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Internal problem ID [3134]
Internal file name [OUTPUT/2626_Sunday_June_05_2022_03_23_18_AM_18850583/index.tex]

Book: An introduction to the solution and applications of differential equations, J.W. Searl,
1966

Section: Chapter 4, Ex. 4.1

Problem number: 1.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable",
"homogeneousTypeD2", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separable]

yr?+2yx =0

1.1.1 Solving as separable ode

In canonical form the ODE is

y/ = F(.’L‘,y)
= f(z)g(y)
2



(1)

e—2 In(z)+c1

y. Integrating both sides gives
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The solution(s) found are the following

Where f(z) =
Summary
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Figure 1: Slope field plot

Verification of solutions

Verified OK.



1.1.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
2
p(z) = -
q(z) =0
Hence the ode is
2
y+2 =0
T
The integrating factor u is
b= ef %dm
frd xz
The ode becomes
d
S =0
dz ©y
d o
@(m y) =
Integrating gives
-TQy =G

Dividing both sides by the integrating factor u = z? results in

V=
Summary
The solution(s) found are the following
V=2
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Figure 2: Slope field plot

Verification of solutions

Verified OK.

1.1.3 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)

(v (z) z + u(z)) 2* + 2u(z) 2* = 0

In canonical form the ODE is

v = F(z,u)

f(@)g(u)



(1)

u. Integrating both sides gives
In(u) = —3In(z) + ¢
U= e—31n(z)+cz
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The solution(s) found are the following

Therefore the solution y is

Where f(z) =
Summary
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Figure 3: Slope field plot




Verification of solutions

Verified OK.

1.1.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

F_ %
xr
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne +w(my — &) — w25y —wz —wyn =0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,



Table 1: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(x)y(z) + g(z) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) x? xy

First order
form ID 1

special

Y = g(z) " + f(z)

o~/ bf(@)de—h(z)
9(z)

f(q;)e_ f bf(z)dz—h(z)
9(z)

polynomial type ode

/a1 z+b1y+c1
Yy a2z+bay+ca

aibosr—aobix—bico+bacy

a1by—agbiy—aica—azcs

a1b2—agby

a1ba—azby

Bernoulli ode

Y = f(x)y+g(z)y"

e/ (=D f@)dzyn

Reduced Riccati

Y = fi(z)y + folz) y?

e J frdz

The above table shows that

(z,y) =0
1

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
§ n

as

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the




canonical coordinates, where S(R). Since £ = 0 then in this special case

R=z
S is found from
[0
- [
Which results in
S = 2%y

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS  Se+w(z,y)S,

iR~ Rt alo,y)R, ®

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

2
w(z,y) = —;y
Evaluating all the partial derivatives gives
R, =1
R,=0
Sy = 2zy
S, =

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

The above is a quadrature ode. This is the whole point of Lie symmetry method.

0 (2A)

0

It converts an ode, no matter how complicated it is, to one that can be solved by

10



integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=a (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

502?! =G
Which simplifies to

552?/ =G
Which gives

V=

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . )
. ) . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’

dy _ _ 2y s _

de ~— T dR
VA A A R R T T R U R U Y
VA A A A A R R R R R AR R RV
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Summary
The solution(s) found are the following
1
-1 1
Y= (1)
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Figure 4: Slope field plot
dz

d
M(z,y) + N(z,y) 57 =0

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

Entering Exact first order ODE solver. (Form one type)
ode. Taking derivative of ¢ w.r.t. z gives

1.1.5 Solving as exact ode
To solve an ode of the form

Verification of solutions

Verified OK.
Hence



Comparing (A,B) shows that

99 _
or
9 _ n
9y
But since % = % then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
86; g’y = [f; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

/\/I\\
<s|"‘
~

o,
<
Il
VRS
SEE=
~~
o,
&

(B

Comparing (1A) and (2A) shows that

-—> dy =0 (2A)

1
M(z,y) =

1
N(.’L’,y) = _E

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ 0N
oy Oz
Using result found above gives
oM _ 9 (1
oy Oy\ =z
=0

13



And

ON _ 9 ( 1
or Oz \ 2y

=0
Since %—A; = ‘:’%, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
09
— =M 1
e (1)
09
— =N 2
o 2)

Integrating (1) w.r.t. z gives

op .
%dx—/de

0o 1
%dx = /—5 dz
¢=—-In(z)+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

o =0+ /W @
But equation (2) says that g—i = —2—1y. Therefore equation (4) becomes
e =0+ 1) )
2y
Solving equation (5) for f'(y) gives
f'y) = —%

Integrating the above w.r.t y gives

/f’(y) dy:/(—%) dy

+Cl

14



Where ¢; is constant of integration. Substituting result found above for f(y) into

equation (3) gives ¢

)+Cl

In (y
2

6=—In(z) -

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and

combining ¢; and ¢y constants into new constant c¢; gives the solution as

(1)

The solution(s) found are the following

The solution becomes

Summary

777 7 TN NNNNNSNNSS
vy A I IR NANANA NN NN N
77 7 TN NN N NN S
D vy T NANANANO N N S N
D AV B EANANANE NG N S G
e A 4 \ / NN T S——~—
\\\\\ = _ \ / N — S ~— —
LLLLLLLLL N —————————
111111111 ~N = =~~~
1111111 ~~\/——————

