A Solution Manual For

An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961

Nasser M. Abbasi

May 15, 2024

Contents

1 Chapter 1.3 Introduction- Linear equations of First Order. Page 38 3
2 Chapter 1.6 Introduction- Linear equations of First Order. Page 41105
3 Chapter 1. Introduction- Linear equations of First Order. Page $45 \quad 214$
4 Chapter 2. Linear equations with constant coefficients. Page 52
5 Chapter 2. Linear equations with constant coefficients. Page 59462
6 Chapter 2. Linear equations with constant coefficients. Page 69504
7 Chapter 2. Linear equations with constant coefficients. Page 74635
8 Chapter 2. Linear equations with constant coefficients. Page $79 \quad 674$
9 Chapter 2. Linear equations with constant coefficients. Page 83693
10 Chapter 2. Linear equations with constant coefficients. Page 897751
11 Chapter 2. Linear equations with constant coefficients. Page 93812
12 Chapter 3. Linear equations with variable coefficients. Page $108 \quad 899$
13 Chapter 3. Linear equations with variable coefficients. Page 121991
14 Chapter 3. Linear equations with variable coefficients. Page 1241025
15 Chapter 3. Linear equations with variable coefficients. Page 1301045
16 Chapter 4. Linear equations with Regular Singular Points. Page 149161
17 Chapter 4. Linear equations with Regular Singular Points. Page 154332
18 Chapter 4. Linear equations with Regular Singular Points. Page 150469
19 Chapter 4. Linear equations with Regular Singular Points. Page 160509
20 Chapter 4. Linear equations with Regular Singular Points. Page 182657
21 Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190

22 Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198

23 Chapter 6. Existence and uniqueness of solutions to systems and nth order equations. Page 238

24 Chapter 6. Existence and uniqueness of solutions to systems and nth order equations. Page 250

25 Chapter 6. Existence and uniqueness of solutions to systems and nth order equations. Page 254
1 Chapter 1.3 Introduction- Linear equations of First Order. Page 38
1.1 problem 1 (a) 4
1.2 problem 1 (b) 7
1.3 problem 1 (d) 23
1.4 problem 2 (a) [27
1.5 problem 2 (b) 42
1.6 problem 2 (c) 55]
1.7 problem 2 (f) 65
1.8 problem 2 (h) 75
1.9 problem 3(a) 83
1.10 problem 4(a) 86
1.11 problem 5(a) 102

1.1 problem 1 (a)

1.1.1 Solving as quadrature ode . 4
1.1.2 Maple step by step solution . 5

Internal problem ID [5912]
Internal file name [OUTPUT/5160_Sunday_June_05_2022_03_26_32_PM_48421319/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 1.3 Introduction- Linear equations of First Order. Page 38
Problem number: 1 (a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=\mathrm{e}^{3 x}+\sin (x)
$$

1.1.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \mathrm{e}^{3 x}+\sin (x) \mathrm{d} x \\
& =\frac{\mathrm{e}^{3 x}}{3}-\cos (x)+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{3 x}}{3}-\cos (x)+c_{1} \tag{1}
\end{equation*}
$$

Figure 1: Slope field plot
Verification of solutions

$$
y=\frac{\mathrm{e}^{3 x}}{3}-\cos (x)+c_{1}
$$

Verified OK.

1.1.2 Maple step by step solution

Let's solve

$$
y^{\prime}=\mathrm{e}^{3 x}+\sin (x)
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Integrate both sides with respect to x

$$
\int y^{\prime} d x=\int\left(\mathrm{e}^{3 x}+\sin (x)\right) d x+c_{1}
$$

- Evaluate integral

$$
y=\frac{\mathrm{e}^{3 x}}{3}-\cos (x)+c_{1}
$$

- Solve for y

$$
y=\frac{\mathrm{e}^{3 x}}{3}-\cos (x)+c_{1}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve(diff (y(x),x)=exp(3*x)+\operatorname{sin}(x),y(x), singsol=all)
```

$$
y(x)=\frac{\mathrm{e}^{3 x}}{3}-\cos (x)+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 21
DSolve [y' $[\mathrm{x}]==\operatorname{Exp}[3 * x]+\operatorname{Sin}[\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{e^{3 x}}{3}-\cos (x)+c_{1}
$$

1.2 problem 1 (b)

1.2.1 Solving as second order ode quadrature ode 7
1.2.2 Solving as second order linear constant coeff ode 8
1.2.3 Solving as second order integrable as is ode 11
1.2.4 Solving as second order ode missing y ode 12
1.2.5 Solving using Kovacic algorithm 14
1.2.6 Solving as exact linear second order ode ode 19
1.2.7 Maple step by step solution . 21

Internal problem ID [5913]
Internal file name [OUTPUT/5161_Sunday_June_05_2022_03_26_33_PM_10950098/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 1.3 Introduction- Linear equations of First Order. Page 38
Problem number: 1 (b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second_order_ode_quadrature", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _quadrature]]

$$
y^{\prime \prime}=x+2
$$

1.2.1 Solving as second order ode quadrature ode

Integrating once gives

$$
y^{\prime}=\frac{1}{2} x^{2}+2 x+c_{1}
$$

Integrating again gives

$$
y=\frac{1}{6} x^{3}+x^{2}+c_{1} x+c_{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{6} x^{3}+x^{2}+c_{1} x+c_{2} \tag{1}
\end{equation*}
$$

Figure 2: Slope field plot

Verification of solutions

$$
y=\frac{1}{6} x^{3}+x^{2}+c_{1} x+c_{2}
$$

Verified OK.

1.2.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=0, f(x)=x+2$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=0$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=0$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(0)^{2}-(4)(1)(0)} \\
& =0
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=0$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} 1+c_{2} x \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{2} x+c_{1}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
1+x
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, x\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{1, x\}
$$

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x, x^{2}\right\}\right]
$$

Since x is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{2}, x^{3}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{2} x^{3}+A_{1} x^{2}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
6 x A_{2}+2 A_{1}=x+2
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1, A_{2}=\frac{1}{6}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{1}{6} x^{3}+x^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} x+c_{1}\right)+\left(\frac{1}{6} x^{3}+x^{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} x+c_{1}+\frac{1}{6} x^{3}+x^{2} \tag{1}
\end{equation*}
$$

Figure 3: Slope field plot

Verification of solutions

$$
y=c_{2} x+c_{1}+\frac{1}{6} x^{3}+x^{2}
$$

Verified OK.

1.2.3 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \quad \int y^{\prime \prime} d x=\int(x+2) d x \\
& y^{\prime}=\frac{1}{2} x^{2}+2 x+c_{1}
\end{aligned}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{1}{2} x^{2}+2 x+c_{1} \mathrm{~d} x \\
& =\frac{1}{6} x^{3}+x^{2}+c_{1} x+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

Figure 4: Slope field plot

Verification of solutions

$$
y=\frac{1}{6} x^{3}+x^{2}+c_{1} x+c_{2}
$$

Verified OK.

1.2.4 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x)-x-2=0
$$

Which is now solve for $p(x)$ as first order ode. Integrating both sides gives

$$
\begin{aligned}
p(x) & =\int x+2 \mathrm{~d} x \\
& =\frac{1}{2} x^{2}+2 x+c_{1}
\end{aligned}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=\frac{1}{2} x^{2}+2 x+c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{1}{2} x^{2}+2 x+c_{1} \mathrm{~d} x \\
& =\frac{1}{6} x^{3}+x^{2}+c_{1} x+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

Figure 5: Slope field plot

Verification of solutions

$$
y=\frac{1}{6} x^{3}+x^{2}+c_{1} x+c_{2}
$$

Verified OK.

1.2.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime} & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 2: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{gathered}
y_{1}=z_{1} \\
=1
\end{gathered}
$$

Which simplifies to

$$
y_{1}=1
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =1 \int \frac{1}{1} d x \\
& =1(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}(1(x))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{2} x+c_{1}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
1+x
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, x\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{1, x\}
$$

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x, x^{2}\right\}\right]
$$

Since x is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{2}, x^{3}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{2} x^{3}+A_{1} x^{2}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
6 x A_{2}+2 A_{1}=x+2
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=1, A_{2}=\frac{1}{6}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{1}{6} x^{3}+x^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} x+c_{1}\right)+\left(\frac{1}{6} x^{3}+x^{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

Figure 6: Slope field plot

Verification of solutions

$$
y=c_{2} x+c_{1}+\frac{1}{6} x^{3}+x^{2}
$$

Verified OK.

1.2.6 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =0 \\
r(x) & =0 \\
s(x) & =x+2
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
0-(0)+(0)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
y^{\prime}=\int x+2 d x
$$

We now have a first order ode to solve which is

$$
y^{\prime}=\frac{1}{2} x^{2}+2 x+c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{1}{2} x^{2}+2 x+c_{1} \mathrm{~d} x \\
& =\frac{1}{6} x^{3}+x^{2}+c_{1} x+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{6} x^{3}+x^{2}+c_{1} x+c_{2} \tag{1}
\end{equation*}
$$

Figure 7: Slope field plot

Verification of solutions

$$
y=\frac{1}{6} x^{3}+x^{2}+c_{1} x+c_{2}
$$

Verified OK.

1.2.7 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=x+2
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{0})}{2}$
- Roots of the characteristic polynomial
$r=0$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=1
$$

- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1}+c_{2} x+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=x+2\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=1
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\left(\int x(x+2) d x\right)+x\left(\int(x+2) d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{1}{6} x^{3}+x^{2}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{2} x+c_{1}+\frac{1}{6} x^{3}+x^{2}
$$

Maple trace
-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(diff(y(x),x$2)=2+x,y(x), singsol=all)
```

$$
y(x)=\frac{1}{6} x^{3}+x^{2}+c_{1} x+c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 22
DSolve[y'' $[x]==2+x, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{x^{3}}{6}+x^{2}+c_{2} x+c_{1}
$$

1.3 problem 1 (d)

Internal problem ID [5914]
Internal file name [OUTPUT/5162_Sunday_June_05_2022_03_26_34_PM_30795132/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 1.3 Introduction- Linear equations of First Order. Page 38
Problem number: 1 (d).
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _quadrature]]

$$
y^{\prime \prime \prime}=x^{2}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}=0
$$

The characteristic equation is

$$
\lambda^{3}=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =0 \\
\lambda_{2} & =0 \\
\lambda_{3} & =0
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{3} x^{2}+c_{2} x+c_{1}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=x \\
& y_{3}=x^{2}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}=x^{2}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{1, x, x^{2}\right\}
$$

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x, x^{2}, x^{3}\right\}\right]
$$

Since x is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{2}, x^{3}, x^{4}\right\}\right]
$$

Since x^{2} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{3}, x^{4}, x^{5}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{3} x^{5}+A_{2} x^{4}+A_{1} x^{3}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
60 x^{2} A_{3}+24 x A_{2}+6 A_{1}=x^{2}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=0, A_{3}=\frac{1}{60}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{x^{5}}{60}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{3} x^{2}+c_{2} x+c_{1}\right)+\left(\frac{x^{5}}{60}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{3} x^{2}+c_{2} x+c_{1}+\frac{1}{60} x^{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{3} x^{2}+c_{2} x+c_{1}+\frac{1}{60} x^{5}
$$

Verified OK.
Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

```
dsolve(diff(y(x),x$3)=\mp@subsup{x}{}{\wedge}2,y(x), singsol=all)
```

$$
y(x)=\frac{1}{60} x^{5}+\frac{1}{2} c_{1} x^{2}+c_{2} x+c_{3}
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 25
DSolve[y'' ' $[\mathrm{x}]==\mathrm{x} \wedge 2, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{x^{5}}{60}+c_{3} x^{2}+c_{2} x+c_{1}
$$

1.4 problem 2 (a)

1.4.1 Solving as separable ode . 27
1.4.2 Solving as linear ode . 29
1.4.3 Solving as homogeneousTypeD2 ode 30
1.4.4 Solving as first order ode lie symmetry lookup ode 32
1.4.5 Solving as exact ode . 36
1.4.6 Maple step by step solution . 40

Internal problem ID [5915]
Internal file name [OUTPUT/5163_Sunday_June_05_2022_03_26_35_PM_81840713/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 1.3 Introduction- Linear equations of First Order. Page 38
Problem number: 2 (a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}+y \cos (x)=0
$$

1.4.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-y \cos (x)
\end{aligned}
$$

Where $f(x)=-\cos (x)$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =-\cos (x) d x \\
\int \frac{1}{y} d y & =\int-\cos (x) d x \\
\ln (y) & =-\sin (x)+c_{1} \\
y & =\mathrm{e}^{-\sin (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{-\sin (x)}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\sin (x)} \tag{1}
\end{equation*}
$$

Figure 8: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\sin (x)}
$$

Verified OK.

1.4.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\cos (x) \\
q(x) & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y \cos (x)=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \cos (x) d x} \\
& =\mathrm{e}^{\sin (x)}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\mathrm{e}^{\sin (x)} y\right) & =0
\end{aligned}
$$

Integrating gives

$$
\mathrm{e}^{\sin (x)} y=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\sin (x)}$ results in

$$
y=c_{1} \mathrm{e}^{-\sin (x)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\sin (x)} \tag{1}
\end{equation*}
$$

Figure 9: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\sin (x)}
$$

Verified OK.

1.4.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)+u(x) x \cos (x)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u(\cos (x) x+1)}{x}
\end{aligned}
$$

Where $f(x)=-\frac{\cos (x) x+1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{\cos (x) x+1}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{\cos (x) x+1}{x} d x \\
\ln (u) & =-\sin (x)-\ln (x)+c_{2} \\
u & =\mathrm{e}^{-\sin (x)-\ln (x)+c_{2}} \\
& =c_{2} \mathrm{e}^{-\sin (x)-\ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{2} \mathrm{e}^{-\sin (x)}}{x}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =c_{2} \mathrm{e}^{-\sin (x)}
\end{aligned}
$$

Summary
The solution(s) found are the following

Figure 10: Slope field plot

Verification of solutions

$$
y=c_{2} \mathrm{e}^{-\sin (x)}
$$

Verified OK.

1.4.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-y \cos (x) \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 4: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	1	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-\sin (x)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\sin (x)}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\sin (x)} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-y \cos (x)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\cos (x) \mathrm{e}^{\sin (x)} y \\
S_{y} & =\mathrm{e}^{\sin (x)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{\sin (x)} y=c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{\sin (x)} y=c_{1}
$$

Which gives

$$
y=c_{1} \mathrm{e}^{-\sin (x)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-y \cos (x)$		$\frac{d S}{d R}=0$
		$\xrightarrow[\rightarrow \rightarrow \longrightarrow]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+22 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
$\rightarrow \rightarrow 0 \operatorname{lom}_{\rightarrow \rightarrow \rightarrow-\infty}$	$R=x$	$\xrightarrow{\rightarrow \rightarrow \rightarrow}$
	$S=\mathrm{e}^{\sin (x)} y$	
		$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$
		$\xrightarrow{-2^{2} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow}$
		$\rightarrow \rightarrow \rightarrow$,
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\sin (x)} \tag{1}
\end{equation*}
$$

Figure 11: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\sin (x)}
$$

Verified OK.

1.4.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{1}{y}\right) \mathrm{d} y & =(\cos (x)) \mathrm{d} x \\
(-\cos (x)) \mathrm{d} x+\left(-\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\cos (x) \\
N(x, y) & =-\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-\cos (x)) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\cos (x) \mathrm{d} x \\
\phi & =-\sin (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =-\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\sin (x)-\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\sin (x)-\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{-\sin (x)-c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\sin (x)-c_{1}} \tag{1}
\end{equation*}
$$

Figure 12: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\sin (x)-c_{1}}
$$

Verified OK.

1.4.6 Maple step by step solution

Let's solve

$$
y^{\prime}+y \cos (x)=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=-\cos (x)
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int-\cos (x) d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=-\sin (x)+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{-\sin (x)+c_{1}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

$\sqrt{ }$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

```
dsolve(diff(y(x),x)+\operatorname{cos}(x)*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{-\sin (x)}
$$

\checkmark Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 19
DSolve [y' $[\mathrm{x}]+\operatorname{Cos}[\mathrm{x}] * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} e^{-\sin (x)} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.5 problem 2 (b)

1.5.1 Solving as linear ode . 42
1.5.2 Solving as first order ode lie symmetry lookup ode 44
1.5.3 Solving as exact ode . 48
1.5.4 Maple step by step solution . 52

Internal problem ID [5916]
Internal file name [OUTPUT/5164_Sunday_June_05_2022_03_26_36_PM_70038094/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 1.3 Introduction- Linear equations of First Order. Page 38
Problem number: 2 (b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}+y \cos (x)=\cos (x) \sin (x)
$$

1.5.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\cos (x) \\
& q(x)=\frac{\sin (2 x)}{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y \cos (x)=\frac{\sin (2 x)}{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \cos (x) d x} \\
& =\mathrm{e}^{\sin (x)}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{\sin (2 x)}{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\sin (x)} y\right) & =\left(\mathrm{e}^{\sin (x)}\right)\left(\frac{\sin (2 x)}{2}\right) \\
\mathrm{d}\left(\mathrm{e}^{\sin (x)} y\right) & =\left(\frac{\sin (2 x) \mathrm{e}^{\sin (x)}}{2}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\sin (x)} y=\int \frac{\sin (2 x) \mathrm{e}^{\sin (x)}}{2} \mathrm{~d} x \\
& \mathrm{e}^{\sin (x)} y=\sin (x) \mathrm{e}^{\sin (x)}-\mathrm{e}^{\sin (x)}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\sin (x)}$ results in

$$
y=\mathrm{e}^{-\sin (x)}\left(\sin (x) \mathrm{e}^{\sin (x)}-\mathrm{e}^{\sin (x)}\right)+c_{1} \mathrm{e}^{-\sin (x)}
$$

which simplifies to

$$
y=\sin (x)-1+c_{1} \mathrm{e}^{-\sin (x)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sin (x)-1+c_{1} \mathrm{e}^{-\sin (x)} \tag{1}
\end{equation*}
$$

Figure 13: Slope field plot
Verification of solutions

$$
y=\sin (x)-1+c_{1} \mathrm{e}^{-\sin (x)}
$$

Verified OK.

1.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-y \cos (x)+\cos (x) \sin (x) \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 7: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-\sin (x)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\sin (x)}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\sin (x)} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-y \cos (x)+\cos (x) \sin (x)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\cos (x) \mathrm{e}^{\sin (x)} y \\
S_{y} & =\mathrm{e}^{\sin (x)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\cos (x) \mathrm{e}^{\sin (x)} \sin (x) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\cos (R) \mathrm{e}^{\sin (R)} \sin (R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1}+\mathrm{e}^{\sin (R)}(-1+\sin (R)) \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\mathrm{e}^{\sin (x)} y=\mathrm{e}^{\sin (x)}(-1+\sin (x))+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{\sin (x)} y=\mathrm{e}^{\sin (x)}(-1+\sin (x))+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{-\sin (x)}\left(\sin (x) \mathrm{e}^{\sin (x)}-\mathrm{e}^{\sin (x)}+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-y \cos (x)+\cos (x) \sin (x)$		$\frac{d S}{d R}=\cos (R) \mathrm{e}^{\sin (R)} \sin (R)$
		y_{0}
		St
		必
$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty$	$R=x$	$\xrightarrow{\sim}$
边	$S=\mathrm{e}^{\sin (x)} y$	为
		\rightarrow
		\rightarrow

Summary

The solution（s）found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\sin (x)}\left(\sin (x) \mathrm{e}^{\sin (x)}-\mathrm{e}^{\sin (x)}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 14: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{-\sin (x)}\left(\sin (x) \mathrm{e}^{\sin (x)}-\mathrm{e}^{\sin (x)}+c_{1}\right)
$$

Verified OK.

1.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(-y \cos (x)+\cos (x) \sin (x)) \mathrm{d} x \\
(y \cos (x)-\cos (x) \sin (x)) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=y \cos (x)-\cos (x) \sin (x) \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y \cos (x)-\cos (x) \sin (x)) \\
& =\cos (x)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((\cos (x))-(0)) \\
& =\cos (x)
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \cos (x) \mathrm{d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\sin (x)} \\
& =\mathrm{e}^{\sin (x)}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{\sin (x)}(y \cos (x)-\cos (x) \sin (x)) \\
& =\cos (x)(-\sin (x)+y) \mathrm{e}^{\sin (x)}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{\sin (x)}(1) \\
& =\mathrm{e}^{\sin (x)}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\cos (x)(-\sin (x)+y) \mathrm{e}^{\sin (x)}\right)+\left(\mathrm{e}^{\sin (x)}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}
\end{array}=0
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \cos (x)(-\sin (x)+y) \mathrm{e}^{\sin (x)} \mathrm{d} x \\
\phi & =(y-\sin (x)+1) \mathrm{e}^{\sin (x)}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{\sin (x)}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{\sin (x)}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{\sin (x)}=\mathrm{e}^{\sin (x)}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=(y-\sin (x)+1) \mathrm{e}^{\sin (x)}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=(y-\sin (x)+1) \mathrm{e}^{\sin (x)}
$$

The solution becomes

$$
y=\mathrm{e}^{-\sin (x)}\left(\sin (x) \mathrm{e}^{\sin (x)}-\mathrm{e}^{\sin (x)}+c_{1}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\sin (x)}\left(\sin (x) \mathrm{e}^{\sin (x)}-\mathrm{e}^{\sin (x)}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 15: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\sin (x)}\left(\sin (x) \mathrm{e}^{\sin (x)}-\mathrm{e}^{\sin (x)}+c_{1}\right)
$$

Verified OK.

1.5.4 Maple step by step solution

Let's solve
$y^{\prime}+y \cos (x)=\cos (x) \sin (x)$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative

$$
y^{\prime}=-y \cos (x)+\cos (x) \sin (x)
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+y \cos (x)=\cos (x) \sin (x)$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+y \cos (x)\right)=\mu(x) \cos (x) \sin (x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+y \cos (x)\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x) \cos (x)$
- Solve to find the integrating factor

$$
\mu(x)=\mathrm{e}^{\sin (x)}
$$

- Integrate both sides with respect to x

$$
\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \cos (x) \sin (x) d x+c_{1}
$$

- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \cos (x) \sin (x) d x+c_{1}$
- Solve for y
$y=\frac{\int \mu(x) \cos (x) \sin (x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{\sin (x)}$
$y=\frac{\int \cos (x) e^{\sin (x)} \sin (x) d x+c_{1}}{\mathrm{e}^{\sin (x)}}$
- Evaluate the integrals on the rhs
$y=\frac{\sin (x) e^{\sin (x)}-e^{\sin (x)}+c_{1}}{e^{\sin (x)}}$
- Simplify
$y=\sin (x)-1+c_{1} \mathrm{e}^{-\sin (x)}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve $(\operatorname{diff}(y(x), x)+\cos (x) * y(x)=\sin (x) * \cos (x), y(x), \quad$ singsol=all)

$$
y(x)=\sin (x)-1+c_{1} \mathrm{e}^{-\sin (x)}
$$

\checkmark Solution by Mathematica
Time used: 0.049 (sec). Leaf size: 18
DSolve $[y '[x]+\operatorname{Cos}[x] * y[x]==\operatorname{Sin}[x] * \operatorname{Cos}[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \sin (x)+c_{1} e^{-\sin (x)}-1
$$

1.6 problem 2 (c)

1.6.1 Solving as second order linear constant coeff ode 55
1.6.2 Solving as second order ode can be made integrable ode 57
1.6.3 Solving using Kovacic algorithm 59
1.6.4 Maple step by step solution . 63

Internal problem ID [5917]
Internal file name [OUTPUT/5165_Sunday_June_05_2022_03_26_38_PM_74591855/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 1.3 Introduction- Linear equations of First Order. Page 38
Problem number: 2 (c).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "second__order_ode_can_bbe_made_integrable"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-y=0
$$

1.6.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=-1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-1)} \\
& = \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+1 \\
& \lambda_{2}=-1
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{(-1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 16: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}
$$

Verified OK.

1.6.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}-y^{\prime} y=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}-y^{\prime} y\right) d x=0 \\
\frac{y^{\prime 2}}{2}-\frac{y^{2}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{y^{2}+2 c_{1}}} d y & =\int d x \\
\ln \left(y+\sqrt{y^{2}+2 c_{1}}\right) & =c_{2}+x
\end{aligned}
$$

Raising both side to exponential gives

$$
y+\sqrt{y^{2}+2 c_{1}}=\mathrm{e}^{c_{2}+x}
$$

Which simplifies to

$$
y+\sqrt{y^{2}+2 c_{1}}=c_{3} \mathrm{e}^{x}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{y^{2}+2 c_{1}}} d y & =\int d x \\
-\ln \left(y+\sqrt{y^{2}+2 c_{1}}\right) & =x+c_{4}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{y+\sqrt{y^{2}+2 c_{1}}}=\mathrm{e}^{x+c_{4}}
$$

Which simplifies to

$$
\frac{1}{y+\sqrt{y^{2}+2 c_{1}}}=c_{5} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\left(\mathrm{e}^{2 x} c_{3}^{2}-2 c_{1}\right) \mathrm{e}^{-x}}{2 c_{3}} \tag{1}\\
& y=-\frac{\left(2 c_{1} c_{5}^{2} \mathrm{e}^{2 x}-1\right) \mathrm{e}^{-x}}{2 c_{5}} \tag{2}
\end{align*}
$$

Figure 17: Slope field plot

Verification of solutions

$$
y=\frac{\left(\mathrm{e}^{2 x} c_{3}^{2}-2 c_{1}\right) \mathrm{e}^{-x}}{2 c_{3}}
$$

Verified OK.

$$
y=-\frac{\left(2 c_{1} c_{5}^{2} \mathrm{e}^{2 x}-1\right) \mathrm{e}^{-x}}{2 c_{5}}
$$

Verified OK.

1.6.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 10: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-x} \int \frac{1}{\mathrm{e}^{-2 x}} d x \\
& =\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2} \tag{1}
\end{equation*}
$$

Figure 18: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2}
$$

Verified OK.

1.6.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-1=0
$$

- Factor the characteristic polynomial

$$
(r-1)(r+1)=0
$$

- Roots of the characteristic polynomial

$$
r=(-1,1)
$$

- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-x}
$$

- 2 nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve(diff(y(x),x$2)-y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{x} c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 20

```
DSolve[y''[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow c_{1} e^{x}+c_{2} e^{-x}
$$

1.7 problem 2 (f)

1.7.1 Solving as second order linear constant coeff ode
 65

1.7.2 Solving as second order ode can be made integrable ode 67
1.7.3 Solving using Kovacic algorithm 69
1.7.4 Maple step by step solution . 73

Internal problem ID [5918]
Internal file name [OUTPUT/5166_Sunday_June_05_2022_03_26_38_PM_21565163/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 1.3 Introduction- Linear equations of First Order. Page 38
Problem number: 2 (f).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "second__order_ode_can_bbe_made_integrable"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}+4 y=0
$$

1.7.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Or

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 x)+c_{2} \sin (2 x) \tag{1}
\end{equation*}
$$

Figure 19: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

Verified OK.

