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Problem number: 10.2.4.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear__constant__coeff", "second_ order_ode_ can_ be__made__integrable"

Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

2 —wlr =0

1.1.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is

Az"(t) + Bx'(t) + Cz(t) =0
Where in the above A =1, B = 0,C = —w?. Let the solution be z = e*. Substituting
this into the ODE gives

)\26)\75 _ w2e)\t =0 (1)
Since exponential function is never zero, then dividing Eq(2) throughout by e* gives
M —w’=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _ 2 _
)\172 9 94 \% B 4AC



Substituting A =1, B = 0,C = —w? into the above gives

0 1

o= E o VO - @O )

2@ 2)(

Hence

Which simplifies to

Since roots are real and distinct, then the solution is

Tr = cle>‘1t + czeAzt

T = cle(m)t + cze<_‘/‘?)t

Vw?t

—w?2
T =ce + coe VWUt

Summary
The solution(s) found are the following

2 _ 2
T =c1eV 4 eVt
Verification of solutions
2 _ 2
z=c1eV 4 eVt

Verified OK.

(1)



1.1.2 Solving as second order ode can be made integrable ode
Multiplying the ode by z’ gives

'z’ —wr'r =0
Integrating the above w.r.t ¢ gives

/ (:c'x” — wza:':v) dt=0

2
x' w32

2 2
Which is now solved for z. Solving the given ode for z’ results in 2 differential equations
to solve. Each one of these will generate a solution. The equations generated are

' = Vw?z? 4+ 2¢ (1)
' = —vw?x? + 2¢ (2)

Now each one of the above ODE is solved.

=02

Solving equation (1)

Integrating both sides gives

1
—dx = | dt
/ Vwiz? + 2¢; /
In <\%i2 + Vw?z? + 201)

=t+ Co
N
Raising both side to exponential gives
ln(%+\/w2zz+2cl>
e . Vw2 = et'i'c2

Which simplifies to

1
(wx csgn (w) + v w2z? + 2cl> Vel = et

ngn(w) ((C3et) csgn(w)w —9 (c:;et) — csgn(w)w01)

2w

1
/ I S / dt
w?z? + 2¢;

In (% + Vw?z? + 2c1>
— =t+cy
V2

(cget)w -2 (cget) e

tox = o

Simplifying the solution x =
Solving equation (2)

Integrating both sides gives




Raising both side to exponential gives

2
ln(u+\/w2x2+2cl
Vw2

e_ \/ﬁ = et+C4

Which simplifies to
_csgn(w)

(wz csgn (w) + w?z? + 2c1> Y = cgel

ngn(w) (2 (C5et)csgn(w)wcl _ (C5et) — csgn(w)w)

% toxr = —

Simplifying the solution x = —
Summary
The solution(s) found are the following

(c3et)” — 2(czet) ™ ey
2w
2(cset)” e1 — (cset) ™

2w

Verification of solutions

Verified OK.

2(cset)” e1 — (cset) ™

2w

T =—
Verified OK.

1.1.3 Solving using Kovacic algorithm
Writing the ode as

" —w’z =0
Az"+ Bz’ +Cz =0

Comparing (1) and (2) shows that

A=1
B=0
C = —w?

Applying the Liouville transformation on the dependent variable gives

z(t) = gel 2t

2(cset)c1—(cset) ™

2w

1)
2)

3)



Then (2) becomes
2" (t) = rz(t)
Where r is given by

s

r=-

t

2AB' — 2BA' + B* — 4AC
4A2?

Substituting the values of A, B,C from (3) in the above and simplifying gives

w
r=—
1
Comparing the above to (5) shows that
s = w?
t=1

Therefore eq. (4) becomes

Z'(t) = (w?) 2(2)

(7)

Equation (7) is now solved. After finding z(¢) then z is found using the inverse trans-

formation

xz = 2z(t) e~ )zt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There

are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’1)2a4,6a8)"'} {"'a_6a_4a_2a0,2’3>475a6a"'}
2 Need to have at least one pole that | no condition

3 {1,2} {2,3,4,5,6,7,---}

Table 1: Necessary conditions for each Kovacic case



The order of r at oo is the degree of ¢ minus the degree of s. Therefore
O(0c0) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=11

Since r = w? is not a function of ¢, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z” = rz as one solution is

z(t) = e\/ﬁt

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in z is found from
Bt

_1
I = zlef 2

Since B = 0 then the above reduces to

1 =z
— VWit
Which simplifies to
T, = pVw?t

The second solution x5 to the original ode is found using reduction of order

ef_%dt
To = T B) dt

Ty

Since B = 0 then the above becomes

1
$2=$1/—2dt
Ty
_ Vw2t 1
=€ /e2x/u7tdt

VR < csgn (W) e—2 csgn(w)wt)

=° 2w




Therefore the solution is

T = C1X1 + C2Z2

= a1 (¥) e <emt <_ csgn (w) ;‘2 CSg“(‘”)“t) >
w

/wz t _ c2 ngn(w)e— csgn(w)wt

Simplifying the solution z = c;e 5

Summary
The solution(s) found are the following

to r = ce

—wt

/2 Co€
x=cev¥t—
2w
Verification of solutions
—wt
/5 coe™ v
x=cevt—
2w

Verified OK.

1.1.4 Maple step by step solution

Let’s solve
" —wilzx =0
° Highest derivative means the order of the ODE is 2
1/

T

° Characteristic polynomial of ODE

—w?+r?=0

° Factor the characteristic polynomial
—(w—-—r)(w+r)=0

° Roots of the characteristic polynomial

r=(w,—w)

° 1st solution of the ODE
z1(t) = et

° 2nd solution of the ODE

Zo(t) = et

Vw2t _

wt

coe”

2w



° General solution of the ODE
z = c121(t) + caza(t)
° Substitute in solutions

—wt

T = c1e“t + coe

Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
<- constant coefficients successful’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

Ldsolve(diff(x(t),t$2)—omega‘2*x(t)=0,x(t), singsol=all)

z(t) = c1e”t + coe™*

v Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 23

LDSolve[x"[t]—\[Omega]“2*x[t]==0,x[t],t,IncludeSingularSolutions -> True]

z(t) = c1e™ + cpe™™

10



1.2 problem 10.2.5
1.2.1 Maple step by step solution . . . . ... ... ... ... ... 12

Internal problem ID [5046]
Internal file name [OUTPUT/4539_Sunday_June_05_2022_03_00_33_PM_16585502/index . tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.2, ODEs with constant Coefficients.
page 307

Problem number: 10.2.5.

ODE order: 3.

ODE degree: 1.

The type(s) of ODE detected by this program : "higher__order__linear__constant__co-
efficients_ ODE"

Maple gives the following as the ode type

[[_3rd_order, _missing_x]]

2" — "+ —z=0

The characteristic equation is
M—XN+A-1=0

The roots of the above equation are

A =1
)\2=Z
)\3:—2

Therefore the homogeneous solution is
Ty (t) = cre’ + e ey + ey

The fundamental set of solutions for the homogeneous solution are the following

t

r1 =¢€
Ty =e"
T3 = ezt

11



Summary
The solution(s) found are the following

z = c1et + e ey + etles (1)

Verification of solutions

T = cie’ + e ey + ey
Verified OK.

1.2.1 Maple step by step solution

Let’s solve
2 —x"+x'—x=0
° Highest derivative means the order of the ODE is 3
"
O Convert linear ODE into a system of first order ODEs
o Define new variable x;(t)
z1(t) =z
o Define new variable z(t)
zo(t) = o'
o Define new variable z3(t)
z3(t) = 2"
o Isolate for z4(t) using original ODE
z4(t) = z3(t) — z2(t) + z1(2)
Convert linear ODE into a system of first order ODEs
[z2(t) = 21(2) , 23(t) = z5(t) , 25(t) = m3(t) — 2(t) + 21(2)]

° Define vector
1 (t)
—
r(t) = | z2(t)
3(t)
° System to solve

12



1
0
-1

0
1| -z(t)
1

Define the coefficient matrix

0 1 0
A=10 0 1
1 -1 1

Rewrite the system as
Tt =A-2()
To solve the system, find the eigenvalues and eigenvectors of A

Eigenpairs of A

1 -1 -1
1, 1 ) _I) I ) Ia -1
1 1 1

Consider eigenpair

Solution to homogeneous system from eigenpair

1
E>1=et' 1
1

Consider complex eigenpair, complex conjugate eigenvalue can be ignored

Solution from eigenpair

13



Use Euler identity to write solution in terms of sin and cos
-1
(cos(t) —Isin(¢))- | I
1
Simplify expression
[ — cos (t) + Isin (¢)
I(cos (t) — Isin (t))
cos (t) — Isin (¢)

Both real and imaginary parts are solutions to the homogeneous system

— cos (t) sin (?)
Zo(t) = | sin ) |, Z3(t) = | cos (t)
cos (t) —sin (2)

General solution to the system of ODEs
; = Clzl + ngg(t) + ngg(t)
Substitute solutions into the general solution
1 —cy cos (t) + c3sin (¢)
— i X
r=ce- | 1|+ | cysin(t)+ czcos(t)
1 ¢y cos (t) — cs sin (t)
First component of the vector is the solution to the ODE

z = c1e' + czsin () — ¢y cos (t)

14



Maple trace

“Methods for third order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
<- constant coefficients successful’

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 17

Ldsolve(diff(x(t) ,t$3)-diff (x(t),t$2)+diff (x(t),t)-x(t)=0,x(t), singsol=all) J

z(t) = 1€’ + cysin () + c3 cos (t)

v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 22

LDSolve[x'"[t]—x"[t]+x'[t]-x[t]==0,x[t],t,IncludeSingularSolutions -> True] J

z(t) — cze’ + ¢y cos(t) + cosin(t)

15
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Problem number: 10.2.8 part(1).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear_constant_ coeff"

Maple gives the following as the ode type

[[_2nd_order, _missing_x]]

2 +42¢ +x =0

With initial conditions
[(0) =1,2'(0) = 0]
1.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

2" +p(t)r’ +q(t)z=F

Where here
p(t) =42
qt)=1
F=0



Hence the ode is
' +422 +=0

The domain of p(t) = 42 is
{—o0 <t < o0}

And the point ¢, = 0 is inside this domain. The domain of ¢(t) =1 is

{—o0 <t < o0}

And the point ¢y = 0 is also inside this domain. Hence solution exists and is unique.

1.3.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Az"(t) + Bz'(t) + Cz(t) =0

Where in the above A = 1, B = 42,C = 1. Let the solution be z = e*'. Substituting
this into the ODE gives
MeM 42\ + M =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e* gives

N +420+1=0 (2)
Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

—B 1
— /B2 —
/\1’2 = 9 9 B 4AC

Substituting A = 1, B = 42,C =1 into the above gives

—42 1 —
M= o EgmVE - @O0

= -21+2+110

Hence

A1 =—-21+2v110
A2 = —21—-2v110

17



Which simplifies to
A =—-2142v110
Ay = —21 —24/110

Since roots are real and distinct, then the solution is

T = cleAlt + 026)‘”

(—21+2\/m)t (—21—2@)1&

T =ce

+ coe

(—21+2\/m)t (—21—2@)1&

T = cie + ce

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

(—21+2\/m)t —21—2\/m>t (1)

T = ce +cge(

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting x =1 and ¢t =0
in the above gives

l=c+c (1A)
Taking derivative of the solution gives
7 =c (—21 1 2@) o(-2r2vii)e <_21 _ 2@) o(~21-2vTI0)t
substituting '’ = 0 and ¢ = 0 in the above gives
0 = (2¢1 — 2¢;) V110 — 21¢; — 21¢y (2A)

Equations {1A,2A} are now solved for {ci, c2}. Solving for the constants gives

1 214/110
Cl=—+
2 T T 440
1 21YII0
“= 57 T 10

18



Substituting these values back in above solution results in

- e(_21+2¢m)t 216(—21+2\/ﬁ)t\/m e—(21+2\/m)t 91 e_(21+2\/m)t\/m
= 2 440 2 - 440

Which simplifies to

(220 + 21v/110) o (21 +2VTI0): (220 — 21/110) o(-21-2vi0)t
440 T 440

Summary
The solution(s) found are the following

(220 + 214/110) o(-212VII0)t N (220 — 21,/110) o(—21-2vII0)¢

x = 1
440 440 (1)
1 A
0.99- 3
2-
0.981
1_
0.971 d i
x(1) a X 1
0.96- -1
0.95- -2
_3-
0.941
_4-
o o5 1 15 2 25 3 -4 -2 0 2 4
t x(?)
(a) Solution plot (b) Slope field plot

Verification of solutions

(2204 21v110) eI (990 — 91/770) 22V
v 440 T 140

Verified OK.

19



1.3.3 Solving using Kovacic algorithm

Writing the ode as

2 +42¢ +x =0
A"+ Bx' +Czx =0

Comparing (1) and (2) shows that

A=1
B =42
C=1

Applying the Liouville transformation on the dependent variable gives
2(t) = ze/ 2a di
Then (2) becomes
2"(t) = rz(t)

Where r is given by

s
r=-
t
_ 2AB'—2BA'+ B®> —4AC
B 4A2
Substituting the values of A, B, C from (3) in the above and simplifying gives
40
1
Comparing the above to (5) shows that
s =440
t=1

Therefore eq. (4) becomes

2" (t) = 4402(t)

1)
2)

3)

(4)

(6)

(7)

Equation (7) is now solved. After finding z(¢) then z is found using the inverse trans-

formation

z = 2z(t) e~ ) 2xadt

20



The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’1’274,6a87"'} {'"7_67_47_270,2’3747576a"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4}.,{1,2, 5}.
3| {1,2} {2,3,4,5,6,7,- -}

Table 4: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢t minus the degree of s. Therefore
O(co) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L =]
Since r = 440 is not a function of ¢, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode z” = rz as one solution is
z(t) = e 2tv110

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in z is found from

1B

1 IZlef 2ad
142

= Z]_e_fi 1 dt

21



— Zle—2lt

=2z (e—21t)

Which simplifies to

o = e(—21—2\/m>t

The second solution z5 to the original ode is found using reduction of order

ef_%dt
To = T :1,'2 dt

1

Substituting gives

ef_%dt
$2=(C1/—(x1)2 dt

—42t

e
=z [ St
(961)2
V110 etV110
—h 440

Therefore the solution is

T = C1T1 + C2Z2

= (e(—21_2m)t) ¥ (e(—m_gm)t (M))

440

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

(_21_2m)t ) CQG(—21+2¢m)t 16
440

r = C1€e

(1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting x =1 and ¢t =0

in the above gives

22

(14)



Taking derivative of the solution gives

—21-2/110 )¢ 02(—21 +2 110) e<_2l+2\/m>t 110
(a-avim)e VIO JIT0

2 =c (—21 _ 2\/110) e

440
substituting '’ = 0 and ¢ = 0 in the above gives
. (—88001 - 2102) vV 110 Cy
0= 140 21c; + 5 (2A)

Equations {1A,2A} are now solved for {ci, c2}. Solving for the constants gives

1 214110

a9 T 4o

ce =214 2v110

Substituting these values back in above solution results in

x: e(_21+2\/m)t N 218(—21+2\/m)t\/m N e—(21+2¢m)t 2 e—(21+2x/m)t\/m
2 440 2 440

Which simplifies to

(220 +214/110) o(—212VII0)t (220 — 21,/110) o(—21-2vIT0)t
°T 440 * 40

Summary
The solution(s) found are the following

(220 + 21V/TT0) e H2VIO) (990 — 21/TT0) el 2VTO)"
e 440 * 440 M)

23



1 4| Ll | L) | L)
| |} | |} | |}
3| L) | L) | L)
0.991 | |} | |} | |}
| L} | L} | L}
2 L) | L) | L)
0.98- | |} | |} | ||
T
0.974 d ey | bLo
XU a0 T
0.967 -1 1 1 11 1 11
RRRRRRRRRRRRRRRRRR
0951 BEERERRRERRRERRRREEE
e RRRRRRRRRRRRERERREE
0.941 EEEEERERRERREREREE
—44 1 11 1 11 1 11
0 05 1 15 2 25 3 -4 =2 0 2 4
t x(1)
(a) Solution plot (b) Slope field plot

Verification of solutions

(220 + 21v/110) o(-21+2VII0)¢ N (220 — 21/110) o(—21-2vIT0)¢

440 440
Verified OK.

1.3.4 Maple step by step solution

Let’s solve

" +422' + 2 =0,2(0) = 1,2 oy 0}

° Highest derivative means the order of the ODE is 2
2z

° Characteristic polynomial of ODE
r2+42r+1=0

° Use quadratic formula to solve for r
. (—42)+ gm)

° Roots of the characteristic polynomial

r = (—21 — 2v/110, —21 + 21/110)

24




1st solution of the ODE
21(t) = e(—21—2\/m)t

2nd solution of the ODE
Zo(t) = e(—21+2\/m)t

General solution of the ODE
z = c121(t) + caza(t)
Substitute in solutions

(—21—2m)t c (—21+2¢m)t

T = ce + co€

(—21—2@)1& —21+2\/m>t

Check validity of solution z = cje + CQe(
Use initial condition z(0) =1
1= c1+ ¢y

Compute derivative of the solution

2 = 1 (—21 — 2v/T10) e VIO) o, (~21 4 2/1T0) o[ 2HH2VIIO)
=0

{t=0}

0 =c1(—21 — 2v/110) + (—21 +2v/110) c
Solve for ¢; and ¢

_ 1 21Y/I10 . _ 1, 21110
{01_2 10 2 =351 T4 }

Use the initial condition z’

Substitute constant values into general solution and simplify

(220+21\/E)e(‘21+2m)t (220-21@)6(—21—Wm)t
L= 440 + 10
Solution to the IVP

(220+21\/ﬁ)e(‘21+2‘/m)t (220—21m)e(‘21‘2m)t
440 + 110

xTr=

25



Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
<- constant coefficients successful’

v/ Solution by Maple
Time used: 0.078 (sec). Leaf size: 43

Ldsolve([diff(x(t),t$2)+42*diff(x(t),t)+x(t)=0,x(0) =1, D(x)(0) = 0],x(t), singsol=all)

o _ (220 +21V110) e(72H2VIR)E (990 _ 91 /71D) e[ 212VIIO)"
=(t) = 440 + 140

v Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 53

LDSolve[{x"[t]+42*x'[t]+x[t]==0,{x[0]==1,x'[O]==O}},x[t],t,IncludeSingularSo;?tions -> True]

¢~ ((242viT0)2) ((881 + 84y/T10) €4 — 1)

z(t) —
t) 880 + 844/110
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1.4 problem 10.2.8 part(2)
1.4.1 Maple step by step solution . . . . . ... ... ... ...... 28]

Internal problem ID [5048]
Internal file name [OUTPUT/4541_Sunday_June_05_2022_03_00_34_PM_44292396/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.2, ODEs with constant Coefficients.
page 307

Problem number: 10.2.8 part(2).

ODE order: 4.

ODE degree: 1.

The type(s) of ODE detected by this program : "higher__order__linear__constant__co-
efficients_ ODE"

Maple gives the following as the ode type

[[_high_order, _missing_x]]

.’L‘””-l-:l; — 0

The characteristic equation is
M+1=0

The roots of the above equation are

2 2
V3 i3
A==t
o _VE_iV2
2 2
N V22
2 2

Therefore the homogeneous solution is

(_Q+m NN
2

.’L'h(t) =e 2 )tcl + G(T-i- 2 >t02 + e(_ 2 2 )tC3 —|—e< 2 2 )tc4

27



The fundamental set of solutions for the homogeneous solution are the following

x; = e<_§+¥>t

\S

=e€

2

(S

&

(5
(@
(%22

(&

Summary
The solution(s) found are the following

ﬁ_}.iﬁ

x=e(_2 2)cl+e(\/5 =2

2)62—}—6(_2 2)tc3+e(2 ‘2

Verification of solutions

T = e(_§+i22)tcl + e(

Verified OK.

1.4.1 Maple step by step solution

Let’s solve
2" +z=0
. Highest derivative means the order of the ODE is 4
Wz
OJ Convert linear ODE into a system of first order ODEs
o Define new variable z(t)
z1(t) =z
o Define new variable x5 (t)
zo(t) = o'
o Define new variable x3(t)
z3(t) = 2"
o Define new variable x4(t)
x4(t) = ="
o Isolate for 2 (t) using original ODE

zy(t) = —z1(?)
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Convert linear ODE into a system of first order ODEs
[22(2) = 21(2) , 23(t) = 25(t) , 24(t) = 73(F) , 2 (¢) = —21(2)]

Define vector

xl(t)
To(t
2= | ™Y
z3(t)
| z4(t)
System to solve
[0 10 0]
0O 010
Z(t) = Z(t)
0 0 01
| 100 0|

Define the coefficient matrix

0 10 0]
0 010
A=
0 00 1
| -1 00 0|

Rewrite the system as
Z(t)=A-Z(@)
To solve the system, find the eigenvalues and eigenvectors of A

Eigenpairs of A

1 1
T & 1. /5\3 3
(-2-1) (- 4+1¢2)
1 1
T = N2 T e L N2
NZ) /2 _V2_1v2 V2 /2 _V2,1V2 V2 /2
T2 T T2 ( 2 2> ’ _T—'—T’ ( 2+2> [ T2 T T2
1 1
_V2_ V2 _V2,1IV2
2 2 2 2
1

Consider complex eigenpair, complex conjugate eigenvalue can be ignored

29
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2
V2 _ 2 | (—-Lp)
2 2 )
1
1/
2 2
1

Solution from eigenpair

_V2_1IV2
2 2
1
Use Euler identity to write solution in terms of sin and cos
_ . ;
F-F)
2 2
L 2
e~ . (cos (%) —Isin (%)) (—%-1%)
1
_V2_1v2
2 2
1

cos(%)—lsin(%)
_J_IJ>3
2 2
cos(%)—lsin(%)
e F (—2-12)
cos(%)—lsin(%)
cos (%) Isin (%5)

Both real and imaginary parts are solutions to the homogeneous system
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oS

V2
2

i 1

Simplify expression

cos(%)f
2

sin(*2)v2
2

_|_
—s1n<

()2

¥)
an

t\/i)

()

31
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Consider complex eigenpair, complex conjugate eigenvalue can be ignored




-
i
N

72
2
cos (t‘f)

Both real and imaginary parts are solutions to the homogeneous system

[ Ccos tv2
)

in (1)

z3(t) = .
cos(2)v2  sin(22)v2
2 2
COS <%§>

General solution to the system of ODEs

sm(tf)f i
2

; = Clzl(t) + ngz(t) + C333(t) + 0424(1})

Substitute solutions into the general solution

COos tf
(p)s

sm(t‘f)f

2

2

-

sin(tﬁ>\/§

2

cos(%)\/ﬁ I

oo )

T2
2

+ ce”

V2
2 .

First component of the vector is the solution to the ODE

xTr=

(((Cl+02)e_¥—e¥(c;;—c4)) cos( 12 ) +sin (12 ) ((cl—cz)e

_tvV2  tv2
2 H4e 2 (c3+c4)

)

2

32
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Maple trace

“Methods for high order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients

<- constant coefficients successful

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 61

Ldsolve(diff(x(t),t$4)+x(t)=0,x(t), singsol=all)

_ V2t V2t
z(t) = —c1e” 2 —ce 2 |sin

v/ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 65

2

@) + <03e_

LDSolve [x''''[t]+x[t]==0,x[t],t,IncludeSingularSolutions -> True]

o(t) - o ((cle\/ﬁt + 02> COS (%) + <c4e\/§t + 03> sin (%))
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1.5 problem 10.2.8 part(3)
1.5.1 Maple step by step solution . . . . . ... ... ... ......

Internal problem ID [5049]
Internal file name [OUTPUT/4542_Sunday_June_05_2022_03_00_35_PM_42275176/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.2, ODEs with constant Coefficients.
page 307

Problem number: 10.2.8 part(3).

ODE order: 3.

ODE degree: 1.

The type(s) of ODE detected by this program : "higher__order__linear__constant__co-
efficients_ ODE"

Maple gives the following as the ode type

[[_3rd_order, _missing_x]]

2" —32x" —92' —5x =0

The characteristic equation is
M =3\ -9A-5=0

The roots of the above equation are

A =5
Ay = —1
As = —1

Therefore the homogeneous solution is
zh(t) = e7'cp +te ey + e%cs

The fundamental set of solutions for the homogeneous solution are the following

—t

r1 =¢€
To =te?
T3 = e5t
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Summary
The solution(s) found are the following

r=e"lc; +te ey +e’cs (1)

Verification of solutions

z =e"tc; +tetey + eleg
Verified OK.

1.5.1 Maple step by step solution

Let’s solve
" —3x" — 92’ —5x =0

° Highest derivative means the order of the ODE is 3
ml/l

0J Convert linear ODE into a system of first order ODEs
o Define new variable z;(t)
z1(t) =z
o Define new variable z(t)
zo(t) = o'
o Define new variable z3(t)
z3(t) = 2"
o Isolate for x%(t) using original ODE
z5(t) = 3x3(t) + 9z2(t) + 5z1(t)
Convert linear ODE into a system of first order ODEs
[z2(t) = 21(t) , 23(t) = 25(t) , 25() = 3m3(t) + 9z2(t) + 524 (2)]

° Define vector

z1(t)
2(t) = | m(t)
z3(t)
° System to solve
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010
Z@=]00 1] 2@
59 3

Define the coefficient matrix

010
A=1001
59 3
Rewrite the system as
Tt =A 2
To solve the system, find the eigenvalues and eigenvectors of A

Eigenpairs of A

1 0 =
_17 -1 ) _17 0 ) 57 %
1 0 1

1
Zi(t) =et- | —1
1
Form of the 2nd homogeneous solution where B is to be solved for, A = —1 is the eigenvalue, ¢

Zo(t) = & (t? + 5)
Note that the ¢t multiplying v makes this solution linearly independent to the 1st solution obt:

Substitute Z,(t) into the homogeneous system

A (t? - B) + My = (eMA) - (t? - 5)

36



Use the fact that v is an eigenvector of A

e (t?} + 5) + &My = eM (At?} +A- B)

Simplify equation

Mp+v=A-p

Make use of the identity matrix I

A\-I)-p+v=A-p

Condition p must meet for Z5(t) to be a solution to the homogeneous system
(A=X-I)-p=7v

Choose 1—5 to use in the second solution to the homogeneous system from eigenvalue — 1

010 100 1
001 |-(CD-]lo1o0l|]|-P2=]|=-1
59 3 00 1 1

Choice of 1_5

1
5
p=10

0

Second solution from eigenvalue — 1

1 1
Zot)=et-|t-| -1 |+ |0
1 0

Solution to homogeneous system from eigenpair

1
&
Al glr—t
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° General solution to the system of ODEs

5) = Clgl(t) + 0222(?5) + 0323

. Substitute solutions into the general solution
1 1 1 =
Z=ete;- | =1 | +eet-|t-| =1 |+1]0 + elcg - 1
1 1 0 1
° First component of the vector is the solution to the ODE

xz((t—l—l)cz—l—cl)e‘t—i-es;—ge’

Maple trace

“Methods for third order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
<- constant coefficients successful’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

e

tdsolve(diff(x(t),t$3)_3*diff(x(t),t$2)—9*diff(x(t),t)-5*x(t)=0,X(t), singsol%%ll)

z(t) = (cst + cp) e + cre™

v Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 26

e B

LDSolve [x''' [t]-3*x''[t]-9*x' [t]-5*x[t]==0,x[t],t,IncludeSingularSolutions -> jl'rue]

z(t) = e *(cat + c3e® + 1)
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1.6 problem 10.2.10

1.6.1 Solving as second order linear constant coeffode . ... .. .. 391
1.6.2 Solving using Kovacic algorithm . . . . . . ... ... ... ... 42]
1.6.3 Maple step by step solution . . . . . . ... ... ... . ..., 47

Internal problem ID [5050]
Internal file name [OUTPUT/4543_Sunday_June_05_2022_03_00_36_PM_76937184/index.tex|

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.2, ODEs with constant Coefficients.
page 307

Problem number: 10.2.10.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear_constant_ coeff"

Maple gives the following as the ode type

[[_2nd_order, _linear, _nonhomogeneous]]

z" + 2y’ + wox = F cos (wt)

1.6.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ax"(t) + Bx'(t) + Cz(t) = f(t)
Where A =1, B = 2v,C = wy, f(t) = F cos (wt). Let the solution be
T=2Ip+Tp

Where z, is the solution to the homogeneous ODE Az”(t) + Bz'(t) + Cz(t) = 0, and z,
is a particular solution to the non-homogeneous ODE Ax”(t) + Bz'(t) + Cz(t) = f(t).
xp, is the solution to

"+ 2vx' + woz =0

This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Az"(t)+ Bx'(t) + Cz(t) =0
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Where in the above A = 1, B = 27,C = wy. Let the solution be z = e*. Substituting
this into the ODE gives
AeM + 29X e + woet =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e* gives
29X+ A% +wo =0 (2)
Equation (2) is the characteristic equation of the ODE. Its roots determine the general

solution form.Using the quadratic formula

-B 1
= — _— 2 _
)\1,2 9 9A B 4AC

Substituting A = 1, B = 2, C = wy into the above gives

—2v 1 — .
o0 oV @0 w)

=—7x V712 —wo

A2 =

Hence
A =—7+ V7 —wo

X =—7— V7 —wy

Which simplifies to
AL =—7+ V7 —wo

Do = =7 = V72 —wo
Since roots are real and distinct, then the solution is

T =M + e

- cle(—7+\/v2—7wo)t 4 026(—7— 72—wo)t

Or

I = cle(_7+m)t +c2e<_7_m)t
Therefore the homogeneous solution xj, is

T, = Cle(—7+\/'m>t +02e(_7_\/m)t
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

F cos (wt)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (wt) , sin (wt)}]

While the set of the basis functions for the homogeneous solution found earlier is

felomms, i)

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC__set.

z, = A; cos (wt) + Ay sin (wt)

The unknowns {A;, A} are found by substituting the above trial solution z, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

—Ajw? cos (wt) — Agw? sin (wt) + 2y(—Aywsin (wt) + Agw cos (wt))
+ wo(A; cos (wt) + As sin (wt)) = F cos (wt)

Solving for the unknowns by comparing coefficients results in

(W? —wp) F 2vFw
Ar=-~ 2 _ s 2 A= 2 _ 2 .2
wt + (4% — 2wp) w? + Wi wt + (492 — 2wp) w? + Wi

Substituting the above back in the above trial solution z,, gives the particular solution

(w? — wp) F cos (wt) 2vFw sin (wt)
w4 (492 — 2wp) w? + wd w4 (492 — 2wp) w? + W3

p—

Therefore the general solution is
T=Zp+ T,
— (el gl

_ (w® = wo) Fcos (wi) 2vFw sin (wt)
w4 (492 = 2wp) w? + Wi wr+ (492 — 2wp) w? + w?
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Which simplifies to

2 = crel VIRt | o= (VAT )t
(w? — wp) F cos (wt) 2vFw sin (wt)

wi4 (492 = 2wp) w? + Wi w4 (492 — 2wp) w? + w3

Summary
The solution(s) found are the following

T = cle<—'y+\/72—wo)t + C2e— (’y+\/72—wo)t
(w? — wp) F cos (wt) 2vFw sin (wt) (1)

oWt 4+ (492 — 2wp) w? + w2 w*+ (492 — 2wp) w? + W3

Verification of solutions

2 = crel VIR | o~ (VAT e
(w? — wp) F cos (wt) 2vFwsin (wt)

oWt 4t (492 — 2wp) w? + wd  w*+ (492 — 2wp) w? + w3
Verified OK.

1.6.2 Solving using Kovacic algorithm

Writing the ode as

" + 2vx' + woz =0 (1)
Az"+ B +Cz =0 (2)

Comparing (1) and (2) shows that

A_
B=2y 3)
C—(A)o

Applying the Liouville transformation on the dependent variable gives
z(t) = zel 2a
Then (2) becomes

2'(t) = rz(t) (4)
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Where r is given by

r=2 (5)
2AB’' — 2BA’ + B? — 4AC
4A?

