2x
3 + 2(3x−1)e2x

9

◦ Use the initial condition y′
∣∣∣{x=0}

= 0

0 = −c1 + 2c2 + 1
9

◦ Solve for c1 and c2{
c1 = 7

9 , c2 =
1
3

}
◦ Substitute constant values into general solution and simplify

y = (2+3x)e2x
9 + 7 e−x

9

• Solution to the IVP

y = (2+3x)e2x
9 + 7 e−x

9

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 22� �
dsolve([diff(y(x),x$2)-diff(y(x),x)-2*y(x)=exp(2*x),y(0) = 1, D(y)(0) = 0],y(x), singsol=all)� �

y(x) = (3x+ 2) e2x
9 + 7 e−x

9

3 Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 27� �
DSolve[{y''[x]-y'[x]-2*y[x]==Exp[2*x],{y[0]==1,y'[0]==0}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
9e

−x
(
e3x(3x+ 2) + 7

)
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Internal problem ID [5052]
Internal file name [OUTPUT/4545_Sunday_June_05_2022_03_00_38_PM_77665157/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.2, ODEs with constant Coefficients.
page 307
Problem number: 10.2.11 (ii).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff", "linear_second_order_ode_solved_by_an_integrat-
ing_factor"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ − 2y′ + y = 2 cos (x)

With initial conditions

[y(0) = 1, y′(0) = 0]
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1.8.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = −2
q(x) = 1

F = 2 cos (x)

Hence the ode is

y′′ − 2y′ + y = 2 cos (x)

The domain of p(x) = −2 is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 1 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. The domain of F = 2 cos (x) is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

1.8.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = −2, C = 1, f(x) = 2 cos (x). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − 2y′ + y = 0

66



This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = −2, C = 1. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − 2λ eλx + eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 2λ+ 1 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = −2, C = 1 into the above gives

λ1,2 =
2

(2) (1) ±
1

(2) (1)

√
(−2)2 − (4) (1) (1)

= 1

Hence this is the case of a double root λ1,2 = −1. Therefore the solution is

y = c1ex + c2exx (1)

Therefore the homogeneous solution yh is

yh = c1ex + c2x ex

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

2 cos (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) , sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{exx, ex}
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Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (x) + A2 sin (x)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

2A1 sin (x)− 2A2 cos (x) = 2 cos (x)

Solving for the unknowns by comparing coefficients results in

[A1 = 0, A2 = −1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = − sin (x)

Therefore the general solution is

y = yh + yp

= (c1ex + c2x ex) + (− sin (x))

Which simplifies to
y = ex(c2x+ c1)− sin (x)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = ex(c2x+ c1)− sin (x) (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 1 and x = 0
in the above gives

1 = c1 (1A)

Taking derivative of the solution gives

y′ = ex(c2x+ c1) + c2ex − cos (x)
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substituting y′ = 0 and x = 0 in the above gives

0 = −1 + c1 + c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 1
c2 = 0

Substituting these values back in above solution results in

y = ex − sin (x)

Summary
The solution(s) found are the following

(1)y = ex − sin (x)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = ex − sin (x)

Verified OK.
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1.8.3 Solving as linear second order ode solved by an integrating factor
ode

The ode satisfies this form

y′′ + p(x) y′ +
(
p(x)2 + p′(x)

)
y

2 = f(x)

Where p(x) = −2. Therefore, there is an integrating factor given by

M(x) = e
1
2
∫
p dx

= e
∫
−2 dx

= e−x

Multiplying both sides of the ODE by the integrating factor M(x) makes the left side
of the ODE a complete differential

(M(x)y) ′′ = 2 e−x cos (x)(
e−xy

) ′′ = 2 e−x cos (x)

Integrating once gives (
e−xy

)′ = −e−x(− sin (x) + cos (x)) + c1

Integrating again gives (
e−xy

)
= c1x− e−x sin (x) + c2

Hence the solution is

y = c1x− e−x sin (x) + c2
e−x

Or
y = c1x ex + c2ex − sin (x)

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1x ex + c2ex − sin (x) (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 1 and x = 0
in the above gives

1 = c2 (1A)
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Taking derivative of the solution gives

y′ = c1ex + c1x ex + c2ex − cos (x)

substituting y′ = 0 and x = 0 in the above gives

0 = −1 + c1 + c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 0
c2 = 1

Substituting these values back in above solution results in

y = ex − sin (x)

Summary
The solution(s) found are the following

(1)y = ex − sin (x)

(a) Solution plot (b) Slope field plot

Verification of solutions

y = ex − sin (x)

Verified OK.
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1.8.4 Solving using Kovacic algorithm

Writing the ode as

y′′ − 2y′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = −2 (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 12: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−2
1 dx
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= z1e
x

= z1(ex)

Which simplifies to
y1 = ex

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−2

1 dx

(y1)2
dx

= y1

∫
e2x

(y1)2
dx

= y1(x)

Therefore the solution is

y = c1y1 + c2y2

= c1(ex) + c2(ex(x))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − 2y′ + y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1ex + c2x ex
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

2 cos (x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (x) , sin (x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{exx, ex}

Since there is no duplication between the basis function in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

yp = A1 cos (x) + A2 sin (x)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

2A1 sin (x)− 2A2 cos (x) = 2 cos (x)

Solving for the unknowns by comparing coefficients results in

[A1 = 0, A2 = −1]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = − sin (x)

Therefore the general solution is

y = yh + yp

= (c1ex + c2x ex) + (− sin (x))

Which simplifies to
y = ex(c2x+ c1)− sin (x)

Initial conditions are used to solve for the constants of integration.
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Looking at the above solution

y = ex(c2x+ c1)− sin (x) (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 1 and x = 0
in the above gives

1 = c1 (1A)

Taking derivative of the solution gives

y′ = ex(c2x+ c1) + c2ex − cos (x)

substituting y′ = 0 and x = 0 in the above gives

0 = −1 + c1 + c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 1
c2 = 0

Substituting these values back in above solution results in

y = ex − sin (x)
Summary
The solution(s) found are the following

(1)y = ex − sin (x)

(a) Solution plot (b) Slope field plot
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Verification of solutions

y = ex − sin (x)

Verified OK.

1.8.5 Maple step by step solution

Let’s solve[
y′′ − 2y′ + y = 2 cos (x) , y(0) = 1, y′

∣∣∣{x=0}
= 0
]

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 − 2r + 1 = 0

• Factor the characteristic polynomial
(r − 1)2 = 0

• Root of the characteristic polynomial
r = 1

• 1st solution of the homogeneous ODE
y1(x) = ex

• Repeated root, multiply y1(x) by x to ensure linear independence
y2(x) = exx

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1ex + c2x ex + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 2 cos (x)

]
◦ Wronskian of solutions of the homogeneous equation
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W (y1(x) , y2(x)) =

 ex exx
ex exx+ ex


◦ Compute Wronskian

W (y1(x) , y2(x)) = e2x

◦ Substitute functions into equation for yp(x)
yp(x) = 2 ex

(
−
(∫

cos (x)x e−xdx
)
+ x
(∫

e−x cos (x) dx
))

◦ Compute integrals
yp(x) = − sin (x)

• Substitute particular solution into general solution to ODE
y = c2x ex + c1ex − sin (x)

� Check validity of solution y = c2xex + c1ex − sin (x)
◦ Use initial condition y(0) = 1

1 = c1

◦ Compute derivative of the solution
y′ = c2ex + c2x ex + c1ex − cos (x)

◦ Use the initial condition y′
∣∣∣{x=0}

= 0

0 = −1 + c1 + c2

◦ Solve for c1 and c2

{c1 = 1, c2 = 0}
◦ Substitute constant values into general solution and simplify

y = ex − sin (x)
• Solution to the IVP

y = ex − sin (x)
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 11� �
dsolve([diff(y(x),x$2)-2*diff(y(x),x)+y(x)=2*cos(x),y(0) = 1, D(y)(0) = 0],y(x), singsol=all)� �

y(x) = ex − sin (x)

3 Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 13� �
DSolve[{y''[x]-2*y'[x]+y[x]==2*Cos[x],{y[0]==1,y'[0]==0}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex − sin(x)
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1.9 problem 10.2.11 (iii)
1.9.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 80
1.9.2 Solving as second order linear constant coeff ode . . . . . . . . 81
1.9.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 85
1.9.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 90

Internal problem ID [5053]
Internal file name [OUTPUT/4546_Sunday_June_05_2022_03_00_39_PM_97533883/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.2, ODEs with constant Coefficients.
page 307
Problem number: 10.2.11 (iii).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ + 16y = 16 cos (4x)

With initial conditions

[y(0) = 1, y′(0) = 0]

1.9.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 0
q(x) = 16

F = 16 cos (4x)
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Hence the ode is

y′′ + 16y = 16 cos (4x)

The domain of p(x) = 0 is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 16 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. The domain of F = 16 cos (4x) is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

1.9.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 0, C = 16, f(x) = 16 cos (4x). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ + 16y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = 0, C = 16. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx + 16 eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 + 16 = 0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 16 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (16)

= ±4i

Hence

λ1 = +4i
λ2 = −4i

Which simplifies to
λ1 = 4i
λ2 = −4i

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ

Where α = 0 and β = 4. Therefore the final solution, when using Euler relation, can
be written as

y = eαx(c1 cos(βx) + c2 sin(βx))

Which becomes
y = e0(c1 cos (4x) + c2 sin (4x))

Or
y = c1 cos (4x) + c2 sin (4x)

Therefore the homogeneous solution yh is

yh = c1 cos (4x) + c2 sin (4x)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

16 cos (4x)
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Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (4x) , sin (4x)}]

While the set of the basis functions for the homogeneous solution found earlier is

{cos (4x) , sin (4x)}

Since cos (4x) is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x cos (4x) , x sin (4x)}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x cos (4x) + A2x sin (4x)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−8A1 sin (4x) + 8A2 cos (4x) = 16 cos (4x)

Solving for the unknowns by comparing coefficients results in

[A1 = 0, A2 = 2]

Substituting the above back in the above trial solution yp, gives the particular solution

yp = 2x sin (4x)

Therefore the general solution is

y = yh + yp

= (c1 cos (4x) + c2 sin (4x)) + (2x sin (4x))

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1 cos (4x) + c2 sin (4x) + 2x sin (4x) (1)
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Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 1 and x = 0
in the above gives

1 = c1 (1A)

Taking derivative of the solution gives

y′ = −4c1 sin (4x) + 4c2 cos (4x) + 2 sin (4x) + 8x cos (4x)

substituting y′ = 0 and x = 0 in the above gives

0 = 4c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 1
c2 = 0

Substituting these values back in above solution results in

y = 2x sin (4x) + cos (4x)

Summary
The solution(s) found are the following

(1)y = 2x sin (4x) + cos (4x)

(a) Solution plot (b) Slope field plot
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Verification of solutions

y = 2x sin (4x) + cos (4x)

Verified OK.

1.9.3 Solving using Kovacic algorithm

Writing the ode as

y′′ + 16y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = 16

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −16
1 (6)

Comparing the above to (5) shows that

s = −16
t = 1

Therefore eq. (4) becomes

z′′(x) = −16z(x) (7)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 14: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = −16 is not a function of x, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z′′ = rz as one solution is

z1(x) = cos (4x)
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Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= cos (4x)

Which simplifies to
y1 = cos (4x)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= cos (4x)
∫ 1

cos (4x)2
dx

= cos (4x)
(
tan (4x)

4

)

Therefore the solution is

y = c1y1 + c2y2

= c1(cos (4x)) + c2

(
cos (4x)

(
tan (4x)

4

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp
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Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ + 16y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1 cos (4x) +
c2 sin (4x)

4

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

16 cos (4x)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (4x) , sin (4x)}]

While the set of the basis functions for the homogeneous solution found earlier is{
sin (4x)

4 , cos (4x)
}

Since cos (4x) is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC_set becomes

[{x cos (4x) , x sin (4x)}]

Since there was duplication between the basis functions in the UC_set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_set.

yp = A1x cos (4x) + A2x sin (4x)

The unknowns {A1, A2} are found by substituting the above trial solution yp into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

−8A1 sin (4x) + 8A2 cos (4x) = 16 cos (4x)

Solving for the unknowns by comparing coefficients results in

[A1 = 0, A2 = 2]
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Substituting the above back in the above trial solution yp, gives the particular solution

yp = 2x sin (4x)

Therefore the general solution is

y = yh + yp

=
(
c1 cos (4x) +

c2 sin (4x)
4

)
+ (2x sin (4x))

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1 cos (4x) +
c2 sin (4x)

4 + 2x sin (4x) (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 1 and x = 0
in the above gives

1 = c1 (1A)

Taking derivative of the solution gives

y′ = −4c1 sin (4x) + c2 cos (4x) + 2 sin (4x) + 8x cos (4x)

substituting y′ = 0 and x = 0 in the above gives

0 = c2 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 = 1
c2 = 0

Substituting these values back in above solution results in

y = 2x sin (4x) + cos (4x)

Summary
The solution(s) found are the following

(1)y = 2x sin (4x) + cos (4x)
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2x sin (4x) + cos (4x)

Verified OK.

1.9.4 Maple step by step solution

Let’s solve[
y′′ + 16y = 16 cos (4x) , y(0) = 1, y′

∣∣∣{x=0}
= 0
]

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 + 16 = 0

• Use quadratic formula to solve for r

r = 0±
(√

−64
)

2

• Roots of the characteristic polynomial
r = (−4 I, 4 I)

• 1st solution of the homogeneous ODE
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y1(x) = cos (4x)
• 2nd solution of the homogeneous ODE

y2(x) = sin (4x)
• General solution of the ODE

y = c1y1(x) + c2y2(x) + yp(x)
• Substitute in solutions of the homogeneous ODE

y = c1 cos (4x) + c2 sin (4x) + yp(x)
� Find a particular solution yp(x) of the ODE

◦ Use variation of parameters to find yp here f(x) is the forcing function[
yp(x) = −y1(x)

(∫ y2(x)f(x)
W (y1(x),y2(x))dx

)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = 16 cos (4x)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 cos (4x) sin (4x)
−4 sin (4x) 4 cos (4x)


◦ Compute Wronskian

W (y1(x) , y2(x)) = 4
◦ Substitute functions into equation for yp(x)

yp(x) = −2 cos (4x)
(∫

sin (8x) dx
)
+ 2 sin (4x)

(∫
(1 + cos (8x)) dx

)
◦ Compute integrals

yp(x) = cos(4x)
4 + 2x sin (4x)

• Substitute particular solution into general solution to ODE
y = c1 cos (4x) + c2 sin (4x) + cos(4x)

4 + 2x sin (4x)

� Check validity of solution y = c1 cos (4x) + c2 sin (4x) + cos(4x)
4 + 2x sin (4x)

◦ Use initial condition y(0) = 1
1 = 1

4 + c1

◦ Compute derivative of the solution
y′ = −4c1 sin (4x) + 4c2 cos (4x) + sin (4x) + 8x cos (4x)

◦ Use the initial condition y′
∣∣∣{x=0}

= 0

0 = 4c2
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◦ Solve for c1 and c2{
c1 = 3

4 , c2 = 0
}

◦ Substitute constant values into general solution and simplify
y = 2x sin (4x) + cos (4x)

• Solution to the IVP
y = 2x sin (4x) + cos (4x)

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 16� �
dsolve([diff(y(x),x$2)+16*y(x)=16*cos(4*x),y(0) = 1, D(y)(0) = 0],y(x), singsol=all)� �

y(x) = cos (4x) + 2 sin (4x)x

3 Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 17� �
DSolve[{y''[x]+16*y[x]==16*Cos[4*x],{y[0]==1,y'[0]==0}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 2x sin(4x) + cos(4x)
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1.10 problem 10.2.11 (iv)
1.10.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 93
1.10.2 Solving as second order linear constant coeff ode . . . . . . . . 94
1.10.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 99
1.10.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 106

Internal problem ID [5054]
Internal file name [OUTPUT/4547_Sunday_June_05_2022_03_00_40_PM_40071015/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.2, ODEs with constant Coefficients.
page 307
Problem number: 10.2.11 (iv).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_lin-
ear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

y′′ − y = cosh (x)

With initial conditions

[y(0) = 1, y′(0) = 0]

1.10.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 0
q(x) = −1

F = cosh (x)
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Hence the ode is

y′′ − y = cosh (x)

The domain of p(x) = 0 is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = −1 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. The domain of F = cosh (x) is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

1.10.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay′′(x) +By′(x) + Cy(x) = f(x)

Where A = 1, B = 0, C = −1, f(x) = cosh (x). Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the non-homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = f(x).
yh is the solution to

y′′ − y = 0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Ay′′(x) +By′(x) + Cy(x) = 0

Where in the above A = 1, B = 0, C = −1. Let the solution be y = eλx. Substituting
this into the ODE gives

λ2eλx − eλx = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλx gives

λ2 − 1 = 0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = −1 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (−1)

= ±1

Hence
λ1 = +1
λ2 = −1

Which simplifies to
λ1 = 1
λ2 = −1

Since roots are real and distinct, then the solution is

y = c1e
λ1x + c2e

λ2x

y = c1e
(1)x + c2e

(−1)x

Or
y = c1ex + c2e−x

Therefore the homogeneous solution yh is

yh = c1ex + c2e−x

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2
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Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = ex

y2 = e−x

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence
W =

∣∣∣∣∣∣ ex e−x

d
dx
(ex) d

dx
(e−x)

∣∣∣∣∣∣
Which gives

W =

∣∣∣∣∣∣e
x e−x

ex −e−x

∣∣∣∣∣∣
Therefore

W = (ex)
(
−e−x

)
−
(
e−x
)
(ex)

Which simplifies to
W = −2 exe−x

Which simplifies to
W = −2

Therefore Eq. (2) becomes

u1 = −
∫ e−x cosh (x)

−2 dx
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Which simplifies to

u1 = −
∫

−e−x cosh (x)
2 dx

Hence

u1 =
x

4 + sinh (2x)
8 − cosh (2x)

8

And Eq. (3) becomes

u2 =
∫ ex cosh (x)

−2 dx

Which simplifies to

u2 =
∫

−ex cosh (x)
2 dx

Hence

u2 = −cosh (x)2

4 − cosh (x) sinh (x)
4 − x

4

Which simplifies to

u1 =
x

4 + sinh (2x)
8 − cosh (2x)

8

u2 = −x

4 − sinh (2x)
8 − cosh (2x)

8 − 1
8

Therefore the particular solution, from equation (1) is

yp(x) =
(
x

4 + sinh (2x)
8 − cosh (2x)

8

)
ex +

(
−x

4 − sinh (2x)
8 − cosh (2x)

8 − 1
8

)
e−x

Which simplifies to

yp(x) =
(−2x− 1− cosh (2x)− sinh (2x)) e−x

8 +

(
x+ sinh(2x)

2 − cosh(2x)
2

)
ex

4

Therefore the general solution is

y = yh + yp

=
(
c1ex+c2e−x

)
+

(−2x− 1− cosh (2x)− sinh (2x)) e−x

8 +

(
x+ sinh(2x)

2 − cosh(2x)
2

)
ex

4


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Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1ex + c2e−x + (−2x− 1− cosh (2x)− sinh (2x)) e−x

8 +

(
x+ sinh(2x)

2 − cosh(2x)
2

)
ex

4
(1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 1 and x = 0
in the above gives

1 = c1 + c2 −
3
8 (1A)

Taking derivative of the solution gives

y′ = c1ex − c2e−x + (−2− 2 sinh (2x)− 2 cosh (2x)) e−x

8 − (−2x− 1− cosh (2x)− sinh (2x)) e−x

8 + (1 + cosh (2x)− sinh (2x)) ex
4 +

(
x+ sinh(2x)

2 − cosh(2x)
2

)
ex

4
substituting y′ = 0 and x = 0 in the above gives

0 = c1 − c2 +
1
8 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 =
5
8

c2 =
3
4

Substituting these values back in above solution results in

y = 5 ex
8 + 5 e−x

8 − e−x sinh (2x)
8 − e−x cosh (2x)

8 − x e−x

4 + exx
4 + ex sinh (2x)

8 − ex cosh (2x)
8

Which simplifies to

y = (−2x− cosh (2x)− sinh (2x) + 5) e−x

8 +
ex
(
x− cosh(2x)

2 + sinh(2x)
2 + 5

2

)
4

Summary
The solution(s) found are the following

(1)y = (−2x− cosh (2x)− sinh (2x) + 5) e−x

8 +
ex
(
x− cosh(2x)

2 + sinh(2x)
2 + 5

2

)
4
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = (−2x− cosh (2x)− sinh (2x) + 5) e−x

8 +
ex
(
x− cosh(2x)

2 + sinh(2x)
2 + 5

2

)
4

Verified OK.