1.7.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}+4 y^{\prime} y=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+4 y^{\prime} y\right) d x=0 \\
\frac{y^{\prime 2}}{2}+2 y^{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{-4 y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{-4 y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{-4 y^{2}+2 c_{1}}} d y & =\int d x \\
\frac{\arctan \left(\frac{2 y}{\sqrt{-4 y^{2}+2 c_{1}}}\right)}{2} & =c_{2}+x
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{-4 y^{2}+2 c_{1}}} d y & =\int d x \\
-\frac{\arctan \left(\frac{2 y}{\sqrt{-4 y^{2}+2 c_{1}}}\right)}{2} & =x+c_{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
\frac{\arctan \left(\frac{2 y}{\sqrt{-4 y^{2}+2 c_{1}}}\right)}{2} & =c_{2}+x \tag{1}\\
-\frac{\arctan \left(\frac{2 y}{\sqrt{-4 y^{2}+2 c_{1}}}\right)}{2} & =x+c_{3} \tag{2}
\end{align*}
$$

Figure 20: Slope field plot

Verification of solutions

$$
\frac{\arctan \left(\frac{2 y}{\sqrt{-4 y^{2}+2 c_{1}}}\right)}{2}=c_{2}+x
$$

Verified OK.

$$
-\frac{\arctan \left(\frac{2 y}{\sqrt{-4 y^{2}+2 c_{1}}}\right)}{2}=x+c_{3}
$$

Verified OK.

1.7.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+4 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-4 \\
t & =1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 12: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (2 x) \int \frac{1}{\cos (2 x)^{2}} d x \\
& =\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 x))+c_{2}\left(\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2} \tag{1}
\end{equation*}
$$

Figure 21: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}
$$

Verified OK.

1.7.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE

$$
r^{2}+4=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial

$$
r=(-2 \mathrm{I}, 2 \mathrm{I})
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\cos (2 x)
$$

- $\quad 2 n d$ solution of the ODE

$$
y_{2}(x)=\sin (2 x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(diff(y(x),x$2)+4*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \sin (2 x)+c_{2} \cos (2 x)
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 20

```
DSolve[y''[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

1.8 problem 2 (h)

1.8.1 Solving as second order linear constant coeff ode 75]
1.8.2 Solving as second order ode can be made integrable ode 77
1.8.3 Solving using Kovacic algorithm 78
1.8.4 Maple step by step solution . 81

Internal problem ID [5919]
Internal file name [OUTPUT/5167_Sunday_June_05_2022_03_26_39_PM_73850312/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 1.3 Introduction- Linear equations of First Order. Page 38
Problem number: 2 (h).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "second__order_ode_can_bbe_made_integrable"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}+k^{2} y=0
$$

1.8.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=k^{2}$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+k^{2} \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
k^{2}+\lambda^{2}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=k^{2}$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)\left(k^{2}\right)} \\
& = \pm \sqrt{-k^{2}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+\sqrt{-k^{2}} \\
& \lambda_{2}=-\sqrt{-k^{2}}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=\sqrt{-k^{2}} \\
& \lambda_{2}=-\sqrt{-k^{2}}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(\sqrt{-k^{2}}\right) x}+c_{2} e^{\left(-\sqrt{-k^{2}}\right) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{\sqrt{-k^{2}} x}+c_{2} \mathrm{e}^{-\sqrt{-k^{2}} x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\sqrt{-k^{2}} x}+c_{2} \mathrm{e}^{-\sqrt{-k^{2}} x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\sqrt{-k^{2}} x}+c_{2} \mathrm{e}^{-\sqrt{-k^{2}} x}
$$

Verified OK.

1.8.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}+k^{2} y^{\prime} y=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+k^{2} y^{\prime} y\right) d x=0 \\
\frac{y^{\prime 2}}{2}+\frac{y^{2} k^{2}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =\sqrt{-y^{2} k^{2}+2 c_{1}} \tag{1}\\
y^{\prime} & =-\sqrt{-y^{2} k^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{-y^{2} k^{2}+2 c_{1}}} d y & =\int d x \\
\frac{\arctan \left(\frac{\sqrt{k^{2}} y}{\sqrt{-y^{2} k^{2}+2 c_{1}}}\right)}{\sqrt{k^{2}}} & =c_{2}+x
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{-y^{2} k^{2}+2 c_{1}}} d y & =\int d x \\
-\frac{\arctan \left(\frac{\sqrt{k^{2}} y}{\sqrt{-y^{2} k^{2}+2 c_{1}}}\right)}{\sqrt{k^{2}}} & =x+c_{3}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
\frac{\arctan \left(\frac{\sqrt{k^{2}} y}{\sqrt{-y^{2} k^{2}+2 c_{1}}}\right)}{\sqrt{k^{2}}} & =c_{2}+x \tag{1}\\
-\frac{\arctan \left(\frac{\sqrt{k^{2}} y}{\sqrt{-y^{2} k^{2}+2 c_{1}}}\right)}{\sqrt{k^{2}}} & =x+c_{3} \tag{2}
\end{align*}
$$

Verification of solutions

$$
\frac{\arctan \left(\frac{\sqrt{k^{2}} y}{\sqrt{-y^{2} k^{2}+2 c_{1}}}\right)}{\sqrt{k^{2}}}=c_{2}+x
$$

Verified OK.

$$
-\frac{\arctan \left(\frac{\sqrt{k^{2}} y}{\sqrt{-y^{2} k^{2}+2 c_{1}}}\right)}{\sqrt{k^{2}}}=x+c_{3}
$$

Verified OK.

1.8.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+k^{2} y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=k^{2}
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-k^{2}}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-k^{2} \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-k^{2}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 14: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-k^{2}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{\sqrt{-k^{2}} x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{\sqrt{-k^{2}} x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{\sqrt{-k^{2}} x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{\sqrt{-k^{2}} x} \int \frac{1}{\mathrm{e}^{2 \sqrt{-k^{2}} x} d x} \\
& =\mathrm{e}^{\sqrt{-k^{2}} x}\left(\frac{\sqrt{-k^{2}} \mathrm{e}^{-2 \sqrt{-k^{2}} x}}{2 k^{2}}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\sqrt{-k^{2}} x}\right)+c_{2}\left(\mathrm{e}^{\sqrt{-k^{2}} x}\left(\frac{\sqrt{-k^{2}} \mathrm{e}^{-2 \sqrt{-k^{2}} x}}{2 k^{2}}\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\sqrt{-k^{2}} x}+\frac{c_{2} \sqrt{-k^{2}} \mathrm{e}^{-\sqrt{-k^{2}} x}}{2 k^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\sqrt{-k^{2}} x}+\frac{c_{2} \sqrt{-k^{2}} \mathrm{e}^{-\sqrt{-k^{2}} x}}{2 k^{2}}
$$

Verified OK.

1.8.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+k^{2} y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE
$k^{2}+r^{2}=0$
- Use quadratic formula to solve for r

$$
r=\frac{0 \pm\left(\sqrt{-4 k^{2}}\right)}{2}
$$

- Roots of the characteristic polynomial

$$
r=\left(\sqrt{-k^{2}},-\sqrt{-k^{2}}\right)
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{\sqrt{-k^{2}} x}
$$

- 2 nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{-\sqrt{-k^{2}} x}$
- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{\sqrt{-k^{2}} x}+c_{2} \mathrm{e}^{-\sqrt{-k^{2}} x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 17

```
dsolve(diff(y(x),x$2)+k^2*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \sin (k x)+c_{2} \cos (k x)
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 20
DSolve[y''[x]+k^2*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{1} \cos (k x)+c_{2} \sin (k x)
$$

1.9 problem 3(a)

1.9.1 Solving as quadrature ode . 83
1.9.2 Maple step by step solution . 84

Internal problem ID [5920]
Internal file name [OUTPUT/5168_Sunday_June_05_2022_03_26_40_PM_97624927/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 1.3 Introduction- Linear equations of First Order. Page 38
Problem number: 3(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}+5 y=2
$$

1.9.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{-5 y+2} d y & =\int d x \\
-\frac{\ln (-5 y+2)}{5} & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{(-5 y+2)^{\frac{1}{5}}}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
\frac{1}{(-5 y+2)^{\frac{1}{5}}}=c_{2} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-5 x}}{5 c_{2}^{5}}+\frac{2}{5} \tag{1}
\end{equation*}
$$

Figure 22: Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-5 x}}{5 c_{2}^{5}}+\frac{2}{5}
$$

Verified OK.

1.9.2 Maple step by step solution

Let's solve
$y^{\prime}+5 y=2$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{-5 y+2}=1
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{-5 y+2} d x=\int 1 d x+c_{1}
$$

- Evaluate integral
$-\frac{\ln (-5 y+2)}{5}=x+c_{1}$
- \quad Solve for y

$$
y=-\frac{\mathrm{e}^{-5 x-5 c_{1}}}{5}+\frac{2}{5}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(diff(y(x),x)+5*y(x)=2,y(x), singsol=all)
```

$$
y(x)=\frac{2}{5}+\mathrm{e}^{-5 x} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 24
DSolve[y' $[x]+5 * y[x]==2, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{2}{5}+c_{1} e^{-5 x} \\
& y(x) \rightarrow \frac{2}{5}
\end{aligned}
$$

1.10 problem 4(a)

$$
\text { 1.10.1 Solving as second order ode quadrature ode } 86
$$

1.10.2 Solving as second order linear constant coeff ode 87
1.10.3 Solving as second order integrable as is ode 90
1.10.4 Solving as second order ode missing y ode 91
1.10.5 Solving using Kovacic algorithm 93
1.10.6 Solving as exact linear second order ode ode 98
1.10.7 Maple step by step solution 100

Internal problem ID [5921]
Internal file name [OUTPUT/5169_Sunday_June_05_2022_03_26_41_PM_27157766/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 1.3 Introduction- Linear equations of First Order. Page 38
Problem number: 4(a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second_order_ode_quadrature", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _quadrature]]

$$
y^{\prime \prime}=3 x+1
$$

1.10.1 Solving as second order ode quadrature ode

Integrating once gives

$$
y^{\prime}=\frac{3}{2} x^{2}+x+c_{1}
$$

Integrating again gives

$$
y=\frac{1}{2} x^{3}+\frac{1}{2} x^{2}+c_{1} x+c_{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{2} x^{3}+\frac{1}{2} x^{2}+c_{1} x+c_{2} \tag{1}
\end{equation*}
$$

Figure 23: Slope field plot

Verification of solutions

$$
y=\frac{1}{2} x^{3}+\frac{1}{2} x^{2}+c_{1} x+c_{2}
$$

Verified OK.

1.10.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=0, f(x)=3 x+1$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=0$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=0$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(0)^{2}-(4)(1)(0)} \\
& =0
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=0$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} 1+c_{2} x \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{2} x+c_{1}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
1+x
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, x\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{1, x\}
$$

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x, x^{2}\right\}\right]
$$

Since x is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{2}, x^{3}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{2} x^{3}+A_{1} x^{2}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
6 x A_{2}+2 A_{1}=3 x+1
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{2}, A_{2}=\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{1}{2} x^{3}+\frac{1}{2} x^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} x+c_{1}\right)+\left(\frac{1}{2} x^{3}+\frac{1}{2} x^{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} x+c_{1}+\frac{1}{2} x^{3}+\frac{1}{2} x^{2} \tag{1}
\end{equation*}
$$

Figure 24: Slope field plot

Verification of solutions

$$
y=c_{2} x+c_{1}+\frac{1}{2} x^{3}+\frac{1}{2} x^{2}
$$

Verified OK.

1.10.3 Solving as second order integrable as is ode

 Integrating both sides of the ODE w.r.t x gives$$
\begin{aligned}
& \quad \int y^{\prime \prime} d x=\int(3 x+1) d x \\
& y^{\prime}=\frac{3}{2} x^{2}+x+c_{1}
\end{aligned}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{3}{2} x^{2}+x+c_{1} \mathrm{~d} x \\
& =\frac{1}{2} x^{3}+\frac{1}{2} x^{2}+c_{1} x+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

Figure 25: Slope field plot

Verification of solutions

$$
y=\frac{1}{2} x^{3}+\frac{1}{2} x^{2}+c_{1} x+c_{2}
$$

Verified OK.

1.10.4 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x)-3 x-1=0
$$

Which is now solve for $p(x)$ as first order ode. Integrating both sides gives

$$
\begin{aligned}
p(x) & =\int 3 x+1 \mathrm{~d} x \\
& =\frac{3}{2} x^{2}+x+c_{1}
\end{aligned}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=\frac{3}{2} x^{2}+x+c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{3}{2} x^{2}+x+c_{1} \mathrm{~d} x \\
& =\frac{1}{2} x^{3}+\frac{1}{2} x^{2}+c_{1} x+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

Figure 26: Slope field plot

Verification of solutions

$$
y=\frac{1}{2} x^{3}+\frac{1}{2} x^{2}+c_{1} x+c_{2}
$$

Verified OK.

1.10.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime} & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 17: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{gathered}
y_{1}=z_{1} \\
=1
\end{gathered}
$$

Which simplifies to

$$
y_{1}=1
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =1 \int \frac{1}{1} d x \\
& =1(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}(1(x))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{2} x+c_{1}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
1+x
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, x\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{1, x\}
$$

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x, x^{2}\right\}\right]
$$

Since x is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{2}, x^{3}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{2} x^{3}+A_{1} x^{2}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
6 x A_{2}+2 A_{1}=3 x+1
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{2}, A_{2}=\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{1}{2} x^{3}+\frac{1}{2} x^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} x+c_{1}\right)+\left(\frac{1}{2} x^{3}+\frac{1}{2} x^{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} x+c_{1}+\frac{1}{2} x^{3}+\frac{1}{2} x^{2} \tag{1}
\end{equation*}
$$

Figure 27: Slope field plot

Verification of solutions

$$
y=c_{2} x+c_{1}+\frac{1}{2} x^{3}+\frac{1}{2} x^{2}
$$

Verified OK.

1.10.6 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =0 \\
r(x) & =0 \\
s(x) & =3 x+1
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
0-(0)+(0)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
y^{\prime}=\int 3 x+1 d x
$$

We now have a first order ode to solve which is

$$
y^{\prime}=\frac{3}{2} x^{2}+x+c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{3}{2} x^{2}+x+c_{1} \mathrm{~d} x \\
& =\frac{1}{2} x^{3}+\frac{1}{2} x^{2}+c_{1} x+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{2} x^{3}+\frac{1}{2} x^{2}+c_{1} x+c_{2} \tag{1}
\end{equation*}
$$

Figure 28: Slope field plot

Verification of solutions

$$
y=\frac{1}{2} x^{3}+\frac{1}{2} x^{2}+c_{1} x+c_{2}
$$

Verified OK.

1.10.7 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=3 x+1
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{0})}{2}
$$

- Roots of the characteristic polynomial
$r=0$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=1
$$

- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1}+c_{2} x+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=3 x+1\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=1
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\left(\int\left(3 x^{2}+x\right) d x\right)+x\left(\int(3 x+1) d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{x^{2}(1+x)}{2}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1}+c_{2} x+\frac{x^{2}(1+x)}{2}
$$

Maple trace
`Methods for second order ODEs: --- Trying classification methods --trying a quadrature <- quadrature successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19
dsolve(diff($\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)=3 * x+1, y(x)$, singsol=all)

$$
y(x)=\frac{1}{2} x^{3}+\frac{1}{2} x^{2}+c_{1} x+c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 25
DSolve[y'' $[x]==3 * x+1, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{2}\left(x^{3}+x^{2}+2 c_{2} x+2 c_{1}\right)
$$

1.11 problem 5(a)

1.11.1 Solving as quadrature ode . 102
1.11.2 Maple step by step solution . 103

Internal problem ID [5922]
Internal file name [OUTPUT/5170_Sunday_June_05_2022_03_26_42_PM_62334749/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 1.3 Introduction- Linear equations of First Order. Page 38
Problem number: 5(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y k=0
$$

1.11.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y k} d y & =\int d x \\
\frac{\ln (y)}{k} & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\frac{\ln (y)}{k}}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
y^{\frac{1}{k}}=c_{2} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{2} \mathrm{e}^{x}\right)^{k} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{2} \mathrm{e}^{x}\right)^{k}
$$

Verified OK.

1.11.2 Maple step by step solution

Let's solve
$y^{\prime}-y k=0$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y}=k$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int k d x+c_{1}$
- Evaluate integral
$\ln (y)=k x+c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{k x+c_{1}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 10
dsolve(diff $(y(x), x)=k * y(x), y(x)$, singsol=all)

$$
y(x)=c_{1} \mathrm{e}^{k x}
$$

\checkmark Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 18
DSolve[y' $[\mathrm{x}]=\mathrm{k} * \mathrm{y}[\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} e^{k x} \\
& y(x) \rightarrow 0
\end{aligned}
$$

2 Chapter 1.6 Introduction- Linear equations of First Order. Page 41
2.1 problem 1(a) 106
2.2 problem 1(b) 109
2.3 problem 1(c) 122
2.4 problem 1(d) 135
2.5 problem 1(e) 148
2.6 problem 2 161
2.7 problem 3 174
2.8 problem 4 177
2.9 problem 5 190
2.10 problem 7 203

2.1 problem 1(a)

2.1.1 Solving as quadrature ode . 106
2.1.2 Maple step by step solution . 107

Internal problem ID [5923]
Internal file name [OUTPUT/5171_Sunday_June_05_2022_03_26_43_PM_81309885/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 1.6 Introduction- Linear equations of First Order. Page 41
Problem number: 1(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

$$
y^{\prime}-2 y=1
$$

2.1.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{1+2 y} d y & =\int d x \\
\frac{\ln (1+2 y)}{2} & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{1+2 y}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
\sqrt{1+2 y}=c_{2} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{2 x} c_{2}^{2}}{2}-\frac{1}{2} \tag{1}
\end{equation*}
$$

Figure 29: Slope field plot
Verification of solutions

$$
y=\frac{\mathrm{e}^{2 x} c_{2}^{2}}{2}-\frac{1}{2}
$$

Verified OK.

2.1.2 Maple step by step solution

Let's solve
$y^{\prime}-2 y=1$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{2 y+1}=1$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{2 y+1} d x=\int 1 d x+c_{1}$
- Evaluate integral

$$
\frac{\ln (2 y+1)}{2}=x+c_{1}
$$

- Solve for y

$$
y=\frac{\mathrm{e}^{2 c_{1}+2 x}}{2}-\frac{1}{2}
$$

Maple trace

