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Internal problem ID [3134]
Internal file name [OUTPUT/2626_Sunday_June_05_2022_03_23_18_AM_18850583/index.tex]

Book: An introduction to the solution and applications of differential equations, J.W. Searl,
1966
Section: Chapter 4, Ex. 4.1
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′x2 + 2yx = 0

1.1.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −2y
x
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Where f(x) = − 2
x
and g(y) = y. Integrating both sides gives

1
y
dy = −2

x
dx∫ 1

y
dy =

∫
−2
x
dx

ln (y) = −2 ln (x) + c1

y = e−2 ln(x)+c1

= c1
x2

Summary
The solution(s) found are the following

(1)y = c1
x2

Figure 1: Slope field plot

Verification of solutions

y = c1
x2

Verified OK.
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1.1.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 2
x

q(x) = 0

Hence the ode is

y′ + 2y
x

= 0

The integrating factor µ is

µ = e
∫ 2

x
dx

= x2

The ode becomes

d
dxµy = 0

d
dx

(
x2y

)
= 0

Integrating gives

x2y = c1

Dividing both sides by the integrating factor µ = x2 results in

y = c1
x2

Summary
The solution(s) found are the following

(1)y = c1
x2
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Figure 2: Slope field plot

Verification of solutions

y = c1
x2

Verified OK.

1.1.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

(u′(x)x+ u(x))x2 + 2u(x)x2 = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= −3u
x
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Where f(x) = − 3
x
and g(u) = u. Integrating both sides gives

1
u
du = −3

x
dx∫ 1

u
du =

∫
−3
x
dx

ln (u) = −3 ln (x) + c2

u = e−3 ln(x)+c2

= c2
x3

Therefore the solution y is

y = xu

= c2
x2

Summary
The solution(s) found are the following

(1)y = c2
x2

Figure 3: Slope field plot
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Verification of solutions

y = c2
x2

Verified OK.

1.1.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −2y
x

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 1: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
x2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
x2

dy

Which results in

S = x2y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −2y
x

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0
Sx = 2xy
Sy = x2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
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integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

x2y = c1

Which simplifies to

x2y = c1

Which gives

y = c1
x2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −2y
x

dS
dR

= 0

R = x

S = x2y

Summary
The solution(s) found are the following

(1)y = c1
x2
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Figure 4: Slope field plot

Verification of solutions

y = c1
x2

Verified OK.

1.1.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
− 1
2y

)
dy =

(
1
x

)
dx(

−1
x

)
dx+

(
− 1
2y

)
dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = −1
x

N(x, y) = − 1
2y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
−1
x

)
= 0
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And
∂N

∂x
= ∂

∂x

(
− 1
2y

)
= 0

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives ∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
−1
x
dx

(3)φ = − ln (x) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= 0 + f ′(y)

But equation (2) says that ∂φ
∂y

= − 1
2y . Therefore equation (4) becomes

(5)− 1
2y = 0 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = − 1
2y

Integrating the above w.r.t y gives∫
f ′(y) dy =

∫ (
− 1
2y

)
dy

f(y) = − ln (y)
2 + c1
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Where c1 is constant of integration. Substituting result found above for f(y) into
equation (3) gives φ

φ = − ln (x)− ln (y)
2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − ln (x)− ln (y)
2

The solution becomes

y = e−2c1

x2

Summary
The solution(s) found are the following

(1)y = e−2c1

x2

Figure 5: Slope field plot
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Verification of solutions

y = e−2c1

x2

Verified OK.

1.1.6 Maple step by step solution

Let’s solve
y′x2 + 2yx = 0

• Highest derivative means the order of the ODE is 1
y′

• Integrate both sides with respect to x∫
(y′x2 + 2yx) dx =

∫
0dx+ c1

• Evaluate integral
x2y = c1

• Solve for y
y = c1

x2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 9� �
dsolve(2*x*y(x)+x^2*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = c1
x2

16



3 Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 16� �
DSolve[2*x*y[x]+x^2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → c1
x2

y(x) → 0
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1.2 problem 2
1.2.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 18
1.2.2 Solving as dAlembert ode . . . . . . . . . . . . . . . . . . . . . 19
1.2.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 23

Internal problem ID [3135]
Internal file name [OUTPUT/2627_Sunday_June_05_2022_03_23_20_AM_64957984/index.tex]

Book: An introduction to the solution and applications of differential equations, J.W. Searl,
1966
Section: Chapter 4, Ex. 4.1
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType", "ho-
mogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _exact , _rational , [_Abel , `2nd

type `, `class A`]]

y + (−y + x) y′ = −x

With initial conditions

[y(0) = 0]

1.2.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= y + x

y − x

The x domain of f(x, y) when y = 0 is

{−∞ < x < ∞}
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And the point x0 = 0 is inside this domain. The y domain of f(x, y) when x = 0 is

{−∞ < y < ∞}

And the point y0 = 0 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
y + x

y − x

)
= 1

y − x
− y + x

(y − x)2

The x domain of ∂f
∂y

when y = 0 is

{x < 0∨ 0 < x}

But the point x0 = 0 is not inside this domain. Hence existence and uniqueness theorem
does not apply. Solution exists but no guarantee that unique solution exists.

1.2.2 Solving as dAlembert ode

Let p = y′ the ode becomes

y + (−y + x) p = −x

Solving for y from the above results in

y = x(p+ 1)
−1 + p

(1A)

This has the form

y = xf(p) + g(p) (*)

Where f, g are functions of p = y′(x). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. x gives

p = f + (xf ′ + g′)dp
dx

p− f = (xf ′ + g′)dp
dx

(2)

Comparing the form y = xf + g to (1A) shows that

f = p+ 1
−1 + p

g = 0
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Hence (2) becomes

p− p+ 1
−1 + p

= x

(
1

−1 + p
− p+ 1

(−1 + p)2
)
p′(x) (2A)

The singular solution is found by setting dp
dx

= 0 in the above which gives

p− p+ 1
−1 + p

= 0

Solving for p from the above gives

p = 1 +
√
2

p = −
√
2 + 1

Substituting these in (1A) gives

y = x+
√
2x

y = x−
√
2x

The general solution is found when dp
dx 6= 0. From eq. (2A). This results in

p′(x) =
p(x)− p(x)+1

−1+p(x)

x
(

1
−1+p(x) −

p(x)+1
(−1+p(x))2

) (3)

This ODE is now solved for p(x).