1.10.3 Solving using Kovacic algorithm

Writing the ode as

y′′ − y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 1
B = 0 (3)
C = −1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)
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Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 1
1 (6)

Comparing the above to (5) shows that

s = 1
t = 1

Therefore eq. (4) becomes

z′′(x) = z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 16: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0− 0
= 0

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

L = [1]

Since r = 1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = e−x

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to
y1 = z1

= e−x

Which simplifies to
y1 = e−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= e−x

∫ 1
e−2x dx

= e−x

(
e2x
2

)
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Therefore the solution is

y = c1y1 + c2y2

= c1
(
e−x
)
+ c2

(
e−x

(
e2x
2

))

This is second order nonhomogeneous ODE. Let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ODE Ay′′(x)+By′(x)+Cy(x) = 0, and yp
is a particular solution to the nonhomogeneous ODE Ay′′(x) +By′(x) +Cy(x) = f(x).
yh is the solution to

y′′ − y = 0

The homogeneous solution is found using the Kovacic algorithm which results in

yh = c1e−x + c2ex
2

The particular solution yp can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on x as well. Let

(1)yp(x) = u1y1 + u2y2

Where u1, u2 to be determined, and y1, y2 are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

y1 = e−x

y2 =
ex
2

In the Variation of parameters u1, u2 are found using

(2)u1 = −
∫

y2f(x)
aW (x)

(3)u2 =
∫

y1f(x)
aW (x)

102



Where W (x) is the Wronskian and a is the coefficient in front of y′′ in the given ODE.

The Wronskian is given by W =

∣∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣∣. Hence

W =

∣∣∣∣∣∣ e−x ex
2

d
dx
(e−x) d

dx

( ex
2

)
∣∣∣∣∣∣

Which gives

W =

∣∣∣∣∣∣ e
−x ex

2

−e−x ex
2

∣∣∣∣∣∣
Therefore

W =
(
e−x
)(ex

2

)
−
(
ex
2

)(
−e−x

)
Which simplifies to

W = exe−x

Which simplifies to
W = 1

Therefore Eq. (2) becomes

u1 = −
∫ ex cosh(x)

2
1 dx

Which simplifies to

u1 = −
∫ ex cosh (x)

2 dx

Hence

u1 = −cosh (x)2

4 − cosh (x) sinh (x)
4 − x

4

And Eq. (3) becomes

u2 =
∫ e−x cosh (x)

1 dx
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Which simplifies to

u2 =
∫

e−x cosh (x) dx

Hence

u2 =
x

2 + sinh (2x)
4 − cosh (2x)

4

Which simplifies to

u1 = −x

4 − sinh (2x)
8 − cosh (2x)

8 − 1
8

u2 =
x

2 + sinh (2x)
4 − cosh (2x)

4

Therefore the particular solution, from equation (1) is

yp(x) =
(
−x

4 − sinh (2x)
8 − cosh (2x)

8 − 1
8

)
e−x +

(
x
2 +

sinh(2x)
4 − cosh(2x)

4

)
ex

2

Which simplifies to

yp(x) =
(−2x− 1− cosh (2x)− sinh (2x)) e−x

8 +

(
x+ sinh(2x)

2 − cosh(2x)
2

)
ex

4

Therefore the general solution is

y = yh + yp

=
(
c1e−x + c2ex

2

)

+

(−2x− 1− cosh (2x)− sinh (2x)) e−x

8 +

(
x+ sinh(2x)

2 − cosh(2x)
2

)
ex

4


Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = c1e−x + c2ex
2 + (−2x− 1− cosh (2x)− sinh (2x)) e−x

8 +

(
x+ sinh(2x)

2 − cosh(2x)
2

)
ex

4
(1)
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Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y = 1 and x = 0
in the above gives

1 = c1 +
c2
2 − 3

8 (1A)

Taking derivative of the solution gives

y′ = −c1e−x + c2ex
2 + (−2− 2 sinh (2x)− 2 cosh (2x)) e−x

8 − (−2x− 1− cosh (2x)− sinh (2x)) e−x

8 + (1 + cosh (2x)− sinh (2x)) ex
4 +

(
x+ sinh(2x)

2 − cosh(2x)
2

)
ex

4

substituting y′ = 0 and x = 0 in the above gives

0 = −c1 +
c2
2 + 1

8 (2A)

Equations {1A,2A} are now solved for {c1, c2}. Solving for the constants gives

c1 =
3
4

c2 =
5
4

Substituting these values back in above solution results in

y = 5 ex
8 + 5 e−x

8 − e−x sinh (2x)
8 − e−x cosh (2x)

8 − x e−x

4 + exx
4 + ex sinh (2x)

8 − ex cosh (2x)
8

Which simplifies to

y = (−2x− cosh (2x)− sinh (2x) + 5) e−x

8 +
ex
(
x− cosh(2x)

2 + sinh(2x)
2 + 5

2

)
4

Summary
The solution(s) found are the following

(1)y = (−2x− cosh (2x)− sinh (2x) + 5) e−x

8 +
ex
(
x− cosh(2x)

2 + sinh(2x)
2 + 5

2

)
4

105



(a) Solution plot (b) Slope field plot

Verification of solutions

y = (−2x− cosh (2x)− sinh (2x) + 5) e−x

8 +
ex
(
x− cosh(2x)

2 + sinh(2x)
2 + 5

2

)
4

Verified OK.

1.10.4 Maple step by step solution

Let’s solve[
y′′ − y = cosh (x) , y(0) = 1, y′

∣∣∣{x=0}
= 0
]

• Highest derivative means the order of the ODE is 2
y′′

• Characteristic polynomial of homogeneous ODE
r2 − 1 = 0

• Factor the characteristic polynomial
(r − 1) (r + 1) = 0

• Roots of the characteristic polynomial
r = (−1, 1)

• 1st solution of the homogeneous ODE

106



y1(x) = e−x

• 2nd solution of the homogeneous ODE
y2(x) = ex

• General solution of the ODE
y = c1y1(x) + c2y2(x) + yp(x)

• Substitute in solutions of the homogeneous ODE
y = c1e−x + c2ex + yp(x)

� Find a particular solution yp(x) of the ODE
◦ Use variation of parameters to find yp here f(x) is the forcing function[

yp(x) = −y1(x)
(∫ y2(x)f(x)

W (y1(x),y2(x))dx
)
+ y2(x)

(∫ y1(x)f(x)
W (y1(x),y2(x))dx

)
, f(x) = cosh (x)

]
◦ Wronskian of solutions of the homogeneous equation

W (y1(x) , y2(x)) =

 e−x ex

−e−x ex


◦ Compute Wronskian

W (y1(x) , y2(x)) = 2
◦ Substitute functions into equation for yp(x)

yp(x) = − e−x
(∫

ex cosh(x)dx
)

2 + ex
(∫

e−x cosh(x)dx
)

2

◦ Compute integrals

yp(x) = (−2x−1−cosh(2x)−sinh(2x))e−x

8 +
(
x+ sinh(2x)

2 − cosh(2x)
2

)
ex

4

• Substitute particular solution into general solution to ODE

y = c1e−x + c2ex + (−2x−1−cosh(2x)−sinh(2x))e−x

8 +
(
x+ sinh(2x)

2 − cosh(2x)
2

)
ex

4

� Check validity of solution y = c1e−x + c2ex + (−2x−1−cosh(2x)−sinh(2x))e−x

8 +
(
x+ sinh(2x)

2 − cosh(2x)
2

)
ex

4

◦ Use initial condition y(0) = 1
1 = c1 + c2 − 3

8

◦ Compute derivative of the solution

y′ = −c1e−x + c2ex + (−2−2 sinh(2x)−2 cosh(2x))e−x

8 − (−2x−1−cosh(2x)−sinh(2x))e−x

8 + (1+cosh(2x)−sinh(2x))ex
4 +

(
x+ sinh(2x)

2 − cosh(2x)
2

)
ex

4

◦ Use the initial condition y′
∣∣∣{x=0}

= 0

107



0 = −c1 + c2 + 1
8

◦ Solve for c1 and c2{
c1 = 3

4 , c2 =
5
8

}
◦ Substitute constant values into general solution and simplify

y = (−2x−cosh(2x)−sinh(2x)+5)e−x

8 +
ex
(
x− cosh(2x)

2 + sinh(2x)
2 + 5

2

)
4

• Solution to the IVP

y = (−2x−cosh(2x)−sinh(2x)+5)e−x

8 +
ex
(
x− cosh(2x)

2 + sinh(2x)
2 + 5

2

)
4

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 23� �
dsolve([diff(y(x),x$2)-y(x)=cosh(x),y(0) = 1, D(y)(0) = 0],y(x), singsol=all)� �

y(x) = (−x+ 2) e−x

4 + ex(x+ 2)
4

3 Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 28� �
DSolve[{y''[x]-y[x]==Cosh[x],{y[0]==1,y'[0]==0}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4e

−x
(
−x+ e2x(x+ 2) + 2

)
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2 Chapter 10, Differential equations. Section 10.3,
ODEs with variable Coefficients. First order.
page 315

2.1 problem 10.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2.2 problem 10.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
2.3 problem 10.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
2.4 problem 10.3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
2.5 problem 10.3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
2.6 problem 10.3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
2.7 problem 10.3.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
2.8 problem 10.3.9 (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
2.9 problem 10.3.9 (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
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2.1 problem 10.3.2
2.1.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 110
2.1.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 112
2.1.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 116
2.1.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 120

Internal problem ID [5055]
Internal file name [OUTPUT/4548_Sunday_June_05_2022_03_00_42_PM_28220764/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.3, ODEs with variable Coefficients.
First order. page 315
Problem number: 10.3.2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear , `class A`]]

y′ − y = e2x

2.1.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −1
q(x) = e2x

Hence the ode is

y′ − y = e2x
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The integrating factor µ is

µ = e
∫
(−1)dx

= e−x

The ode becomes

d
dx(µy) = (µ)

(
e2x
)

d
dx
(
e−xy

)
=
(
e−x
) (

e2x
)

d
(
e−xy

)
= ex dx

Integrating gives

e−xy =
∫

ex dx

e−xy = ex + c1

Dividing both sides by the integrating factor µ = e−x results in

y = e2x + c1ex

Summary
The solution(s) found are the following

(1)y = e2x + c1ex
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Figure 12: Slope field plot

Verification of solutions

y = e2x + c1ex

Verified OK.

2.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y + e2x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 18: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = ex (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

113



canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

exdy

Which results in

S = e−xy

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y + e2x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = −e−xy

Sy = e−x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= ex (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= eR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = eR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y e−x = ex + c1

Which simplifies to

y e−x = ex + c1

Which gives

y = ex(ex + c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y + e2x dS
dR

= eR

R = x

S = e−xy

Summary
The solution(s) found are the following

(1)y = ex(ex + c1)
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Figure 13: Slope field plot

Verification of solutions

y = ex(ex + c1)

Verified OK.

2.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
y + e2x

)
dx(

−y − e2x
)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −y − e2x

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
−y − e2x

)
= −1

And
∂N

∂x
= ∂

∂x
(1)

= 0
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Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((−1)− (0))
= −1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
−1 dx

The result of integrating gives

µ = e−x

= e−x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= e−x
(
−y − e2x

)
= −e−xy − ex

And

N = µN

= e−x(1)
= e−x

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−e−xy − ex
)
+
(
e−x
) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−e−xy − ex dx

(3)φ = e−xy − ex + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= e−x + f ′(y)

But equation (2) says that ∂φ
∂y

= e−x. Therefore equation (4) becomes

(5)e−x = e−x + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = e−xy − ex + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = e−xy − ex

The solution becomes
y = ex(ex + c1)

Summary
The solution(s) found are the following

(1)y = ex(ex + c1)
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Figure 14: Slope field plot

Verification of solutions

y = ex(ex + c1)

Verified OK.

2.1.4 Maple step by step solution

Let’s solve
y′ − y = e2x

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y + e2x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y = e2x

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ − y) = µ(x) e2x

120



• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ − y) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

• Solve to find the integrating factor
µ(x) = e−x

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) e2xdx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) e2xdx+ c1

• Solve for y

y =
∫
µ(x)e2xdx+c1

µ(x)

• Substitute µ(x) = e−x

y =
∫
e−xe2xdx+c1

e−x

• Evaluate the integrals on the rhs
y = ex+c1

e−x

• Simplify
y = ex(ex + c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 11� �
dsolve(diff(y(x),x)-y(x)=exp(2*x),y(x), singsol=all)� �

y(x) = (ex + c1) ex

3 Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 15� �
DSolve[y'[x]-y[x]==Exp[2*x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → ex(ex + c1)
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2.2 problem 10.3.3
2.2.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 123
2.2.2 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 124
2.2.3 Solving as differentialType ode . . . . . . . . . . . . . . . . . . 126
2.2.4 Solving as first order ode lie symmetry lookup ode . . . . . . . 127
2.2.5 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 132
2.2.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 135

Internal problem ID [5056]
Internal file name [OUTPUT/4549_Sunday_June_05_2022_03_00_42_PM_87162301/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.3, ODEs with variable Coefficients.
First order. page 315
Problem number: 10.3.3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "differentialType",
"first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

x2y′ + 2xy = x− 1

With initial conditions

[y(1) = 0]

2.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = 2
x

q(x) = x− 1
x2
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Hence the ode is

y′ + 2y
x

= x− 1
x2

The domain of p(x) = 2
x
is

{x < 0∨ 0 < x}

And the point x0 = 1 is inside this domain. The domain of q(x) = x−1
x2 is

{x < 0∨ 0 < x}

And the point x0 = 1 is also inside this domain. Hence solution exists and is unique.

2.2.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫ 2

x
dx

= x2

The ode becomes

d
dx(µy) = (µ)

(
x− 1
x2

)
d
dx
(
y x2) = (x2)(x− 1

x2

)
d
(
y x2) = (x− 1) dx

Integrating gives

y x2 =
∫

x− 1 dx

y x2 = 1
2x

2 − x+ c1

Dividing both sides by the integrating factor µ = x2 results in

y =
1
2x

2 − x

x2 + c1
x2

which simplifies to

y = x2 + 2c1 − 2x
2x2
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Initial conditions are used to solve for c1. Substituting x = 1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = −1
2 + c1

c1 =
1
2

Substituting c1 found above in the general solution gives

y = x2 − 2x+ 1
2x2

Summary
The solution(s) found are the following

(1)y = x2 − 2x+ 1
2x2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = x2 − 2x+ 1
2x2

Verified OK.
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2.2.3 Solving as differentialType ode

Writing the ode as

y′ = −2xy + x− 1
x2 (1)

Which becomes

0 =
(
−x2) dy + (−2xy + x− 1) dx (2)

But the RHS is complete differential because

(
−x2) dy + (−2xy + x− 1) dx = d

(
−y x2 + 1

2x
2 − x

)
Hence (2) becomes

0 = d

(
−y x2 + 1

2x
2 − x

)
Integrating both sides gives gives these solutions

y = x2 + 2c1 − 2x
2x2 + c1

Initial conditions are used to solve for c1. Substituting x = 1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = 2c1 −
1
2

c1 =
1
4

Substituting c1 found above in the general solution gives

y = 3x2 − 4x+ 1
4x2

Summary
The solution(s) found are the following

(1)y = 3x2 − 4x+ 1
4x2
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = 3x2 − 4x+ 1
4x2

Verified OK.

2.2.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2xy − x+ 1
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 21: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x2

dy

Which results in

S = y x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2xy − x+ 1
x2

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2xy
Sy = x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x− 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R− 1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = 1
2R

2 −R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

yx2 = 1
2x

2 − x+ c1

Which simplifies to

yx2 = 1
2x

2 − x+ c1

Which gives

y = x2 + 2c1 − 2x
2x2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2xy−x+1
x2

dS
dR

= R− 1

R = x

S = y x2

Initial conditions are used to solve for c1. Substituting x = 1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = −1
2 + c1
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c1 =
1
2

Substituting c1 found above in the general solution gives

y = x2 − 2x+ 1
2x2

Summary
The solution(s) found are the following

(1)y = x2 − 2x+ 1
2x2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = x2 − 2x+ 1
2x2

Verified OK.
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2.2.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2) dy = (−2xy + x− 1) dx

(2xy − x+ 1) dx+
(
x2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2xy − x+ 1
N(x, y) = x2

132



The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(2xy − x+ 1)

= 2x

And
∂N

∂x
= ∂

∂x

(
x2)

= 2x

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
2xy − x+ 1dx

(3)φ = (2y − 1)x2

2 + x+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= x2. Therefore equation (4) becomes

(5)x2 = x2 + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = (2y − 1)x2

2 + x+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
(2y − 1)x2

2 + x

The solution becomes

y = x2 + 2c1 − 2x
2x2

Initial conditions are used to solve for c1. Substituting x = 1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = −1
2 + c1

c1 =
1
2

Substituting c1 found above in the general solution gives

y = x2 − 2x+ 1
2x2

Summary
The solution(s) found are the following

(1)y = x2 − 2x+ 1
2x2
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = x2 − 2x+ 1
2x2

Verified OK.