11111 ~— N\ / \ T

———~~~~\\\ VS
~~~>~~~N\\\\1/ /e
~S~SNSNNNN\NN\W\NANV s
SsS<SNNN\\\\NAV1V Vs
SSSNNNN\KN\\\NV\V Vs
3 QA — S — I A
I I I

=

=

X

Figure 5: Slope field plot
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Verification of solutions

Verified OK.

1.1.6 Maple step by step solution

Let’s solve
y'z? +2yz =0
° Highest derivative means the order of the ODE is 1

/

Y

° Integrate both sides with respect to x
[ (yz* + 2yz)dz = [0dz + 1

° Evaluate integral
T’y =1

° Solve for y

i
y=%

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

Ldsolve(2*x*y(x)+x‘2*diff(y(x),x)=0,y(x), singsol=all)

16



v/ Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 16

kDSolve [2xx*y [x]+x~2*y' [x]==0,y[x],x,IncludeSingularSolutions -> True]

y(z) %
y(x) =0

17



1.2 problem 2

1.2.1 Existence and uniqueness analysis. . . . . . .. ... ... ... 18]
1.2.2 Solving as dAlembert ode . . . ... ... ... . ... ..... 19
1.2.3 Maple step by step solution . . . . . ... .. ... ... 23]

Internal problem ID [3135]
Internal file name [OUTPUT/2627_Sunday_June_05_2022_03_23_20_AM_64957984/index . tex|

Book: An introduction to the solution and applications of differential equations, J.W. Searl,
1966

Section: Chapter 4, Ex. 4.1

Problem number: 2.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType", "ho-
mogeneousTypeD2", "first_ order_ode_ lie_ symmetry_calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _exact, _rational, [_Abel, ~2nd
type , “class A°]]

y+(-y+o)y =—z

With initial conditions
[y(0) = 0]

1.2.1 Existence and uniqueness analysis
This is non linear first order ODE. In canonical form it is written as
Y = f(z,y)

Ytz
Yy—x

The = domain of f(z,y) when y =0 is

{—o0 <z < o0}

18



And the point zo = 0 is inside this domain. The y domain of f(z,y) when x =0 is

{—o0 <y < o0}

And the point yy = 0 is inside this domain. Now we will look at the continuity of

g_g y+zx
oy Oy\y—=
1 Y+

y—-z (y—=2)

2
The z domain of % when y =0 is
{r<0VvOo<z}

But the point zy = 0 is not inside this domain. Hence existence and uniqueness theorem
does not apply. Solution exists but no guarantee that unique solution exists.
1.2.2 Solving as dAlembert ode
Let p = v the ode becomes
y+(-y+z)p=—=z
Solving for y from the above results in

_z(p+1)
—1+p

This has the form
y =zf(p) + g(p) *)

Where f, g are functions of p = y/(z). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. z gives

dp
dp
_ — / /_ 2
p—f=@f+9) (2)
Comparing the form y = zf 4+ g to (1A) shows that
_p+1
f_—1+p
g=0

19



Hence (2) becomes

p+1 ( 1 p+1 ) ,
p— =z — p(x 2A
The singular solution is found by setting fll—’m’ = 0 in the above which gives
p+1
— -0
L D

Solving for p from the above gives

p=1+ V2

p=—-V2+1
Substituting these in (1A) gives

y=z+V2z

y=z—V2z

The general solution is found when 2 # 0. From eq. (2A). This results in

(z)+1
p(:L') - _plj_p(w)

V@) = 3)
(o )

__p@)+1
—1+p(z)  (—1+p(z))?

This ODE is now solved for p(x).

Inverting the above ode gives

1 +1
iz(p) _ z(p) <—1+p - (_Ii+p)5) @)
dp - %

This ODE is now solved for z(p).

Entering Linear first order ODE solver. In canonical form a linear first order is

dipx(p) + p(p)z(p) = q(p)

Where here

20



Hence the ode is

d. 2z(p) _
P e ey s s Bl

The integrating factor u is

2
u= ef (p2—2p—1)(—1+p) ap

2_op_
_ ew—ln(—wp)

Which simplifies to

VPP —2p—1

—1+p
The ode becomes
d
L x=0
dp’um
i(x/pz —2p — 13:) _0
dp —1+p B

Integrating gives

vpi—-2p—1z

=c
—1+p ’
Dividing both sides by the integrating factor u = —”’jl_ff,_l results in
c3(—=1+p)

") = -1

Now we need to eliminate p between the above and (1A). One way to do this is by
solving (1) for p. This results in

y+x
-y+z

Substituting the above in the solution for x found above gives

C3\/§.’L’

_ | —y?2+2yz+=x2?

xr=

21
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Initial conditions are used to solve for cs. Substituting = 0 and y = 0 in the above

solution gives an equation to solve for the constant of integration.

Substituting cs found above in the general solution gives

0

xr=

Summary

T —2zx
0

y=x+\/§m
y =
T =

0.757
0.501
0.251
—0.251
—0.507
—0.754

The solution(s) found are the following

(a) Solution plot

22



Verification of solutions

y=x+ \/5 T
Verified OK.
y=z—2z
Verified OK.
z=0
Verified OK.

1.2.3 Maple step by step solution

Let’s solve
ly+ (—y+2)y = —2,9(0) = 0]

° Highest derivative means the order of the ODE is 1
yl

U Check if ODE is exact
o ODE is exact if the lhs is the total derivative of a C? function
F'(z,y) =0
o Compute derivative of lhs
F'(z,y) + (,%F(w,y)) Y =0
o Evaluate derivatives
1=1

o Condition met, ODE is exact

° Exact ODE implies solution will be of this form
Fla,y) = o1, M(z,y) = F'(z,3), N(z,9) = 5 F(w,)]

° Solve for F(z,y) by integrating M (z,y) with respect to x
F(z,y) = [ (y +=z)dz + fi(y)

° Evaluate integral
F(z,y) =2y + % + fi(y)

o Take derivative of F'(z,y) with respect to y

23



N(z,y) = 5, F(z,y)
Compute derivative
—y+z=z+ L fi(y)
Isolate for % fi(y)

whiy) =~y
Solve for fi(y)
hw) =%

Substitute f(y) into equation for F'(z,y)

F(z,y) = zy + 32° — 39

Substitute F'(z,y) into the solution of the ODE
zy+3zt—iyi=c

Solve for y
{y=2-VE = Ta,y— o+ VI~ 20

Use initial condition y(0) =0

0=—v=2c,

Solve for ¢;

=0

Substitute c; = 0 into general solution and simplify
y =z(1 — v2csgn(z))

Use initial condition y(0) =0

0=+v=2c

Solve for ¢;

c1=0

Substitute c; = 0 into general solution and simplify
y=1z(1 4 v2csgn(z))

Solutions to the IVP

{y=2(1—-+v2csgn(z)),y =z(1+v2csgn(z))}

24



Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful’

v Solution by Maple
Time used: 0.047 (sec). Leaf size: 22

Ldsolve([(x+y(x))+(X-y(x))*diff(y(x),X)=0,y(0) = 0],y(x), singsol=all) J

y(z) = a:(l + \/§>
y(z) = —x(x/ﬁ — 1)

v/ Solution by Mathematica
Time used: 0.482 (sec). Leaf size: 40

LDSolve[{(x+y[x])+(x—y[x])*y'[x]== ,y[0]1==0},y[x] ,x,IncludeSingularSolutions ff True]

y(z) = z —V2V2?
y(z) = V2V + o

25



1.3 problem 3

1.3.1 Solving aslinearode . . . . . .. ... ... ... ... ... 261
1.3.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 28]
1.3.3 Solvingasexactode . .. ... ... ... .. ..........
1.3.4 Maple step by step solution . . . . .. ... ... ... ..... 301

Internal problem ID [3136]
Internal file name [OUTPUT/2628_Sunday_June_05_2022_03_23_26_AM_80798607/index.tex|

Book: An introduction to the solution and applications of differential equations, J.W. Searl,
1966

Section: Chapter 4, Ex. 4.1

Problem number: 3.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "exact", "linear", "first__order__ode__lie_ sym-
metry_ lookup"

Maple gives the following as the ode type

[_linear]

y+zx
x

y'In(z) + =0

1.3.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

¥ +p(@)y = q(z)

Where here
1
p(z) = zn (z)
1

Q(x) - In (.’IJ)

Hence the ode is
1
y/ + Yy _

In(z)z  In(z)

26



The integrating factor u is

1
u — ef x In(x) dz