Substituting the values of A, B, C from (3) in the above and simplifying gives

= ©)

1

r =

Comparing the above to (5) shows that

s =% — wp
t=1

Therefore eq. (4) becomes
2(t) = (17— wn) 2() ™

Equation (7) is now solved. After finding z(¢) then z is found using the inverse trans-
formation

T = 2(t) e~/ aadt

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’1)2a4,6a8)"'} {"'a_6a_4a_2a0,2’3>475a6a"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2}{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 8: Necessary conditions for each Kovacic case
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The order of r at oo is the degree of ¢ minus the degree of s. Therefore
O(o0) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since r = 42 — wp is not a function of ¢, then there is no need run Kovacic algorithm
to obtain a solution for transformed ode z” = rz as one solution is

2 (t) — et\/~y2—w0

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in z is found from

T, = zel “3A
el
= ze
=2z (e—tv)

Which simplifies to
2 = e(—vh/ﬁ)t

The second solution x5 to the original ode is found using reduction of order

B
ef_ﬁdt
o = T 3 dt
1

Substituting gives

e A dt
CL’Q=IL'1/ ( )2 dt
z1

—2ty
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Therefore the solution is

T = C1X1 + C2X2

S L (Rl Eeciy
2v7? — wo

This is second order nonhomogeneous ODE. Let the solution be

T=2xp+ Ty

Where z}, is the solution to the homogeneous ODE Az"(t) + Bz'(t) + Cz(t) = 0, and z,,
is a particular solution to the nonhomogeneous ODE Az”(t) + Bx'(t) + Cz(t) = f(t).
xp, is the solution to

2" 4+ 2vx' +wer =0

The homogeneous solution is found using the Kovacic algorithm which results in

<—7+\/M)t _ Cze_<7+ 72_%)7:
2V7? —wo

Ty = c1e

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

F cos (wt)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (wt) , sin (wt) }]
While the set of the basis functions for the homogeneous solution found earlier is
(o)

e(—vh/ﬁ)wﬁ
24/7% — wp ’

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_set.

z, = A; cos (wt) + Az sin (wt)
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The unknowns {A;, A} are found by substituting the above trial solution z, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

—A1w? cos (wt) — Agw? sin (wt) + 2y(—Aywsin (wt) + Asw cos (wt))
+ wo(A; cos (wt) + Ay sin (wt)) = F cos (wt)

Solving for the unknowns by comparing coefficients results in

B (w? —wy) F _ 2vFw
w* + (492 — 2wp) w? + w?’ w* + (492 — 2wp) w? + w?

A =

g =
Substituting the above back in the above trial solution z,, gives the particular solution

(w? — wp) F cos (wt) 2vFw sin (wt)
w4 (492 = 2wp) w? + Wi w4 (492 — 2wp) w? + wd

p =

Therefore the general solution is

T=x,+ T

_ [y e U
2V —wo
N (_ (w? — wp) F cos (wt) 2vFwsin (wt) >
w4 (492 — 2wp) w? + w? w4 (492 — 2wp) w? + W3

Summary
The solution(s) found are the following

r=c e(_,H_ /72—wo)t _ Cge_ <7+\/ ’72—w0)t
' 2V —wo 1)
(w? — wp) F cos (wt) 2vFw sin (wt)

Wt (42— 2w) W+ W Wt (492 — 2wp) w? + W

Verification of solutions

r=c e<‘7+m>t _ Cze_(7+ A )
' 2V7? —wo
(w? — wp) F cos (wt) 2vFwsin (wt)

wr+ (492 — 2wp) w? + wd w4 (492 — 2wp) w? + W3
Verified OK.
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1.6.3 Maple step by step solution

Let’s solve

z" + 2yx' + wox = F cos (wt)

° Highest derivative means the order of the ODE is 2
wl/
° Characteristic polynomial of homogeneous ODE

297 + 12 +wy =0
° Use quadratic formula to solve for r

_ (—27)% (Va7 —dwo )

2

° Roots of the characteristic polynomial
= (=7 =V = wo, =7 + V¥ — wo)
° 1st solution of the homogeneous ODE

0 = ol V)
° 2nd solution of the homogeneous ODE

2y(t) = eTTHVI)

° General solution of the ODE
z = a121(t) + caza(t) + z,(t)

. Substitute in solutions of the homogeneous ODE
N L G L

O Find a particular solution z,(¢) of the ODE

o Use variation of parameters to find z, here f(t) is the forcing function
t)f(t t)f(t
[xp(t = —z(t ( ) i Gy i((t))f;)(t))dt) + xo(t) ( i W(zll((g)fiz)(t dt) f(t) = F cos (wt)]
o Wronskian of solutions of the homogeneous equation

(—’y— '72—wo)t e(—'y+\/'72—wo)t

e

W(.’El(t) ,l'z(t)) = i 2
<—’)’ _ ‘/72 —CUO) e(_’Y— ¥ —WO)t (_,Y_i_ m) e(—’v-i—ﬂ)t

o Compute Wronskian

W (z1(t) , z2(t)) = 2v/74% — wo e 2
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o Substitute functions into equation for z,(t)

F <e(_7+ 12_“’0))& <f Cos(wt)e<7_ Y 72_w0>tdt> —e <7+ Wz_wo)t <f cos(wt)e(’y-‘_ 72_w0>tdt>)
zp(t) = 2/ 0

o Compute integrals

_ F((—w?+wp) cos(wt)+2yw sin(wt))
Zp (t) - wi+2(2y2 —wo)w?+wd

° Substitute particular solution into general solution to ODE

— —Y=V7?—wo )t —v+vV7¥2—wo )t | F((—w?4wo) cos(wt)+2ywsin(wt))
T = C1e< ) + 62e< ) + A2y o0 )2

Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful”

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 111

singsol=all)

‘ dsolve(diff (x(t),t$2)+2*gamma*diff (x(t) ,t)+omega__0*x(t)=F*cos(omega*t) ,x(t),

z(t)
A
—F(w? — wp) cos (wt) + 2F sin (wt) yw + 4(%4 + (P —2)w?+ %‘%> (e_<“’+V 72_”°)tcl + e(_"’Jr VP —wo,

w* + (492 — 2wp) w? + w?
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v/ Solution by Mathematica
Time used: 0.509 (sec). Leaf size: 108

-

tDSolve [x'' [t]+2*\[Gamma] *x' [t]+Subscript [\ [Omega] ,0]*x[t]==F*Cos [\ [Omega] *t] ,}( [t],t,Includes

2(t) = F(w(27ysin(tw) — w cos(tw)) + wozcos(tw)) + Cle_t(mﬂ)
472w? + w* — 2wow? + wi

(v7P=—)

t
+ coe
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1.7 problem 10.2.11 (i)

1.7.1 Existence and uniqueness analysis. . . . . ... ... .. .... H0]
1.7.2  Solving as second order linear constant coeffode . ... .. .. 1]
1.7.3 Solving using Kovacic algorithm . . . . . . . ... ... ..... Hol
1.7.4 Maple step by step solution . . . . ... ... ... ....... 621

Internal problem ID [5051]
Internal file name [OUTPUT/4544_Sunday_June_05_2022_03_00_37_PM_98654921/index.tex|

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
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Problem number: 10.2.11 (i).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear_constant_ coeff"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

y//_y/_2y :e2x

With initial conditions

[y(0) = 1,%'(0) = O]

1.7.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y' +p()y +q(@)y=F

Where here
p(z) = -1
q(z) = -2
F — eQ.’L‘



Hence the ode is
yll _ yl _ 2y — e2:11

The domain of p(z) = —1 is
{—00 <z < o0}

And the point 2y = 0 is inside this domain. The domain of ¢(z) = —2 is

{—00 <z < o0}

And the point zy = 0 is also inside this domain. The domain of F' = e is

{—o0 <z < o0}
And the point zy = 0 is also inside this domain. Hence solution exists and is unique.

1.7.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay'(z) + By'(z) + Cy(z) = f(z)
Where A =1,B = —1,C = -2, f(z) = e?®. Let the solution be

Y=Yn+Yp

Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+ Cy(z) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay"(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to
yll _ y/ _ 2y — 0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay"(z) + By (z) + Cy(z) = 0

Where in the above A =1, B = —1,C = —2. Let the solution be y = €**. Substituting
this into the ODE gives

MM — e —2eM =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives

M—-A-2=0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
- 4+ = 2 _
)\1,2 9 9 B 4AC

Substituting A =1, B = —1,C = —2 into the above gives

1 1
Ao = + —12—(4)(1) (-2
1 3
=3%3
Hence
1 3
A=5t0
1 3
=570
Which simplifies to
AL =2
A =-—1

Since roots are real and distinct, then the solution is
Aoz

y = 1M + cpe

y = c1e®? 4 cpe7"

y = c16®® + cpe™”

Therefore the homogeneous solution y;, is

Yn = c16% + cpe7"

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

2x
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Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{e*"}]

While the set of the basis functions for the homogeneous solution found earlier is
{ e—x, e2x}

Since e%* is duplicated in the UC_ set, then this basis is multiplied by extra z. The
UC_set becomes

{e*z}]
Since there was duplication between the basis functions in the UC__set and the basis

functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

Y, = A1e¥x

The unknowns {A; } are found by substituting the above trial solution y, into the ODE
and comparing coefficients. Substituting the trial solution into the ODE and simplifying
gives

3A,e% = e**

Solving for the unknowns by comparing coefficients results in

=

Substituting the above back in the above trial solution y,, gives the particular solution

¥y

3

Yp =
Therefore the general solution is

Y=Y+ Yp

2x
= (clez‘” + Cge_x) + (e 355')

Initial conditions are used to solve for the constants of integration.
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Looking at the above solution

e?ry

y=ce” + e+ — (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y =1 and x =0
in the above gives

1= 1+ ¢ (1A)

Taking derivative of the solution gives

2%y ¥
/ — 2 2z _ —T
Yy c1e ce T+ 3 + 3
substituting ¥’ = 0 and z = 0 in the above gives
1
0=2c; —co+ (2A)

3

Equations {1A,2A} are now solved for {ci, c2}. Solving for the constants gives

C1 =

Cy =

N=JIEN IN=J IV}

Substituting these values back in above solution results in

_ 2e%® N Te @ N 2y
Y= 9 3

Which simplifies to

24+ 3x)e*® Te®
@+ 3m)e

vy= 9 9

Summary

The solution(s) found are the following

(2+3z)e* Te™®
1
o T g (1)

y:
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(b) Slope field plot

(a) Solution plot

Verification of solutions

Te ®
9

(24 3z)e*
9

Verified OK.

1.7.3 Solving using Kovacic algorithm

Writing the ode as

(1)
(2)

0

v -y -2y
Ay + By +Cy=0

Comparing (1) and (2) shows that

3)

Applying the Liouville transformation on the dependent variable gives

Then (2) becomes

(4)
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Where r is given by

r=3 (5)
__ 2AB'—2BA'+ B?> —4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
9
= - 6
r=2 ©
Comparing the above to (5) shows that
S =
t=
Therefore eq. (4) becomes
2 (x) = inx) (7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-
formation

y=z(z)e S k%

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’1)2a4,6a8)"'} {"'a_6a_4a_2a0,2’3>475a6a"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2}{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 10: Necessary conditions for each Kovacic case
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The order of r at oo is the degree of ¢ minus the degree of s. Therefore
O(co) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=y

Since r = % is not a function of z, then there is no need run Kovacic algorithm to

obtain a solution for transformed ode z” = rz as one solution is

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

_1B
Y1 = zlef 24 de

Which simplifies to

The second solution ys to the original ode is found using reduction of order

ef—%dx
y2:y1/ 2 dx
Y1

Substituting gives
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Therefore the solution is

Y =c1y1 + Y2

e ra(er(2))

This is second order nonhomogeneous ODE. Let the solution be
Y=YntYp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By (z) + Cy(z) = f(z).
yp, is the solution to

y/l_y/_2y=0

The homogeneous solution is found using the Kovacic algorithm which results in

Co eZm

3

Yy =cre "+

The particular solution y, can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on z as well. Let

Yp(T) = w1y1 + uays (1)

Where uj,us to be determined, and y,y, are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

In the Variation of parameters u,, us are found using
Y2 f ()
=— 2
“ / aW (z) @)

[ wnf(z)
uz_/aW(x) 3
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Where W (z) is the Wronskian and a is the coefficient in front of y” in the given ODE.

The Wronskian is given by W = vt . Hence
N Y
e 2 e?®

Which gives

e ? ==
3
W= —z 2%
Therefore
2 e2x e2x
W = —z N Az
e (%)~ (5 ) o)
Which simplifies to
W = e—a:e2z
Which simplifies to
W =¢€"
Therefore Eq. (2) becomes
e4z
U = — 3 dg
el‘
Which simplifies to
e3x
U = — ?dw
Hence
e3z
Uy = —?

And Eq. (3) becomes

e * eQm
Uy = dx
ez

99



Which simplifies to

Uy = /1dx

U =T

Hence

Therefore the particular solution, from equation (1) is

(m) _ _e—a:e3z N eZa:x
Wi =" 3
Which simplifies to
3z —1)e*
o) = O

Therefore the general solution is

Y=Yn+Yp

B . €™ (3z —1)e*
= (cle + 3 )+( 9

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

2x -1 2x
y=ce "+ ng + (32 9 )e (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y =1 and x =0
in the above gives

1=+ 23 (1)
Taking derivative of the solution gives
) = —cre™ 4 2cpe*® N e N 2(3z — 1) e*
3 3 9
substituting 4’ = 0 and z = 0 in the above gives
0=—c1+%+% (24)
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Equations {1A,2A} are now solved for {ci, co}. Solving for the constants gives

Substituting these values back in above solution results in

Te™® ¥y

2 6293

Which simplifies to

Te ®

(24 3z) e

Summary

found are the following

The solution(s)

(1)

Te @
9

(24 3z) e
9

—050 05 1 15 2 25

-15

—25

60

501

40

201

10

(b) Slope field plot

(a) Solution plot

Verification of solutions

Te ™

(24 3z) e*®

Verified OK.
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1.7.4 Maple step by step solution

Let’s solve
y' —y —2y=¢e",y(0) =1,y oy~ 0]
° Highest derivative means the order of the ODE is 2
Y
° Characteristic polynomial of homogeneous ODE
r2—r—2=0
° Factor the characteristic polynomial
(r+1)(r—2)=0
° Roots of the characteristic polynomial
=(-1,2)
° 1st solution of the homogeneous ODE
y(z) =e™*
° 2nd solution of the homogeneous ODE
yo(z) = €%
° General solution of the ODE
y = atn(z) + cay2(z) + yp()
° Substitute in solutions of the homogeneous ODE

y = c1e™" + 2™ + y,(x)
O Find a particular solution y,(z) of the ODE
o Use variation of parameters to find y, here f(x) is the forcing function
1@) = (@) ([ ko) + (@) (| tifiohys) S (o) = ]
o Wronskian of solutions of the homogeneous equation
e o2

—e T 2%

W(yi(z),y2(x)) =

o Compute Wronskian
W(yi(z) ,y2(x)) = 3e”

o Substitute functions into equation for y,(x)
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e % ([e3%dx o2 T
yp(z) = — (f3 de) | (gld)

o Compute integrals

_ 2z
yp(z) = %
° Substitute particular solution into general solution to ODE

y=c1e7" + e + w
O Check validity of solution y = c;e™® + cye®® + w
o Use initial condition y(0) =1
l=c+c— %

o Compute derivative of the solution

’_ —z 2n e2® 2(3x—1)e??
Y =—ce”" +2ce™ + 5 + 25—

o Use the initial condition ¢’

{z=0}
0=—c1+2c+ 3
o Solve for ¢; and ¢,
o=} =})
o Substitute constant values into general solution and simplify

_ (2+3x2)e*® 7e—%
y= s T 9

° Solution to the IVP

_ (2+3x)e?® Te 2%
y=—59+=

Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful”

N
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v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 22

Ldsolve([diff(y(x),x$2)—diff(y(x),x)—2*y(x)=exp(2*x),y(0) =1, D(y)(0) = 0],y<¥), singsol=all

Bz +2)e*  Te®
ya)=—3"—+

v/ Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 27

-

LDSolve [{y'' [x]-y' [x]-2*y[x]==Exp[2*x] ,{y[0]==1,y"' [0]==0}},y[x],x, IncludeSingu}LarSolu‘c ions ->

y(z) — %e_”” (e**(8z+2)+7)
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Section: Chapter 10, Differential equations. Section 10.2, ODEs with constant Coefficients.
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Problem number: 10.2.11 (ii).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear__constant__coeff", "linear second_ order__ode_ solved_ by _an__integrat-
ing factor"

Maple gives the following as the ode type

[[_2nd_order, _linear, _nonhomogeneous]]

y" — 2y +y=2cos(x)

With initial conditions

[y(0) = 1,4/(0) = 0]
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1.8.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Yy +p@)y +ql@x)y=F

Where here
p(z) = -2
q(z) =1
F =2cos(z)

Hence the ode is

The domain of p(z) = —2 is
{—00 <z < o0}

And the point zy = 0 is inside this domain. The domain of ¢(z) =1 is

{—00 <z < o0}

And the point zy = 0 is also inside this domain. The domain of F' = 2 cos () is

{—00 <z < o0}
And the point zy = 0 is also inside this domain. Hence solution exists and is unique.

1.8.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is
Ay"(z) + By (z) + Cy(z) = f(2)

Where A=1,B=—-2,C =1, f(x) = 2cos (z). Let the solution be

Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yp, is the solution to

y// _ 2y/ + y — 0
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This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay'(z) + By'(z) + Cy(z) =0

Where in the above A = 1, B = —2,C = 1. Let the solution be y = **. Substituting
this into the ODE gives
Mer —2)eM 4 M =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives
M —2\+1=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — _ 2 _
)\1,2 9 94 B 4AC

Substituting A =1, B = —2,C =1 into the above gives

2 1 9
Aig = + (=2)" = (4) (1) (1)
2@ 2@ \/
=1
Hence this is the case of a double root A\; 2 = —1. Therefore the solution is

y =c1e” + e’z (1)
Therefore the homogeneous solution y;, is

yp = c1€” + cor €”

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

2 cos ()

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (), sin (z)}]

While the set of the basis functions for the homogeneous solution found earlier is

{e"z,e"}
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Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC_ set.

yp = Aj cos (x) + A sin ()

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

2A; sin (z) — 245 cos (z) = 2 cos ()

Solving for the unknowns by comparing coefficients results in
[A; =0,A; = —1]

Substituting the above back in the above trial solution y,, gives the particular solution
yp = —sin (z)
Therefore the general solution is

Y=YntY
= (¢1€° + cox €”) 4+ (—sin (z))

Which simplifies to

y = e"(cox + ¢1) — sin (z)
Initial conditions are used to solve for the constants of integration.
Looking at the above solution
y =€e"(cox + ¢1) — sin (z) (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y =1 and x =0
in the above gives

1= C1 (1A)
Taking derivative of the solution gives

Y = €”(cox + ¢1) + 26" — cos (z)
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(1)

(24)

e” — sin ()
e” — sin ()

Cl=1
02:0

Y

O==—1+Cl+62
)

Equations {1A,2A} are now solved for {ci, co}. Solving for the constants gives

substituting ¥’ = 0 and z = 0 in the above gives
Substituting these values back in above solution results in
The solution(s) found are the following

Summary

(b) Slope field plot
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y =

(a) Solution plot
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Verification of solutions

Verified OK.



1.8.3 Solving as linear second order ode solved by an integrating factor
ode

The ode satisfies this form

(p(=)° +2 7@V _

Where p(x) = —2. Therefore, there is an integrating factor given by

yll+p(z) yl+

M(z) = ez /pde
— ef—2dx

=e€

Multiplying both sides of the ODE by the integrating factor M (z) makes the left side
of the ODE a complete differential

(M(z)y)" =2e™ " cos ()
(e™"y)" = 2e " cos (z)

Integrating once gives
(e_zy)’ = —e ?(—sin(z) + cos (z)) + 1
Integrating again gives
(e_””y) =iz —e “sin () + ¢

Hence the solution is
cz —e *sin(z) + ¢
- —

y = 1z e” + coe” — sin (z)

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
y = c1ze” + coe” — sin (z) (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y =1 and x =0
in the above gives

1= Co (1A)
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Taking derivative of the solution gives

Y = c16” + 1z e” + ce” — cos ()

substituting ¥’ = 0 and x = 0 in the above gives

(24)

0==—1+Cl+02

Equations {1A,2A} are now solved for {ci, c2}. Solving for the constants gives

6120

CQ=1

Substituting these values back in above solution results in

e” —sin ()

y:

The solution(s) found are the following

Summary

(1)

e” — sin ()

y:
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(b) Slope field plot

(a) Solution plot

Verification of solutions

e” — sin ()

y:

Verified OK.

71



1.8.4 Solving using Kovacic algorithm

Writing the ode as

y' =2/ +y=0
Ay + By +Cy=0

Comparing (1) and (2) shows that

A=1
B=-2
c=1

Applying the Liouville transformation on the dependent variable gives
2(x) = yel 2%

Then (2) becomes
2" (z) = rz(z)

Where r is given by

s
r=-
t
_ 2AB'—2BA'+ B®> —4AC
B 4A2
Substituting the values of A, B, C from (3) in the above and simplifying gives
L0
1
Comparing the above to (5) shows that
s=0
t=1
Therefore eq. (4) becomes
2'(x) =0

1)
2)

3)

(4)

(6)

(7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-

formation

y=2(a)e %
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The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(oc0)
1 {0a17274a6a87”'} {'"7_67_47_27072a3747576a”'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2, 5}.
3 {1,2} {2,3,4,5,6,7,"'}

Table 12: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=0—-—o00
= 00
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is in finity then the necessary conditions
for case one are met. Therefore

L=

Since r = 0 is not a function of z, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

z(z) =1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

1B

Y1 = zlef_iﬁdx
1 -2

=ze JaT W
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= z1€”

= z(€e”)

Which simplifies to

yr=¢€"

The second solution s to the original ode is found using reduction of order

ef_%dx
y2 = yl/ 2 dx
Y

1

Substituting gives

ef_%dz
(yl)

=1y / %dz
= y1(2)

Therefore the solution is

Y = ciy1 + C2Y2
= c1(e”) + c2(e%(2))
This is second order nonhomogeneous ODE. Let the solution be

Y=Yt Y

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yp, is the solution to

y' =2 +y=0

The homogeneous solution is found using the Kovacic algorithm which results in

yn = c1€” + cor €”
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The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

2 cos ()

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (z) ,sin (z)}]

While the set of the basis functions for the homogeneous solution found earlier is
{e’z,e"}

Since there is no duplication between the basis function in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis in the UC__set.

yp = Aj cos (x) + A sin (x)

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

2A; sin (z) — 245 cos (z) = 2 cos ()

Solving for the unknowns by comparing coefficients results in
[A; =0,A; = —1]
Substituting the above back in the above trial solution y,, gives the particular solution
yp = —sin (z)
Therefore the general solution is

Y=YntYp
= (16" + cox €®) + (—sin (z))

Which simplifies to

y = e"(cox + ¢1) — sin (z)

Initial conditions are used to solve for the constants of integration.
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Looking at the above solution
y = €"(cox + ¢1) — sin (z) (1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y =1 and x =0
in the above gives

l=¢ (1A)

Taking derivative of the solution gives
Y = e®(cor + c1) + c2€” — cos ()
substituting ¥’ = 0 and x = 0 in the above gives
O=—-14c¢ +c (2A)

Equations {1A,2A} are now solved for {ci, c2}. Solving for the constants gives

=1

=0
Substituting these values back in above solution results in

y = e” —sin (z)

Summary
The solution(s) found are the following
y =€ —sin (z) (1)
i
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(a) Solution plot (b) Slope field plot
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Verification of solutions

y = €” —sin (z)

Verified OK.

1.8.5 Maple step by step solution

(¢]

o

Let’s solve

y' =2y +y=2cos(x),y(0) =1,y (o0} = 0}
Highest derivative means the order of the ODE is 2
y//
Characteristic polynomial of homogeneous ODE
r2—2r+1=0
Factor the characteristic polynomial
(r—1)%=0
Root of the characteristic polynomial
r=1

1st solution of the homogeneous ODE

yi(z) =e”

Repeated root, multiply y;(z) by x to ensure linear independence
yo(z) = €z

General solution of the ODE

y = catn(z) + cay2(z) + yp()

Substitute in solutions of the homogeneous ODE

Yy = 16" + oz €° + yp(z)

Find a particular solution y,(z) of the ODE

Use variation of parameters to find y, here f(z) is the forcing function
[yp(x) = ( Ik - (yjl(&))fy:)w) dm) + 12() < i - (y;l((z))f ggw)) ) , f(z) = 2cos (x)

Wronskian of solutions of the homogeneous equation
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Z Z

€ (S

W(yi(z),32(z)) =
e’ e'r+e”
Compute Wronskian
W(y1(z) ,y2(2)) = €
Substitute functions into equation for y,(z)
yp(z) = 2€"(— ([ cos (z) ze™dz) + z( [ e~ cos (z) dx))
Compute integrals
yy(z) = —sin (2)
Substitute particular solution into general solution to ODE
Yy = cox e” + c16° — sin (z)
Check validity of solution y = coze® + c1€* — sin ()
Use initial condition y(0) =1
l=¢
Compute derivative of the solution

Y = c2€” + cor e” + c1€” — cos ()

Use the initial condition ¥’ =0
{z=0}

O=-1+c+ec

Solve for ¢; and ¢

{c1=1,c0 =0}

Substitute constant values into general solution and simplify
y = e —sin (z)

Solution to the IVP

y = e —sin (z)
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful’

v Solution by Maple
Time used: 0.015 (sec). Leaf size: 11

-

Ldsolve([diff(y(x),x$2)—2*diff(y(x),x)+y(x)=2*cos(x),y(0) =1, D(y)(0) = O],y{%), singsol=all

y(xz) = e” — sin ()

v Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 13

LDSolve[{y"[x]—2*y'[x]+y[x]==2*Cos[x],{y[0]== ,y'[0]==O}},y[x],x,IncludeSingg}arSolutions ->

y(z) — €* —sin(z)
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1.9 problem 10.2.11 (iii)

1.9.1 Existence and uniqueness analysis. . . . . .. ... ... .... 801
1.9.2 Solving as second order linear constant coeffode . ... .. .. 811
1.9.3 Solving using Kovacic algorithm . . . . . . . ... ... ..... 85
1.9.4 Maple step by step solution . . . . ... ... ... ... .... 90

Internal problem ID [5053]
Internal file name [OUTPUT/4546_Sunday_June_05_2022_03_00_39_PM_97533883/index.tex|

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.2, ODEs with constant Coefficients.
page 307

Problem number: 10.2.11 (iii).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear_constant_ coeff"

Maple gives the following as the ode type

[[_2nd_order, _linear, _nonhomogeneous]]

y" + 16y = 16 cos (4z)

With initial conditions

[y(0) = 1,4'(0) = 0]

1.9.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y' +p()y +q(z)y=F

Where here
p(z)=0
q(z) =16
F =16 cos (4z)
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Hence the ode is
y" + 16y = 16 cos (4z)

The domain of p(z) =0 is
{—o0 <z < o0}

And the point zo = 0 is inside this domain. The domain of ¢(z) = 16 is

{—o0 <z < o0}

And the point zo = 0 is also inside this domain. The domain of F' = 16 cos (4x) is

{—0 <z < o0}

And the point zy = 0 is also inside this domain. Hence solution exists and is unique.

1.9.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay"(z) + By (z) + Cy(z) = f(2)

Where A =1,B=0,C = 16, f(z) = 16 cos (4z). Let the solution be

Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to
y' +16y =0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay"(z) + By (z) + Cy(z) =0

Where in the above A = 1, B = 0,C = 16. Let the solution be y = e**. Substituting
this into the ODE gives

Ne M +16eM =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives

M +16=0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

A1z B, 1 p—1ic

T 24 24
Substituting A = 1, B = 0,C = 16 into the above gives
0 1
Ao = + 02— (4)(1) (16
ERCTORIPTONEIEISID
=+4
Hence
A = +4i
Ao = —4i
Which simplifies to
)\1 = 4Z
Ao = —4i

Since roots are complex conjugate of each others, then let the roots be

)\1’2 = :l:’lﬂ

Where o = 0 and 8 = 4. Therefore the final solution, when using Euler relation, can
be written as

y = €**(cy cos(Bzx) + cosin(fz))
Which becomes
y = €°(c; cos (4z) + ¢y sin (4x))
y = ¢ cos (4z) + co sin (4z)
Therefore the homogeneous solution yy, is
yn, = ¢1 cos (4z) + ¢y sin (4x)

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

16 cos (4z)
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Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is

[{cos (4x) , sin (4x)}]

While the set of the basis functions for the homogeneous solution found earlier is
{cos (4z) ,sin (4z)}

Since cos (4z) is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC _set becomes
[{z cos (4z) , z sin (4z)}]

Since there was duplication between the basis functions in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

Yp = A1z cos (4z) + Asz sin (4z)

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

—8A; sin (4z) + 84, cos (4z) = 16 cos (4x)

Solving for the unknowns by comparing coefficients results in
[A1 =0,4; =2]

Substituting the above back in the above trial solution y,, gives the particular solution
Yp = 2z sin (4x)

Therefore the general solution is

Y=Yn+Yp
= (c1 cos (4z) + ¢ sin (4z)) + (22 sin (4x))

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

y = ¢ cos (4x) + co sin (4z) + 2z sin (4x) (1)
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Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y =1 and x =0

in the above gives
l=¢
Taking derivative of the solution gives
y' = —4c; sin (4z) + 4c;y cos (4x) + 2sin (4z) + 8z cos (4x)
substituting 4’ = 0 and z = 0 in the above gives
0=4c
Equations {1A,2A} are now solved for {ci, co}. Solving for the constants gives

C1 =

Cy = 0
Substituting these values back in above solution results in
y = 2z sin (4z) + cos (4zx)

Summary
The solution(s) found are the following

y = 2z sin (4z) + cos (4z)

3.
2-
2.
1.
1-
’ d
y(x) _4 EJ’(X) 0
—2 -1
-3 _2-
— 4 =3
-5 —41 |
-3 -2 -1 0 1 2 3 —4
x
(a) Solution plot (b) Slope field plot
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Verification of solutions

y = 2z sin (4z) + cos (4x)
Verified OK.
1.9.3 Solving using Kovacic algorithm
Writing the ode as

y' +16y =0
Ay"+ By +Cy=0

Comparing (1) and (2) shows that

A=1
B=0
C=16

Applying the Liouville transformation on the dependent variable gives
2(z) = yel 22 %

Then (2) becomes

Where r is given by

s
r=-
t
_ 2AB' - 2BA'+ B? - 4AC
B 4A2
Substituting the values of A, B, C from (3) in the above and simplifying gives
16
1
Comparing the above to (5) shows that
s =—16
t=1

Therefore eq. (4) becomes

2" (z) = —162(z)
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Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of  and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0a17274a6a87"'} {"'7_67_47_27(),2’37475,6’"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2}.{1,3},{2}.{3},{3,4},{1,2,5}.
3 {1a2} {273a4a5a677a"'}

Table 14: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=0-0
=0

There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd
order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since r = —16 is not a function of z, then there is no need run Kovacic algorithm to
obtain a solution for transformed ode 2" = rz as one solution is

z1(z) = cos (4z)
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Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from
% dx

_1
y]. frd Z]_ef 2

Since B = 0 then the above reduces to

Y1=2
= cos (4x)
Which simplifies to
y1 = cos (4x)

The second solution ys to the original ode is found using reduction of order

ef—%dx
y2 :yl 2 d.’l:
)

1

Since B = 0 then the above becomes
1
Y2=n / — dx
Y1
1
= cos (4z) / ——dx
cos (4x)

— cos (42) (%)

Therefore the solution is

Y =11 + CaYo

= c1(cos (42)) + ¢, (COS (42) <W))

This is second order nonhomogeneous ODE. Let the solution be

Y=Yn+Yp
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Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+Cy(z) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to

y' +16y =0

The homogeneous solution is found using the Kovacic algorithm which results in

¢ sin (4x)

yn = c1 cos (4z) + 1

The particular solution is now found using the method of undetermined coefficients.
Looking at the RHS of the ode, which is

16 cos (4z)

Shows that the corresponding undetermined set of the basis functions (UC_set) for
the trial solution is
[{cos (4x) ,sin (4z)}]

While the set of the basis functions for the homogeneous solution found earlier is

{sh1i4x)’cos(4x)}

Since cos (4z) is duplicated in the UC_set, then this basis is multiplied by extra x. The
UC__set becomes

[{x cos (4z) , z sin (4x) }]

Since there was duplication between the basis functions in the UC__set and the basis
functions of the homogeneous solution, the trial solution is a linear combination of all
the basis function in the above updated UC_ set.