2.2.6 Maple step by step solution

Let’s solve
[x2y′ + 2xy = x− 1, y(1) = 0]

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −2y

x
+ x−1

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 2y

x
= x−1

x2

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + 2y

x

)
= µ(x)(x−1)

x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 2y

x

)
= µ′(x) y + µ(x) y′
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• Isolate µ′(x)
µ′(x) = 2µ(x)

x

• Solve to find the integrating factor
µ(x) = x2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)(x−1)
x2 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)(x−1)
x2 dx+ c1

• Solve for y

y =
∫ µ(x)(x−1)

x2 dx+c1

µ(x)

• Substitute µ(x) = x2

y =
∫
(x−1)dx+c1

x2

• Evaluate the integrals on the rhs

y =
1
2x

2−x+c1
x2

• Simplify
y = x2+2c1−2x

2x2

• Use initial condition y(1) = 0
0 = −1

2 + c1

• Solve for c1
c1 = 1

2

• Substitute c1 = 1
2 into general solution and simplify

y = (x−1)2
2x2

• Solution to the IVP

y = (x−1)2
2x2
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 14� �
dsolve([x^2*diff(y(x),x)+2*x*y(x)-x+1=0,y(1) = 0],y(x), singsol=all)� �

y(x) = (x− 1)2

2x2

3 Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 17� �
DSolve[{x^2*y'[x]+2*x*y[x]-x+1==0,{y[1]==0}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (x− 1)2
2x2
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2.3 problem 10.3.4
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Internal problem ID [5057]
Internal file name [OUTPUT/4550_Sunday_June_05_2022_03_00_43_PM_3682306/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.3, ODEs with variable Coefficients.
First order. page 315
Problem number: 10.3.4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear , `class A`]]

y + y′ = (x+ 1)2

With initial conditions

[y(0) = 0]

2.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = 1
q(x) = (x+ 1)2
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Hence the ode is

y + y′ = (x+ 1)2

The domain of p(x) = 1 is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = (x+ 1)2 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

2.3.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫
1dx

= ex

The ode becomes

d
dx(µy) = (µ)

(
(x+ 1)2

)
d
dx(y e

x) = (ex)
(
(x+ 1)2

)
d(y ex) =

(
(x+ 1)2 ex

)
dx

Integrating gives

y ex =
∫

(x+ 1)2 ex dx

y ex =
(
x2 + 1

)
ex + c1

Dividing both sides by the integrating factor µ = ex results in

y = e−x
(
x2 + 1

)
ex + c1e−x

which simplifies to

y = x2 + 1 + c1e−x
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Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = c1 + 1

c1 = −1

Substituting c1 found above in the general solution gives

y = 1 + x2 − e−x

Summary
The solution(s) found are the following

(1)y = 1 + x2 − e−x

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 1 + x2 − e−x

Verified OK.
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2.3.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x2 + 2x− y + 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 24: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0
η(x, y) = e−x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−x
dy

Which results in

S = y ex

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x2 + 2x− y + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = y ex

Sy = ex
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= (x+ 1)2 ex (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= (R + 1)2 eR

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
(
R2 + 1

)
eR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

exy =
(
x2 + 1

)
ex + c1

Which simplifies to

exy =
(
x2 + 1

)
ex + c1

Which gives

y =
(
x2ex + ex + c1

)
e−x
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x2 + 2x− y + 1 dS
dR

= (R + 1)2 eR

R = x

S = y ex

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = c1 + 1

c1 = −1

Substituting c1 found above in the general solution gives

y = 1 + x2 − e−x

Summary
The solution(s) found are the following

(1)y = 1 + x2 − e−x
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = 1 + x2 − e−x

Verified OK.

2.3.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

dy =
(
−y + (x+ 1)2

)
dx(

y − (x+ 1)2
)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y − (x+ 1)2

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
y − (x+ 1)2

)
= 1

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((1)− (0))
= 1
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
1 dx

The result of integrating gives

µ = ex

= ex

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= ex
(
y − (x+ 1)2

)
= −ex

(
x2 + 2x− y + 1

)
And

N = µN

= ex(1)
= ex

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−ex
(
x2 + 2x− y + 1

))
+ (ex) dydx = 0

The following equations are now set up to solve for the function φ(x, y)
∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−ex

(
x2 + 2x− y + 1

)
dx

(3)φ = −
(
x2 − y + 1

)
ex + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= ex + f ′(y)

But equation (2) says that ∂φ
∂y

= ex. Therefore equation (4) becomes

(5)ex = ex + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −
(
x2 − y + 1

)
ex + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −
(
x2 − y + 1

)
ex

The solution becomes
y =

(
x2ex + ex + c1

)
e−x

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = c1 + 1

c1 = −1

Substituting c1 found above in the general solution gives

y = 1 + x2 − e−x
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Summary
The solution(s) found are the following

(1)y = 1 + x2 − e−x

(a) Solution plot (b) Slope field plot

Verification of solutions

y = 1 + x2 − e−x

Verified OK.

2.3.5 Maple step by step solution

Let’s solve[
y + y′ = (x+ 1)2 , y(0) = 0

]
• Highest derivative means the order of the ODE is 1

y′

• Isolate the derivative
y′ = −y + (x+ 1)2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y + y′ = (x+ 1)2

• The ODE is linear; multiply by an integrating factor µ(x)
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µ(x) (y + y′) = µ(x) (x+ 1)2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y + y′) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

• Solve to find the integrating factor
µ(x) = ex

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) (x+ 1)2 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) (x+ 1)2 dx+ c1

• Solve for y

y =
∫
µ(x)(x+1)2dx+c1

µ(x)

• Substitute µ(x) = ex

y =
∫
(x+1)2exdx+c1

ex

• Evaluate the integrals on the rhs

y =
(
x2+1

)
ex+c1

ex

• Simplify
y = x2 + 1 + c1e−x

• Use initial condition y(0) = 0
0 = c1 + 1

• Solve for c1
c1 = −1

• Substitute c1 = −1 into general solution and simplify
y = 1 + x2 − e−x

• Solution to the IVP
y = 1 + x2 − e−x
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve([diff(y(x),x)+y(x)=(x+1)^2,y(0) = 0],y(x), singsol=all)� �

y(x) = x2 + 1− e−x

3 Solution by Mathematica
Time used: 0.102 (sec). Leaf size: 17� �
DSolve[{y'[x]+y[x]==(x+1)^2,{y[0]==0}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2 − e−x + 1
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Internal problem ID [5058]
Internal file name [OUTPUT/4551_Sunday_June_05_2022_03_00_45_PM_20469628/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.3, ODEs with variable Coefficients.
First order. page 315
Problem number: 10.3.5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_linear]

x2y′ + 2xy = sinh (x)

With initial conditions

[y(1) = 2]

2.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′ + p(x)y = q(x)

Where here

p(x) = 2
x

q(x) = sinh (x)
x2

152



Hence the ode is

y′ + 2y
x

= sinh (x)
x2

The domain of p(x) = 2
x
is

{x < 0∨ 0 < x}

And the point x0 = 1 is inside this domain. The domain of q(x) = sinh(x)
x2 is

{x < 0∨ 0 < x}

And the point x0 = 1 is also inside this domain. Hence solution exists and is unique.

2.4.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor µ is

µ = e
∫ 2

x
dx

= x2

The ode becomes

d
dx(µy) = (µ)

(
sinh (x)

x2

)
d
dx
(
y x2) = (x2)(sinh (x)

x2

)
d
(
y x2) = sinh (x) dx

Integrating gives

y x2 =
∫

sinh (x) dx

y x2 = cosh (x) + c1

Dividing both sides by the integrating factor µ = x2 results in

y = cosh (x)
x2 + c1

x2

which simplifies to

y = cosh (x) + c1
x2
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Initial conditions are used to solve for c1. Substituting x = 1 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = cosh (1) + c1

c1 = − cosh (1) + 2

Substituting c1 found above in the general solution gives

y = cosh (x) + 2− cosh (1)
x2

Summary
The solution(s) found are the following

(1)y = cosh (x) + 2− cosh (1)
x2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = cosh (x) + 2− cosh (1)
x2

Verified OK.
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2.4.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2xy + sinh (x)
x2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 27: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x2

dy

Which results in

S = y x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2xy + sinh (x)
x2
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2xy
Sy = x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= sinh (x) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= sinh (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = cosh (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

yx2 = cosh (x) + c1

Which simplifies to

yx2 = cosh (x) + c1

Which gives

y = cosh (x) + c1
x2
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2xy+sinh(x)
x2

dS
dR

= sinh (R)

R = x

S = y x2

Initial conditions are used to solve for c1. Substituting x = 1 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = cosh (1) + c1

c1 = − cosh (1) + 2

Substituting c1 found above in the general solution gives

y = cosh (x) + 2− cosh (1)
x2

Summary
The solution(s) found are the following

(1)y = cosh (x) + 2− cosh (1)
x2
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = cosh (x) + 2− cosh (1)
x2

Verified OK.

2.4.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N
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But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore (

x2) dy = (−2xy + sinh (x)) dx
(2xy − sinh (x)) dx+

(
x2) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = 2xy − sinh (x)
N(x, y) = x2

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y
(2xy − sinh (x))

= 2x

And
∂N

∂x
= ∂

∂x

(
x2)

= 2x

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)
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Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
2xy − sinh (x) dx

(3)φ = y x2 − cosh (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= x2. Therefore equation (4) becomes

(5)x2 = x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = y x2 − cosh (x) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = y x2 − cosh (x)

The solution becomes

y = cosh (x) + c1
x2
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Initial conditions are used to solve for c1. Substituting x = 1 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2 = cosh (1) + c1

c1 = − cosh (1) + 2

Substituting c1 found above in the general solution gives

y = cosh (x) + 2− cosh (1)
x2

Summary
The solution(s) found are the following

(1)y = cosh (x) + 2− cosh (1)
x2

(a) Solution plot (b) Slope field plot

Verification of solutions

y = cosh (x) + 2− cosh (1)
x2

Verified OK.
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2.4.5 Maple step by step solution

Let’s solve
[x2y′ + 2xy = sinh (x) , y(1) = 2]

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −2y

x
+ sinh(x)

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 2y

x
= sinh(x)

x2

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + 2y

x

)
= µ(x) sinh(x)

x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 2y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 2µ(x)

x

• Solve to find the integrating factor
µ(x) = x2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x) sinh(x)
x2 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x) sinh(x)
x2 dx+ c1

• Solve for y

y =
∫ µ(x) sinh(x)

x2 dx+c1

µ(x)

• Substitute µ(x) = x2

y =
∫
sinh(x)dx+c1

x2

• Evaluate the integrals on the rhs
y = cosh(x)+c1

x2

• Use initial condition y(1) = 2

163



2 = cosh (1) + c1

• Solve for c1
c1 = − cosh (1) + 2

• Substitute c1 = − cosh (1) + 2 into general solution and simplify
y = cosh(x)+2−cosh(1)

x2

• Solution to the IVP
y = cosh(x)+2−cosh(1)

x2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 16� �
dsolve([x^2*diff(y(x),x)+2*x*y(x)=sinh(x),y(1) = 2],y(x), singsol=all)� �

y(x) = cosh (x) + 2− cosh (1)
x2

3 Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 17� �
DSolve[{x^2*y'[x]+2*x*y[x]==Sinh[x],{y[1]==2}},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → cosh(x) + 2− cosh(1)
x2
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Internal problem ID [5059]
Internal file name [OUTPUT/4552_Sunday_June_05_2022_03_00_46_PM_11495574/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.3, ODEs with variable Coefficients.
First order. page 315
Problem number: 10.3.6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + y

1− x
= x2 − 2x

2.5.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 1
x− 1

q(x) = x(−2 + x)

Hence the ode is

y′ − y

x− 1 = x(−2 + x)

165



The integrating factor µ is

µ = e
∫
− 1

x−1dx

= 1
x− 1

The ode becomes

d
dx(µy) = (µ) (x(−2 + x))

d
dx

(
y

x− 1

)
=
(

1
x− 1

)
(x(−2 + x))

d
(

y

x− 1

)
=
(
x(−2 + x)

x− 1

)
dx

Integrating gives

y

x− 1 =
∫

x(−2 + x)
x− 1 dx

y

x− 1 = x2

2 − x− ln (x− 1) + c1

Dividing both sides by the integrating factor µ = 1
x−1 results in

y = (x− 1)
(
x2

2 − x− ln (x− 1)
)
+ c1(x− 1)

which simplifies to

y = (x− 1) (x2 − 2x− 2 ln (x− 1) + 2c1)
2

Summary
The solution(s) found are the following

(1)y = (x− 1) (x2 − 2x− 2 ln (x− 1) + 2c1)
2
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Figure 25: Slope field plot

Verification of solutions

y = (x− 1) (x2 − 2x− 2 ln (x− 1) + 2c1)
2

Verified OK.

2.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x3 − 3x2 + 2x+ y

x− 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 30: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x− 1 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x− 1dy

Which results in

S = y

x− 1

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x3 − 3x2 + 2x+ y

x− 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

(x− 1)2

Sy =
1

x− 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x(−2 + x)

x− 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R(−2 +R)

R− 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2

2 −R− ln (R− 1) + c1 (4)

Which gives

y = −(x− 1) (−x2 + 2 ln (x− 1)− 2c1 + 2x)
2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x3−3x2+2x+y
x−1

dS
dR

= R(−2+R)
R−1

R = x

S = y

x− 1

Summary
The solution(s) found are the following

(1)y = −(x− 1) (−x2 + 2 ln (x− 1)− 2c1 + 2x)
2
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Figure 26: Slope field plot

Verification of solutions

y = −(x− 1) (−x2 + 2 ln (x− 1)− 2c1 + 2x)
2

Verified OK.

2.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
− y

1− x
− 2x+ x2

)
dx(

y

1− x
+ 2x− x2

)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y

1− x
+ 2x− x2

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
y

1− x
+ 2x− x2

)
= 1

1− x
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And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1
((

1
1− x

)
− (0)

)
= 1

1− x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ 1

1−x
dx

The result of integrating gives

µ = e− ln(1−x)

= 1
1− x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
1− x

(
y

1− x
+ 2x− x2

)
= x3 − 3x2 + 2x+ y

(x− 1)2

And

N = µN

= 1
1− x

(1)

= 1
1− x
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

x3 − 3x2 + 2x+ y

(x− 1)2
)
+
(

1
1− x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x3 − 3x2 + 2x+ y

(x− 1)2
dx

(3)φ = x2

2 − x− ln (x− 1)− y

x− 1 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − 1

x− 1 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
1−x

. Therefore equation (4) becomes

(5)1
1− x

= − 1
x− 1 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x2

2 − x− ln (x− 1)− y

x− 1 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x2

2 − x− ln (x− 1)− y

x− 1

The solution becomes

y = −(−x2 + 2 ln (x− 1) + 2c1 + 2x) (x− 1)
2

Summary
The solution(s) found are the following

(1)y = −(−x2 + 2 ln (x− 1) + 2c1 + 2x) (x− 1)
2

Figure 27: Slope field plot
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Verification of solutions

y = −(−x2 + 2 ln (x− 1) + 2c1 + 2x) (x− 1)
2

Verified OK.

2.5.4 Maple step by step solution

Let’s solve
y′ + y

1−x
= x2 − 2x

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y

x−1 + x2 − 2x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y

x−1 = x2 − 2x

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − y

x−1

)
= µ(x) (x2 − 2x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y

x−1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

x−1

• Solve to find the integrating factor
µ(x) = 1

x−1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) (x2 − 2x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) (x2 − 2x) dx+ c1

• Solve for y

y =
∫
µ(x)

(
x2−2x

)
dx+c1

µ(x)

• Substitute µ(x) = 1
x−1
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y = (x− 1)
(∫

x2−2x
x−1 dx+ c1

)
• Evaluate the integrals on the rhs

y = (x− 1)
(

x2

2 − x− ln (x− 1) + c1
)

• Simplify

y = (x−1)
(
x2−2x−2 ln(x−1)+2c1

)
2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 25� �
dsolve(diff(y(x),x)+y(x)/(1-x)+2*x-x^2=0,y(x), singsol=all)� �

y(x) = (x2 − 2x− 2 ln (x− 1) + 2c1) (x− 1)
2

3 Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 27� �
DSolve[y'[x]+y[x]/(1-x)+2*x-x^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (x− 1)
(
1
2(x− 1)2 − log(x− 1) + c1

)

177



2.6 problem 10.3.7
2.6.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 178
2.6.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 180
2.6.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 184
2.6.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 189

Internal problem ID [5060]
Internal file name [OUTPUT/4553_Sunday_June_05_2022_03_00_47_PM_35483196/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.3, ODEs with variable Coefficients.
First order. page 315
Problem number: 10.3.7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + y

1− x
= x2 − x

2.6.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 1
x− 1

q(x) = x(x− 1)

Hence the ode is

y′ − y

x− 1 = x(x− 1)
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The integrating factor µ is

µ = e
∫
− 1

x−1dx

= 1
x− 1

The ode becomes

d
dx(µy) = (µ) (x(x− 1))

d
dx

(
y

x− 1

)
=
(

1
x− 1

)
(x(x− 1))

d
(

y

x− 1

)
= x dx

Integrating gives

y

x− 1 =
∫

x dx

y

x− 1 = x2

2 + c1

Dividing both sides by the integrating factor µ = 1
x−1 results in

y = x2(x− 1)
2 + c1(x− 1)

which simplifies to

y = (x− 1) (x2 + 2c1)
2

Summary
The solution(s) found are the following

(1)y = (x− 1) (x2 + 2c1)
2
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Figure 28: Slope field plot

Verification of solutions

y = (x− 1) (x2 + 2c1)
2

Verified OK.

2.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x3 − 2x2 + x+ y

x− 1
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 33: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x− 1 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

181



canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x− 1dy

Which results in

S = y

x− 1

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x3 − 2x2 + x+ y

x− 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − y

(x− 1)2

Sy =
1

x− 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R2

2 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x− 1 = x2

2 + c1

Which simplifies to

y

x− 1 = x2

2 + c1

Which gives

y = (x− 1) (x2 + 2c1)
2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x3−2x2+x+y
x−1

dS
dR

= R

R = x

S = y

x− 1
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Summary
The solution(s) found are the following

(1)y = (x− 1) (x2 + 2c1)
2

Figure 29: Slope field plot

Verification of solutions

y = (x− 1) (x2 + 2c1)
2

Verified OK.

2.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore

dy =
(
− y

1− x
− x+ x2

)
dx(

y

1− x
+ x− x2

)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y

1− x
+ x− x2

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
y

1− x
+ x− x2

)
= 1

1− x
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And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1
((

1
1− x

)
− (0)

)
= 1

1− x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
A dx

= e
∫ 1

1−x
dx

The result of integrating gives

µ = e− ln(1−x)

= 1
1− x

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
1− x

(
y

1− x
+ x− x2

)
= x3 − 2x2 + x+ y

(x− 1)2

And

N = µN

= 1
1− x

(1)

= 1
1− x
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

x3 − 2x2 + x+ y

(x− 1)2
)
+
(

1
1− x

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x3 − 2x2 + x+ y

(x− 1)2
dx

(3)φ = x2

2 − y

x− 1 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= − 1

x− 1 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
1−x

. Therefore equation (4) becomes

(5)1
1− x

= − 1
x− 1 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x2

2 − y

x− 1 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
x2

2 − y

x− 1

The solution becomes

y = −(−x2 + 2c1) (x− 1)
2

Summary
The solution(s) found are the following

(1)y = −(−x2 + 2c1) (x− 1)
2

Figure 30: Slope field plot
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Verification of solutions

y = −(−x2 + 2c1) (x− 1)
2

Verified OK.