Inverting the above ode gives

d

dp
x(p) =

x(p)
(

1
−1+p

− p+1
(−1+p)2

)
p− p+1

−1+p

(4)

This ODE is now solved for x(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

d

dp
x(p) + p(p)x(p) = q(p)

Where here

p(p) = 2
(p2 − 2p− 1) (−1 + p)

q(p) = 0
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Hence the ode is

d

dp
x(p) + 2x(p)

(p2 − 2p− 1) (−1 + p) = 0

The integrating factor µ is

µ = e
∫ 2(

p2−2p−1
)
(−1+p)

dp

= e
ln

(
p2−2p−1

)
2 −ln(−1+p)

Which simplifies to

µ =
√
p2 − 2p− 1
−1 + p

The ode becomes

d
dpµx = 0

d
dp

(√
p2 − 2p− 1x
−1 + p

)
= 0

Integrating gives
√
p2 − 2p− 1x
−1 + p

= c3

Dividing both sides by the integrating factor µ =
√

p2−2p−1
−1+p

results in

x(p) = c3(−1 + p)√
p2 − 2p− 1

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

p = − y + x

−y + x

Substituting the above in the solution for x found above gives

x = c3
√
2x

(y − x)
√

−y2+2yx+x2

(−y+x)2
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Initial conditions are used to solve for c3. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = −c3
√
2

c3 = 0

Substituting c3 found above in the general solution gives

x = 0

Summary
The solution(s) found are the following

(1)y = x+
√
2x

(2)y = x−
√
2x

(3)x = 0

(a) Solution plot (b) Slope field plot
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Verification of solutions

y = x+
√
2x

Verified OK.

y = x−
√
2x

Verified OK.
x = 0

Verified OK.

1.2.3 Maple step by step solution

Let’s solve
[y + (−y + x) y′ = −x, y(0) = 0]

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
1 = 1

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫
(y + x) dx+ f1(y)

• Evaluate integral
F (x, y) = xy + x2

2 + f1(y)

• Take derivative of F (x, y) with respect to y

23



N(x, y) = ∂
∂y
F (x, y)

• Compute derivative
−y + x = x+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = −y

• Solve for f1(y)

f1(y) = −y2

2

• Substitute f1(y) into equation for F (x, y)
F (x, y) = xy + 1

2x
2 − 1

2y
2

• Substitute F (x, y) into the solution of the ODE
xy + 1

2x
2 − 1

2y
2 = c1

• Solve for y{
y = x−

√
2x2 − 2c1, y = x+

√
2x2 − 2c1

}
• Use initial condition y(0) = 0

0 = −
√
−2c1

• Solve for c1
c1 = 0

• Substitute c1 = 0 into general solution and simplify
y = x

(
1−

√
2 csgn(x)

)
• Use initial condition y(0) = 0

0 =
√
−2c1

• Solve for c1
c1 = 0

• Substitute c1 = 0 into general solution and simplify
y = x

(
1 +

√
2 csgn(x)

)
• Solutions to the IVP{

y = x
(
1−

√
2 csgn(x)

)
, y = x

(
1 +

√
2 csgn(x)

)}
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 22� �
dsolve([(x+y(x))+(x-y(x))*diff(y(x),x)=0,y(0) = 0],y(x), singsol=all)� �

y(x) = x
(
1 +

√
2
)

y(x) = −x
(√

2− 1
)

3 Solution by Mathematica
Time used: 0.482 (sec). Leaf size: 40� �
DSolve[{(x+y[x])+(x-y[x])*y'[x]==0,y[0]==0},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x−
√
2
√
x2

y(x) →
√
2
√
x2 + x

25



1.3 problem 3
1.3.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 28
1.3.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 32
1.3.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 36

Internal problem ID [3136]
Internal file name [OUTPUT/2628_Sunday_June_05_2022_03_23_26_AM_80798607/index.tex]

Book: An introduction to the solution and applications of differential equations, J.W. Searl,
1966
Section: Chapter 4, Ex. 4.1
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_sym-
metry_lookup"

Maple gives the following as the ode type
[_linear]

y′ ln (x) + y + x

x
= 0

1.3.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = 1
x ln (x)

q(x) = − 1
ln (x)

Hence the ode is

y′ + y

ln (x)x = − 1
ln (x)
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The integrating factor µ is

µ = e
∫ 1

x ln(x)dx

= ln (x)

The ode becomes

d
dx(µy) = (µ)

(
− 1
ln (x)

)
d
dx(ln (x) y) = (ln (x))

(
− 1
ln (x)

)
d(ln (x) y) = −1 dx

Integrating gives

ln (x) y =
∫

−1 dx

ln (x) y = −x+ c1

Dividing both sides by the integrating factor µ = ln (x) results in

y = − x

ln (x) +
c1

ln (x)

which simplifies to

y = −x+ c1
ln (x)

Summary
The solution(s) found are the following

(1)y = −x+ c1
ln (x)
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Figure 7: Slope field plot

Verification of solutions

y = −x+ c1
ln (x)

Verified OK.

1.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = − y + x

x ln (x)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 5: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = 1
ln (x) (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

1
ln(x)

dy

Which results in

S = ln (x) y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = − y + x

x ln (x)

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = y

x
Sy = ln (x)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= −1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= −1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = −R + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

y ln (x) = −x+ c1

Which simplifies to

y ln (x) = −x+ c1

Which gives

y = −x+ c1
ln (x)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= − y+x
x ln(x)

dS
dR

= −1

R = x

S = ln (x) y

Summary
The solution(s) found are the following

(1)y = −x+ c1
ln (x)
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Figure 8: Slope field plot

Verification of solutions

y = −x+ c1
ln (x)

Verified OK.

1.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(ln (x)) dy =
(
−y + x

x

)
dx(

y + x

x

)
dx+(ln (x)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y + x

x
N(x, y) = ln (x)

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
y + x

x

)
= 1

x

33



And
∂N

∂x
= ∂

∂x
(ln (x))

= 1
x

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y + x

x
dx

(3)φ = x+ ln (x) y + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= ln (x) + f ′(y)

But equation (2) says that ∂φ
∂y

= ln (x). Therefore equation (4) becomes

(5)ln (x) = ln (x) + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x+ ln (x) y + c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x+ ln (x) y

The solution becomes

y = −x+ c1
ln (x)

Summary
The solution(s) found are the following

(1)y = −x+ c1
ln (x)

Figure 9: Slope field plot

Verification of solutions

y = −x+ c1
ln (x)

Verified OK.
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1.3.4 Maple step by step solution

Let’s solve
y′ ln (x) + y+x

x
= 0

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = − y

ln(x)x − 1
ln(x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + y

ln(x)x = − 1
ln(x)

• The ODE is linear; multiply by an integrating factor µ(x)

µ(x)
(
y′ + y

ln(x)x

)
= − µ(x)

ln(x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ + y

ln(x)x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)

x ln(x)

• Solve to find the integrating factor
µ(x) = ln (x)

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
− µ(x)

ln(x)dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
− µ(x)

ln(x)dx+ c1

• Solve for y

y =
∫
− µ(x)

ln(x)dx+c1

µ(x)