Yp = A1z cos (4z) + Agx sin (4x)

The unknowns {A;, A2} are found by substituting the above trial solution y, into the
ODE and comparing coefficients. Substituting the trial solution into the ODE and
simplifying gives

—8A; sin (4z) + 84, cos (4z) = 16 cos (4x)

Solving for the unknowns by comparing coefficients results in

[A, =0, 4, = 2]
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Substituting the above back in the above trial solution y,, gives the particular solution

yp = 2z sin (4x)

Therefore the general solution is

Y=Y+ Y

co sin (4z)

- (cl cos (4z) + T) + (22 sin (4z))

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

¢y sin (4x)

1 + 2z sin (4z)

y = ¢y cos (4x) +

(1)

Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y =1 and x =0

in the above gives
l1=¢
Taking derivative of the solution gives
y' = —4c; sin (4z) + ¢y cos (4z) + 2sin (4z) + 8z cos (4x)
substituting ¥’ = 0 and z = 0 in the above gives
0=c
Equations {1A,2A} are now solved for {ci, co}. Solving for the constants gives

C1 =

Cy = 0
Substituting these values back in above solution results in
y = 2z sin (4z) + cos (4x)

Summary
The solution(s) found are the following

y = 2z sin (4z) + cos (4x)
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(a) Solution plot (b) Slope field plot

Verification of solutions

y = 2z sin (4z) + cos (4x)
Verified OK.

1.9.4 Maple step by step solution

Let’s solve
y" + 16y = 16 cos (4z) ,y(0) = 1,4 oo = 0}
=0
° Highest derivative means the order of the ODE is 2
yll
° Characteristic polynomial of homogeneous ODE
r2+16=0
° Use quadratic formula to solve for r
_ 0£(V-64)
r=—G
° Roots of the characteristic polynomial
r=(—41,41)
° 1st solution of the homogeneous ODE
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y1(x) = cos (4z)
2nd solution of the homogeneous ODE
yo(z) = sin (4z)
General solution of the ODE
y = catn(z) + cay2(z) + yp()
Substitute in solutions of the homogeneous ODE
y = ¢; cos (4z) + cosin (4z) + y,(z)
Find a particular solution y,(z) of the ODE
Use variation of parameters to find y, here f(z) is the forcing function
[yp(x) - ( [ e da:) + oz ( [ (?J;l(g){yfgz))dx> f(z) = 16cos (495)}
Wronskian of solutions of the homogeneous equation
W) e = | U0 )
—4sin (4z) 4cos (4x)

Compute Wronskian

W(yi(z) ,32(z)) = 4

Substitute functions into equation for y,(z)

Yp(z) = —2cos (4z) ([ sin (8z) dz) + 2sin (4z) ([ (1 + cos (8z)) dx)
Compute integrals

yp(z) = Cosfl—%) + 2z sin (4z)

Substitute particular solution into general solution to ODE

y = c1 cos (4z) + ¢y sin (4z) + %“4@ + 2z sin (4z)

Check validity of solution y = ¢; cos (4z) + cosin (4x) + Cosfl—‘u) + 2z sin (4z)
Use initial condition y(0) =1

l=3+a

Compute derivative of the solution

y' = —4c; sin (4z) + 4cs cos (4z) + sin (4z) + 8z cos (4x)

Use the initial condition 3’ . =0
=0

0=402
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o Solve for ¢; and ¢y
for =% =0)
o Substitute constant values into general solution and simplify
y = 2z sin (4z) + cos (4x)
° Solution to the IVP
y = 2z sin (4z) + cos (4x)

Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful”

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 16

Ldsolve([diff(y(x),x$2)+16*y(x)=16*cos(4*x),y(O) =1, D(y)(0) = 0],y(x), singsol=all)

y(x) = cos (4z) + 2sin (4z) x

v/ Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 17

LDSolve[{y"[x]+16*y[x]==16*Cos[4*x],{y[0]== ,y' [0]==0}},y[x],x,IncludeSingularSolutions -> 1T

y(x) — 2zsin(4z) + cos(4x)
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1.10 problem 10.2.11 (iv)

1.10.1 Existence and uniqueness analysis. . . . . . .. ... .. .... 93]
1.10.2 Solving as second order linear constant coeffode . . .. .. .. 94
1.10.3 Solving using Kovacic algorithm . . . . . . ... ... ... ... 99
1.10.4 Maple step by step solution . . . . . ... .. ... ... ... 106

Internal problem ID [5054]
Internal file name [OUTPUT/4547_Sunday_June_05_2022_03_00_40_PM_40071015/index.tex|

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.2, ODEs with constant Coefficients.
page 307

Problem number: 10.2.11 (iv).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__lin-
ear_constant_ coeff"

Maple gives the following as the ode type

[[_2nd_order, _linear, _nonhomogeneous]]

y" —y = cosh (z)

With initial conditions

[y(0) = 1,4'(0) = 0]

1.10.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y' +p()y +q(z)y=F

Where here
p(z)=0
q(z) =-1
F = cosh (z)
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Hence the ode is
y" —y = cosh (z)

The domain of p(z) =0 is
{—o0 <z < o0}

And the point zo = 0 is inside this domain. The domain of ¢(z) = —1 is

{—o0 <z < o0}

And the point zo = 0 is also inside this domain. The domain of F' = cosh (z) is

{—0 <z < o0}

And the point zy = 0 is also inside this domain. Hence solution exists and is unique.

1.10.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

Ay"(z) + By (z) + Cy(z) = f(2)

Where A =1,B=0,C = —1, f(z) = cosh (z). Let the solution be

Y=Yn+Yp

Where yj, is the solution to the homogeneous ODE Ay”(z)+ By (z) +Cy(x) = 0, and y,
is a particular solution to the non-homogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to
y// _ y — 0
This is second order with constant coefficients homogeneous ODE. In standard form
the ODE is
Ay"(z) + By (z) + Cy(z) =0

Where in the above A = 1, B = 0,C = —1. Let the solution be y = **. Substituting
this into the ODE gives

)\2e>\w _ eAw =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e** gives

M—-1=0 (2)
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Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — 4+ 2 _
A2 o4 T o4 B2 —4AC
Substituting A = 1, B =0,C = —1 into the above gives
M = e o O (@) (1) (1)
N OTORRON
= =1

Hence

A =+1

A =—1
Which simplifies to

=1

)\2 == —1

Since roots are real and distinct, then the solution is

y = cle)\lz + 626)\29:

y = c1eM? 4 cpeD”

y=c1e” +coe”

Therefore the homogeneous solution yy, is

yp = c1€¥ + coe””
The particular solution y, can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of

parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on z as well. Let

Yp(Z) = w11 + uay2 (1)
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Where uj,us to be determined, and yi,y, are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

hh=¢€

—T

Y2 =¢€

In the Variation of parameters u;, us are found using

w = _/ y2f(z) 2)

aW (z)
yif(z)
= 3
2 / aW (z) 3)
Where W (x) is the Wronskian and a is the coefficient in front of y” in the given ODE.
The Wronskian is given by W = v . Hence
Y1 Y
e$ e—ﬂ)
W= d (,Z d (p—x
w(€) (™)
Which gives
e’ e ”
W =
e’ —e™”

Therefore
Which simplifies to
W =—-2e"e""

Which simplifies to

Therefore Eq. (2) becomes
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Which simplifies to

= _/_e_ cc;sh (x)dx

Hence

w =2y sinh (2z)  cosh (2z)
! 8 8

And Eq. (3) becomes

* cosh
" =/e cos2 (x) s

Which simplifies to

y = /_e cosh (m)dw

2
Hence
w = _ cosh (z)? _ cosh (z)sinh (z) =z
2 4 4 4
Which simplifies to
_x  sinh(2r) cosh (21)
M=ty 8
w e T _ sinh (2z) cosh (2z) 1
T4 8 8 8

Therefore the particular solution, from equation (1) is

y,(z) = <x i sinh (2z)  cosh (23”)) & 4 ( z sinh(2z) cosh (2z) 1) e

4 8 8

4 8 8 8

Which simplifies to

sinh(2z) cosh(2z) x
(—2z — 1 — cosh (2z) — sinh (2z)) e™* + <x T T ) €

8 4

Yp(x) =

Therefore the general solution is

Y=Y+ Y

sinh(2z) cosh(2z) \
(—2z — 1 — cosh (2z) — sinh (2z)) e N (:c S R ) €

8 4

= (16" +ce ™) +
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Initial conditions are used to solve for the constants of integration.

Looking at the above solution

sinh(2x) cosh(2z) \
4 (—2z — 1 — cosh (2z) — sinh (2z)) e~ n <x T T > €

8 4

T

y = c1€” + coe”
(1)
Initial conditions are now substituted in the above solution. This will generate the

required equations to solve for the integration constants. substituting y =1 and x =0
in the above gives

1=01+Cz—g (1A)

Taking derivative of the solution gives

J = 16 — cpe— + (—2 — 2sinh (2z) — 2cosh (2z))e™  (—2z —1 — cosh (2z) — sinh (2z)) e™® 4 (1+

8 8
substituting ¥’ = 0 and z = 0 in the above gives
1
0=01_62+§ (2A)
Equations {1A,2A} are now solved for {ci, ca}. Solving for the constants gives
6 =2
'8
3
’7 4

Substituting these values back in above solution results in

_5e” 5e™® e ”sinh(2z) e ®cosh(2z) ze® N e’z N e”sinh (2z)  €® cosh (2z)
V=T8T 8 8 1 8 8
Which simplifies to

x cosh(2z) sinh(2z) 5
(—2z — cosh (2z) — sinh (2z) + 5) e™® N € (x -~ Tt 2 T 5)

8 4

y:

Summary
The solution(s) found are the following

z cosh(2z) sinh(2z) 5
(—2x — cosh (2z) — sinh (2z) + 5)e™® © (w -~z t 2 5)
5 + 1 (1)

y:
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X y(x)
(a) Solution plot (b) Slope field plot

Verification of solutions

cosh(2z) + sinh(2z) + §>
2 2

y: 8

Verified OK.
1.10.3 Solving using Kovacic algorithm

Writing the ode as

y' —y=0
Ay + By +Cy=0

Comparing (1) and (2) shows that

A=1
B=0
C=-—

(—2z — cosh (2z) — sinh (22) + 5) e~ N e’ (:c T T2

4

Applying the Liouville transformation on the dependent variable gives

2(z) = yel 22 %
Then (2) becomes

2" (z) = rz(z)
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Where r is given by

s

r=-

t

2AB' — 2BA' + B* — 4AC
4A2?

Substituting the values of A, B, C from (3) in the above and simplifying gives
1
r=1 (6)

Comparing the above to (5) shows that

s=1
t=1
Therefore eq. (4) becomes
2'(z) = 2(z) (7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-
formation

y=2(@)e %

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’1)2a4,6a8)"'} {"'a_6a_4a_2a0,2’3>475a6a"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2}{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 16: Necessary conditions for each Kovacic case
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The order of r at oo is the degree of ¢ minus the degree of s. Therefore
O(0c0) = deg(t) — deg(s)
=0-0
=0
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is 0 then the necessary conditions for case
one are met. Therefore

L=

Since 7 = 1 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

z(z)=¢€""

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from
% dx

_1
y]. frd Z]_ef 2

Since B = 0 then the above reduces to

h=2
= e_x
Which simplifies to
yr=¢€"

The second solution - to the original ode is found using reduction of order

ef_%dz
Y2 = yl/ B} dz

n

Since B = 0 then the above becomes

1
y2=y1/—2d33
Ui
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Therefore the solution is

Y =1y + C2yo

e (%))

This is second order nonhomogeneous ODE. Let the solution be
Y=Yn+Yp

Where yy, is the solution to the homogeneous ODE Ay”(z)+ By'(z)+ Cy(z) = 0, and y,
is a particular solution to the nonhomogeneous ODE Ay”(z) + By'(z) + Cy(z) = f(x).
yn, is the solution to

Yy —y=0
The homogeneous solution is found using the Kovacic algorithm which results in

Co e”
2

Yo =cre” " +

The particular solution y, can be found using either the method of undetermined
coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of
the ODE depend on z as well. Let

Yp(Z) = w1y + u2yo (1)

Where u;,us to be determined, and yi,y, are the two basis solutions (the two lin-
early independent solutions of the homogeneous ODE) found earlier when solving the
homogeneous ODE as

—Z

Yy =¢€
e(t
3/225

In the Variation of parameters u;, us are found using
y2f(z)
=— 2
“ / aW (z) @)

[ wnf(z)
uz_/aW(x) 3
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Where W (z) is the Wronskian and a is the coefficient in front of y” in the given ODE.

The Wronskian is given by W = vt . Hence
v Y
e’ e
W= d d 2ez
dz (e_x) dz (?)
Which gives
W = ° %
Therefore
—x f _ e’ Az
- (5)-(3) e
Which simplifies to
W =ee™™
Which simplifies to
W=1

Therefore Eq. (2) becomes

Which simplifies to

= _/e co;h(:c)dac

Hence
cosh () _cosh(z)sinh (z) =
4 4 4

U = —

And Eq. (3) becomes
y — / e ? cosh (z) s
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Which simplifies to

up = / e ? cosh (z) dz

Hence

w Z sinh (2z)  cosh (2z)
272 4 4

Which simplifies to
x sinh(2z) cosh(2z) 1

4 8 8 8

z sinh (2z)  cosh (2z)
2 4 4

Uy = —

Ug =

Therefore the particular solution, from equation (1) is

z sinh(2x) cosh(2z) \ o
z sinh(2z) cosh(2z) 1\ _, <§+ i T a )e
w@={"3""5 ~ 8 "5 " 2

Which simplifies to

sinh(2z) cosh(2z) x
(—2z — 1 — cosh (2z) — sinh (2z)) e~ N (:c T T > €

8 4

Yp(z) =
Therefore the general solution is

Y=Y+ Yp

_p , C2€”
= (cle + 22 )

sinh(2z) cosh(2z) \
(—2z — 1 — cosh (2z) — sinh (2z)) e N <a: T T2 > €
8 4

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

sinh(2z) cosh(2z) -
coe” N (—2xz — 1 — cosh (2z) — sinh (2z)) e™® N (a: 4 Smae) _ cos ) o

2 8 4

y=ce *+

1)
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Initial conditions are now substituted in the above solution. This will generate the
required equations to solve for the integration constants. substituting y =1 and x =0
in the above gives

Co 3
l=c+ 278 (1A)
Taking derivative of the solution gives
J = —cie 4 022ez 4 (—2 — 2sinh (2x)8— 2cosh (2z))e™®  (—2z —1 — cosh (2833) —sinh (2z))e™® 4 (1

substituting ¥’ = 0 and z = 0 in the above gives

Cy 1
0=—c1+ 2 += 2A
Cl+2+8 ( )

Equations {1A,2A} are now solved for {ci, ca}. Solving for the constants gives

C1 =

Cy =

NS TNE

Substituting these values back in above solution results in

Y= 5¢* b5e™® e ®sinh(2z) e ®cosh(2z) ze® 4 e’z €”sinh(2z) e”cosh (2x)

s T g ~ 8 B 8 4 4 8 B 8
Which simplifies to

z cosh(2z) sinh(2z) 5
(—2z — cosh (2z) — sinh (2) + 5) e N € (ac —— 2 T3t §>

vy= 8 4

Summary
The solution(s) found are the following

z cosh(2z) sinh(2z) 5
(—2z — cosh (2z) — sinh (22) 4+ 5) e~ 4 € (a: —— 2 T2 T3

y= 8 4

> (1)
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(a) Solution plot (b) Slope field plot
Verification of solutions
. e __ cosh(2z) + sinh(2z) + 5
_ (—2z — cosh (2z) —sinh (2z) 4+ 5)e™® N z 2 2 2
v= 8 1
Verified OK.

1.10.4 Maple step by step solution

Let’s solve

y" —y=cosh(z),y(0) =1,y = 0]
{z=0}

. Highest derivative means the order of the ODE is 2
Y

° Characteristic polynomial of homogeneous ODE
r?—1=0

° Factor the characteristic polynomial
(r—=1)(r+1)=0

° Roots of the characteristic polynomial
r=(-1,1)

° 1st solution of the homogeneous ODE
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—T

yi(z) =e
2nd solution of the homogeneous ODE

yo(z) = €°

General solution of the ODE

y = catn(z) + cay2(z) + yp()

Substitute in solutions of the homogeneous ODE

y=c1e”% + c2e” + y,(x)

Find a particular solution y,(z) of the ODE

Use variation of parameters to find y, here f(z) is the forcing function
5@ = —0(@) (J waditde) + 0@ (J whidistyde) /(@) = cosh (z)]

Wronskian of solutions of the homogeneous equation
W(y(z) ,32()) =

Compute Wronskian

W (y1(z),y2(x)) = 2

Substitute functions into equation for y,(z)
~%( [ e® cosh(z)dz * ([ e~* cosh(z)dz
yp(x)z_e ([e c20s )+e(fe (;os )

Compute integrals

sinh(2z) _ cosh(2z) \ »
2 2 ©

—2x—1—cosh(2z)—sinh(2z))e™* z+
uo(z) = | (2)sinh(2) L -

Substitute particular solution into general solution to ODE
(CIH— smh(2m) M)
4

x

Yy =cie"® + coe® + (_2””_1_°°Sh(28$)_sinh(2m))e—

sinh(2z) cosh(2z) \
2 2 ©

—2z—1— —sin —z z+
Check validity of solution y = c;e~2 + cge® 4 (Z22=1 COSh(Qg )—sinh(22))e™® (

4
Use initial condition y(0) =1
l=a+c— %

Compute derivative of the solution

y/ = —c1e7% + cpe® + (—2—2sinh(2z)

—2cosh(2z))e”®  (—2z—1—cosh(2z)—sinh(2z))e"” + (14cosh(2z)—sinh(2z))e”
8 8 4

Use the initial condition ¥y’ =0
{z=0}
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0=='—014-024-%
o Solve for ¢; and ¢,

(a=ta=i)

o Substitute constant values into general solution and simplify

h(2z) | sinh(2z) | 5
__ (—2x—cosh(2z)—sinh(2z)+5)e~* + e* (x_cosz L4 SRR +§)
y= 8 1

° Solution to the IVP

z h(2z) | sinh(2z) | 5
_ (—2z—cosh(2z)—sinh(2z)+5)e™* + € <w_cos2 5 +Sn2 . +§)
y= 8 1

Maple trace

"Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful

<- solving first the homogeneous part of the ODE successful”

v Solution by Maple
Time used: 0.032 (sec). Leaf size: 23

[dsolve([diff(y(x),x$2)—y(x)=cosh(x),y(O) =1, D(y)(0) = 0],y(x), singsol=a11{

y(z) = (—z +42) e” + ez(x4+ 2)

v/ Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 28

-

DSolve[{y"[x]-y[x]==Cosh[x],{y[0]==1,y'[O]==O}},y[x],x,IncludeSingularSoluti%ns -> True]

N\

y(z) = ie"”(—w + e*(z+2) + 2)
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2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

Chapter 10, Differential equations. Section 10.3,
ODEs with variable Coefficients. First order.

page 315

problem 10.3.2 . . . . . . .. e 110
problem 10.3.3 . . . . . . .. 123
problem 10.3.4 . . . . ... 138]
problem 10.3.5 . . . . . ... 152
problem 10.3.6 . . . . . ... 165
problem 10.3.7 . . . . . . .. e 178
problem 10.3.8 . . . . . . .. 191l
problem 10.3.9 (&) . . . . . . ... 206!
problem 10.3.9 (b) . . . . . ... ..
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2.1 problem 10.3.2

2.1.1 Solving as linearode . . . . .. ... ... ... ... 1101
2.1.2 Solving as first order ode lie symmetry lookup ode . . ... .. 1121
2.1.3 Solvingasexactode . ... ... ... ... ... ...
2.1.4 Maple step by step solution . . . . . ... ... 120

Internal problem ID [5055]
Internal file name [OUTPUT/4548_Sunday_June_05_2022_03_00_42_PM_28220764/index.tex|

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.3, ODEs with variable Coefficients.
First order. page 315

Problem number: 10.3.2.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_linear, “class A~]]

y/_y:er

2.1.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
p(z) = -1
q(z) = ™
Hence the ode is
y —y=e"
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The integrating factor u is

The ode becomes

Integrating gives
ey = / e’ dx
e’y=e"+¢

Dividing both sides by the integrating factor u = e™* results in
y=e* +ce”

Summary
The solution(s) found are the following

y=e"" +ce” (1)

111



NN NN NN

NN N NN N

NN NN N N

A N N i N

\ A N e N

SIS

\
\
\
\
\
\
\
\
\

NN N
NOANNNNNNNN—7
NOANNNNNNNS

\

—_

T e Ny

— 7
|4
s/

S S (N S

N\
\
\
— 21 \
\
\
\

Figure 12: Slope field plot

Verification of solutions

y= 62:1: + 1 e:z:
Verified OK.

2.1.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

yl — y + e2z
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - gx) - w2§y - wx§ — Wyl = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 18: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=z

1
S=/—dy

n

1

S=e"%y

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) =y +e*

Evaluating all the partial derivatives gives

R, =1
R,=0

Sy =—e "%y
Sy=e"

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _

dR

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

aS g
E—e

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

e” (2A)
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = eR + C1 (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

ye " =€e"4+¢
Which simplifies to

ye *=¢e"+ ¢
Which gives

y=¢€"(e"+c)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical ) . .
.. . . . ODE in canonical coordinates
Original ode in x,y coordinates coordinates (R, S)
transformation ’
dy _ 2 dS _ R
T=y+e” 45— o
frerrrrrtr it IS P R R S
R R N B e TR
prrtrrrrbArttIILLLLY | s Bl ARy
AREERRRRRIIRe: e
B A
ffffffy/?xéfff‘ff 444444 P EERN
PRFIAALILLALN DEGOEGEEEYY RN
FAAAAAALAIE L D At
AAAAAAAASAE Reg | === e e AR
P riIER xr | e s s BV ERE
\s\s_\'a\s\s\a_'\z\»—e-,gf;; ; h W S —z 4949_4'&4-»-»_'_7»//6;; ; ;i; ]
NN N N N N B .y
NN T ey | TEEEE TR
SN W DOGGSEEEE NS
N T Y 20 1 U T N B e e e AAr bt
N N S S S O BESG R
R N BEGGSSEEl AR
[ R N N I U O R s TR RE
I N S S S S S S ] BEEGy VR
R BESGSSEEl RN
Summary
The solution(s) found are the following
y=¢€"(e"+c) (1)
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Verification of solutions

Verified OK.
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Figure 13: Slope field plot

y=¢e"(e"+c)

2.1.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(ﬂs,y)£=0

(A)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

Hence

d
%Qb(xa y) =0

2 dvdy _,
or  Oydx
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Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (y +€*)dz
(—y—e*)dz+dy =0 (2A)

Comparing (1A) and (2A) shows that
M(z,y) = —y —e*
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0 o
o~y
=-1
And
oN _ 2
oxr Oz
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Since %i; # %—]Z, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

L L(oM_oN
N\ Oy Oz
=1((-1) - (0))
=-1
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is
—e JAdz

— ef—lda:

I

The result of integrating gives

n=e
= e_m
M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.
M =uM

— e—z(_y _ e?af:)

And

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N@=0
dz

(—e "y —e”) + (e )azo

The following equations are now set up to solve for the function ¢(z,y)

o
g—x—M (1)
¢ _~
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Integrating (1) w.r.t. z gives

0p . [+
%dx—/de

9¢

adx=/—e_zy—e”dm

p=e"y—e"+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

9 _

G = W) @

But equation (2) says that g—z = e~*. Therefore equation (4) becomes
e " =e"+f(y) ()
Solving equation (5) for f'(y) gives
f'ly) =0
Therefore
fly)=a
Where c; is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢
¢:e_my—e’”+cl

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

co=ey—e®

The solution becomes
y=¢e"(e"+c)

Summary
The solution(s) found are the following

y=e"(e" +c1) (1)
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Figure 14: Slope field plot

Verification of solutions

y=¢e"(e"+c)
Verified OK.

2.1.4 Maple step by step solution

Let’s solve
y/ —y= eZac
° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y—y=e*

° The ODE is linear; multiply by an integrating factor u(x)
(@) (¥ —y) = p(z)e*
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o Assume the lhs of the ODE is the total derivative - (u(z)y)

w(z) (Y —y) =w(z)y+ p@)y
o Isolate 1/ ()

w(z) = —p(z)

° Solve to find the integrating factor
p(z) =e*

° Integrate both sides with respect to x

[ (L(u(z)y)) dz = [ p(z) ede +c;
° Evaluate the integral on the lhs

u@)y = [ plz)e*dr +a

° Solve for y
_ [ u(@)e**dzter
y= u(@)
o Substitute p(z) = e™*
y= fe_mziwzdw+cl
° Evaluate the integrals on the rhs
y ==
° Simplify

y=e"(e"+c1)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

Ldsolve(diff(y(x),x)—y(x)=exp(2*x),y(x), singsol=all)

y(z) = (" + 1) e

v/ Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 15

LDSolve [y' [x]-y[x]==Exp[2*x],y[x] ,x,IncludeSingularSolutions -> Truel

y(z) = e*(e” + 1)

122



2.2 problem 10.3.3

2.2.1 Existence and uniqueness analysis. . . . . .. .. ... ... .. 123]
2.2.2 Solving aslinearode . . . . . . ... ... ... L. 124
2.2.3 Solving as differentialTypeode . . ... ... ... ... .... 126
2.2.4 Solving as first order ode lie symmetry lookup ode . . .. ... 127
225 Solvingasexactode . . ... ... ... ... ... ... 132
2.2.6 Maple step by step solution . . . . . ... ... 0L, 135

Internal problem ID [5056]
Internal file name [OUTPUT/4549_Sunday_June_05_2022_03_00_42_PM_87162301/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.3, ODEs with variable Coefficients.
First order. page 315

Problem number: 10.3.3.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "differential Type",
"first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

22y + 2y =x—1

With initial conditions
[y(1) = 0]

2.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as
y' +p(z)y = q(z)

Where here
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Hence the ode is

2y x—1

y+?_ x2

The domain of p(z) = 2 is

{r<0VvOo<z}

And the point zo = 1 is inside this domain. The domain of ¢(z) = % is
{r<0VvVOo<z}

And the point zy = 1 is also inside this domain. Hence solution exists and is unique.

2.2.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor y is

M:ef%dx

The ode becomes

Integrating gives

yx2=/z'—1dac

yx2=§x2—:c+cl

Dividing both sides by the integrating factor u = z? results in

1,.2
5T" — X C1

y= Y
2 x2

which simplifies to

2 +20 -2

y 212
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Initial conditions are used to solve for c¢;. Substituting = 1 and y = 0 in the above

solution gives an equation to solve for the constant of integration.

1
0=—§+01

CiT = <

2

Substituting c; found above in the general solution gives

P -2z +1

y 212

Summary
The solution(s) found are the following

o’ —2r41

y 212
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(a) Solution plot (b) Slope field plot

Verification of solutions

2’ —2x+41
o 212

Verified OK.
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2.2.3 Solving as differentialType ode
Writing the ode as

, —2zy+xz-—1
y=—""5
x

(1)
Which becomes
0= (—2*)dy+ (—2zy+2z—1)ds (2)

But the RHS is complete differential because

1
(—2%)dy + (—2zy +z — 1) dz = d(—y x? + 5302 — x)

Hence (2) becomes

1
0= d(—ymz—l— §x2 —z)

Integrating both sides gives gives these solutions

2?4+ 2c —2¢

22 @

Y

Initial conditions are used to solve for c¢;. Substituting x = 1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

1
0=2Cl—§

0121

Substituting c¢; found above in the general solution gives

_3x2—4z-|—1

y 42

Summary
The solution(s) found are the following

_3:02—4m+1

y 42
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X X
(a) Solution plot (b) Slope field plot
Verification of solutions
3x2 -4z +1

y 42

Verified OK.
2.2.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as
p_ 2wy—a+1

= =
Y =uw(z,y)
The condition of Lie symmetry is the linearized PDE given by
e +w(ny — &) — W€y —we —wyn =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,

127



Table 21: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

§(z,y) =0
n(z,y) = % (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _ dy _

ds
§ 1

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=z
S is found from
[0
- [
Which results in
S = ya?

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS  Se+w(z,y)S,

iR~ Rt alo,y)R, ®

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

2zy—az+1

w(z,y) = p

Evaluating all the partial derivatives gives

R, =1
R,=0
Sy = 2zy
S, =

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
dS
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as
T —R-1
dR R

The above is a quadrature ode. This is the whole point of Lie symmetry method.

=z—1 (2A)

It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

(4)

Rz—}%+01

1
2
To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in

S(R) =

z2—a:+c1

1
2

ya? =

Which simplifies to

x2—w+61

1
2

ya® =

Which gives

2+ 2¢; — 22

212

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.
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Initial conditions are used to solve for c;. Substituting z = 1 and y = 0 in the above

_E‘Fq
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C =

Substituting ¢; found above in the general solution gives

The solution(s) found are the following

Summary

(b) Slope field plot

212
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(a) Solution plot
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Verification of solutions

Verified OK.



2.2.5 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(%) dy = (—2zy +z — 1)dz
(2zy —z+1)dz+(2*) dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) =2zy—z+1

N(z,y) = 2°
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM 0
— = —(2zy — 1
=2z
And
ON 0, ,
o ")
=2z
Since %—A; = %%’, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
99
— =M 1
o (1)
99
— =N 2
o 2

Integrating (1) w.r.t. z gives
% dxr = / Mdz
ox

@dwz/ny—x—l—ldx
ox
(2y — 1) z?

0= 2

+z+ f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

a¢ 2 /

- = 4

o=+ 1) (@)
But equation (2) says that g_f = z?. Therefore equation (4) becomes

o® = 2%+ f'(y) ()
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Solving equation (5) for f'(y) gives

fly)=0

Therefore
fly)=a

Where c; is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢

(2y —1)2°

(b = 9 +T+C
But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and

combining c¢; and ¢, constants into new constant c; gives the solution as

2y — 1) 2
Cl — M + €T
2
The solution becomes
2+ 20 — 2
o 212

Initial conditions are used to solve for c¢;. Substituting x = 1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

1
0:—§+C1

]
179

Substituting c¢; found above in the general solution gives

_w2—2x—|—1
vy= 212

Summary
The solution(s) found are the following

2 —2x+1
-z - 1
y= 972 ()
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(a) Solution plot (b) Slope field plot

Verification of solutions

_a:2—2z+1
y= 212

Verified OK.

2.2.6 Maple step by step solution

Let’s solve
[z%y' + 22y = 2 — 1,y(1) = (]
. Highest derivative means the order of the ODE is 1

/

Y
° Isolate the derivative
y=-3+%
. Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
/ 2y __ z—1
y+7 ==

° The ODE is linear; multiply by an integrating factor u(x)
u(z) (v + %) = M=

o Assume the lhs of the ODE is the total derivative £ (u(z) y)
we) ( + %) = w(z)y + u@)y

135



Isolate y'(x)
W(z) =
Solve to find the integrating factor

2p()

W) = z*

Integrate both sides with respect to x

J (£ () y)) do = [ 2250 dz + ¢,
Evaluate the integral on the lhs
wz)y=[ %dr +c

Solve for y

_ fiu(z)gg_l)dx—l—cl
V="

Substitute p(z) = 2

y= f(x—i)2dz+cl

Evaluate the integrals on the rhs

_ %xz—w—i-cl
y=2r——
Simplify

_ z2+2c1—2w
Y= 222

Use initial condition y(1) =0
0=-1+4+¢

Solve for ¢;

a=1

Substitute ¢c; = % into general solution and simplify

12
y= (wai)
Solution to the IVP
2
y =)
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 14

Ldsolve([x“2*diff(y(x),x)+2*x*y(x)-x+1=0,y(1) = 0],y(x), singsol=all) J
(z—1)°
y(z) = Togz

v/ Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 17

LDSolve[{x“2*y'[x]+2*x*y[x]—x+1==0,{y[1]==0}},y[x],x,IncludeSingularSolutions f> Truel

y(z) — %
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2.3 problem 10.3.4

2.3.1 Existence and uniqueness analysis. . . . . . .
2.3.2 Solving as linearode . . . .. ... ... ...
2.3.3 Solving as first order ode lie symmetry lookup ode
2.3.4 Solvingasexactode ... ...........
2.3.5 Maple step by step solution . . . .. .. ...