The ode becomes

Integrating gives
In(z)y = /—ld:c
n(z)y=—-2x+¢

Dividing both sides by the integrating factor 4 = In (x) results in

_ T + C1
L™ ()  In(z)

which simplifies to

x4

™ (x)
Summary
The solution(s) found are the following
—T+C
= 1

27



3H— IBEEERRRRR
PRV VNN
— PV VNN
2 — INEERARRRRR
PV VNV NN
— POV VNNV
N —~ VAN
= LT VVNNNN
JRNN
y(x) o 77 L VNNNAN
N=7 L NN
VAN NN
-1 VNN NN
VL) S e
VAV ] s
~21 B
[
[ B A
-3 R S
-3 -2 -1 0 1 2 3

X

Figure 7: Slope field plot

Verification of solutions

. —r+c
V= In (x)

Verified OK.

1.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

Ytz
V= zln (x)
y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ﬂy - 5:1:) - w2€y - wx€ — Wyl = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find £,

28



Table 5: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0
1

n(z,y) = n (z) (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

ds
§ N

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=«x
S is found from
5= [ L
n
1
e
In(z)
Which results in
S=In(z)y

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ Sp+w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(x,y) is the right
hand side of the original ode given by

ytz

w(@,y) = ~zln(z)

Evaluating all the partial derivatives gives

R, =1
R,=0
S, =Y

x
Sy =1n(z)

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds
s = 2A
iR (24)
We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as

-~ -1
dR
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) =—R +c (4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

yln(z) =—z+¢
Which simplifies to

yln(z) = -+

Which gives
o —T+C
YT (o)
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
.. ) . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ _ _ytz a5 — 1
dr —  zln(z) dR
—- IBEERRERERRARR R N N N
IREERERRRER R R e
IREREERRRRR R A O R R R R e N Y
— IREERERERRRR R R N R e ™
= ) IBERERRRRRRY \\\\\me\\\\\\\\\\\\
INERERRRRRRY R N N R e N e A Y
211 0V NN N NN R T e N
— Pl VN NN NN A O R R e N e N R R R N
= 1NN NN NN R— D A R N e A T ' S
Z VN NN NN x MO OO N Y Y N Y YN
an . oF" 7% N0 Ny e D T R R N A N VAN R N
N R S S-—hl@ﬂy R N A e A VN
I N N \\\\\\\\\\\\\\J&\\\\
Y A e O VOO N O N RN N
Ve A N R N R e e e N
VoA R R A N
O Gt S A R N
A B e et e D R R T A R N
Vit e R O e Y
Vit e R R A N
Summary
The solution(s) found are the following
y = —T +C ( 1)
In (z)

31



|, \ N S e e )
S e — —
S e —
S —
VPP Yrrrores
VPP YYYYryyys

<

—~
=

~—
(e

Figure 8: Slope field plot

Verification of solutions

. —r+c
V= In (x)

Verified OK.

1.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) B =0 *)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence

0p  0bdy _
8z+8ydz_0 (B)
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Comparing (A,B) shows that

o¢
T M
oz
9 _ n
Ay
But since % = % then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘f gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(In (2)) dy = (—y ”) dz

X

(y Z x) dz +(n (2))dy = 0 (2A)

Comparing (1A) and (2A) shows that

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _on
oy Oz

Using result found above gives
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And

ON 0
— = —(1
5% — 5p ()
_1
oz
Since %—Aj = %’, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
99
— =M 1
o (1)
99
N 2
o 2)

Integrating (1) w.r.t. z gives

@dx=/de
ox

%dwzfy—i_mdx

oz T

p=z+In(z)y+ f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

09 /
kg 4
o =ln (o) + ') (@)
But equation (2) says that g—‘;’ = In (). Therefore equation (4) becomes
In (z) = In(z) + f'(y) (5)

Solving equation (5) for f'(y) gives
f'y) =0
Therefore
fly) =a
Where c¢; is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢
dp=z+hn(z)y+ac
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But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy; constants into new constant c; gives the solution as

ca=z+ln(x)y
The solution becomes

x4
v= In (x)

Summary
The solution(s) found are the following

S —
Vs
VY rrrrs

S e —
/
/

Figure 9: Slope field plot

Verification of solutions

x4
V= In (x)

Verified OK.

35



1.3.4 Maple step by step solution

Let’s solve
yIn(z)+22=0
° Highest derivative means the order of the ODE is 1

/

Y
° Isolate the derivative
R '
y= In(z)z In(z)

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
Y+ e = @

° The ODE is linear; multiply by an integrating factor u(x)
wa) (v + s ) = 145

o Assume the lhs of the ODE is the total derivative - (u(z) y)

w(@) (v + sz ) = @)y + o)y

o Isolate 1/ (z)
p(z) = zlfr(f(ca)c)

° Solve to find the integrating factor
pu(z) = In (z)

° Integrate both sides with respect to x
[ (E(u(x)y) do= [ —l‘:l((xx))dx +c

° Evaluate the integral on the lhs
pE)y=[ —l‘fl((“;))d:v +ca

° Solve for y
_ b
Y= "uw
o Substitute p(z) = In (z)
_ J(=Ddz+te
y= In(z) :
) Evaluate the integrals on the rhs
_ —x+c
Y= T
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Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

Ldsolve(ln(x)*diff(y(x),x)+(x+y(x))/x=0,y(x), singsol=all) J
. Ci — X

v/ Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 16

LDSolve[Log[x]*y'[x]+(x+y[x])/x==0,y[x],x,IncludeSingularSolutions -> Truel J

—T+C

y(z) = W
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1.4 problem 4

1.4.1 Existence and uniqueness analysis. . . . . . ... ... .. ... 38
1.42 Solvingasexactode . . ... ... ... ... .. ... .. ... 391

Internal problem ID [3137]
Internal file name [OUTPUT/2629_Sunday_June_05_2022_03_23_31_AM_42488425/index.tex]

Book: An introduction to the solution and applications of differential equations, J.W. Searl,
1966

Section: Chapter 4, Ex. 4.1

Problem number: 4.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type

[_exact]

cos (y) — zsin (y)y' = sec (z)?

With initial conditions
[y(0) = 0]

1.4.1 Existence and uniqueness analysis
This is non linear first order ODE. In canonical form it is written as
Y = f(z,y)

_ —sec () 4 cos (y)
z sin (y)

f(z,y) is not defined at y = 0 therefore existence and uniqueness theorem do not apply.
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1.4.2 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,) 2 =0 ()

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 06d
Y
— —_—— T B
or + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since a‘fgy = aa: g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
g: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(—zsin (y)) dy = (- cos (y) + sec (z)?) dz
(—sec (x)? + cos (y)) dz +(—zsin (y)) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = —sec (ac)2 + cos (y)
N(z,y) = —zxsin (y)
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The next step is to determine if the ODE is is exact or not. The ODE is exact when

the following condition is satisfied

oM _ oN
0y Oz
Using result found above gives
oM 0 2
By 8y( sec ()" + cos (y))
— —sin (y)
And
ON 0 ,
oz a(—x sin (y))
— —sin (y)

oM