• Substitute µ(x) = ln (x)

y =
∫
(−1)dx+c1

ln(x)

• Evaluate the integrals on the rhs
y = −x+c1

ln(x)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
dsolve(ln(x)*diff(y(x),x)+(x+y(x))/x=0,y(x), singsol=all)� �

y(x) = c1 − x

ln (x)

3 Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 16� �
DSolve[Log[x]*y'[x]+(x+y[x])/x==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −x+ c1
log(x)
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1.4 problem 4
1.4.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 38
1.4.2 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 39

Internal problem ID [3137]
Internal file name [OUTPUT/2629_Sunday_June_05_2022_03_23_31_AM_42488425/index.tex]

Book: An introduction to the solution and applications of differential equations, J.W. Searl,
1966
Section: Chapter 4, Ex. 4.1
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact]

cos (y)− x sin (y) y′ = sec (x)2

With initial conditions

[y(0) = 0]

1.4.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= − sec (x)2 + cos (y)
x sin (y)

f(x, y) is not defined at y = 0 therefore existence and uniqueness theorem do not apply.
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1.4.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

(−x sin (y)) dy =
(
− cos (y) + sec (x)2

)
dx(

− sec (x)2 + cos (y)
)
dx+(−x sin (y)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = − sec (x)2 + cos (y)
N(x, y) = −x sin (y)
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The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
− sec (x)2 + cos (y)

)
= − sin (y)

And
∂N

∂x
= ∂

∂x
(−x sin (y))

= − sin (y)

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
− sec (x)2 + cos (y) dx

(3)φ = − tan (x) + x cos (y) + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= −x sin (y) + f ′(y)

But equation (2) says that ∂φ
∂y

= −x sin (y). Therefore equation (4) becomes

(5)−x sin (y) = −x sin (y) + f ′(y)
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Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = − tan (x) + x cos (y) + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − tan (x) + x cos (y)

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = c1

c1 = 0

Substituting c1 found above in the general solution gives

− tan (x) + x cos (y) = 0

Solving for y from the above gives

y = arccos
(
tan (x)

x

)
Summary
The solution(s) found are the following

(1)y = arccos
(
tan (x)

x

)
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Figure 10: Solution plot

Verification of solutions

y = arccos
(
tan (x)

x

)
Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.985 (sec). Leaf size: 23� �
dsolve([cos(y(x))-x*sin(y(x))*diff(y(x),x)=sec(x)^2,y(0) = 0],y(x), singsol=all)� �

y(x) = arccos
(
tan (x)

x

)
y(x) = − arccos

(
tan (x)

x

)
7 Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0� �
DSolve[{Cos[y[x]]-x*Sin[y[x]]*y'[x]==Sec[x]^2,y[0]==0},y[x],x,IncludeSingularSolutions -> True]� �
{}
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1.5 problem 5
1.5.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 44
1.5.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 48

Internal problem ID [3138]
Internal file name [OUTPUT/2630_Sunday_June_05_2022_03_23_38_AM_66712369/index.tex]

Book: An introduction to the solution and applications of differential equations, J.W. Searl,
1966
Section: Chapter 4, Ex. 4.1
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type
[_exact]

y sin
(
x

y

)
+ x cos

(
x

y

)
+

x sin
(
x

y

)
−

x2 cos
(

x
y

)
y

 y′ = 1

1.5.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)
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Comparing (A,B) shows that
∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that
∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
Therefore x sin

(
x

y

)
−

x2 cos
(

x
y

)
y

 dy =
(
−y sin

(
x

y

)
− x cos

(
x

y

)
+ 1

)
dx

(
y sin

(
x

y

)
+ x cos

(
x

y

)
− 1

)
dx+

x sin
(
x

y

)
−

x2 cos
(

x
y

)
y

 dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = y sin
(
x

y

)
+ x cos

(
x

y

)
− 1

N(x, y) = x sin
(
x

y

)
−

x2 cos
(

x
y

)
y

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives
∂M

∂y
= ∂

∂y

(
y sin

(
x

y

)
+ x cos

(
x

y

)
− 1

)

=
(x2 + y2) sin

(
x
y

)
− cos

(
x
y

)
xy

y2
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And

∂N

∂x
= ∂

∂x

x sin
(
x

y

)
−

x2 cos
(

x
y

)
y


=

(x2 + y2) sin
(

x
y

)
− cos

(
x
y

)
xy

y2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
y sin

(
x

y

)
+ x cos

(
x

y

)
− 1 dx

(3)φ = x

(
y sin

(
x

y

)
− 1

)
+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= x

sin
(
x

y

)
−

x cos
(

x
y

)
y

+ f ′(y)

But equation (2) says that ∂φ
∂y

= x sin
(

x
y

)
−

x2 cos
(

x
y

)
y

. Therefore equation (4) becomes

(5)x sin
(
x

y

)
−

x2 cos
(

x
y

)
y

= x

sin
(
x

y

)
−

x cos
(

x
y

)
y

+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0
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Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = x

(
y sin

(
x

y

)
− 1

)
+ c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = x

(
y sin

(
x

y

)
− 1

)

Summary
The solution(s) found are the following

(1)x

(
y sin

(
x

y

)
− 1

)
= c1

Figure 11: Slope field plot
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Verification of solutions

x

(
y sin

(
x

y

)
− 1

)
= c1

Verified OK.

1.5.2 Maple step by step solution

Let’s solve

y sin
(

x
y

)
+ x cos

(
x
y

)
+
(
x sin

(
x
y

)
−

x2 cos
(

x
y

)
y

)
y′ = 1

• Highest derivative means the order of the ODE is 1
y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives

sin
(

x
y

)
−

x cos
(

x
y

)
y

+
x2 sin

(
x
y

)
y2

= sin
(

x
y

)
−

x cos
(

x
y

)
y

+
x2 sin

(
x
y

)
y2

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫ (

y sin
(

x
y

)
+ x cos

(
x
y

)
− 1

)
dx+ f1(y)

• Evaluate integral

F (x, y) = −x+ y2
(
cos

(
x
y

)
+

x sin
(

x
y

)
y

)
− cos

(
x
y

)
y2 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
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x sin
(

x
y

)
−

x2 cos
(

x
y

)
y

= 2y
(
cos

(
x
y

)
+

x sin
(

x
y

)
y

)
−

x2 cos
(

x
y

)
y

− x sin
(

x
y

)
− 2 cos

(
x
y

)
y + d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 2x sin

(
x
y

)
− 2y

(
cos

(
x
y

)
+

x sin
(

x
y

)
y

)
+ 2 cos

(
x
y

)
y

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)