Internal problem ID [5057]

15)
139
141
145
149

Internal file name [OUTPUT/4550_Sunday_June_05_2022_03_00_43_PM_3682306/index . tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.3, ODEs with variable Coefficients.

First order. page 315
Problem number: 10.3.4.
ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear",
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[[_linear, “class A~]]

With initial conditions

2.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(z)y = q(z)

Where here

138
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Hence the ode is
y+y = (z+1)
The domain of p(z) =1 is

{—00 <z < o0}

And the point zo = 0 is inside this domain. The domain of ¢(z) = (z 4 1)* is

{—o0 <z < o0}

And the point xzq = 0 is also inside this domain. Hence solution exists and is unique.

2.3.2 Solving as linear ode
Entering Linear first order ODE solver. The integrating factor y is

'u:efldm

=e£l)

The ode becomes

%(uy) = (1) ((z +1)*)
Liyer) = () (@ +1)?)

d(ye®) = ((z + 1) e”) dz

Integrating gives
ye® = / (z+1)*e"dz
ye' = (x> +1)e" + 1
Dividing both sides by the integrating factor u = €® results in
y=e"(®+1)e" +cie”
which simplifies to

y=2>+14ce”
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Initial conditions are used to solve for c¢;. Substituting = 0 and y = 0 in the above

solution gives an equation to solve for the constant of integration.

0=Cl+1

Cl=—1

Substituting c¢; found above in the general solution gives

T

y=1+2"—e"
Summary

The solution(s) found are the following

T

y=1+z>—e"
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(a) Solution plot (b) Slope field plot

Verification of solutions

y=1+2>—e"

Verified OK.
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2.3.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

Y =2*+2x—y+1

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny - fz) - w2€y —wg€ — Wy = 0

(A)

The type of this ode is known. It is of type 1linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £, 7

Table 24: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(z) 0 el fd=
separable ode Yy = f(z)g(y) % 0
quadrature ode y = f(x) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢/ = f (%) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | 3/ = Zé +g(x) F (%) z? Ty
first IDoider special | i = g(z) eh@)+by f(z) e_f”f:z# flz)e” fgbga)c)dz—h(w)
orm

polynomial type ode

/ — a1ztbhiyta
Yy az2z+bay+c2

a1baz—aobix—bico+bacy

a1b2y—a2b1 Yy—ai1c2—azCy

a1ba—asgby

a1ba—azby

Bernoulli ode

Y = f(x)y+g(z)y"

¢= /(=Df (@)dzyn

Reduced Riccati

Y = fiz)y + folz) y?

e J frdz

141




The above table shows that

§(z,y) =0
n(@,y) =e™* (A1)
The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
The characteristic pde which is used to find the canonical coordinates is
dr dy
& n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=x

1
Sz/—dy
n
=/%dy
e$

S=ye"

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ 5 + w(z,y)S, (2)
dR R, +w(z,y)R,
Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

wiz,y)=2>+2z—-y+1

Evaluating all the partial derivatives gives

R, =1
R,=0
S;=ye"
Sy =e”
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds
Tp=(@+)e (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)= (R*+1) el +¢ (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

y= (" +1)e" +a
Which simplifies to

ey= (2 +1)e" + ¢
Which gives

y=(z’"+e" +c1)e”
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical . ) )
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ .2 ds 2 R
=% t2x—y+l1 9 = (R+1)°e
AR R I T R A U (N A N I e Art
INEALEER IR v e s At
RSN S N I O O O S N B S iy
RSN AR R R R N N GG e
ol - o> B —>_7|
???f/wﬁﬁ\\\/ff?fo »»»»»» ot
Pttt z=NNN&=/ 000ttt 0 e -
PRI NN A e
Pttf =~ fpttttt R=z2z | - ALt
S — e
4 tat 2 =gy ) 2 4
ttttrz a1ttt = z | s rss e A p
SRR Y ARG EE S=ye’ | T DO /RN R
Tfffffft%fff?f? t e ey1E
trtrrrrrrr et vy ZAp
IR A A L o A A U U e I e At
ttttrrrrrrrr s —w—s e f
Prrrrrr ettt D D
IR A A o O U O U Y B e e e ~/t
LA A A A A A A O O A O O e AR

Initial conditions are used to solve for ¢;. Substituting x = 0 and y = 0 in the above

solution gives an equation to solve for the constant of integration.

0201+1

Ci = -1
Substituting ¢; found above in the general solution gives
y=1+2>-e"

Summary
The solution(s) found are the following

y=1+2>—¢e"
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(a) Solution plot (b) Slope field plot
Verification of solutions
y=1+2>—e"
Verified OK.
2.3.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
dy

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
Hence 96 0d
Yy _
or + oydr 0 (B)

Comparing (A,B) shows that

0

9 M

0

8_3/ =N
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But since aa g = a a then for the above to be valid, we require that
yox

OM  ON

By Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
;f g’y = aa; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
dy = (—y+ (z + 1)2) dz
(y—(z+1)?)dz+dy=0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) =y — (z+1)?
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM 0 2
1
oy — oy W@t
=1
And
8N
. (1)
= 0

Since %i; # %—IZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A=5(%%)
=1((1) - (0)
=1
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Since A does not depend on y, then it can be used to find an integrating factor. The

integrating factor u is
— efAd:z

— efldz

I

The result of integrating gives
p=e

:ez

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM
=e(y— (z+1))
=—e"(z?+2z—y+1)

And

Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is
m+N¥ g
dzx
d
dy _

(—e“(az2 +2r—y+ 1)) + (e%) e

The following equations are now set up to solve for the function ¢(z,y)

1)

0p —
g_x_
¢ =

Integrating (1) w.r.t. z gives
% dx = / M dx
Oz

%dx=/—ez(m2+2x—y+l)dm

or
p=—(2"—y+1)e"+ f(y)
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Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0 _ o, o
a—y=e+f(y) (4)

But equation (2) says that g—‘;’ = e”. Therefore equation (4) becomes
e’ =e” + f'(y) (5)
Solving equation (5) for f’(y) gives

fy)=0

Therefore
fy)=a
Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
p=—(z"—y+1)e"+q

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy; constants into new constant c; gives the solution as

a=—(z—y+1)¢

The solution becomes
y= (2" +e" +c1)e”

Initial conditions are used to solve for ¢;. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0=Cl+1

Cci = -1
Substituting ¢; found above in the general solution gives

y=1+m2—e_w
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Summary
The solution(s) found are the following

y=1+2°—e" (1)

v
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(a) Solution plot (b) Slope field plot

Verification of solutions

y=1+2>—e"
Verified OK.

2.3.5 Maple step by step solution

Let’s solve
ly+y = (@+1)*,5(0) = 0]
. Highest derivative means the order of the ODE is 1

/

Y

° Isolate the derivative
Y =—y+ (z+1)°

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y+y =(@@+1)°

° The ODE is linear; multiply by an integrating factor u(x)
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wx) (v +v) = uz) (z + 1)

Assume the lhs of the ODE is the total derivative - (u(z) y)
wz) (y+vy) = W)y + ule)y'

Isolate ()

' (z) = p(z)

Solve to find the integrating factor

pu(z) = e

Integrate both sides with respect to x

[ (L (u(z)y)) do = [ p(x) @z +1)%de+
Evaluate the integral on the lhs

we)y = [ p(e) @+ 1) do + o
Solve for y

_ [ @) (a+1)’date
y= u(@)

Substitute u(z) = e*

_ f(m+1)2ezd:t+cl
y="=

Evaluate the integrals on the rhs

241 e+cy
- Estrsn

Simplify
y=2>+1+ce®
Use initial condition y(0) =0

O=c +1

Solve for ¢;

cp=-—1

Substitute c; = —1 into general solution and simplify
y=1+2%>—e"

Solution to the IVP

y=1+2%>—-e7°
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

Ldsolve([diff(y(x),x)+y(x)=(x+1)“2,y(0) = 0],y(x), singsol=all) J

yz)=2"+1—e"

v/ Solution by Mathematica
Time used: 0.102 (sec). Leaf size: 17

LDSolve[{y'[x]+y[x]==(x+1)‘2,{y[O]==0}},y[x],x,IncludeSingularSolutions -> True]

y(x) > 2°—e " +1
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2.4 problem 10.3.5

2.4.1 Existence and uniqueness analysis. . . . . .. .. ... ... .. 152
24.2 Solving aslinearode . . . . . . ... ... ... ... 153]
2.4.3 Solving as first order ode lie symmetry lookup ode . . .. . .. 155]
244 Solvingasexactode . .. ... ... ... .. ... ... ... 159
2.4.5 Maple step by step solution . . . . .. .. ... 163l

Internal problem ID [5058]

Internal file name [OUTPUT/4551_Sunday_June_05_2022_03_00_45_PM_20469628/index.tex|

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.3, ODEs with variable Coefficients.

First order. page 315
Problem number: 10.3.5.
ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear

metry_ lookup"

Maple gives the following as the ode type

[_linear]

With initial conditions

r%y + 2zy = sinh ()

[y(1) = 2]

2.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Where here

Y +p(z)y = q(z)

M@=§
o(z) = smﬂl;(z)

152
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Hence the ode is
2y _ sinh(x)

T x2

!/

The domain of p(z) = 2 is
{r<0Vvo<az}

And the point zo = 1 is inside this domain. The domain of ¢(z) = Sm;# is

{r<0VO0<uz}
And the point zy = 1 is also inside this domain. Hence solution exists and is unique.

2.4.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor y is

u:ef%dx

:x2

The ode becomes

e = (T2

x2

) = @) (TR
d(yz®) =sinh (z) dz

Integrating gives
ya? = /sinh (z) dz
yx?® = cosh (z) + ¢;

Dividing both sides by the integrating factor u = z? results in

_ coshQ(a:) N c_12
x x

which simplifies to
_cosh (z) +c;

y_ fL'2
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Initial conditions are used to solve for c¢;. Substituting x = 1 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2=cosh(l)+ ¢

¢ = —cosh (1) + 2

Substituting c¢; found above in the general solution gives

cosh (z) + 2 — cosh (1)
Y= 72

Summary
The solution(s) found are the following

cosh (z) + 2 — cosh (1)
y= 3 (1)
x
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(a) Solution plot (b) Slope field plot

Verification of solutions

cosh (z) + 2 — cosh (1)

Y

Verified OK.
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2.4.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

J = —2zy + sinh (z)

932
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ﬂy - fﬂc) - w2€y - wxf - Wy"? =0

(A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,

Table 27: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode v = f(x)y(z) + g(z) 0 el fd=
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A

homogeneous ODEs of | i/ = (a + bz + cy)™ 1 —!
Class C

homogeneous class D | ¢/ = £ 4 g(z) F (%) x? xy

First order
form ID 1

special

Y = g(z) " + f(z)

Q

o— [ bf(@)de—h(z)
g(z)

f(;l:)e_ Jof (z)dz—h(z)
g(z)

polynomial type ode

/a1 z+bi1y+c1
Y a2z+bay+ca

aibosr—aobix—bico+bacy

a1bay—agbiy—aica—ascs

a1b2—agby

a1ba—azby

Bernoulli ode

y = f(z)y+g(x)y"

e=J (n=1)f @dayn

Reduced Riccati

Y = fiz)y + foz) y?

e~ J fidz

155




The above table shows that

£(z,y) =0
n(z,y) = % (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _

F=y =48 1)

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=z

n

1

S is found from

2

Which results in
S =yux?

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ S;+w(z,y)Sy @)
dR R, +uw(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

—2xy + sinh (z)
2

w(m,y) =
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Evaluating all the partial derivatives gives

R, =1
R,=0
S = 2xy
S, = z?

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as .
Fi sinh (z) (2A)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as

R sinh (R)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = cosh (R) + ¢; (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

yz® = cosh (z) + ¢;
Which simplifies to

yz® = cosh (z) + ¢;
Which gives

_ cosh (z) + ¢

xr2
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

n
S
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Initial conditions are used to solve for c¢;. Substituting x = 1 and y = 2 in the above

2=-cosh(1)+ ¢

solution gives an equation to solve for the constant of integration.

¢ = —cosh (1) +2

Substituting ¢; found above in the general solution gives

cosh (z) + 2 — cosh (1)

Summary

The solution(s) found are the following

(1)

cosh (z) + 2 — cosh (1)

y:
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(a) Solution plot (b) Slope field plot
Verification of solutions
cosh (z) + 2 — cosh (1)
y= B
T
Verified OK.
2.4.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
dy

dz

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 06 04d
vy _
0xr Oydx 0 (B)

Comparing (A,B) shows that

o9

P M

o

3y N
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8%¢ __ 9%

But since 5~ = 5= then for the above to be valid, we require that
Y yox
oM _ ON
0y Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
;f g’y = aa; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(z*) dy = (—2zy + sinh (z)) dz
(2zy — sinh (z)) dz +(z*) dy =0 (2A)

Comparing (1A) and (2A) shows that
M (z,y) = 2zy — sinh (x)
N(z,y) = 2*

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
M
a('?_y = %(wa — sinh (x))
=2z
And
ON 0, ,
o = 5%
=2z
Since %i;f = %%{, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
o9
— =M 1
e (1)
o
— =N 2
o )
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Integrating (1) w.r.t. z gives

@dx:/de
or

99 :
p dz = /21'3/ — sinh (z) dz

¢ =yz” —cosh (z) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

8(15_ 2 /
oy =" +f'(y) (4)

But equation (2) says that g—;’j = z?. Therefore equation (4) becomes

2 =2+ f'(y) ()
Solving equation (5) for f'(y) gives

fy)=0

Therefore
fly) =a
Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢ =yx* — cosh (z) + ¢,

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

c1 = yx* — cosh ()
The solution becomes

cosh (z) + 1
y=—"rp2
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Initial conditions are used to solve for c¢;. Substituting x = 1 and y = 2 in the above
solution gives an equation to solve for the constant of integration.

2=cosh(l)+ ¢

¢ = —cosh (1) + 2

Substituting c¢; found above in the general solution gives

cosh (z) + 2 — cosh (1)
Y= 72

Summary
The solution(s) found are the following

cosh (z) + 2 — cosh (1)
y= 3 (1)
x
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(a) Solution plot (b) Slope field plot

Verification of solutions

cosh (z) + 2 — cosh (1)

Y

Verified OK.
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2.4.5 Maple step by step solution

Let’s solve
[z%y + 2zy = sinh (z),y(1) = 2]
° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

y/ + Z?y — Sin:clz(z)
° The ODE is linear; multiply by an integrating factor u(x)
() <y/ + 2_y) _ u(x) Si2nh($)

T

o Assume the lhs of the ODE is the total derivative - (u(z) y)

wz) (Y +32) = w(2)y + u@)y
o Isolate ()

W(x) = 20

° Solve to find the integrating factor
p(z) =

° Integrate both sides with respect to x

J (& (@) y)) do = [ HD500dg 4 ¢
° Evaluate the integral on the lhs
pE)y=[ u(@) sinh(z) iifh(””) dx + ¢;
° Solve for y

. [ u(z)zi;h(z)dz_i_cl
Yy u(@)

e  Substitute p(z) = z?

__ [ sinh(z)dz+c1
Yy="—"72

° Evaluate the integrals on the rhs

__ cosh(z)+c1
-z

o Use initial condition y(1) = 2

163



2 =cosh (1) +¢;
° Solve for ¢;
¢; = —cosh (1) + 2

. Substitute ¢; = — cosh (1) + 2 into general solution and simplify
__ cosh(xz)+2—cosh(1)
= =

° Solution to the IVP

y= Cosh(m)+z22—cosh(1)

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful’

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 16

Ldsolve([x“2*diff(y(x),x)+2*x*y(x)=sinh(x),y(1) = 2],y(x), singsol=all) J

cosh (z) + 2 — cosh (1)

y(z)

v/ Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 17

-

N
LDSolve [{x~2xy' [x]+2*x*y [x]==Sinh[x],{y[1]==2}},y[x],x, IncludeSingularSolutionjs -> True]

cosh(z) + 2 — cosh(1)
72

y(z) —
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2.5 problem 10.3.6

2.5.1 Solving aslinearode . . . . . . ... ... ... ... 165]
2.5.2 Solving as first order ode lie symmetry lookup ode . . ... .. 167
2.5.3 Solvingasexactode . . ... ... ... ... ...... Ival
2.5.4 Maple step by step solution . . . . . ... ... ... ... ... 176

Internal problem ID [5059]
Internal file name [OUTPUT/4552_Sunday_June_05_2022_03_00_46_PM_11495574/index.tex|

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.3, ODEs with variable Coefficients.
First order. page 315

Problem number: 10.3.6.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

Y

2
=322
11—z Xz X

y +

2.5.1 Solving as linear ode
Entering Linear first order ODE solver. In canonical form a linear first order is
Y +p(z)y = q(z)

Where here

Hence the ode is
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The integrating factor u is

The ode becomes

Integrating gives

/a: 2—|—a:)
w—l z—1

x
x—].:E_ —In(z—-1)+¢

)

Dividing both sides by the integrating factor u = ﬁ results in
2

y=(z—1) (%—m—ln(m—l))—l—cl(x—l)

which simplifies to

_(z-1)(@* -2z —2In(z — 1) + 2¢1)
V= 2

Summary
The solution(s) found are the following

y:(:r—1)(x2_2x—221n(z—1)—|-201) (1)
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Figure 25: Slope field plot

Verification of solutions

(x—1) (22 -2z —2In(x — 1) + 2¢1)

Verified OK.

2.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

22 -3+ 2z +y

/

Y

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

0

Nz + W(ﬂy - &) — w2§y —we€ —wyn

The type of this ode is known. It is of type linear. Therefore we do not need to solve

the PDE (A), and can just use the lookup table shown below to find £,
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Table 30: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g(z) e"@+tv 4 f(z) | <L ;?;‘;f—h(@ f(@)e” f;’(;’)”d“‘h(“)
form ID 1
polynomial type ode y = —2512;312 “162””—;‘12521f;:g102+b201 “11’29_232351‘;;162_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
§(z,y) =0
n(z,y) =z —1 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

Sz/ldy
n
_ 1

/m—ldy

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ S;+w(z,y)Sy
dR R, +w(z,y)R,

(2)

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

23 -3z +2x+y

Evaluating all the partial derivatives gives

R, =1

R,=0

Sp=——"
(z—1)
1

S =

R |

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS  x(-2+x)
dR~  z-1 (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

dS _R(-2+R)
dR R-1
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integration when the ode is in the canonical coordiates R, S. Integrating the above
Original ode in z,y coordinates

It converts an ode, no matter how complicated it is, to one that can be solved by

in the canonical coordinates space using the mapping shown.

gives

P P P I L I
PR
d/d/l/‘/¢Av|A9/¢/¢/¢/¢/
A/A/d/t/d/(yl‘lt/é/t/dl

|

O W W iR, P S g e S
fffffff
rrrrrrrr
ffffffffff

fo— et

The above is a quadrature ode. This is the whole point of Lie symmetry method.
The following diagram shows solution curves of the original ode and how they transform

Which gives

(1)

(x —1)(—2?+2In(z — 1) — 2¢; + 27)
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Summary
The solution(s) found are the following
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Figure 26: Slope field plot

Verification of solutions

(x—1)(—z®>+2In(z — 1) — 2¢; + 27)

Verified OK.

2.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(fv,y)£=0

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

0

¢(z,y) =

a
dz

Hence
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Comparing (A,B) shows that

o
T M
oz
9 _ n
Ay
But since % = % then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
6‘9; g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

dy = (—L—Qw—l—ﬁ) dz
11—z

l1—=zx

(L+2x—z2) de+dy=0 (2A)
Comparing (1A) and (2A) shows that

M(ac,y)z%—l—%:—x2

N(CL‘,y)=1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

OM _ON

oy Oz

Using result found above gives

3M_2( y —|—2a;—a:2>

By  oy\l—z
1
11—z
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And

N _ 0,
dr Oz
=0

Since %i: # %—IZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

L 1(oM _oN
N\ 9y ox

- (=) -0)

1
1—=x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

= el Ade
_ ol e
The result of integrating gives
jp = e~ 1n1-2)
1
l—2z

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM

1 Y 2
= 2% —
1—x(1—z+x x)

_? -3+ 24y
(—1)°

And
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

3 _ 2 92
x 3x+2w+y + 1 %:0
(x —1) 1—2z/ dz

The following equations are now set up to solve for the function ¢(z,y)

8¢

Integrating (1) w.r.t. z gives

0 . [+
adx—/de

¢ /x3—3x2+2x+y
—dz = 5 dz
Or (x—1)

$2

Y
=2 _r—1 1) - 2
=% —o-ln@-1)- L+ ©
Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

op 1
oy -1

+ () (4)

But equation (2) says that g—z = 72—. Therefore equation (4) becomes

z°

() )
Solving equation (5) for f'(y) gives
f'y) =0
Therefore
fly)=a
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Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and

combining ¢; and ¢y constants into new constant c; gives the solution as

x—ln(:c—l)—xgl

r_
2

Ci =

The solution becomes

(—z® +2In(z — 1) + 2¢; + 2z) (x — 1)

y:

Summary

The solution(s) found are the following
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Figure 27: Slope field plot
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Verification of solutions

)= (—2? 4+ 2In(z — 1) + 2¢; + 2z) (x — 1)
T 2

Verified OK.

2.5.4 Maple step by step solution

Let’s solve
y+L=2*-2z

° Highest derivative means the order of the ODE is 1

/

Y

° Isolate the derivative
v =25+ z? — 2z

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y - =a2-2

° The ODE is linear; multiply by an integrating factor u(x)
pa) (v — 25) = @) (2* - 22)

o Assume the lhs of the ODE is the total derivative - (u(z) y)
wa) (v —25) =@y +p@)y

o Isolate u'(x)

W(z) = 49

° Solve to find the integrating factor
pe) =5

° Integrate both sides with respect to x

[ (E(u(z)y)) do = [ p(z) (22 — 2z) dz + 1
° Evaluate the integral on the lhs

wa)y = [ u(e) (e - 22)dz + o1

° Solve for y
o J w(=) (z2—2m)dm+61
y= p(z)
° Substitute u(z) = ﬁ
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(z—1) (f””_zmda:+cl>

° Evaluate the integrals on the rhs
y=(zx—1) (——x—ln(x—1)+cl>
° Simplify
y = (z—l)(x2—2w—221n(w—1)+201)

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 25

Ldsolve(diff (y(x),x)+y (x)/ (1-x)+2*%x-x"2=0,y(x), singsol=all) J

(22 =2z —2In(z — 1) + 2¢;) (x — 1)
2

y(z) =

v/ Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 27

LDSolve[y'[x]+y[x]/(1—x)+2*x—x‘2== ,y[x],x,IncludeSingularSolutions -> True] J

y(z) = (z —1) <%(x —1)% —log(z — 1) + cl>
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2.6 problem 10.3.7

2.6.1 Solving aslinearode . . . . .. ... ... ... ... L. 178
2.6.2 Solving as first order ode lie symmetry lookup ode . . ... .. 180
2.6.3 Solvingasexactode .. ... ... ... ... .......... 184
2.6.4 Maple step by step solution . . . .. .. ... ... ... ... 189

Internal problem ID [5060]
Internal file name [OUTPUT/4553_Sunday_June_05_2022_03_00_47_PM_35483196/index.tex|

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.3, ODEs with variable Coefficients.
First order. page 315

Problem number: 10.3.7.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

=T —

2.6.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(x)y = q(z)

Where here
1
q(z) = z(z - 1)
Hence the ode is
y - = =aa-1)
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The integrating factor u is

The ode becomes

xgl) - (wil)(x(z_l))

Integrating gives

x31=/xdx

2

T4
=—+c
r—1 2 1

Dividing both sides by the integrating factor u = ﬁ results in

_ r?(z — 1)

9 +cl(x—1)

Y

which simplifies to

Summary
The solution(s) found are the following

Y= (x—l)(2x2+2cl) )
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Figure 28: Slope field plot
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The type of this ode is known. It is of type linear. Therefore we do not need to solve

2.6.2 Solving as first order ode lie symmetry lookup ode
the PDE (A), and can just use the lookup table shown below to find £,

The condition of Lie symmetry is the linearized PDE given by

Verification of solutions
Verified OK.
Writing the ode as



Table 33: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g(z) e"@+tv 4 f(z) | <L ;?;‘;f—h(@ f(@)e” f;’(;’)”d“‘h(“)
form ID 1
polynomial type ode y = —2512;312 “162””—;‘12521f;:g102+b201 “11’29_232351‘;;162_“201
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
§(z,y) =0
n(z,y) =z —1 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

n
1

:/x—ldy

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS _ S, +w(@,y)s, 2
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

2 -2+ +y

Evaluating all the partial derivatives gives

R,=1

R, =0

Sp=——1
RS

1

S =

R |

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _

dR

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

x (2A)

R

182



integration when the ode is in the canonical coordiates R, S. Integrating the above
R2

It converts an ode, no matter how complicated it is, to one that can be solved by
gives

The above is a quadrature ode. This is the whole point of Lie symmetry method.

(4)

='§‘+Cl

S(R)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in

2

_
-Z o

Y
rz—1

Which simplifies to

2
:'§'+C1

T

Yy
z—1

Which gives

(x —1) (% + 2¢1)

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

P N N N NN N N R NN

T T e T T T T T T [ T T T S T S S S T

e S S S e S S S S

N N N N N N NS R R R R N NSNS
fﬁ/a/fﬁ/a/fﬁ/a/fl/aﬂa/ﬁ/ﬁ/a/d/ﬁ/a/a/

T T Vo T S T S e W W

e S T, T o T S W W W

wn
oy
<
b=
o=
o
8
Q TR T R R R R R R R RO R RO ROR R R OB R
© o BORCRRCRCRORORCROR RO RO R
oy ENRNRRNR RN Y
9 1 R S 0 1 O O
g T3 1T iad T iprtatrrart
SR QE 7777222 PIAS SIS
=i SRR AN AAAAAA S
© D Bl B P o 4
om T T TN T T T T T
P el e e g e it g g e g
E \V\V\V\V\V\V\V\V\V\V'\M.\V\V\V\V\V\V\V\V\V
) e L
§
3 &2 n
S = m > |
m m = 8 8
g =2 & I Il
S 8 &
S @ K @0
—
+~
wn
o) -
= IDDEBBBBRE SBBRMMBBHHE
n ffffffffff ote— <o
S - B
r Alﬁ‘lﬁA’A’A’A’d/A/A/d/A/A/VAQ/GIA/C/‘/G/G/G/
) b R MR N
w S e e S A NN\ P o g
+ | PEPESES U IS IS N[ s ——
ﬂ ﬁhw ######## o AR St gt
< 4 oo w7 A SRR R R
o o peargrar gy Ay M AL SR NENE S S A R
() = N s e e L e e
o) PRI N DI 7 I I I D
o SRR N LM
— AL R
a ???????
g | T I
a0
X -
S -

183



Summary

The solution(s) found are the following

(1)

(z —1) (22 + 2¢1)
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Figure 29: Slope field plot

Verification of solutions

(x—1) (22 +2¢))

Verified OK.

2.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(x,y)+N(w,y)£=0

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. = gives

¢(z,y) =0

d
dz
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Hence

0% , ddy _

i st A B
Oor Oydx (B)
Comparing (A,B) shows that
o¢
M
oz
2 _
Oy
But since % = % then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
gj gy = Zf: 5’; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz +N(z,y)dy =0 (1A)
Therefore
dy = (_T —x+z2) dx
Y 2 _
(1—+x—z)dx+dy—0 (2A)

Comparing (1A) and (2A) shows that
_ Y a2
M(z,y) = = +z—zx
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

OM ON

oy Oz

Using result found above gives

oM 8( Y +x—a:2>

by Oy
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And

N _ 0,
dr Oz
=0

Since %i: # %—IZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

L 1(oM _oN
N\ 9y ox

- (=) -0)

1
1—=x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

= el Ade
_ ol e
The result of integrating gives
jp = e~ 1n1-2)
1
l—2z

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM

_ 1 4 2
_1—x(1—w+x x)

P -2tz +y
(z—1)°

And
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N@=0
dz

3 _9g2 1 d
T x—i—f—i—y n dy _,
(x —1) 1—z/ dzx

The following equations are now set up to solve for the function ¢(z,y)

8¢

Integrating (1) w.r.t. z gives

0 . [+
adx—/de

0o /x3—2x2+x+y
—dz = 5 dzx
ox (x—1)

2

z y
¢=5—x_1+f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

op 1
oy -1

+ () (4)

But equation (2) says that g—z = 72—. Therefore equation (4) becomes

z°

() )
Solving equation (5) for f'(y) gives
f'y) =0
Therefore
fly)=a
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Figure 30: Slope field plot
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Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢
But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and

combining ¢; and ¢y constants into new constant c; gives the solution as

The solution(s) found are the following

The solution becomes

Summary




Verification of solutions

Verified OK.

2.6.4 Maple step by step solution

Let’s solve
Y+ =z*-z

° Highest derivative means the order of the ODE is 1

/

Y

° Isolate the derivative
y="t+a2?—z
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y—-L=x*-z
° The ODE is linear; multiply by an integrating factor u(x)
u(@) (v — 34) = ) (2° - z)
o Assume the lhs of the ODE is the total derivative - (u(z) y)
wa) (v —25) =@y +p@)y
o Isolate u'(x)

p(z) = u(w)
° Solve to find the integrating factor
pe) =5
° Integrate both sides with respect to x

J (G (u(z)y)) de = [ p(z) (2% — z) dz +
° Evaluate the integral on the lhs

w@)y = [ u@) (& - ) do + o

° Solve for y
_ Ju@)(e?—z)dzter
y= (@)
. Substitute u(z) = ﬁ
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y=(z—1) (f””:__i"’dx—i-cl)

° Evaluate the integrals on the rhs
y= (%-I—cl) (x—1)

° Simplify
y= (w—l)(;2+201)

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

Ldsolve(diff(y(x),x)+y(x)/(1—x)+x—x‘2=0,y(x), singsol=all)

(@ +2c) (z—1)
y(z) = 5

v/ Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 20

LDSolve [y' [x]+y[x]/(1-x)+x-x"2==0,y[x] ,x,IncludeSingularSolutions -> Truel

y(z) — %(az —1) (z* 4+ 2¢1)
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2.7 problem 10.3.8

2.7.1 Solving as linearode . . . . . . ... ... ... .. ... 191
2.7.2  Solving as homogeneousTypeD2ode . . ... ... ... .... 193]
2.7.3 Solving as first order ode lie symmetry lookup ode . . ... .. 195]
2.74 Solvingasexactode . . ... ... ... ... ... . ...... 199
2.7.5 Maple step by step solution . . . . ... ... oL 204

Internal problem ID [5061]
Internal file name [OUTPUT/4554_Sunday_June_05_2022_03_00_48_PM_6281316/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.3, ODEs with variable Coefficients.
First order. page 315

Problem number: 10.3.8.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2",
"exactWithIntegrationFactor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

(P+1)y —zy=1

2.7.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
T
1
a(z) = 2 +1
Hence the ode is
,my 1
y 224+1 2241
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The integrating factor u is

The ode becomes

%(uy) = (u) (x21+ 1)
%(%ﬂ) B <\/fv217+1) (w2£rl)

d( 4 ): L 4
22 +1 (z2 +1)2

Integrating gives

T

y / LR
Va2 +1 (22 +1)2
y

+C

x
VeZ+1l VrZ+1
Dividing both sides by the integrating factor u = ﬁ results in

y=cvz?+1l+zx

Summary
The solution(s) found are the following

y=cavzl+1l+zx
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Figure 31: Slope field plot

Verification of solutions

y=cvz*+1l+zx
Verified OK.