2.6.4 Maple step by step solution

Let’s solve
y′ + y

1−x
= x2 − x

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y

x−1 + x2 − x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y

x−1 = x2 − x

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − y

x−1

)
= µ(x) (x2 − x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y

x−1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

x−1

• Solve to find the integrating factor
µ(x) = 1

x−1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) (x2 − x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) (x2 − x) dx+ c1

• Solve for y

y =
∫
µ(x)

(
x2−x

)
dx+c1

µ(x)

• Substitute µ(x) = 1
x−1
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y = (x− 1)
(∫

x2−x
x−1 dx+ c1

)
• Evaluate the integrals on the rhs

y =
(

x2

2 + c1
)
(x− 1)

• Simplify

y = (x−1)
(
x2+2c1

)
2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve(diff(y(x),x)+y(x)/(1-x)+x-x^2=0,y(x), singsol=all)� �

y(x) = (x2 + 2c1) (x− 1)
2

3 Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 20� �
DSolve[y'[x]+y[x]/(1-x)+x-x^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2(x− 1)

(
x2 + 2c1

)
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2.7.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 191
2.7.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 193
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Internal problem ID [5061]
Internal file name [OUTPUT/4554_Sunday_June_05_2022_03_00_48_PM_6281316/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.3, ODEs with variable Coefficients.
First order. page 315
Problem number: 10.3.8.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

(
x2 + 1

)
y′ − xy = 1

2.7.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − x

x2 + 1
q(x) = 1

x2 + 1
Hence the ode is

y′ − xy

x2 + 1 = 1
x2 + 1
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The integrating factor µ is

µ = e
∫
− x

x2+1dx

= 1√
x2 + 1

The ode becomes

d
dx(µy) = (µ)

(
1

x2 + 1

)
d
dx

(
y√

x2 + 1

)
=
(

1√
x2 + 1

)(
1

x2 + 1

)
d
(

y√
x2 + 1

)
= 1

(x2 + 1)
3
2
dx

Integrating gives

y√
x2 + 1

=
∫ 1

(x2 + 1)
3
2
dx

y√
x2 + 1

= x√
x2 + 1

+ c1

Dividing both sides by the integrating factor µ = 1√
x2+1 results in

y = c1
√
x2 + 1 + x

Summary
The solution(s) found are the following

(1)y = c1
√
x2 + 1 + x
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Figure 31: Slope field plot

Verification of solutions

y = c1
√
x2 + 1 + x

Verified OK.

2.7.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)(
x2 + 1

)
(u′(x)x+ u(x))− x2u(x) = 1

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u+ 1
x (x2 + 1)

Where f(x) = 1
x(x2+1) and g(u) = −u+ 1. Integrating both sides gives

1
−u+ 1 du = 1

x (x2 + 1) dx
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∫ 1
−u+ 1 du =

∫ 1
x (x2 + 1) dx

− ln (u− 1) = − ln (x2 + 1)
2 + ln (x) + c2

Raising both side to exponential gives

1
u− 1 = e−

ln
(
x2+1

)
2 +ln(x)+c2

Which simplifies to

1
u− 1 = c3e−

ln
(
x2+1

)
2 +ln(x)

Which simplifies to

u(x) =

(
c3ec2x√
x2+1 + 1

)
e−c2

√
x2 + 1

c3x

Therefore the solution y is

y = xu

=

(
c3ec2x√
x2+1 + 1

)
e−c2

√
x2 + 1

c3

Summary
The solution(s) found are the following

(1)y =

(
c3ec2x√
x2+1 + 1

)
e−c2

√
x2 + 1

c3
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Figure 32: Slope field plot

Verification of solutions

y =

(
c3ec2x√
x2+1 + 1

)
e−c2

√
x2 + 1

c3

Verified OK.

2.7.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = xy + 1
x2 + 1

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 36: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) =

√
x2 + 1 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1√

x2 + 1
dy

Which results in

S = y√
x2 + 1

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = xy + 1
x2 + 1

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = − yx

(x2 + 1)
3
2

Sy =
1√

x2 + 1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

(x2 + 1)
3
2

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

(R2 + 1)
3
2
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R√
R2 + 1

+ c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y√
x2 + 1

= x√
x2 + 1

+ c1

Which simplifies to
y√

x2 + 1
= x√

x2 + 1
+ c1

Which gives

y = c1
√
x2 + 1 + x

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= xy+1
x2+1

dS
dR

= 1
(R2+1)

3
2

R = x

S = y√
x2 + 1
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Summary
The solution(s) found are the following

(1)y = c1
√
x2 + 1 + x

Figure 33: Slope field plot

Verification of solutions

y = c1
√
x2 + 1 + x

Verified OK.

2.7.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0
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Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
x2 + 1

)
dy = (xy + 1) dx

(−xy − 1) dx+
(
x2 + 1

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −xy − 1
N(x, y) = x2 + 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y
(−xy − 1)

= −x
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And
∂N

∂x
= ∂

∂x

(
x2 + 1

)
= 2x

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1

x2 + 1((−x)− (2x))

= − 3x
x2 + 1

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 3x

x2+1 dx

The result of integrating gives

µ = e−
3 ln

(
x2+1

)
2

= 1
(x2 + 1)

3
2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
(x2 + 1)

3
2
(−xy − 1)

= − xy + 1
(x2 + 1)

3
2

And

N = µN

= 1
(x2 + 1)

3
2

(
x2 + 1

)
= 1√

x2 + 1
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

− xy + 1
(x2 + 1)

3
2

)
+
(

1√
x2 + 1

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− xy + 1
(x2 + 1)

3
2
dx

(3)φ = −x+ y√
x2 + 1

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1√

x2 + 1
+ f ′(y)

But equation (2) says that ∂φ
∂y

= 1√
x2+1 . Therefore equation (4) becomes

(5)1√
x2 + 1

= 1√
x2 + 1

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x+ y√
x2 + 1

+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
−x+ y√
x2 + 1

The solution becomes
y = c1

√
x2 + 1 + x

Summary
The solution(s) found are the following

(1)y = c1
√
x2 + 1 + x

Figure 34: Slope field plot
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Verification of solutions

y = c1
√
x2 + 1 + x

Verified OK.

2.7.5 Maple step by step solution

Let’s solve
(x2 + 1) y′ − xy = 1

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = xy

x2+1 +
1

x2+1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − xy

x2+1 = 1
x2+1

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − xy

x2+1

)
= µ(x)

x2+1

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − xy

x2+1

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)x

x2+1

• Solve to find the integrating factor
µ(x) = 1√

x2+1

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)
x2+1dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)
x2+1dx+ c1

• Solve for y

y =
∫ µ(x)

x2+1dx+c1

µ(x)

• Substitute µ(x) = 1√
x2+1
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y =
√
x2 + 1

(∫ 1
(x2+1)

3
2
dx+ c1

)
• Evaluate the integrals on the rhs

y =
√
x2 + 1

(
x√
x2+1 + c1

)
• Simplify

y = c1
√
x2 + 1 + x

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve((1+x^2)*diff(y(x),x)=1+x*y(x),y(x), singsol=all)� �

y(x) =
√
x2 + 1 c1 + x

3 Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 19� �
DSolve[(1+x^2)*y'[x]==1+x*y[x],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x+ c1
√
x2 + 1
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2.8 problem 10.3.9 (a)
2.8.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 206
2.8.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 208
2.8.3 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 212
2.8.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 215
2.8.5 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 219
2.8.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 221

Internal problem ID [5062]
Internal file name [OUTPUT/4555_Sunday_June_05_2022_03_00_49_PM_941248/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.3, ODEs with variable Coefficients.
First order. page 315
Problem number: 10.3.9 (a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "bernoulli",
"separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ + xy − xy2 = 0

2.8.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)
= xy(y − 1)

Where f(x) = x and g(y) = y(y − 1). Integrating both sides gives

1
y (y − 1) dy = x dx
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∫ 1
y (y − 1) dy =

∫
x dx

ln (y − 1)− ln (y) = x2

2 + c1

Raising both side to exponential gives

eln(y−1)−ln(y) = ex2
2 +c1

Which simplifies to

y − 1
y

= c2e
x2
2

Summary
The solution(s) found are the following

(1)y = − 1
−1 + c2e

x2
2

Figure 35: Slope field plot

207



Verification of solutions

y = − 1
−1 + c2e

x2
2

Verified OK.

2.8.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = y2x− xy

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 39: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 1
x

η(x, y) = 0 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since η = 0 then in this special case

R = y

S is found from

S =
∫ 1

ξ
dx

=
∫ 1

1
x

dx

Which results in

S = x2

2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = y2x− xy

Evaluating all the partial derivatives gives

Rx = 0
Ry = 1
Sx = x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

y (y − 1) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R (R− 1)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R− 1)− ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2

2 = ln (y − 1)− ln (y) + c1

Which simplifies to

x2

2 = ln (y − 1)− ln (y) + c1

Which gives

y = e−x2
2 +c1

−1 + e−x2
2 +c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= y2x− xy dS
dR

= 1
R(R−1)

R = y

S = x2

2
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Summary
The solution(s) found are the following

(1)y = e−x2
2 +c1

−1 + e−x2
2 +c1

Figure 36: Slope field plot

Verification of solutions

y = e−x2
2 +c1

−1 + e−x2
2 +c1

Verified OK.

2.8.3 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)
= y2x− xy

This is a Bernoulli ODE.
y′ = −xy + xy2 (1)
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The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives

y′

yn
= f0(x)y1−n + f1(x) (3)

The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = −x

f1(x) = x

n = 2

Dividing both sides of ODE (1) by yn = y2 gives

y′
1
y2

= −x

y
+ x (4)

Let

w = y1−n

= 1
y

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 1
y2

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x) = −w(x)x+ x

w′ = xw − x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)
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Where here

p(x) = −x

q(x) = −x

Hence the ode is

w′(x)− w(x)x = −x

The integrating factor µ is

µ = e
∫
−xdx

= e−x2
2

The ode becomes
d
dx(µw) = (µ) (−x)

d
dx

(
e−x2

2 w
)
=
(
e−x2

2

)
(−x)

d
(
e−x2

2 w
)
=
(
−x e−x2

2

)
dx

Integrating gives

e−x2
2 w =

∫
−x e−x2

2 dx

e−x2
2 w = e−x2

2 + c1

Dividing both sides by the integrating factor µ = e−x2
2 results in

w(x) = ex2
2 e−x2

2 + c1e
x2
2

which simplifies to

w(x) = 1 + c1e
x2
2

Replacing w in the above by 1
y
using equation (5) gives the final solution.

1
y
= 1 + c1e

x2
2

Or

y = 1
1 + c1e

x2
2
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Summary
The solution(s) found are the following

(1)y = 1
1 + c1e

x2
2

Figure 37: Slope field plot

Verification of solutions

y = 1
1 + c1e

x2
2

Verified OK.

2.8.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
1

y (y − 1)

)
dy = (x) dx

(−x) dx+
(

1
y (y − 1)

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x

N(x, y) = 1
y (y − 1)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives
∂M

∂y
= ∂

∂y
(−x)

= 0

And
∂N

∂x
= ∂

∂x

(
1

y (y − 1)

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x dx

(3)φ = −x2

2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
y(y−1) . Therefore equation (4) becomes

(5)1
y (y − 1) = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 1
y (y − 1)
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Integrating the above w.r.t y gives

∫
f ′(y) dy =

∫ ( 1
y (y − 1)

)
dy

f(y) = ln (y − 1)− ln (y) + c1

Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = −x2

2 + ln (y − 1)− ln (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x2

2 + ln (y − 1)− ln (y)

The solution becomes

y = − 1
ex2

2 +c1 − 1

Summary
The solution(s) found are the following

(1)y = − 1
ex2

2 +c1 − 1
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Figure 38: Slope field plot

Verification of solutions

y = − 1
ex2

2 +c1 − 1

Verified OK.

2.8.5 Solving as riccati ode

In canonical form the ODE is

y′ = F (x, y)
= y2x− xy

This is a Riccati ODE. Comparing the ODE to solve

y′ = y2x− xy

With Riccati ODE standard form

y′ = f0(x) + f1(x)y + f2(x)y2
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Shows that f0(x) = 0, f1(x) = −x and f2(x) = x. Let

y = −u′

f2u

= −u′

xu
(1)

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

f2u
′′(x)− (f ′

2 + f1f2)u′(x) + f 2
2 f0u(x) = 0 (2)

But

f ′
2 = 1

f1f2 = −x2

f 2
2 f0 = 0

Substituting the above terms back in equation (2) gives

xu′′(x)−
(
−x2 + 1

)
u′(x) = 0

Solving the above ODE (this ode solved using Maple, not this program), gives

u(x) = c1 + e−x2
2 c2

The above shows that

u′(x) = −x e−x2
2 c2

Using the above in (1) gives the solution

y = e−x2
2 c2

c1 + e−x2
2 c2

Dividing both numerator and denominator by c1 gives, after renaming the constant
c2
c1

= c3 the following solution

y = e−x2
2

c3 + e−x2
2
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Summary
The solution(s) found are the following

(1)y = e−x2
2

c3 + e−x2
2

Figure 39: Slope field plot

Verification of solutions

y = e−x2
2

c3 + e−x2
2

Verified OK.

2.8.6 Maple step by step solution

Let’s solve
y′ + xy − xy2 = 0

• Highest derivative means the order of the ODE is 1
y′
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• Separate variables
y′

y(y−1) = x

• Integrate both sides with respect to x∫
y′

y(y−1)dx =
∫
xdx+ c1

• Evaluate integral
ln (y − 1)− ln (y) = x2

2 + c1

• Solve for y
y = − 1

e
x2
2 +c1−1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 16� �
dsolve(diff(y(x),x)+x*y(x)=x*y(x)^2,y(x), singsol=all)� �

y(x) = 1
1 + ex2

2 c1

3 Solution by Mathematica
Time used: 0.25 (sec). Leaf size: 31� �
DSolve[y'[x]+x*y[x]==x*y[x]^2,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
1 + e

x2
2 +c1

y(x) → 0
y(x) → 1
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2.9 problem 10.3.9 (b)
2.9.1 Solving as first order ode lie symmetry lookup ode . . . . . . . 223
2.9.2 Solving as bernoulli ode . . . . . . . . . . . . . . . . . . . . . . 227

Internal problem ID [5063]
Internal file name [OUTPUT/4556_Sunday_June_05_2022_03_00_50_PM_48381868/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.3, ODEs with variable Coefficients.
First order. page 315
Problem number: 10.3.9 (b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Bernoulli]

3xy′ + y + y4x2 = 0

2.9.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y(y3x2 + 1)
3x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 42: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = y4x (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

y4x
dy

Which results in

S = − 1
3x y3

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y(y3x2 + 1)
3x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = 1
3x2y3

Sy =
1
y4x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1

3 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1

3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R

3 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− 1
3y3x = −x

3 + c1

Which simplifies to

− 1
3y3x = −x

3 + c1

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y
(
y3x2+1

)
3x

dS
dR

= −1
3

R = x

S = − 1
3x y3

Summary
The solution(s) found are the following

(1)− 1
3y3x = −x

3 + c1
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Figure 40: Slope field plot

Verification of solutions

− 1
3y3x = −x

3 + c1

Verified OK.

2.9.2 Solving as bernoulli ode

In canonical form, the ODE is

y′ = F (x, y)

= −y(y3x2 + 1)
3x

This is a Bernoulli ODE.
y′ = − 1

3xy −
x

3y
4 (1)

The standard Bernoulli ODE has the form

y′ = f0(x)y + f1(x)yn (2)

The first step is to divide the above equation by yn which gives
y′

yn
= f0(x)y1−n + f1(x) (3)
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The next step is use the substitution w = y1−n in equation (3) which generates a new
ODE in w(x) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(x) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

f0(x) = − 1
3x

f1(x) = −x

3
n = 4

Dividing both sides of ODE (1) by yn = y4 gives

y′
1
y4

= − 1
3x y3 − x

3 (4)

Let

w = y1−n

= 1
y3

(5)

Taking derivative of equation (5) w.r.t x gives

w′ = − 3
y4

y′ (6)

Substituting equations (5) and (6) into equation (4) gives

−w′(x)
3 = −w(x)

3x − x

3
w′ = w

x
+ x (7)

The above now is a linear ODE in w(x) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w′(x) + p(x)w(x) = q(x)

Where here

p(x) = −1
x

q(x) = x
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Hence the ode is

w′(x)− w(x)
x

= x

The integrating factor µ is

µ = e
∫
− 1

x
dx

= 1
x

The ode becomes
d
dx(µw) = (µ) (x)

d
dx

(w
x

)
=
(
1
x

)
(x)

d
(w
x

)
= dx

Integrating gives
w

x
=
∫

dx
w

x
= x+ c1

Dividing both sides by the integrating factor µ = 1
x
results in

w(x) = c1x+ x2

which simplifies to

w(x) = x(x+ c1)

Replacing w in the above by 1
y3

using equation (5) gives the final solution.
1
y3

= x(x+ c1)

Solving for y gives

y(x) =
(
x2(x+ c1)2

) 1
3

x (x+ c1)

y(x) =
(
x2(x+ c1)2

) 1
3
(
i
√
3− 1

)
2x (x+ c1)

y(x) = −
(
x2(x+ c1)2

) 1
3
(
1 + i

√
3
)

2x (x+ c1)
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Summary
The solution(s) found are the following

(1)y =
(
x2(x+ c1)2

) 1
3

x (x+ c1)

(2)y =
(
x2(x+ c1)2

) 1
3
(
i
√
3− 1

)
2x (x+ c1)

(3)y = −
(
x2(x+ c1)2

) 1
3
(
1 + i

√
3
)

2x (x+ c1)

Figure 41: Slope field plot
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Verification of solutions

y =
(
x2(x+ c1)2

) 1
3

x (x+ c1)

Verified OK.

y =
(
x2(x+ c1)2

) 1
3
(
i
√
3− 1

)
2x (x+ c1)

Verified OK.

y = −
(
x2(x+ c1)2

) 1
3
(
1 + i

√
3
)

2x (x+ c1)

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 88� �
dsolve(3*x*diff(y(x),x)+y(x)+x^2*y(x)^4=0,y(x), singsol=all)� �

y(x) =
(
(x+ c1)2 x2) 1

3

(x+ c1)x

y(x) = −
(
(x+ c1)2 x2) 1

3
(
1 + i

√
3
)

2 (x+ c1)x

y(x) =
(
(x+ c1)2 x2) 1

3
(
i
√
3− 1

)
2 (x+ c1)x
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3 Solution by Mathematica
Time used: 0.3 (sec). Leaf size: 61� �
DSolve[3*x*y'[x]+y[x]+x^2*y[x]^4==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
3
√
x(x+ c1)

y(x) → −
3
√
−1

3
√

x(x+ c1)

y(x) → (−1)2/3
3
√
x(x+ c1)

y(x) → 0
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3 Chapter 10, Differential equations. Section 10.4,
ODEs with variable Coefficients. Second order
and Homogeneous. page 318

3.1 problem 10.4.8 (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
3.2 problem 10.4.8 (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
3.3 problem 10.4.8 (c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
3.4 problem 10.4.8 (d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
3.5 problem 10.4.8 (e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
3.6 problem 10.4.8 (f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
3.7 problem 10.4.8 (g) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
3.8 problem 10.4.8 (h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
3.9 problem 10.4.9 (i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
3.10 problem 10.4.9 (ii) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
3.11 problem 10.4.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
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3.1 problem 10.4.8 (a)
3.1.1 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 234
3.1.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 239

Internal problem ID [5064]
Internal file name [OUTPUT/4557_Sunday_June_05_2022_03_00_51_PM_97582610/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients.
Second order and Homogeneous. page 318
Problem number: 10.4.8 (a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x(x+ 1)2 y′′ +
(
−x2 + 1

)
y′ + (x− 1) y = 0

3.1.1 Solving using Kovacic algorithm

Writing the ode as

x(x+ 1)2 y′′ +
(
−x2 + 1

)
y′ + (x− 1) y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x(x+ 1)2

B = −x2 + 1 (3)
C = x− 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)
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Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 44: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= − 1

4x2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2
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The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = 1
2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x
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Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x2+1
x(x+1)2

dx

= z1e
ln(x+1)− ln(x)

2

= z1

(
x+ 1√

x

)

Which simplifies to
y1 = x+ 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
− −x2+1

x(x+1)2
dx

(y1)2
dx

= y1

∫
e2 ln(x+1)−ln(x)

(y1)2
dx

= y1(ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(x+ 1) + c2(x+ 1(ln (x)))

Summary
The solution(s) found are the following

(1)y = (x+ 1) c1 + c2(x+ 1) ln (x)
Verification of solutions

y = (x+ 1) c1 + c2(x+ 1) ln (x)

Verified OK.