```
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(diff(y(x),x)-2*y(x)=1,y(x), singsol=all)
```

$$
y(x)=-\frac{1}{2}+\mathrm{e}^{2 x} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 24
DSolve[y' $[x]-2 * y[x]==1, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{1}{2}+c_{1} e^{2 x} \\
& y(x) \rightarrow-\frac{1}{2}
\end{aligned}
$$

2.2 problem 1(b)

> 2.2.1 Solving as linear ode
2.2.2 Solving as first order ode lie symmetry lookup ode 111
2.2.3 Solving as exact ode . 115
2.2.4 Maple step by step solution . 119

Internal problem ID [5924]
Internal file name [OUTPUT/5172_Sunday_June_05_2022_03_26_44_PM_38055412/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 1.6 Introduction- Linear equations of First Order. Page 41
Problem number: 1(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y+y^{\prime}=\mathrm{e}^{x}
$$

2.2.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=1 \\
& q(x)=\mathrm{e}^{x}
\end{aligned}
$$

Hence the ode is

$$
y+y^{\prime}=\mathrm{e}^{x}
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int 1 d x} \\
=\mathrm{e}^{x}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\mathrm{e}^{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y \mathrm{e}^{x}\right) & =\left(\mathrm{e}^{x}\right)\left(\mathrm{e}^{x}\right) \\
\mathrm{d}\left(y \mathrm{e}^{x}\right) & =\mathrm{e}^{2 x} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& y \mathrm{e}^{x}=\int \mathrm{e}^{2 x} \mathrm{~d} x \\
& y \mathrm{e}^{x}=\frac{\mathrm{e}^{2 x}}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x}$ results in

$$
y=\frac{\mathrm{e}^{-x} \mathrm{e}^{2 x}}{2}+c_{1} \mathrm{e}^{-x}
$$

which simplifies to

$$
y=c_{1} \mathrm{e}^{-x}+\frac{\mathrm{e}^{x}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\frac{\mathrm{e}^{x}}{2} \tag{1}
\end{equation*}
$$

Figure 30: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+\frac{\mathrm{e}^{x}}{2}
$$

Verified OK.

2.2.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-y+\mathrm{e}^{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 21: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x}} d y
\end{aligned}
$$

Which results in

$$
S=y \mathrm{e}^{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-y+\mathrm{e}^{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =y \mathrm{e}^{x} \\
S_{y} & =\mathrm{e}^{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{2 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{2 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\mathrm{e}^{2 R}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{x} y=\frac{\mathrm{e}^{2 x}}{2}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{x} y=\frac{\mathrm{e}^{2 x}}{2}+c_{1}
$$

Which gives

$$
y=\frac{\left(\mathrm{e}^{2 x}+2 c_{1}\right) \mathrm{e}^{-x}}{2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-y+\mathrm{e}^{x}$		$\frac{d S}{d R}=\mathrm{e}^{2 R}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-S(R)]{\rightarrow-1}$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
	$R=x$	
	$S=y \mathrm{e}^{x}$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\mathrm{e}^{2 x}+2 c_{1}\right) \mathrm{e}^{-x}}{2} \tag{1}
\end{equation*}
$$

Figure 31: Slope field plot

Verification of solutions

$$
y=\frac{\left(\mathrm{e}^{2 x}+2 c_{1}\right) \mathrm{e}^{-x}}{2}
$$

Verified OK.

2.2.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-y+\mathrm{e}^{x}\right) \mathrm{d} x \\
\left(y-\mathrm{e}^{x}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=y-\mathrm{e}^{x} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y-\mathrm{e}^{x}\right) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((1)-(0)) \\
& =1
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 1 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{x}\left(y-\mathrm{e}^{x}\right) \\
& =\left(y-\mathrm{e}^{x}\right) \mathrm{e}^{x}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{x}(1) \\
& =\mathrm{e}^{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\left(y-\mathrm{e}^{x}\right) \mathrm{e}^{x}\right)+\left(\mathrm{e}^{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int\left(y-\mathrm{e}^{x}\right) \mathrm{e}^{x} \mathrm{~d} x \\
\phi & =-\frac{\mathrm{e}^{2 x}}{2}+y \mathrm{e}^{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{x}=\mathrm{e}^{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\mathrm{e}^{2 x}}{2}+y \mathrm{e}^{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\mathrm{e}^{2 x}}{2}+y \mathrm{e}^{x}
$$

The solution becomes

$$
y=\frac{\left(\mathrm{e}^{2 x}+2 c_{1}\right) \mathrm{e}^{-x}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\mathrm{e}^{2 x}+2 c_{1}\right) \mathrm{e}^{-x}}{2} \tag{1}
\end{equation*}
$$

Figure 32: Slope field plot

Verification of solutions

$$
y=\frac{\left(\mathrm{e}^{2 x}+2 c_{1}\right) \mathrm{e}^{-x}}{2}
$$

Verified OK.

2.2.4 Maple step by step solution

Let's solve

$$
y+y^{\prime}=\mathrm{e}^{x}
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=-y+\mathrm{e}^{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y+y^{\prime}=\mathrm{e}^{x}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y+y^{\prime}\right)=\mu(x) \mathrm{e}^{x}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y+y^{\prime}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x)$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \mathrm{e}^{x} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \mathrm{e}^{x} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) \mathrm{e}^{x} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{x}$
$y=\frac{\int\left(\mathrm{e}^{x}\right)^{2} d x+c_{1}}{\mathrm{e}^{x}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{\left(\mathrm{e}^{x}\right)^{2}}{2}+c_{1}}{\mathrm{e}^{x}}$
- Simplify
$y=c_{1} \mathrm{e}^{-x}+\frac{\mathrm{e}^{x}}{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve(diff(y(x),x)+y(x)=exp(x),y(x), singsol=all)
```

$$
y(x)=\frac{\mathrm{e}^{x}}{2}+c_{1} \mathrm{e}^{-x}
$$

\checkmark Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 21
DSolve[y'[x]+y[x]==Exp[x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{e^{x}}{2}+c_{1} e^{-x}
$$

2.3 problem 1(c)

2.3.1 Solving as linear ode . 122
2.3.2 Solving as first order ode lie symmetry lookup ode 124
2.3.3 Solving as exact ode . 128
2.3.4 Maple step by step solution . 132

Internal problem ID [5925]
Internal file name [OUTPUT/5173_Sunday_June_05_2022_03_26_45_PM_39439636/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 1.6 Introduction- Linear equations of First Order. Page 41
Problem number: 1(c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}-2 y=x^{2}+x
$$

2.3.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-2 \\
q(x) & =x^{2}+x
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-2 y=x^{2}+x
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int(-2) d x} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(x^{2}+x\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y \mathrm{e}^{-2 x}\right) & =\left(\mathrm{e}^{-2 x}\right)\left(x^{2}+x\right) \\
\mathrm{d}\left(y \mathrm{e}^{-2 x}\right) & =\left(x(1+x) \mathrm{e}^{-2 x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& y \mathrm{e}^{-2 x}=\int x(1+x) \mathrm{e}^{-2 x} \mathrm{~d} x \\
& y \mathrm{e}^{-2 x}=-\frac{\left(x^{2}+2 x+1\right) \mathrm{e}^{-2 x}}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-2 x}$ results in

$$
y=-\frac{\mathrm{e}^{2 x}\left(x^{2}+2 x+1\right) \mathrm{e}^{-2 x}}{2}+c_{1} \mathrm{e}^{2 x}
$$

which simplifies to

$$
y=c_{1} \mathrm{e}^{2 x}-\frac{(1+x)^{2}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}-\frac{(1+x)^{2}}{2} \tag{1}
\end{equation*}
$$

Figure 33: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x}-\frac{(1+x)^{2}}{2}
$$

Verified OK.

2.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=x^{2}+x+2 y \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 24: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{2 x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{2 x}} d y
\end{aligned}
$$

Which results in

$$
S=y \mathrm{e}^{-2 x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=x^{2}+x+2 y
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-2 y \mathrm{e}^{-2 x} \\
S_{y} & =\mathrm{e}^{-2 x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=x(1+x) \mathrm{e}^{-2 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R(1+R) \mathrm{e}^{-2 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\left(R^{2}+2 R+1\right) \mathrm{e}^{-2 R}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{-2 x} y=-\frac{\left(x^{2}+2 x+1\right) \mathrm{e}^{-2 x}}{2}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-2 x} y=-\frac{\left(x^{2}+2 x+1\right) \mathrm{e}^{-2 x}}{2}+c_{1}
$$

Which gives

$$
y=-\frac{\left(x^{2} \mathrm{e}^{-2 x}+2 x \mathrm{e}^{-2 x}+\mathrm{e}^{-2 x}-2 c_{1}\right) \mathrm{e}^{2 x}}{2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=x^{2}+x+2 y$		$\frac{d S}{d R}=R(1+R) \mathrm{e}^{-2 R}$
		$11111 \times$ 他
		$\xrightarrow{2} \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow+\infty$
		边 ${ }_{\text {l }}$
	$R=x$	$1+\underset{\rightarrow}{ }$
	$S=y \mathrm{e}^{-2 x}$	
		$\xrightarrow{+}$
		+

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(x^{2} \mathrm{e}^{-2 x}+2 x \mathrm{e}^{-2 x}+\mathrm{e}^{-2 x}-2 c_{1}\right) \mathrm{e}^{2 x}}{2} \tag{1}
\end{equation*}
$$

Figure 34: Slope field plot

Verification of solutions

$$
y=-\frac{\left(x^{2} \mathrm{e}^{-2 x}+2 x \mathrm{e}^{-2 x}+\mathrm{e}^{-2 x}-2 c_{1}\right) \mathrm{e}^{2 x}}{2}
$$

Verified OK.

2.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(x^{2}+x+2 y\right) \mathrm{d} x \\
\left(-x^{2}-x-2 y\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x^{2}-x-2 y \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}-x-2 y\right) \\
& =-2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((-2)-(0)) \\
& =-2
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-2 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 x} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-2 x}\left(-x^{2}-x-2 y\right) \\
& =-\mathrm{e}^{-2 x}\left(x^{2}+x+2 y\right)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-2 x}(1) \\
& =\mathrm{e}^{-2 x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(-\mathrm{e}^{-2 x}\left(x^{2}+x+2 y\right)\right)+\left(\mathrm{e}^{-2 x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\mathrm{e}^{-2 x}\left(x^{2}+x+2 y\right) \mathrm{d} x \\
\phi & =\frac{\left(x^{2}+2 x+2 y+1\right) \mathrm{e}^{-2 x}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-2 x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-2 x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-2 x}=\mathrm{e}^{-2 x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{\left(x^{2}+2 x+2 y+1\right) \mathrm{e}^{-2 x}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{\left(x^{2}+2 x+2 y+1\right) \mathrm{e}^{-2 x}}{2}
$$

The solution becomes

$$
y=-\frac{\left(x^{2} \mathrm{e}^{-2 x}+2 x \mathrm{e}^{-2 x}+\mathrm{e}^{-2 x}-2 c_{1}\right) \mathrm{e}^{2 x}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(x^{2} \mathrm{e}^{-2 x}+2 x \mathrm{e}^{-2 x}+\mathrm{e}^{-2 x}-2 c_{1}\right) \mathrm{e}^{2 x}}{2} \tag{1}
\end{equation*}
$$

Figure 35: Slope field plot

Verification of solutions

$$
y=-\frac{\left(x^{2} \mathrm{e}^{-2 x}+2 x \mathrm{e}^{-2 x}+\mathrm{e}^{-2 x}-2 c_{1}\right) \mathrm{e}^{2 x}}{2}
$$

Verified OK.

2.3.4 Maple step by step solution

Let's solve
$y^{\prime}-2 y=x^{2}+x$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=2 y+x^{2}+x$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-2 y=x^{2}+x$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-2 y\right)=\mu(x)\left(x^{2}+x\right)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-2 y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-2 \mu(x)$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{-2 x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x)\left(x^{2}+x\right) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x)\left(x^{2}+x\right) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x)\left(x^{2}+x\right) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{-2 x}$
$y=\frac{\int\left(x^{2}+x\right) \mathrm{e}^{-2 x} d x+c_{1}}{\mathrm{e}^{-2 x}}$
- Evaluate the integrals on the rhs
$y=\frac{-\frac{\mathrm{e}^{-2 x}(1+x)^{2}}{2}+c_{1}}{\mathrm{e}^{-2 x}}$
- Simplify
$y=c_{1} \mathrm{e}^{2 x}-\frac{(1+x)^{2}}{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

```
dsolve(diff(y(x),x)-2*y(x)=x^2+x,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{2 x} c_{1}-\frac{(x+1)^{2}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.073 (sec). Leaf size: 23
DSolve[y'[x]-2*y[x]==x^2+x,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\frac{1}{2}(x+1)^{2}+c_{1} e^{2 x}
$$

2.4 problem 1(d)

2.4.1 Solving as linear ode . 135
2.4.2 Solving as first order ode lie symmetry lookup ode 137
2.4.3 Solving as exact ode . 141
2.4.4 Maple step by step solution . 146

Internal problem ID [5926]
Internal file name [OUTPUT/5174_Sunday_June_05_2022_03_26_47_PM_14465740/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 1.6 Introduction- Linear equations of First Order. Page 41
Problem number: 1(d).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y+3 y^{\prime}=2 \mathrm{e}^{-x}
$$

2.4.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{1}{3} \\
q(x) & =\frac{2 \mathrm{e}^{-x}}{3}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{3}=\frac{2 \mathrm{e}^{-x}}{3}
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \frac{1}{3} d x} \\
=\mathrm{e}^{\frac{x}{3}}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{2 \mathrm{e}^{-x}}{3}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\frac{x}{3}} y\right) & =\left(\mathrm{e}^{\frac{x}{3}}\right)\left(\frac{2 \mathrm{e}^{-x}}{3}\right) \\
\mathrm{d}\left(\mathrm{e}^{\frac{x}{3}} y\right) & =\left(\frac{2 \mathrm{e}^{-\frac{2 x}{3}}}{3}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\frac{x}{3}} y=\int \frac{2 \mathrm{e}^{-\frac{2 x}{3}}}{3} \mathrm{~d} x \\
& \mathrm{e}^{\frac{x}{3}} y=-\mathrm{e}^{-\frac{2 x}{3}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\frac{x}{3}}$ results in

$$
y=-\mathrm{e}^{-\frac{x}{3}} \mathrm{e}^{-\frac{2 x}{3}}+c_{1} \mathrm{e}^{-\frac{x}{3}}
$$

which simplifies to

$$
y=-\mathrm{e}^{-x}+c_{1} \mathrm{e}^{-\frac{x}{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\mathrm{e}^{-x}+c_{1} \mathrm{e}^{-\frac{x}{3}} \tag{1}
\end{equation*}
$$

Figure 36: Slope field plot
Verification of solutions

$$
y=-\mathrm{e}^{-x}+c_{1} \mathrm{e}^{-\frac{x}{3}}
$$

Verified OK.

2.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y}{3}+\frac{2 \mathrm{e}^{-x}}{3} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 27: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\mathrm{e}^{-\frac{x}{3}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\frac{x}{3}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\frac{x}{3}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y}{3}+\frac{2 \mathrm{e}^{-x}}{3}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{\mathrm{e}^{\frac{x}{3}} y}{3} \\
S_{y} & =\mathrm{e}^{\frac{x}{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{2 \mathrm{e}^{-\frac{2 x}{3}}}{3} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{2 \mathrm{e}^{-\frac{2 R}{3}}}{3}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\mathrm{e}^{-\frac{2 R}{3}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{\frac{x}{3}} y=-\mathrm{e}^{-\frac{2 x}{3}}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{\frac{x}{3}} y=-\mathrm{e}^{-\frac{2 x}{3}}+c_{1}
$$

Which gives

$$
y=-\left(\mathrm{e}^{-\frac{2 x}{3}}-c_{1}\right) \mathrm{e}^{-\frac{x}{3}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y}{3}+\frac{2 \mathrm{e}^{-x}}{3}$		$\frac{d S}{d R}=\frac{2 \mathrm{e}^{-\frac{2 R}{3}}}{3}$
		11919%
		$1+19$
	$R=x$	
	$S=\mathrm{e}^{\frac{x}{3}} y$	

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\left(\mathrm{e}^{-\frac{2 x}{3}}-c_{1}\right) \mathrm{e}^{-\frac{x}{3}} \tag{1}
\end{equation*}
$$

Figure 37: Slope field plot

Verification of solutions

$$
y=-\left(\mathrm{e}^{-\frac{2 x}{3}}-c_{1}\right) \mathrm{e}^{-\frac{x}{3}}
$$

Verified OK.

2.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(3) \mathrm{d} y & =\left(-y+2 \mathrm{e}^{-x}\right) \mathrm{d} x \\
\left(y-2 \mathrm{e}^{-x}\right) \mathrm{d} x+(3) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y-2 \mathrm{e}^{-x} \\
N(x, y) & =3
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y-2 \mathrm{e}^{-x}\right) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(3) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{3}((1)-(0)) \\
& =\frac{1}{3}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{1}{3} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\frac{x}{3}} \\
& =\mathrm{e}^{\frac{x}{3}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{\frac{x}{3}}\left(y-2 \mathrm{e}^{-x}\right) \\
& =\left(y \mathrm{e}^{x}-2\right) \mathrm{e}^{-\frac{2 x}{3}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{\frac{x}{3}}(3) \\
& =3 \mathrm{e}^{\frac{x}{3}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\left(y \mathrm{e}^{x}-2\right) \mathrm{e}^{-\frac{2 x}{3}}\right)+\left(3 \mathrm{e}^{\frac{x}{3}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int\left(y \mathrm{e}^{x}-2\right) \mathrm{e}^{-\frac{2 x}{3}} \mathrm{~d} x \\
\phi & =3\left(y \mathrm{e}^{x}+1\right) \mathrm{e}^{-\frac{2 x}{3}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =3 \mathrm{e}^{x} \mathrm{e}^{-\frac{2 x}{3}}+f^{\prime}(y) \tag{4}\\
& =3 \mathrm{e}^{\frac{x}{3}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=3 \mathrm{e}^{\frac{x}{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
3 \mathrm{e}^{\frac{x}{3}}=3 \mathrm{e}^{\frac{x}{3}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=3\left(y \mathrm{e}^{x}+1\right) \mathrm{e}^{-\frac{2 x}{3}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=3\left(y \mathrm{e}^{x}+1\right) \mathrm{e}^{-\frac{2 x}{3}}
$$

The solution becomes

$$
y=-\frac{\left(3 \mathrm{e}^{-\frac{2 x}{3}}-c_{1}\right) \mathrm{e}^{-x} \mathrm{e}^{\frac{2 x}{3}}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(3 \mathrm{e}^{-\frac{2 x}{3}}-c_{1}\right) \mathrm{e}^{-x} \mathrm{e}^{\frac{2 x}{3}}}{3} \tag{1}
\end{equation*}
$$

Figure 38: Slope field plot

Verification of solutions

$$
y=-\frac{\left(3 \mathrm{e}^{-\frac{2 x}{3}}-c_{1}\right) \mathrm{e}^{-x} \mathrm{e}^{\frac{2 x}{3}}}{3}
$$

Verified OK.

2.4.4 Maple step by step solution

Let's solve
$y+3 y^{\prime}=2 \mathrm{e}^{-x}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{y}{3}+\frac{2 \mathrm{e}^{-x}}{3}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+\frac{y}{3}=\frac{2 \mathrm{e}^{-x}}{3}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{y}{3}\right)=\frac{2 \mu(x) \mathrm{e}^{-x}}{3}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{y}{3}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)}{3}$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{\frac{x}{3}}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{2 \mu(x) \mathrm{e}^{-x}}{3} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{2 \mu(x) \mathrm{e}^{-x}}{3} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{2 \mu(x) e^{-x}}{3} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{\frac{x}{3}}$
$y=\frac{\int \frac{2 \mathrm{e}^{-x_{\mathrm{e}}}{ }^{\frac{x}{3}}}{3} d x+c_{1}}{\mathrm{e}^{\frac{x}{3}}}$
- Evaluate the integrals on the rhs
$y=\frac{-\mathrm{e}^{-\frac{2 x}{3}}+c_{1}}{\mathrm{e}^{\frac{x}{3}}}$
- Simplify

$$
y=\left(-\mathrm{e}^{-\frac{2 x}{3}}+c_{1}\right) \mathrm{e}^{-\frac{x}{3}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(3*diff(y(x),x)+y(x)=2*exp(-x),y(x), singsol=all)
```

$$
y(x)=-\mathrm{e}^{-x}+\mathrm{e}^{-\frac{x}{3}} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.051 (sec). Leaf size: 23
DSolve[3*y' $[\mathrm{x}]+\mathrm{y}[\mathrm{x}]==2 * \operatorname{Exp}[-\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-x}\left(-1+c_{1} e^{2 x / 3}\right)
$$

2.5 problem 1(e)

> 2.5.1 Solving as linear ode
2.5.2 Solving as first order ode lie symmetry lookup ode 150
2.5.3 Solving as exact ode . 154
2.5.4 Maple step by step solution . 158

Internal problem ID [5927]
Internal file name [OUTPUT/5175_Sunday_June_05_2022_03_26_48_PM_51247357/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 1.6 Introduction- Linear equations of First Order. Page 41
Problem number: 1(e).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+3 y=\mathrm{e}^{i x}
$$

2.5.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =3 \\
q(x) & =\mathrm{e}^{i x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+3 y=\mathrm{e}^{i x}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 3 d x} \\
& =\mathrm{e}^{3 x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\mathrm{e}^{i x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{3 x} y\right) & =\left(\mathrm{e}^{3 x}\right)\left(\mathrm{e}^{i x}\right) \\
\mathrm{d}\left(\mathrm{e}^{3 x} y\right) & =\mathrm{e}^{(3+i) x} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{3 x} y=\int \mathrm{e}^{(3+i) x} \mathrm{~d} x \\
& \mathrm{e}^{3 x} y=\left(\frac{3}{10}-\frac{i}{10}\right) \mathrm{e}^{(3+i) x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{3 x}$ results in

$$
y=\left(\frac{3}{10}-\frac{i}{10}\right) \mathrm{e}^{-3 x} \mathrm{e}^{(3+i) x}+c_{1} \mathrm{e}^{-3 x}
$$

which simplifies to

$$
y=\left(\frac{3}{10}-\frac{i}{10}\right) \mathrm{e}^{i x}+c_{1} \mathrm{e}^{-3 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(\frac{3}{10}-\frac{i}{10}\right) \mathrm{e}^{i x}+c_{1} \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

Figure 39: Slope field plot
Verification of solutions

$$
y=\left(\frac{3}{10}-\frac{i}{10}\right) \mathrm{e}^{i x}+c_{1} \mathrm{e}^{-3 x}
$$

Verified OK.

2.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-3 y+\mathrm{e}^{i x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 30: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-3 x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-3 x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{3 x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-3 y+\mathrm{e}^{i x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =3 \mathrm{e}^{3 x} y \\
S_{y} & =\mathrm{e}^{3 x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{(3+i) x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{(3+i) R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\left(\frac{3}{10}-\frac{i}{10}\right) \mathrm{e}^{(3+i) R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{3 x} y=\left(\frac{3}{10}-\frac{i}{10}\right) \mathrm{e}^{(3+i) x}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{3 x} y=\left(\frac{3}{10}-\frac{i}{10}\right) \mathrm{e}^{(3+i) x}+c_{1}
$$

Which gives

$$
y=\left(\frac{3}{10}-\frac{i}{10}\right)\left(i c_{1}+\mathrm{e}^{(3+i) x}+3 c_{1}\right) \mathrm{e}^{-3 x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(\frac{3}{10}-\frac{i}{10}\right)\left(i c_{1}+\mathrm{e}^{(3+i) x}+3 c_{1}\right) \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

Figure 40: Slope field plot

Verification of solutions

$$
y=\left(\frac{3}{10}-\frac{i}{10}\right)\left(i c_{1}+\mathrm{e}^{(3+i) x}+3 c_{1}\right) \mathrm{e}^{-3 x}
$$

Verified OK.

2.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-3 y+\mathrm{e}^{i x}\right) \mathrm{d} x \\
\left(3 y-\mathrm{e}^{i x}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =3 y-\mathrm{e}^{i x} \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(3 y-\mathrm{e}^{i x}\right) \\
& =3
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((3)-(0)) \\
& =3
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 3 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{3 x} \\
& =\mathrm{e}^{3 x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{3 x}\left(3 y-\mathrm{e}^{i x}\right) \\
& =\left(3 y-\mathrm{e}^{i x}\right) \mathrm{e}^{3 x}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{3 x}(1) \\
& =\mathrm{e}^{3 x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\left(3 y-\mathrm{e}^{i x}\right) \mathrm{e}^{3 x}\right)+\left(\mathrm{e}^{3 x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int\left(3 y-\mathrm{e}^{i x}\right) \mathrm{e}^{3 x} \mathrm{~d} x \\
\phi & =\int^{x}\left(3 y-\mathrm{e}^{i-a}\right) \mathrm{e}^{3-a} d _a+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{3 x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{3 x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{3 x}=\mathrm{e}^{3 x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\int^{x}\left(3 y-\mathrm{e}^{i _a}\right) \mathrm{e}^{3 _a} d _a+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\int^{x}\left(3 y-\mathrm{e}^{i _a}\right) \mathrm{e}^{3 _a} d _a
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{x}\left(3 y-\mathrm{e}^{i _a}\right) \mathrm{e}^{3 _a} d _a=c_{1} \tag{1}
\end{equation*}
$$

Figure 41: Slope field plot

Verification of solutions

$$
\int^{x}\left(3 y-\mathrm{e}^{i-a}\right) \mathrm{e}^{3 _a} d _a=c_{1}
$$

Verified OK.