F (x, y) = −x+ y2
(
cos

(
x
y

)
+

x sin
(

x
y

)
y

)
− cos

(
x
y

)
y2

• Substitute F (x, y) into the solution of the ODE

−x+ y2
(
cos

(
x
y

)
+

x sin
(

x
y

)
y

)
− cos

(
x
y

)
y2 = c1

• Solve for y
y = x

RootOf
(
−x2 sin

(
_Z

)
+c1_Z+_Zx

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`� �
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3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 23� �
dsolve((y(x)*sin(x/y(x))+x*cos(x/y(x))-1)+(x*sin(x/y(x))-x^2/y(x)*cos(x/y(x)))*diff(y(x),x)=0,y(x), singsol=all)� �

y(x) = x

RootOf (x2 sin (_Z) + _Zc1 − x_Z)

3 Solution by Mathematica
Time used: 0.444 (sec). Leaf size: 20� �
DSolve[(y[x]*Sin[x/y[x]]+x*Cos[x/y[x]]-1)+(x*Sin[x/y[x]]-x^2/y[x]*Cos[x/y[x]])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
x− xy(x) sin

(
x

y(x)

)
= c1, y(x)

]
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1.6 problem 6
1.6.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 51
1.6.2 Solving as homogeneousTypeD2 ode . . . . . . . . . . . . . . . 52
1.6.3 Solving as first order ode lie symmetry calculated ode . . . . . . 53
1.6.4 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 59
1.6.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 62

Internal problem ID [3139]
Internal file name [OUTPUT/2631_Sunday_June_05_2022_03_23_42_AM_16016819/index.tex]

Book: An introduction to the solution and applications of differential equations, J.W. Searl,
1966
Section: Chapter 4, Ex. 4.1
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "homogeneousTypeD2",
"first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class A`], _exact , _rational , _dAlembert]

x

y2 + x2 + y

x2 +
(

y

y2 + x2 − 1
x

)
y′ = 0

With initial conditions

[y(1) = 0]

1.6.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= x3 + x2y + y3

x (x2 − xy + y2)

The x domain of f(x, y) when y = 0 is

{−∞ < x < ∞}
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And the point x0 = 1 is inside this domain. The y domain of f(x, y) when x = 1 is

{−∞ < y < ∞}

And the point y0 = 0 is inside this domain. Now we will look at the continuity of
∂f

∂y
= ∂

∂y

(
x3 + x2y + y3

x (x2 − xy + y2)

)
= x2 + 3y2

x (x2 − xy + y2) −
(x3 + x2y + y3) (−x+ 2y)

x (x2 − xy + y2)2

The x domain of ∂f
∂y

when y = 0 is

{x < 0∨ 0 < x}

And the point x0 = 1 is inside this domain. The y domain of ∂f
∂y

when x = 1 is

{−∞ < y < ∞}

And the point y0 = 0 is inside this domain. Therefore solution exists and is unique.

1.6.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x)x on the above ode results in new ode in u(x)

x

u (x)2 x2 + x2
+ u(x)

x
+
(

u(x)x
u (x)2 x2 + x2

− 1
x

)
(u′(x)x+ u(x)) = 0

In canonical form the ODE is

u′ = F (x, u)
= f(x)g(u)

= u2 + 1
(u2 − u+ 1)x

Where f(x) = 1
x
and g(u) = u2+1

u2−u+1 . Integrating both sides gives

1
u2+1

u2−u+1
du = 1

x
dx

∫ 1
u2+1

u2−u+1
du =

∫ 1
x
dx

u− ln (u2 + 1)
2 = ln (x) + c2
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The solution is

u(x)−
ln
(
u(x)2 + 1

)
2 − ln (x)− c2 = 0

Replacing u(x) in the above solution by y
x
results in the solution for y in implicit form

y

x
−

ln
(

y2

x2 + 1
)

2 − ln (x)− c2 = 0

y

x
−

ln
(

y2

x2 + 1
)

2 − ln (x)− c2 = 0

Substituting initial conditions and solving for c2 gives c2 = 0. Hence the solution be-

comes

Summary
The solution(s) found are the following

(1)y

x
−

ln
(

y2

x2 + 1
)

2 − ln (x) = 0

Verification of solutions

y

x
−

ln
(

y2

x2 + 1
)

2 − ln (x) = 0

Verified OK.

1.6.3 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = x3 + x2y + y3

x (x2 − xy + y2)
y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 +
(x3 + x2y + y3) (b3 − a2)

x (x2 − xy + y2) − (x3 + x2y + y3)2 a3
x2 (x2 − xy + y2)2

−
(

3x2 + 2xy
x (x2 − xy + y2)

− x3 + x2y + y3

x2 (x2 − xy + y2) −
(x3 + x2y + y3) (2x− y)

x (x2 − xy + y2)2
)
(xa2 + ya3 + a1)

−
(

x2 + 3y2
x (x2 − xy + y2) −

(x3 + x2y + y3) (−x+ 2y)
x (x2 − xy + y2)2

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−x6a2 + x6a3 + x6b2 − x6b3 − 2x5ya2 + 2x5ya3 + 2x5yb3 + 2x4y2a2 − x4y2a3 − x4y2b2 − 2x4y2b3 + 4x3y3a3 + x2y4a2 − x2y4b3 + 2x y5a3 + 2x5b1 − 2x4ya1 − 2x4yb1 + 2x3y2a1 + 2x3y2b1 − 2x2y3a1 − 2x2y3b1 + 2x y4a1 + x y4b1 − y5a1

x2 (x2 − xy + y2)2
= 0

Setting the numerator to zero gives

(6E)−x6a2−x6a3−x6b2 +x6b3 +2x5ya2− 2x5ya3− 2x5yb3− 2x4y2a2 +x4y2a3
+ x4y2b2 + 2x4y2b3 − 4x3y3a3 − x2y4a2 + x2y4b3 − 2x y5a3 − 2x5b1 + 2x4ya1
+2x4yb1−2x3y2a1−2x3y2b1+2x2y3a1+2x2y3b1−2x y4a1−x y4b1+y5a1 =0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)
−a2v

6
1 + 2a2v51v2 − 2a2v41v22 − a2v

2
1v

4
2 − a3v

6
1 − 2a3v51v2 + a3v

4
1v

2
2

− 4a3v31v32 − 2a3v1v52 − b2v
6
1 + b2v

4
1v

2
2 + b3v

6
1 − 2b3v51v2

+ 2b3v41v22 + b3v
2
1v

4
2 + 2a1v41v2 − 2a1v31v22 + 2a1v21v32 − 2a1v1v42

+ a1v
5
2 − 2b1v51 + 2b1v41v2 − 2b1v31v22 + 2b1v21v32 − b1v1v

4
2 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)(−a2 − a3 − b2 + b3) v61 + (2a2 − 2a3 − 2b3) v51v2 − 2b1v51
+(−2a2+a3+b2+2b3) v41v22+(2a1+2b1) v41v2−4a3v31v32+(−2a1−2b1) v31v22
+ (b3 − a2) v21v42 + (2a1 + 2b1) v21v32 − 2a3v1v52 + (−2a1 − b1) v1v42 + a1v