Since %~ = %—N, then the ODE is exact The following equations are now set up to solve
y i

for the function ¢(z,y)

0p
6_ac_M
0p
a_y_N

Integrating (1) w.r.t. z gives

0¢ .
%dz—/de

% dz = / —sec (z)? + cos (y) dz

¢ = —tan (z) + z cos (y) + f(y)

(1)
2)

(3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and

y. Taking derivative of equation (3) w.r.t y gives

o9

oy~ " sin (y) + f' ()

But equation (2) says that g—?‘f = —z sin (y). Therefore equation (4) becomes

—zsin (y) = —zsin (y) + f'(y)
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Solving equation (5) for f'(y) gives
f'y) =0

Therefore
fly)=a
Where c; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
¢ =—tan (z) +zcos(y) + 1

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

c1 = —tan (z) + z cos (y)

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0=01

C1 = 0
Substituting c¢; found above in the general solution gives
—tan(z) + zcos(y) =0

Solving for y from the above gives

tan (z) )

Y = arccos (

Summary
The solution(s) found are the following

J = arccos (tanx(a:)) 1)
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Figure 10: Solution plot

Verification of solutions

J = arccos (tan (x))

X

Verified OK.
Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

<- exact successful’
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v/ Solution by Maple
Time used: 0.985 (sec). Leaf size: 23

Ldsolve([cos(y(x))—x*sin(y(x))*diff(y(x),x)=sec(x)‘2,y(0) = 0],y(x), singsol=all)

T

)

y(ﬂﬂ) = arccos (M)

y(x) = — arccos ( -

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

kDSolve [{Cos[y[x]]-x*Sin[y[x]]*y' [x]==Sec[x]~2,y[0]==0},y[x],x, IncludeSingularFolutions -> Tr

{3
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1.5 problem 5
1.5.1 Solvingasexactode . . ... ... ... ... ... .. ... 44
1.5.2 Maple step by step solution . . . . ... ... ... ... ... . [48]

Internal problem ID [3138]
Internal file name [OUTPUT/2630_Sunday_June_05_2022_03_23_38_AM_66712369/index. tex]

Book: An introduction to the solution and applications of differential equations, J.W. Searl,

1966

Section: Chapter 4, Ex. 4.1
Problem number: 5.
ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact"

Maple gives the following as the ode type

[_exact]

T T T x“ cos (%)
y sin (—)—i—xcos (—)—I— x sin (—)—— y =1
Y ) ) )

1.5.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,) + N(z,9) 2 =0 *)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t.  gives

d
Hence 06 06 d
o9 oeady _
Oxr Oydx 0 (B)
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Comparing (A,B) shows that

99 _
or
o
T _N
Oy
But since aa g = aya then for the above to be valid, we require that
oM _oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
86; g’y = g g’ is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

()75 (o () e () )
(ysin (2) w0 (£) 1) s m(g)_“"s oo on
)

Therefore

T sin

<8

Comparing (1A) and (2A) shows that

M(z,y) —ysm( —l-cccos( )—1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM ON

oy oz
Using result found above gives

6_M = 2(ysin <£) + x cos <§> — 1)
dy Oy y y
' v

y2
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And

y
Y2
Since %’I = %, then the ODE is exact The following equations are now set up to solve
for the function ¢(z,y)
09
=M 1
o (1)
09
— =N 2
5 )

Integrating (1) w.r.t. = gives

op .
8—wdx—/de

i frn(() ()20
6= x(ysin G) - 1) + f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

z

w2
But equation (2) says that 22 = zsin (%) - %@) Therefore equation (4) becomes

Jy =
rein (%) - e () ( (- J) e 6
) ) ) )
Solving equation (5) for f’'(y) gives
flly) =0
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Therefore
fly)=a

Where c; is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢
¢ = x(ysin (E) — 1) +
Y

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and ¢y constants into new constant c¢; gives the solution as

. [z
c = x(ysm (—) — 1)
Y
Summary

The solution(s) found are the following
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Figure 11: Slope field plot
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Verification of solutions

o (3) )

1.5.2 Maple step by step solution

Verified OK.

Let’s solve
in (2 e in(z) — % I
ysin () +xcos( )+ |wsin( ” y=1
° Highest derivative means the order of the ODE is 1
y/

OJ Check if ODE is exact
o ODE is exact if the lhs is the total derivative of a C? function
F(z,y)=0
o Compute derivative of lhs
F'(z,y) + (%F(:v, y)) y =0
o Evaluate derivatives

sin (£> _ wcos(f) n ;EQSin(%) — sin <§) _ wcos(%) z2 sin(%)

y Y y? y y?

o Condition met, ODE is exact

° Exact ODE implies solution will be of this form
Fl@,y) = 1, M(z,y) = F'(z,1), N(2,9) = & F(x,)]
. Solve for F'(z,y) by integrating M (z,y) with respect to =

F(z,y)= [ (ysin (f) + x cos (f) — 1) dz + fi(y)

° Evaluate integral

:/vsin(£

Plo) = = +42(cos (3) + 255 ) —eos (3) 2 + 50

o Take derivative of F(z,y) with respect toy
N(z,y) = 5, F(z,y)
° Compute derivative
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I sin (f) — w =2y (cos (;—6) + xsu;(2>) — il Coj(z) — xsin <§> — 2cos (f) y+ d%fl(y)
o Isolate for d% fi(y)

%fl(y) = 2z sin (%) -2y (cos (%) + wsﬂ;(;)) + 2cos (g) y

o Solve for fi(y)
fily) =0
o Substitute fi(y) into equation for F'(z,y)
F(z,y) = -z + 1 (cos (5) + %) — cos (%) y?
o Substitute F'(z,y) into the solution of the ODE
— + 9> (cos <§> + %) — cos (5) V=
° Solve for y

y= RootOf <—a:2 sin <_xZ> +01_Z+_Zz>

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

<- exact successful"
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v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 23

Ldsolve ((y(x)*sin(x/y(x))+x*cos(x/y(x))-1)+(x*sin(x/y(x))-x"2/y(x) *cos (x/y (x) )}) *diff (y(x),x)=

x
y(z) = RootOf (x2sin (_2)+ _Zcy —x__2)

v/ Solution by Mathematica
Time used: 0.444 (sec). Leaf size: 20

LDSolve [(y[x]*Sin[x/y[x]]+x*Cos [x/y[x]]1-1)+(x*Sin[x/y [x]]-x"2/y [x]*Cos [x/y [x] ]}) *xy' [x]==0,y[x]

Solve [x — zy(z) sin (yi) =, y(w)]
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1.6 problem 6

1.6.1 [Existence and uniqueness analysis. . . . . ... ... .. .... 51l
1.6.2 Solving as homogeneousTypeD2ode . .. ... ... ...... 2]
1.6.3 Solving as first order ode lie symmetry calculated ode . . . . . . 53
1.6.4 Solvingasexactode . ... ... .... ... .......... HOl
1.6.5 Maple step by step solution . . . . ... ... .. ... ... .. 621

Internal problem ID [3139]
Internal file name [OUTPUT/2631_Sunday_June_05_2022_03_23_42_AM_16016819/index.tex|

Book: An introduction to the solution and applications of differential equations, J.W. Searl,
1966

Section: Chapter 4, Ex. 4.1

Problem number: 6.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "homogeneousTypeD2",
"first_ order__ode_ lie_ symmetry__calculated"

Maple gives the following as the ode type

[[_homogeneous, ~class A"], _exact, _rational, _dAlembert]

z y y AP
y2+w2+ﬁ+(y2+x2_5)y =0

With initial conditions