2.5.4 Maple step by step solution

Let's solve

$$
y^{\prime}+3 y=\mathrm{e}^{\mathrm{I} x}
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-3 y+\mathrm{e}^{\mathrm{I} x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+3 y=\mathrm{e}^{\mathrm{I} x}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$

$$
\mu(x)\left(y^{\prime}+3 y\right)=\mu(x) \mathrm{e}^{\mathrm{I} x}
$$

- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+3 y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=3 \mu(x)$
- \quad Solve to find the integrating factor

$$
\mu(x)=\mathrm{e}^{3 x}
$$

- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \mathrm{e}^{\mathrm{I} x} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \mathrm{e}^{\mathrm{I} x} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) \mathrm{e}^{\mathrm{I} x} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{3 x}$
$y=\frac{\int \mathrm{e}^{\mathrm{I} x} \mathrm{e}^{3 x} d x+c_{1}}{\mathrm{e}^{3 x}}$
- Evaluate the integrals on the rhs
$y=\frac{\left(\frac{3}{10}-\frac{\mathrm{I}}{10}\right) \mathrm{e}^{\mathrm{Ix}+3 x}+c_{1}}{\mathrm{e}^{3 x}}$
- Simplify
$y=-\frac{\mathrm{e}^{-3 x}\left((-3+\mathrm{I}) \mathrm{e}^{(3+\mathrm{I}) x}-10 c_{1}\right)}{10}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24
dsolve($\operatorname{diff}(y(x), x)+3 * y(x)=\exp (I * x), y(x), \quad$ singsol=all)

$$
y(x)=-\frac{\mathrm{e}^{-3 x}\left((-3+i) \mathrm{e}^{(3+i) x}-10 c_{1}\right)}{10}
$$

\checkmark Solution by Mathematica
Time used: 0.054 (sec). Leaf size: 29
DSolve[y' $[x]+3 * y[x]==\operatorname{Exp}[I * x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow\left(\frac{3}{10}-\frac{i}{10}\right) e^{i x}+c_{1} e^{-3 x}
$$

2.6 problem 2

2.6.1 Solving as linear ode . 161
2.6.2 Solving as first order ode lie symmetry lookup ode 163
2.6.3 Solving as exact ode . 167
2.6.4 Maple step by step solution . 171

Internal problem ID [5928]
Internal file name [OUTPUT/5176_Sunday_June_05_2022_03_26_49_PM_19687612/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 1.6 Introduction- Linear equations of First Order. Page 41
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+i y=x
$$

2.6.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =i \\
q(x) & =x
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+i y=x
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int i d x} \\
=\mathrm{e}^{i x}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y \mathrm{e}^{i x}\right) & =\left(\mathrm{e}^{i x}\right)(x) \\
\mathrm{d}\left(y \mathrm{e}^{i x}\right) & =\left(x \mathrm{e}^{i x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& y \mathrm{e}^{i x}=\int x \mathrm{e}^{i x} \mathrm{~d} x \\
& y \mathrm{e}^{i x}=-(i x-1) \mathrm{e}^{i x}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{i x}$ results in

$$
y=-\mathrm{e}^{-i x}(i x-1) \mathrm{e}^{i x}+c_{1} \mathrm{e}^{-i x}
$$

which simplifies to

$$
y=-i x+1+c_{1} \mathrm{e}^{-i x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-i x+1+c_{1} \mathrm{e}^{-i x} \tag{1}
\end{equation*}
$$

Figure 42: Slope field plot
Verification of solutions

$$
y=-i x+1+c_{1} \mathrm{e}^{-i x}
$$

Verified OK.

2.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-i y+x \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 33: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-i x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-i x}} d y
\end{aligned}
$$

Which results in

$$
S=y \mathrm{e}^{i x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-i y+x
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =i y \mathrm{e}^{i x} \\
S_{y} & =\mathrm{e}^{i x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=x \mathrm{e}^{i x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R \mathrm{e}^{i R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-(i R-1) \mathrm{e}^{i R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{i x} y=-(i x-1) \mathrm{e}^{i x}+c_{1}
$$

Which simplifies to

$$
(i x+y-1) \mathrm{e}^{i x}-c_{1}=0
$$

Which gives

$$
y=-i\left(i \mathrm{e}^{i x}+x \mathrm{e}^{i x}+i c_{1}\right) \mathrm{e}^{-i x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-i\left(i \mathrm{e}^{i x}+x \mathrm{e}^{i x}+i c_{1}\right) \mathrm{e}^{-i x} \tag{1}
\end{equation*}
$$

Figure 43: Slope field plot

Verification of solutions

$$
y=-i\left(i \mathrm{e}^{i x}+x \mathrm{e}^{i x}+i c_{1}\right) \mathrm{e}^{-i x}
$$

Verified OK.

2.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(-i y+x) \mathrm{d} x \\
(i y-x) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =i y-x \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(i y-x) \\
& =i
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((i)-(0)) \\
& =i
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int i \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{i x} \\
& =\mathrm{e}^{i x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{i x}(i y-x) \\
& =(i y-x) \mathrm{e}^{i x}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{i x}(1) \\
& =\mathrm{e}^{i x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left((i y-x) \mathrm{e}^{i x}\right)+\left(\mathrm{e}^{i x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int(i y-x) \mathrm{e}^{i x} \mathrm{~d} x \\
\phi & =\int^{x}\left(i y-_a\right) \mathrm{e}^{i _a} d _a+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{i x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{i x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{i x}=\mathrm{e}^{i x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\int^{x}\left(i y-_a\right) \mathrm{e}^{i _a} d _a+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\int^{x}\left(i y-_a\right) \mathrm{e}^{i _a} d _a
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{x}\left(i y-_a\right) \mathrm{e}^{i _a} d _a=c_{1} \tag{1}
\end{equation*}
$$

Figure 44: Slope field plot
Verification of solutions

$$
\int^{x}\left(i y-_a\right) \mathrm{e}^{i-a} d _a=c_{1}
$$

Verified OK.

2.6.4 Maple step by step solution

Let's solve
$y^{\prime}+\mathrm{I} y=x$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\mathrm{I} y+x$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\mathrm{I} y=x$
- The ODE is linear; multiply by an integrating factor $\mu(x)$

$$
\mu(x)\left(y^{\prime}+\mathrm{I} y\right)=\mu(x) x
$$

- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\mathrm{I} y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mathrm{I} \mu(x)$
- \quad Solve to find the integrating factor

$$
\mu(x)=\mathrm{e}^{\mathrm{I} x}
$$

- Integrate both sides with respect to x

$$
\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) x d x+c_{1}
$$

- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) x d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) x d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{\mathrm{I} x}$
$y=\frac{\int x \mathrm{e}^{\mathrm{I} x} d x+c_{1}}{\mathrm{e}^{x}}$
- Evaluate the integrals on the rhs
$y=\frac{-(\mathrm{I} x-1) \mathrm{e}^{\mathrm{I} x}+c_{1}}{\mathrm{e}^{\mathrm{I} x}}$
- Simplify

$$
y=-\mathrm{I} x+1+c_{1} \mathrm{e}^{-\mathrm{I} x}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve(diff $(y(x), x)+I * y(x)=x, y(x)$, singsol=all)

$$
y(x)=-i x+1+\mathrm{e}^{-i x} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 22
DSolve $\left[y^{\prime}[x]+I * y[x]==x, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-i x+c_{1} e^{-i x}+1
$$

2.7 problem 3

2.7.1 Solving as quadrature ode . 174
2.7.2 Maple step by step solution . 175

Internal problem ID [5929]
Internal file name [OUTPUT/5177_Sunday_June_05_2022_03_26_50_PM_84062245/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 1.6 Introduction- Linear equations of First Order. Page 41
Problem number: 3.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
L y^{\prime}+R y=E
$$

2.7.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{L}{-R y+E} d y & =\int d x \\
-\frac{L \ln (-R y+E)}{R} & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\frac{L \ln (-R y+E)}{R}}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
(-R y+E)^{-\frac{L}{R}}=c_{2} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\left(c_{2} \mathrm{e}^{x}\right)^{-\frac{R}{L}}-E}{R} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\left(c_{2} \mathrm{e}^{x}\right)^{-\frac{R}{L}}-E}{R}
$$

Verified OK.

2.7.2 Maple step by step solution

Let's solve
$L y^{\prime}+R y=E$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{-R y+E}=\frac{1}{L}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{-R y+E} d x=\int \frac{1}{L} d x+c_{1}$
- Evaluate integral
$-\frac{\ln (-R y+E)}{R}=\frac{x}{L}+c_{1}$
- \quad Solve for y
$y=\frac{-\mathrm{e}^{-\frac{R\left(L c_{1}+x\right)}{L}}+E}{R}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21
dsolve(L*diff $(y(x), x)+R * y(x)=E, y(x)$, singsol=all)

$$
y(x)=\frac{\mathrm{e}^{-\frac{R x}{L}} c_{1} R+E}{R}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.056 (sec). Leaf size: 23
DSolve [L*y' $[\mathrm{x}]+\mathrm{R} * \mathrm{y}[\mathrm{x}]==\mathrm{E} 0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{\mathrm{E} 0-\mathrm{E} 0 e^{-\frac{R x}{L}}}{R}
$$

2.8 problem 4

2.8.1 Existence and uniqueness analysis 177
2.8.2 Solving as linear ode . 178
2.8.3 Solving as first order ode lie symmetry lookup ode 179
2.8.4 Solving as exact ode . 183
2.8.5 Maple step by step solution . 187

Internal problem ID [5930]
Internal file name [OUTPUT/5178_Sunday_June_05_2022_03_26_51_PM_53986323/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 1.6 Introduction- Linear equations of First Order. Page 41
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first__order_ode_lie_symmetry__lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
L y^{\prime}+R y=E \sin (\omega x)
$$

With initial conditions

$$
[y(0)=0]
$$

2.8.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{R}{L} \\
& q(x)=\frac{E \sin (\omega x)}{L}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{R y}{L}=\frac{E \sin (\omega x)}{L}
$$

The domain of $p(x)=\frac{R}{L}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\frac{E \sin (\omega x)}{L}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

2.8.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{R}{L} d x} \\
& =\mathrm{e}^{\frac{R x}{L}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{E \sin (\omega x)}{L}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\frac{R x}{L}} y\right) & =\left(\mathrm{e}^{\frac{R x}{L}}\right)\left(\frac{E \sin (\omega x)}{L}\right) \\
\mathrm{d}\left(\mathrm{e}^{\frac{R x}{L}} y\right) & =\left(\frac{E \sin (\omega x) \mathrm{e}^{\frac{R x}{L}}}{L}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\frac{R x}{L}} y=\int \frac{E \sin (\omega x) \mathrm{e}^{\frac{R x}{L}}}{L} \mathrm{~d} x \\
& \mathrm{e}^{\frac{R x}{L}} y=\frac{E\left(-\frac{\omega \mathrm{e}^{\frac{R x}{L}} \cos (\omega x)}{\frac{R^{2}}{L^{2}}+\omega^{2}}+\frac{R \mathrm{e}^{\frac{R x}{L}} \sin (\omega x)}{L\left(\frac{R^{2}}{L^{2}}+\omega^{2}\right)}\right)}{L}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\frac{R x}{L}}$ results in

$$
y=\frac{\mathrm{e}^{-\frac{R x}{L}} E\left(-\frac{\omega \mathrm{e}^{\frac{R x}{L}} \cos (\omega x)}{\frac{R^{2}}{L^{2}}+\omega^{2}}+\frac{R \mathrm{e}^{\frac{R x}{L} \sin (\omega x)}}{L\left(\frac{R^{2}}{L^{2}}+\omega^{2}\right)}\right)}{L}+c_{1} \mathrm{e}^{-\frac{R x}{L}}
$$

which simplifies to

$$
y=\frac{c_{1}\left(\omega^{2} L^{2}+R^{2}\right) \mathrm{e}^{-\frac{R x}{L}}-E(L \cos (\omega x) \omega-\sin (\omega x) R)}{\omega^{2} L^{2}+R^{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{L^{2} c_{1} \omega^{2}-E L \omega+R^{2} c_{1}}{\omega^{2} L^{2}+R^{2}} \\
c_{1}=\frac{E L \omega}{\omega^{2} L^{2}+R^{2}}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{-E L \omega \cos (\omega x)+E L \mathrm{e}^{-\frac{R x}{L}} \omega+E R \sin (\omega x)}{\omega^{2} L^{2}+R^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-E L \omega \cos (\omega x)+E L \mathrm{e}^{-\frac{R x}{L}} \omega+E R \sin (\omega x)}{\omega^{2} L^{2}+R^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-E L \omega \cos (\omega x)+E L \mathrm{e}^{-\frac{R x}{L}} \omega+E R \sin (\omega x)}{\omega^{2} L^{2}+R^{2}}
$$

Verified OK.

2.8.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{-R y+E \sin (\omega x)}{L} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 37: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\mathrm{e}^{-\frac{R x}{L}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\frac{R x}{L}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\frac{R x}{L}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{-R y+E \sin (\omega x)}{L}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=\frac{R \mathrm{e}^{\frac{R x}{L}} y}{L} \\
& S_{y}=\mathrm{e}^{\frac{R x}{L}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{E \sin (\omega x) \mathrm{e}^{\frac{R x}{L}}}{L} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{E \sin (\omega R) \mathrm{e}^{\frac{R R}{L}}}{L}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{-c_{1}\left(\omega^{2} L^{2}+R^{2}\right)+E \mathrm{e}^{\frac{R R}{L}}(L \cos (\omega R) \omega-\sin (\omega R) R)}{\omega^{2} L^{2}+R^{2}} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{\frac{R x}{L}} y=-\frac{-c_{1}\left(\omega^{2} L^{2}+R^{2}\right)+E \mathrm{e}^{\frac{R x}{L}}(L \cos (\omega x) \omega-\sin (\omega x) R)}{\omega^{2} L^{2}+R^{2}}
$$

Which simplifies to

$$
\mathrm{e}^{\frac{R x}{L}} y=-\frac{-c_{1}\left(\omega^{2} L^{2}+R^{2}\right)+E \mathrm{e}^{\frac{R x}{L}}(L \cos (\omega x) \omega-\sin (\omega x) R)}{\omega^{2} L^{2}+R^{2}}
$$

Which gives

$$
y=-\frac{\mathrm{e}^{-\frac{R x}{L}}\left(E \omega \cos (\omega x) \mathrm{e}^{\frac{R x}{L}} L-L^{2} c_{1} \omega^{2}-E \sin (\omega x) R \mathrm{e}^{\frac{R x}{L}}-R^{2} c_{1}\right)}{\omega^{2} L^{2}+R^{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{L^{2} c_{1} \omega^{2}-E L \omega+R^{2} c_{1}}{\omega^{2} L^{2}+R^{2}} \\
c_{1}=\frac{E L \omega}{\omega^{2} L^{2}+R^{2}}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{-E L \cos (\omega x) \mathrm{e}^{\frac{R x}{L}} \mathrm{e}^{-\frac{R x}{L}} \omega+E \sin (\omega x) \mathrm{e}^{\frac{R x}{L}} \mathrm{e}^{-\frac{R x}{L}} R+E L \mathrm{e}^{-\frac{R x}{L} \omega}}{\omega^{2} L^{2}+R^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-E L \cos (\omega x) \mathrm{e}^{\frac{R x}{L}} \mathrm{e}^{-\frac{R x}{L}} \omega+E \sin (\omega x) \mathrm{e}^{\frac{R x}{L}} \mathrm{e}^{-\frac{R x}{L}} R+E L \mathrm{e}^{-\frac{R x}{L}} \omega}{\omega^{2} L^{2}+R^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-E L \cos (\omega x) \mathrm{e}^{\frac{R x}{L}} \mathrm{e}^{-\frac{R x}{L}} \omega+E \sin (\omega x) \mathrm{e}^{\frac{R x}{L}} \mathrm{e}^{-\frac{R x}{L}} R+E L \mathrm{e}^{-\frac{R x}{L}} \omega}{\omega^{2} L^{2}+R^{2}}
$$

Verified OK.

2.8.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(L) \mathrm{d} y & =(-R y+E \sin (\omega x)) \mathrm{d} x \\
(R y-E \sin (\omega x)) \mathrm{d} x+(L) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =R y-E \sin (\omega x) \\
N(x, y) & =L
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(R y-E \sin (\omega x)) \\
& =R
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(L) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{L}((R)-(0)) \\
& =\frac{R}{L}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A d x} \\
& =e^{\int \frac{R}{L} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\frac{R x}{L}} \\
& =\mathrm{e}^{\frac{R x}{L}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{\frac{R x}{L}}(R y-E \sin (\omega x)) \\
& =-\mathrm{e}^{\frac{R x}{L}}(-R y+E \sin (\omega x))
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{\frac{R x}{L}}(L) \\
& =L \mathrm{e}^{\frac{R x}{L}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(-\mathrm{e}^{\frac{R x}{L}}(-R y+E \sin (\omega x))\right)+\left(L \mathrm{e}^{\frac{R x}{L}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\mathrm{e}^{\frac{R x}{L}}(-R y+E \sin (\omega x)) \mathrm{d} x \\
\phi & =\frac{\left(E L \omega \cos (\omega x)-E R \sin (\omega x)+y\left(\omega^{2} L^{2}+R^{2}\right)\right) \mathrm{e}^{\frac{R x}{L}} L}{\omega^{2} L^{2}+R^{2}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=L \mathrm{e}^{\frac{R x}{L}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=L \mathrm{e}^{\frac{R x}{L}}$. Therefore equation (4) becomes

$$
\begin{equation*}
L \mathrm{e}^{\frac{R x}{L}}=L \mathrm{e}^{\frac{R x}{L}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{\left(E L \omega \cos (\omega x)-E R \sin (\omega x)+y\left(\omega^{2} L^{2}+R^{2}\right)\right) \mathrm{e}^{\frac{R x}{L}} L}{\omega^{2} L^{2}+R^{2}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{\left(E L \omega \cos (\omega x)-E R \sin (\omega x)+y\left(\omega^{2} L^{2}+R^{2}\right)\right) \mathrm{e}^{\frac{R x}{L}} L}{\omega^{2} L^{2}+R^{2}}
$$

The solution becomes

$$
y=-\frac{\left(E L^{2} \cos (\omega x) \mathrm{e}^{\frac{R x}{L}} \omega-E L \sin (\omega x) \mathrm{e}^{\frac{R x}{L}} R-L^{2} c_{1} \omega^{2}-R^{2} c_{1}\right) \mathrm{e}^{-\frac{R x}{L}}}{\left(\omega^{2} L^{2}+R^{2}\right) L}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{L^{2} c_{1} \omega^{2}-E L^{2} \omega+R^{2} c_{1}}{L^{3} \omega^{2}+L R^{2}} \\
c_{1}=\frac{E L^{2} \omega}{\omega^{2} L^{2}+R^{2}}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{-E L \cos (\omega x) \mathrm{e}^{\frac{R x}{L}} \mathrm{e}^{-\frac{R x}{L}} \omega+E \sin (\omega x) \mathrm{e}^{\frac{R x}{L}} \mathrm{e}^{-\frac{R x}{L}} R+E L \mathrm{e}^{-\frac{R x}{L} \omega}}{\omega^{2} L^{2}+R^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-E L \cos (\omega x) \mathrm{e}^{\frac{R x}{L}} \mathrm{e}^{-\frac{R x}{L}} \omega+E \sin (\omega x) \mathrm{e}^{\frac{R x}{L}} \mathrm{e}^{-\frac{R x}{L}} R+E L \mathrm{e}^{-\frac{R x}{L}} \omega}{\omega^{2} L^{2}+R^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{-E L \cos (\omega x) \mathrm{e}^{\frac{R x}{L}} \mathrm{e}^{-\frac{R x}{L}} \omega+E \sin (\omega x) \mathrm{e}^{\frac{R x}{L}} \mathrm{e}^{-\frac{R x}{L}} R+E L \mathrm{e}^{-\frac{R x}{L} \omega}}{\omega^{2} L^{2}+R^{2}}
$$

Verified OK.

2.8.5 Maple step by step solution

Let's solve
$\left[L y^{\prime}+R y=E \sin (\omega x), y(0)=0\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{R y}{L}+\frac{E \sin (\omega x)}{L}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{R y}{L}=\frac{E \sin (\omega x)}{L}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{R y}{L}\right)=\frac{\mu(x) E \sin (\omega x)}{L}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{R y}{L}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x) R}{L}$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{\frac{R x}{L}}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x) E \sin (\omega x)}{L} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{\mu(x) E \sin (\omega x)}{L} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(x) E \sin (\omega x)}{L} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{\frac{R x}{L}}$
$y=\frac{\int \frac{E \sin (\omega x) \mathrm{e}^{\frac{R x}{L}}}{L} d x+c_{1}}{\mathrm{e}^{\frac{R x}{L}}}$
- Evaluate the integrals on the rhs
$y=\frac{E\left(-\frac{\omega \mathrm{e}^{\frac{R x}{L}} \cos (\omega x)}{\frac{R^{2}}{L^{2}}+\omega^{2}}+\frac{R \mathrm{e}^{\frac{R x}{L}} \sin (\omega x)}{L\left(\frac{R^{2}}{L^{2}}+\omega^{2}\right)}\right)}{L}+c_{1}$
- Simplify

$$
y=\frac{c_{1}\left(\omega^{2} L^{2}+R^{2}\right) \mathrm{e}^{-\frac{R x}{L}}-E(L \cos (\omega x) \omega-\sin (\omega x) R)}{\omega^{2} L^{2}+R^{2}}
$$

- Use initial condition $y(0)=0$
$0=\frac{c_{1}\left(\omega^{2} L^{2}+R^{2}\right)-E L \omega}{\omega^{2} L^{2}+R^{2}}$
- \quad Solve for c_{1}
$c_{1}=\frac{E L \omega}{\omega^{2} L^{2}+R^{2}}$
- \quad Substitute $c_{1}=\frac{E L \omega}{\omega^{2} L^{2}+R^{2}}$ into general solution and simplify
$y=-\frac{E\left(L \cos (\omega x) \omega-L \mathrm{e}^{-\frac{R x}{L}} \omega-\sin (\omega x) R\right)}{\omega^{2} L^{2}+R^{2}}$
- Solution to the IVP

$$
y=-\frac{E\left(L \cos (\omega x) \omega-L \mathrm{e}^{-\frac{R x}{L}} \omega-\sin (\omega x) R\right)}{\omega^{2} L^{2}+R^{2}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 45

```
dsolve([L*diff(y(x),x)+R*y(x)=E*sin(omega*x),y(0) = 0],y(x), singsol=all)
```

$$
y(x)=\frac{E\left(\mathrm{e}^{-\frac{R x}{L}} L \omega-L \cos (\omega x) \omega+\sin (\omega x) R\right)}{\omega^{2} L^{2}+R^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.115 (sec). Leaf size: 47
DSolve $\left[\left\{L * y^{\prime}[x]+R * y[x]==E 0 * \operatorname{Sin}[\backslash[0 m e g a] * x],\{y[0]==0\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow Tru

$$
y(x) \rightarrow \frac{\mathrm{E} 0\left(L \omega e^{-\frac{R x}{L}}-L \omega \cos (x \omega)+R \sin (x \omega)\right)}{L^{2} \omega^{2}+R^{2}}
$$

2.9 problem 5

2.9.1 Existence and uniqueness analysis 190
2.9.2 Solving as linear ode . 191
2.9.3 Solving as first order ode lie symmetry lookup ode 192
2.9.4 Solving as exact ode . 196
2.9.5 Maple step by step solution . 200

Internal problem ID [5931]
Internal file name [OUTPUT/5179_Sunday_June_05_2022_03_26_53_PM_63615461/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 1.6 Introduction- Linear equations of First Order. Page 41
Problem number: 5 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
L y^{\prime}+R y=E \mathrm{e}^{i \omega x}
$$

With initial conditions

$$
[y(0)=0]
$$

2.9.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{R}{L} \\
q(x) & =\frac{E \mathrm{e}^{i \omega x}}{L}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{R y}{L}=\frac{E \mathrm{e}^{i \omega x}}{L}
$$

The domain of $p(x)=\frac{R}{L}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\frac{E \mathrm{e}^{i \omega x}}{L}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

2.9.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{R}{L} d x} \\
& =\mathrm{e}^{\frac{R x}{L}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{E \mathrm{e}^{i \omega x}}{L}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\frac{R x}{L}} y\right) & =\left(\mathrm{e}^{\frac{R x}{L}}\right)\left(\frac{E \mathrm{e}^{i \omega x}}{L}\right) \\
\mathrm{d}\left(\mathrm{e}^{\frac{R x}{L}} y\right) & =\left(\frac{E \mathrm{e}^{\frac{x(i L \omega+R)}{L}}}{L}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\frac{R x}{L}} y=\int \frac{E \mathrm{e}^{\frac{x(i L \omega+R)}{L}}}{L} \mathrm{~d} x \\
& \mathrm{e}^{\frac{R x}{L}} y=\frac{E \mathrm{e}^{\frac{x(i L \omega+R)}{L}}}{i L \omega+R}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\frac{R x}{L}}$ results in

$$
y=\frac{\mathrm{e}^{-\frac{R x}{L}} E \mathrm{e}^{\frac{x(i L \omega+R)}{L}}}{i L \omega+R}+c_{1} \mathrm{e}^{-\frac{R x}{L}}
$$

which simplifies to

$$
y=\frac{\mathrm{e}^{-\frac{R x}{L}}\left(E \mathrm{e}^{\frac{x(i L \omega+R)}{L}}+(i L \omega+R) c_{1}\right)}{i L \omega+R}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{L c_{1} \omega i+R c_{1}+E}{i L \omega+R} \\
c_{1}=-\frac{E}{i L \omega+R}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\mathrm{e}^{-\frac{R x}{L}} E \mathrm{e}^{\frac{x(i L \omega+R)}{L}}-E \mathrm{e}^{-\frac{R x}{L}}}{i L \omega+R}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-\frac{R x}{L}} E \mathrm{e}^{\frac{x(i L \omega+R)}{L}}-E \mathrm{e}^{-\frac{R x}{L}}}{i L \omega+R} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\mathrm{e}^{-\frac{R x}{L}} E \mathrm{e}^{\frac{x(i L \omega+R)}{L}}-E \mathrm{e}^{-\frac{R x}{L}}}{i L \omega+R}
$$

Verified OK.