2.7.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)
(2% +1) (W'(z) z + u(z)) — 2°u(z) =1
In canonical form the ODE is

v = F(z,u)

= f(z)g(u)
—u+1
z(z2+1)

Where f(z) = and g(u) = —u + 1. Integrating both sides gives

1
z(z2+41)

1 d 1
u =
—u+1 z(x2+1)

dx
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1 1
[ =rite=

In (22 +1
—ln(u—1)= —#+ln(x) + ¢
Raising both side to exponential gives
1 =e” ln(zzﬂ) +n(z)+c2
u—1
Which simplifies to
1 = c3e” (zzﬂ) +ln(z)
u—1

Which simplifies to

z2+1
u(x) =
(z) pye.
Therefore the solution y is
Yy =2xu
(Lc%giﬁ + 1) e 212 +1

Summary
The solution(s) found are the following

(C"‘—%ﬁ + 1) e~2/22 4+ 1
C3

y:
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Figure 32: Slope field plot

Verification of solutions

(C‘”'—;Tﬁ + 1) e~2/z2 + 1

y:
C3

Verified OK.

2.7.3 Solving as first order ode lie symmetry lookup ode
Writing the ode as

,_ zy+1
o241
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - gx) - w2§y —wz€ — Wyl = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,
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Table 36: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

n(z,y) = va? +1

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

(A1)

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

ds
§ N

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

Sz/ldy
n

1
= d
/\/9:2+1 Y

S is found from

Which results in

§=_Y
2 +1

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating
ﬁ _ Sﬂc + UJ(.’E, y)Sy (2)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

(z,7) zy+1
w(z,y) =
R |
Evaluating all the partial derivatives gives

R, =1

R,=0

S —__ VT

(w2 + 1)}
1
S =
Y x2+1

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

@a__ 1 (2A)
dR (x2 + 1)5

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as 1
dR (R2+1)%
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R) =

R2+1

R
+Cl

(4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in

X

y
Va2 +1
Which simplifies to

,—x2+1+01

X

vy _
Va2 +1
Which gives

—.’172—|—1+Cl

y=cavri+l+z

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Original ode in x,y coordinates

Canonical
coordinates
transformation

ODE in canonical coordinates

(R,

5)

SN N NN NN N

~a e e Na N e e e
b b b ~5 > 7
————n—a—a—s—b_¥ 7|

—-—>—b—b—b—b—>_v 7 7

f
}8
/d
;
Sa e NN N a1
\\\\\RQQ\//
/
/4

A T 'Y
NN N N e e
NN N N e e e

N
\
\
\
\
\
v

APAA T o >
AAF T oo

—c».»_;z,v/r)_',i/v/',d
AT AAAA

A bbb
A e e e A Ta A Tb
T e N NN A S S e e
7 N N N N N e e
S B N N NN
BARRRERE R R RN
NN N NN

ds _

1

dR " (R2y1)3

bbb T
———s—s—b—s——o> > 7 7
——>——b>—>—>—b_>_7 §
bbb 7 7
—————> e al
I
NN .
———b—b—b—b—> > 7 A

o> 7 7

P S
P NN
AP b
A o———b—>
P NN
AP b
A o————>—>
P NN
AP b

P N

$$ﬁ44i5»/4
———s—b——b—b—> > 7 A
——b—>—>—b—b > 7 I
———b—>—>—_> > 7 |
———s—b——b—b—> > 7 A
——>—b—b——b—b—> & 7 A
NN
444—»—»-»—&»/7_4’4
——>—b—b——b—b—> o 7 7
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Summary
The solution(s) found are the following

y=cvri+1l+z (1)

HNNNNNN\NN\N\~A/ T ] 7
NNNNNN\NN\N\~~/JSS )]/
NNNNNNNN~SS ST TS

HNNNNNNNN—SJ S]] 777
NNNNNNNN~—= ST S]]
NN\~

B e S S S et
\\\\\\ — ]SS
AAAAA s S]] S
y(x) 07 —— s
P P A A A A A A e ——
A A A A A A
S 77 7777 7 NN\
ST 77NN N

=20 7777777777 7= NN\
777777777 7 =NNNNNNNN
777777777 7= NNNNNNN
=3 /7777777777 ~NNNNNNNN
-3 -2 -1 0 1 2 3

X

Figure 33: Slope field plot

Verification of solutions

y=cavz:+1l+zx
Verified OK.

2.7.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
E—O (A)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. = gives

M(z,y) + N(z,y)

d
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Hence

0p O¢dy
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
o
M
Oz
09
TN
Oy
But since % = % then for the above to be valid, we require that
oM _ 0N
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
;’: gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(*+1)dy = (zy + 1)dz
(—zy —1)dz+(z*+1)dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = —zy —1
N(z,y) =2 +1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
T Ty —1
By Gy( zy — 1)
=—x
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And

ON 0
= 2x

Since %i; # %—];’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

Ao L(oM _oN
N\ 8y Oz
1

= 1 ((-2) - (22)

_ 3r

a2+
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p=e J[Adz
—e J —zg’j_ T dz
The result of integrating gives
3ln(z2+1)
lj, = e 2
B 1
(22 +1)*

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

1
= m(—xy —1)

zy+1
(22 +1)*
And
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Now a modified ODE is ontained from the original ODE, which is exact and can be

solved. The modified ODE is
M + N% =0
dzx

_zy+1 +< 1 )%_0
(x2+1)% Vzz+1/) dz

The following equations are now set up to solve for the function ¢(z,y)

0p —
b _
- @

Integrating (1) w.r.t. z gives

/%dm=/ﬂdx

99 4. _ /_xy—+13 dr
Oz (z2 +1)2

3)

Y 4 f(y)

¢:\/x2—|—1

Where f(y) is used for the constant of integration since ¢ is a function of both = and

y. Taking derivative of equation (3) w.r.t y gives

%__ 1,y (4)

0y  Va+1
But equation (2) says that g—‘g = \/x;ﬁ Therefore equation (4) becomes
1 1
+ () (5)

ViZ+1  Va?+1

Solving equation (5) for f’'(y) gives

Therefore
fly)=a
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Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
-r+y

:—+c
¢ =1t A

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

Tty

C1 =
' 2 +1

The solution becomes

y=cavzl+1l+zx

Summary
The solution(s) found are the following

y=avaeli+l+z (1)
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Figure 34: Slope field plot
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Verification of solutions

y=avrit+l+z
Verified OK.

2.7.5 Maple step by step solution

Let’s solve
(@ +1)y —zy=1
. Highest derivative means the order of the ODE is 1

/

Y

° Isolate the derivative

y = x2+1 + w2+1
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE

_zy __ 1
y 241~ 241

° The ODE is linear; multiply by an integrating factor u(x)

ula) (v = ) = 55

o Assume the lhs of the ODE is the total derivative - (u(z) y)
pa) (Y — 745) = W (@)y +p@)y
o Isolate u'(x)

i) = 4%

° Solve to find the integrating factor

_ 1
wmz) = 7o
° Integrate both sides with respect to x
[ (£ u@)y) do = | Hdo +
. Evaluate the integral on the lhs

pu(x)y = ;‘21)1 dz +c

° Solve for y
_ J :2(—_°f_)1dm+01
V="
e  Substitute p(z) = \/xi—ﬂ
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yzm(f 1 dac+c1)

(2241)2
° Evaluate the integrals on the rhs
Y=V +1 (5 +a)
° Simplify

y=avri+l+z

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

-

Ldsolve((1+x“2)*diff(y(x),x)=1+x*y(x),y(x), singsol=all)

e—

ylx) =vVa?+1le +x

v/ Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 19

LDSolve[(1+x“2)*y'[x]==1+x*y[x],y[x],x,IncludeSingularSolutions -> Truel

y(z) 2+ ave?+1
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2.8 problem 10.3.9 (a)

2.8.1 Solving as separableode . . . . . .. ... ...
2.8.2 Solving as first order ode lie symmetry lookup ode . . ... .. 208]
2.8.3 Solving as bernoulliode . .. .. ... ... ...........
2.84 Solvingasexactode . . ... ... ... ... ... . ...... 215)
28,5 Solvingasriccatiode. . . . . ... ... oL 219
2.8.6 Maple step by step solution . . . . . ... ... L. 221]

Internal problem ID [5062]
Internal file name [OUTPUT/4555_Sunday_June_05_2022_03_00_49_PM_941248/index . tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.3, ODEs with variable Coefficients.
First order. page 315

Problem number: 10.3.9 (a).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "riccati", "bernoulli",
"separable", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

Y +zy—zy* =0

2.8.1 Solving as separable ode

In canonical form the ODE is

y, = F(fL‘,y)
= f(z)g(y)
=xzy(y —1)

Where f(z) = z and g(y) = y(y — 1). Integrating both sides gives

———dy=zdz
yy—1) "
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(1)

= /xdx
x? N
2
2

ez ta

dy

1

y(y—1)
In(y—1)—In(y) _

(&

/

In(y—1)—In(y)

T T e e s e s s s a—a—amaeata N
NNN NN NN s s s > > 7

P PP e S S S S N

—————————

—————————

————————————

——————~—~—

/

—————~——~—

—_——— = =

VANNN~~77 171
‘R4
N
N
\
\
\

= a a

—_— = e .

—_— = = = e .

A\NNNNNNN~—~—rr 7777 ] ]

TVVNNANNNNN~—= 771 ]

Raising both side to exponential gives
The solution(s) found are the following

Which simplifies to

Summary

——————————— |

~——~——

X
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Verification of solutions

1

y=—"—"=
—14+cez

Verified OK.

2.8.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

Y =y’z —zy
Yy =w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + W("?y — &) — w2£y —we§ —wyn =0 (A)

The type of this ode is known. It is of type separable. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 39: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

K| =

£(z,y) =
n(z,y) =0

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _ dy _

ds
§ n

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since n = 0 then in this special case
R=y

S is found from

ISH
8

U
8

o
Il
——

8= = | =

Which results in

$2

S=%

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = ¥’z — zy

Evaluating all the partial derivatives gives

R, =0
R, =1
S, =1z
Sy =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1

dR ~ y(y—1) (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as 1
dR~ R(R-1)
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives

S(R)=In(R—1)—In(R)+ ¢,

(4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This

results in
72
2
Which simplifies to
72
2

Which gives

y:

—=In(y—1)—-In(y)+a

—=h(y—-1)-In(y)+a

2
e~ T ta

2
—14+e 2ta

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical

.. ) . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)

transformation ’

ay — o2 as _ 1

o = YT TTY dR — R(R-1)
L T TR A O O O O S AV pr s
I R R A i U U O O P e g B O A D I -
L A A A O U (O T Bt g Y 2 DR P SN
MR ANHIY esssers Il oreees
»»»»»» ~ P
RS S RN A N R SR G|y s T
RN S R RN, DO
NNNNN NN m T g A AL | e —e Aty e
AT ATt s ~a e S w R = y | e Y S A D I N
e S N el LI W Al denctemcemien
VAV VNSNS F g T g=2 | L e
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The solution(s) found are the following

Summary

(1)
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~——— |

X
+c1
2

5 te

22

e 2
2
—TY + Y

F(z,y)
Y’z — zy
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Figure 36: Slope field plot
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2.8.3 Solving as bernoulli ode
In canonical form, the ODE is
This is a Bernoulli ODE.

Verification of solutions

Verified OK.



The standard Bernoulli ODE has the form

y = fol@)y + filz)y"” (2)

The first step is to divide the above equation by y™ which gives

y n

g = @y "+ (@) (3)
The next step is use the substitution w = y'~" in equation (3) which generates a new
ODE in w(z) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(z) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

fo(z) =~z
filz) ==
n=2

Dividing both sides of ODE (1) by y™ = y? gives

1 T
!
y—=—+z 4
)2 y (4)
Let
w = 1-n

Taking derivative of equation (5) w.r.t = gives

1
W=y ©)

Substituting equations (5) and (6) into equation (4) gives

—w'(z) = —w(z)z+ =z

w=zw-—1 (7)
The above now is a linear ODE in w(z) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w'(z) + p(z)w(z) = q()
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Where here

p(z) = —z
q(z) = -z
Hence the ode is
w'(z) —w(r)r = —2x
The integrating factor y is
b= ef —zdz
22
=e 2

The ode becomes

Integrating gives

g

e zw= [ —xze zdzx

22 2

z_ _z_
e zw=e 2 4+

22

Dividing both sides by the integrating factor u = e~ 2 results in

which simplifies to

1;2
w(z)=14ce?
Replacing w in the above by i using equation (5) gives the final solution.

1 22
- =1 -{-cleT
Yy

1
Yy=—"n=
1+0167

214



Summary
The solution(s) found are the following
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Figure 37: Slope field plot

Verification of solutions

Verified OK.

2.8.4 Solving as exact ode
Entering Exact first order ODE solver.

To solve an ode of the form

M(z,y) + N(z,y)

- z2
1+ ez

(Form one type)

dy

22—
dx

(A)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
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ode. Taking derivative of ¢ w.r.t.  gives

d

Hence 96 06d
y =
Oor Oydx 0 (B)
Comparing (A,B) shows that

09
%—M
0p
8_y_N

But since 22 _ ¢

oy = Byds then for the above to be valid, we require that

oM _ ON

oy Or
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
gf g’y = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

1
Comparing (1A) and (2A) shows that
M(z,y) = —zx
1
N(z,y) = m

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
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Using result found above gives

oM _ 0
oy Oy

5 255 1)

=0

And

Since %M = %, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

9
a—x—M (1)

8¢ _
oy =N 2)

Integrating (1) w.r.t. z gives
— dx = / M dx

¢
9z dz = / —xdzx

2

o= —5 + 1) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

09
=0+ f W) @

But equation (2) says that 8¢ =

y(yl_l). Therefore equation (4) becomes

=1 0+ f'(y) ()
Solving equation (5) for f’(y) gives
, 1
F) = =1
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Integrating the above w.r.t y gives

[rwa=[( )

fl)=In(y—-1)-In(y) +c

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
72
¢=—5 +t(y—-1) -l +a

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining c¢; and ¢y constants into new constant c; gives the solution as

72
cc=——+In(y—1)—In(y)

2
The solution becomes
_ 1
Y eSte _ 1
Summary
The solution(s) found are the following
1
- 1
Y e%—i—q -1 ( )
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Figure 38: Slope field plot
fo(z) + fi(@)y + fa(z)y?

/

N G -

This is a Riccati ODE. Comparing the ODE to solve
Y

2.8.5 Solving as riccati ode
In canonical form the ODE is
With Riccati ODE standard form

Verification of solutions

Verified OK.



= —z and fo(x) = z. Let

Shows that fo(z) =0, fi(x)

_u’

v= fzu
S (1)

Iu

Using the above substitution in the given ODE results (after some simplification)in a

second order ODE to solve for u(x) which is
2)

f2u" (@) = (f3 + fufo) W (@) + f3 fou(z) = 0

But
fi=1
fife = —z?
f3fo=0

Substituting the above terms back in equation (2) gives

zu'(z) — (-2 + 1) ' (z) =0

Solving the above ODE (this ode solved using Maple, not this program), gives
z2
uwz)=c+e ¢

The above shows that
m2
v(r)=—ze 7

Using the above in (1) gives the solution

22

e 2Cy

Yy=—"2 "
cite zc

Dividing both numerator and denominator by c; gives, after renaming the constant

2 = c3 the following solution
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The solution(s) found are the following

Summary

Verification of solutions

Verified OK.

Let’s solve
v +zy—z2y =0
Highest derivative means the order of the ODE is 1

2.8.6 Maple step by step solution
[ ]

221



° Separate variables

!

ﬁ =z
. Integrate both sides with respect to x
fy(yy—;)dxzfxdx—l—cl
° Evaluate integral
In(y—1)—In(y) = %—i—cl
° Solve for y
e s

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

Ldsolve(diff(y(x),x)+x*y(x)=x*y(x)“2,y(x), singsol=all)

v/ Solution by Mathematica
Time used: 0.25 (sec). Leaf size: 31

LDSolve[y'[x]+x*y[x]==x*y[x]“2,y[x],x,IncludeSingularSolutions -> True]

1
y(z) = S
14_67;+q
y(z) =0
y(z) =1
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2.9 problem 10.3.9 (b)

2.9.1 Solving as first order ode lie symmetry lookup ode . . .. . .. 223]
2.9.2 Solving as bernoulliode . . .. ... ... ... ... ...... 227

Internal problem ID [5063]
Internal file name [OUTPUT/4556_Sunday_June_05_2022_03_00_50_PM_48381868/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.3, ODEs with variable Coefficients.
First order. page 315

Problem number: 10.3.9 (b).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "first__order__ode__lie_ sym-
metry_ lookup"

Maple gives the following as the ode type

[[_homogeneous, “class G°], _rational, _Bernoulli]

3zy +y+ylz?=0

2.9.1 Solving as first order ode lie symmetry lookup ode
Writing the ode as
,_ y(@Pet+ 1)
N 3z
Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Ne +w(ny — &) — W2€y —wy§ —wyn =0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 42: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

n(z,y) =y'z

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx
1
Sz/—dy
n
1
—/w—mdy

1
3z 93

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S +w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

_ y@’2*+1)
Evaluating all the partial derivatives gives
R, =1
R, =0
1
“ T 323
1

Sy == y4_x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds 1

-~ _Z 2A

dR 3 (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

L
3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
R
S(R):—§+C1 (4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
1z np
33z 3 !
Which simplifies to
1 z n
—_— = — C
3y3x 3

The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical ) ) )
. . ) . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, 9)
transformation ’
dy _ _y(Pe’+1) s _ _1
de — 3z dR -~ 3
ttett fyi(x;) BIREEEEREER! R ) A
NI R B R S S
fr Pttt 27272728V Y LY A A A e i & | A & s A ~a s &
e e B e T A /'/v—c»%\sx\a\,\\\ —_— — A TR TSR TNA A T A e e A ta e e ey ~ e e
DR IR S R
Summary
The solution(s) found are the following
1 T
- =——-+4a0 1
355z 3 (1)

226




lllll -~ 71 1] r—=—————r
LLLLL —_— \ .N \_ \ S
LLLLL =771 1 17—
lllll -7 71 \ 1/
LLLLL =711 "1 /7/-—————
————7 /1 \"17—=———
7 /1 I
-/ /| A"\
————— 77 7 1T VANA\N\N [ 7m———
———— e 7 N N N S S |
11111 ~~~\\N///
————=NA\A\N T AN~
————NAAN NS
e SNA T AN
11111 ~N A [N S—————
11111 NN R R
11111 N\ AN~
11111 A ] A N
11111 A ] ] A N
111111 ~A I AN~——————1+
e I - = -~ I o)
| | |
Na)
=~

X

Figure 40: Slope field plot

Verification of solutions

Verified OK.

2.9.2 Solving as bernoulli ode

In canonical form, the ODE is

F(z,y)

y/

y(yPz? + 1)

3z

1
3z

This is a Bernoulli ODE.

1)

T 4
Yy 3y

y =

The standard Bernoulli ODE has the form

(2)

y = folz)y + fi(2)y"

The first step is to divide the above equation by y™ which gives
Y

3)

/!

= fo(z)y' ™" + fi(2)

n

P~
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The next step is use the substitution w = y'~" in equation (3) which generates a new
ODE in w(z) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(z) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

folw) = —5-
fi(z) = —g
n=4

Dividing both sides of ODE (1) by y" = y* gives

y’% = —%yy, - g (4)
Let
w=y""
-5 ©)
Taking derivative of equation (5) w.r.t x gives
W= ©
Substituting equations (5) and (6) into equation (4) gives
v _w@) e
3 w 3z 3
w' = o te (7)

The above now is a linear ODE in w(z) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w'(z) + p(z)w(z) = q()

Where here
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Hence the ode is

: w(z)
w/(z) - ) =
The integrating factor u is
p= ef—;dm
1
oz

The ode becomes

Integrating gives
= / dz
r+c

Dividing both sides by the integrating factor yu = % results in
w(z) = ez + 2°
which simplifies to

w(z) =z(x + c1)

Replacing w in the above by y% using equation (5) gives the final solution.
1
7 =z(x +c1)

Solving for y gives

W=

(z?(z + 01)2)
z(x+c1)
(z%(z +1)?)® (iv/3 - 1)
2z (x +c1)
(z%(z + 1)?)® (1 +14v3)
2z (z +c1)

y(z) =

=

y(z) =

y(z) = —

229



(1)
(2)
(3)

(iv3-1)

(z%(z +c1)?)® (1 +v3)
2z (x 4+ ¢1)

z(x+cp)

(z%(z +c1)?)

(z%(z +c1)?)

LLLLL -7 1 [ A
LLLLL AR R
LLLLL -7 1 |
LLLLL AR e
LLLLL I 7 e
e A B B B B
et A I B I
e 7 7 AN e
e B B R NN
—_—— - _~ 7 ] NN N S S N
11111 ~>~~\ ST
s SNANA A 77 AN ———
————=>N\ A\ [ NS~
————=NA AN
11111 ~NA NS —————|
11111 ~NAL T NS
11111 NN\ TN~
11111 ~NA A N —————
11111 ~SAL AN ——————
111111 ~A Y A N~
" N — _

The solution(s) found are the following

Summary

-1
24
3

X

Figure 41: Slope field plot
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Verification of solutions

B (mz(m + cl)z)%
z(z+c)
Verified OK.
(@ +a)?)? (iV3-1)
v= 2z (z +c1)
Verified OK.
__( (z+ 1) )é (1+4iv/3)
V= 2z (x +c1)
Verified OK.

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 88

Ldsolve(S*x*diff(y(x),x)+y(x)+x‘2*y(x)‘4=O,y(x), singsol=all)

) — ((z+cl)2x2)%
y(@) = (z+aca)z 1
_ (@rare) 1+ ivd)
y(@) = - 2(04a)zx
(@t e)a?) (iVE-1)
y(@) = 2(0+ca)zx
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v/ Solution by Mathematica
Time used: 0.3 (sec). Leaf size: 61

kDSolve [3xx*y' [x]+y [x]+x~2*y[x] “4==0,y[x] ,x,IncludeSingularSolutions -> Truel J

1
v(@) = vV(z+c)
y(@) = - V1
v z(z + c1)
o) »

=2
8
+
9

y(x) =0
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3 Chapter 10, Differential equations. Section 10.4,
ODEs with variable Coefficients. Second order

and Homogeneous. page 318

3.1 problem 10.4.8 (a)
3.2 problem 10.4.8 (b)
3.3 problem 10.4.8 (c)
3.4 problem 10.4.8 (d)
3.5 problem 10.4.8 (e)
3.6 problem 10.4.8 (f)
3.7 problem 10.4.8 (g)
3.8 problem 10.4.8 (h)
3.9 problem 10.4.9 (i)
3.10 problem 10.4.9 (ii)
3.11 problem 10.4.10 .
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3.1 problem 10.4.8 (a)
3.1.1 Solving using Kovacic algorithm . . . . . . ... ... ... ... 234
3.1.2 Maple step by step solution . . . . . ... ... ... 239

Internal problem ID [5064]
Internal file name [OUTPUT/4557_Sunday_June_05_2022_03_00_51_PM_97582610/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients.
Second order and Homogeneous. page 318

Problem number: 10.4.8 (a).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

2(z+1)°y" + (~2* + 1)y + (@~ 1)y =0

3.1.1 Solving using Kovacic algorithm

Writing the ode as

a:(ac+1)2y"+(—a:2+1) y+(xz—-1)y=0 (1)
Ay + By +Cy=0 (2)
Comparing (1) and (2) shows that
A=z(z+1)°
B=-2+1 (3)
C=x-1

Applying the Liouville transformation on the dependent variable gives
2(z) = yel 22 %
Then (2) becomes
2" (z) = rz(z) (4)
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Where r is given by
s
r=-
t
2AB' — 2BA’ + B% — 4AC
4A2

Substituting the values of A, B, C from (3) in the above and simplifying gives

-l
42

Comparing the above to (5) shows that
s=-—1
t = 4x°

Therefore eq. (4) becomes

2z = (-é) o(2)

(5)

(7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-

formation

y=2(@)e fa®

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’1)2a4,6a8)"'} {"'a_6a_4a_2a0,2’3>475a6a"'}
2 Need to have at least one pole that | no condition

3 {1,2} {2,3,4,5,6,7,---}

Table 44: Necessary conditions for each Kovacic case
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The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(0c0) = deg(t) — deg(s)
=2-0
=2
The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x2. There is a pole at = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at oo is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since

pole order is not larger than 2 and the order at oo is 2 then the necessary conditions
for case three are met. Therefore

L=11,2,4,6,12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

1

r=——
42

For the pole at x = 0 let b be the coefficient of xiz in the partial fractions decomposition
of r given above. Therefore b = —i. Hence

[VTle=0

1
aj=§+\/1+4b:

1
O!C_=§—V1+4b=

Since the order of r at co is 2 then [/T] = 0. Let b be the coefficient of Z; in
the Laurent series expansion of r at co. which can be found by dividing the leading
coefficient of s by the leading coefficient of ¢ from

s 1
r=-=———-
t

422
Since the ged(s,¢) = 1. This gives b = —1. Hence
[\/F]oo =0
1
al = +V1+4b=

(1;025—\/1"‘4[):

NI —=N| =

— DN
NN~
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The following table summarizes the findings so far for poles and for the order of r at

oo where r is 1

r=——
42

5
(e}

OQ+
OQ|

pole ¢ location | pole order

0 2 0

N
N =

Order of r at 0o | [\/T]eo | & | a3,

2 0 3

N [ =

Now that the all [1/7]. and its associated o have been determined for all the poles in
the set I and [\/T]« and its associated aX have also been found, the next step is to
determine possible non negative integer d from these using

d= a3 — Z as©

cel

Where s(c) is either + or — and s(oc0) is the sign of aZ. This is done by trial over all
set of families s = ($(c))ceruso until such d is found to work in finding candidate w.
Trying o = % then

Since d an integer and d > 0 then it can be used to find w using

s(c)

w=> <s<c>wﬂc+ = ) + 5(00)[Vke

r —C
cel’

The above gives
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Now that w is determined, the next step is find a corresponding minimal polynomial
p(z) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p'+2wp + (W 4w —r)p=0 (1A)
Let
p(z) =1 (2A)

Substituting the above in eq. (1A) gives
o+2( L)@+ ((-5)+ (1) - (=4)) =0
2z 2x2 2z 412 B

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode 2’ =rz is

zl(x) — pefwdz
— ef idz
=+
The first solution to the original ode in y is found from

f 1 2?41 4o
2 z(z+1)2

_ln(z)
=2z eln(z+1) S

()

n=z+1

Which simplifies to

The second solution - to the original ode is found using reduction of order

ef—%dz
y2:yl/ B} d.’E
Yy

1
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Substituting gives

—z241 de

¢/ T2
Y2 = yl/—2 dz
(1)

e2 In(z+1)—In(x)
(91)2

= y1(In (2))

Therefore the solution is

Y =1y + C2Yo
=ci(z+1) + co(z + 1(In (z)))
Summary

The solution(s) found are the following

y=(@+1)c+c(zr+1)In(z) (1)

Verification of solutions

y=(z+1)c; +cozx+1)In(z)
Verified OK.

3.1.2 Maple step by step solution

Let’s solve
zz+1)"y + (-2 + 1)y + (z - 1)y =0
° Highest derivative means the order of the ODE is 2

7

Y

° Isolate 2nd derivative

n_ _ (z=1l)y (z—1)y’
vy = z(z+1)? + z(z+1)

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

n_ (== (z—1)y __
Y~ ety 1oz =0

U Check to see if xg is a regular singular point

o Define functions
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[PQ(””) =~ D(@) = x(ﬁﬂf}
(z + 1) - Py(z)is analytic at z = —1
(0 + 1) Pla))| =2

(z +1)* - P3(z) is analytic at z = —1

((z+1)*- Py(z)) =2

r=-—1

x = —1is a regular singular point

Check to see if xg is a regular singular point

To=—1

Multiply by denominators

2z +1)"y —(z-1) (e + 1)y +(@-1)y=0

Change variables using x = u — 1 so that the regular singular point is at u =0

(u? = u?) (y(w) + (—u® + 2u) (Ey(w) + (u—2) y(w) = 0

Assume series solution for y(u)
y(u) = > axut*’
k=0

Rewrite ODE with series expansions

Convert u™ - y(u) to series expansion for m = 0..1

[e o]
u™ - y(u) = . apurtrtm
k=0

Shift index using k— >k —m
u™ - y(u) = 3 ap_mutt
k=m
Convert u™ - (£y(u)) to series expansion for m = 1..2

u™ - (%y(u)) — i ak(k + ,,.) uk+r—1+m
k=0

Shift index using k— >k+1—m
u™ - (Ey(w) = X arpem(b+1—m4r)uttr
k=—1+m

Convert u™ - (%y(u)) to series expansion for m = 2..3
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um™ - <dL;y(u)) — kz_:oak(k + ,») (k +r— 1) yktr—2+m

Shift index using k— >k +2—m

u™ - (dd—;y(U)) = Y arpemk+2-—m+r)(k+1—m+r)utt
k=—2+m

Rewrite ODE with series expansions

—ao(=1+7)(=2+7r)u"+ (Z (—ax(b+7—=1) (k+7—2) + a1 (k+7—2)°) uk”) =0

k=1

apcannot be 0 by assumption, giving the indicial equation

—(=147r)(-2+7r)=0

Values of r that satisfy the indicial equation

r e {1,2}

Each term in the series must be 0, giving the recursion relation

—apk+r—1)(k+r—2)+ap1(k+7—-27=0

Shift index using k— >k + 1

—app(k+r)(k+r—1)+ap(k+r—1)°>=0

Recursion relation that defines series solution to ODE

ay (k+r—1)

Ok+1 = k+r

Recursion relation forr =1
_ akk
Ok+1 = Fi1

Solution forr =1

o
y(’u,) = k;oa’kuk_’_l) a/k—l—]. = ;;’L_'_];:|

Revert the change of variablesu = z + 1

0
Yy = kz_:oak(iB + 1)k+1 y A1 = %}

Recursion relation for r = 2

ag (k+1)
k+2

Qg1 =

Solution for r = 2

o0
y(u) _ l;)akuk+2,ak+1 _ ak’gﬁ_—;l):|
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° Revert the change of variablesu =z + 1

y=> ar(z+ 1)k+2 ) Q41 = %]

L k=0

° Combine solutions and rename parameters
v=(Z o+ 0") + (£ bl + 105 s = 8 b = 5
L k=0 k=0

Maple trace Kovacic algorithm successful

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients

checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]

checking if the LODE is missing y

-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful”

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 14

Ldsolve(x*(x+1)“2*diff(y(x),x$2)+(1—x“2)*diff(y(x),x)+(x-1)*y(x)=0,y(x), singsol=all)

y(xz)=(x+1) (c2In(z) + ¢1)

v/ Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 17

e

tDSolve[x*(x+1)‘2*y"[x]+(1-x‘2)*y'[x]+(x-1)*y[x]==0,y[x],x,IncludeSingularSo;ﬁtions -> True]

y(x) = (2 + 1)(c2log(z) + c1)
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3.2 problem 10.4.8 (b)

3.2.1 Solving as second order change of variable on y method 1 ode . 243
3.2.2 Solving as second order change of variable on y method 2 ode . 245

3.2.3 Solving as second order integrable asisode . ... ... .. ..
3.2.4 Solving as type second__order__integrable_as_is (not using ABC
VELSION) . . o o o 249
3.2.5  Solving using Kovacic algorithm . . . . . . .. ... .. ... .. 250
3.2.6 Solving as exact linear second order odeode . . . . . . ... .. 253]
3.2.7 Maple step by step solution . . . .. .. ... ... ... ... 255

Internal problem ID [5065]
Internal file name [OUTPUT/4558_Sunday_June_05_2022_03_00_52_PM_84210290/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients.
Second order and Homogeneous. page 318

Problem number: 10.4.8 (b).