[y(1) = 0]

1.6.1 Existence and uniqueness analysis
This is non linear first order ODE. In canonical form it is written as
y = f(z,y)

P42ty 4P
Cz(#®—zy+9?)

The = domain of f(z,y) when y =0 is

{—c0 <z < o0}
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And the point zo = 1 is inside this domain. The y domain of f(z,y) when x =1 is
{—00 <y < oo}

And the point yy = 0 is inside this domain. Now we will look at the continuity of

of 8( x3 + 2%y + 93 )
x

dy Oy \z(@® —ay+y?)
?+3y* (P +2%y+¢°) (—z+2y)
z (22 — zy + y?) z (22 — zy +92)°

The z domain of % when y =0 is
{r<0VO0<z}

And the point zy = 1 is inside this domain. The y domain of g—i when z =1 is
{—o00 <y < oo}

And the point yy = 0 is inside this domain. Therefore solution exists and is unique.

1.6.2 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(z) x on the above ode results in new ode in u(x)

v +u(w)+( (u(w)x 1

u (-’E)2 x? + 22 z :1;)2 22 + 12 5) (UI(IL') T+ u(m)) =0

In canonical form the ODE is

u = F(z,u)
f(z)g(u)
_ w41
(W -u+1)z

Where f(z) =1 and g(u) = w+1_ Tntegrating both sides gives

uZ—u+1"

1 1
. du=—dz
u+1 €T
u?2—u+1

1 1

uZ—u+1

2
u_ln(u +1)

5 =In(z)+ ¢
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The solution is

(u(z)® +1)

u(x)—ln —In(z) —ce=0

Replacing u(z) in the above solution by £ results in the solution for y in implicit form

In (g—z+1>

<

. 5 —In(z) —cx=0
y ln(z—§+1)
E—T—In(x)—Q:O

Substituting initial conditions and solving for c, gives co = 0. Hence the solution be-
Summary

The solution(s) found are the following

comes ,
y_ @ “In(z) =0
z 2
Verification of solutions
y In (%%—1) In (@) = 0
T 2

Verified OK.

1.6.3 Solving as first order ode lie symmetry calculated ode
Writing the ode as
, Bty 4P
oz -2y +y?)
Y =w(z,y)

Y

The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - Ex) - w2§y — wz€ — Wyl = 0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zaz + yas + a (1E)
n = xby + ybs + by (2E)
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Where the unknown coeflicients are

{al, as, as, by, by, 53}

Substituting equations (1E,2E) and w into (A) gives

)@ sty (s
2 - I
z (22 — zy + y?) 22 (22 — Ty + y2)2 2 (@ -2y + 1)
_ 3 + 2%y + 18 _ (x3 + 2%y + y3) (2x — y) ( N ta) (5E)
z? (IL‘2 -y + y2) T (.’172 —zy + y2)2 Taz T~ yas +a
z® +3y° (z° + 2% +9°) (-7 + 2y)
- (m(ffz—my+y2)_ x(x2_1.y_+_y2)2 )(mb2+yb3+b1)=0

Putting the above in normal form gives

28ay + 28a3 + 280y — 28b3 — 22%yay + 2x°yas + 22%ybs + 2x*y%ay — xtyPas — riy?by — 22%y?bs + 43y

=0
Setting the numerator to zero gives

—28ay — 28a5 — 2%y + 2503 + 225ya, — 22°yas — 22°ybs — 2zty%a, + ztylas (6E)
+ z49%by + 22ty?bs — 423yPas — 2?ytas + 2?ybs — 2z yPas — 22501 + 2xtyay
+2m4yb1 —22%y%ay — 223y by + 2223 a1 + 22%y3 by — 22 y4a1 —T y4b1 +3%a; =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y = v}

The above PDE (6E) now becomes

—ag0% + 202030y — 2090103 — axv?v; — azv® — 2a3v°v; + asviv

- 4a31)i’v§’ - 2a31)1v§’ — byv? + bzv‘fvg + b308 — 2b3viv, (7E)
+ 2b3viv2 + bsv?us + 2,01y — 2010302 4 20,0703 — 20,1105
+ a1v5 — 20,95 + 2b1vivy — 2010303 + 2bvvV3 — bivivy = 0
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Collecting the above on the terms v; introduced, and these are
{vla ’Uz}

Equation (7E) now becomes

(—CLQ — as — b2 + b3) ’U? + (2&2 - 20,3 — 2b3) ’U?’Ug - 2b1’Ui) SE)
+ (—2ag +az + by +2b3) vivi 4+ (2a; +2b1 ) vivy — 4azvivi + (—2a; — 2b; ) V32
+ (bg — a) V205 + (2a1 + 2by) v3V3 — 2a3v105 + (—2a; — by) vV1v5 + a1v5 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

a; =0

—4a3 =0

—2a3 =0

—2b; =0

—2a; —2b1 =0
—2a;—b; =0
2a; +2b; =0
bs —ay =0

2&2-2&3—2b3=0
—2a2+a3+b2+2b3=0
—(I,Q—a3—b2+b3=0

Solving the above equations for the unknowns gives

a1 =0
az = b3
a3 =0
by =0
b, =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=zx
n=y



Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-w(y)§
3 + 2%y + 98
=Yy- 2 2 (117)
z (22 — zy + y?)
z? — zy + 9>
§=0

The next step is to determine the canonical coordinates R, .S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

—x3

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

The above comes from the requirements that <£ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx
S is found from
1
S = / —dy
n
1
= / B W
o2 —zy+y?
Which results in
oy, G

T 2
Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating
ﬁ _ Satw(z,y)Sy (2)
dR R, +w(z,y)R,

Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

3+ 2%y + 93
z (22 —zy +y?)

w(z,y) =
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Evaluating all the partial derivatives gives

R,=1

R,=0

g _ 23+ 2%y 4+ o>
T (@ y?)a?
o

2z

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

=0 (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR ~

The above is a quadrature ode. This is the whole point of Lie symmetry method.

0

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = ¢, (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

In(y? + 2%z — 2y _
2z

&

Which simplifies to

In(y? + 2%z — 2y _
2z

C
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
@ _ m3+m2y+y3 ﬁ 0
dz — z(z2—zy+y?) dR —
=SSN NNN VWt P A AL EL S
~s~aNNNN Ve r
NNVt PPy 4
=i
—>—>—p—a~aa v
»»»-»«»\’Q\]t?fffffff/f S(R]
e IR ARy, 24
AAmmmws—NNL PSS
e N A R=zx
////////7\65;‘//%////// \ )
//.Zl/’/‘/‘_'/z/" ~ 7 7 //’/'AX/"/’ _ _'z; > ﬁ T
FEAP RIS e e e =ln(a: +y°)z—2 -
A I 2
PEPPIILS /‘_;;Ax N et -
FAELELEELEE T N N
D A A A A R R e
D A A A A R R
A A R R 4
A A A R TR T
P A o R R R R N

Initial conditions are used to solve for ¢;. Substituting x = 1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0=Cl

01=0

Substituting ¢; found above in the general solution gives

In(z? +y?)z — 2y _

0
2z

The above simplifies to
In(z*+y*)z—2y=0

Summary
The solution(s) found are the following

In(y’+2*)z—2y=0

Verification of solutions

In(y*+2°)z—2y=0

Verified OK.
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1.6.4 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

dy
x
We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
%QS("E, y) =0

Hence 96 0d
Yy _
or  Oydx 0 (B)

Comparing (A,B) shows that

0p
or
0¢

3_3/_

8% __ 9%

Budy = Dyos then for the above to be valid, we require that

But since

OM  ON

oy Oz
If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
a‘f gy = aa: g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
Y 1 _ (= Y
(«'v“ryz w> dy_( 22 +y? w2) de
T Y Y 1 _
(x2+y2+ 2) +<w2+y2 w) W=0 (24)

99



Comparing (1A) and (2A) shows that

z Y
M(x7y)=x2+y2+ﬁ
Y 1
N(x’y)::v2+y2_5

The next step is to determine if the ODE is is exact or not. The ODE is exact when

the following condition is satisfied
oM  ON
oy Oz
Using result found above gives
oM 3 x n y
oy Oy\a2+y2 22
2zy + 1
(a2 +y2)°  ?

oN _9/( vy _1
or Or\z2+1y2 =z

2zy + 1
(a2 +y?)°

And

Since 24 — ‘:’%, then the ODE is exact The following equations are now set up to solve

By
for the function ¢(z, )

9 _
or
96 _
oy