2.9.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{-R y+E \mathrm{e}^{i \omega x}}{L} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 40: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-\frac{R x}{L}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\frac{R x}{L}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\frac{R x}{L}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{-R y+E \mathrm{e}^{i \omega x}}{L}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=\frac{R \mathrm{e}^{\frac{R x}{L}} y}{L} \\
& S_{y}=\mathrm{e}^{\frac{R x}{L}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{E \mathrm{e}^{\frac{x(i L \omega+R)}{L}}}{L} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{E \mathrm{e}^{\frac{R(i L \omega+R)}{L}}}{L}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{E \mathrm{e}^{\frac{R(i L \omega+R)}{L}}}{i L \omega+R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{\frac{R x}{L}} y=\frac{E \mathrm{e}^{\frac{x(i L \omega+R)}{L}}}{i L \omega+R}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{\frac{R x}{L}} y=\frac{E \mathrm{e}^{\frac{x(i L \omega+R)}{L}}}{i L \omega+R}+c_{1}
$$

Which gives

$$
y=\frac{\mathrm{e}^{-\frac{R x}{L}}\left(L c_{1} \omega i+E \mathrm{e}^{\frac{x(i L \omega+R)}{L}}+R c_{1}\right)}{i L \omega+R}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{L c_{1} \omega i+R c_{1}+E}{i L \omega+R} \\
c_{1}=-\frac{E}{i L \omega+R}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\mathrm{e}^{-\frac{R x}{L}} E \mathrm{e}^{\frac{x(i L \omega+R)}{L}}-E \mathrm{e}^{-\frac{R x}{L}}}{i L \omega+R}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-\frac{R x}{L}} E \mathrm{e}^{\frac{x(i L \omega+R)}{L}}-E \mathrm{e}^{-\frac{R x}{L}}}{i L \omega+R} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\mathrm{e}^{-\frac{R x}{L}} E \mathrm{e}^{\frac{x(i L \omega+R)}{L}}-E \mathrm{e}^{-\frac{R x}{L}}}{i L \omega+R}
$$

Verified OK.

2.9.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(L) \mathrm{d} y & =\left(-R y+E \mathrm{e}^{i \omega x}\right) \mathrm{d} x \\
\left(R y-E \mathrm{e}^{i \omega x}\right) \mathrm{d} x+(L) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =R y-E \mathrm{e}^{i \omega x} \\
N(x, y) & =L
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(R y-E \mathrm{e}^{i \omega x}\right) \\
& =R
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(L) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{L}((R)-(0)) \\
& =\frac{R}{L}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A d x} \\
& =e^{\int \frac{R}{L} d x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\frac{R x}{L}} \\
& =\mathrm{e}^{\frac{R x}{L}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{\frac{R x}{L}}\left(R y-E \mathrm{e}^{i \omega x}\right) \\
& =-\mathrm{e}^{\frac{R x}{L}}\left(-R y+E \mathrm{e}^{i \omega x}\right)
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{\frac{R x}{L}}(L) \\
& =L \mathrm{e}^{\frac{R x}{L}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(-\mathrm{e}^{\frac{R x}{L}}\left(-R y+E \mathrm{e}^{i \omega x}\right)\right)+\left(L \mathrm{e}^{\frac{R x}{L}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\mathrm{e}^{\frac{R x}{L}}\left(-R y+E \mathrm{e}^{i \omega x}\right) \mathrm{d} x \\
\phi & =\int_{0}^{x}-\mathrm{e}^{\frac{R-a}{L}}\left(-R y+E \mathrm{e}^{i \omega _a}\right) d _a+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\int_{0}^{x} \mathrm{e}^{\frac{R-a}{L} a} R d _a+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=L \mathrm{e}^{\frac{R x}{L}}$. Therefore equation (4) becomes

$$
\begin{equation*}
L \mathrm{e}^{\frac{R x}{L}}=R\left(\int_{0}^{x} \mathrm{e}^{\frac{R-a}{L}} d _a\right)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=L \mathrm{e}^{\frac{R x}{L}}-R\left(\int_{0}^{x} \mathrm{e}^{\frac{R-a}{L}} d _a\right)
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(L \mathrm{e}^{\frac{R x}{L}}-R\left(\int_{0}^{x} \mathrm{e}^{\frac{R-a}{L}} d _a\right)\right) \mathrm{d} y \\
f(y) & =\left(L \mathrm{e}^{\frac{R x}{L}}-R\left(\int_{0}^{x} \mathrm{e}^{\frac{R a}{L}} d _a\right)\right) y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\int_{0}^{x}-\mathrm{e}^{\frac{R _a}{L}}\left(-R y+E \mathrm{e}^{i \omega _a}\right) d _a+\left(L \mathrm{e}^{\frac{R x}{L}}-R\left(\int_{0}^{x} \mathrm{e}^{\frac{R a}{L}} d _a\right)\right) y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\int_{0}^{x}-\mathrm{e}^{\frac{R-a}{L}}\left(-R y+E \mathrm{e}^{i \omega _a}\right) d _a+\left(L \mathrm{e}^{\frac{R x}{L}}-R\left(\int_{0}^{x} \mathrm{e}^{\frac{R _a}{L}} d _a\right)\right) y
$$

The solution becomes

$$
y=\frac{\left(E\left(\int_{0}^{x} \mathrm{e}^{\frac{R-a}{L}} \mathrm{e}^{i \omega _a} d _a\right)+c_{1}\right) \mathrm{e}^{-\frac{R x}{L}}}{L}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=\frac{c_{1}}{L} \\
& c_{1}=0
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{E\left(\int_{0}^{x} \mathrm{e}^{=\frac{a(i L \omega+R)}{L}} d _a\right) \mathrm{e}^{-\frac{R x}{L}}}{L}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{E\left(\int_{0}^{x} \mathrm{e}^{-\frac{a(i L \omega+R)}{L}} d _a\right) \mathrm{e}^{-\frac{R x}{L}}}{L} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{E\left(\int_{0}^{x} \mathrm{e}^{-\frac{a(i L \omega+R)}{L}} d _a\right) \mathrm{e}^{-\frac{R x}{L}}}{L}
$$

Verified OK.

2.9.5 Maple step by step solution

Let's solve
$\left[L y^{\prime}+R y=E \mathrm{e}^{\mathrm{I} \omega x}, y(0)=0\right]$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{R y}{L}+\frac{E \mathrm{e}^{\mathrm{I} \omega x}}{L}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{R y}{L}=\frac{E \mathrm{e}^{\mathrm{I} \omega x}}{L}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{R y}{L}\right)=\frac{\mu(x) E \mathrm{e}^{\mathrm{I} \omega x}}{L}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{R y}{L}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x) R}{L}$
- Solve to find the integrating factor

$$
\mu(x)=\mathrm{e}^{\frac{R x}{L}}
$$

- Integrate both sides with respect to x

$$
\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x) E \mathrm{e}^{\mathrm{I} \omega x}}{L} d x+c_{1}
$$

- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{\mu(x) E \mathrm{e}^{\mathrm{I} \omega x}}{L} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(x) E \mathrm{e}^{\mathrm{I} \omega x}}{L} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{\frac{R x}{L}}$
$y=\frac{\int \frac{E \mathrm{e}^{\mathrm{I} \omega x} \mathrm{e}^{\frac{R x}{L}}}{L} d x+c_{1}}{\mathrm{e}^{\frac{R x}{L}}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{E \mathrm{e}^{\mathrm{I} \omega x+\frac{R x}{L}}}{\mathrm{I} L \omega+R}+c_{1}}{\mathrm{e}^{\frac{R x}{L}}}$
- Simplify
$y=\frac{\mathrm{e}^{-\frac{R x}{L}}\left(E \mathrm{e}^{\frac{x(\mathrm{I} L \omega+R)}{L}}+(\mathrm{I} L \omega+R) c_{1}\right)}{\mathrm{I} L \omega+R}$
- Use initial condition $y(0)=0$
$0=\frac{E+(\mathrm{I} L \omega+R) c_{1}}{\mathrm{I} L \omega+R}$
- \quad Solve for c_{1}
$c_{1}=-\frac{E}{\mathrm{I} L \omega+R}$
- \quad Substitute $c_{1}=-\frac{E}{\mathrm{I} L \omega+R}$ into general solution and simplify

- \quad Solution to the IVP
$y=\frac{E\left(\mathrm{e}^{\frac{x(\mathrm{I} L \omega+R)}{L}}-1\right) \mathrm{e}^{-\frac{R x}{L}}}{\mathrm{I} L \omega+R}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 38
dsolve([L*diff $(y(x), x)+R * y(x)=E * \exp (I *$ omega*x), $y(0)=0], y(x)$, singsol=all)

$$
y(x)=\frac{E\left(\mathrm{e}^{\frac{x(i L \omega+R)}{L}}-1\right) \mathrm{e}^{-\frac{R x}{L}}}{i L \omega+R}
$$

\checkmark Solution by Mathematica
Time used: 0.101 (sec). Leaf size: 43
DSolve $\left[\left\{\mathrm{L} * \mathrm{y}^{\prime}[\mathrm{x}]+\mathrm{R} * \mathrm{y}[\mathrm{x}]==\mathrm{E} 0 * \operatorname{Exp}[\mathrm{I} * \backslash[\right.\right.$ Omega $\left.] * \mathrm{x}],\{\mathrm{y}[0]==0\}\right\}, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow T

$$
y(x) \rightarrow \frac{\mathrm{E} 0 e^{-\frac{R x}{L}}\left(-1+e^{\frac{x(R+i L \omega)}{L}}\right)}{R+i L \omega}
$$

2.10 problem 7

2.10.1 Solving as linear ode . 203
2.10.2 Solving as first order ode lie symmetry lookup ode 205
2.10.3 Solving as exact ode . 208
2.10.4 Maple step by step solution . 211

Internal problem ID [5932]
Internal file name [OUTPUT/5180_Sunday_June_05_2022_03_26_54_PM_11645007/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 1.6 Introduction- Linear equations of First Order. Page 41
Problem number: 7 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+y a=b(x)
$$

2.10.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =a \\
q(x) & =b(x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y a=b(x)
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int a d x} \\
=\mathrm{e}^{a x}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(b(x)) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{a x} y\right) & =\left(\mathrm{e}^{a x}\right)(b(x)) \\
\mathrm{d}\left(\mathrm{e}^{a x} y\right) & =\left(b(x) \mathrm{e}^{a x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{a x} y=\int b(x) \mathrm{e}^{a x} \mathrm{~d} x \\
& \mathrm{e}^{a x} y=\int b(x) \mathrm{e}^{a x} d x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{a x}$ results in

$$
y=\mathrm{e}^{-a x}\left(\int b(x) \mathrm{e}^{a x} d x\right)+c_{1} \mathrm{e}^{-a x}
$$

which simplifies to

$$
y=\mathrm{e}^{-a x}\left(\int b(x) \mathrm{e}^{a x} d x+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-a x}\left(\int b(x) \mathrm{e}^{a x} d x+c_{1}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-a x}\left(\int b(x) \mathrm{e}^{a x} d x+c_{1}\right)
$$

Verified OK.

2.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-y a+b(x) \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 43: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-a x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-a x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{a x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-y a+b(x)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =a \mathrm{e}^{a x} y \\
S_{y} & =\mathrm{e}^{a x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=b(x) \mathrm{e}^{a x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=b(R) \mathrm{e}^{a R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\int b(R) \mathrm{e}^{a R} d R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{a x} y=\int b(x) \mathrm{e}^{a x} d x+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{a x} y=\int b(x) \mathrm{e}^{a x} d x+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{-a x}\left(\int b(x) \mathrm{e}^{a x} d x+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-a x}\left(\int b(x) \mathrm{e}^{a x} d x+c_{1}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-a x}\left(\int b(x) \mathrm{e}^{a x} d x+c_{1}\right)
$$

Verified OK.

2.10.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(-y a+b(x)) \mathrm{d} x \\
(y a-b(x)) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y a-b(x) \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y a-b(x)) \\
& =a
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((a)-(0)) \\
& =a
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int a \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{a x} \\
& =\mathrm{e}^{a x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{a x}(y a-b(x)) \\
& =(y a-b(x)) \mathrm{e}^{a x}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{a x}(1) \\
& =\mathrm{e}^{a x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left((y a-b(x)) \mathrm{e}^{a x}\right)+\left(\mathrm{e}^{a x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int(y a-b(x)) \mathrm{e}^{a x} \mathrm{~d} x \\
\phi & =\int^{x}\left(y a-b\left(_a\right)\right) \mathrm{e}^{a _a} d _a+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{a x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{a x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{a x}=\mathrm{e}^{a x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\int^{x}\left(y a-b\left(_a\right)\right) \mathrm{e}^{a _a} d _a+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\int^{x}\left(y a-b\left(_a\right)\right) \mathrm{e}^{a _a} d _a
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{x}\left(y a-b\left(_a\right)\right) \mathrm{e}^{a _a} d _a=c_{1} \tag{1}
\end{equation*}
$$

$\underline{\text { Verification of solutions }}$

$$
\int^{x}\left(y a-b\left(_a\right)\right) \mathrm{e}^{a _a} d _a=c_{1}
$$

Verified OK.

2.10.4 Maple step by step solution

Let's solve

$$
y^{\prime}+y a=b(x)
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Isolate the derivative

$$
y^{\prime}=-y a+b(x)
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+y a=b(x)$
- The ODE is linear; multiply by an integrating factor $\mu(x)$

$$
\mu(x)\left(y^{\prime}+y a\right)=\mu(x) b(x)
$$

- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+y a\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x) a$
- Solve to find the integrating factor

$$
\mu(x)=\mathrm{e}^{a x}
$$

- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) b(x) d x+c_{1}$
- Evaluate the integral on the lhs

$$
\mu(x) y=\int \mu(x) b(x) d x+c_{1}
$$

- \quad Solve for y
$y=\frac{\int \mu(x) b(x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{a x}$
$y=\frac{\int b(x) \mathrm{e}^{a x} d x+c_{1}}{\mathrm{e}^{a x}}$
- Simplify

$$
y=\mathrm{e}^{-a x}\left(\int b(x) \mathrm{e}^{a x} d x+c_{1}\right)
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 21

```
dsolve(diff(y(x),x)+a*y(x)=b(x),y(x), singsol=all)
```

$$
y(x)=\left(\int b(x) \mathrm{e}^{a x} d x+c_{1}\right) \mathrm{e}^{-a x}
$$

\checkmark Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 32
DSolve[y'[x]+a*y[x]==b[x],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{-a x}\left(\int_{1}^{x} e^{a K[1]} b(K[1]) d K[1]+c_{1}\right)
$$

3 Chapter 1. Introduction- Linear equations of First Order. Page 45
3.1 problem 1(a) 215
3.2 problem 1(b) 228
3.3 problem 1(c) 242
3.4 problem 1(d) 255
3.5 problem 1(e) 268
3.6 problem 2 281
3.7 problem 3 295
3.8 problem 8 309
3.9 problem 14(a) 320
3.10 problem 14(b) 324
3.11 problem 14(b) 328

3.1 problem 1(a)

3.1.1 Solving as separable ode . 215
3.1.2 Solving as linear ode . 217
3.1.3 Solving as first order ode lie symmetry lookup ode 218
3.1.4 Solving as exact ode . 222
3.1.5 Maple step by step solution . 226

Internal problem ID [5933]
Internal file name [OUTPUT/5181_Sunday_June_05_2022_03_26_55_PM_83246739/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 1. Introduction- Linear equations of First Order. Page 45
Problem number: 1(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
2 x y+y^{\prime}=x
$$

3.1.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =x(-2 y+1)
\end{aligned}
$$

Where $f(x)=x$ and $g(y)=-2 y+1$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{-2 y+1} d y & =x d x \\
\int \frac{1}{-2 y+1} d y & =\int x d x
\end{aligned}
$$

$$
-\frac{\ln (-2 y+1)}{2}=\frac{x^{2}}{2}+c_{1}
$$

Raising both side to exponential gives

$$
\frac{1}{\sqrt{-2 y+1}}=\mathrm{e}^{\frac{x^{2}}{2}+c_{1}}
$$

Which simplifies to

$$
\frac{1}{\sqrt{-2 y+1}}=c_{2} \mathrm{e}^{\frac{x^{2}}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(c_{2}^{2} \mathrm{e}^{x^{2}+2 c_{1}}-1\right) \mathrm{e}^{-x^{2}-2 c_{1}}}{2 c_{2}^{2}} \tag{1}
\end{equation*}
$$

Figure 45: Slope field plot
Verification of solutions

$$
y=\frac{\left(c_{2}^{2} \mathrm{e}^{x^{2}+2 c_{1}}-1\right) \mathrm{e}^{-x^{2}-2 c_{1}}}{2 c_{2}^{2}}
$$

Verified OK.

3.1.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =2 x \\
q(x) & =x
\end{aligned}
$$

Hence the ode is

$$
2 x y+y^{\prime}=x
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 2 x d x} \\
& =\mathrm{e}^{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{x^{2}} y\right) & =\left(\mathrm{e}^{x^{2}}\right)(x) \\
\mathrm{d}\left(\mathrm{e}^{x^{2}} y\right) & =\left(x \mathrm{e}^{x^{2}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{x^{2}} y=\int x \mathrm{e}^{x^{2}} \mathrm{~d} x \\
& \mathrm{e}^{x^{2}} y=\frac{\mathrm{e}^{x^{2}}}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x^{2}}$ results in

$$
y=\frac{\mathrm{e}^{-x^{2}} \mathrm{e}^{x^{2}}}{2}+c_{1} \mathrm{e}^{-x^{2}}
$$

which simplifies to

$$
y=\frac{1}{2}+c_{1} \mathrm{e}^{-x^{2}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{2}+c_{1} \mathrm{e}^{-x^{2}} \tag{1}
\end{equation*}
$$

Figure 46: Slope field plot

Verification of solutions

$$
y=\frac{1}{2}+c_{1} \mathrm{e}^{-x^{2}}
$$

Verified OK.

3.1.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-2 x y+x \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 46: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-x^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{x^{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-2 x y+x
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =2 x \mathrm{e}^{x^{2}} y \\
S_{y} & =\mathrm{e}^{x^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=x \mathrm{e}^{x^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R \mathrm{e}^{R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\mathrm{e}^{R^{2}}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
y \mathrm{e}^{x^{2}}=\frac{\mathrm{e}^{x^{2}}}{2}+c_{1}
$$

Which simplifies to

$$
y \mathrm{e}^{x^{2}}=\frac{\mathrm{e}^{x^{2}}}{2}+c_{1}
$$

Which gives

$$
y=\frac{\left(\mathrm{e}^{x^{2}}+2 c_{1}\right) \mathrm{e}^{-x^{2}}}{2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-2 x y+x$		$\frac{d S}{d R}=R \mathrm{e}^{R^{2}}$
		越
$4{ }^{4}{ }^{\text {a }}$	$S=\mathrm{e}^{x^{2}} y$	
		${ }_{\rightarrow \rightarrow 1}{ }^{\text {¢ }}$ ¢ \uparrow
- $\mathrm{C}^{4} 9$,

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\mathrm{e}^{x^{2}}+2 c_{1}\right) \mathrm{e}^{-x^{2}}}{2} \tag{1}
\end{equation*}
$$

Figure 47: Slope field plot

Verification of solutions

$$
y=\frac{\left(\mathrm{e}^{x^{2}}+2 c_{1}\right) \mathrm{e}^{-x^{2}}}{2}
$$

Verified OK.

3.1.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the
ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{-2 y+1}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(\frac{1}{-2 y+1}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x \\
& N(x, y)=\frac{1}{-2 y+1}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{-2 y+1}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{-2 y+1}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{-2 y+1}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{2 y-1}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{2 y-1}\right) \mathrm{d} y \\
f(y) & =-\frac{\ln (2 y-1)}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}-\frac{\ln (2 y-1)}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}-\frac{\ln (2 y-1)}{2}
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{-x^{2}-2 c_{1}}}{2}+\frac{1}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-x^{2}-2 c_{1}}}{2}+\frac{1}{2} \tag{1}
\end{equation*}
$$

Figure 48: Slope field plot
Verification of solutions

$$
y=\frac{\mathrm{e}^{-x^{2}-2 c_{1}}}{2}+\frac{1}{2}
$$

Verified OK.