3.1.2 Maple step by step solution

Let’s solve
x(x+ 1)2 y′′ + (−x2 + 1) y′ + (x− 1) y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − (x−1)y
x(x+1)2 +

(x−1)y′
x(x+1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (x−1)y′
x(x+1) +

(x−1)y
x(x+1)2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions

239



[
P2(x) = − x−1

(x+1)x , P3(x) = x−1
x(x+1)2

]
◦ (x+ 1) · P2(x) is analytic at x = −1

((x+ 1) · P2(x))
∣∣∣∣
x=−1

= −2

◦ (x+ 1)2 · P3(x) is analytic at x = −1(
(x+ 1)2 · P3(x)

) ∣∣∣∣
x=−1

= 2

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
x(x+ 1)2 y′′ − (x− 1) (x+ 1) y′ + (x− 1) y = 0

• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u3 − u2)
(

d2

du2y(u)
)
+ (−u2 + 2u)

(
d
du
y(u)

)
+ (u− 2) y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um · y(u) to series expansion form = 0..1

um · y(u) =
∞∑
k=0

aku
k+r+m

◦ Shift index using k− >k −m

um · y(u) =
∞∑

k=m

ak−mu
k+r

◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 1..2

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 2..3
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um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0(−1 + r) (−2 + r)ur +
(

∞∑
k=1

(
−ak(k + r − 1) (k + r − 2) + ak−1(k + r − 2)2

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−(−1 + r) (−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {1, 2}

• Each term in the series must be 0, giving the recursion relation
−ak(k + r − 1) (k + r − 2) + ak−1(k + r − 2)2 = 0

• Shift index using k− >k + 1
−ak+1(k + r) (k + r − 1) + ak(k + r − 1)2 = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r−1)

k+r

• Recursion relation for r = 1
ak+1 = akk

k+1

• Solution for r = 1[
y(u) =

∞∑
k=0

aku
k+1, ak+1 = akk

k+1

]
• Revert the change of variables u = x+ 1[

y =
∞∑
k=0

ak(x+ 1)k+1 , ak+1 = akk
k+1

]
• Recursion relation for r = 2

ak+1 = ak(k+1)
k+2

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = ak(k+1)

k+2

]
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• Revert the change of variables u = x+ 1[
y =

∞∑
k=0

ak(x+ 1)k+2 , ak+1 = ak(k+1)
k+2

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(x+ 1)k+1
)
+
(

∞∑
k=0

bk(x+ 1)k+2
)
, ak+1 = akk

k+1 , bk+1 = bk(k+1)
k+2

]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 14� �
dsolve(x*(x+1)^2*diff(y(x),x$2)+(1-x^2)*diff(y(x),x)+(x-1)*y(x)=0,y(x), singsol=all)� �

y(x) = (x+ 1) (c2 ln (x) + c1)

3 Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 17� �
DSolve[x*(x+1)^2*y''[x]+(1-x^2)*y'[x]+(x-1)*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → (x+ 1)(c2 log(x) + c1)
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3.2 problem 10.4.8 (b)
3.2.1 Solving as second order change of variable on y method 1 ode . 243
3.2.2 Solving as second order change of variable on y method 2 ode . 245
3.2.3 Solving as second order integrable as is ode . . . . . . . . . . . 247
3.2.4 Solving as type second_order_integrable_as_is (not using ABC

version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
3.2.5 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 250
3.2.6 Solving as exact linear second order ode ode . . . . . . . . . . . 253
3.2.7 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 255

Internal problem ID [5065]
Internal file name [OUTPUT/4558_Sunday_June_05_2022_03_00_52_PM_84210290/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients.
Second order and Homogeneous. page 318
Problem number: 10.4.8 (b).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_order_integrable_as_is", "second_order_change_of_vari-
able_on_y_method_1", "second_order_change_of_variable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

x(1− x) y′′ + 2(1− 2x) y′ − 2y = 0

3.2.1 Solving as second order change of variable on y method 1 ode

In normal form the given ode is written as

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −4x+ 2
−x2 + x

q(x) = − 2
−x2 + x
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Calculating the Liouville ode invariant Q given by

Q = q − p′

2 − p2

4

= − 2
−x2 + x

−
(−4x+2
−x2+x

)′
2 −

(−4x+2
−x2+x

)2
4

= − 2
−x2 + x

−

(
− 4

−x2+x
− (−4x+2)(1−2x)

(−x2+x)2

)
2 −

(
(−4x+2)2

(−x2+x)2

)
4

= − 2
−x2 + x

−
(
− 2
−x2 + x

− (−4x+ 2) (1− 2x)
2 (−x2 + x)2

)
− (−4x+ 2)2

4 (−x2 + x)2

= 0

Since the Liouville ode invariant does not depend on the independent variable x then
the transformation

y = v(x) z(x) (3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term
z(x) is given by

z(x) = e−
(∫ p(x)

2 dx
)

= e−
∫ −4x+2

−x2+x
2

= 1
x (x− 1) (5)

Hence (3) becomes

y = v(x)
x (x− 1) (4)

Applying this change of variable to the original ode results in

−v′′(x) = 0

Which is now solved for v(x) Integrating twice gives the solution

v(x) = c1x+ c2

Now that v(x) is known, then

y = v(x) z(x)
= (c1x+ c2) (z(x)) (7)
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But from (5)

z(x) = 1
x (x− 1)

Hence (7) becomes

y = c1x+ c2
x (x− 1)

Summary
The solution(s) found are the following

(1)y = c1x+ c2
x (x− 1)

Verification of solutions

y = c1x+ c2
x (x− 1)

Verified OK.

3.2.2 Solving as second order change of variable on y method 2 ode

In normal form the ode (
−x2 + x

)
y′′ + (−4x+ 2) y′ − 2y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 4x− 2
x (x− 1)

q(x) = 2
x (x− 1)

Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)

Let the coefficient of v(x) above be zero. Hence

n(n− 1)
x2 + np

x
+ q = 0 (4)
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Substituting the earlier values found for p(x) and q(x) into (4) gives

n(n− 1)
x2 + n(4x− 2)

x2 (x− 1) +
2

x (x− 1) = 0 (5)

Solving (5) for n gives

n = −1 (6)

Substituting this value in (3) gives

v′′(x) +
(
−2
x
+ 4x− 2

x (x− 1)

)
v′(x) = 0

v′′(x) + 2v′(x)
x− 1 = 0 (7)

Using the substitution

u(x) = v′(x)

Then (7) becomes

u′(x) + 2u(x)
x− 1 = 0 (8)

The above is now solved for u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= − 2u
x− 1

Where f(x) = − 2
x−1 and g(u) = u. Integrating both sides gives

1
u
du = − 2

x− 1 dx∫ 1
u
du =

∫
− 2
x− 1 dx

ln (u) = −2 ln (x− 1) + c1

u = e−2 ln(x−1)+c1

= c1

(x− 1)2
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Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

= − c1
x− 1 + c2

Hence

y = v(x)xn

=
− c1

x−1 + c2

x

=
− c1

x−1 + c2

x

Summary
The solution(s) found are the following

(1)y =
− c1

x−1 + c2

x

Verification of solutions

y =
− c1

x−1 + c2

x

Verified OK.

3.2.3 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives∫ ((
−x2 + x

)
y′′ + (−4x+ 2) y′ − 2y

)
dx = 0

−(2x− 1) y −
(
x2 − x

)
y′ = c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 1− 2x
x (x− 1)

q(x) = − c1
x (x− 1)
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Hence the ode is

y′ − (1− 2x) y
x (x− 1) = − c1

x (x− 1)

The integrating factor µ is

µ = e
∫
− 1−2x

x(x−1)dx

= x(x− 1)

The ode becomes

d
dx(µy) = (µ)

(
− c1
x (x− 1)

)
d
dx(yx(x− 1)) = (x(x− 1))

(
− c1
x (x− 1)

)
d(yx(x− 1)) = (−c1) dx

Integrating gives

yx(x− 1) =
∫

−c1 dx

yx(x− 1) = −c1x+ c2

Dividing both sides by the integrating factor µ = x(x− 1) results in

y = − c1
x− 1 + c2

x (x− 1)

which simplifies to

y = −c1x+ c2
x (x− 1)

Summary
The solution(s) found are the following

(1)y = −c1x+ c2
x (x− 1)

Verification of solutions

y = −c1x+ c2
x (x− 1)

Verified OK.
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3.2.4 Solving as type second_order_integrable_as_is (not using ABC
version)

Writing the ode as (
−x2 + x

)
y′′ + (−4x+ 2) y′ − 2y = 0

Integrating both sides of the ODE w.r.t x gives∫ ((
−x2 + x

)
y′′ + (−4x+ 2) y′ − 2y

)
dx = 0

−(2x− 1) y −
(
x2 − x

)
y′ = c1

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 1− 2x
x (x− 1)

q(x) = − c1
x (x− 1)

Hence the ode is

y′ − (1− 2x) y
x (x− 1) = − c1

x (x− 1)

The integrating factor µ is

µ = e
∫
− 1−2x

x(x−1)dx

= x(x− 1)

The ode becomes

d
dx(µy) = (µ)

(
− c1
x (x− 1)

)
d
dx(yx(x− 1)) = (x(x− 1))

(
− c1
x (x− 1)

)
d(yx(x− 1)) = (−c1) dx
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Integrating gives

yx(x− 1) =
∫

−c1 dx

yx(x− 1) = −c1x+ c2

Dividing both sides by the integrating factor µ = x(x− 1) results in

y = − c1
x− 1 + c2

x (x− 1)

which simplifies to

y = −c1x+ c2
x (x− 1)

Summary
The solution(s) found are the following

(1)y = −c1x+ c2
x (x− 1)

Verification of solutions

y = −c1x+ c2
x (x− 1)

Verified OK.

3.2.5 Solving using Kovacic algorithm

Writing the ode as (
−x2 + x

)
y′′ + (−4x+ 2) y′ − 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = −x2 + x

B = −4x+ 2 (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 0
1 (6)

Comparing the above to (5) shows that

s = 0
t = 1

Therefore eq. (4) becomes

z′′(x) = 0 (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 46: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 0−−∞
= ∞

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd
order pole larger than 2 and the order at ∞ is infinity then the necessary conditions
for case one are met. Therefore

L = [1]

Since r = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z′′ = rz as one solution is

z1(x) = 1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−4x+2
−x2+x

dx

= z1e
− ln(x(x−1))

= z1

(
1

x (x− 1)

)

Which simplifies to

y1 =
1

x (x− 1)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−4x+2

−x2+x
dx

(y1)2
dx

= y1

∫
e−2 ln(x(x−1))

(y1)2
dx

= y1(x)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
1

x (x− 1)

)
+ c2

(
1

x (x− 1)(x)
)

Summary
The solution(s) found are the following

(1)y = c1
x (x− 1) +

c2
x− 1

Verification of solutions

y = c1
x (x− 1) +

c2
x− 1

Verified OK.

3.2.6 Solving as exact linear second order ode ode

An ode of the form

p(x) y′′ + q(x) y′ + r(x) y = s(x)

is exact if

p′′(x)− q′(x) + r(x) = 0 (1)

For the given ode we have

p(x) = −x2 + x

q(x) = −4x+ 2
r(x) = −2
s(x) = 0

Hence

p′′(x) = −2
q′(x) = −4

Therefore (1) becomes

−2− (−4) + (−2) = 0
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Hence the ode is exact. Since we now know the ode is exact, it can be written as

(p(x) y′ + (q(x)− p′(x)) y)′ = s(x)

Integrating gives

p(x) y′ + (q(x)− p′(x)) y =
∫

s(x) dx

Substituting the above values for p, q, r, s gives(
−x2 + x

)
y′ + (1− 2x) y = c1

We now have a first order ode to solve which is(
−x2 + x

)
y′ + (1− 2x) y = c1

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = − 1− 2x
x (x− 1)

q(x) = − c1
x (x− 1)

Hence the ode is

y′ − (1− 2x) y
x (x− 1) = − c1

x (x− 1)

The integrating factor µ is

µ = e
∫
− 1−2x

x(x−1)dx

= x(x− 1)

The ode becomes

d
dx(µy) = (µ)

(
− c1
x (x− 1)

)
d
dx(yx(x− 1)) = (x(x− 1))

(
− c1
x (x− 1)

)
d(yx(x− 1)) = (−c1) dx
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Integrating gives

yx(x− 1) =
∫

−c1 dx

yx(x− 1) = −c1x+ c2

Dividing both sides by the integrating factor µ = x(x− 1) results in

y = − c1
x− 1 + c2

x (x− 1)

which simplifies to

y = −c1x+ c2
x (x− 1)

Summary
The solution(s) found are the following

(1)y = −c1x+ c2
x (x− 1)

Verification of solutions

y = −c1x+ c2
x (x− 1)

Verified OK.

3.2.7 Maple step by step solution

Let’s solve
(−x2 + x) y′′ + (−4x+ 2) y′ − 2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − 2y
x(x−1) −

2(2x−1)y′
x(x−1)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 2(2x−1)y′
x(x−1) + 2y

x(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions
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[
P2(x) = 2(2x−1)

x(x−1) , P3(x) = 2
x(x−1)

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x(x− 1) + (4x− 2) y′ + 2y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..2

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0r(1 + r)x−1+r +
(

∞∑
k=0

(−ak+1(k + r + 1) (k + r + 2) + ak(k + r + 2) (k + r + 1))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
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−r(1 + r) = 0
• Values of r that satisfy the indicial equation

r ∈ {−1, 0}
• Each term in the series must be 0, giving the recursion relation

(k + r + 2) (k + r + 1) (−ak+1 + ak) = 0
• Recursion relation that defines series solution to ODE

ak+1 = ak

• Recursion relation for r = −1
ak+1 = ak

• Solution for r = −1[
y =

∞∑
k=0

akx
k−1, ak+1 = ak

]
• Recursion relation for r = 0

ak+1 = ak

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = ak

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k−1
)
+
(

∞∑
k=0

bkx
k

)
, ak+1 = ak, bk+1 = bk

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 18� �
dsolve(x*(1-x)*diff(y(x),x$2)+2*(1-2*x)*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)� �

y(x) = c1x+ c2
x (x− 1)

3 Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 22� �
DSolve[x*(1-x)*y''[x]+2*(1-2*x)*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2x+ c1
x− x2
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3.3 problem 10.4.8 (c)
3.3.1 Solving as second order euler ode ode . . . . . . . . . . . . . . . 259
3.3.2 Solving as second order change of variable on x method 2 ode . 260
3.3.3 Solving as second order change of variable on x method 1 ode . 263
3.3.4 Solving as second order change of variable on y method 2 ode . 265
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3.3.6 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 272

Internal problem ID [5066]
Internal file name [OUTPUT/4559_Sunday_June_05_2022_03_00_53_PM_83484169/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients.
Second order and Homogeneous. page 318
Problem number: 10.4.8 (c).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_eu-
ler_ode", "second_order_change_of_variable_on_x_method_1", "second_or-
der_change_of_variable_on_x_method_2", "second_order_change_of_vari-
able_on_y_method_2"

Maple gives the following as the ode type
[[_Emden , _Fowler], [_2nd_order , _linear , `_with_symmetry_ [0,F(

x)]`]]

x2y′′ + xy′ − 9y = 0

3.3.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be y = xr, then y′ = rxr−1 and
y′′ = r(r − 1)xr−2. Substituting these back into the given ODE gives

x2(r(r − 1))xr−2 + xrxr−1 − 9xr = 0

Simplifying gives
r(r − 1)xr + r xr − 9xr = 0
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Since xr 6= 0 then dividing throughout by xr gives

r(r − 1) + r − 9 = 0

Or
r2 − 9 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 = −3
r2 = 3

Since the roots are real and distinct, then the general solution is

y = c1y1 + c2y2

Where y1 = xr1 and y2 = xr2 . Hence

y = c1
x3 + c2x

3

Summary
The solution(s) found are the following

(1)y = c1
x3 + c2x

3

Verification of solutions

y = c1
x3 + c2x

3

Verified OK.

3.3.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

x2y′′ + xy′ − 9y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 1
x

q(x) = − 9
x2
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Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫ 1

x
dx
)
dx

=
∫

e− ln(x) dx

=
∫ 1

x
dx

= ln (x) (6)

Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

=
− 9

x2

1
x2

= −9 (7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ)− 9y(τ) = 0
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The above ode is now solved for y(τ).This is second order with constant coefficients
homogeneous ODE. In standard form the ODE is

Ay′′(τ) +By′(τ) + Cy(τ) = 0

Where in the above A = 1, B = 0, C = −9. Let the solution be y(τ) = eλτ . Substituting
this into the ODE gives

λ2eλτ − 9 eλτ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλτ gives

λ2 − 9 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = −9 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√
02 − (4) (1) (−9)

= ±3

Hence
λ1 = +3
λ2 = −3

Which simplifies to
λ1 = 3
λ2 = −3

Since roots are real and distinct, then the solution is

y(τ) = c1e
λ1τ + c2e

λ2τ

y(τ) = c1e
(3)τ + c2e

(−3)τ

Or
y(τ) = c1e3τ + c2e−3τ
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The above solution is now transformed back to y using (6) which results in

y = c1x
6 + c2
x3

Summary
The solution(s) found are the following

(1)y = c1x
6 + c2
x3

Verification of solutions

y = c1x
6 + c2
x3

Verified OK.

3.3.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

x2y′′ + xy′ − 9y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 1
x

q(x) = − 9
x2

Applying change of variables τ = g(x) to (2) results

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

263



Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

=
3
√
− 1

x2

c
(6)

τ ′′ = 3

c
√
− 1

x2 x3

Substituting the above into (4) results in

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2

=

3
c
√

− 1
x2 x3

+ 1
x

3
√

− 1
x2

c(
3
√

− 1
x2

c

)2

= 0

Therefore ode (3) now becomes

y(τ)′′ + p1y(τ)′ + q1y(τ) = 0
d2

dτ 2
y(τ) + c2y(τ) = 0 (7)

The above ode is now solved for y(τ). Since the ode is now constant coefficients, it can
be easily solved to give

y(τ) = c1 cos (cτ) + c2 sin (cτ)

Now from (6)

τ =
∫ 1

c

√
q dx

=

∫
3
√
− 1

x2dx

c

=
3
√

− 1
x2 x ln (x)
c

Substituting the above into the solution obtained gives

y = c1 cosh (3 ln (x)) + ic2 sinh (3 ln (x))
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Summary
The solution(s) found are the following

(1)y = c1 cosh (3 ln (x)) + ic2 sinh (3 ln (x))
Verification of solutions

y = c1 cosh (3 ln (x)) + ic2 sinh (3 ln (x))

Verified OK.