ODE order: 2.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "kovacic", "exact linear second order
ode", "second_ order__integrable_as_is", "second_ order_change of vari-
able_on_y method_1", "second_ order_change_ of variable_ on_y_ method_ 2"

Maple gives the following as the ode type

[[_2nd_order, _exact, _linear, _homogeneous]]

z(l—z)y"+2(1—-2z2)y' —2y=0

3.2.1 Solving as second order change of variable on y method 1 ode

In normal form the given ode is written as

y' +p@)y +q(x)y=0 (2)
Where
(a:) B —4x + 2
PE= iy
2
@ =""pis
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Calculating the Liouville ode invariant ) given by

P
@=9-5-7%
—dzpt2N/ A2\ 2

2 () (=)

-2+ 2 4

(_ 4 (—4w+2)(1—2w)> ((—4m+2)2>

_ 2 U= e ) (@)

-2+ 2 4
2 _<_ 2 _c4x+mu—a@)_(—%+2f

-2+ -2+ 2 (—x2 + x)2 4(—z%+ 1’)2
=0

Since the Liouville ode invariant does not depend on the independent variable z then

the transformation

y = v(z) 2(z)

3)

is used to change the original ode to a constant coefficients ode in v. In (3) the term

z(z) is given by
p(z)
2(z) = e—(f de)

—43-}—2
_ [ =zttz
= e f 2

_ 1
Cx(r—1)

Hence (3) becomes

__v(=)
y_x(x—l)

Applying this change of variable to the original ode results in
—"(z) =0
Which is now solved for v(x) Integrating twice gives the solution
v(x) =z + ¢y
Now that v(z) is known, then

y = v(z) 2(x)
= (a7 + &) (2(2))
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But from (5)

1
(@) = z(x—1)
Hence (7) becomes
_ar + co
V=2 (x—1)
Summary
The solution(s) found are the following
C1T + Co
= == 1
Y=3 (x—1) (1)
Verification of solutions
_ar + co
S z(z—1)

Verified OK.

3.2.2 Solving as second order change of variable on y method 2 ode

In normal form the ode

(-2 +2)y" +(—4z+2)y —2y=0 (1)
Becomes
Y +p(@)y +q(z)y=0 (2)
Where
4 — 2
p(z) = @
9(2) = 3y @=1)

Applying change of variables on the depndent variable y = v(z)z™ to (2) gives the
following ode where the dependent variables is v(x) and not y.

2 -1
@)+ (2 4) v+ (M5 42k ) of) =0 ®)
T T T
Let the coefficient of v(x) above be zero. Hence
-1
1’1,(71—2) + np +q¢g=0 (4)
T T
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Substituting the earlier values found for p(z) and ¢(z) into (4) gives

n(n—1)+n(4a7—2) N 2

=0
x? 22(zx—1) z(z—1)
Solving (5) for n gives
n=-—1
Substituting this value in (3) gives
2 4o — 2
" 4, BWma / _
v (a:)—i—( x—i-x(x_l))v(x) 0
2v'(x)
" —
v'(z) + ——1 0
Using the substitution
u(z) = v'(z)
Then (7) becomes
2u(x)
/ f—
u'(z) + -1 = 0

The above is now solved for u(z). In canonical form the ODE is

v = F(z,u)

= f(z)g(v)
2u
r—1

Where f(z) = —-2; and g(u) = u. Integrating both sides gives

2
d
r—1 v

1 2
/ —du = /— dx
U z—1
In(u)=—2In(zx—1)+¢
—2In(z—1)4c1

1
—du = —
u

u==e
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Now that u(z) is known, then

V' (z) = u(zx)

v(z) = /u(w) dz + c;

Cc

Hence

Summary
The solution(s) found are the following

Verification of solutions

Verified OK.

3.2.3 Solving as second order integrable as is ode
Integrating both sides of the ODE w.r.t z gives
/ (—2*+2)y" + (—4z+2)y — 2y) dz =0
—2z-1y—(®—2)y =0
Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

¥ +p(@)y = q(z)

Where here
(z) = _ 12z
P® z(x—1)
___a
a(w) z(x—1)
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Hence the ode is

, -2y _ o«

r(z—1)  z(x-1)

The integrating factor u is

u= ef_zl(;zﬁ)dx
=z(z—1)

The ode becomes

%(My) = (u) (—ﬁ)
d = (z(z — A
o= 1) = @6 - 1) (~ )
d(yz(z — 1)) = (—¢1) dz
Integrating gives
yr(z —1) = /—cl dz
yr(z — 1) = —c1z + ¢

Dividing both sides by the integrating factor y = z(z — 1) results in

C1 Co
m—1+m(z—1)

Yy=-

which simplifies to

—C1Z + ¢y
z(x—1)

Summary
The solution(s) found are the following

—C1T + ¢
= 1
Y= (x—1) 1)
Verification of solutions
—C1T + C3
y = -
z(x—1)

Verified OK.
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3.2.4 Solving as type second__order__integrable__as__is (not using ABC
version)

Writing the ode as
(~2® +2) ¢ +(~dz+2)y — 2y =0

Integrating both sides of the ODE w.r.t = gives
/ (—2*+2)y" + (—4z+2)y — 2y) dz =0
—2z-1Ny—(2®—2)y =0

Which is now solved for y.

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(x)y = q(2)

Where here
1—-2x
p(z) z(x—1)
Hence the ode is
o (1 - 2:17) ) _ C1

The integrating factor y is

/J’ = e‘f—%dm
=z(zx—1)

The ode becomes

%(N?J) = (w) (—ﬁ)
d C1
e -1) = @6 - 1) (-5 )
d(yz(z — 1)) = (—¢1) dz
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Integrating gives
yr(x —1) = /—01 dz
yr(x — 1) = —c1z + ¢

Dividing both sides by the integrating factor 4 = z(z — 1) results in

C1 Cy
z—1+z(z—1)

y=-

which simplifies to

T+ C
Y= (x—1)
Summary
The solution(s) found are the following
—C1Z + ¢y
=== 1
Verification of solutions
—C1Z + ¢y
Y= —"Fr—"7
z(z—1)

Verified OK.

3.2.5 Solving using Kovacic algorithm

Writing the ode as

(-2 +3)y" + (—4z+2)y —2y=0 (1)
Ay + By +Cy=0 (2)

Comparing (1) and (2) shows that

A=—1’+z
B=—-4x+2 (3)
C=-2

Applying the Liouville transformation on the dependent variable gives
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Then (2) becomes
2"(z) = rz(z)

Where r is given by

s
r=-
t
_ 2AB'—2BA’ + B* — 4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
r= 9
1
Comparing the above to (5) shows that
s=0
t=1
Therefore eq. (4) becomes
2'(x) =0

(4)

(6)

(7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-

formation

y=z(z)e %

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’1)2a4,6a8)"'} {"'a_6a_4a_2a0,2’3>475a6a"'}
2 Need to have at least one pole that | no condition

3 {1,2} {2,3,4,5,6,7,---}

Table 46: Necessary conditions for each Kovacic case
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The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(00) = deg(t) — deg(s)
=0—-—o00
= 00
There are no poles in r. Therefore the set of poles I' is empty. Since there is no odd

order pole larger than 2 and the order at oo is in finity then the necessary conditions
for case one are met. Therefore

=)

Since 7 = 0 is not a function of x, then there is no need run Kovacic algorithm to obtain
a solution for transformed ode z” = rz as one solution is

z(z) =1

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in y is found from

_lﬁ
y1 = zel 2a%

fl 4z+2 dx
= z1e 7 2-2%ta

= zle_ ln(x(x—l))

“a(sw-m)

o
z(x—1)

Which simplifies to

N =

The second solution ys to the original ode is found using reduction of order

ef—%dw
y2:y1/ B dz

n

Substituting gives

f _ —4x42 dx

=
Y2 =1 / ———dx
(yl)

/ e—2ln(x(x—1)) J
=0 | —F 3
(yl)2

= y1(z)
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Therefore the solution is

Y =c1y1 + Y2

~a(ee ) o lee )
Summary

The solution(s) found are the following

C1 &)
= 1
Y x(x—1)+x—1 1)
Verification of solutions
c c
Y= 1 L@

z(x—1) z-1
Verified OK.

3.2.6 Solving as exact linear second order ode ode

An ode of the form

p(x)y" +q(@)y +r(z)y = s(z)

is exact if
p'(z) = ¢(z) +r(z) =0 (1)
For the given ode we have
p(z) = -2+
q(z) = -4z + 2
r(z) = -2
s(z)=0
Hence
/I(:I:) _ _2
q(z) =—4

Therefore (1) becomes

—2— (—4)+(-2) =0
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Hence the ode is exact. Since we now know the ode is exact, it can be written as
(p(@)y + (a(2) — () y) = s(2)
Integrating gives
p@)y + (ale) ~ # @)y = [ s(z) da
Substituting the above values for p, q,r, s gives
(—®+2)y+(1-20)y=01
We now have a first order ode to solve which is

(—®+2)y+(1-20)y=c1

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(@)y = q(z)

Where here
1—2x
Hence the ode is
, (1-22)y ¢

v z(x—1) =_x(x—l)

The integrating factor u is
’u = ef—%d.’t
=z(zx—1)

The ode becomes

%(M?J) = (w) (—ﬁ)
o= 1) =@ - 1) (— )
d(yz(z — 1)) = (—¢1) dz
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Integrating gives
yr(x —1) = /—01 dz
yr(x — 1) = —c1z + ¢

Dividing both sides by the integrating factor 4 = z(z — 1) results in

C1 Cy
z—1+z(z—1)

y=-

which simplifies to

T+ C
Y= (x—1)
Summary
The solution(s) found are the following
—C1Z + ¢y
—_ =T 1
Verification of solutions
—C1Z + ¢y
Y= —"Fr—"7
z(z—1)
Verified OK.
3.2.7 Maple step by step solution
Let’s solve
(—2*+2)y" + (42 +2)y -2y =0
° Highest derivative means the order of the ODE is 2
yll
° Isolate 2nd derivative
"no__ 2y _ 2(2:1)—1):1/
¥y = z(z—1) z(z—1)
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y'+ 2(902(2_—11))?/ + x(ﬁl) =0
O Check to see if xg is a regular singular point

o Define functions
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[Pa(z) = 2220 Py(a) = 2]
x - P»(z)is analytic at z = 0

(¢ Pofa))| =2

z=0

z? - P3(z) is analytic at z = 0

(«*- Ps(z))| =0

=0

x = Ois a regular singular point
Check to see if xg is a regular singular point
To = 0
Multiply by denominators
YV'e(x—1)+ 4z —2)y +2y =0
Assume series solution for y
o0
y = Z akzk—i—r
k=0
Rewrite ODE with series expansions

Convert ™ - 3’ to series expansion for m = 0..1
o

™y = > ap(k +r) ghtr-ltm
k=0

Shift index using k— >k +1—m

™y = > app1m(k+1—m+r)aktT
k=—14+m

Convert ™ - 3" to series expansion for m = 1..2
-y = ap(k+71) (k+7r—1)gktr—2m
k=0

Shift index using k— >k +2—m
mm-y”= Z ak+2_m(k_+_2_m_+_r)(k+1_m+r)xk+r
k=—2+m

Rewrite ODE with series expansions

—aor(1+7)z~ 1" + (Z (—ap1(k+r+1)(k+r+2)+ar(k+r+2)(k+7+1)) xk+r) -0
k=0

apcannot be 0 by assumption, giving the indicial equation
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—r(l4+7r)=0

° Values of r that satisfy the indicial equation
re {-1,0}
° Each term in the series must be 0, giving the recursion relation

(k+r+2)(k+7r+1)(—ags1+ax) =0

° Recursion relation that defines series solution to ODE
ag+1 = Ak
° Recursion relation for r = —1
g1 = Qg
° Solution for r = —1
> E—1
Y= T, apy1 = i
k=0
° Recursion relation forr =0
Ag+1 = Qg
° Solution forr =0

B 0o
_ k _
Y= Z apZ”, Qg+1 = ak:|
k=0

° Combine solutions and rename parameters

Y= (Z akxk_l) + (Z bkxk) y k1 = A, b1 = by
L k=0 k=0

Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]

<- linear_1 successful”
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

Ldsolve(x*(l—x)*diff(y(x),x$2)+2*(1—2*x)*diff(y(x),x)—2*y(x)=0,y(x), singsol=all)

_ar+c

v/ Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 22

LDSolve[x*(l-x)*y"[x]+2*(1-2*x)*y'[x]—2*y[x]==0,y[x],x,IncludeSingularSolutiq#s -> True]

CoX + C1
T — x2

y(z) —
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3.3 problem 10.4.8 (c)

3.3.1 Solving as second order euler odeode . . . . . .. ... ... .. 259
3.3.2 Solving as second order change of variable on x method 2 ode . 260
3.3.3 Solving as second order change of variable on x method 1 ode . 263
3.3.4 Solving as second order change of variable on y method 2 ode . [263l
3.3.5 Solving using Kovacic algorithm . . . . . .. ... ... ..... 2671
3.3.6 Maple step by step solution . . . . ... ... ... L. 272

Internal problem ID [5066]
Internal file name [OUTPUT/4559_Sunday_June_05_2022_03_00_53_PM_83484169/index . tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients.
Second order and Homogeneous. page 318

Problem number: 10.4.8 (c).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_ order_ eu-
ler__ode", "second__order__change_ of variable_on_ x_method_1", "second_ or-
der__change_ of variable on_ x_ method_ 2", "second__order_change_ of vari-

able_on_y_method_ 2"
Maple gives the following as the ode type

[[_Emden, _Fowler], [_2nd_order, _linear, ~_with_symmetry_I[0,F(

x)] 11

22y +2y — 9y =0

3.3.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be y = 2", then ' = rz"~! and
y" = r(r — 1)z" 2. Substituting these back into the given ODE gives

22(r(r—1)z" 2 +arz" ' — 92" =0

Simplifying gives
rr—1Dz"+rz"—92" =0
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Since " # 0 then dividing throughout by z" gives
r(r—=1)+r—-9=0
Or
™ —-9=0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r = —3

To = 3

Since the roots are real and distinct, then the general solution is

Y =1y + Cayo

Where y; = 2™ and y, = ™. Hence

Cl 3
y= 5t
X

Summary
The solution(s) found are the following

_a 3
Y= o + cox (1)
Verification of solutions
c
Yy = —13 + CQ$3
z

Verified OK.

3.3.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

22y + 1y =9 =0 (1)
Becomes
y' +p(@)y +q(x)y =0 2)
Where
1
p(z) = z
q(z) = —%
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Applying change of variables 7 = g(z) to (2) gives

d2

d
o)+ () + () =0 ®
Where 7 is the new independent variable, and

™"(z) + p(z) 7'(2)

= 4
pi(7) (@) (4)
q(z)
= 5
q1(7) - (x)Q ( )
Let p; = 0. Eq (4) simplifies to
™ (z) + p(z) 7' () =0
This ode is solved resulting in
T= /e_(fp(x)dx)da:
_ / o/ 2d2) g
= / e~ @) dg
1
= / —dx
x
= In () (6)
Using (6) to evaluate ¢; from (5) gives
_ q(=)
ql(T) - - (x)Z
3
e
— 9 (7)

Substituting the above in (3) and noting that now p; = 0 results in

d2

ﬁy(T) +quy(T) =0
d2

ﬁy(ﬂ - 9y(T) =0
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The above ode is now solved for y(7).This is second order with constant coefficients
homogeneous ODE. In standard form the ODE is

Ay"(m) + By (1) + Cy(7) = 0

Where in the above A =1, B = 0,C = —9. Let the solution be y(7) = e*". Substituting
this into the ODE gives
MM —9eM =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by e*™ gives
NM—-9=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

—-B 1
=4+ — 2

Substituting A =1, B = 0,C = —9 into the above gives

A

0 1

Ao = + 02 —(4)(1) (-9
=43
Hence
A =43
A= -3
Which simplifies to
A =3
A= -3

Since roots are real and distinct, then the solution is
AoT

y(T) = c1eM + e

y(1) = c1e®7 4 cpeI7

y(T) = 16 + o7
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The above solution is now transformed back to y using (6) which results in

128 + ¢

3

Summary
The solution(s) found are the following

128 + ¢

Verification of solutions

Verified OK.

3.3.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

22y + 2y — 9y =0

Becomes
y' +p)y +q(x)y=0
Where
1
p(z) = o
9
q(z) = )

Applying change of variables 7 = g(x) to (2) results

d? d
ﬁy(’r) + D EQ(T) +qy(r) =0
Where 7 is the new independent variable, and
™ (z) + p(z) 7' (z)
7 (z)*

q(z)
T/ (:B)2

p(r) =

q(r) =
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Let ¢; = ¢® where c is some constant. Therefore from (5)

1
I_
=>4

/=2
= 6
: ©
//: 3
cy/—L a3

Therefore ode (3) now becomes

y(1)" +py(r) + quy(r) = 0
)+ Py(r) = 0 (7

The above ode is now solved for y(7). Since the ode is now constant coefficients, it can
be easily solved to give

y(T) = ¢1 cos (eT) + co sin (e7)

Now from (6)

Substituting the above into the solution obtained gives

y = ¢y cosh (31n (z)) + ice sinh (31n (x))
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Summary
The solution(s) found are the following

y = ¢y cosh (31n (z)) + ice sinh (31n (z)) (1)

Verification of solutions

y = ¢y cosh (31n (z)) + ice sinh (31n (z))
Verified OK.

3.3.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

22y +xy — 9y =0 (1)
Becomes
y' +p(@)y +4q(x)y=0 2)
Where
1
p(z) = o
q(z) = —%

Applying change of variables on the depndent variable y = v(z)z™ to (2) gives the
following ode where the dependent variables is v(x) and not y.

2n n(n—1) np
" = / N T o —
v(x)+(x+p)v(x)+< . +x+q)v(x) 0 (3)
Let the coefficient of v(x) above be zero. Hence
nn—1) np

2 +?+q=0 (4)

Substituting the earlier values found for p(z) and ¢(z) into (4) gives

+ o= (5)

Solving (5) for n gives
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Substituting this value in (3) gives

v (z) + W) _ 0
v"(z) + i) =0
x
Using the substitution
u(z) = v'(z)
Then (7) becomes
o' (z) + 7u:£x) =0

The above is now solved for u(z). In canonical form the ODE is

v = F(z,u)

= f(z)g(u)
_Tu

oz
Where f(z) = —Z and g(u) = u. Integrating both sides gives

1du:—zdau

/ du—/——dx

(u)==Tln(z) +

u = e—7ln(w)+cl

Now that u(z) is known, then

266

(7)

(®)



Hence

y=v(z)z
C1 3
= (gt )
620 — ¢
623

Summary
The solution(s) found are the following

Verification of solutions

Verified OK.

3.3.5 Solving using Kovacic algorithm
Writing the ode as

2y +xy — 9y =0
Ay + By +Cy=0

Comparing (1) and (2) shows that

A=2?
B=x
C=-9
Applying the Liouville transformation on the dependent variable gives
2(z) = yel 22
Then (2) becomes
2"(z) = rz(z)
Where 7 is given by
s
r=-
t
2AB' —2BA’ + B? — 4AC
4A?

267

(1)
(2)

3)

(5)



Substituting the values of A, B, C from (3) in the above and simplifying gives

_®
42
Comparing the above to (5) shows that
s=235
t = 4x?

Therefore eq. (4) becomes

2'(z) = (%) z(z)

(7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-

formation

y=z(@)e %

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1, 2, 5}.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’1’274,6a8>"'} {"'7_67_47_270,2’37475,6a"'}
2 Need to have at least one pole that | no condition

3 {1,2} {2,3,4,5,6,7,"'}

Table 48: Necessary conditions for each Kovacic case

The order of r at co is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=2-0
=2
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The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x2. There is a pole at = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at co is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since
pole order is not larger than 2 and the order at oo is 2 then the necessary conditions
for case three are met. Therefore

L=][1,2,4,6,12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

_®
T 42

For the pole at z = 0 let b be the coefficient of m% in the partial fractions decomposition

of r given above. Therefore b = %. Hence

[\/F]C:O
aj=%+\/1+4b:;
ac_:%—\/1+4b:—§

Since the order of r at co is 2 then [/T]c = 0. Let b be the coefficient of Z; in
the Laurent series expansion of r at co. which can be found by dividing the leading
coefficient of s by the leading coefficient of ¢ from

s
ot 4x2

Since the ged(s, t) = 1. This gives b = 22. Hence
[\/;]oo =0
1
ol =-+V1+4b= !

2 2
a;o:%— 1+4b:—g

The following table summarizes the findings so far for poles and for the order of r at

h .
o0 where 7 18 35

r=—
42
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pole ¢ location | pole order | [/7]. | af | «

o

0 2 0o | I |-

N[Ot

Order of 7 at 00 | [V/T]eo | O | @

2 HHE

Now that the all [/7]. and its associated o have been determined for all the poles in
the set I and [\/T] and its associated aX have also been found, the next step is to

determine possible non negative integer d from these using

d= aig‘x’) — Z az(")

cel

Where s(c) is either + or — and s(oc0) is the sign of aZ. This is done by trial over all
set of families s = ($(c))ceruso until such d is found to work in finding candidate w.

Trying oy, = —32 then
d=og — (o)
5 5
2 2
=0
Since d an integer and d > 0 then it can be used to find w using

ai(c)
_C) +5(00)[Vrlo

X

w=) <s(c)[\/ﬂc +

cel’

The above gives

o= (WA + 225 ) + OVl

&1

Now that w is determined, the next step is find a corresponding minimal polynomial
p(z) of degree d = 0 to solve the ode. The polynomial p(z) needs to satisfy the equation

p'+2wp + (W 4w —r)p=0
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Let
p(z) =1 (24)
Substituting the above in eq. (1A) gives

020+ () (2 -() -

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode 2" =rzis

251(27) :pefwda:
:ef—%dac
1

5
xTr2

The first solution to the original ode in y is found from

1B
Y1 = zlef_ﬁidx

Which simplifies to
Y1 = 3

The second solution - to the original ode is found using reduction of order

ef—%dz
y2=yl/ D) dz
Y

1

/ ef—x%dm p
Y2=1U — 5 ar
(y1)2

—In(z)

e

=Y / —2d17
(y1)

n(3)
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Therefore the solution is

Y =1y + C2yo
1 N 1 /25
= C _— C JR— JR—
1\ 3 2\z3\ 6
Summary

The solution(s) found are the following

— hCindl 1
y=3+"% (1)
Verification of solutions
_a | o
y 3 6

Verified OK.

3.3.6 Maple step by step solution

Let’s solve

2y +xy =9 =0

° Highest derivative means the order of the ODE is 2
Y
° Isolate 2nd derivative
Y=+
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
R
° Multiply by denominators of the ODE
22y +zy — 9y =0
° Make a change of variables
t =In(z)

OJ Substitute the change of variables back into the ODE

o Calculate the 1st derivative of y with respect to x , using the chain rule
v = (gy(®))t'(2)
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o Compute derivative

’_ %y(t)
-z

o Calculate the 2nd derivative of y with respect to x , using the chain rule
2
v = () t@) + (@) (Su(t)
o Compute derivative

d2 d
" _ dT2y(t) _ Zy()
Yy = "2 2

Substitute the change of variables back into the ODE

o Lut) 4y d
o2 (a2 _ @O ) | dyy gy(t) =0

T x2
Simplify
amy(t) = %y(t) =0
Characteristic polynomial of ODE
2 —-9=0
Factor the characteristic polynomial
(r—=3)(r+3)=0
Roots of the characteristic polynomial
r=(-3,3)
1st solution of the ODE
yi(t) = e
2nd solution of the ODE

Yo(t) =

General solution of the ODE

y(t) = c1yn(t) + capa(t)

Substitute in solutions

y(t) = cre™3t + cpe¥t

Change variables back using ¢ = In ()
=% 4 cpa?

Simplify

y:%‘FCQ-’L'?’
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Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
checking if the LODE is of Euler type

<- LODE of Euler type successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

Ldsolve(x‘2*diff(y(x),x$2)+x*diff(y(x),x)-Q*y(x)=0,y(x), singsol=all) J
6
C2x” + ¢
y(:L‘) = T

v/ Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 18

LDSolve [x~2xy' ' [x]+x*y' [x]-9*y[x]==0,y[x],x,IncludeSingularSolutions -> True] J

ez + ¢

y(z) —

3
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3.4 problem 10.4.8 (d)

3.4.1 Solving as second order change of variable on x method 2 ode . 273
3.4.2 Solving as second order change of variable on x method 1 ode . 278

3.4.3 Solving as second order bessel odeode . . ... ... ... ... 280
3.4.4 Solving using Kovacic algorithm . . . . . ... ... ... .... 2811
3.4.5 Maple step by step solution . . . . . ... ...,

Internal problem ID [5067]
Internal file name [OUTPUT/4560_Sunday_June_05_2022_03_00_54_PM_41197975/index.tex|

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients.
Second order and Homogeneous. page 318

Problem number: 10.4.8 (d).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__bessel__ode",
"second__order__change_of variable_on_x method_ 1", "second_ order__change_ of vari-
able__on_ x_method_ 2"

Maple gives the following as the ode type

[[_Emden, _Fowler], [_2nd_order, _linear, ~_with_symmetry_[0,F(
x)1°1]
y/
zy” + g +2y=0

3.4.1 Solving as second order change of variable on x method 2 ode

In normal form the ode

/

wy”+y5+2y=0 (1)
Becomes
y' +p)y +q(x)y=0 (2)
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Where

Applying change of variables 7 = g(z) to (2) gives

d2

729(7) +p1 (%y(f)) + quy(7) = (3)

Where 7 is the new independent variable, and

() = LR o
nir) = 25, ®)

Let p; = 0. Eq (4) simplifies to
™ (z) + p(z) 7' () =0

This ode is solved resulting in

_In(z)
/ e 2 dx

1
2z ©
Using (6) to evaluate ¢; from (5) gives
R (C))
@(7) 72_, (x)2
= 2z (7)
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Substituting the above in (3) and noting that now p; = 0 results in
d2
ﬁy(T) +qy(r) =0
2

5u(r) + 2y(r) =0

The above ode is now solved for y(7).This is second order with constant coefficients
homogeneous ODE. In standard form the ODE is

Ay"(T) + By (1) + Cy(7) =0

Where in the above A =1, B =0,C = 2. Let the solution be y(7) = e*". Substituting
this into the ODE gives
MM 428 =0 (1)

Since exponential function is never zero, then dividing Eq(2) throughout by €™ gives
M+2=0 (2)

Equation (2) is the characteristic equation of the ODE. Its roots determine the general
solution form.Using the quadratic formula

-B 1
= — —_— 2 _
A12 54 T3 Av B? —4AC
Substituting A =1, B = 0,C = 2 into the above gives
0 1

Na= ot mmVP @O0
= +iv/2
Hence

A = +iV2
Ay = —ivV/2

Which simplifies to
A = iv/2
Ao = —iV/2

Since roots are complex conjugate of each others, then let the roots be

)\1,2 = a:i:zﬂ
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Where a = 0 and 8 = /2. Therefore the final solution, when using Euler relation, can
be written as

y(1) = e (¢ cos(BT) + ¢ sin(B7))

Which becomes
y(r) = €° <01 cos (\/5 T) + cpsin (\/57-))

y(T) = ¢1 cos (\/§ 7') + ¢y sin (\/57-)

The above solution is now transformed back to y using (6) which results in

Y = ¢, COS (2\/5 \/§> + cy8in (2\@ \/E>

Summary
The solution(s) found are the following

Y = c1 COS (2\/5 \/9_3> + c2 sin (2\/i \/3_5) (1)

Verification of solutions

Y = €1 COS (2\/5 \/a_3> + ¢y sin (2\/5 \/a_v)

Verified OK.

3.4.2 Solving as second order change of variable on x method 1 ode

In normal form the ode

xy”+%l+2y:0 (1)
Becomes
y' +p(@)y +4q(x)y =0 (2)
Where
p(z) = %
2
q(z) = z
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Applying change of variables 7 = g(x) to (2) results
d2

dr? dr

Where 7 is the new independent variable, and

7"(z) + p(x) 7' ()
T/ (ac)2

p(r) =

a(r) = q(z)

T) =
7 (2)*
Let q; = ¢® where c is some constant. Therefore from (5)
1
/
r
c va
2

~Va
V2

Therefore ode (3) now becomes

y(r)" +py(r) + qy(r) =0

~y(r) + Py(r) =0

—y(7) + m <iy(f)) +qy(t) =0

3)

(5)

(6)

(7)

The above ode is now solved for y(7). Since the ode is now constant coefficients, it can

be easily solved to give

y(T) = ¢1 cos (cT) + cosin (cT)
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Now from (6)

Substituting the above into the solution obtained gives
Y = 1 COS (2\/5 ﬁ) + cysin <2\/§ \/E)

Summary
The solution(s) found are the following

Y = ¢ cos (2\@ \/5> 4 ¢y sin (2\/5 \/§>

Verification of solutions

Y = ¢ cos (2\@ \/5> 4 ¢y sin (2\/5 \/§>

Verified OK.

3.4.3 Solving as second order bessel ode ode

Writing the ode as
?y" + %yl +2zy =0
Bessel ode has the form
2y +zy + (—n*+ %) y=0
The generalized form of Bessel ode is given by Bowman (1958) as the following
2’y + (1 —2a)zy + (272" —n*¥* +a®)y=0
With the standard solution

y = z%(cy BesselJ (n, Bx7) + c2 BesselY (n, 27))
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Comparing (3) to (1) and solving for a, 8, n,y gives

1
“T %
B=2v2
1
"=3
1
7=

Substituting all the above into (4) gives the solution as
c1z4 sin (2\/§ \/E) CoT 1 COS (2\/§ \/g_v)
y= -

VT V2V VT V2T
Summary

The solution(s) found are the following
ci21 sin (2v2 /) CoT 1 COS (2v2 /) 1)
y= -
VTA[V2 T VTAIV2E
Verification of solutions

)= c121 sin (2\/§ \/5) B CoT 1 COS (2\/§ \/5)

VTA\[V2VE VTAV2VE

Verified OK.

3.4.4 Solving using Kovacic algorithm

Writing the ode as

:vy”+y§/+2y=0 (1)
Ay"+By' +Cy=0 (2)
Comparing (1) and (2) shows that
A=z
1
B = 2 (3)
Cc=2
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Applying the Liouville transformation on the dependent variable gives
Then (2) becomes

Where r is given by

S

r=-—

t

2AB' —2BA' + B? — 4AC
4A?

Substituting the values of A, B, C from (3) in the above and simplifying gives

—-32z — 3
r=-——
1622
Comparing the above to (5) shows that
s=—-32x —3
t = 162

Therefore eq. (4) becomes

2z = (%) o(2)

(4)

(5)

(6)

(7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-

formation

y=zz)e )

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.
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Case | Allowed pole order for r Allowed value for O(oc0)

1 {Oa17274a6a87"'} {'"7_67_47_27072a3747576a"'}

2 Need to have at least one pole that | no condition
is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {273a4a57677a"'}

Table 50: Necessary conditions for each Kovacic case

The order of r at oo is the degree of ¢t minus the degree of s. Therefore
O(00) = deg(t) — deg(s)
=2-1
=1
The poles of r in eq. (7) and the order of each pole are determined by solving for the

roots of ¢t = 16x2. There is a pole at z = 0 of order 2. Since there is a pole of order 2
then necessary conditions for case two are met. Therefore

L=

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

2 3

T 16x2

For the pole at x = 0 let b be the coefficient of xiz in the partial fractions decomposition

of r given above. Therefore b = —13—6. Hence
E.={2,2+2V1+4b,2 — 2v/1 + 4b}
={1,2,3}

Since the order of r at oo is 1 < 2 then

E. = {1}
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The following table summarizes the findings so far for poles and for the order of r at
oo for case 2 of Kovacic algorithm.

pole ¢ location | pole order E.