3.1.5 Maple step by step solution

Let's solve

$$
2 x y+y^{\prime}=x
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables
$\frac{y^{\prime}}{2 y-1}=-x$
- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{2 y-1} d x=\int-x d x+c_{1}
$$

- Evaluate integral

$$
\frac{\ln (2 y-1)}{2}=-\frac{x^{2}}{2}+c_{1}
$$

- \quad Solve for y

$$
y=\frac{1}{2}+\frac{\mathrm{e}^{-x^{2}+2 c_{1}}}{2}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve(diff(y(x),x)+2*x*y(x)=x,y(x), singsol=all)
```

$$
y(x)=\frac{1}{2}+\mathrm{e}^{-x^{2}} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 26
DSolve[y' x$]+2 * \mathrm{x} * \mathrm{y}[\mathrm{x}]==\mathrm{x}, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{2}+c_{1} e^{-x^{2}} \\
& y(x) \rightarrow \frac{1}{2}
\end{aligned}
$$

3.2 problem 1(b)

3.2.1 Solving as linear ode 228
3.2.2 Solving as differentialType ode 230
3.2.3 Solving as first order ode lie symmetry lookup ode 232
3.2.4 Solving as exact ode . 236
3.2.5 Maple step by step solution . 240

Internal problem ID [5934]
Internal file name [OUTPUT/5182_Sunday_June_05_2022_03_26_56_PM_5862443/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 1. Introduction- Linear equations of First Order. Page 45
Problem number: 1(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "differentialType", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
x y^{\prime}+y=3 x^{3}-1
$$

3.2.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =\frac{3 x^{3}-1}{x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{x}=\frac{3 x^{3}-1}{x}
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{3 x^{3}-1}{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(x y) & =(x)\left(\frac{3 x^{3}-1}{x}\right) \\
\mathrm{d}(x y) & =\left(3 x^{3}-1\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x y=\int 3 x^{3}-1 \mathrm{~d} x \\
& x y=\frac{3}{4} x^{4}-x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x$ results in

$$
y=\frac{\frac{3}{4} x^{4}-x}{x}+\frac{c_{1}}{x}
$$

which simplifies to

$$
y=\frac{3 x^{4}+4 c_{1}-4 x}{4 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 x^{4}+4 c_{1}-4 x}{4 x} \tag{1}
\end{equation*}
$$

Figure 49: Slope field plot
Verification of solutions

$$
y=\frac{3 x^{4}+4 c_{1}-4 x}{4 x}
$$

Verified OK.

3.2.2 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{-y+3 x^{3}-1}{x} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
0=(-x) d y+\left(3 x^{3}-y-1\right) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-x) d y+\left(3 x^{3}-y-1\right) d x=d\left(\frac{3}{4} x^{4}-x y-x\right)
$$

Hence (2) becomes

$$
0=d\left(\frac{3}{4} x^{4}-x y-x\right)
$$

Integrating both sides gives gives these solutions

$$
y=\frac{3 x^{4}+4 c_{1}-4 x}{4 x}+c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 x^{4}+4 c_{1}-4 x}{4 x}+c_{1} \tag{1}
\end{equation*}
$$

Figure 50: Slope field plot

Verification of solutions

$$
y=\frac{3 x^{4}+4 c_{1}-4 x}{4 x}+c_{1}
$$

Verified OK.

3.2.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{-3 x^{3}+y+1}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 49: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{x}} d y
\end{aligned}
$$

Which results in

$$
S=x y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{-3 x^{3}+y+1}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =y \\
S_{y} & =x
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=3 x^{3}-1 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=3 R^{3}-1
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{3}{4} R^{4}-R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
x y=\frac{3}{4} x^{4}-x+c_{1}
$$

Which simplifies to

$$
x y=\frac{3}{4} x^{4}-x+c_{1}
$$

Which gives

$$
y=\frac{3 x^{4}+4 c_{1}-4 x}{4 x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{-3 x^{3}+y+1}{x}$		$\frac{d S}{d R}=3 R^{3}-1$
		$S\left(P_{1}+101\right.$
		$x \rightarrow 1$
¢ + + + + + ¢ ¢ \rightarrow ¢ + + + + + +	$R=x$	$x^{2}=14+4+4+1$
	$S=x y$	
		$x \rightarrow$ ¢
¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ b b ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 x^{4}+4 c_{1}-4 x}{4 x} \tag{1}
\end{equation*}
$$

Figure 51: Slope field plot

Verification of solutions

$$
y=\frac{3 x^{4}+4 c_{1}-4 x}{4 x}
$$

Verified OK.

3.2.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =\left(3 x^{3}-y-1\right) \mathrm{d} x \\
\left(-3 x^{3}+y+1\right) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-3 x^{3}+y+1 \\
N(x, y) & =x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-3 x^{3}+y+1\right) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-3 x^{3}+y+1 \mathrm{~d} x \\
\phi & =-\frac{3}{4} x^{4}+x y+x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x$. Therefore equation (4) becomes

$$
\begin{equation*}
x=x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{3}{4} x^{4}+x y+x+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{3}{4} x^{4}+x y+x
$$

The solution becomes

$$
y=\frac{3 x^{4}+4 c_{1}-4 x}{4 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 x^{4}+4 c_{1}-4 x}{4 x} \tag{1}
\end{equation*}
$$

Figure 52: Slope field plot

Verification of solutions

$$
y=\frac{3 x^{4}+4 c_{1}-4 x}{4 x}
$$

Verified OK.

3.2.5 Maple step by step solution

Let's solve
$x y^{\prime}+y=3 x^{3}-1$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{y}{x}+\frac{3 x^{3}-1}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+\frac{y}{x}=\frac{3 x^{3}-1}{x}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{y}{x}\right)=\frac{\mu(x)\left(3 x^{3}-1\right)}{x}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)}{x}$
- Solve to find the integrating factor
$\mu(x)=x$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x)\left(3 x^{3}-1\right)}{x} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{\mu(x)\left(3 x^{3}-1\right)}{x} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(x)\left(3 x^{3}-1\right)}{x} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=x$
$y=\frac{\int\left(3 x^{3}-1\right) d x+c_{1}}{x}$
- Evaluate the integrals on the rhs
$y=\frac{{ }_{4}^{\frac{3}{4}} x^{4}-x+c_{1}}{x}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

```
dsolve(x*diff(y(x),x)+y(x)=3*x^3-1,y(x), singsol=all)
```

$$
y(x)=\frac{\frac{3}{4} x^{4}-x+c_{1}}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 20
DSolve $\left[x * y\right.$ ' $[x]+y[x]==3 * x^{\wedge} 3-1, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{3 x^{3}}{4}+\frac{c_{1}}{x}-1
$$

3.3 problem 1(c)

3.3.1 Solving as separable ode . 242
3.3.2 Solving as linear ode . 244
3.3.3 Solving as first order ode lie symmetry lookup ode 245
3.3.4 Solving as exact ode . 249
3.3.5 Maple step by step solution . 253

Internal problem ID [5935]
Internal file name [OUTPUT/5183_Sunday_June_05_2022_03_26_57_PM_84736558/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 1. Introduction- Linear equations of First Order. Page 45
Problem number: 1(c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}+\mathrm{e}^{x} y=3 \mathrm{e}^{x}
$$

3.3.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\mathrm{e}^{x}(3-y)
\end{aligned}
$$

Where $f(x)=\mathrm{e}^{x}$ and $g(y)=3-y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{3-y} d y & =\mathrm{e}^{x} d x \\
\int \frac{1}{3-y} d y & =\int \mathrm{e}^{x} d x \\
-\ln (-3+y) & =\mathrm{e}^{x}+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{-3+y}=\mathrm{e}^{\mathrm{e}^{x}+c_{1}}
$$

Which simplifies to

$$
\frac{1}{-3+y}=c_{2} \mathrm{e}^{\mathrm{e}^{x}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(3 c_{2} \mathrm{e}^{\mathrm{e}^{x}+c_{1}}+1\right) \mathrm{e}^{-\mathrm{e}^{x}-c_{1}}}{c_{2}} \tag{1}
\end{equation*}
$$

Figure 53: Slope field plot
Verification of solutions

$$
y=\frac{\left(3 c_{2} \mathrm{e}^{\mathrm{e}^{x}+c_{1}}+1\right) \mathrm{e}^{-\mathrm{e}^{x}-c_{1}}}{c_{2}}
$$

Verified OK.

3.3.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\mathrm{e}^{x} \\
q(x) & =3 \mathrm{e}^{x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\mathrm{e}^{x} y=3 \mathrm{e}^{x}
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \mathrm{e}^{x} d x} \\
=\mathrm{e}^{\mathrm{e}^{x}}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(3 \mathrm{e}^{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\mathrm{e}^{x}} y\right) & =\left(\mathrm{e}^{\mathrm{e}^{x}}\right)\left(3 \mathrm{e}^{x}\right) \\
\mathrm{d}\left(\mathrm{e}^{\mathrm{e}^{x}} y\right) & =\left(3 \mathrm{e}^{\mathrm{e}^{x}+x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\mathrm{e}^{x}} y=\int 3 \mathrm{e}^{\mathrm{e}^{x}+x} \mathrm{~d} x \\
& \mathrm{e}^{\mathrm{e}^{x}} y=3 \mathrm{e}^{\mathrm{e}^{x}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\mathrm{e}^{x}}$ results in

$$
y=3 \mathrm{e}^{-\mathrm{e}^{x}} \mathrm{e}^{\mathrm{e}^{x}}+c_{1} \mathrm{e}^{-\mathrm{e}^{x}}
$$

which simplifies to

$$
y=3+c_{1} \mathrm{e}^{-\mathrm{e}^{x}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3+c_{1} \mathrm{e}^{-\mathrm{e}^{x}} \tag{1}
\end{equation*}
$$

Figure 54: Slope field plot
Verification of solutions

$$
y=3+c_{1} \mathrm{e}^{-\mathrm{e}^{x}}
$$

Verified OK.

3.3.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-y \mathrm{e}^{x}+3 \mathrm{e}^{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 52: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\mathrm{e}^{-\mathrm{e}^{x}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\mathrm{e}^{x}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\mathrm{e}^{x}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-y \mathrm{e}^{x}+3 \mathrm{e}^{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =y \mathrm{e}^{\mathrm{e}^{x}+x} \\
S_{y} & =\mathrm{e}^{\mathrm{e}^{x}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=3 \mathrm{e}^{\mathrm{e}^{x}+x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=3 \mathrm{e}^{\mathrm{e}^{R}+R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=3 \mathrm{e}^{\mathrm{e}^{R}}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{\mathrm{e}^{x}} y=3 \mathrm{e}^{\mathrm{e}^{x}}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{\mathrm{e}^{x}} y=3 \mathrm{e}^{\mathrm{e}^{x}}+c_{1}
$$

Which gives

$$
y=\left(3 \mathrm{e}^{\mathrm{e}^{x}}+c_{1}\right) \mathrm{e}^{-\mathrm{e}^{x}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-y \mathrm{e}^{x}+3 \mathrm{e}^{x}$		$\frac{d S}{d R}=3 \mathrm{e}^{\mathrm{e}^{R}+R}$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$		
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }{ }^{\text {a }}$
	$R=x$	
	$S=\mathrm{e}^{\mathrm{e}^{x}} y$	
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{\rightarrow \rightarrow \rightarrow-\infty}$	$S=\mathrm{e}^{\mathrm{e}^{x}} y$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(3 \mathrm{e}^{\mathrm{e}^{x}}+c_{1}\right) \mathrm{e}^{-\mathrm{e}^{x}} \tag{1}
\end{equation*}
$$

Figure 55: Slope field plot

Verification of solutions

$$
y=\left(3 \mathrm{e}^{\mathrm{e}^{x}}+c_{1}\right) \mathrm{e}^{-\mathrm{e}^{x}}
$$

Verified OK.

3.3.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{3-y}\right) \mathrm{d} y & =\left(\mathrm{e}^{x}\right) \mathrm{d} x \\
\left(-\mathrm{e}^{x}\right) \mathrm{d} x+\left(\frac{1}{3-y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\mathrm{e}^{x} \\
N(x, y) & =\frac{1}{3-y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\mathrm{e}^{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{3-y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\mathrm{e}^{x} \mathrm{~d} x \\
\phi & =-\mathrm{e}^{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{3-y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{3-y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{-3+y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{-3+y}\right) \mathrm{d} y \\
f(y) & =-\ln (-3+y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\mathrm{e}^{x}-\ln (-3+y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\mathrm{e}^{x}-\ln (-3+y)
$$

The solution becomes

$$
y=\mathrm{e}^{-\mathrm{e}^{x}-c_{1}}+3
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\mathrm{e}^{x}-c_{1}}+3 \tag{1}
\end{equation*}
$$

Figure 56: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\mathrm{e}^{x}-c_{1}}+3
$$

Verified OK.

3.3.5 Maple step by step solution

Let's solve

$$
y^{\prime}+\mathrm{e}^{x} y=3 \mathrm{e}^{x}
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y-3}=-\mathrm{e}^{x}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y-3} d x=\int-\mathrm{e}^{x} d x+c_{1}
$$

- Evaluate integral

$$
\ln (y-3)=-\mathrm{e}^{x}+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{-\mathrm{e}^{x}+c_{1}}+3
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

$\sqrt{ }$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve(diff(y(x),x)+exp(x)*y(x)=3*exp(x),y(x), singsol=all)
```

$$
y(x)=3+\mathrm{e}^{-\mathrm{e}^{x}} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.057 (sec). Leaf size: 22
DSolve[y'[x] $+\operatorname{Exp}[x] * y[x]==3 * \operatorname{Exp}[x], y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow 3+c_{1} e^{-e^{x}} \\
& y(x) \rightarrow 3
\end{aligned}
$$

3.4 problem 1(d)

3.4.1 Solving as linear ode . 255
3.4.2 Solving as first order ode lie symmetry lookup ode 257
3.4.3 Solving as exact ode . 261
3.4.4 Maple step by step solution . 265

Internal problem ID [5936]
Internal file name [OUTPUT/5184_Sunday_June_05_2022_03_26_59_PM_8251530/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 1. Introduction- Linear equations of First Order. Page 45
Problem number: 1(d).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-y \tan (x)=\mathrm{e}^{\sin (x)}
$$

3.4.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\tan (x) \\
& q(x)=\mathrm{e}^{\sin (x)}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-y \tan (x)=\mathrm{e}^{\sin (x)}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\tan (x) d x} \\
& =\cos (x)
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\mathrm{e}^{\sin (x)}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(y \cos (x)) & =(\cos (x))\left(\mathrm{e}^{\sin (x)}\right) \\
\mathrm{d}(y \cos (x)) & =\left(\cos (x) \mathrm{e}^{\sin (x)}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& y \cos (x)=\int \cos (x) \mathrm{e}^{\sin (x)} \mathrm{d} x \\
& y \cos (x)=\mathrm{e}^{\sin (x)}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\cos (x)$ results in

$$
y=\mathrm{e}^{\sin (x)} \sec (x)+c_{1} \sec (x)
$$

which simplifies to

$$
y=\sec (x)\left(\mathrm{e}^{\sin (x)}+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sec (x)\left(\mathrm{e}^{\sin (x)}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 57: Slope field plot
Verification of solutions

$$
y=\sec (x)\left(\mathrm{e}^{\sin (x)}+c_{1}\right)
$$

Verified OK.

3.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=y \tan (x)+\mathrm{e}^{\sin (x)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 55: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{\cos (x)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{\cos (x)}} d y
\end{aligned}
$$

Which results in

$$
S=y \cos (x)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=y \tan (x)+\mathrm{e}^{\sin (x)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-y \sin (x) \\
S_{y} & =\cos (x)
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\cos (x) \mathrm{e}^{\sin (x)} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\cos (R) \mathrm{e}^{\sin (R)}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=\mathrm{e}^{\sin (R)}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
y \cos (x)=\mathrm{e}^{\sin (x)}+c_{1}
$$

Which simplifies to

$$
y \cos (x)=\mathrm{e}^{\sin (x)}+c_{1}
$$

Which gives

$$
y=\frac{\mathrm{e}^{\sin (x)}+c_{1}}{\cos (x)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=y \tan (x)+\mathrm{e}^{\sin (x)}$		$\frac{d S}{d R}=\cos (R) \mathrm{e}^{\sin (R)}$
		式
	$R=x$	
$\rightarrow 4$	$S=y \cos (x)$	0 为
		或
		0181
		分
		－タ

Summary

The solution（s）found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{\sin (x)}+c_{1}}{\cos (x)} \tag{1}
\end{equation*}
$$

Figure 58: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{\sin (x)}+c_{1}}{\cos (x)}
$$

Verified OK.

3.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(y \tan (x)+\mathrm{e}^{\sin (x)}\right) \mathrm{d} x \\
\left(-y \tan (x)-\mathrm{e}^{\sin (x)}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-y \tan (x)-\mathrm{e}^{\sin (x)} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-y \tan (x)-\mathrm{e}^{\sin (x)}\right) \\
& =-\tan (x)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((-\tan (x))-(0)) \\
& =-\tan (x)
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\tan (x) \mathrm{d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\ln (\cos (x))} \\
& =\cos (x)
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\cos (x)\left(-y \tan (x)-\mathrm{e}^{\sin (x)}\right) \\
& =-y \sin (x)-\cos (x) \mathrm{e}^{\sin (x)}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\cos (x)(1) \\
& =\cos (x)
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(-y \sin (x)-\cos (x) \mathrm{e}^{\sin (x)}\right)+(\cos (x)) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-y \sin (x)-\cos (x) \mathrm{e}^{\sin (x)} \mathrm{d} x \\
\phi & =y \cos (x)-\mathrm{e}^{\sin (x)}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\cos (x)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\cos (x)$. Therefore equation (4) becomes

$$
\begin{equation*}
\cos (x)=\cos (x)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=y \cos (x)-\mathrm{e}^{\sin (x)}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=y \cos (x)-\mathrm{e}^{\sin (x)}
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{\sin (x)}+c_{1}}{\cos (x)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{\sin (x)}+c_{1}}{\cos (x)} \tag{1}
\end{equation*}
$$

Figure 59: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{\sin (x)}+c_{1}}{\cos (x)}
$$

Verified OK.

3.4.4 Maple step by step solution

Let's solve
$y^{\prime}-y \tan (x)=\mathrm{e}^{\sin (x)}$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Isolate the derivative
$y^{\prime}=y \tan (x)+\mathrm{e}^{\sin (x)}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-y \tan (x)=\mathrm{e}^{\sin (x)}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-y \tan (x)\right)=\mu(x) \mathrm{e}^{\sin (x)}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-y \tan (x)\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\mu(x) \tan (x)$
- Solve to find the integrating factor
$\mu(x)=\cos (x)$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \mathrm{e}^{\sin (x)} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \mathrm{e}^{\sin (x)} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) \mathrm{e}^{\sin (x)} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\cos (x)$
$y=\frac{\int \cos (x) \mathrm{e}^{\sin (x)} d x+c_{1}}{\cos (x)}$
- Evaluate the integrals on the rhs
$y=\frac{\mathrm{e}^{\sin (x)}+c_{1}}{\cos (x)}$
- Simplify
$y=\sec (x)\left(\mathrm{e}^{\sin (x)}+c_{1}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(diff(y(x),x)-tan(x)*y(x)=exp(sin(x)),y(x), singsol=all)
```

$$
y(x)=\sec (x)\left(\mathrm{e}^{\sin (x)}+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.149 (sec). Leaf size: 15
DSolve[y'[x]-Tan $[x] * y[x]==\operatorname{Exp}[\operatorname{Sin}[x]], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \sec (x)\left(e^{\sin (x)}+c_{1}\right)
$$

3.5 problem 1(e)

$$
\text { 3.5.1 Solving as linear ode . } 268
$$

3.5.2 Solving as first order ode lie symmetry lookup ode 270
3.5.3 Solving as exact ode . 274]
3.5.4 Maple step by step solution . 279

Internal problem ID [5937]
Internal file name [OUTPUT/5185_Sunday_June_05_2022_03_27_00_PM_16717071/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 1. Introduction- Linear equations of First Order. Page 45
Problem number: 1(e).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
2 x y+y^{\prime}=x \mathrm{e}^{-x^{2}}
$$

3.5.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =2 x \\
q(x) & =x \mathrm{e}^{-x^{2}}
\end{aligned}
$$

Hence the ode is

$$
2 x y+y^{\prime}=x \mathrm{e}^{-x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 2 x d x} \\
& =\mathrm{e}^{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(x \mathrm{e}^{-x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{x^{2}} y\right) & =\left(\mathrm{e}^{x^{2}}\right)\left(x \mathrm{e}^{-x^{2}}\right) \\
\mathrm{d}\left(\mathrm{e}^{x^{2}} y\right) & =x \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{x^{2}} y=\int x \mathrm{~d} x \\
& \mathrm{e}^{x^{2}} y=\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x^{2}}$ results in

$$
y=\frac{x^{2} \mathrm{e}^{-x^{2}}}{2}+c_{1} \mathrm{e}^{-x^{2}}
$$

which simplifies to

$$
y=\mathrm{e}^{-x^{2}}\left(\frac{x^{2}}{2}+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x^{2}}\left(\frac{x^{2}}{2}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 60: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{-x^{2}}\left(\frac{x^{2}}{2}+c_{1}\right)
$$

Verified OK.

3.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-2 x y+x \mathrm{e}^{-x^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 58: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\mathrm{e}^{-x^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{x^{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-2 x y+x \mathrm{e}^{-x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =2 x \mathrm{e}^{x^{2}} y \\
S_{y} & =\mathrm{e}^{x^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=x \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
y \mathrm{e}^{x^{2}}=\frac{x^{2}}{2}+c_{1}
$$

Which simplifies to

$$
y \mathrm{e}^{x^{2}}=\frac{x^{2}}{2}+c_{1}
$$

Which gives

$$
y=\frac{\mathrm{e}^{-x^{2}}\left(x^{2}+2 c_{1}\right)}{2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-2 x y+x \mathrm{e}^{-x^{2}}$		$\frac{d S}{d R}=R$
	$R=x$	
	$S=\mathrm{e}^{x^{2}} y$	
		1.

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-x^{2}}\left(x^{2}+2 c_{1}\right)}{2} \tag{1}
\end{equation*}
$$

Figure 61: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-x^{2}}\left(x^{2}+2 c_{1}\right)}{2}
$$

Verified OK.

3.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-2 x y+x \mathrm{e}^{-x^{2}}\right) \mathrm{d} x \\
\left(2 x y-x \mathrm{e}^{-x^{2}}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 x y-x \mathrm{e}^{-x^{2}} \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 x y-x \mathrm{e}^{-x^{2}}\right) \\
& =2 x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((2 x)-(0)) \\
& =2 x
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 2 x \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{x^{2}} \\
& =\mathrm{e}^{x^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{x^{2}}\left(2 x y-x \mathrm{e}^{-x^{2}}\right) \\
& =2 x \mathrm{e}^{x^{2}} y-x
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{x^{2}}(1) \\
& =\mathrm{e}^{x^{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(2 x \mathrm{e}^{x^{2}} y-x\right)+\left(\mathrm{e}^{x^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2 x \mathrm{e}^{x^{2}} y-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+\mathrm{e}^{x^{2}} y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{x^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{x^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{x^{2}}=\mathrm{e}^{x^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}+\mathrm{e}^{x^{2}} y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}+\mathrm{e}^{x^{2}} y
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{-x^{2}}\left(x^{2}+2 c_{1}\right)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-x^{2}}\left(x^{2}+2 c_{1}\right)}{2} \tag{1}
\end{equation*}
$$

Figure 62: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-x^{2}}\left(x^{2}+2 c_{1}\right)}{2}
$$

Verified OK.

3.5.4 Maple step by step solution

Let's solve
$2 x y+y^{\prime}=x \mathrm{e}^{-x^{2}}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-2 x y+x \mathrm{e}^{-x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $2 x y+y^{\prime}=x \mathrm{e}^{-x^{2}}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(2 x y+y^{\prime}\right)=\mu(x) x \mathrm{e}^{-x^{2}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(2 x y+y^{\prime}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=2 \mu(x) x$
- \quad Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{x^{2}}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) x \mathrm{e}^{-x^{2}} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) x \mathrm{e}^{-x^{2}} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) x \mathrm{e}^{-x^{2}} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{x^{2}}$
$y=\frac{\int x \mathrm{e}^{-x^{2}} \mathrm{e}^{x^{2}} d x+c_{1}}{\mathrm{e}^{x^{2}}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{x^{2}}{2}+c_{1}}{\mathrm{e}^{x^{2}}}$
- Simplify

$$
y=\frac{\mathrm{e}^{-x^{2}}\left(x^{2}+2 c_{1}\right)}{2}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(diff(y(x),x)+2*x*y(x)=x*exp(-x^2),y(x), singsol=all)
```

$$
y(x)=\frac{\left(x^{2}+2 c_{1}\right) \mathrm{e}^{-x^{2}}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.057 (sec). Leaf size: 24

DSolve $\left[y^{\prime}[x]+2 * x * y[x]==x * \operatorname{Exp}\left[-x^{\wedge} 2\right], y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{2} e^{-x^{2}}\left(x^{2}+2 c_{1}\right)
$$

3.6 problem 2

3.6.1 Existence and uniqueness analysis 281
3.6.2 Solving as linear ode . 282
3.6.3 Solving as first order ode lie symmetry lookup ode 284
3.6.4 Solving as exact ode . 288
3.6.5 Maple step by step solution . 292

Internal problem ID [5938]
Internal file name [OUTPUT/5186_Sunday_June_05_2022_03_27_01_PM_41049433/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 1. Introduction- Linear equations of First Order. Page 45
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first__order_ode_lie_symmetry__lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}+y \cos (x)=\mathrm{e}^{-\sin (x)}
$$

With initial conditions

$$
[y(\pi)=\pi]
$$

3.6.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\cos (x) \\
q(x) & =\mathrm{e}^{-\sin (x)}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y \cos (x)=\mathrm{e}^{-\sin (x)}
$$

The domain of $p(x)=\cos (x)$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=\pi$ is inside this domain. The domain of $q(x)=\mathrm{e}^{-\sin (x)}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=\pi$ is also inside this domain. Hence solution exists and is unique.