3.3.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

x2y′′ + xy′ − 9y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 1
x

q(x) = − 9
x2

Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)

Let the coefficient of v(x) above be zero. Hence

n(n− 1)
x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives

n(n− 1)
x2 + n

x2 − 9
x2 = 0 (5)

Solving (5) for n gives

n = 3 (6)
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Substituting this value in (3) gives

v′′(x) + 7v′(x)
x

= 0

v′′(x) + 7v′(x)
x

= 0 (7)

Using the substitution

u(x) = v′(x)

Then (7) becomes

u′(x) + 7u(x)
x

= 0 (8)

The above is now solved for u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −7u
x

Where f(x) = − 7
x
and g(u) = u. Integrating both sides gives

1
u
du = −7

x
dx∫ 1

u
du =

∫
−7
x
dx

ln (u) = −7 ln (x) + c1

u = e−7 ln(x)+c1

= c1
x7

Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

= − c1
6x6 + c2
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Hence

y = v(x)xn

=
(
− c1
6x6 + c2

)
x3

= 6c2x6 − c1
6x3

Summary
The solution(s) found are the following

(1)y =
(
− c1
6x6 + c2

)
x3

Verification of solutions

y =
(
− c1
6x6 + c2

)
x3

Verified OK.

3.3.5 Solving using Kovacic algorithm

Writing the ode as

x2y′′ + xy′ − 9y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = x (3)
C = −9

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2
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Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 35
4x2 (6)

Comparing the above to (5) shows that

s = 35
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(

35
4x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 48: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2
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The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = 35
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 35
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 7

2
α−
c = 1

2 −
√
1 + 4b = −5

2

Since the order of r at ∞ is 2 then [
√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= 35

4x2

Since the gcd(s, t) = 1. This gives b = 35
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 7

2
α−
∞ = 1

2 −
√
1 + 4b = −5

2

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = 35
4x2
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pole c location pole order [
√
r]c α+

c α−
c

0 2 0 7
2 −5

2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 7
2 −5

2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = −5
2 then

d = α−
∞ −

(
α−
c1

)
= −5

2 −
(
−5
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= − 5
2x + (−) (0)

= − 5
2x

= − 5
2x

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)
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Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
− 5
2x

)
(0) +

((
5
2x2

)
+
(
− 5
2x

)2

−
(

35
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫
− 5

2xdx

= 1
x

5
2

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x2 dx

= z1e
− ln(x)

2

= z1

(
1√
x

)
Which simplifies to

y1 =
1
x3

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
− x

x2 dx

(y1)2
dx

= y1

∫
e− ln(x)

(y1)2
dx

= y1

(
x6

6

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

(
1
x3

)
+ c2

(
1
x3

(
x6

6

))

Summary
The solution(s) found are the following

(1)y = c1
x3 + c2x

3

6
Verification of solutions

y = c1
x3 + c2x

3

6

Verified OK.

3.3.6 Maple step by step solution

Let’s solve
x2y′′ + xy′ − 9y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = −y′

x
+ 9y

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

x
− 9y

x2 = 0

• Multiply by denominators of the ODE
x2y′′ + xy′ − 9y = 0

• Make a change of variables
t = ln (x)

� Substitute the change of variables back into the ODE
◦ Calculate the 1st derivative of y with respect to x , using the chain rule

y′ =
(

d
dt
y(t)

)
t′(x)
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◦ Compute derivative

y′ =
d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule

y′′ =
(

d2

dt2
y(t)

)
t′(x)2 + t′′(x)

(
d
dt
y(t)

)
◦ Compute derivative

y′′ =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

Substitute the change of variables back into the ODE

x2
(

d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
+ d

dt
y(t)− 9y(t) = 0

• Simplify
d2

dt2
y(t)− 9y(t) = 0

• Characteristic polynomial of ODE
r2 − 9 = 0

• Factor the characteristic polynomial
(r − 3) (r + 3) = 0

• Roots of the characteristic polynomial
r = (−3, 3)

• 1st solution of the ODE
y1(t) = e−3t

• 2nd solution of the ODE
y2(t) = e3t

• General solution of the ODE
y(t) = c1y1(t) + c2y2(t)

• Substitute in solutions
y(t) = c1e−3t + c2e3t

• Change variables back using t = ln (x)
y = c1

x3 + c2x
3

• Simplify
y = c1

x3 + c2x
3
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 15� �
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)-9*y(x)=0,y(x), singsol=all)� �

y(x) = c2x
6 + c1
x3

3 Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 18� �
DSolve[x^2*y''[x]+x*y'[x]-9*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c2x
6 + c1
x3
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3.4 problem 10.4.8 (d)
3.4.1 Solving as second order change of variable on x method 2 ode . 275
3.4.2 Solving as second order change of variable on x method 1 ode . 278
3.4.3 Solving as second order bessel ode ode . . . . . . . . . . . . . . 280
3.4.4 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 281
3.4.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 286

Internal problem ID [5067]
Internal file name [OUTPUT/4560_Sunday_June_05_2022_03_00_54_PM_41197975/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients.
Second order and Homogeneous. page 318
Problem number: 10.4.8 (d).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode",
"second_order_change_of_variable_on_x_method_1", "second_order_change_of_vari-
able_on_x_method_2"

Maple gives the following as the ode type
[[_Emden , _Fowler], [_2nd_order , _linear , `_with_symmetry_ [0,F(

x)]`]]

xy′′ + y′

2 + 2y = 0

3.4.1 Solving as second order change of variable on x method 2 ode

In normal form the ode

xy′′ + y′

2 + 2y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)
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Where

p(x) = 1
2x

q(x) = 2
x

Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫ 1

2xdx
)
dx

=
∫

e−
ln(x)

2 dx

=
∫ 1√

x
dx

= 2
√
x (6)

Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

=
2
x
1
x

= 2 (7)

276



Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ) + 2y(τ) = 0

The above ode is now solved for y(τ).This is second order with constant coefficients
homogeneous ODE. In standard form the ODE is

Ay′′(τ) +By′(τ) + Cy(τ) = 0

Where in the above A = 1, B = 0, C = 2. Let the solution be y(τ) = eλτ . Substituting
this into the ODE gives

λ2eλτ + 2 eλτ = 0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by eλτ gives

λ2 + 2 = 0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

λ1,2 =
−B

2A ± 1
2A

√
B2 − 4AC

Substituting A = 1, B = 0, C = 2 into the above gives

λ1,2 =
0

(2) (1) ±
1

(2) (1)
√

02 − (4) (1) (2)

= ±i
√
2

Hence

λ1 = +i
√
2

λ2 = −i
√
2

Which simplifies to

λ1 = i
√
2

λ2 = −i
√
2

Since roots are complex conjugate of each others, then let the roots be

λ1,2 = α± iβ
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Where α = 0 and β =
√
2. Therefore the final solution, when using Euler relation, can

be written as
y(τ) = eατ (c1 cos(βτ) + c2 sin(βτ))

Which becomes

y(τ) = e0
(
c1 cos

(√
2 τ
)
+ c2 sin

(√
2 τ
))

Or

y(τ) = c1 cos
(√

2 τ
)
+ c2 sin

(√
2 τ
)

The above solution is now transformed back to y using (6) which results in

y = c1 cos
(
2
√
2
√
x
)
+ c2 sin

(
2
√
2
√
x
)

Summary
The solution(s) found are the following

(1)y = c1 cos
(
2
√
2
√
x
)
+ c2 sin

(
2
√
2
√
x
)

Verification of solutions

y = c1 cos
(
2
√
2
√
x
)
+ c2 sin

(
2
√
2
√
x
)

Verified OK.

3.4.2 Solving as second order change of variable on x method 1 ode

In normal form the ode

xy′′ + y′

2 + 2y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = 1
2x

q(x) = 2
x
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Applying change of variables τ = g(x) to (2) results

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

=

√
2
√

1
x

c
(6)

τ ′′ = −
√
2

2c
√

1
x
x2

Substituting the above into (4) results in

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2

=
−

√
2

2c
√

1
x
x2

+ 1
2x

√
2
√

1
x

c(√
2
√

1
x

c

)2

= 0

Therefore ode (3) now becomes

y(τ)′′ + p1y(τ)′ + q1y(τ) = 0
d2

dτ 2
y(τ) + c2y(τ) = 0 (7)

The above ode is now solved for y(τ). Since the ode is now constant coefficients, it can
be easily solved to give

y(τ) = c1 cos (cτ) + c2 sin (cτ)
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Now from (6)

τ =
∫ 1

c

√
q dx

=

∫ √
2
√

1
x
dx

c

=
2x

√
2
√

1
x

c

Substituting the above into the solution obtained gives

y = c1 cos
(
2
√
2
√
x
)
+ c2 sin

(
2
√
2
√
x
)

Summary
The solution(s) found are the following

(1)y = c1 cos
(
2
√
2
√
x
)
+ c2 sin

(
2
√
2
√
x
)

Verification of solutions

y = c1 cos
(
2
√
2
√
x
)
+ c2 sin

(
2
√
2
√
x
)

Verified OK.

3.4.3 Solving as second order bessel ode ode

Writing the ode as

x2y′′ + xy′

2 + 2xy = 0 (1)

Bessel ode has the form

x2y′′ + xy′ +
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)
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Comparing (3) to (1) and solving for α, β, n, γ gives

α = 1
4

β = 2
√
2

n = 1
2

γ = 1
2

Substituting all the above into (4) gives the solution as

y =
c1x

1
4 sin

(
2
√
2
√
x
)

√
π
√√

2
√
x

−
c2x

1
4 cos

(
2
√
2
√
x
)

√
π
√√

2
√
x

Summary
The solution(s) found are the following

(1)y =
c1x

1
4 sin

(
2
√
2
√
x
)

√
π
√√

2
√
x

−
c2x

1
4 cos

(
2
√
2
√
x
)

√
π
√√

2
√
x

Verification of solutions

y =
c1x

1
4 sin

(
2
√
2
√
x
)

√
π
√√

2
√
x

−
c2x

1
4 cos

(
2
√
2
√
x
)

√
π
√√

2
√
x

Verified OK.

3.4.4 Solving using Kovacic algorithm

Writing the ode as

xy′′ + y′

2 + 2y = 0 (1)

Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = 1
2 (3)

C = 2
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Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −32x− 3
16x2 (6)

Comparing the above to (5) shows that

s = −32x− 3
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
−32x− 3

16x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.
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Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 50: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 1
= 1

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16x2. There is a pole at x = 0 of order 2. Since there is a pole of order 2
then necessary conditions for case two are met. Therefore

L = [2]

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −2
x
− 3

16x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = − 3
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {1, 2, 3}

Since the order of r at ∞ is 1 < 2 then

E∞ = {1}
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The following table summarizes the findings so far for poles and for the order of r at
∞ for case 2 of Kovacic algorithm.

pole c location pole order Ec

0 2 {1, 2, 3}

Order of r at ∞ E∞

1 {1}

Using the family {e1, e2, . . . , e∞} given by

e1 = 1, e∞ = 1

Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(1− (1))

= 0

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
x− c

= 1
2

(
1

(x− (0))

)
= 1

2x
Now we search for a monic polynomial p(x) of degree d = 0 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 0, then letting
p = 1 (2A)

Substituting p and θ into Eq. (1A) gives

0 = 0

And solving for p gives
p = 1
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Now that p(x) is found let

φ = θ + p′

p

= 1
2x

Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 − w

2x + 1 + 32x
16x2 = 0

Solving for ω gives

ω = 1 + 4
√
2
√
−x

4x
Therefore the first solution to the ode z′′ = rz is

z1(x) = e
∫
ω dx

= e
∫ 1+4

√
2
√
−x

4x dx

= x
1
4 e2

√
2
√
−x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2

1
2
x
dx

= z1e
− ln(x)

4

= z1

(
1
x

1
4

)

Which simplifies to

y1 = e2
√
2
√
−x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−

1
2
x
dx

(y1)2
dx

= y1

∫
e−

ln(x)
2

(y1)2
dx

= y1

√
2
√
−x
(
−1 + e−4

√
2
√
−x
)

4
√
x


Therefore the solution is

y = c1y1 + c2y2

= c1
(
e2

√
2
√
−x
)
+ c2

e2
√
2
√
−x

√
2
√
−x
(
−1 + e−4

√
2
√
−x
)

4
√
x


Summary
The solution(s) found are the following

(1)y = c1e2
√
2
√
−x −

c2
√
2
√
−x
(
e2

√
2
√
−x − e−2

√
2
√
−x
)

4
√
x

Verification of solutions

y = c1e2
√
2
√
−x −

c2
√
2
√
−x
(
e2

√
2
√
−x − e−2

√
2
√
−x
)

4
√
x

Verified OK.

3.4.5 Maple step by step solution

Let’s solve
y′′x+ y′

2 + 2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
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y′′ = − y′

2x − 2y
x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y′

2x + 2y
x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
2x , P3(x) = 2

x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
2y′′x+ 4y + y′ = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + 1 + r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1
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x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−1 + 2r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (2k + 1 + 2r) + 4ak)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term in the series must be 0, giving the recursion relation
2
(
k + 1

2 + r
)
(k + 1 + r) ak+1 + 4ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 4ak

(2k+1+2r)(k+1+r)

• Recursion relation for r = 0
ak+1 = − 4ak

(2k+1)(k+1)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = − 4ak

(2k+1)(k+1)

]
• Recursion relation for r = 1

2

ak+1 = − 4ak
(2k+2)

(
k+ 3

2
)

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+1 = − 4ak
(2k+2)

(
k+ 3

2
)
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+1 = − 4ak

(2k+1)(k+1) , bk+1 = − 4bk
(2k+2)

(
k+ 3

2
)
]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 27� �
dsolve(x*diff(y(x),x$2)+1/2*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)� �

y(x) = c1 sin
(
2
√
x
√
2
)
+ c2 cos

(
2
√
x
√
2
)

3 Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 38� �
DSolve[x*y''[x]+1/2*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1 cos
(
2
√
2
√
x
)
+ c2 sin

(
2
√
2
√
x
)
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3.5 problem 10.4.8 (e)
3.5.1 Solving as second order euler ode ode . . . . . . . . . . . . . . . 291
3.5.2 Solving as second order change of variable on x method 2 ode . 292
3.5.3 Solving as second order change of variable on x method 1 ode . 294
3.5.4 Solving as second order change of variable on y method 2 ode . 296
3.5.5 Solving as second order ode non constant coeff transformation

on B ode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
3.5.6 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 300
3.5.7 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 305

Internal problem ID [5068]
Internal file name [OUTPUT/4561_Sunday_June_05_2022_03_00_55_PM_87042529/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients.
Second order and Homogeneous. page 318
Problem number: 10.4.8 (e).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_eu-
ler_ode", "second_order_change_of_variable_on_x_method_1", "second_or-
der_change_of_variable_on_x_method_2", "second_order_change_of_vari-
able_on_y_method_2", "second_order_ode_non_constant_coeff_trans-
formation_on_B"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

x2y′′ − xy′ + y = 0
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3.5.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be y = xr, then y′ = rxr−1 and
y′′ = r(r − 1)xr−2. Substituting these back into the given ODE gives

x2(r(r − 1))xr−2 − xrxr−1 + xr = 0

Simplifying gives
r(r − 1)xr − r xr + xr = 0

Since xr 6= 0 then dividing throughout by xr gives

r(r − 1)− r + 1 = 0

Or
r2 − 2r + 1 = 0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 = 1
r2 = 1

Since the roots are equal, then the general solution is

y = c1y1 + c2y2

Where y1 = xr and y2 = xr ln (x). Hence

y = c1x+ c2x ln (x)

Summary
The solution(s) found are the following

(1)y = c1x+ c2x ln (x)
Verification of solutions

y = c1x+ c2x ln (x)

Verified OK.
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3.5.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

x2y′′ − xy′ + y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −1
x

q(x) = 1
x2

Applying change of variables τ = g(x) to (2) gives

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let p1 = 0. Eq (4) simplifies to

τ ′′(x) + p(x) τ ′(x) = 0

This ode is solved resulting in

τ =
∫

e−
(∫

p(x)dx
)
dx

=
∫

e−
(∫

− 1
x
dx
)
dx

=
∫

eln(x) dx

=
∫

xdx

= x2

2 (6)
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Using (6) to evaluate q1 from (5) gives

q1(τ) =
q(x)
τ ′ (x)2

=
1
x2

x2

= 1
x4 (7)

Substituting the above in (3) and noting that now p1 = 0 results in

d2

dτ 2
y(τ) + q1y(τ) = 0

d2

dτ 2
y(τ) + y(τ)

x4 = 0

But in terms of τ
1
x4 = 1

4τ 2

Hence the above ode becomes

d2

dτ 2
y(τ) + y(τ)

4τ 2 = 0

The above ode is now solved for y(τ). The ode can be written as

4
(

d2

dτ 2
y(τ)

)
τ 2 + y(τ) = 0

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be
y(τ) = τ r, then y′ = rτ r−1 and y′′ = r(r − 1)τ r−2. Substituting these back into the
given ODE gives

4τ 2(r(r − 1))τ r−2 + 0rτ r−1 + τ r = 0

Simplifying gives
4r(r − 1) τ r + 0 τ r + τ r = 0

Since τ r 6= 0 then dividing throughout by τ r gives

4r(r − 1) + 0 + 1 = 0

Or
4r2 − 4r + 1 = 0 (1)
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Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r1 =
1
2

r2 =
1
2

Since the roots are equal, then the general solution is

y(τ) = c1y1 + c2y2

Where y1 = τ r and y2 = τ r ln (τ). Hence

y(τ) = c1
√
τ + c2

√
τ ln (τ)

The above solution is now transformed back to y using (6) which results in

y = x
√
2 (c1 + 2c2 ln (x)− c2 ln (2))

2
Summary
The solution(s) found are the following

(1)y = x
√
2 (c1 + 2c2 ln (x)− c2 ln (2))

2
Verification of solutions

y = x
√
2 (c1 + 2c2 ln (x)− c2 ln (2))

2

Verified OK.

3.5.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

x2y′′ − xy′ + y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −1
x

q(x) = 1
x2
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Applying change of variables τ = g(x) to (2) results

d2

dτ 2
y(τ) + p1

(
d

dτ
y(τ)

)
+ q1y(τ) = 0 (3)

Where τ is the new independent variable, and

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2
(4)

q1(τ) =
q(x)
τ ′ (x)2

(5)

Let q1 = c2 where c is some constant. Therefore from (5)

τ ′ = 1
c

√
q

=

√
1
x2

c
(6)

τ ′′ = − 1

c
√

1
x2 x3

Substituting the above into (4) results in

p1(τ) =
τ ′′(x) + p(x) τ ′(x)

τ ′ (x)2

=
− 1

c
√

1
x2 x3

− 1
x

√
1
x2

c(√
1
x2

c

)2

= −2c

Therefore ode (3) now becomes

y(τ)′′ + p1y(τ)′ + q1y(τ) = 0
d2

dτ 2
y(τ)− 2c

(
d

dτ
y(τ)

)
+ c2y(τ) = 0 (7)

The above ode is now solved for y(τ). Since the ode is now constant coefficients, it can
be easily solved to give

y(τ) = ecτc1
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Now from (6)

τ =
∫ 1

c

√
q dx

=

∫ √ 1
x2dx

c

=

√
1
x2 x ln (x)

c

Substituting the above into the solution obtained gives

y = c1x

Summary
The solution(s) found are the following

(1)y = c1x

Verification of solutions
y = c1x

Verified OK.