5
2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

a1 = 0
−4a3 = 0
−2a3 = 0
−2b1 = 0

−2a1 − 2b1 = 0
−2a1 − b1 = 0
2a1 + 2b1 = 0
b3 − a2 = 0

2a2 − 2a3 − 2b3 = 0
−2a2 + a3 + b2 + 2b3 = 0
−a2 − a3 − b2 + b3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = x

η = y
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, y) ξ

= y −
(

x3 + x2y + y3

x (x2 − xy + y2)

)
(x)

= −x3 − x y2

x2 − xy + y2

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−x3−x y2

x2−xy+y2

dy

Which results in

S = −y

x
+ ln (x2 + y2)

2
Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = x3 + x2y + y3

x (x2 − xy + y2)
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Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = x3 + x2y + y3

(x2 + y2)x2

Sy =
2yx

x2+y2
− 2

2x

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 0 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 0

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ln (y2 + x2)x− 2y
2x = c1

Which simplifies to

ln (y2 + x2)x− 2y
2x = c1
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= x3+x2y+y3

x(x2−xy+y2)
dS
dR

= 0

R = x

S = ln (x2 + y2)x− 2y
2x

Initial conditions are used to solve for c1. Substituting x = 1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = c1

c1 = 0

Substituting c1 found above in the general solution gives
ln (x2 + y2)x− 2y

2x = 0

The above simplifies to

ln
(
x2 + y2

)
x− 2y = 0

Summary
The solution(s) found are the following

(1)ln
(
y2 + x2)x− 2y = 0

Verification of solutions

ln
(
y2 + x2)x− 2y = 0

Verified OK.
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1.6.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore (
y

x2 + y2
− 1

x

)
dy =

(
− x

x2 + y2
− y

x2

)
dx(

x

x2 + y2
+ y

x2

)
dx+

(
y

x2 + y2
− 1

x

)
dy = 0 (2A)
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Comparing (1A) and (2A) shows that

M(x, y) = x

x2 + y2
+ y

x2

N(x, y) = y

x2 + y2
− 1

x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
x

x2 + y2
+ y

x2

)
= − 2xy

(x2 + y2)2
+ 1

x2

And

∂N

∂x
= ∂

∂x

(
y

x2 + y2
− 1

x

)
= − 2xy

(x2 + y2)2
+ 1

x2

Since ∂M
∂y

= ∂N
∂x

, then the ODE is exact The following equations are now set up to solve
for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx∫

∂φ

∂x
dx =

∫
x

x2 + y2
+ y

x2 dx

(3)φ = −y

x
+ ln (x2 + y2)

2 + f(y)
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Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= y

x2 + y2
− 1

x
+ f ′(y)

But equation (2) says that ∂φ
∂y

= y
x2+y2

− 1
x
. Therefore equation (4) becomes

(5)y

x2 + y2
− 1

x
= y

x2 + y2
− 1

x
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = −y

x
+ ln (x2 + y2)

2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = −y

x
+ ln (x2 + y2)

2

Initial conditions are used to solve for c1. Substituting x = 1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = c1

c1 = 0

Substituting c1 found above in the general solution gives

−y

x
+ ln (x2 + y2)

2 = 0
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The above simplifies to

ln
(
x2 + y2

)
x− 2y = 0

Summary
The solution(s) found are the following

(1)ln
(
y2 + x2)x− 2y = 0

Verification of solutions

ln
(
y2 + x2)x− 2y = 0

Verified OK.

1.6.5 Maple step by step solution

Let’s solve[
x

y2+x2 + y
x2 +

(
y

y2+x2 − 1
x

)
y′ = 0, y(1) = 0

]
• Highest derivative means the order of the ODE is 1

y′

� Check if ODE is exact
◦ ODE is exact if the lhs is the total derivative of a C2 function

F ′(x, y) = 0
◦ Compute derivative of lhs

F ′(x, y) +
(

∂
∂y
F (x, y)

)
y′ = 0

◦ Evaluate derivatives
− 2xy

(x2+y2)2 +
1
x2 = − 2xy

(x2+y2)2 +
1
x2

◦ Condition met, ODE is exact
• Exact ODE implies solution will be of this form[

F (x, y) = c1,M(x, y) = F ′(x, y) , N(x, y) = ∂
∂y
F (x, y)

]
• Solve for F (x, y) by integratingM(x, y) with respect to x

F (x, y) =
∫ (

x
x2+y2

+ y
x2

)
dx+ f1(y)

• Evaluate integral
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F (x, y) = − y
x
+ ln

(
x2+y2

)
2 + f1(y)

• Take derivative of F (x, y) with respect to y
N(x, y) = ∂

∂y
F (x, y)

• Compute derivative
y

x2+y2
− 1

x
= − 1

x
+ y

x2+y2
+ d

dy
f1(y)

• Isolate for d
dy
f1(y)

d
dy
f1(y) = 0

• Solve for f1(y)
f1(y) = 0

• Substitute f1(y) into equation for F (x, y)

F (x, y) = − y
x
+ ln

(
x2+y2

)
2

• Substitute F (x, y) into the solution of the ODE

− y
x
+ ln

(
x2+y2

)
2 = c1

• Solve for y

y =
x
(
−2c1+RootOf

(
4c21x2−4c1x2_Z+x2_Z2

+4x2−4 e_Z
))

2

• Use initial condition y(1) = 0

0 = −c1 +
RootOf

(
4c21−4c1_Z+_Z2

+4−4 e_Z
)

2

• Solve for c1
c1 = 0

• Substitute c1 = 0 into general solution and simplify

y =
RootOf

(
x2_Z2

+4x2−4 e_Z
)
x

2

• Solution to the IVP

y =
RootOf

(
x2_Z2

+4x2−4 e_Z
)
x

2
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.266 (sec). Leaf size: 33� �
dsolve([(x/(x^2+y(x)^2)+y(x)/x^2)+(y(x)/(x^2+y(x)^2)-1/x)*diff(y(x),x)=0,y(1) = 0],y(x), singsol=all)� �

y(x) =
x
(
RootOf

(
4 + 4 ln (x)2 + 4 ln (x)_Z+ _Z2 − 4 e_Z)+ 2 ln (x)

)
2

3 Solution by Mathematica
Time used: 0.175 (sec). Leaf size: 28� �
DSolve[{(x/(x^2+y[x]^2)+y[x]/x^2)+(y[x]/(x^2+y[x]^2)-1/x)*y'[x]==0,y[1]==0},y[x],x,IncludeSingularSolutions -> True]� �

Solve
[
y(x)
x

− 1
2 log

(
y(x)2
x2 + 1

)
= log(x), y(x)

]
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2.1 problem 1
2.1.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 66
2.1.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 68

Internal problem ID [3140]
Internal file name [OUTPUT/2632_Sunday_June_05_2022_08_37_44_AM_69209561/index.tex]

Book: An introduction to the solution and applications of differential equations, J.W. Searl,
1966
Section: Chapter 4, Ex. 4.2
Problem number: 1.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

x2(y2 + 1
)
y′ + y2

(
x2 + 1

)
= 0

2.1.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= − y2(x2 + 1)
x2 (y2 + 1)

Where f(x) = −x2+1
x2 and g(y) = y2

y2+1 . Integrating both sides gives

1
y2

y2+1

dy = −x2 + 1
x2 dx

∫ 1
y2

y2+1

dy =
∫

−x2 + 1
x2 dx

y − 1
y
= −x+ 1

x
+ c1
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Which results in

y = c1x− x2 + 1 +
√

c21x
2 − 2c1x3 + x4 + 2c1x+ 2x2 + 1

2x

y = −−c1x+ x2 +
√

c21x
2 − 2c1x3 + x4 + 2c1x+ 2x2 + 1− 1

2x

Summary
The solution(s) found are the following

(1)y = c1x− x2 + 1 +
√

c21x
2 − 2c1x3 + x4 + 2c1x+ 2x2 + 1

2x

(2)y = −−c1x+ x2 +
√

c21x
2 − 2c1x3 + x4 + 2c1x+ 2x2 + 1− 1

2x

Figure 12: Slope field plot
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Verification of solutions

y = c1x− x2 + 1 +
√

c21x
2 − 2c1x3 + x4 + 2c1x+ 2x2 + 1

2x

Verified OK.

y = −−c1x+ x2 +
√

c21x
2 − 2c1x3 + x4 + 2c1x+ 2x2 + 1− 1

2x

Verified OK.

2.1.2 Maple step by step solution

Let’s solve
x2(y2 + 1) y′ + y2(x2 + 1) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′
(
y2+1

)
y2

= −x2+1
x2

• Integrate both sides with respect to x∫ y′
(
y2+1

)
y2

dx =
∫
−x2+1

x2 dx+ c1

• Evaluate integral
y − 1

y
= −x+ 1

x
+ c1

• Solve for y{
y =

c1x−x2+1+
√

c21x
2−2c1x3+x4+2c1x+2x2+1

2x , y = −
−c1x+x2+

√
c21x

2−2c1x3+x4+2c1x+2x2+1−1
2x

}

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 93� �
dsolve(x^2*(1+y(x)^2)*diff(y(x),x)+y(x)^2*(x^2+1)=0,y(x), singsol=all)� �

y(x) = −x2 − c1x+
√
1 + x4 + 2c1x3 + (c21 + 2)x2 − 2c1x+ 1

2x

y(x) = −x2 − c1x−
√
1 + x4 + 2c1x3 + (c21 + 2)x2 − 2c1x+ 1

2x

3 Solution by Mathematica
Time used: 1.162 (sec). Leaf size: 95� �
DSolve[x^2*(1+y[x]^2)*y'[x]+y[x]^2*(x^2+1)==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → −
x2 +

√
4x2 + (−x2 + c1x+ 1) 2 − c1x− 1

2x

y(x) → −x2 +
√
4x2 + (−x2 + c1x+ 1) 2 + c1x+ 1

2x
y(x) → 0

69



2.2 problem 2
2.2.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 70
2.2.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 72

Internal problem ID [3141]
Internal file name [OUTPUT/2633_Sunday_June_05_2022_08_37_45_AM_26296455/index.tex]

Book: An introduction to the solution and applications of differential equations, J.W. Searl,
1966
Section: Chapter 4, Ex. 4.2
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

x(x− 1) y′ − cot (y) = 0

2.2.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= cot (y)
x (x− 1)

Where f(x) = 1
x(x−1) and g(y) = cot (y). Integrating both sides gives

1
cot (y) dy = 1

x (x− 1) dx∫ 1
cot (y) dy =

∫ 1
x (x− 1) dx

− ln (cos (y)) = ln (x− 1)− ln (x) + c1
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Raising both side to exponential gives

1
cos (y) = eln(x−1)−ln(x)+c1

Which simplifies to

sec (y) = c2eln(x−1)−ln(x)

Summary
The solution(s) found are the following

(1)y = arcsec
(
c2ec1(x− 1)

x

)

Figure 13: Slope field plot

Verification of solutions

y = arcsec
(
c2ec1(x− 1)

x

)
Verified OK.
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2.2.2 Maple step by step solution

Let’s solve
x(x− 1) y′ − cot (y) = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

cot(y) =
1

x(x−1)

• Integrate both sides with respect to x∫
y′

cot(y)dx =
∫ 1

x(x−1)dx+ c1

• Evaluate integral
− ln (cos (y)) = ln (x− 1)− ln (x) + c1

• Solve for y

y = arccos
(

x
ec1 (x−1)

)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 15� �
dsolve(x*(x-1)*diff(y(x),x)=cot(y(x)),y(x), singsol=all)� �

y(x) = arccos
(

x

c1 (x− 1)

)
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3 Solution by Mathematica
Time used: 52.823 (sec). Leaf size: 59� �
DSolve[x*(x-1)*y'[x]==Cot[y[x]],y[x],x,IncludeSingularSolutions -> True]� �

y(x) → − arccos
(
−e−c1x

x− 1

)
y(x) → arccos

(
−e−c1x

x− 1

)
y(x) → −π

2
y(x) → π

2
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2.3 problem 3
2.3.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 74
2.3.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 75

Internal problem ID [3142]
Internal file name [OUTPUT/2634_Sunday_June_05_2022_08_37_47_AM_71070688/index.tex]

Book: An introduction to the solution and applications of differential equations, J.W. Searl,
1966
Section: Chapter 4, Ex. 4.2
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

ry′ − (a2 − r2) tan (y)
a2 + r2

= 0

2.3.1 Solving as separable ode

In canonical form the ODE is

y′ = F (r, y)
= f(r)g(y)

= (a2 − r2) tan (y)
(a2 + r2) r

Where f(r) = a2−r2

(a2+r2)r and g(y) = tan (y). Integrating both sides gives

1
tan (y) dy = a2 − r2

(a2 + r2) r dr∫ 1
tan (y) dy =

∫
a2 − r2

(a2 + r2) r dr

ln (sin (y)) = − ln
(
a2 + r2

)
+ ln (r) + c1
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Raising both side to exponential gives

sin (y) = e− ln
(
a2+r2

)
+ln(r)+c1

Which simplifies to

sin (y) = c2e− ln
(
a2+r2

)
+ln(r)

Summary
The solution(s) found are the following

(1)y = arcsin
(

c2ec1r
a2 + r2

)
Verification of solutions

y = arcsin
(

c2ec1r
a2 + r2

)
Verified OK.