0 2 {1,2,3}

Order of r at oo | Fo
1 {1}

Using the family {ej, e, ..., ex} given by

e1=1,e,=1

Gives a non negative integer d (the degree of the polynomial p(z)), which is generated

d=%<ew—zec>

using

) cel
= (11— )
=0

We now form the following rational function

1 €c
0=32 7

cel’

“2(e=o)

1
2z

Now we search for a monic polynomial p(z) of degree d = 0 such that
" +360p" + (30 + 3¢ —4r)p' + (0" + 300" +6° —4rf —2r') p=10 (1A)

Since d = 0, then letting
p=1 (2A)

Substituting p and 0 into Eq. (1A) gives

And solving for p gives
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Now that p(z) is found let

Let w be the solution of
1 1
W—gw+ (¢ +¢*—7) =0
2 2
Substituting the values for ¢ and r into the above equation gives

2 w1432z
v T

Solving for w gives

L1 +4v2+/—x
B 4z

Therefore the first solution to the ode 2" = rz is

7 (x) =el“d

—e I 1'*'4\4[721\/—7@ dz
= x%e2\/§\/jw
The first solution to the original ode in y is found from

_1B
Y1 = zlef 2ade

Which simplifies to

vy = 62\/5‘/_7

The second solution - to the original ode is found using reduction of order

ef_%dz
Yo = yl/ D) dz
Yy

1
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Substituting gives
ef _% dz

(y1)2

3_#
Y et
(yl)

V2/—x (—1 + e‘4‘/§‘/j’”>
= 4z

Y2 =1 dx

Therefore the solution is

Y =1y + C2yo

V2+y/—z (—1 + e_4ﬁ\/j”)
4z

=C (ezﬁ\/j“) + ¢ e2‘/§‘/jm

Summary
The solution(s) found are the following

/2 /=2 (ewwfz _ e—z\/ﬁ\/—?)
- 4/

VoW =

y = ce?

1)

Verification of solutions

i VYT (et
y=ae N 4z

Verified OK.

3.4.5 Maple step by step solution

Let’s solve

Y'z+YL +2=0

° Highest derivative means the order of the ODE is 2
yll
° Isolate 2nd derivative
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!
n_ _y 2
Yy = 2 x

Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
Y+ L+ =
Check to see if xg = 0 is a regular singular point

Define functions
[P2(z) = o5, Ps(@) = ]

z - Py(x) is analytic at z = 0

(z - Py(z))

_1
=0 2

z? - P3(z) is analyticat z = 0

(«* - Py(z))

z=0
x = Qis a regular singular point
Check to see if o = 0 is a regular singular point
zo=0
Multiply by denominators
2y"r+4y+y =0
Assume series solution for y
I
k=0
Rewrite ODE with series expansions

Convert y' to series expansion

o)

y’ = kZ: ak(k + 1") £I7k+r_1
=0

Shift index using k— >k + 1
v = ap(k+1+7)aktr
k=—1

Convert x - y” to series expansion

[e )

gy = ap(k+r)(k+r—1)zkt1
k=0

Shift index using k— >k + 1
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-y = 3 app(k+1+7)(k+7r)z*tr
k=1

Rewrite ODE with series expansions
aor(—=1+2r) =17 + (Z (agr1(k+1+7)(2k + 1+ 2r) + 4ay) x’“‘“‘) =0
k=0

apcannot be 0 by assumption, giving the indicial equation

r(=1+2r)=0
Values of r that satisfy the indicial equation
re{0,1}

Each term in the series must be 0, giving the recursion relation
2(k+3+7)(k+147)ap +4a,=0

Recursion relation that defines series solution to ODE

a _ 4ay,
k+1 = 7 @k+1+2r) (k+147)

Recursion relation forr =0

— _ dag
k+1 = ~ 2kt (k+ 1)

Solution forr =0

o0
_ k _ 4ay
Y= ankx y Ql+1 = —(2k+1)(k+1):|
Recursion relation for r = %
4ay
Qhil = — gy b3y
+ (2k+2) (k+3)
Solution for r = 1
_ - " )
= 2 = — Ak
o
y kz=0 kT2, Akt1 @k+2) (k+3)

Combine solutions and rename parameters

o0 oo
_ k k+1 _ 4 _ 4b
y= <kz=0 axT ) + <k§0 b 2) » Qk+1 = _(2k+1§?k+1)’bk+1 = _(2k+2)?k+§)
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Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 27

Ldsolve(x*diff (y(x),x$2)+1/2%diff (y (x) ,x)+2*y (x)=0,y(x), singsol=all) J

y(z) = ¢y sin (2\/5 \/5) + ¢y cos (2\/5 \/§>

v/ Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 38

LDSolve[x*y"[x]+1/2*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True] J

y(x) — ¢, cos (2\/§\/E> + ¢y 8in (2\/2/5)
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3.5 problem 10.4.8 (e)
3.5.1 Solving as second order euler odeode . . . . . .. ... ... .. 207
3.5.2 Solving as second order change of variable on x method 2 ode . 292
3.5.3 Solving as second order change of variable on x method 1 ode . [294
3.5.4 Solving as second order change of variable on y method 2 ode .
3.5.5 Solving as second order ode non constant coeff transformation

onBode ... ... . ... 298]
3.5.6 Solving using Kovacic algorithm . . . . . . ... ... ... ... 300
3.5.7 Maple step by step solution . . . . .. ... ... ... .. ...

Internal problem ID [5068]
Internal file name [OUTPUT/4561_Sunday_June_05_2022_03_00_55_PM_87042529/index.tex|

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients.
Second order and Homogeneous. page 318

Problem number: 10.4.8 (e).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order__eu-
ler__ode", "second__order_ change_of variable on_ x method_ 1", "second_ or-
der__change_ of variable on_ x_ method_ 2", "second__order_change_ of vari-
able_on_y_method_ 2", "second__order__ode_non_ constant__coeff trans-

formation__on_ B"

Maple gives the following as the ode type

[[_Emden, _Fowler]]

mzy"—xy’—l—y:O
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3.5.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be y = z", then 3’ = ra"! and
y" = r(r — 1)z" 2. Substituting these back into the given ODE gives

2(r(r—1))z" 2 —zra" ' 4+2" =0

Simplifying gives
rr—Dz"—rz"+2"=0

Since " # 0 then dividing throughout by z" gives
rir—1)—r+1=0

Or
r—2r+1=0 (1)

Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

7"1:1

ro =1
Since the roots are equal, then the general solution is
Yy =ciy + 2y
Where y; = 2" and yo = 2" In (z). Hence

y=c1z + coxln ()

Summary
The solution(s) found are the following

y=c1z + coxln (x) (1)

Verification of solutions

y =1z + coxIn ()

Verified OK.
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3.5.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

Becomes

Where

2

Y’ —zy +y=0

p(z) = —%
q(z) = iz

Applying change of variables 7 = g(z) to (2) gives

d2

o)+ (o)) + () =0

Where 7 is the new independent variable, and

p(r) =

q(r) =

Let p; = 0. Eq (4) simplifies to

This ode is solved resulting in

7'(z) +p(z) 7'(z) = 0

7"(z) + p(z) 7' (2)

' (ar;)2

q(z)

TI

()*
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Using (6) to evaluate ¢; from (5) gives

(7)

Substituting the above in (3) and noting that now p; = 0 results in

d—zy(T) +qy(t) =0

dr?
d? y(7)
eV + T =0
But in terms of 7
1_1
Tt 472
Hence the above ode becomes
d2
@ ¥(1) _y

dT2y(T) + 472

The above ode is now solved for y(7). The ode can be written as

4(dd—:2y(7')> ?+y(r) =0

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be
y(t) = 77, then ¥ = r7"~! and 3’ = r(r — 1)77~2. Substituting these back into the
given ODE gives

47%(r(r — )T 2+ 0rr 7" =0

Simplifying gives
4r(r—1)7"+07"4+7" =0

Since 7" # 0 then dividing throughout by 7" gives

4r(r—1)+0+1=0

4 —4r4+1=0 (1)
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Equation (1) is the characteristic equation. Its roots determine the form of the general
solution. Using the quadratic equation the roots are

r =

NI —=N|—

ro =
Since the roots are equal, then the general solution is
y(1) = ayr + c2ye
Where y; = 7" and y» = 7" In (7). Hence
y(1) = aiv/T + cav/T In (1)
The above solution is now transformed back to y using (6) which results in

_ zv2 (c; + 2¢;In (z) — c21In (2))
2

Y

Summary
The solution(s) found are the following

_ zv/2 (c; + 2¢, 1r21 () — c21n (2)) (1)

Y

Verification of solutions

V2 (c1 + 2¢2In (z) — coIn (2))
2

y frd
Verified OK.

3.5.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

2y —ay' +y=0 (1)
Becomes
y' +p(@)y +a(z)y=0 2)
Where
p(z) = T
q(z) = %
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Applying change of variables 7 = g(x) to (2) results
d2

7,29(7) +p1 <%y(7)) +qy(r) =0 (3)

Where 7 is the new independent variable, and

p(r) = T @
nir) = 20 ®)

Let q; = ¢® where c is some constant. Therefore from (5)

Ve
= \/z:z (6)

Substituting the above into (4) results in

m"(z) + p(z) 7' (2)

T) =
pl( ) - (17)2
1 a1/
c w%x3 T c
= = 5
22
()

Therefore ode (3) now becomes
y(m)" +py(r) + quy(r) =0
d2

o) = 2e( 00 ) + () =0 )

The above ode is now solved for y(7). Since the ode is now constant coefficients, it can
be easily solved to give

y(t) =€"¢;
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Now from (6)
1
T = / E\/ﬁdw

IRVET%
:T

\/ 2 zn(z)
=
Substituting the above into the solution obtained gives

Yy=cz

Summary
The solution(s) found are the following

y=ocz (1)
Verification of solutions

Y=z
Verified OK.

3.5.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

2y’ —xy +y=0 (1)
Becomes
y' +p(@)y +q(z)y=0 (2)
Where
1
p(z) = Tz
q(z) = %

Applying change of variables on the depndent variable y = v(z)z™ to (2) gives the
following ode where the dependent variables is v(z) and not y.

o'(z) + (2?” + p) o' (z) + (% +2 q) o(@) = 0 3)
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Let the coefficient of v(z) above be zero. Hence

n(n —1 n
%_F_p_kq:()
T T

Substituting the earlier values found for p(x) and ¢(z) into (4) gives

nn—1) n 1

2 gV
Solving (5) for n gives
n=1
Substituting this value in (3) gives
/
v (z) + /) _ 0
T
v'(x)
i
=0
() + 2
Using the substitution
u(z) = v'(x)
Then (7) becomes
u'(z) + @ =0

The above is now solved for u(z). In canonical form the ODE is
v = F(z,u)
= f(z)g(u)
u

T

Where f(z) = —1 and g(u) = u. Integrating both sides gives

1 1
—du=——dx
U x

/lduz/—ldx
u x

In(u) =—-In(z)+ ¢

u=e" In(z)4c1

C1
T
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Now that u(z) is known, then
V' (z) = u(z)

v(z) = /u(m) dz + c;

Hence

Summary
The solution(s) found are the following

y=(cln(x)+c)z (1)

Verification of solutions

y=(c1ln(z)+e)z
Verified OK.

3.5.5 Solving as second order ode non constant coeff transformation on B
ode

Given an ode of the form
Ay" + By’ + Cy = F(z)
This method reduces the order ode the ODE by one by applying the transformation
y= Bv
This results in
v =Bv+vB
y'=B"v+ Bv +v"B+vB
=v"B+2v' + B'+ B"v
And now the original ode becomes

A(W"B+ 2v'B'+ B"v) + B(B'v+v'B) + CBv =0
ABv" + (2AB' + B*)v' + (AB"+ BB'+ CB)v =0 (1)
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If the term AB” + BB’ + CB is zero, then this method works and can be used to solve
ABv" + (2AB'+ B*)v' =0

By Using u = v’ which reduces the order of the above ode to one. The new ode is
ABY + (2AB'+ B*)u =0

The above ode is first order ode which is solved for u. Now a new ode v’ = u is solved

for v as first order ode. Then the final solution is obtain from y = Bw.

This method works only if the term AB” + BB’ + CB is zero. The given ODE shows
that

A= z?
B=—=x
Cc=1
F=0

The above shows that for this ode
AB"+ BB 4+ CB = (%) (0) + (—z) (-1) + (1) (—=)
=0

Hence the ode in v given in (1) now simplifies to
—z" 4+ (—2%) v =0
Now by applying v’ = u the above becomes
—z*(W(z) z +u(z)) =0
Which is now solved for u. In canonical form the ODE is
v = F(z,u)
= f(z)g(u)

U

x
Where f(z) = —1 and g(u) = u. Integrating both sides gives

1 1
—du=——dx
U x

/lduz/—ldx
u x

In(u) =—-In(z)+ ¢

u=e In(z)4c1

C1
T
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The ode for v now becomes

vV =u
_a
oz
Which is now solved for v. Integrating both sides gives
C1
= —=d
v(x) / e
=cln(x) + ¢
Therefore the solution is

y(x) = Bv

= (—z) (c1In(z) + ¢2)

=—(cgln(z)+c)x

Summary
The solution(s) found are the following

y=—(c1ln(z)+c)x

Verification of solutions

y=—(ciln(z)+c))x

Verified OK.

3.5.6 Solving using Kovacic algorithm

Writing the ode as

x2y”—xy'+y=0
Ay + By +Cy=0

Comparing (1) and (2) shows that

A =12
B=—z
Cc=1

Applying the Liouville transformation on the dependent variable gives

2(z) = yel 22 %
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Then (2) becomes
2" (z) = rz(z)

Where r is given by

s
r=-
t
_ 2AB' —2BA' 4+ B? — 4AC
B 4A2
Substituting the values of A, B, C from (3) in the above and simplifying gives
po L
42
Comparing the above to (5) shows that
s=-—1
t = 42°

Therefore eq. (4) becomes

2z = (—é) o(2)

(4)

(5)

(6)

(7)

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-

formation

y=z(z)e %

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’1)2a4,6a8)"'} {"'a_6a_4a_2a0,2’3>475a6a"'}
2 Need to have at least one pole that | no condition

3 {1,2} {2,3,4,5,6,7,---}

Table 52: Necessary conditions for each Kovacic case
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The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(0c0) = deg(t) — deg(s)
=2-0
=2
The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = 4x2. There is a pole at = 0 of order 2. Since there is no odd order pole
larger than 2 and the order at oo is 2 then the necessary conditions for case one are met.
Since there is a pole of order 2 then necessary conditions for case two are met. Since

pole order is not larger than 2 and the order at oo is 2 then the necessary conditions
for case three are met. Therefore

L=11,2,4,6,12]

Attempting to find a solution using case n = 1.

Looking at poles of order 2. The partial fractions decomposition of r is

1

r=——
42

For the pole at x = 0 let b be the coefficient of xiz in the partial fractions decomposition
of r given above. Therefore b = —i. Hence

[VTle=0

1
aj=§+\/1+4b:

1
O!C_=§—V1+4b=

Since the order of r at co is 2 then [/T] = 0. Let b be the coefficient of Z; in
the Laurent series expansion of r at co. which can be found by dividing the leading
coefficient of s by the leading coefficient of ¢ from

s 1
r=-=———-
t

422
Since the ged(s,¢) = 1. This gives b = —1. Hence
[\/F]oo =0
1
al = +V1+4b=

(1;025—\/1"‘4[):

NI —=N| =

— DN
NN~

302



The following table summarizes the findings so far for poles and for the order of r at

oo where r is 1

r=——
42

5
(e}

OQ+
OQ|

pole ¢ location | pole order

0 2 0

N
N =

Order of r at 0o | [\/T]eo | & | a3,

2 0 3

N [ =

Now that the all [1/7]. and its associated o have been determined for all the poles in
the set I and [\/T]« and its associated aX have also been found, the next step is to
determine possible non negative integer d from these using

d= a3 — Z as©

cel

Where s(c) is either + or — and s(oc0) is the sign of aZ. This is done by trial over all
set of families s = ($(c))ceruso until such d is found to work in finding candidate w.
Trying o = % then

Since d an integer and d > 0 then it can be used to find w using

s(c)

w=> <s<c>wﬂc+ = ) + 5(00)[Vke

r —C
cel’

The above gives
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Now that w is determined, the next step is find a corresponding minimal polynomial
p(z) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p'+2wp + (W 4w —r)p=0 (1A)
Let
p(z) =1 (2A)

Substituting the above in eq. (1A) gives
o+2( L)@+ ((-5)+ (1) - (=4)) =0
2z 2x2 2x 412 B

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode 2’ =rz is

21(z) = pel “*

:efidz
=+

The first solution to the original ode in y is found from

B
Y1 = zlef zade
:Zle_f%;;dx

Which simplifies to
h1=17

The second solution s to the original ode is found using reduction of order

ef _% dz
Y2 = yl/ 2 dz
Y1
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Substituting gives

/ ef—;—;dz p
Y2 ="MW — 5 ar
(y1)2

eln(z)
= 31(In (2))

Therefore the solution is

Y =cay+ Yo
= ¢1(z) + c2(z(In (z)))

Summary
The solution(s) found are the following

y=c1z + coxln () (1)

Verification of solutions

y=cz+czln(z)
Verified OK.

3.5.7 Maple step by step solution

Let’s solve

332y”—acy’+y= 0

° Highest derivative means the order of the ODE is 2

1

Y

° Isolate 2nd derivative

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y'— L 4 L=

T 2 T
° Multiply by denominators of the ODE

ny//_xy/_'_y: 0

° Make a change of variables
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t=In(z)

Substitute the change of variables back into the ODE

Calculate the 1st derivative of y with respect to x , using the chain rule
y = (4y()t'(2)

Compute derivative
y/ _ %?J(t)
Calculate the 2nd derivative of y with respect to x , using the chain rule
g
2
v = (Gy(®) (@) + (@) ($u(t))

Compute derivative

d2 d
n_ 42¥®) @@
-z 2

Substitute the change of variables back into the ODE

o S Ly 4

Simplify

() = 25y(t) +y(t) =0
Characteristic polynomial of ODE
r2—2r+1=0

Factor the characteristic polynomial
(r—1°=0

Root of the characteristic polynomial
r=1

1st solution of the ODE

() =€

Repeated root, multiply y;(¢) by t to ensure linear independence
yo(t) = te

General solution of the ODE

y(t) = c1pa(t) + cay(t)

Substitute in solutions

y(t) = c1e’ + cot €t
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o Change variables back using ¢t = In (z)
y=c1z+ coxln ()

° Simplify
y=2z(caln(z) + 1)

Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
checking if the LODE is of Euler type

<- LODE of Euler type successful”

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

-

Ldsolve(x‘2*diff(y(x),x$2)—x*diff(y(x),x)+y(x)=0,y(x), singsol=all)

-/

y(z) = z(czIn (z) + ¢1)

v Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 15

LDSolve[x‘2*y"[x]—x*y'[x]+y[x]== ,y[x],x,IncludeSingularSolutions -> True] J

y(z) = z(cylog(x) + ¢1)
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3.6 problem 10.4.8 (f)

3.6.1 Solving as second order bessel odeode . . . . . ... ... ... 308]
3.6.2 Solving using Kovacic algorithm . . . . . . ... ... ... ... 309
3.6.3 Maple step by step solution . . . ... ... ... ... ... .. [314]

Internal problem ID [5069]
Internal file name [OUTPUT/4562_Sunday_June_05_2022_03_00_56_PM_86182655/index . tex|

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients.
Second order and Homogeneous. page 318

Problem number: 10.4.8 ().

ODE order: 2.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "kovacic", "second__order__bessel__ode"

Maple gives the following as the ode type

[[_Emden, _Fowler]]

2y’ —y' +2y=0

3.6.1 Solving as second order bessel ode ode

Writing the ode as

/

ny//_%_l_xy:O (]_)
Bessel ode has the form
2y +zy + (—n*+2*)y =0 (2)

The generalized form of Bessel ode is given by Bowman (1958) as the following
2’y + (1 —2a) zy + (B*7°2* —n*¥* +a?)y =0 (3)
With the standard solution

y = 2%(c1 BesselJ (n, Bz7) + c2 BesselY (n, f27)) 4)

308



Comparing (3) to (1) and solving for a, 8, n,y gives

3
“=3
B=2

3
n=3

1
=3

Substituting all the above into (4) gives the solution as

__a (2cos (24/z) v/z —sin (24/Z)) e (2sin (24/z) \/z + cos (2y/7))
2/ 2/

Summary
The solution(s) found are the following

_ @ (2cos (2¢/z) /z —sin (24/7)) o (2sin (2¢/7) v/ + cos (24/T))
v= NG NG
Verification of solutions

__«a (2cos (24/z) v/z —sin (24/Z)) o (2sin (24/Z) /7 + cos (24/7))
2\ 2/

(1)

Verified OK.

3.6.2 Solving using Kovacic algorithm

Writing the ode as

2¢y” —y' +2y=0 (1)
Ay + By +Cy=0 (2)

Comparing (1) and (2) shows that

A=2x
B=-1 (3)
C=2

Applying the Liouville transformation on the dependent variable gives

B dz

2(z) = ye!
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Then (2) becomes
2'(z) = rz(z) (4)
Where r is given by

r= 5)
_ 2AB'—2BA’ + B2 —4AC
B 4A2
Substituting the values of A, B, C from (3) in the above and simplifying gives
5 — 16x
T (6)
Comparing the above to (5) shows that
s =95—16z
t = 162>

Therefore eq. (4) becomes

20 = (Pt 2 )

Equation (7) is now solved. After finding z(x) then y is found using the inverse trans-
formation
y=2(@)e fa®

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following
table summarizes these cases.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’1)2a4,6a8)"'} {"'a_6a_4a_2a0,2’3>475a6a"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2}{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,---}

Table 54: Necessary conditions for each Kovacic case
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The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=2-1
=1
The poles of r in eq. (7) and the order of each pole are determined by solving for the

roots of ¢t = 16x2. There is a pole at z = 0 of order 2. Since there is a pole of order 2
then necessary conditions for case two are met. Therefore

L=

Attempting to find a solution using case n = 2.

Looking at poles of order 2. The partial fractions decomposition of r is

1 N 5
r=—=
z 1622

For the pole at x = 0 let b be the coefficient of x% in the partial fractions decomposition
of r given above. Therefore b = %. Hence

E.={2,2+2v1+4b,2 — 2V/1 + 4b}
={-1,2,5}

Since the order of r at co is 1 < 2 then
Ew = {1}

The following table summarizes the findings so far for poles and for the order of r at
oo for case 2 of Kovacic algorithm.

pole c¢ location | pole order E.

0 2 {-1,2,5}

Order of r at oo | Ey
1 {1}

Using the family {ej,es,...,ex} given by

e1=-1,e,=1
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Gives a non negative integer d (the degree of the polynomial p(x)), which is generated

using
1
d= 2 (600 — Z ec>

1
— 5= (1)
=1

We now form the following rational function

1 €.
0=32 7 %

cel

~3(e=m)

2z

Now we search for a monic polynomial p(z) of degree d = 1 such that
" +30p" + (30 + 30" —4r)p' + (6" + 300" + 6> —4r0 —2r') p=10 (1A)

Since d = 1, then letting
p=z+a (2A)

Substituting p and 0 into Eq. (1A) gives

1 —4(10

22 0
And solving for p gives
1
p—x+1
Now that p(z) is found let
p/
p=0+2
p
11
T+3 2z

Let w be the solution of
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Substituting the values for ¢ and r into the above equation gives

9 ( 1 1) 64z% — 12z + 1
w — =

g+l 2 6423 + 1622

Solving for w gives
16z/—x +4x — 1
4(4z+ 1)z
Therefore the first solution to the ode 2" = rz is
z(z) = el v

16/ —z+4x—1
f 4(4z+1)x dz

w =

=e
V2 —z -1V + 1e2V—c
2/ —x + 1zi

The first solution to the original ode in y is found from

1B

Y1 = zel 2a%
1 1

= z1€ fiﬂdm

Which simplifies to

ez\/jz\/(Q\/—_x —1) (4 +1)
2y/—z+1

The second solution s to the original ode is found using reduction of order

ef_%dz
Y2 = yl/ B dz
)

1

=

Substituting gives

Y2=Y /ef—ldw dx
2=Y1 | ——5—
(3/1)2

In(x)

e 2
=y1/—dx
(y1)2

(/ VTe V= ( 2\/—_z+1)dx>

(2v/=2 — 1) (4z + 1)
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Therefore the solution is

Yy = c1y1 + C2Y2

B (e2n\/(2\/—_x —1) (4z + 1))

2/—z+1
e?vV—e —r — T —4
+02( \/w_ 1) (4o +1) (/\/Ee Fz\/_+1)dx))

2v/—z —1) (4z + 1)

2—3:

Summary
The solution(s) found are the following

eV [ (2v=z — 1) (42 + 1)

y prd
2v—z+1 (1)
VZe T (2/=z41)
+c2e2r\/ V—z—1)(4z +1) (f /=) (4=t dx)
2vV—x+1
Verification of solutions
clez\/j””\/(%/—x —1) 4z +1)
y =
2vV—z+1
VT e V=7 (2/—z+1)
+02€2F\/ V—z—1) 4z +1) (f ey ey dx)
2vV—z+1
Verified OK.

3.6.3 Maple step by step solution

Let’s solve
2Y'r—y' +2y=0

° Highest derivative means the order of the ODE is 2
Y

° Isolate 2nd derivative

!
n_Yy _ Y
Y =9 x

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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y// _ g_’ + )

Check to see if xg = 0 is a regular singular point
Define functions

[Pa(2) = =35, Pa(2) = 5]

z - Py(x) is analytic at z = 0

(z - Po(z))

1
=0 2

z? - P3(z) is analytic at z = 0

(«* - Py(x))

z=0

x = Qis a regular singular point
Check to see if o = 0 is a regular singular point
zo=0
Multiply by denominators
2"t —y' +2y=0
Assume series solution for y
Y= i T
k=0
Rewrite ODE with series expansions

Convert y' to series expansion

o)

y’ = kZ: ak(k + 1") £I7k+r_1
=0

Shift index using k— >k + 1
v = ap(k+1+7)aktr
k=1

Convert x - y” to series expansion

gy = ap(k+r)(k+r—1)zkt1
k=0

Shift index using k— >k + 1

-y =Y appi(k+1+47)(k+71)™
k=1

Rewrite ODE with series expansions
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e o]

aor(—3 +2r) z~ 1" + (Z (agr1(k+1+7)(2k — 1+ 2r) + 2a;) a:k""") =0

k=0

apcannot be 0 by assumption, giving the indicial equation

r(—=3+2r)=0
Values of r that satisfy the indicial equation
re {0,2

Each term in the series must be 0, giving the recursion relation
2(k—2+7)(k+147r)ak +2a, =0

Recursion relation that defines series solution to ODE

a _ 2a
k+1 = — (@k—1+2r)(k+1+r)

Recursion relation forr =0

— 2ay
Ak+1 = ~ 2k—1)(k+1D)

Solution forr =0

0o

— k _ 2ax

Yy= Z apT”, Qg1 = _(2k—1)(k+1):|
k=0

3

Recursion relation for r = 5

— _ 2a,
O+l = ~ 2k42) (kD)

Solution for r = %

i 00
() kz_o arT y Q1 (2k+2) (k‘l'g)

Combine solutions and rename parameters
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Maple trace Kovacic algorithm successful

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients

checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]

checking if the LODE is missing y

-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Group is reducible or imprimitive

<- Kovacics algorithm successful”

v/ Solution by Maple
Time used: 0.032 (sec). Leaf size: 36

Ldsolve(2*x*diff(y(x),x$2)-diff(y(x),x)+2*y(x)=0,y(x), singsol=all) J

y(z) = (2v/zc1 + ¢2) cos (2v/z) —sin (2vz) (—2vz 2 + ¢1)

v Solution by Mathematica
Time used: 0.199 (sec). Leaf size: 59

-

N
LDSolve[z*x*y"[x]—y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True] J

y(z) = ce¥V°® (2vZ +14) + %@e‘”ﬁ(l + 2i/z)
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3.7 problem 10.4.8 (g)
3.7.1 Solving using Kovacic algorithm . . . . . . ... ... ... ... 318

Internal problem ID [5070]
Internal file name [OUTPUT/4563_Sunday_June_05_2022_03_00_57_PM_84765408/index . tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients.
Second order and Homogeneous. page 318

Problem number: 10.4.8 (g).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic"
Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

zy' +zy —2y=0

3.7.1 Solving using Kovacic algorithm

Writing the ode as

zy' +zy —2y=0 (1)
Ay"+ By +Cy =0 (2)
Comparing (1) and (2) shows that
A=x
B=x (3)
C=-2

Applying the Liouville transformation on the dependent variable gives
2(z) = yel 22 %
Then (2) becomes

2" (z) = rz(z) (4)

318



Where r is given by
s
r=-
t
2AB' — 2BA’ + B% — 4AC
4A2

Substituting the values of A, B, C from (3) in the above and simplifying gives

T_8+x
 4x
Comparing the above to (5) shows that
s=8+=x
t=4z

Therefore eq. (4) becomes

2z = (8:;”) +(2)

(5)

(7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-

formation

y=2(@)e fa®

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’1)2a4,6a8)"'} {"'a_6a_4a_2a0,2’3>475a6a"'}
2 Need to have at least one pole that | no condition

3 {1,2} {2,3,4,5,6,7,---}

Table 56: Necessary conditions for each Kovacic case
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The order of r at oo is the degree of ¢ minus the degree of s. Therefore
O(o0) = deg(t) — deg(s)
=1-1
=0
The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of ¢ = 4z. There is a pole at x = 0 of order 1. Since there is no odd order pole

larger than 2 and the order at oo is 0 then the necessary conditions for case one are
met. Therefore

L=

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at = 0 of order 1 then
[\/;]c =0

af =1

o, =1
Since the order of r at 0o is O,(00) = 0 then

_ —=0p(c0) 0
v = 9 —2—0

[v/T]oo is the sum of terms involving x! for 0 < 4 < v in the Laurent series for /7 at oo.
Therefore

[\/;]oo = Z airi

= Z a;x’ (8)

Let a be the coefficient of z¥ = 29 in the above sum. The Laurent series of /7 at oo is

1 2 4 16 80 448 2688 16896
it 5% Tt 7T
T T T T

9)
Comparing Eq. (9) with Eq. (8) shows that
1
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From Eq. (9) the sum up to v = 0 gives

(Voo =) aia’

0

N =g

(10)

Now we need to find b, where b be the coefficient of ! = 27! = i in r minus the
coefficient of same term but in ([\/ﬂoo)2 where [/T] was found above in Eq (10).