3.5.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

x2y′′ − xy′ + y = 0 (1)

Becomes

y′′ + p(x) y′ + q(x) y = 0 (2)

Where

p(x) = −1
x

q(x) = 1
x2

Applying change of variables on the depndent variable y = v(x)xn to (2) gives the
following ode where the dependent variables is v(x) and not y.

v′′(x) +
(
2n
x

+ p

)
v′(x) +

(
n(n− 1)

x2 + np

x
+ q

)
v(x) = 0 (3)
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Let the coefficient of v(x) above be zero. Hence
n(n− 1)

x2 + np

x
+ q = 0 (4)

Substituting the earlier values found for p(x) and q(x) into (4) gives
n(n− 1)

x2 − n

x2 + 1
x2 = 0 (5)

Solving (5) for n gives

n = 1 (6)

Substituting this value in (3) gives

v′′(x) + v′(x)
x

= 0

v′′(x) + v′(x)
x

= 0 (7)

Using the substitution

u(x) = v′(x)

Then (7) becomes

u′(x) + u(x)
x

= 0 (8)

The above is now solved for u(x). In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u

x

Where f(x) = − 1
x
and g(u) = u. Integrating both sides gives

1
u
du = −1

x
dx∫ 1

u
du =

∫
−1
x
dx

ln (u) = − ln (x) + c1

u = e− ln(x)+c1

= c1
x
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Now that u(x) is known, then

v′(x) = u(x)

v(x) =
∫

u(x) dx+ c2

= c1 ln (x) + c2

Hence

y = v(x)xn

= (c1 ln (x) + c2)x
= (c1 ln (x) + c2)x

Summary
The solution(s) found are the following

(1)y = (c1 ln (x) + c2)x
Verification of solutions

y = (c1 ln (x) + c2)x

Verified OK.

3.5.5 Solving as second order ode non constant coeff transformation on B
ode

Given an ode of the form

Ay′′ +By′ + Cy = F (x)

This method reduces the order ode the ODE by one by applying the transformation

y = Bv

This results in

y′ = B′v + v′B

y′′ = B′′v +B′v′ + v′′B + v′B′

= v′′B + 2v′ +B′ +B′′v

And now the original ode becomes

A(v′′B + 2v′B′ +B′′v) +B(B′v + v′B) + CBv = 0
ABv′′ +

(
2AB′ +B2) v′ + (AB′′ +BB′ + CB) v = 0 (1)
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If the term AB′′ +BB′ +CB is zero, then this method works and can be used to solve

ABv′′ +
(
2AB′ +B2) v′ = 0

By Using u = v′ which reduces the order of the above ode to one. The new ode is

ABu′ +
(
2AB′ +B2)u = 0

The above ode is first order ode which is solved for u. Now a new ode v′ = u is solved
for v as first order ode. Then the final solution is obtain from y = Bv.

This method works only if the term AB′′ +BB′ + CB is zero. The given ODE shows
that

A = x2

B = −x

C = 1
F = 0

The above shows that for this ode

AB′′ +BB′ + CB =
(
x2) (0) + (−x) (−1) + (1) (−x)

= 0

Hence the ode in v given in (1) now simplifies to

−x3v′′ +
(
−x2) v′ = 0

Now by applying v′ = u the above becomes

−x2(u′(x)x+ u(x)) = 0

Which is now solved for u. In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −u

x

Where f(x) = − 1
x
and g(u) = u. Integrating both sides gives

1
u
du = −1

x
dx∫ 1

u
du =

∫
−1
x
dx

ln (u) = − ln (x) + c1

u = e− ln(x)+c1

= c1
x
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The ode for v now becomes

v′ = u

= c1
x

Which is now solved for v. Integrating both sides gives

v(x) =
∫

c1
x

dx

= c1 ln (x) + c2

Therefore the solution is

y(x) = Bv

= (−x) (c1 ln (x) + c2)
= −(c1 ln (x) + c2)x

Summary
The solution(s) found are the following

(1)y = −(c1 ln (x) + c2)x
Verification of solutions

y = −(c1 ln (x) + c2)x

Verified OK.

3.5.6 Solving using Kovacic algorithm

Writing the ode as

x2y′′ − xy′ + y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x2

B = −x (3)
C = 1

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = −1
4x2 (6)

Comparing the above to (5) shows that

s = −1
t = 4x2

Therefore eq. (4) becomes

z′′(x) =
(
− 1
4x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 52: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 0
= 2

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x2. There is a pole at x = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions
for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

r = − 1
4x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = −1
4 . Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 1

2
α−
c = 1

2 −
√
1 + 4b = 1

2
Since the order of r at ∞ is 2 then [

√
r]∞ = 0. Let b be the coefficient of 1

x2 in
the Laurent series expansion of r at ∞. which can be found by dividing the leading
coefficient of s by the leading coefficient of t from

r = s

t
= − 1

4x2

Since the gcd(s, t) = 1. This gives b = −1
4 . Hence

[
√
r]∞ = 0

α+
∞ = 1

2 +
√
1 + 4b = 1

2
α−
∞ = 1

2 −
√
1 + 4b = 1

2
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The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = − 1
4x2

pole c location pole order [
√
r]c α+

c α−
c

0 2 0 1
2

1
2

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

2 0 1
2

1
2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α−

∞ = 1
2 then

d = α−
∞ −

(
α−
c1

)
= 1

2 −
(
1
2

)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

The above gives

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (−)[

√
r]∞

= 1
2x + (−) (0)

= 1
2x

= 1
2x
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Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(

1
2x

)
(0) +

((
− 1
2x2

)
+
(

1
2x

)2

−
(
− 1
4x2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ 1

2xdx

=
√
x

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−x
x2 dx

= z1e
ln(x)

2

= z1
(√

x
)

Which simplifies to
y1 = x

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Substituting gives

y2 = y1

∫
e
∫
−−x

x2 dx

(y1)2
dx

= y1

∫
eln(x)

(y1)2
dx

= y1(ln (x))

Therefore the solution is

y = c1y1 + c2y2

= c1(x) + c2(x(ln (x)))

Summary
The solution(s) found are the following

(1)y = c1x+ c2x ln (x)
Verification of solutions

y = c1x+ c2x ln (x)

Verified OK.

3.5.7 Maple step by step solution

Let’s solve
x2y′′ − xy′ + y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = y′

x
− y

x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − y′

x
+ y

x2 = 0

• Multiply by denominators of the ODE
x2y′′ − xy′ + y = 0

• Make a change of variables
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t = ln (x)
� Substitute the change of variables back into the ODE

◦ Calculate the 1st derivative of y with respect to x , using the chain rule
y′ =

(
d
dt
y(t)

)
t′(x)

◦ Compute derivative

y′ =
d
dt
y(t)
x

◦ Calculate the 2nd derivative of y with respect to x , using the chain rule

y′′ =
(

d2

dt2
y(t)

)
t′(x)2 + t′′(x)

(
d
dt
y(t)

)
◦ Compute derivative

y′′ =
d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

Substitute the change of variables back into the ODE

x2
(

d2
dt2 y(t)

x2 −
d
dt
y(t)
x2

)
− d

dt
y(t) + y(t) = 0

• Simplify
d2

dt2
y(t)− 2 d

dt
y(t) + y(t) = 0

• Characteristic polynomial of ODE
r2 − 2r + 1 = 0

• Factor the characteristic polynomial
(r − 1)2 = 0

• Root of the characteristic polynomial
r = 1

• 1st solution of the ODE
y1(t) = et

• Repeated root, multiply y1(t) by t to ensure linear independence
y2(t) = t et

• General solution of the ODE
y(t) = c1y1(t) + c2y2(t)

• Substitute in solutions
y(t) = c1et + c2t et
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• Change variables back using t = ln (x)
y = c1x+ c2x ln (x)

• Simplify
y = x(c2 ln (x) + c1)

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 12� �
dsolve(x^2*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=0,y(x), singsol=all)� �

y(x) = x(c2 ln (x) + c1)

3 Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 15� �
DSolve[x^2*y''[x]-x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x(c2 log(x) + c1)
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3.6 problem 10.4.8 (f)
3.6.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 308
3.6.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 309
3.6.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 314

Internal problem ID [5069]
Internal file name [OUTPUT/4562_Sunday_June_05_2022_03_00_56_PM_86182655/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients.
Second order and Homogeneous. page 318
Problem number: 10.4.8 (f).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

2xy′′ − y′ + 2y = 0

3.6.1 Solving as second order bessel ode ode

Writing the ode as

x2y′′ − xy′

2 + xy = 0 (1)

Bessel ode has the form

x2y′′ + xy′ +
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)
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Comparing (3) to (1) and solving for α, β, n, γ gives

α = 3
4

β = 2

n = 3
2

γ = 1
2

Substituting all the above into (4) gives the solution as

y = −
c1
(
2 cos

(
2
√
x
)√

x− sin
(
2
√
x
))

2
√
π

−
c2
(
2 sin

(
2
√
x
)√

x+ cos
(
2
√
x
))

2
√
π

Summary
The solution(s) found are the following

(1)y = −
c1
(
2 cos

(
2
√
x
)√

x− sin
(
2
√
x
))

2
√
π

−
c2
(
2 sin

(
2
√
x
)√

x+ cos
(
2
√
x
))

2
√
π

Verification of solutions

y = −
c1
(
2 cos

(
2
√
x
)√

x− sin
(
2
√
x
))

2
√
π

−
c2
(
2 sin

(
2
√
x
)√

x+ cos
(
2
√
x
))

2
√
π

Verified OK.

3.6.2 Solving using Kovacic algorithm

Writing the ode as

2xy′′ − y′ + 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = 2x
B = −1 (3)
C = 2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

309



Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 5− 16x
16x2 (6)

Comparing the above to (5) shows that

s = 5− 16x
t = 16x2

Therefore eq. (4) becomes

z′′(x) =
(
5− 16x
16x2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 54: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 2− 1
= 1

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 16x2. There is a pole at x = 0 of order 2. Since there is a pole of order 2
then necessary conditions for case two are met. Therefore

L = [2]

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

r = −1
x
+ 5

16x2

For the pole at x = 0 let b be the coefficient of 1
x2 in the partial fractions decomposition

of r given above. Therefore b = 5
16 . Hence

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

= {−1, 2, 5}

Since the order of r at ∞ is 1 < 2 then

E∞ = {1}

The following table summarizes the findings so far for poles and for the order of r at
∞ for case 2 of Kovacic algorithm.

pole c location pole order Ec

0 2 {−1, 2, 5}

Order of r at ∞ E∞

1 {1}

Using the family {e1, e2, . . . , e∞} given by

e1 = −1, e∞ = 1
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Gives a non negative integer d (the degree of the polynomial p(x)), which is generated
using

d = 1
2

(
e∞ −

∑
c∈Γ

ec

)

= 1
2(1− (−1))

= 1

We now form the following rational function

θ = 1
2
∑
c∈Γ

ec
x− c

= 1
2

(
−1

(x− (0))

)
= − 1

2x

Now we search for a monic polynomial p(x) of degree d = 1 such that

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0 (1A)

Since d = 1, then letting
p = x+ a0 (2A)

Substituting p and θ into Eq. (1A) gives

1− 4a0
x2 = 0

And solving for p gives
p = x+ 1

4
Now that p(x) is found let

φ = θ + p′

p

= 1
x+ 1

4
− 1

2x

Let ω be the solution of

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0
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Substituting the values for φ and r into the above equation gives

w2 −
(

1
x+ 1

4
− 1

2x

)
w + 64x2 − 12x+ 1

64x3 + 16x2 = 0

Solving for ω gives

ω = 16x
√
−x+ 4x− 1

4 (4x+ 1)x
Therefore the first solution to the ode z′′ = rz is

z1(x) = e
∫
ω dx

= e
∫ 16x

√
−x+4x−1

4(4x+1)x dx

=
√
2
√
−x− 1

√
4x+ 1 e2

√
−x√

2
√
−x+ 1x 1

4

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
−1
2x dx

= z1e
ln(x)

4

= z1
(
x

1
4

)
Which simplifies to

y1 =
e2

√
−x
√(

2
√
−x− 1

)
(4x+ 1)√

2
√
−x+ 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−−1

2x dx

(y1)2
dx

= y1

∫
e

ln(x)
2

(y1)2
dx

= y1

(∫ √
x e−4

√
−x
(
2
√
−x+ 1

)(
2
√
−x− 1

)
(4x+ 1)

dx

)
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Therefore the solution is

y = c1y1 + c2y2

= c1

e2
√
−x
√(

2
√
−x− 1

)
(4x+ 1)√

2
√
−x+ 1


+ c2

e2
√
−x
√(

2
√
−x− 1

)
(4x+ 1)√

2
√
−x+ 1

(∫ √
x e−4

√
−x
(
2
√
−x+ 1

)(
2
√
−x− 1

)
(4x+ 1)

dx

)
Summary
The solution(s) found are the following

(1)
y =

c1e2
√
−x
√(

2
√
−x− 1

)
(4x+ 1)√

2
√
−x+ 1

+
c2e2

√
−x
√(

2
√
−x− 1

)
(4x+ 1)

(∫ √
x e−4

√
−x
(
2
√
−x+1

)(
2
√
−x−1

)
(4x+1) dx

)
√

2
√
−x+ 1

Verification of solutions

y =
c1e2

√
−x
√(

2
√
−x− 1

)
(4x+ 1)√

2
√
−x+ 1

+
c2e2

√
−x
√(

2
√
−x− 1

)
(4x+ 1)

(∫ √
x e−4

√
−x
(
2
√
−x+1

)(
2
√
−x−1

)
(4x+1) dx

)
√

2
√
−x+ 1

Verified OK.

3.6.3 Maple step by step solution

Let’s solve
2y′′x− y′ + 2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = y′

2x − y
x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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y′′ − y′

2x + y
x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = − 1
2x , P3(x) = 1

x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
2y′′x− y′ + 2y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + 1 + r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions
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a0r(−3 + 2r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (2k − 1 + 2r) + 2ak)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 32
}

• Each term in the series must be 0, giving the recursion relation
2
(
k − 1

2 + r
)
(k + 1 + r) ak+1 + 2ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − 2ak

(2k−1+2r)(k+1+r)

• Recursion relation for r = 0
ak+1 = − 2ak

(2k−1)(k+1)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = − 2ak

(2k−1)(k+1)

]
• Recursion relation for r = 3

2

ak+1 = − 2ak
(2k+2)

(
k+ 5

2
)

• Solution for r = 3
2[

y =
∞∑
k=0

akx
k+ 3

2 , ak+1 = − 2ak
(2k+2)

(
k+ 5

2
)
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+1 = − 2ak

(2k−1)(k+1) , bk+1 = − 2bk
(2k+2)

(
k+ 5

2
)
]

316



Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 36� �
dsolve(2*x*diff(y(x),x$2)-diff(y(x),x)+2*y(x)=0,y(x), singsol=all)� �

y(x) =
(
2
√
x c1 + c2

)
cos
(
2
√
x
)
− sin

(
2
√
x
) (

−2
√
x c2 + c1

)
3 Solution by Mathematica
Time used: 0.199 (sec). Leaf size: 59� �
DSolve[2*x*y''[x]-y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1e
2i
√
x
(
2
√
x+ i

)
+ 1

8c2e
−2i

√
x
(
1 + 2i

√
x
)
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3.7 problem 10.4.8 (g)
3.7.1 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 318

Internal problem ID [5070]
Internal file name [OUTPUT/4563_Sunday_June_05_2022_03_00_57_PM_84765408/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients.
Second order and Homogeneous. page 318
Problem number: 10.4.8 (g).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

xy′′ + xy′ − 2y = 0

3.7.1 Solving using Kovacic algorithm

Writing the ode as

xy′′ + xy′ − 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x

B = x (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx

Then (2) becomes

z′′(x) = rz(x) (4)
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Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 8 + x

4x (6)

Comparing the above to (5) shows that

s = 8 + x

t = 4x

Therefore eq. (4) becomes

z′′(x) =
(
8 + x

4x

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 56: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 1− 1
= 0

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x. There is a pole at x = 0 of order 1. Since there is no odd order pole
larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are
met. Therefore

L = [1]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at x = 0 of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Since the order of r at ∞ is Or(∞) = 0 then

v = −Or(∞)
2 = 0

2 = 0

[
√
r]∞ is the sum of terms involving xi for 0 ≤ i ≤ v in the Laurent series for

√
r at ∞.

Therefore

[
√
r]∞ =

v∑
i=0

aix
i

=
0∑

i=0

aix
i (8)

Let a be the coefficient of xv = x0 in the above sum. The Laurent series of
√
r at ∞ is

√
r ≈ 1

2 + 2
x
− 4

x2 + 16
x3 − 80

x4 + 448
x5 − 2688

x6 + 16896
x7 + . . . (9)

Comparing Eq. (9) with Eq. (8) shows that

a = 1
2
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From Eq. (9) the sum up to v = 0 gives

[
√
r]∞ =

0∑
i=0

aix
i

= 1
2 (10)

Now we need to find b, where b be the coefficient of xv−1 = x−1 = 1
x
in r minus the

coefficient of same term but in
(
[
√
r]∞
)2 where [

√
r]∞ was found above in Eq (10).