2.3.2 Maple step by step solution

Let’s solve

ry′ −
(
a2−r2

)
tan(y)

a2+r2
= 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′

tan(y) =
a2−r2

(a2+r2)r

• Integrate both sides with respect to r∫
y′

tan(y)dr =
∫

a2−r2

(a2+r2)rdr + c1

• Evaluate integral
ln (sin (y)) = − ln (a2 + r2) + ln (r) + c1

• Solve for y
y = arcsin

( ec1r
a2+r2

)
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 17� �
dsolve(r*diff(y(r),r)= (a^2-r^2)/(a^2+r^2)*tan(y(r)),y(r), singsol=all)� �

y(r) = arcsin
(

rc1
a2 + r2

)
3 Solution by Mathematica
Time used: 23.337 (sec). Leaf size: 26� �
DSolve[r*y'[r]== (a^2-r^2)/(a^2+r^2)*Tan[y[r]],y[r],r,IncludeSingularSolutions -> True]� �

y(r) → arcsin
(

ec1r

a2 + r2

)
y(r) → 0
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2.4 problem 4
2.4.1 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 77
2.4.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 79

Internal problem ID [3143]
Internal file name [OUTPUT/2635_Sunday_June_05_2022_08_37_48_AM_26764279/index.tex]

Book: An introduction to the solution and applications of differential equations, J.W. Searl,
1966
Section: Chapter 4, Ex. 4.2
Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

√
x2 + 1 y′ +

√
y2 + 1 = 0

2.4.1 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= −
√
y2 + 1√
x2 + 1

Where f(x) = − 1√
x2+1 and g(y) =

√
y2 + 1. Integrating both sides gives

1√
y2 + 1

dy = − 1√
x2 + 1

dx∫ 1√
y2 + 1

dy =
∫

− 1√
x2 + 1

dx

arcsinh (y) = − arcsinh (x) + c1
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Which results in
y = sinh (− arcsinh (x) + c1)

Summary
The solution(s) found are the following

(1)y = sinh (− arcsinh (x) + c1)

Figure 14: Slope field plot

Verification of solutions

y = sinh (− arcsinh (x) + c1)

Verified OK.
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2.4.2 Maple step by step solution

Let’s solve
√
x2 + 1 y′ +

√
y2 + 1 = 0

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
y′√
y2+1

= − 1√
x2+1

• Integrate both sides with respect to x∫
y′√
y2+1

dx =
∫
− 1√

x2+1dx+ c1

• Evaluate integral
arcsinh(y) = −arcsinh(x) + c1

• Solve for y
y = sinh (−arcsinh(x) + c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 11� �
dsolve(sqrt(1+x^2)*diff(y(x),x)+sqrt(1+y(x)^2)=0,y(x), singsol=all)� �

y(x) = − sinh (arcsinh (x) + c1)
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3 Solution by Mathematica
Time used: 0.349 (sec). Leaf size: 59� �
DSolve[Sqrt[1+x^2]*y'[x]+Sqrt[1+y[x]^2]==0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
2e

−c1
((

−1 + e2c1
)√

x2 + 1−
(
1 + e2c1

)
x
)

y(x) → −i
y(x) → i
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2.5 problem 5
2.5.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 81
2.5.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 82
2.5.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 84

Internal problem ID [3144]
Internal file name [OUTPUT/2636_Sunday_June_05_2022_08_37_49_AM_16493042/index.tex]

Book: An introduction to the solution and applications of differential equations, J.W. Searl,
1966
Section: Chapter 4, Ex. 4.2
Problem number: 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable",
"homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

y′ − x(y2 + 1)
y (x2 + 1) = 0

With initial conditions

[y(0) = 1]

2.5.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= x(y2 + 1)
y (x2 + 1)

The x domain of f(x, y) when y = 1 is

{−∞ < x < ∞}
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And the point x0 = 0 is inside this domain. The y domain of f(x, y) when x = 0 is

{−∞ < y < ∞}

And the point y0 = 1 is inside this domain. Now we will look at the continuity of

∂f

∂y
= ∂

∂y

(
x(y2 + 1)
y (x2 + 1)

)
= 2x

x2 + 1 − x(y2 + 1)
y2 (x2 + 1)

The x domain of ∂f
∂y

when y = 1 is

{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The y domain of ∂f
∂y

when x = 0 is

{−∞ < y < ∞}

And the point y0 = 1 is inside this domain. Therefore solution exists and is unique.

2.5.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= x(y2 + 1)
y (x2 + 1)

Where f(x) = x
x2+1 and g(y) = y2+1

y
. Integrating both sides gives

1
y2+1
y

dy = x

x2 + 1 dx

∫ 1
y2+1
y

dy =
∫

x

x2 + 1 dx

ln (y2 + 1)
2 = ln (x2 + 1)

2 + c1
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Raising both side to exponential gives

√
y2 + 1 = e

ln
(
x2+1

)
2 +c1

Which simplifies to √
y2 + 1 = c2

√
x2 + 1

Which can be simplified to become

√
y2 + 1 = c2ec1

√
x2 + 1

The solution is √
y2 + 1 = c2ec1

√
x2 + 1

Initial conditions are used to solve for c1. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

√
2 = ec1c2

c1 =
ln
(

2
c22

)
2

Substituting c1 found above in the general solution gives

√
y2 + 1 =

√
2 c2

√
1
c22

√
x2 + 1

Solving for y from the above gives

y =
√
2x2 + 1

Summary
The solution(s) found are the following

(1)y =
√
2x2 + 1
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(a) Solution plot (b) Slope field plot

Verification of solutions

y =
√
2x2 + 1

Verified OK. {positive}

2.5.3 Maple step by step solution

Let’s solve[
y′ − x

(
y2+1

)
y(x2+1) = 0, y(0) = 1

]
• Highest derivative means the order of the ODE is 1

y′

• Separate variables
y′y
y2+1 = x

x2+1

• Integrate both sides with respect to x∫
y′y
y2+1dx =

∫
x

x2+1dx+ c1

• Evaluate integral
ln
(
y2+1

)
2 = ln

(
x2+1

)
2 + c1

• Solve for y
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{
y =

√
−e−2c1

(
−x2+e−2c1−1

)
e−2c1 , y = −

√
−e−2c1

(
−x2+e−2c1−1

)
e−2c1

}
• Use initial condition y(0) = 1

1 =
√

−e−2c1
(
e−2c1−1

)
e−2c1

• Solve for c1
c1 = ln(2)