3.6.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \cos (x) d x} \\
& =\mathrm{e}^{\sin (x)}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\mathrm{e}^{-\sin (x)}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\sin (x)} y\right) & =\left(\mathrm{e}^{\sin (x)}\right)\left(\mathrm{e}^{-\sin (x)}\right) \\
\mathrm{d}\left(\mathrm{e}^{\sin (x)} y\right) & =\mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\sin (x)} y=\int \mathrm{d} x \\
& \mathrm{e}^{\sin (x)} y=x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\sin (x)}$ results in

$$
y=\mathrm{e}^{-\sin (x)} x+c_{1} \mathrm{e}^{-\sin (x)}
$$

which simplifies to

$$
y=\mathrm{e}^{-\sin (x)}\left(x+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\pi$ and $y=\pi$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\pi=\pi+c_{1} \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\mathrm{e}^{-\sin (x)} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\sin (x)} x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\sin (x)} x
$$

Verified OK.

3.6.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-y \cos (x)+\mathrm{e}^{-\sin (x)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 61: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-\sin (x)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\sin (x)}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{\sin (x)} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-y \cos (x)+\mathrm{e}^{-\sin (x)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=\cos (x) \mathrm{e}^{\sin (x)} y \\
& S_{y}=\mathrm{e}^{\sin (x)}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=1 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=1
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{\sin (x)} y=x+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{\sin (x)} y=x+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{-\sin (x)}\left(x+c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-y \cos (x)+\mathrm{e}^{-\sin (x)}$		$\frac{d S}{d R}=1$
$\xrightarrow[\rightarrow c \rightarrow \infty]{ } \rightarrow$	$S=\mathrm{e}^{\sin (x)} y$	

Initial conditions are used to solve for c_{1}. Substituting $x=\pi$ and $y=\pi$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\pi=\pi+c_{1} \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\mathrm{e}^{-\sin (x)} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\sin (x)} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-\sin (x)} x
$$

Verified OK.

3.6.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =\left(-y \cos (x)+\mathrm{e}^{-\sin (x)}\right) \mathrm{d} x \\
\left(y \cos (x)-\mathrm{e}^{-\sin (x)}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=y \cos (x)-\mathrm{e}^{-\sin (x)} \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y \cos (x)-\mathrm{e}^{-\sin (x)}\right) \\
& =\cos (x)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((\cos (x))-(0)) \\
& =\cos (x)
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \cos (x) \mathrm{d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\sin (x)} \\
& =\mathrm{e}^{\sin (x)}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{\sin (x)}\left(y \cos (x)-\mathrm{e}^{-\sin (x)}\right) \\
& =\cos (x) \mathrm{e}^{\sin (x)} y-1
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{\sin (x)}(1) \\
& =\mathrm{e}^{\sin (x)}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\cos (x) \mathrm{e}^{\sin (x)} y-1\right)+\left(\mathrm{e}^{\sin (x)}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \cos (x) \mathrm{e}^{\sin (x)} y-1 \mathrm{~d} x \\
\phi & =-x+\mathrm{e}^{\sin (x)} y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{\sin (x)}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{\sin (x)}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{\sin (x)}=\mathrm{e}^{\sin (x)}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x+\mathrm{e}^{\sin (x)} y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x+\mathrm{e}^{\sin (x)} y
$$

The solution becomes

$$
y=\mathrm{e}^{-\sin (x)}\left(x+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\pi$ and $y=\pi$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\pi=\pi+c_{1} \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\mathrm{e}^{-\sin (x)} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\sin (x)} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-\sin (x)} x
$$

Verified OK.

3.6.5 Maple step by step solution

Let's solve
$\left[y^{\prime}+y \cos (x)=\mathrm{e}^{-\sin (x)}, y(\pi)=\pi\right]$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=-y \cos (x)+\mathrm{e}^{-\sin (x)}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+y \cos (x)=\mathrm{e}^{-\sin (x)}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+y \cos (x)\right)=\mu(x) \mathrm{e}^{-\sin (x)}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+y \cos (x)\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x) \cos (x)$
- \quad Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{\sin (x)}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \mathrm{e}^{-\sin (x)} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \mathrm{e}^{-\sin (x)} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) \mathrm{e}^{-\sin (x)} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{\sin (x)}$
$y=\frac{\int \mathrm{e}^{-\sin (x)} \mathrm{e}^{\sin (x)} d x+c_{1}}{\mathrm{e}^{\sin (x)}}$
- Evaluate the integrals on the rhs
$y=\frac{x+c_{1}}{\mathrm{e}^{\sin (x)}}$
- \quad Simplify
$y=\mathrm{e}^{-\sin (x)}\left(x+c_{1}\right)$
- Use initial condition $y(\pi)=\pi$
$\pi=\pi+c_{1}$
- \quad Solve for c_{1}
$c_{1}=0$
- \quad Substitute $c_{1}=0$ into general solution and simplify
$y=\mathrm{e}^{-\sin (x)} x$
- Solution to the IVP
$y=\mathrm{e}^{-\sin (x)} x$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 11

```
dsolve([diff(y(x),x)+\operatorname{cos}(x)*y(x)=exp(-sin(x)),y(Pi) = Pi],y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-\sin (x)} x
$$

\checkmark Solution by Mathematica
Time used: 0.138 (sec). Leaf size: 13
DSolve $\left[\left\{y^{\prime}[x]+\operatorname{Cos}[x] * y[x]==\operatorname{Exp}[-\operatorname{Sin}[x]],\{y[\mathrm{Pi}]==\operatorname{Pi}\}\right\}, y[x], x\right.$, IncludeSingularSolutions $->$ True

$$
y(x) \rightarrow x e^{-\sin (x)}
$$

3.7 problem 3

3.7.1 Solving as linear ode . 295
3.7.2 Solving as differentialType ode 297
3.7.3 Solving as first order ode lie symmetry lookup ode 299
3.7.4 Solving as exact ode . 303
3.7.5 Maple step by step solution . 307

Internal problem ID [5939]
Internal file name [OUTPUT/5187_Sunday_June_05_2022_03_27_03_PM_39784597/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 1. Introduction- Linear equations of First Order. Page 45
Problem number: 3 .
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "differentialType", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
x^{2} y^{\prime}+2 x y=1
$$

3.7.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 y}{x}=\frac{1}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{x} d x} \\
& =x^{2}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{1}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y x^{2}\right) & =\left(x^{2}\right)\left(\frac{1}{x^{2}}\right) \\
\mathrm{d}\left(y x^{2}\right) & =\mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& y x^{2}=\int \mathrm{d} x \\
& y x^{2}=x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{2}$ results in

$$
y=\frac{1}{x}+\frac{c_{1}}{x^{2}}
$$

which simplifies to

$$
y=\frac{x+c_{1}}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x+c_{1}}{x^{2}} \tag{1}
\end{equation*}
$$

Figure 66: Slope field plot
Verification of solutions

$$
y=\frac{x+c_{1}}{x^{2}}
$$

Verified OK.

3.7.2 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{-2 x y+1}{x^{2}} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
0=\left(-x^{2}\right) d y+(-2 x y+1) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
\left(-x^{2}\right) d y+(-2 x y+1) d x=d\left(-y x^{2}+x\right)
$$

Hence (2) becomes

$$
0=d\left(-y x^{2}+x\right)
$$

Integrating both sides gives gives these solutions

$$
y=\frac{x+c_{1}}{x^{2}}+c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x+c_{1}}{x^{2}}+c_{1} \tag{1}
\end{equation*}
$$

Figure 67: Slope field plot

Verification of solutions

$$
y=\frac{x+c_{1}}{x^{2}}+c_{1}
$$

Verified OK.

3.7.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{2 x y-1}{x^{2}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 64: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η			
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$			
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0			
quadrature ode	$y^{\prime}=f(x)$	0	1			
quadrature ode	$y^{\prime}=g(y)$	1	0			
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y			
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$			
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$			
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$			
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$				
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{\underline{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}} \frac{a_{1} b_{2}-a_{2} b_{1}}{}}{}$	Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$
:---	:---					

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{x^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=y x^{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{2 x y-1}{x^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =2 x y \\
S_{y} & =x^{2}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=1 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=1
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
y x^{2}=x+c_{1}
$$

Which simplifies to

$$
y x^{2}=x+c_{1}
$$

Which gives

$$
y=\frac{x+c_{1}}{x^{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{2 x y-1}{x^{2}}$		$\frac{d S}{d R}=1$
	$R=x$	
－	$S=y x^{2}$	
		加加加加别加加加召

Summary

The solution（s）found are the following

$$
\begin{equation*}
y=\frac{x+c_{1}}{x^{2}} \tag{1}
\end{equation*}
$$

Figure 68: Slope field plot
Verification of solutions

$$
y=\frac{x+c_{1}}{x^{2}}
$$

Verified OK.

3.7.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}\right) \mathrm{d} y & =(-2 x y+1) \mathrm{d} x \\
(2 x y-1) \mathrm{d} x+\left(x^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 x y-1 \\
N(x, y) & =x^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(2 x y-1) \\
& =2 x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}\right) \\
& =2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2 x y-1 \mathrm{~d} x \\
\phi & =y x^{2}-x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x^{2}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
x^{2}=x^{2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=y x^{2}-x+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=y x^{2}-x
$$

The solution becomes

$$
y=\frac{x+c_{1}}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x+c_{1}}{x^{2}} \tag{1}
\end{equation*}
$$

Figure 69: Slope field plot

Verification of solutions

$$
y=\frac{x+c_{1}}{x^{2}}
$$

Verified OK.

3.7.5 Maple step by step solution

Let's solve
$x^{2} y^{\prime}+2 x y=1$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{2 y}{x}+\frac{1}{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{2 y}{x}=\frac{1}{x^{2}}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{2 y}{x}\right)=\frac{\mu(x)}{x^{2}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{2 y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{2 \mu(x)}{x}$
- \quad Solve to find the integrating factor
$\mu(x)=x^{2}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x)}{x^{2}} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{\mu(x)}{x^{2}} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(x)}{x^{2}} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=x^{2}$
$y=\frac{\int 1 d x+c_{1}}{x^{2}}$
- Evaluate the integrals on the rhs
$y=\frac{x+c_{1}}{x^{2}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

```
dsolve(x^2*diff(y(x),x)+2*x*y(x)=1,y(x), singsol=all)
```

$$
y(x)=\frac{x+c_{1}}{x^{2}}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 13
DSolve[$x^{\wedge} 2 * y^{\prime}[x]+2 * x * y[x]==1, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{x+c_{1}}{x^{2}}
$$

3.8 problem 8

3.8.1 Solving as linear ode . 309
3.8.2 Solving as first order ode lie symmetry lookup ode 311
3.8.3 Solving as exact ode . 314
3.8.4 Maple step by step solution . 317

Internal problem ID [5940]
Internal file name [OUTPUT/5188_Sunday_June_05_2022_03_27_04_PM_44227942/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
1961
Section: Chapter 1. Introduction- Linear equations of First Order. Page 45
Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y^{\prime}+2 y=b(x)
$$

3.8.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =2 \\
q(x) & =b(x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+2 y=b(x)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 2 d x} \\
& =\mathrm{e}^{2 x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(b(x)) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{2 x} y\right) & =\left(\mathrm{e}^{2 x}\right)(b(x)) \\
\mathrm{d}\left(\mathrm{e}^{2 x} y\right) & =\left(b(x) \mathrm{e}^{2 x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{2 x} y=\int b(x) \mathrm{e}^{2 x} \mathrm{~d} x \\
& \mathrm{e}^{2 x} y=\int b(x) \mathrm{e}^{2 x} d x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{2 x}$ results in

$$
y=\mathrm{e}^{-2 x}\left(\int b(x) \mathrm{e}^{2 x} d x\right)+c_{1} \mathrm{e}^{-2 x}
$$

which simplifies to

$$
y=\mathrm{e}^{-2 x}\left(\int b(x) \mathrm{e}^{2 x} d x+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 x}\left(\int b(x) \mathrm{e}^{2 x} d x+c_{1}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-2 x}\left(\int b(x) \mathrm{e}^{2 x} d x+c_{1}\right)
$$

Verified OK.

3.8.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-2 y+b(x) \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 67: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-2 x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-2 x}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{2 x} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-2 y+b(x)
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =2 \mathrm{e}^{2 x} y \\
S_{y} & =\mathrm{e}^{2 x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=b(x) \mathrm{e}^{2 x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=b(R) \mathrm{e}^{2 R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\int b(R) \mathrm{e}^{2 R} d R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{2 x} y=\int b(x) \mathrm{e}^{2 x} d x+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{2 x} y=\int b(x) \mathrm{e}^{2 x} d x+c_{1}
$$

Which gives

$$
y=\mathrm{e}^{-2 x}\left(\int b(x) \mathrm{e}^{2 x} d x+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 x}\left(\int b(x) \mathrm{e}^{2 x} d x+c_{1}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-2 x}\left(\int b(x) \mathrm{e}^{2 x} d x+c_{1}\right)
$$

Verified OK.

3.8.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(-2 y+b(x)) \mathrm{d} x \\
(2 y-b(x)) \mathrm{d} x+\mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 y-b(x) \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(2 y-b(x)) \\
& =2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((2)-(0)) \\
& =2
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 2 \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{2 x} \\
& =\mathrm{e}^{2 x}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{2 x}(2 y-b(x)) \\
& =(2 y-b(x)) \mathrm{e}^{2 x}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{2 x}(1) \\
& =\mathrm{e}^{2 x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left((2 y-b(x)) \mathrm{e}^{2 x}\right)+\left(\mathrm{e}^{2 x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int(2 y-b(x)) \mathrm{e}^{2 x} \mathrm{~d} x \\
\phi & =\int^{x}\left(2 y-b\left(_a\right)\right) \mathrm{e}^{2 _a} d _a+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{2 x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{2 x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{2 x}=\mathrm{e}^{2 x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\int^{x}\left(2 y-b\left(_a\right)\right) \mathrm{e}^{2 _a} d _a+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\int^{x}\left(2 y-b\left(_a\right)\right) \mathrm{e}^{2 _a} d _a
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{x}\left(2 y-b\left(_a\right)\right) \mathrm{e}^{2 _a} d _a=c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\int^{x}\left(2 y-b\left(_a\right)\right) \mathrm{e}^{2 _a} d _a=c_{1}
$$

Verified OK.

3.8.4 Maple step by step solution

Let's solve

$$
y^{\prime}+2 y=b(x)
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Isolate the derivative

$$
y^{\prime}=-2 y+b(x)
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+2 y=b(x)$
- The ODE is linear; multiply by an integrating factor $\mu(x)$

$$
\mu(x)\left(y^{\prime}+2 y\right)=\mu(x) b(x)
$$

- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+2 y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=2 \mu(x)$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{2 x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) b(x) d x+c_{1}$
- Evaluate the integral on the lhs

$$
\mu(x) y=\int \mu(x) b(x) d x+c_{1}
$$

- \quad Solve for y
$y=\frac{\int \mu(x) b(x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{2 x}$
$y=\frac{\int b(x) \mathrm{e}^{2 x} d x+c_{1}}{\mathrm{e}^{2 x}}$
- Simplify

$$
y=\mathrm{e}^{-2 x}\left(\int b(x) \mathrm{e}^{2 x} d x+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 20

```
dsolve(diff(y(x),x)+2*y(x)=b(x),y(x), singsol=all)
```

$$
y(x)=\left(\int b(x) \mathrm{e}^{2 x} d x+c_{1}\right) \mathrm{e}^{-2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.045 (sec). Leaf size: 31
DSolve $\left[y^{\prime}[x]+2 * y[x]==b[x], y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-2 x}\left(\int_{1}^{x} e^{2 K[1]} b(K[1]) d K[1]+c_{1}\right)
$$

3.9 problem 14(a)

3.9.1 Existence and uniqueness analysis 320
3.9.2 Solving as quadrature ode . 321
3.9.3 Maple step by step solution . 322

Internal problem ID [5941]
Internal file name [OUTPUT/5189_Sunday_June_05_2022_03_27_05_PM_11378483/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 1. Introduction- Linear equations of First Order. Page 45
Problem number: 14(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y=1
$$

With initial conditions

$$
[y(0)=0]
$$

3.9.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-1 \\
& q(x)=1
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-y=1
$$

The domain of $p(x)=-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

3.9.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{1+y} d y & =\int d x \\
\ln (1+y) & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
1+y=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
1+y=c_{2} \mathrm{e}^{x}
$$

Initial conditions are used to solve for c_{2}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=-1+c_{2} \\
c_{2}=1
\end{gathered}
$$

Substituting c_{2} found above in the general solution gives

$$
y=\mathrm{e}^{x}-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x}-1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{x}-1
$$

Verified OK.

3.9.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-y=1, y(0)=0\right]$

- Highest derivative means the order of the ODE is 1

```
y'
```

- \quad Separate variables

$$
\frac{y^{\prime}}{1+y}=1
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{1+y} d x=\int 1 d x+c_{1}
$$

- Evaluate integral

$$
\ln (1+y)=x+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{x+c_{1}}-1
$$

- Use initial condition $y(0)=0$

$$
0=\mathrm{e}^{c_{1}}-1
$$

- \quad Solve for c_{1}
$c_{1}=0$
- \quad Substitute $c_{1}=0$ into general solution and simplify $y=\mathrm{e}^{x}-1$
- \quad Solution to the IVP

$$
y=\mathrm{e}^{x}-1
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 8

```
dsolve([diff(y(x),x)=1+y(x),y(0) = 0],y(x), singsol=all)
```

$$
y(x)=-1+\mathrm{e}^{x}
$$

\checkmark Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 10
DSolve[\{y' $[x]==1+y[x],\{y[0]==0\}\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{x}-1
$$

3.10 problem 14(b)

3.10.1 Existence and uniqueness analysis324
3.10.2 Solving as quadrature ode 325
3.10.3 Maple step by step solution 326

Internal problem ID [5942]
Internal file name [OUTPUT/5190_Sunday_June_05_2022_03_27_07_PM_65145226/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 1. Introduction- Linear equations of First Order. Page 45
Problem number: 14(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y^{2}=1
$$

With initial conditions

$$
[y(0)=0]
$$

3.10.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =y^{2}+1
\end{aligned}
$$

The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2}+1\right) \\
& =2 y
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Therefore solution exists and is unique.

3.10.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{2}+1} d y & =x+c_{1} \\
\arctan (y) & =x+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=\tan \left(x+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\tan \left(c_{1}\right) \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\tan (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\tan (x) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\tan (x)
$$

Verified OK.

3.10.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-y^{2}=1, y(0)=0\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{1+y^{2}}=1
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{1+y^{2}} d x=\int 1 d x+c_{1}
$$

- Evaluate integral

$$
\arctan (y)=x+c_{1}
$$

- \quad Solve for y

$$
y=\tan \left(x+c_{1}\right)
$$

- Use initial condition $y(0)=0$

$$
0=\tan \left(c_{1}\right)
$$

- \quad Solve for c_{1}

$$
c_{1}=0
$$

- \quad Substitute $c_{1}=0$ into general solution and simplify

$$
y=\tan (x)
$$

- \quad Solution to the IVP

$$
y=\tan (x)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.046 (sec). Leaf size: 6

```
dsolve([diff(y(x),x)=1+y(x)^2,y(0) = 0],y(x), singsol=all)
```

$$
y(x)=\tan (x)
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 7
DSolve[\{y' $[x]==1+y[x] \sim 2,\{y[0]==0\}\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \tan (x)
$$

3.11 problem 14(b)

3.11.1 Existence and uniqueness analysis328
3.11.2 Solving as quadrature ode 329
3.11.3 Maple step by step solution 330

Internal problem ID [5943]
Internal file name [OUTPUT/5191_Sunday_June_05_2022_03_27_08_PM_70795525/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 1. Introduction- Linear equations of First Order. Page 45
Problem number: 14(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y^{2}=1
$$

With initial conditions

$$
[y(0)=0]
$$

3.11.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =y^{2}+1
\end{aligned}
$$

The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2}+1\right) \\
& =2 y
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Therefore solution exists and is unique.

3.11.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{2}+1} d y & =x+c_{1} \\
\arctan (y) & =x+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=\tan \left(x+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\tan \left(c_{1}\right) \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\tan (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\tan (x) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\tan (x)
$$

Verified OK.

3.11.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-y^{2}=1, y(0)=0\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{1+y^{2}}=1
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{1+y^{2}} d x=\int 1 d x+c_{1}
$$

- Evaluate integral

$$
\arctan (y)=x+c_{1}
$$

- \quad Solve for y

$$
y=\tan \left(x+c_{1}\right)
$$

- Use initial condition $y(0)=0$

$$
0=\tan \left(c_{1}\right)
$$

- \quad Solve for c_{1}

$$
c_{1}=0
$$

- \quad Substitute $c_{1}=0$ into general solution and simplify

$$
y=\tan (x)
$$

- \quad Solution to the IVP

$$
y=\tan (x)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 6