Hence (
[
√
r]∞
)2 = 1

4
This shows that the coefficient of 1

x
in the above is 0. Now we need to find the coefficient

of 1
x
in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from

r = s
t
and doing long division in the form

r = Q+ R

t

Where Q is the quotient and R is the remainder. Then the coefficient of 1
x
in r will be

the coefficient in R of the term in x of degree of t minus one, divided by the leading
coefficient in t. Doing long division gives

r = s

t

= 8 + x

4x
= Q+ R

4x

=
(
1
4

)
+
(
2
x

)
= 1

4 + 2
x

Since the degree of t is 1, then we see that the coefficient of the term 1 in the remainder
R is 8. Dividing this by leading coefficient in t which is 4 gives 2. Now b can be found.

b = (2)− (0)
= 2
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Hence

[
√
r]∞ = 1

2

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
2
1
2
− 0
)

= 2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−2

1
2
− 0
)

= −2

The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = 8 + x

4x

pole c location pole order [
√
r]c α+

c α−
c

0 1 0 0 1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

0 1
2 2 −2

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α+

∞ = 2 then

d = α+
∞ −

(
α−
c1

)
= 2− (1)
= 1

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞
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Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+ (+)[

√
r]∞

= 1
x
+
(
1
2

)
= 1

x
+ 1

2
= 1

x
+ 1

2

Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = x+ a0 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
x
+ 1

2

)
(1) +

((
− 1
x2

)
+
(
1
x
+ 1

2

)2

−
(
8 + x

4x

))
= 0

2− a0
x

= 0

Solving for the coefficients ai in the above using method of undetermined coefficients
gives

{a0 = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(x) = x+ 2

Therefore the first solution to the ode z′′ = rz is

z1(x) = pe
∫
ω dx

= (x+ 2) e
∫ ( 1

x
+ 1

2
)
dx

= (x+ 2) ex
2+ln(x)

= (x+ 2)x ex
2
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The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

= z1e
−
∫ 1

2
x
x
dx

= z1e
−x

2

= z1
(
e−x

2
)

Which simplifies to
y1 = x(x+ 2)

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx

Substituting gives

y2 = y1

∫
e
∫
−x

x
dx

(y1)2
dx

= y1

∫
e−x

(y1)2
dx

= y1

(
(−1− x) e−x + (x+ 2)x expIntegral1 (x)

2 (x+ 2)x

)

Therefore the solution is

y = c1y1 + c2y2

= c1(x(x+ 2)) + c2

(
x(x+ 2)

(
(−1− x) e−x + (x+ 2)x expIntegral1 (x)

2 (x+ 2)x

))

Summary
The solution(s) found are the following

(1)y = c1x(x+ 2) + c2

(
(−1− x) e−x

2 + (x+ 2)x expIntegral1 (x)
2

)
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Verification of solutions

y = c1x(x+ 2) + c2

(
(−1− x) e−x

2 + (x+ 2)x expIntegral1 (x)
2

)
Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 28� �
dsolve(x*diff(y(x),x$2)+x*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)� �

y(x) = −(x+ 1) c2e−x

2 + (x+ 2)x
(
c1 +

expIntegral1 (x) c2
2

)
3 Solution by Mathematica
Time used: 0.125 (sec). Leaf size: 39� �
DSolve[x*y''[x]+x*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1x(x+ 2)− 1
2c2e

−x(ex(x+ 2)xExpIntegralEi(−x) + x+ 1)
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3.8 problem 10.4.8 (h)
3.8.1 Solving as second order bessel ode ode . . . . . . . . . . . . . . 326
3.8.2 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 327
3.8.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 332

Internal problem ID [5071]
Internal file name [OUTPUT/4564_Sunday_June_05_2022_03_00_58_PM_93789482/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients.
Second order and Homogeneous. page 318
Problem number: 10.4.8 (h).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x(x− 1)2 y′′ − 2y = 0

3.8.1 Solving as second order bessel ode ode

Writing the ode as

x2y′′ − 2y
x

= 0 (1)

Bessel ode has the form

x2y′′ + xy′ +
(
−n2 + x2) y = 0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following

x2y′′ + (1− 2α)xy′ +
(
β2γ2x2γ − n2γ2 + α2) y = 0 (3)

With the standard solution

y = xα(c1 BesselJ (n, β xγ) + c2 BesselY (n, β xγ)) (4)
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Comparing (3) to (1) and solving for α, β, n, γ gives

α = 1
2

β = 2i
√
2

n = 1

γ = −1
2

Substituting all the above into (4) gives the solution as

y = ic1
√
x BesselI

(
1, 2

√
2√
x

)
+ c2

√
x BesselY

(
1, 2i

√
2√
x

)

Summary
The solution(s) found are the following

(1)y = ic1
√
x BesselI

(
1, 2

√
2√
x

)
+ c2

√
x BesselY

(
1, 2i

√
2√
x

)
Verification of solutions

y = ic1
√
x BesselI

(
1, 2

√
2√
x

)
+ c2

√
x BesselY

(
1, 2i

√
2√
x

)

Verified OK.

3.8.2 Solving using Kovacic algorithm

Writing the ode as

x(x− 1)2 y′′ − 2y = 0 (1)
Ay′′ +By′ + Cy = 0 (2)

Comparing (1) and (2) shows that

A = x(x− 1)2

B = 0 (3)
C = −2

Applying the Liouville transformation on the dependent variable gives

z(x) = ye
∫

B
2A dx
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Then (2) becomes

z′′(x) = rz(x) (4)

Where r is given by

r = s

t
(5)

= 2AB′ − 2BA′ +B2 − 4AC
4A2

Substituting the values of A,B,C from (3) in the above and simplifying gives

r = 2
x (x− 1)2

(6)

Comparing the above to (5) shows that

s = 2
t = x(x− 1)2

Therefore eq. (4) becomes

z′′(x) =
(

2
x (x− 1)2

)
z(x) (7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

y = z(x) e−
∫

B
2A dx

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at ∞. The following
table summarizes these cases.

Case Allowed pole order for r Allowed value for O(∞)

1 {0, 1, 2, 4, 6, 8, · · ·} {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · ·}

2 Need to have at least one pole that
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · ·}

Table 57: Necessary conditions for each Kovacic case
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The order of r at ∞ is the degree of t minus the degree of s. Therefore

O(∞) = deg(t)− deg(s)
= 3− 0
= 3

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = x(x− 1)2. There is a pole at x = 0 of order 1. There is a pole at x = 1 of
order 2. Since there is no odd order pole larger than 2 and the order at ∞ is 3 then
the necessary conditions for case one are met. Since there is a pole of order 2 then
necessary conditions for case two are met. Since pole order is not larger than 2 and the
order at ∞ is 3 then the necessary conditions for case three are met. Therefore

L = [1, 2, 4, 6, 12]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at x = 0 of order 1 then

[
√
r]c = 0
α+
c = 1

α−
c = 1

Looking at poles of order 2. The partial fractions decomposition of r is

r = 2
(x− 1)2

+ 2
x
− 2

x− 1

For the pole at x = 1 let b be the coefficient of 1
(x−1)2 in the partial fractions decompo-

sition of r given above. Therefore b = 2. Hence

[
√
r]c = 0

α+
c = 1

2 +
√
1 + 4b = 2

α−
c = 1

2 −
√
1 + 4b = −1

Since the order of r at ∞ is 3 > 2 then

[
√
r]∞ = 0
α+
∞ = 0

α−
∞ = 1
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The following table summarizes the findings so far for poles and for the order of r at
∞ where r is

r = 2
x (x− 1)2

pole c location pole order [
√
r]c α+

c α−
c

0 1 0 0 1

1 2 0 2 −1

Order of r at ∞ [
√
r]∞ α+

∞ α−
∞

3 0 0 1

Now that the all [
√
r]c and its associated α±

c have been determined for all the poles in
the set Γ and [

√
r]∞ and its associated α±

∞ have also been found, the next step is to
determine possible non negative integer d from these using

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

Where s(c) is either + or − and s(∞) is the sign of α±
∞. This is done by trial over all

set of families s = (s(c))c∈Γ∪∞ until such d is found to work in finding candidate ω.
Trying α+

∞ = 0 then

d = α+
∞ −

(
α−
c1 + α−

c2

)
= 0− (0)
= 0

Since d an integer and d ≥ 0 then it can be used to find ω using

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Substituting the above values in the above results in

ω =
(
(−)[

√
r]c1 +

α−
c1

x− c1

)
+
(
(−)[

√
r]c2 +

α−
c2

x− c2

)
+ (+)[

√
r]∞

= 1
x
− 1

x− 1 + (0)

= 1
x
− 1

x− 1
= − 1

x (x− 1)
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Now that ω is determined, the next step is find a corresponding minimal polynomial
p(x) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0 (1A)

Let

p(x) = 1 (2A)

Substituting the above in eq. (1A) gives

(0) + 2
(
1
x
− 1

x− 1

)
(0) +

((
− 1
x2 + 1

(x− 1)2
)
+
(
1
x
− 1

x− 1

)2

−
(

2
x (x− 1)2

))
= 0

0 = 0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode z′′ = rz is

z1(x) = pe
∫
ω dx

= e
∫ ( 1

x
− 1

x−1

)
dx

= x

x− 1

The first solution to the original ode in y is found from

y1 = z1e
∫
− 1

2
B
A

dx

Since B = 0 then the above reduces to

y1 = z1

= x

x− 1

Which simplifies to

y1 =
x

x− 1

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫
−B

A
dx

y21
dx
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Since B = 0 then the above becomes

y2 = y1

∫ 1
y21

dx

= x

x− 1

∫ 1
x2

(x−1)2
dx

= x

x− 1

(
x− 2 ln (x)− 1

x

)

Therefore the solution is

y = c1y1 + c2y2

= c1

(
x

x− 1

)
+ c2

(
x

x− 1

(
x− 2 ln (x)− 1

x

))

Summary
The solution(s) found are the following

(1)y = c1x

x− 1 + c2(−2 ln (x)x+ x2 − 1)
x− 1

Verification of solutions

y = c1x

x− 1 + c2(−2 ln (x)x+ x2 − 1)
x− 1

Verified OK.

3.8.3 Maple step by step solution

Let’s solve
x(x− 1)2 y′′ − 2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = 2y

x(x−1)2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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y′′ − 2y
x(x−1)2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = − 2
x(x−1)2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
x(x− 1)2 y′′ − 2y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′′ to series expansion form = 1..3

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

a0r(−1 + r)x−1+r + (a1(1 + r) r − 2a0(r2 − r + 1))xr +
(

∞∑
k=1

(ak+1(k + 1 + r) (k + r)− 2ak(k2 + 2kr + r2 − k − r + 1) + ak−1(k + r − 1) (k − 2 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + r) = 0

• Values of r that satisfy the indicial equation
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r ∈ {0, 1}
• Each term must be 0

a1(1 + r) r − 2a0(r2 − r + 1) = 0
• Each term in the series must be 0, giving the recursion relation

(−2ak + ak−1 + ak+1) k2 + ((−4ak + 2ak−1 + 2ak+1) r + 2ak − 3ak−1 + ak+1) k + (−2ak + ak−1 + ak+1) r2 + (2ak − 3ak−1 + ak+1) r − 2ak + 2ak−1 = 0
• Shift index using k− >k + 1

(−2ak+1 + ak + ak+2) (k + 1)2 + ((−4ak+1 + 2ak + 2ak+2) r + 2ak+1 − 3ak + ak+2) (k + 1) + (−2ak+1 + ak + ak+2) r2 + (2ak+1 − 3ak + ak+2) r − 2ak+1 + 2ak = 0
• Recursion relation that defines series solution to ODE

ak+2 = −k2ak−2k2ak+1+2krak−4krak+1+r2ak−2r2ak+1−kak−2kak+1−rak−2rak+1−2ak+1
k2+2kr+r2+3k+3r+2

• Recursion relation for r = 0

ak+2 = −k2ak−2k2ak+1−kak−2kak+1−2ak+1
k2+3k+2

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+2 = −k2ak−2k2ak+1−kak−2kak+1−2ak+1

k2+3k+2 ,−2a0 = 0
]

• Recursion relation for r = 1

ak+2 = −k2ak−2k2ak+1+kak−6kak+1−6ak+1
k2+5k+6

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+2 = −k2ak−2k2ak+1+kak−6kak+1−6ak+1

k2+5k+6 , 2a1 − 2a0 = 0
]

• Combine solutions and rename parameters[
y =

(
∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+1
)
, ak+2 = −k2ak−2k2ak+1−kak−2kak+1−2ak+1

k2+3k+2 ,−2a0 = 0, bk+2 = −k2bk−2k2bk+1+kbk−6kbk+1−6bk+1
k2+5k+6 , 2b1 − 2b0 = 0

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 27� �
dsolve(x*(x-1)^2*diff(y(x),x$2)-2*y(x)=0,y(x), singsol=all)� �

y(x) = 2c2x ln (x)− c2x
2 + c1x+ c2

x− 1

3 Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 33� �
DSolve[x*(x-1)^2*y''[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −c2x
2 − c1x+ 2c2x log(x) + c2

x− 1
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3.9 problem 10.4.9 (i)
3.9.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 336
3.9.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 338
3.9.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 342
3.9.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 347

Internal problem ID [5072]
Internal file name [OUTPUT/4565_Sunday_June_05_2022_03_00_59_PM_16506391/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients.
Second order and Homogeneous. page 318
Problem number: 10.4.9 (i).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ − 2y
x

= x2

3.9.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = −2
x

q(x) = x2

Hence the ode is

y′ − 2y
x

= x2
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The integrating factor µ is

µ = e
∫
− 2

x
dx

= 1
x2

The ode becomes

d
dx(µy) = (µ)

(
x2)

d
dx

( y

x2

)
=
(

1
x2

)(
x2)

d
( y

x2

)
= dx

Integrating gives

y

x2 =
∫

dx
y

x2 = x+ c1

Dividing both sides by the integrating factor µ = 1
x2 results in

y = c1x
2 + x3

which simplifies to

y = x2(x+ c1)

Summary
The solution(s) found are the following

(1)y = x2(x+ c1)
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Figure 42: Slope field plot

Verification of solutions

y = x2(x+ c1)

Verified OK.

3.9.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = x3 + 2y
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 59: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0
η(x, y) = x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

x2dy

Which results in

S = y

x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x3 + 2y
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = −2y
x3

Sy =
1
x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y

x2 = x+ c1

Which simplifies to
y

x2 = x+ c1

Which gives

y = x2(x+ c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x3+2y
x

dS
dR

= 1

R = x

S = y

x2

Summary
The solution(s) found are the following

(1)y = x2(x+ c1)

341



Figure 43: Slope field plot

Verification of solutions

y = x2(x+ c1)

Verified OK.

3.9.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
2y
x

+ x2
)
dx(

−2y
x

− x2
)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −2y
x

− x2

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−2y

x
− x2

)
= −2

x
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And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1
((

−2
x

)
− (0)

)
= −2

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
− 2

x
dx

The result of integrating gives

µ = e−2 ln(x)

= 1
x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= 1
x2

(
−2y

x
− x2

)
= −x3 − 2y

x3

And

N = µN

= 1
x2 (1)

= 1
x2
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−x3 − 2y
x3

)
+
(

1
x2

)
dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x3 − 2y

x3 dx

(3)φ = −x+ y

x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 1

x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= 1
x2 . Therefore equation (4) becomes

(5)1
x2 = 1

x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −x+ y

x2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −x+ y

x2

The solution becomes
y = x2(x+ c1)

Summary
The solution(s) found are the following

(1)y = x2(x+ c1)

Figure 44: Slope field plot

Verification of solutions

y = x2(x+ c1)

Verified OK.
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3.9.4 Maple step by step solution

Let’s solve
y′ − 2y

x
= x2

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = 2y

x
+ x2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − 2y

x
= x2

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − 2y

x

)
= µ(x)x2

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − 2y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −2µ(x)

x

• Solve to find the integrating factor
µ(x) = 1

x2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)x2dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)x2dx+ c1

• Solve for y

y =
∫
µ(x)x2dx+c1

µ(x)

• Substitute µ(x) = 1
x2

y = x2(∫ 1dx+ c1
)

• Evaluate the integrals on the rhs
y = x2(x+ c1)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 11� �
dsolve(diff(y(x),x)-2*y(x)/x-x^2=0,y(x), singsol=all)� �

y(x) = (x+ c1)x2

3 Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 13� �
DSolve[y'[x]-2*y[x]/x-x^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2(x+ c1)
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3.10 problem 10.4.9 (ii)
3.10.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 349
3.10.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 351
3.10.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 355
3.10.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 360

Internal problem ID [5073]
Internal file name [OUTPUT/4566_Sunday_June_05_2022_03_01_00_PM_73400741/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients.
Second order and Homogeneous. page 318
Problem number: 10.4.9 (ii).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + 2y
x

= x3

3.10.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 2
x

q(x) = x3

Hence the ode is

y′ + 2y
x

= x3
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The integrating factor µ is

µ = e
∫ 2

x
dx

= x2

The ode becomes

d
dx(µy) = (µ)

(
x3)

d
dx
(
y x2) = (x2) (x3)

d
(
y x2) = x5 dx

Integrating gives

y x2 =
∫

x5 dx

y x2 = x6

6 + c1

Dividing both sides by the integrating factor µ = x2 results in

y = x4

6 + c1
x2

Summary
The solution(s) found are the following

(1)y = x4

6 + c1
x2
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Figure 45: Slope field plot

Verification of solutions

y = x4

6 + c1
x2

Verified OK.

3.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −−x4 + 2y
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 62: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x2

dy

Which results in

S = y x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −−x4 + 2y
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2xy
Sy = x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= x5 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= R5

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = R6

6 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

yx2 = x6

6 + c1

Which simplifies to

yx2 = x6

6 + c1

Which gives

y = x6 + 6c1
6x2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −−x4+2y
x

dS
dR

= R5

R = x

S = y x2

Summary
The solution(s) found are the following

(1)y = x6 + 6c1
6x2
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Figure 46: Slope field plot

Verification of solutions

y = x6 + 6c1
6x2

Verified OK.

3.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
−2y

x
+ x3

)
dx(

−x3 + 2y
x

)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −x3 + 2y
x

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−x3 + 2y

x

)
= 2

x
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And

∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1
((

2
x

)
− (0)

)
= 2

x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫ 2

x
dx

The result of integrating gives

µ = e2 ln(x)

= x2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= x2
(
−x3 + 2y

x

)
= −x

(
x4 − 2y

)
And

N = µN

= x2(1)
= x2
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

−x
(
x4 − 2y

))
+
(
x2) dy

dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−x
(
x4 − 2y

)
dx

(3)φ = −1
6x

6 + y x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x2 + f ′(y)

But equation (2) says that ∂φ
∂y

= x2. Therefore equation (4) becomes

(5)x2 = x2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −1
6x

6 + y x2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −1
6x

6 + y x2

The solution becomes

y = x6 + 6c1
6x2

Summary
The solution(s) found are the following

(1)y = x6 + 6c1
6x2

Figure 47: Slope field plot
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Verification of solutions

y = x6 + 6c1
6x2

Verified OK.

3.10.4 Maple step by step solution

Let’s solve
y′ + 2y

x
= x3

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −2y

x
+ x3

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + 2y

x
= x3

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ + 2y

x

)
= µ(x)x3

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + 2y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = 2µ(x)

x

• Solve to find the integrating factor
µ(x) = x2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x)x3dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x)x3dx+ c1

• Solve for y

y =
∫
µ(x)x3dx+c1

µ(x)

• Substitute µ(x) = x2
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y =
∫
x5dx+c1

x2

• Evaluate the integrals on the rhs

y =
x6
6 +c1
x2

• Simplify
y = x6+6c1

6x2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 16� �
dsolve(diff(y(x),x)+2*y(x)/x-x^3=0,y(x), singsol=all)� �

y(x) = x6 + 6c1
6x2

3 Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 13� �
DSolve[y'[x]-2*y[x]/x-x^2==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x2(x+ c1)
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3.11 problem 10.4.10
3.11.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 362

Internal problem ID [5074]
Internal file name [OUTPUT/4567_Sunday_June_05_2022_03_01_01_PM_94712491/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients.
Second order and Homogeneous. page 318
Problem number: 10.4.10.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"

Maple gives the following as the ode type
[_Laguerre]

Unable to solve or complete the solution.

xy′′ + (1− x) y′ +my = 0

3.11.1 Maple step by step solution

Let’s solve
y′′x+ (1− x) y′ +my = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = (x−1)y′
x

− my
x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (x−1)y′
x

+ my
x

= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −x−1
x
, P3(x) = m

x

]
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◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ (1− x) y′ +my = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r
2x−1+r +

(
∞∑
k=0

(
ak+1(k + 1 + r)2 − ak(−m+ k + r)

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r2 = 0
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• Values of r that satisfy the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1)2 − ak(−m+ k) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(−m+k)

(k+1)2

• Recursion relation for r = 0
ak+1 = ak(−m+k)

(k+1)2

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = ak(−m+k)

(k+1)2

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
-> Kummer

-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE

<- Kummer successful
<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 21� �
dsolve(x*diff(y(x),x$2)+(1-x)*diff(y(x),x)+m*y(x)=0,y(x), singsol=all)� �

y(x) = c1KummerM (−m, 1, x) + c2KummerU (−m, 1, x)

3 Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 21� �
DSolve[x*y''[x]+(1-x)*y'[x]+m*y[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1HypergeometricU(−m, 1, x) + c2 LaguerreL(m,x)
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