2

• Substitute c1 = ln(2)
2 into general solution and simplify

y =
√
2x2 + 1

• Use initial condition y(0) = 1

1 = −
√

−e−2c1
(
e−2c1−1

)
e−2c1

• Solution does not satisfy initial condition
• Solution to the IVP

y =
√
2x2 + 1

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 13� �
dsolve([diff(y(x),x)=(x*(1+y(x)^2))/(y(x)*(1+x^2)),y(0) = 1],y(x), singsol=all)� �

y(x) =
√
2x2 + 1
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3 Solution by Mathematica
Time used: 0.549 (sec). Leaf size: 16� �
DSolve[{y'[x]==(x*(1+y[x]^2))/(y[x]*(1+x^2)),y[0]==1},y[x],x,IncludeSingularSolutions -> True]� �

y(x) →
√
2x2 + 1
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2.6 problem 6
2.6.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 87
2.6.2 Solving as separable ode . . . . . . . . . . . . . . . . . . . . . . 88
2.6.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 90

Internal problem ID [3145]
Internal file name [OUTPUT/2637_Sunday_June_05_2022_08_37_50_AM_9569087/index.tex]

Book: An introduction to the solution and applications of differential equations, J.W. Searl,
1966
Section: Chapter 4, Ex. 4.2
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type
[_quadrature]

y2y′ − 3y6 = 2

With initial conditions

[y(0) = 0]

2.6.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y′ = f(x, y)

= 3y6 + 2
y2

The y domain of f(x, y) when x = 0 is

{y < 0∨ 0 < y}

But the point y0 = 0 is not inside this domain. Hence existence and uniqueness theorem
does not apply. There could be infinite number of solutions, or one solution or no
solution at all.
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2.6.2 Solving as separable ode

In canonical form the ODE is

y′ = F (x, y)
= f(x)g(y)

= 3y6 + 2
y2

Where f(x) = 1 and g(y) = 3y6+2
y2

. Integrating both sides gives

1
3y6+2
y2

dy = 1 dx

∫ 1
3y6+2
y2

dy =
∫

1 dx

√
6 arctan

(√
6 y3
2

)
18 = x+ c1

Which results in

y =
9 1

3
(√

6 tan
(
3(x+ c1)

√
6
)) 1

3

3

y = −
9 1

3
(√

6 tan
(
3(x+ c1)

√
6
)) 1

3

6 +
i
√
3 9 1

3
(√

6 tan
(
3(x+ c1)

√
6
)) 1

3

6

y = −
9 1

3
(√

6 tan
(
3(x+ c1)

√
6
)) 1

3

6 −
i
√
3 9 1

3
(√

6 tan
(
3(x+ c1)

√
6
)) 1

3

6

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 = −
i3 1

6 tan
(
3c1

√
6
) 1

3 6 1
6

2 −
tan

(
3c1

√
6
) 1

3 3 2
36 1

6

6

c1 = 0

Substituting c1 found above in the general solution gives

y = −
i3 1

66 1
6 tan

(
3
√
6x

) 1
3

2 −
6 1

63 2
3 tan

(
3
√
6x

) 1
3

6
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Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 =
i3 1

6 tan
(
3c1

√
6
) 1

3 6 1
6

2 −
tan

(
3c1

√
6
) 1

3 3 2
36 1

6

6

c1 = 0

Substituting c1 found above in the general solution gives

y =
i3 1

66 1
6 tan

(
3
√
6x

) 1
3

2 −
6 1

63 2
3 tan

(
3
√
6x

) 1
3

6

Initial conditions are used to solve for c1. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0 =
tan

(
3c1

√
6
) 1

3 6 1
69 1

3

3

c1 = 0

Substituting c1 found above in the general solution gives

y =
tan

(
3
√
6x

) 1
3 6 1

69 1
3

3

Summary
The solution(s) found are the following

(1)y =
tan

(
3
√
6x

) 1
3 6 1

69 1
3

3

(2)y =
i3 1

66 1
6 tan

(
3
√
6x

) 1
3

2 −
6 1

63 2
3 tan

(
3
√
6x

) 1
3

6

(3)y = −
i3 1

66 1
6 tan

(
3
√
6x

) 1
3

2 −
6 1

63 2
3 tan

(
3
√
6x

) 1
3

6
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(a) Solution plot (b) Slope field plot

Verification of solutions

y =
tan

(
3
√
6x

) 1
3 6 1

69 1
3

3

Verified OK.

y =
i3 1

66 1
6 tan

(
3
√
6x

) 1
3

2 −
6 1

63 2
3 tan

(
3
√
6x

) 1
3

6

Verified OK.

y = −
i3 1

66 1
6 tan

(
3
√
6x

) 1
3

2 −
6 1

63 2
3 tan

(
3
√
6x

) 1
3

6

Verified OK.

2.6.3 Maple step by step solution

Let’s solve
[y2y′ − 3y6 = 2, y(0) = 0]

• Highest derivative means the order of the ODE is 1
y′

• Separate variables
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y′y2

2+3y6 = 1

• Integrate both sides with respect to x∫
y′y2

2+3y6dx =
∫
1dx+ c1

• Evaluate integral
√
6 arctan

(√
6 y3
2

)
18 = x+ c1

• Solve for y

y =
9
1
3
(√

6 tan
(
3(x+c1)

√
6
)) 1

3

3

• Use initial condition y(0) = 0

0 =
9
1
3
(
tan

(
3c1

√
6
)√

6
) 1

3

3

• Solve for c1
c1 = 0

• Substitute c1 = 0 into general solution and simplify

y =
3
5
6 2

1
6 tan

(
3
√
6x

) 1
3

3

• Solution to the IVP

y =
3
5
6 2

1
6 tan

(
3
√
6x

) 1
3

3

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`� �
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3 Solution by Maple
Time used: 0.235 (sec). Leaf size: 77� �
dsolve([y(x)^2*diff(y(x),x)=2+3*y(x)^6,y(0) = 0],y(x), singsol=all)� �

y(x) =
3 5

62 1
6 tan

(
3
√
6x

) 1
3

3

y(x) =
tan

(
3
√
6x

) 1
3
(
3i3 1

6 − 3 2
3

)
6 1

6

6

y(x) = −
tan

(
3
√
6x

) 1
3
(
3i3 1

6 + 3 2
3

)
6 1

6

6

3 Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 87� �
DSolve[{y[x]^2*y'[x]==2+3*y[x]^6,y[0]==0},y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 6

√
2
3

3

√
tan

(
3
√
6x

)
y(x) → − 3

√
−1 6

√
2
3

3

√
tan

(
3
√
6x

)
y(x) → (−1)2/3 6

√
2
3

3

√
tan

(
3
√
6x

)
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