Hence

v—1

(7o)’ = 4

This shows that the coefficient of % in the above is 0. Now we need to find the coefficient
of % in r. How this is done depends on if v = 0 or not. Since v = 0 then starting from
r = ¢ and doing long division in the form
R

r=Q+ —
t
Where @ is the quotient and R is the remainder. Then the coefficient of % in r will be
the coefficient in R of the term in x of degree of ¢ minus one, divided by the leading
coefficient in ¢. Doing long division gives

Since the degree of ¢ is 1, then we see that the coefficient of the term 1 in the remainder
R is 8. Dividing this by leading coefficient in ¢ which is 4 gives 2. Now b can be found.

b=(2) - (0)
2
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Hence

b 172
(5_0) _5(5_0) ~?
_ 1/ b 1/ 2

The following table summarizes the findings so far for poles and for the order of r at

oo where r is
8+

r= 4x

pole ¢ location | pole order | [v/7]. | of | «

0 1 0 0|1

Order of 7 at 0o | [vT]eo | af | g
0

<

N =
[\)
|
[\)

Now that the all [/7], and its associated af have been determined for all the poles in
the set T' and [\/T]« and its associated o have also been found, the next step is to
determine possible non negative integer d from these using

d= s> — Z a5

cel

Where s(c) is either + or — and s(oc0) is the sign of aZ. This is done by trial over all
set of families s = ($(c))ceruso until such d is found to work in finding candidate w.
Trying o, = 2 then

Since d an integer and d > 0 then it can be used to find w using

as(c)
w=3 (s(c)[\/ﬂc + o ) +5(00) VA

x —
cel
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Substituting the above values in the above results in

o,

)+ OV

€T —

o= (A +

1 /1
=5+<ﬁ
1 1
“z 2
11
273

Now that w is determined, the next step is find a corresponding minimal polynomial
p(z) of degree d = 1 to solve the ode. The polynomial p(x) needs to satisfy the equation

p'+2wp + (W +w—71)p=0 (1A)
Let
p(x) =z +ap (2A)

Substituting the above in eq. (1A) gives
(0)+2 1+1 (1) + = + 1-|-1 2
x 2 x? z 2

Solving for the coefficients a; in the above using method of undetermined coefficients

gives
{ao = 2}

Substituting these coefficients in p(x) in eq. (2A) results in

p(z) =z +2
Therefore the first solution to the ode 2" = rz is

2 (z) = pel wd

= (x + 2) ef(%-i_%)dm

= (z +2) ez 2@

= (r+2)ze?
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The first solution to the original ode in y is found from

_1B
Yy = zlef 24 dz

Which simplifies to
y1 =z(z+2)

The second solution s to the original ode is found using reduction of order

ef _% dx
y2 = yl/ 2 dm
Y1

Substituting gives

=W / % dx
— ((—1 —z)e "+ 2(92 ;—f;;cxeprntegrall (x))

Therefore the solution is

Y =1y + CoYo

=c(z(z+2)) + <x(x +2) ((

—1—1z)e ® + (z + 2) z explntegral, (x)
2(z+2)z

Summary
The solution(s) found are the following

1)

(-1—z)e™® (x4 2)z explntegral, (z)
2 + 2

y=clx(x+2)+02(
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Verification of solutions

-1- = 2 I |
y=clx(x+2)+02(( 2av)e _I_(x—i- )wexgntegraﬂx))

Verified OK.
Maple trace Kovacic algorithm successful

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients

checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]

checking if the LODE is missing y

-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful”

v Solution by Maple
Time used: 0.015 (sec). Leaf size: 28

tdsolve(x*diff(y(x),x$2)+x*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)

y(z) = _M+(x+2)x(cl+

2

explntegral, (z) co )
2

v Solution by Mathematica
Time used: 0.125 (sec). Leaf size: 39

LDSolve[x*y"[x]+x*y'[x]—2*y[x]== ,y[x] ,x,IncludeSingularSolutions -> True]

J

1
y(z) = cz(x + 2) — §CQB_Z(6Z(CII + 2)z ExplntegralEi(—z) + z + 1)
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3.8 problem 10.4.8 (h)

3.8.1 Solving as second order bessel odeode . . . .. ... ... ...
3.8.2 Solving using Kovacic algorithm . . . . . ... ... ... ....
3.8.3 Maple step by step solution . . . . ... ... ... ... ...

Internal problem ID [5071]
Internal file name [OUTPUT/4564_Sunday_June_05_2022_03_00_58_PM_93789482/index.tex|

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients.
Second order and Homogeneous. page 318

Problem number: 10.4.8 (h).

ODE order: 2.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "kovacic", "second__order__bessel__ode"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

z(z—1)%y" -2y =0

3.8.1 Solving as second order bessel ode ode

Writing the ode as
zy"' ——==0 (1)
Bessel ode has the form
2y +zy + (—n*+2*)y =0 (2)
The generalized form of Bessel ode is given by Bowman (1958) as the following
2’y + (1 —20) zy + (B*7°2* —n*¥* +a?)y =0 (3)
With the standard solution

y = 2%(cy BesselJ (n, Bz7) + co BesselY (n, fz7)) 4)
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Comparing (3) to (1) and solving for a, 8, n,y gives

1
“=3
B = 2iv2
n=1

1
Ty

Substituting all the above into (4) gives the solution as

24/2
y = ic1\/z Bessell (1, i) + c9v/7 BesselY <1,

\/5

VT

Summary
The solution(s) found are the following

2v/2
y = iciy/z Bessell (1, T\/m_) + c3v/x BesselY (1,

Verification of solutions

24/2 2
y = ic14/x Bessell <1, i) + cov/7 BesselY (1,

N7
Verified OK.

3.8.2 Solving using Kovacic algorithm

Writing the ode as

z(z—1)%y" -2y =0
Ay + By +Cy=0

Comparing (1) and (2) shows that

A=z(zx—1)°
B=0
C=-2

Applying the Liouville transformation on the dependent variable gives

2(x) = yel 2%
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Then (2) becomes
2" (z) = rz(z)

Where r is given by

s
r=-
t
_ 2AB' - 2BA'+ B? — 4AC
B 442
Substituting the values of A, B, C from (3) in the above and simplifying gives
2
r=———>
z(x—1)
Comparing the above to (5) shows that
§=2
t=a(x—1)

Therefore eq. (4) becomes

(4)

()

(6)

(7)

Equation (7) is now solved. After finding z(z) then y is found using the inverse trans-

formation

y=z(a)e /"

The first step is to determine the case of Kovacic algorithm this ode belongs to. There
are 3 cases depending on the order of poles of r and the order of r at co. The following

table summarizes these cases.

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2},{1,3},{2},{3},{3,4},{1,2,5}.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’1)2a4,6a8)"'} {"'a_6a_4a_2a0,2’3>475a6a"'}
2 Need to have at least one pole that | no condition

3 {1,2} {2,3,4,5,6,7,---}

Table 57: Necessary conditions for each Kovacic case
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The order of r at oo is the degree of ¢ minus the degree of s. Therefore

O(o0) = deg(t) — deg(s)
=3-0
=3

The poles of r in eq. (7) and the order of each pole are determined by solving for the
roots of t = z(z — 1)%. There is a pole at & = 0 of order 1. There is a pole at = 1 of
order 2. Since there is no odd order pole larger than 2 and the order at oo is 3 then
the necessary conditions for case one are met. Since there is a pole of order 2 then
necessary conditions for case two are met. Since pole order is not larger than 2 and the
order at oo is 3 then the necessary conditions for case three are met. Therefore

L=]1,2,4,6,12]

Attempting to find a solution using case n = 1.

Looking at poles of order 1. For the pole at z = 0 of order 1 then

2 +2 2
(z—1)° z z-1

For the pole at £ = 1 let b be the coefficient of ﬁ in the partial fractions decompo-
sition of r given above. Therefore b = 2. Hence

Since the order of r at co is 3 > 2 then

[\/7_”]00 =0
=0
=1

+
aOO
o0

(07
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The following table summarizes the findings so far for poles and for the order of r at

oo where r is 9

z(z—1)°

pole ¢ location | pole order | [/7]. | af | a
0 1 0 0|1
1 2 0 2 | -1

Order of r at 0o | [vT]eo | @f | o

3 0 0

—

Now that the all [/7], and its associated af have been determined for all the poles in
the set I' and [\/T]o and its associated a have also been found, the next step is to
determine possible non negative integer d from these using

d= > — Z as©

cel

Where s(c) is either + or — and s(oc0) is the sign of aZ. This is done by trial over all
set of families s = ($(c))ceruso until such d is found to work in finding candidate w.
Trying af, = 0 then

d=af — (a; +ag)

= 0—(0)
=0

Since d an integer and d > 0 then it can be used to find w using

as(c)
w=3 (s(a)[ﬁ]c y ) + 5(00)[Vl

x —
cel

Substituting the above values in the above results in

Q.

T T — Cy

o= (WA + 22 ) + (e + 222 )+ (P
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Now that w is determined, the next step is find a corresponding minimal polynomial
p(z) of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p'+2wp + (W 4w —r)p=0 (1A)
Let
p(z) =1 (2A)

Substituting the above in eq. (1A) gives

(0)+2(£_wi1>(0)+ ((_$+(x—:l1)2)+(%_mil)2_ (z(zz_l)2>) =0

0=0

The equation is satisfied since both sides are zero. Therefore the first solution to the
ode 2’ =rz is

The first solution to the original ode in y is found from
% dx

_1
y]. frd Z]_ef 2

Since B = 0 then the above reduces to

Y1=2
oz
-1
Which simplifies to
oz
Y1 = p—

The second solution ys to the original ode is found using reduction of order

ef—%dx
Y2 ="M 2 dx
Y

1
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Since B = 0 then the above becomes

1
y2:y1/_2dx
Y1
T

1
:x—l/ ——dx

(—1)*

=xf1(x—21n(x)—%>

Therefore the solution is

Yy =ciy1 + C2y2

x z 1
=cl(z_1) +02<x_1<z—21n(:v)—5)>
Summary

The solution(s) found are the following

ar co(—2In(z)z + 22 — 1)

= 1
y z—1 z—1 (1)
Verification of solutions
ar  c(—21 21
y= 1 n 2( n (1}) r+x )
z—1 z—1
Verified OK.
3.8.3 Maple step by step solution
Let’s solve
z(z—1)7°y —2y=0
° Highest derivative means the order of the ODE is 2
yll
° Isolate 2nd derivative
" __ 2y
y = :x(a:—l)E
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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17 2y _
y - ar:(a:—l)E =0

Check to see if xg is a regular singular point

Define functions

[P2(x) = 0,Py(z) = —

z(z—1)2

z - Py(x) is analytic at z = 0

(z-Py(z))| =0

=0

z? - P3(z) is analyticat z =0

(z2 - Ps(x)) =0

z=0

x = Qis a regular singular point
Check to see if xg is a regular singular point
To=0
Multiply by denominators
z(x—1)y" —2y=0
Assume series solution for y
y = i T
k=0
Rewrite ODE with series expansions

Convert ™ - y” to series expansion for m = 1..3
o0

-y = ap(k+7r) (k+r—1)gktr—2m
k=0

Shift index using k— >k +2 —m
ey’ = ) ak+2_m(k+2—m+r) (k+1_m+r)xk+7"
k=—24+m

Rewrite ODE with series expansions

aor(—1+7) 7" + (a1(1+7)r — 2a0(r? —r+ 1)) 2" + (Z (aps1(k+1+7) (k+7) — 2a1(k
k=1

apcannot be 0 by assumption, giving the indicial equation

r(=14+7)=0

Values of r that satisfy the indicial equation
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r € {0,1}

Each term must be 0

ar(l+7)r—2ap(r?—7r+1)=0

Each term in the series must be 0, giving the recursion relation

(—2ar + ap_1 + ary1) k2 + ((—4ar, + 2ax_1 + 2a541) 7 + 20 — 3a_1 + agy1) k + (—2ax + ag_1 -
Shift index using k— >k + 1

(20541 + G + app2) (k +1)° + ((—4ars1 + 205 + 2a442) T + 20441 — 3 + apya) (k + 1) + (—

Recursion relation that defines series solution to ODE

a _ k:2ak—2k2ak+1+2k:rak—4k:rak+1+r2ak—2r2ak+1—k:ak—2kak+1—rak—2rak+1—2ak+1
k+2 — k2+2kr+r2+3k+3r+2

Recursion relation forr =0

_ _k2ak—2k2ak+1—kak—2kak+1—2ak+1
Ak+2 = k2 +3k+2

Solution forr =0

o0
. k . k2ak—2k2ak+1—kak—2kak+1—2ak+1 _
Y= kZOakx y A2 = — k243k+2 y—2a9 =0
Recursion relation forr =1

_ k2ak—2k2ak+1+kak—6kak+1 —6ag+1
Ak+2 = k2+5k+6

Solution forr =1

o0

_ k41 _ kQak—2k2ak+1+kak—6kak+1—6ak+1 _

Y= § : AT + y k42 = — k2+5k+6 ,2&1 - 20’0 =0
k=0

Combine solutions and rename parameters

[ 00 00
_ k k- 1 _ k2ak—2k2ak 1—kak—2kak 1—2ak 1 _ _ kzl
Y= (Z arT ) + <Z bk.’L‘ + ) y Q42 = — +k2+3k+2 + + ,—2(1/0 - 0) bk+2 -
k=0 k=0
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Maple trace Kovacic algorithm successful

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients

checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]

checking if the LODE is missing y

-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful”

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 27

Ldsolve(x*(x-l)“2*diff(y(x),x$2)-2*y(x)=0,y(x), singsol=all)

_ 2czIn (z) —cr® + iz + o

y(z) =

r—1

v/ Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 33

‘DSolve[x*(x—l)“2*y"[x]—2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

—cx? — 17 + 2coz log(z) + ¢

y(z) — pog|
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3.9 problem 10.4.9 (i)

3.9.1 Solving as linearode . . . . ... ... ... ... ...
3.9.2 Solving as first order ode lie symmetry lookup ode . . ... .. 338]
3.93 Solvingasexactode . .. ... .... .. ... ...... 342
3.9.4 Maple step by step solution . . . . ... ... ... ... ... [347]

Internal problem ID [5072]
Internal file name [OUTPUT/4565_Sunday_June_05_2022_03_00_59_PM_16506391/index.tex|

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients.
Second order and Homogeneous. page 318

Problem number: 10.4.9 (i).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

3.9.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
2
p(z) = Tz
q(x) = 2*
Hence the ode is
% _ o,
z
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The integrating factor u is

The ode becomes

Integrating gives

=+

Dividing both sides by the integrating factor u = x% results in
Y= cr?+x?

which simplifies to

y=1*(z+c)

Summary
The solution(s) found are the following

y=2z*(z+c)
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Figure 42: Slope field plot

Verification of solutions

*(z + c1)

y:

Verified OK.

3.9.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

T3+ 2y

y =

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

=0

N + w(ny - €z) - w2€y —wg€ — Wy

The type of this ode is known. It is of type 1linear. Therefore we do not need to solve

the PDE (A), and can just use the lookup table shown below to find £, 7
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Table 59: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

n(z,y) = 2

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=«x

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Satw(z,y)Sy (2)
dR R, +uw(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

3+ 2y
(.U(.’L' ’ y) - x
Evaluating all the partial derivatives gives
R, =1
R, =0
2y
Sy = 3
1
Sy = 2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _
dR
We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

1 (2A)

1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=R+ ¢ 4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

2 T+
Which simplifies to
% =+
Which gives
y=z*(z +c1)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates
. (R, S)
transformation
dy _ 242y ds _ q
dz z dR —
trrtravyvy ittt R s LR R s
IBEEREARER I EE APAPAPPAPAANAAAAA AL
IBEREASEEIINEREEEE! R R s R R R
Prtrr=vydirttrtttts R R LR R R
fffffﬂ@&i??ff?fff /////?f AAAASALAAASS
Prtets &%T????ttf AR AAAAAAAAAASS
IBEEREARE IR EE! R R L R R R
trtrt 7=yttt APPSR PR AANAAAAA AL
trttrraNytrrtttt R=z AAPAPAAPAANAAAAAAASAS
A A A e 0 A B A A PPIPPP PPN AP PP
fﬁf?ﬁéffﬁ\*/b?f?a Y LR i G Y X
tttt st~ r ittt S == //////////////?V’///
trttrrrrtiiN—=21111 2 R R R L R R R AR
TT????fL%L&\/f??T FAAAAAAASARNAAAAAAAS LS
tretrrrtipp ANttt AAPAPAARAANAAAAA AL
prtttrrttibvN—=r1tt R R L R R R
Prertrtttbyv=72t11 FAAARAASPANAAAAAAAS SN
trtrrtr 4y ANttt A . s o R R s
trerrrrttjbbayNstrtt R R L R s
tretttrttpbdbvNrrttt FAAAPAASIASAAAAAAS S
Summary
The solution(s) found are the following
2
y=z(x+c1) (1)
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Figure 43: Slope field plot

Verification of solutions

*(z + c1)

y:

Verified OK.

3.9.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(z,y) + N(z,y) 52 =0

)
=]
]
I y___m
= =S
i I
Sy +
]
R

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

Hence
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Comparing (A,B) shows that

09
M
Oz
9 _ n
Ay
But since %{% = % then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

T

dy = (2y +x2) dx

T

(_Q_y - m2) de+dy=0 (2A)

Comparing (1A) and (2A) shows that

N(xay) =

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM  ON

oy Oz

Using result found above gives
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And

Since 7é ‘9N , then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratlng factor to make it exact. Let

OM ON
A= (a—y - %)

((2)-0)

2

X

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p= efAd:E
—e J —% dz
The result of integrating gives
m 6_2 In(z)
1
T a2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

1( 2y 2)
=—|-==—z
2 T

And
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N@:0
dz

—z3 — 2y 1\ dy
(x—) + (;) dz = °

The following equations are now set up to solve for the function ¢(z,y)

0p —
g—x—M (1)
6
=N @)

Integrating (1) w.r.t. = gives

0p . [+
%dx—/Mdz
op . [ —x®—2y
b=—z+ %+ 1) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0 1

/
== 4
=W (@)
But equation (2) says that g—;’j = 2. Therefore equation (4) becomes
1 1
—=—+f () (5)
Solving equation (5) for f'(y) gives
fy)=0
Therefore
fy)=a
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(1)

—x+ Y +c
Q:—$+—
=2%(z +c1)
y=2*(z+c)

o=
Y

T T T T T T T T T T T T T T — — —~— [

T T T T T T T T T T T T T T S T S S

Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢
But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and

combining ¢; and cp constants into new constant c¢; gives the solution as

The solution(s) found are the following

The solution becomes

Summary

11111111111111111 ————
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z*(z + c1)
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Figure 44: Slope field plot
)

Verification of solutions

Verified OK.



3.9.4 Maple step by step solution

Let’s solve
r__ 2y .2
Yy z L

° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y/ _ 2y _ 2

° The ODE is linear; multiply by an integrating factor u(x)

w(@) (v — %) = p(z) 22

o Assume the lhs of the ODE is the total derivative - (u(z) y)
W) (v —2) = w(@)y+u@)y
o Isolate u'(x)

W(z) = =24

° Solve to find the integrating factor

W) = 2=

° Integrate both sides with respect to x
[ (=) )) dz = [ p(z) ade +

° Evaluate the integral on the lhs
p@)y = [ ple) 2?de +

° Solve for y

_ Ju@)z?dete
V="

o Substitute pu(z) = 2
y=2*(1dz +c)
° Evaluate the integrals on the rhs

y=z%(z+c)
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

Ldsolve(diff(y(x),x)-2*y(x)/x-x“2=0,y(x), singsol=all)

y(z) = (z+c1) 2’

v/ Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 13

LDSolve[y'[x]—2*y[x]/x—x‘2==0,y[x],x,IncludeSingularSolutions -> Truel

y(z) = 2*(z + ¢1)
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3.10 problem 10.4.9 (ii)

3.10.1 Solving as linearode . . . . .. ... ... ... ... ... .. 349
3.10.2 Solving as first order ode lie symmetry lookup ode . . ... .. 351
3.10.3 Solvingasexactode . .. ... ... .. ... ... ...... 355]
3.10.4 Maple step by step solution . . . . ... ... ... ... .... 360

Internal problem ID [5073]
Internal file name [OUTPUT/4566_Sunday_June_05_2022_03_01_00_PM_73400741/index.tex|

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients.
Second order and Homogeneous. page 318

Problem number: 10.4.9 (ii).

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

3.10.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
2
p(z) = o
q(z) = 2°
Hence the ode is
2
y/ + _y — 133
T
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The integrating factor u is

The ode becomes

Integrating gives

yz? = /m5dm

CL’G

yz2=€+cl

Dividing both sides by the integrating factor u = z? results in

Summary

4

The solution(s) found are the following

_.’L’ +Cl
y_6 x2
_$4+Cl
y_6 x2
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Figure 45: Slope field plot

Verification of solutions

1

.’1'4

y:

Verified OK.

3.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

-zt + 2y

y/

X

w(z,y)

yl

The condition of Lie symmetry is the linearized PDE given by

0

Nz + w(ny - 590) - w2§y - wx§ - wy'r]

The type of this ode is known. It is of type linear. Therefore we do not need to solve

the PDE (A), and can just use the lookup table shown below to find £,
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Table 62: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

§(z,y) =0
n(z,y) = % (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _ dy _

ds
§ 1

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

n

1

S is found from

(EQ
Which results in
S = yux?
Now that R, S are found, we need to setup the ode in these coordinates. This is done

by evaluating

dS Sy +w(z,y)S,

dR ~ R, +w(z,y)R, @

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

—zt+2
wla,y) = -
Evaluating all the partial derivatives gives
R, =1
R,=0
Sy = 2xy
S, = z?

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives
as
dR

The above is a quadrature ode. This is the whole point of Lie symmetry method.

R5

It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

Rﬁ
S(R) =& +a (4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
r? = i +c
yxr = 6 1
Which simplifies to
T’ = i +c
Yyr- = 6 1
Which gives
_ 2%+ 6¢
62

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . .
.. ) ) . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ _ =242 ds _ ps
de T dR_R
Phbstt bbbttt P A\t
PibNtrttib by 2ttt LA\ >—e—r it t
SR RN |~ v f
At R==2
ped b SR - 7
VAt At t \ 24 f
SRR IS by
RS o HEE
—4 - 2 4 4 -2 YO D 4

PUVNHE 2 =yz? |~ f

RSB R S=yz Vet t 1R
LL&L%AM‘M‘T \ e f
VL Lttt \ e f
Vb bttt \ e f
Phb bt et \ e f
VE L4ttt \ s f

! Pebbb bt rrt et ! P A\t t
i vibbb bttt r et ) VA~ f

Summary
The solution(s) found are the following
_w6+6cl (1)
Y 612
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Figure 46: Slope field plot

Verification of solutions

x% + 6¢;

622

Verified OK.

3.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(fv,y)£=0

¢(z,y) =0

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
d
dx
09

ode. Taking derivative of ¢ w.r.t. z gives

Hence
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Comparing (A,B) shows that

09
M
Oz
9 _ n
Ay
But since %{% = % then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
5’: gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore
dy = (_2_y + x3) dx
T
3, 2y
-z -l—; de+dy=0 (2A)

Comparing (1A) and (2A) shows that

2y

M — 34+
(z,y) .

N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM  ON

oy Oz

Using result found above gives
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And

Since 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratlng factor to make it exact. Let

oM ON
A= (8_3/ - %)

((2)-0)

2
T

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

p=e JAdz
— ef % dz
The result of integrating gives
w= 62 In(z)
= "L'z

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

And
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N3—i:0
. 4 2 %_
(~(e' ~29)) + () 5L =0

The following equations are now set up to solve for the function ¢(z,y)

0p —
9 - M (1)
0p
oy N (2)
Integrating (1) w.r.t. = gives
@ dx = /de
ox
o¢
P dz = /—x(x4 —2y) dz
1
¢=——a°+yz’+ f(y) (3)

6

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

a¢ 2 !

- — 4

o=+ 1) (@)
But equation (2) says that g—‘; = z2. Therefore equation (4) becomes

2’ =2+ f'(y) (5)

Solving equation (5) for f'(y) gives
flly) =0

Therefore

fy)=a
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Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢

1
o= —6x6+yx2+c1

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and ¢y constants into new constant c¢; gives the solution as

1
c = —5356 +y z?
The solution becomes
B z° + 6¢;
62

Summary
The solution(s) found are the following

_ x® + 6¢;

= 1
y 6x2 (1)
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Figure 47: Slope field plot
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Verification of solutions

_ 2%+ 6c
vy= 612

Verified OK.

3.10.4 Maple step by step solution

Let’s solve

° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y + % =2

° The ODE is linear; multiply by an integrating factor u(x)
w(z) (v + %) = p(z) 2

o Assume the lhs of the ODE is the total derivative - (u(z) y)
wa) (v +%) = @)y +u@)y

o Isolate ()

W(e) = 282

° Solve to find the integrating factor
p(z) = 2

° Integrate both sides with respect to x
J (& (u(@)y)) dz = [ p(z) 2*dz + ¢

° Evaluate the integral on the lhs
we)y = [ n(z)a*da+

° Solve for y

[ p(z)zddztcr
V="

e  Substitute u(zr) = 2
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J z%dz+c;

Y= "—p
° Evaluate the integrals on the rhs
y= 3%
° Simplify
EG C
y=i%

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 16

Ldsolve(diff(y(x),x)+2*y(x)/x-x*3=o,y(x), singsol=all)

(z) = x% + 6¢;
)= 612

v/ Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 13

LDSolve[y'[x]—2*y[x]/x—x“2==0,y[x],x,IncludeSingularSolutions -> Truel

y(z) = 2%(z + ¢1)
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3.11 problem 10.4.10
3.11.1 Maple step by step solution . . . . .. ... ... ... ... .. 362

Internal problem ID [5074]
Internal file name [OUTPUT/4567_Sunday_June_05_2022_03_01_01_PM_94712491/index . tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995

Section: Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients.
Second order and Homogeneous. page 318

Problem number: 10.4.10.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

[_Laguerrel

Unable to solve or complete the solution.

zy’'+(1—2z)y +my=0

3.11.1 Maple step by step solution

Let’s solve

Y'r+(1—z)y +my=0

° Highest derivative means the order of the ODE is 2
yll
° Isolate 2nd derivative

n_ (z=1)y  my
- x T

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

(z—1)y _
y” - % + % =0
O Check to see if xg = 0 is a regular singular point

o Define functions

[PQ(.’L') = —WT_l,Pg(.'L') = %]
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x - Po(z)is analytic at x = 0

(z - Pa(z))

=0
z? - P3(z) is analyticat z =0

=0

z=0

(z* - Py(z))

x = (Ois a regular singular point
Check to see if xg = 0 is a regular singular point
zo=0
Multiply by denominators
Y'r+(1—z)y +my=0
Assume series solution for y
y = i apzt

k=0
Rewrite ODE with series expansions
Convert ™ - 3/ to series expansion for m = 0..1
™y = kgé ax(k+1) phtr=1+m

=0

Shift index using k— >k +1—m
oy = Y appim(k+1—m+7)rT
k=—1+m

Convert x - y” to series expansion

oy =Y ap(k+7)(k+7r—1)zkr1
k=0
Shift index using k— >k + 1
-y =5 app1(k+1+7)(k+7r)zrT
k=—1
Rewrite ODE with series expansions
2 =147 = 2 _ _ k+r )
aogrix +<Z (art1(k+1+7)" —ap(-m+k+7))z >—0
k=0
apcannot be 0 by assumption, giving the indicial equation

r2=0
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° Values of r that satisfy the indicial equation
r=20
° Each term in the series must be 0, giving the recursion relation

ak+1(kf' + 1)2 - ak(—m + k) =0

° Recursion relation that defines series solution to ODE
_ ag(—m+k)
Akt1 = ~ (312
° Recursion relation forr =0
__ ag(=m+k)
e+l = 7 (p31y?
° Solution forr =0
s k ak(—m+k)
—_ J— k\—
Y= L e ke = He

Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
<- hyper3 successful: received ODE is equivalent to the 1F1 ODE
<- Kummer successful
<- special function solution successful”
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v/ Solution by Maple
Time used: 0.047 (sec). Leaf size: 21

Ldsolve (x*xdiff (y(x),x$2)+(1-x) *diff (y(x) ,x)+m*y(x)=0,y(x), singsol=all) J

y(z) = ¢y KummerM (—m, 1, z) + co KummerU (—m, 1, x)

v/ Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 21

LDSolve [x*xy'' [x]+(1-x)*y' [x]+m*y[x]==0,y[x],x,IncludeSingularSolutions -> True}]

y(x) — ¢ HypergeometricU(—m, 1, z) + co LaguerreL(m, x)

365



	Chapter 10, Differential equations. Section 10.2, ODEs with constant Coefficients. page 307
	problem 10.2.4
	Solving as second order linear constant coeff ode
	Solving as second order ode can be made integrable ode
	Solving using Kovacic algorithm
	Maple step by step solution

	problem 10.2.5
	Maple step by step solution

	problem 10.2.8 part(1)
	Existence and uniqueness analysis
	Solving as second order linear constant coeff ode
	Solving using Kovacic algorithm
	Maple step by step solution

	problem 10.2.8 part(2)
	Maple step by step solution

	problem 10.2.8 part(3)
	Maple step by step solution

	problem 10.2.10
	Solving as second order linear constant coeff ode
	Solving using Kovacic algorithm
	Maple step by step solution

	problem 10.2.11 (i)
	Existence and uniqueness analysis
	Solving as second order linear constant coeff ode
	Solving using Kovacic algorithm
	Maple step by step solution

	problem 10.2.11 (ii)
	Existence and uniqueness analysis
	Solving as second order linear constant coeff ode
	Solving as linear second order ode solved by an integrating factor ode
	Solving using Kovacic algorithm
	Maple step by step solution

	problem 10.2.11 (iii)
	Existence and uniqueness analysis
	Solving as second order linear constant coeff ode
	Solving using Kovacic algorithm
	Maple step by step solution

	problem 10.2.11 (iv)
	Existence and uniqueness analysis
	Solving as second order linear constant coeff ode
	Solving using Kovacic algorithm
	Maple step by step solution


	Chapter 10, Differential equations. Section 10.3, ODEs with variable Coefficients. First order. page 315
	problem 10.3.2
	Solving as linear ode
	Solving as first order ode lie symmetry lookup ode
	Solving as exact ode
	Maple step by step solution

	problem 10.3.3
	Existence and uniqueness analysis
	Solving as linear ode
	Solving as differentialType ode
	Solving as first order ode lie symmetry lookup ode
	Solving as exact ode
	Maple step by step solution

	problem 10.3.4
	Existence and uniqueness analysis
	Solving as linear ode
	Solving as first order ode lie symmetry lookup ode
	Solving as exact ode
	Maple step by step solution

	problem 10.3.5
	Existence and uniqueness analysis
	Solving as linear ode
	Solving as first order ode lie symmetry lookup ode
	Solving as exact ode
	Maple step by step solution

	problem 10.3.6
	Solving as linear ode
	Solving as first order ode lie symmetry lookup ode
	Solving as exact ode
	Maple step by step solution

	problem 10.3.7
	Solving as linear ode
	Solving as first order ode lie symmetry lookup ode
	Solving as exact ode
	Maple step by step solution

	problem 10.3.8
	Solving as linear ode
	Solving as homogeneousTypeD2 ode
	Solving as first order ode lie symmetry lookup ode
	Solving as exact ode
	Maple step by step solution

	problem 10.3.9 (a)
	Solving as separable ode
	Solving as first order ode lie symmetry lookup ode
	Solving as bernoulli ode
	Solving as exact ode
	Solving as riccati ode
	Maple step by step solution

	problem 10.3.9 (b)
	Solving as first order ode lie symmetry lookup ode
	Solving as bernoulli ode


	Chapter 10, Differential equations. Section 10.4, ODEs with variable Coefficients. Second order and Homogeneous. page 318
	problem 10.4.8 (a)
	Solving using Kovacic algorithm
	Maple step by step solution

	problem 10.4.8 (b)
	Solving as second order change of variable on y method 1 ode
	Solving as second order change of variable on y method 2 ode
	Solving as second order integrable as is ode
	Solving as type second_order_integrable_as_is (not using ABC version)
	Solving using Kovacic algorithm
	Solving as exact linear second order ode ode
	Maple step by step solution

	problem 10.4.8 (c)
	Solving as second order euler ode ode
	Solving as second order change of variable on x method 2 ode
	Solving as second order change of variable on x method 1 ode
	Solving as second order change of variable on y method 2 ode
	Solving using Kovacic algorithm
	Maple step by step solution

	problem 10.4.8 (d)
	Solving as second order change of variable on x method 2 ode
	Solving as second order change of variable on x method 1 ode
	Solving as second order bessel ode ode
	Solving using Kovacic algorithm
	Maple step by step solution

	problem 10.4.8 (e)
	Solving as second order euler ode ode
	Solving as second order change of variable on x method 2 ode
	Solving as second order change of variable on x method 1 ode
	Solving as second order change of variable on y method 2 ode
	Solving as second order ode non constant coeff transformation on B ode
	Solving using Kovacic algorithm
	Maple step by step solution

	problem 10.4.8 (f)
	Solving as second order bessel ode ode
	Solving using Kovacic algorithm
	Maple step by step solution

	problem 10.4.8 (g)
	Solving using Kovacic algorithm

	problem 10.4.8 (h)
	Solving as second order bessel ode ode
	Solving using Kovacic algorithm
	Maple step by step solution

	problem 10.4.9 (i)
	Solving as linear ode
	Solving as first order ode lie symmetry lookup ode
	Solving as exact ode
	Maple step by step solution

	problem 10.4.9 (ii)
	Solving as linear ode
	Solving as first order ode lie symmetry lookup ode
	Solving as exact ode
	Maple step by step solution

	problem 10.4.10
	Maple step by step solution