Integrating (1) w.r.t. z gives
— dm = / Mdz

9 .. z y
8x /m2+y +x2d$

Yy In(@+¢?)
¢__E+T+f(y)
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Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ y 1 .
. — 4
T Rl (@
But equation (2) says that g—‘z =2ta - 1. Therefore equation (4) becomes
1 1
=+ W) (5)

2+y? oz - 2+y? oz
Solving equation (5) for f'(y) gives

flly)=0

Therefore

fly) =a
Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢

¢=_

In (22 + 32
3+M+Cl

2

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

1 2 2
Y, n(z° +y%)

Ci = —
T 2

Initial conditions are used to solve for c¢;. Substituting x = 1 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

0:(31

01:0

Substituting ¢; found above in the general solution gives

— =0

1 2 2
Y, n (z* +y°)
x 2

61



The above simplifies to
In(z*+y*)z—2y=0

Summary
The solution(s) found are the following

In(y’+2*)z—2y=0 (1)

Verification of solutions

In(y*+2°)z—2y=0
Verified OK.

1.6.5 Maple step by step solution

Let’s solve
yzf_gp + x% + <y2_?{_x2 - %) y = O,y(l) =0
° Highest derivative means the order of the ODE is 1
yl

OJ Check if ODE is exact
o ODE is exact if the lhs is the total derivative of a C? function
F'(z,y) =0
o Compute derivative of lhs
F'(z,y) + (%F(w,y)> Y =0
o Evaluate derivatives

—_2my 1 2=y 41
@y T T Ty T

o Condition met, ODE is exact

° Exact ODE implies solution will be of this form
Fla,y) = o1, M(z,y) = F'(z,3), N@,y) = £ F(,9)]

° Solve for F'(z,y) by integrating M (z,y) with respect to x
F(z,y) = [ (% + %) do+ fily)

° Evaluate integral
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F(z,y) = —L+ 200 4 1 (y)

Take derivative of F(x, y) with respect to y
N(z,y) = £ F(z,y)

Compute derivative

e R ¥ ()
Isolate for % fi(y)

%f 1(y) =0

Solve for fi(y)

fily) =

Substitute f(y) into equation for F'(z,y)
F(z,y) = -1+ 2

Substitute F'(z,y) into the solution of the ODE
—yy In(z 2+y ) — ¢
Solve for y

T (—201 + RootOf (4c%w2 —4c1w2_Z+:1:2_ZQ+4z2 -4 e—Z) )
Y= 2

Use initial condition y(1) =0

RootOf (40% —401_Z+_Z2+4—4 e—Z)
0=—c + 3

Solve for ¢;
C = 0
Substitute c; = 0 into general solution and simplify

RootOf (:c2_Z2 +4x%—4 e—Z) T
Y= 3

Solution to the IVP

RootOf (a:Q_ZQ +4x2—4 e—Z> T
Y= D)
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful’

v Solution by Maple
Time used: 0.266 (sec). Leaf size: 33

Ldsolve( [(x/(x"2+y(x) "2)+y(x) /x"2)+(y (x) / (x"2+y (x) ~2)-1/x) *diff (y(x) ,x) =0,y(1)J = 0],y(x), sin

z(RootOf (4 + 41n (z)?+4ln(z) _Z+_ 7 —4e?) +2In (z))
y(z) = 5

v/ Solution by Mathematica
Time used: 0.175 (sec). Leaf size: 28

[DSolve[{(x/(x‘2+y[x]‘2)+y[x]/x‘2)+(y[x]/(x‘2+y[x]“2)—1/x)*y'[x]==0,y[1]==0},#ﬁx],x,IncludeSi

Solve [@ - %log (%?2 + 1) _ log(z), y(x)}
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2 Chapter 4, Ex. 4.2

2.1
2.2
2.3
24
2.5
2.6

problem 1
problem 2
problem 3
problem 4
problem 5
problem 6
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2.1 problem 1
2.1.1 Solving as separableode . . . . . .. ... ... 66!
2.1.2 Maple step by step solution . . . . ... ... ... ... ... 68}

Internal problem ID [3140]
Internal file name [OUTPUT/2632_Sunday_June_05_2022_08_37_44_AM_69209561/index.tex]

Book: An introduction to the solution and applications of differential equations, J.W. Searl,
1966

Section: Chapter 4, Ex. 4.2

Problem number: 1.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_separable]

2+ 1)y +y° (2 +1) =0

2.1.1 Solving as separable ode

In canonical form the ODE is

y = F(z,y)
= f(z)g(y)
y*(z* +1)
22 (y*+1)
Where f(z) = —% and g(y) = yé’j_l. Integrating both sides gives
1 2 +1
e dy = — = d.
y2+1
1 z2+1
/ e dy = /— o dr
y2+1
Yy—-—=-r+-+c
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Which results in

ar — 1?4+ 1+ \/Ax? — 2173 + 14 + 2c,7 + 222 + 1
y:
2x

_ —ar+a®+ Va2 — 23+ 2t +2cr + 222 +1— 1

vy= 2z

Summary
The solution(s) found are the following

ar — 12+ 1+ \/Ax? — 2173 + 24 + 2c,7 + 222 + 1
y:

2z
—c1z + 2%+ \/3x? — 20,73 + 14+ 207 + 222 + 1 — 1
2z
3NNNNNNNN VAN NN
NOANNNNNNY Y VAN NN NN
NOANNNNNNY Y VN NNNONNN
24 NONNNN NN VOV N NN
NONNNNNNY VAN N NN
NONNNNNN VOV NN
1 NN VNN
AN S A S NN NN
y(x) o —~\\—
SONONONNONNNY OIS NN
LRSS SN NN L AN NN
SONNNNNN N Y B NNNNNNNY
NONNNNNNY VAN NN NN
=2 NNNNNNN VOV N NN
NOANNNNNNY Y VN NNNONNN
NONNNNNNY VAN NNNNNN
=3I NNNNNN N VNN NN
-3 -2 —1 0 1 2 3

Figure 12: Slope field plot
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Verification of solutions

y_clx—x2+1+\/c%xQ—2clx3+x4+201x+2x2+1

2z
Verified OK.
—c1z + 2%+ \/3x? — 20,23 + 14+ 207 + 222 + 1 — 1
y=- 2z
Verified OK.

2.1.2 Maple step by step solution

Let’s solve
2P +1)y +y*(e*+1)=0
° Highest derivative means the order of the ODE is 1

/

Y
° Separate variables
Y (3 4+1) 2241
2 - 22
° Integrate both sides with respect to x

/(2,2
[ (?;;rl) de = [ —ZHdx + ¢
° Evaluate integral
y—,=-z+;+a

° Solve for y

ciz—z2+1+ c%z2—201z3+z4+2c1z+2m2+1 —ciz+z2+ c%zz—2clm3+z4+201m+2m2+1—1
y= 2z Yy == 2z

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 93

Ldsolve (x"2¢ (1+y (x) "2) *diff (y(x) ,x) +y(x) “2*(x~2+1)=0,y(x), singsol=all) J
y(@) = —22 —cx++/1+ 24+ 20123 + (3 +2) 22 — 217 + 1
2z
y(z) = —2? —ciz — 1+ x4+ 2023 + (Z +2) 22 — 217 + 1
2z

v/ Solution by Mathematica
Time used: 1.162 (sec). Leaf size: 95

tDSolve [x~2% (1+y [x]~2)*y' [x]+y [x] 2% (x~2+1)==0,y[x] ,x, IncludeSingularSolutionsJ -> True]

P+ A2+ (-2 + ez +1)2 —cz — 1

y(z) = —

2z

y(@) = 24+ A+ (-2 +ar+1)2+ gz +1
2z

y(z) =0
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2.2 problem 2

2.2.1 Solving as separableode . . . . . .. ... ... [70]
2.2.2 Maple step by step solution . . . . ... ... ... .. 2]

Internal problem ID [3141]
Internal file name [OUTPUT/2633_Sunday_June_05_2022_08_37_45_AM_26296455/index . tex]

Book: An introduction to the solution and applications of differential equations, J.W. Searl,
1966

Section: Chapter 4, Ex. 4.2

Problem number: 2.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type

[_separable]

z(zx —1)y —cot (y) =0

2.2.1 Solving as separable ode

In canonical form the ODE is

yl = F(.’Z), y)
= f(=)9(y)

_ cot (y)
z(x—1)

Where f(r) = ——— and g(y) = cot (y). Integrating both sides gives

z(z—1)

1 1
cot (y) dy = z(x—1) dz

fww®= e

—In(cos(y)) =ln(z—1)—In(z) + ¢
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Raising both side to exponential gives

Which simplifies to

Summary

1

— eln(ac—l) —In(z)+c1
cos (y)

sec (y) — czeln(z—l)—ln(:l:)

The solution(s) found are the following

C1 _ 1

—a s
BASNNNNNNV VLTV VNN
—==sSNN) T VNN~
———mm=sSNA L NN S S
2 =SSN\ NS
AAAAAAAA ~\/ 7/ \~————es
aaaaaaa ——= /7 \N\ /) s
-1 \\\ | /e
e v A I B TR A B B A
(x) o7Vt sy
y SONNNNA VLTV VNN
—==sSSNA Y VNN S
e e N N e B
T ~~N\ T NS ————
ﬁﬁﬁﬁﬁﬁﬁﬁ ~\/ 7/ \_———as
AAAAAAA ——= 7/ \N\\/ -
A e g B B
e VAN I B TR N B A A e
o777 000NVt
-3 -2 —1 0 1 2 3

Verification of solutions

Verified OK.

Figure 13: Slope field plot

)

coe®(z — 1)

Y = arcsec
Z
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2.2.2 Maple step by step solution

Let’s solve
z(zx—1)y —cot(y) =0
° Highest derivative means the order of the ODE is 1

/

Y

° Separate variables
Yy 1

cot(y) — w(z—1)

° Integrate both sides with respect to x
f#éy)dxzfﬁdx—i-cl

° Evaluate integral
—In(cos(y))=ln(z—1)—In(z) + ¢

° Solve for y

1 = arccos <m>

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’

v Solution by Maple
Time used: 0.015 (sec). Leaf size: 15

-

Ldsolve(x*(x-l)*diff(y(x),x)=cot(y(x)),y(x), singsol=all)

-/
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v/ Solution by Mathematica
Time used: 52.823 (sec). Leaf size: 59

-

kDSolve [x*(x-1)*y' [x]==Cot [y[x]],y[x],x,IncludeSingularSolutions -> True]

—

e
y(x) — — arccos (— )

z—1
e 'z
% J—
y(x) — arccos ( o 1)
s
_) —_—
y(z) = =5
s
% J—
y(z) = 5
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2.3 problem 3
2.3.1 Solving as separableode . . . . . .. ... ... [74
2.3.2 Maple step by step solution . . . . . ... ... 751

Internal problem ID [3142]
Internal file name [OUTPUT/2634_Sunday_June_05_2022_08_37_47_AM_71070688/index.tex]

Book: An introduction to the solution and applications of differential equations, J.W. Searl,
1966

Section: Chapter 4, Ex. 4.2

Problem number: 3.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type

[_separable]

V- a? 4+ r? 0
2.3.1 Solving as separable ode
In canonical form the ODE is
y = F(r,y)
= f(r)g(y)
_ (a® —r?)tan (y)
(a2 +r2)r

Where f(r) = % and g(y) = tan (y). Integrating both sides gives

1 a®—r?
— dy=
tan (y) (a2 +r2)r

1 a®—r?
/tan(y) dy_/(a2+r2)rdr

In(sin(y)) = —In(a®>+r*) +In(r) +

dr
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Raising both side to exponential gives

sin (y) — e In(a?+r2)+In(r)+ec;

Which simplifies to

sin (y) = cpe™ (@7 +7%) +1n(r)

Summary
The solution(s) found are the following

C1
y = arcsin <ﬂ> (1)

a? 4+ r?

Verification of solutions

= arcsin Coe™tT
y= a? + r?
Verified OK.

2.3.2 Maple step by step solution

Let’s solve
ry — (a? —arz J)r:gn(y) 0

° Highest derivative means the order of the ODE is 1

/

Y

° Separate variables

y  _ a?—r?

tan(y) ~—  (a?+r2)r

° Integrate both sides with respect to r
f tag(y) f (;;ﬁ)rdr ta
° Evaluate integral

In(sin (y)) = —In(a®? + %) +In(r) + ¢

° Solve for y

y = arcsin (575 )
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 17

tdsolve(r*diff(y(r),r)= (a"2-r~2)/(a"2+r"2)*tan(y(r)),y(r), singsol=all) J

re
y(r) = arcsin [ ———
a®+r?

v/ Solution by Mathematica
Time used: 23.337 (sec). Leaf size: 26

LDSolve[r*y'[r]== (a“2-r‘2)/(a“2+r“2)*Tan[y[r]],y[r],r,IncludeSingularSolutiop% -> True]

C1
y(r) — arcsin (&>

a®+r?
y(r) =0
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2.4 problem 4

24.1 Solving as separableode . . . . . .. ... .. oL (77
2.4.2 Maple step by step solution . . . . ... ... ... ..., 79]

Internal problem ID [3143]
Internal file name [OUTPUT/2635_Sunday_June_05_2022_08_37_48_AM_26764279/index.tex]

Book: An introduction to the solution and applications of differential equations, J.W. Searl,
1966

Section: Chapter 4, Ex. 4.2

Problem number: 4.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type

[_separable]

Vet +1y 4+ /y?2+1=0

2.4.1 Solving as separable ode

In canonical form the ODE is

y = F(z,9)

= f(z)g(y)
ViE+1
Vzr+1

Where f(z) = —ﬁ and ¢g(y) = v/y? + 1. Integrating both sides gives

1 1

. dy=——""Jd
/R R/~

1 1
o dy= [ - d
/\/yz—i-l y / vz +1 v

arcsinh (y) = — arcsinh (z) + ¢;

7



Which results in
y = sinh (— arcsinh (z) + ¢;)

Summary
The solution(s) found are the following

y = sinh (— arcsinh (z) + ¢;)

3NNNNNN LYYV VNN NN
A R R T T AN R N
A e T R R R R S N R
22 I R N R e R T N S
SONNONNRNN N LD YL NN
3 N N VR N e N VO VN N N N N N N NN
TR AR AR R R R RN
AN Y D e N N N N N N N N NN

N N D R N N e
NN N e e e e N NN
V(X)L  ——
R e O R e e e
RN N D T T T e

i ECRO O N R R N R N N OO
D N N R N N N N N N N N N N N N NN
SONNNNRNNT N LD NN

a2 I N N N e e e R A T T T T N N N N NN
A T R R R R N R
A R e e T T T T T T N N T NN

S3TNNNNN LD VY VNN NN
-3 -2 —1 0 1 2 3

Figure 14: Slope field plot

Verification of solutions

y = sinh (— arcsinh (z) + ¢;)

Verified OK.
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2.4.2 Maple step by step solution

Let’s solve
VT IY + VP F1=0

° Highest derivative means the order of the ODE is 1

/

Y

° Separate variables

Yy __1
Vy2+1 Va2+1

° Integrate both sides with respect to x
| Fde = | ~zamde+a

° Evaluate integral
arcsinh(y) = —arcsinh(z) + ¢;

° Solve for y

y = sinh (—arcsinh(z) + ¢;)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’

v Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

dsolve(sqrt (1+x~2)*diff (y(x) ,x)+sqrt (1+y(x)~2)=0,y(x), singsol=all)

N

y(z) = — sinh (arcsinh (z) 4 ¢;)
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v/ Solution by Mathematica
Time used: 0.349 (sec). Leaf size: 59

-

N
kDSolve [Sqrt[1+x~2]*y' [x]+Sqrt [1+y[x]~2]==0,y[x],x,IncludeSingularSolutions ->J True]

y(x) — %ff"cl <(—1 + e*) Vi +1-— (1+€e*) :c)
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2.5 problem 5

2.5.1 Existence and uniqueness analysis. . . . . ... ... ... ... 811
2.5.2 Solving as separableode . . . . . ... ... oL 82]
2.5.3 Maple step by step solution . . . .. ... ... ... .. .... 84

Internal problem ID [3144]
Internal file name [OUTPUT/2636_Sunday_June_05_2022_08_37_49_AM_16493042/index.tex|

Book: An introduction to the solution and applications of differential equations, J.W. Searl,
1966

Section: Chapter 4, Ex. 4.2

Problem number: 5.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable",
"homogeneousTypeD2", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_separablel

With initial conditions

2.5.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

y/ = f(x,y)
_ (P +1)
y(x2+1)

The x domain of f(x,y) when y =1 is

{—00 <z < o0}
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And the point zo = 0 is inside this domain. The y domain of f(z,y) when x =0 is

{—o0 <y < o0}

And the point yy = 1 is inside this domain. Now we will look at the continuity of

of 0 (z(y*+1)

3_y_3_y<y(w2+1)>
2z z(y* + 1)
Tx241 2 (a2 +1)

The z domain of %5 when y =1 is
{—00 <z < o0}

And the point zo = 0 is inside this domain. The y domain of g—i when z = 0 is
{—o0 <y < o0}

And the point yy = 1 is inside this domain. Therefore solution exists and is unique.

2.5.2 Solving as separable ode

In canonical form the ODE is

y = F(z,y)
= f(z)g(y)
_z(y?+1)

y(z2 +1)

Where f(z) = ;%5 and g(y) = % Integrating both sides gives
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Raising both side to exponential gives

In 12+1

Viyi+1= e¥+c1
Which simplifies to
\/y2+1=02vx2+1

Which can be simplified to become
VY2 +1=ce" Va2 +1

The solution is

VY2 +1=ce"Va2 +1

Initial conditions are used to solve for ¢;. Substituting x = 0 and y = 1 in the above
solution gives an equation to solve for the constant of integration.

\/5 = ecl Co

Substituting c; found above in the general solution gives

/1
\/y2+ =\/§Cz gvx2+1
2
Solving for y from the above gives

y=v2z2+1

Summary
The solution(s) found are the following

y=v2zx2+1 (1)
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(b) Slope field plot

(a) Solution plot

Verification of solutions

222 +1

y:

Verified OK. {positive}

2.5.3 Maple step by step solution

Let’s solve

0,y(0) = 1]
Highest derivative means the order of the ODE is 1

T (y2+1)
y(z2+1)

-

/

Y

z
241

y'y

Separate variables
y>+1

Integrate both sides with respect to z

dr + ¢

z
241

J
Evaluate integral

In(y>+1)

!
Y_dx =

y
Y241

J

In (xZ

+1) o

2

2

Solve for y
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\/_e—2c1 (—a2+e—2c1-1) \/_e—zcl (—a2+e—21-1)
Y= Yy=-

e—201 9 e—2cl

o Use initial condition y(0) =1

_e—201 (e—2c1 _1)

1= e—2¢1

° Solve for ¢;
o = b2

° Substitute ¢c; = @ into general solution and simplify
y=+v2z2+1

o Use initial condition y(0) =1

_e—2cl (6—201 _1)

1=—

e—261
° Solution does not satisfy initial condition
° Solution to the IVP
y=+v2z2+1

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful’

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 13

Ldsolve([diff(y(x),x)=(x*(1+y(x)‘2))/(y(x)*(1+x‘2)),y(O) = 1],yx), singsol=a¥})

y(z) =v22+1
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v/ Solution by Mathematica
Time used: 0.549 (sec). Leaf size: 16

-

kDSolve [{y' [x]==(xx(1+y[x]~2)) /(y [x]*(1+x"2) ) ,y [0]==1},y [x] ,x, IncludeSingularS}:lutions -> Tru

y(r) = vV2z2 +1
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2.6 problem 6

2.6.1 Existence and uniqueness analysis. . . . . ... ... ... ... 87
2.6.2 Solving as separableode . . . . . ... ... L L. 8]
2.6.3 Maple step by step solution . . . .. .. ... ... ... ..., 901

Internal problem ID [3145]
Internal file name [OUTPUT/2637_Sunday_June_05_2022_08_37_50_AM_9569087/index . tex]

Book: An introduction to the solution and applications of differential equations, J.W. Searl,
1966

Section: Chapter 4, Ex. 4.2

Problem number: 6.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

With initial conditions

2.6.1 Existence and uniqueness analysis
This is non linear first order ODE. In canonical form it is written as
Y = f(z,y)

3yt +2
==

The y domain of f(x,y) when z =0 is

{y<ovo<y}
But the point yo = 0 is not inside this domain. Hence existence and uniqueness theorem

does not apply. There could be infinite number of solutions, or one solution or no
solution at all.
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2.6.2 Solving as separable ode

In canonical form the ODE is

y/ = F(xvy)
= f(z)g(y)
_3yt+2
==

Where f(z) =1 and g(y) = 3yy+2 Integrating both sides gives

1

552 dy = ldz
y2
1
/mdy:/ldx
y2
/6 arctan <@>
=r+C
18
Which results in
95 (v/6 tan (3(z 4 ¢1) v6))®
o 3
__9%(\/6tan(3($+01)\/6))% +i\/§9§(\/6tan(3x+cl >)%
Y= 6 6
04 (VB tam (32 +) VE))* _ ivB9% (6 ton (302 + o) v6))'
Y= _
6 6

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

i3% tan (301\/6)% 65 tan (301\/_)
2

w\m
O)\b—i

0120

Substituting ¢; found above in the general solution gives

W=
W=

i3565 tan (3v/62)° 6535 tan (3v6 1)
y=- -
2 6
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Initial conditions are used to solve for c¢;. Substituting = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

o=

1
0 i3% tan (3c1v/6) 65  tan (3c1v6)® 3365
B 2 6
C1 = 0
Substituting ¢; found above in the general solution gives
1 1
i3565 tan (3v/6)° 6535 tan (3v62)°
Y= -
2 6

Initial conditions are used to solve for c¢;. Substituting x = 0 and y = 0 in the above
solution gives an equation to solve for the constant of integration.

1
tan (3c;v6)° 6593
0=
3
Cc = 0

Substituting c¢; found above in the general solution gives

1
tan (3v6z)* 6595
Y= 3
Summary
The solution(s) found are the following
1
tan (3v6z)° 6595
y=" )
1 1
i3565 tan (3v/62)° 6535 tan (3v6 )"
y= - (2)
2 1 6 1
3565 tan (3v6z)* 6533 tan (3v6z)?
y=- 5 - 5 (3)
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y(x) y(x)
1 1
f f | | |

0.751

0.50 0.5
0.25-

0

2 -1 0 1 2 3 302 20T 0
(a) Solution plot (b) Slope field plot
Verification of solutions
1
tan (3v6z)? 6593
y = 3
Verified OK.
1 1
3565 tan (3v6z)? 6533 tan (3v6z)?
y= -
2 6
Verified OK.
1 1
3565 tan (3v6z)? 6533 tan (3v6z)?
y=— -
2 6

Verified OK.

2.6.3 Maple step by step solution

Let’s solve

[v*y' — 3y® = 2,y(0) = (]
° Highest derivative means the order of the ODE is 1

/

Y

° Separate variables
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/)2

24356 1

° Integrate both sides with respect to x
/0,2
| fgpdr = [ldz+a
° Evaluate integral

3
ﬁarctan(‘/gzy )
— T =fta

° Solve for y

93 (\/(S tan (3(:17-%-01)\/6)) 5
3

y =
o Use initial condition y(0) =0
o} (1an (301 v6) v6) ¥
- 3
° Solve for ¢;
Cci = 0
° Substitute ¢c; = 0 into general solution and simplify

3%2% tan(3\/(§x)%
y= 3

° Solution to the IVP

3%2% tan(3\/(§z)%
y= 3

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

<- separable successful’
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v/ Solution by Maple
Time used: 0.235 (sec). Leaf size: 77

Ldsolve( [y (x)~2*diff (y(x),x)=2+3xy(x)"6,y(0) = 0],y(x), singsol=all) J
3625 tan 3v6x 3
y(z) = 3( )
1 1 2 1
tan (3v6z)° (3i3¢ - 3%) 6
y(z) = 5
tan (3v6x)* (3i3% + 3% ) 61
y(z) = — 6

v/ Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 87

kDSolve [{y[x]~2*y' [x]==2+3*y[x] ~6,y[0]==0},y[x],x,IncludeSingularSolutions -> jl‘rue]

y(x) — f/g 1/ tan (3\/6:(:)
y(z) = —v/—1 f/g ¢/tan <3\/5z)
y(z) = (—1)2/3§/g ?/tan (3\/&5)

92



	Chapter 4, Ex. 4.1
	problem 1
	Solving as separable ode
	Solving as linear ode
	Solving as homogeneousTypeD2 ode
	Solving as first order ode lie symmetry lookup ode
	Solving as exact ode
	Maple step by step solution

	problem 2
	Existence and uniqueness analysis
	Solving as dAlembert ode
	Maple step by step solution

	problem 3
	Solving as linear ode
	Solving as first order ode lie symmetry lookup ode
	Solving as exact ode
	Maple step by step solution

	problem 4
	Existence and uniqueness analysis
	Solving as exact ode

	problem 5
	Solving as exact ode
	Maple step by step solution

	problem 6
	Existence and uniqueness analysis
	Solving as homogeneousTypeD2 ode
	Solving as first order ode lie symmetry calculated ode
	Solving as exact ode
	Maple step by step solution


	Chapter 4, Ex. 4.2
	problem 1
	Solving as separable ode
	Maple step by step solution

	problem 2
	Solving as separable ode
	Maple step by step solution

	problem 3
	Solving as separable ode
	Maple step by step solution

	problem 4
	Solving as separable ode
	Maple step by step solution

	problem 5
	Existence and uniqueness analysis
	Solving as separable ode
	Maple step by step solution

	problem 6
	Existence and uniqueness analysis
	Solving as separable ode
	Maple step by step solution