```
dsolve([diff(y(x),x)=1+y(x)^2,y(0) = 0],y(x), singsol=all)
```

$$
y(x)=\tan (x)
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 7
DSolve[\{y' $[x]==1+y[x] \sim 2,\{y[0]==0\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \tan (x)
$$

4 Chapter 2. Linear equations with constant coefficients. Page 52

4.1 problem 1(a) 333
4.2 problem 1(b) 343
4.3 problem 1(c) 354
4.4 problem 1(d) 364
4.5 problem 1(e) 378
4.6 problem 1(f) 386
4.7 problem 1(g) 394
4.8 problem 2(a) 402
4.9 problem 2(b) 412
4.10 problem 3(a) 422
4.11 problem 3(b) 432
4.12 problem 3(c) 441
4.13 problem 3(d) 452

4.1 problem 1(a)

4.1.1 Solving as second order linear constant coeff ode 333
4.1.2 Solving as second order ode can be made integrable ode 335
4.1.3 Solving using Kovacic algorithm 337
4.1.4 Maple step by step solution . 341

Internal problem ID [5944]
Internal file name [OUTPUT/5192_Sunday_June_05_2022_03_27_10_PM_82633137/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 52
Problem number: 1(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "second__order_ode_can__be_made_integrable"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-4 y=0
$$

4.1.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=-4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-4)} \\
& = \pm 2
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 \\
& \lambda_{2}=-2
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Figure 73: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}
$$

Verified OK.

4.1.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}-4 y^{\prime} y=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}-4 y^{\prime} y\right) d x=0 \\
\frac{y^{\prime 2}}{2}-2 y^{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =\sqrt{4 y^{2}+2 c_{1}} \tag{1}\\
y^{\prime} & =-\sqrt{4 y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{4 y^{2}+2 c_{1}}} d y & =\int d x \\
\frac{\ln \left(y \sqrt{4}+\sqrt{4 y^{2}+2 c_{1}}\right) \sqrt{4}}{4} & =c_{2}+x
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\frac{\ln \left(y \sqrt{4}+\sqrt{4 y^{2}+2 c_{1}}\right) \sqrt{4}}{4}}=\mathrm{e}^{c_{2}+x}
$$

Which simplifies to

$$
\sqrt{2 y+\sqrt{4 y^{2}+2 c_{1}}}=c_{3} \mathrm{e}^{x}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{4 y^{2}+2 c_{1}}} d y & =\int d x \\
-\frac{\ln \left(y \sqrt{4}+\sqrt{4 y^{2}+2 c_{1}}\right) \sqrt{4}}{4} & =x+c_{4}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\frac{\ln \left(y \sqrt{4}+\sqrt{4 y^{2}+2 c_{1}}\right) \sqrt{4}}{4}}=\mathrm{e}^{x+c_{4}}
$$

Which simplifies to

$$
\frac{1}{\sqrt{2 y+\sqrt{4 y^{2}+2 c_{1}}}}=c_{5} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\left(\mathrm{e}^{4 x} c_{3}^{4}-2 c_{1}\right) \mathrm{e}^{-2 x}}{4 c_{3}^{2}} \tag{1}\\
& y=-\frac{\left(2 c_{1} c_{5}^{4} \mathrm{e}^{4 x}-1\right) \mathrm{e}^{-2 x}}{4 c_{5}^{2}} \tag{2}
\end{align*}
$$

Figure 74: Slope field plot

Verification of solutions

$$
y=\frac{\left(\mathrm{e}^{4 x} c_{3}^{4}-2 c_{1}\right) \mathrm{e}^{-2 x}}{4 c_{3}^{2}}
$$

Verified OK.

$$
y=-\frac{\left(2 c_{1} c_{5}^{4} \mathrm{e}^{4 x}-1\right) \mathrm{e}^{-2 x}}{4 c_{5}^{2}}
$$

Verified OK.

4.1.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 73: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-2 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-2 x} \int \frac{1}{\mathrm{e}^{-4 x}} d x \\
& =\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4} \tag{1}
\end{equation*}
$$

Figure 75: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}
$$

Verified OK.

4.1.4 Maple step by step solution

Let's solve
$y^{\prime \prime}-4 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}-4=0$
- Factor the characteristic polynomial

$$
(r-2)(r+2)=0
$$

- Roots of the characteristic polynomial

$$
r=(-2,2)
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-2 x}
$$

- $\quad 2 n d$ solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{2 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 17

```
dsolve(diff(y(x),x$2)-4*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 22

```
DSolve[y''[x]-4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow e^{-2 x}\left(c_{1} e^{4 x}+c_{2}\right)
$$

4.2 problem 1(b)

4.2.1 Solving as second order linear constant coeff ode
4.2.2 Solving as second order ode can be made integrable ode 345
4.2.3 Solving using Kovacic algorithm 347
4.2.4 Maple step by step solution . 351

Internal problem ID [5945]
Internal file name [OUTPUT/5193_Sunday_June_05_2022_03_27_11_PM_74597554/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 52
Problem number: 1(b).

ODE order: 2.

ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "second__order_ode_can__be_made_integrable"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
3 y^{\prime \prime}+2 y=0
$$

4.2.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=3, B=0, C=2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
3 \lambda^{2} \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
3 \lambda^{2}+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=3, B=0, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(3)} \pm \frac{1}{(2)(3)} \sqrt{0^{2}-(4)(3)(2)} \\
& = \pm \frac{i \sqrt{6}}{3}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+\frac{i \sqrt{6}}{3} \\
& \lambda_{2}=-\frac{i \sqrt{6}}{3}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =\frac{i \sqrt{6}}{3} \\
\lambda_{2} & =-\frac{i \sqrt{6}}{3}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=\frac{\sqrt{6}}{3}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos \left(\frac{x \sqrt{6}}{3}\right)+c_{2} \sin \left(\frac{x \sqrt{6}}{3}\right)\right)
$$

Or

$$
y=c_{1} \cos \left(\frac{x \sqrt{6}}{3}\right)+c_{2} \sin \left(\frac{x \sqrt{6}}{3}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos \left(\frac{x \sqrt{6}}{3}\right)+c_{2} \sin \left(\frac{x \sqrt{6}}{3}\right) \tag{1}
\end{equation*}
$$

Figure 76: Slope field plot

Verification of solutions

$$
y=c_{1} \cos \left(\frac{x \sqrt{6}}{3}\right)+c_{2} \sin \left(\frac{x \sqrt{6}}{3}\right)
$$

Verified OK.

4.2.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
3 y^{\prime} y^{\prime \prime}+2 y^{\prime} y=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(3 y^{\prime} y^{\prime \prime}+2 y^{\prime} y\right) d x=0 \\
\frac{3 y^{\prime 2}}{2}+y^{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =\frac{\sqrt{-6 y^{2}+6 c_{1}}}{3} \tag{1}\\
y^{\prime} & =-\frac{\sqrt{-6 y^{2}+6 c_{1}}}{3} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{3}{\sqrt{-6 y^{2}+6 c_{1}}} d y & =\int d x \\
\frac{\sqrt{6} \arctan \left(\frac{\sqrt{6} y}{\sqrt{-6 y^{2}+6 c_{1}}}\right)}{2} & =c_{2}+x
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{3}{\sqrt{-6 y^{2}+6 c_{1}}} d y & =\int d x \\
-\frac{\sqrt{6} \arctan \left(\frac{\sqrt{6} y}{\sqrt{-6 y^{2}+6 c_{1}}}\right)}{2} & =x+c_{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
\frac{\sqrt{6} \arctan \left(\frac{\sqrt{6} y}{\sqrt{-6 y^{2}+6 c_{1}}}\right)}{2} & =c_{2}+x \tag{1}\\
-\frac{\sqrt{6} \arctan \left(\frac{\sqrt{6} y}{\sqrt{-6 y^{2}+6 c_{1}}}\right)}{2} & =x+c_{3} \tag{2}
\end{align*}
$$

Figure 77: Slope field plot

Verification of solutions

$$
\frac{\sqrt{6} \arctan \left(\frac{\sqrt{6} y}{\sqrt{-6 y^{2}+6 c_{1}}}\right)}{2}=c_{2}+x
$$

Verified OK.

$$
-\frac{\sqrt{6} \arctan \left(\frac{\sqrt{6} y}{\sqrt{-6 y^{2}+6 c_{1}}}\right)}{2}=x+c_{3}
$$

Verified OK.

4.2.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
3 y^{\prime \prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =3 \\
B & =0 \tag{3}\\
C & =2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-2}{3} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-2 \\
& t=3
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-\frac{2 z(x)}{3} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 75: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{2}{3}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos \left(\frac{x \sqrt{6}}{3}\right)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos \left(\frac{x \sqrt{6}}{3}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos \left(\frac{x \sqrt{6}}{3}\right)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos \left(\frac{x \sqrt{6}}{3}\right) \int \frac{1}{\cos \left(\frac{x \sqrt{6}}{3}\right)^{2}} d x \\
& =\cos \left(\frac{x \sqrt{6}}{3}\right)\left(\frac{\sqrt{6} \tan \left(\frac{x \sqrt{6}}{3}\right)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos \left(\frac{x \sqrt{6}}{3}\right)\right)+c_{2}\left(\cos \left(\frac{x \sqrt{6}}{3}\right)\left(\frac{\sqrt{6} \tan \left(\frac{x \sqrt{6}}{3}\right)}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos \left(\frac{x \sqrt{6}}{3}\right)+\frac{c_{2} \sqrt{6} \sin \left(\frac{x \sqrt{6}}{3}\right)}{2} \tag{1}
\end{equation*}
$$

Figure 78: Slope field plot

Verification of solutions

$$
y=c_{1} \cos \left(\frac{x \sqrt{6}}{3}\right)+\frac{c_{2} \sqrt{6} \sin \left(\frac{x \sqrt{6}}{3}\right)}{2}
$$

Verified OK.

4.2.4 Maple step by step solution

Let's solve
$3 y^{\prime \prime}+2 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{2 y}{3}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{2 y}{3}=0$
- Characteristic polynomial of ODE
$r^{2}+\frac{2}{3}=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm\left(\sqrt{-\frac{8}{3}}\right)}{2}$
- Roots of the characteristic polynomial
$r=\left(-\frac{1}{3} \sqrt{6}, \frac{1}{3} \sqrt{6}\right)$
- 1st solution of the ODE
$y_{1}(x)=\cos \left(\frac{x \sqrt{6}}{3}\right)$
- 2nd solution of the ODE

$$
y_{2}(x)=\sin \left(\frac{x \sqrt{6}}{3}\right)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \cos \left(\frac{x \sqrt{6}}{3}\right)+c_{2} \sin \left(\frac{x \sqrt{6}}{3}\right)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(3*diff(y(x),x$2)+2*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \sin \left(\frac{\sqrt{6} x}{3}\right)+c_{2} \cos \left(\frac{\sqrt{6} x}{3}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 32
DSolve[3*y'' $[x]+2 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow c_{1} \cos \left(\sqrt{\frac{2}{3}} x\right)+c_{2} \sin \left(\sqrt{\frac{2}{3}} x\right)
$$

4.3 problem 1(c)

4.3.1 Solving as second order linear constant coeff ode

4.3.2 Solving as second order ode can be made integrable ode . . . 356
4.3.3 Solving using Kovacic algorithm 358
4.3.4 Maple step by step solution . 362

Internal problem ID [5946]
Internal file name [OUTPUT/5194_Sunday_June_05_2022_03_27_12_PM_22379450/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 52
Problem number: 1(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "second__order_ode_can__be_made_integrable"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}+16 y=0
$$

4.3.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=16$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+16 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+16=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=16$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(16)} \\
& = \pm 4 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+4 i \\
& \lambda_{2}=-4 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =4 i \\
\lambda_{2} & =-4 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=4$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (4 x)+c_{2} \sin (4 x)\right)
$$

Or

$$
y=c_{1} \cos (4 x)+c_{2} \sin (4 x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (4 x)+c_{2} \sin (4 x) \tag{1}
\end{equation*}
$$

Figure 79: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (4 x)+c_{2} \sin (4 x)
$$

Verified OK.

4.3.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}+16 y^{\prime} y=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+16 y^{\prime} y\right) d x=0 \\
\frac{y^{\prime 2}}{2}+8 y^{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{-16 y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{-16 y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{-16 y^{2}+2 c_{1}}} d y & =\int d x \\
\frac{\arctan \left(\frac{4 y}{\sqrt{-16 y^{2}+2 c_{1}}}\right)}{4} & =c_{2}+x
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{-16 y^{2}+2 c_{1}}} d y & =\int d x \\
-\frac{\arctan \left(\frac{4 y}{\sqrt{-16 y^{2}+2 c_{1}}}\right)}{4} & =x+c_{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
\frac{\arctan \left(\frac{4 y}{\sqrt{-16 y^{2}+2 c_{1}}}\right)}{4} & =c_{2}+x \tag{1}\\
-\frac{\arctan \left(\frac{4 y}{\sqrt{-16 y^{2}+2 c_{1}}}\right)}{4} & =x+c_{3} \tag{2}
\end{align*}
$$

Figure 80: Slope field plot

Verification of solutions

$$
\frac{\arctan \left(\frac{4 y}{\sqrt{-16 y^{2}+2 c_{1}}}\right)}{4}=c_{2}+x
$$

Verified OK.

$$
-\frac{\arctan \left(\frac{4 y}{\sqrt{-16 y^{2}+2 c_{1}}}\right)}{4}=x+c_{3}
$$

Verified OK.

4.3.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+16 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=16
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-16}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-16 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-16 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 77: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-16$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (4 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (4 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (4 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (4 x) \int \frac{1}{\cos (4 x)^{2}} d x \\
& =\cos (4 x)\left(\frac{\tan (4 x)}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (4 x))+c_{2}\left(\cos (4 x)\left(\frac{\tan (4 x)}{4}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (4 x)+\frac{c_{2} \sin (4 x)}{4} \tag{1}
\end{equation*}
$$

Figure 81: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (4 x)+\frac{c_{2} \sin (4 x)}{4}
$$

Verified OK.

4.3.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+16 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE

$$
r^{2}+16=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-64})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-4 \mathrm{I}, 4 \mathrm{I})
$$

- 1st solution of the ODE

$$
y_{1}(x)=\cos (4 x)
$$

- $\quad 2 n d$ solution of the ODE

$$
y_{2}(x)=\sin (4 x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \cos (4 x)+c_{2} \sin (4 x)
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(diff(y(x),x$2)+16*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \sin (4 x)+c_{2} \cos (4 x)
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 20

```
DSolve[y''[x]+16*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow c_{1} \cos (4 x)+c_{2} \sin (4 x)
$$

4.4 problem 1(d)

4.4.1 Solving as second order ode quadrature ode 364
4.4.2 Solving as second order linear constant coeff ode 365
4.4.3 Solving as second order ode can be made integrable ode 367
4.4.4 Solving as second order integrable as is ode 368
4.4.5 Solving as second order ode missing y ode 369
4.4.6 Solving using Kovacic algorithm 371
4.4.7 Solving as exact linear second order ode ode 374
4.4.8 Maple step by step solution 376

Internal problem ID [5947]

Internal file name [OUTPUT/5195_Sunday_June_05_2022_03_27_13_PM_90127351/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 52
Problem number: 1(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second_oorder_ode_quadrature", "second_order_linear_constant_coeff", "second_order_ode_can_be__made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _quadrature]]

$$
y^{\prime \prime}=0
$$

4.4.1 Solving as second order ode quadrature ode

Integrating twice gives the solution

$$
y=c_{1} x+c_{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x+c_{2} \tag{1}
\end{equation*}
$$

Figure 82: Slope field plot

Verification of solutions

$$
y=c_{1} x+c_{2}
$$

Verified OK.

4.4.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=0$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=0$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(0)^{2}-(4)(1)(0)} \\
& =0
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=0$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} 1+c_{2} x \tag{1}
\end{equation*}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} x+c_{1} \tag{1}
\end{equation*}
$$

Figure 83: Slope field plot

Verification of solutions

$$
y=c_{2} x+c_{1}
$$

Verified OK.

4.4.3 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}=0
$$

Integrating the above w.r.t x gives

$$
\begin{aligned}
& \int y^{\prime} y^{\prime \prime} d x=0 \\
& \frac{y^{\prime 2}}{2}=c_{2}
\end{aligned}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =\sqrt{2} \sqrt{c_{1}} \tag{1}\\
y^{\prime} & =-\sqrt{2} \sqrt{c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
y & =\int \sqrt{2} \sqrt{c_{1}} \mathrm{~d} x \\
& =x \sqrt{2} \sqrt{c_{1}}+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
y & =\int-\sqrt{2} \sqrt{c_{1}} \mathrm{~d} x \\
& =-x \sqrt{2} \sqrt{c_{1}}+c_{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=x \sqrt{2} \sqrt{c_{1}}+c_{2} \tag{1}\\
& y=-x \sqrt{2} \sqrt{c_{1}}+c_{3} \tag{2}
\end{align*}
$$

Figure 84: Slope field plot

Verification of solutions

$$
y=x \sqrt{2} \sqrt{c_{1}}+c_{2}
$$

Verified OK.

$$
y=-x \sqrt{2} \sqrt{c_{1}}+c_{3}
$$

Verified OK.

4.4.4 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int y^{\prime \prime} d x=0 \\
& y^{\prime}=c_{1}
\end{aligned}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
y & =\int c_{1} \mathrm{~d} x \\
& =c_{1} x+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x+c_{2} \tag{1}
\end{equation*}
$$

Figure 85: Slope field plot
Verification of solutions

$$
y=c_{1} x+c_{2}
$$

Verified OK.

4.4.5 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p^{\prime}(x)=0
$$

Which is now solve for $p(x)$ as first order ode. Integrating both sides gives

$$
\begin{aligned}
p(x) & =\int 0 \mathrm{~d} x \\
& =c_{1}
\end{aligned}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int c_{1} \mathrm{~d} x \\
& =c_{1} x+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x+c_{2} \tag{1}
\end{equation*}
$$

Figure 86: Slope field plot
Verification of solutions

$$
y=c_{1} x+c_{2}
$$

Verified OK.

4.4.6 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=0
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 79: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{gathered}
y_{1}=z_{1} \\
=1
\end{gathered}
$$

Which simplifies to

$$
y_{1}=1
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =1 \int \frac{1}{1} d x \\
& =1(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}(1(x))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} x+c_{1} \tag{1}
\end{equation*}
$$

Figure 87: Slope field plot

Verification of solutions

$$
y=c_{2} x+c_{1}
$$

Verified OK.

4.4.7 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
& p(x)=1 \\
& q(x)=0 \\
& r(x)=0 \\
& s(x)=0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
$$

Therefore (1) becomes

$$
0-(0)+(0)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
y^{\prime}=c_{1}
$$

We now have a first order ode to solve which is

$$
y^{\prime}=c_{1}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int c_{1} \mathrm{~d} x \\
& =c_{1} x+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x+c_{2} \tag{1}
\end{equation*}
$$

Figure 88: Slope field plot

Verification of solutions

$$
y=c_{1} x+c_{2}
$$

Verified OK.

4.4.8 Maple step by step solution

Let's solve
$y^{\prime \prime}=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE

$$
r^{2}=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{0})}{2}
$$

- Roots of the characteristic polynomial

$$
r=0
$$

- 1st solution of the ODE
$y_{1}(x)=1$
- Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence $y_{2}(x)=x$
- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{2} x+c_{1}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

```
dsolve(diff(y(x),x$2)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} x+c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 12

```
DSolve[y''[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow c_{2} x+c_{1}
$$

4.5 problem 1(e)

4.5.1 Solving as second order linear constant coeff ode 378

4.5.2 Solving using Kovacic algorithm 380
4.5.3 Maple step by step solution 384

Internal problem ID [5948]
Internal file name [OUTPUT/5196_Sunday_June_05_2022_03_27_14_PM_86840818/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 52
Problem number: 1(e).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+2 i y^{\prime}+y=0
$$

4.5.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2 i, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 i \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2 i \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2 i, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2 i}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2 i^{2}-(4)(1)(1)} \\
& =-i \pm i \sqrt{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-i+i \sqrt{2} \\
& \lambda_{2}=-i-i \sqrt{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i(\sqrt{2}-1) \\
& \lambda_{2}=-i(1+\sqrt{2})
\end{aligned}
$$

The roots are complex but they are not conjugate of each others. Hence simplification using Euler relation is not possible here. Therefore the final solution is

$$
\begin{aligned}
y & =c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& =c_{1} e^{i(\sqrt{2}-1) x}+c_{2} e^{-i(1+\sqrt{2}) x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{i(\sqrt{2}-1) x}+c_{2} \mathrm{e}^{-i(1+\sqrt{2}) x} \tag{1}
\end{equation*}
$$

Figure 89: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{i(\sqrt{2}-1) x}+c_{2} \mathrm{e}^{-i(1+\sqrt{2}) x}
$$

Verified OK.

4.5.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 i y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 i \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-2}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-2 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-2 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 81: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-2$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x \sqrt{2})
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{12 i}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-i x} \\
& =z_{1}\left(\mathrm{e}^{-i x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x \sqrt{2}) \mathrm{e}^{-i x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2 i}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 i x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\sqrt{2} \tan (x \sqrt{2})}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos (x \sqrt{2}) \mathrm{e}^{-i x}\right)+c_{2}\left(\cos (x \sqrt{2}) \mathrm{e}^{-i x}\left(\frac{\sqrt{2} \tan (x \sqrt{2})}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x \sqrt{2}) \mathrm{e}^{-i x}+\frac{c_{2} \mathrm{e}^{-i x} \sqrt{2} \sin (x \sqrt{2})}{2} \tag{1}
\end{equation*}
$$

Figure 90: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x \sqrt{2}) \mathrm{e}^{-i x}+\frac{c_{2} \mathrm{e}^{-i x} \sqrt{2} \sin (x \sqrt{2})}{2}
$$

Verified OK.

4.5.3 Maple step by step solution

Let's solve
$y^{\prime \prime}+2 \mathrm{I} y^{\prime}+y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}+2 \mathrm{I} r+1=0$
- Use quadratic formula to solve for r
$r=\frac{(-2 \mathrm{I}) \pm(\sqrt{-8})}{2}$
- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}-\mathrm{I} \sqrt{2},-\mathrm{I}+\mathrm{I} \sqrt{2})
$$

- $\quad 1$ st solution of the ODE
$y_{1}(x)=\cos ((1+\sqrt{2}) x)$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\sin ((1+\sqrt{2}) x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=c_{1} \cos ((1+\sqrt{2}) x)+c_{2} \sin ((1+\sqrt{2}) x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 27
dsolve (diff $(y(x), x \$ 2)+2 * I * \operatorname{diff}(y(x), x)+y(x)=0, y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{-i x}\left(c_{1} \sin (\sqrt{2} x)+c_{2} \cos (\sqrt{2} x)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 38
DSolve[y''[x]+2*I*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{-i(1+\sqrt{2}) x}\left(c_{2} e^{2 i \sqrt{2} x}+c_{1}\right)
$$

4.6 problem 1(f)

4.6.1 Solving as second order linear constant coeff ode 386
4.6.2 Solving using Kovacic algorithm 388
4.6.3 Maple step by step solution . 392

Internal problem ID [5949]
Internal file name [OUTPUT/5197_Sunday_June_05_2022_03_27_15_PM_94509966/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 52
Problem number: 1(f).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-4 y^{\prime}+5 y=0
$$

4.6.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-4, C=5$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-4 \lambda \mathrm{e}^{\lambda x}+5 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-4 \lambda+5=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-4, C=5$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-4^{2}-(4)(1)(5)} \\
& =2 \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lambda_{1} & =2+i \\
\lambda_{2} & =2-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2+i \\
& \lambda_{2}=2-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=2$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{2 x}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x}\left(\cos (x) c_{1}+c_{2} \sin (x)\right) \tag{1}
\end{equation*}
$$

Figure 91: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 x}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
$$

Verified OK.

4.6.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-4 y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-4 \tag{3}\\
& C=5
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 83: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-4}{1} d x} \\
& =z_{1} e^{2 x} \\
& =z_{1}\left(\mathrm{e}^{2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x) \mathrm{e}^{2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos (x) \mathrm{e}^{2 x}\right)+c_{2}\left(\cos (x) \mathrm{e}^{2 x}(\tan (x))\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x) \mathrm{e}^{2 x}+c_{2} \sin (x) \mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

Figure 92: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x) \mathrm{e}^{2 x}+c_{2} \sin (x) \mathrm{e}^{2 x}
$$

Verified OK.

4.6.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-4 y^{\prime}+5 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE
$r^{2}-4 r+5=0$
- Use quadratic formula to solve for r
$r=\frac{4 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial

$$
r=(2-\mathrm{I}, 2+\mathrm{I})
$$

- $\quad 1$ st solution of the ODE
$y_{1}(x)=\cos (x) \mathrm{e}^{2 x}$
- 2 nd solution of the ODE
$y_{2}(x)=\sin (x) \mathrm{e}^{2 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \cos (x) \mathrm{e}^{2 x}+c_{2} \sin (x) \mathrm{e}^{2 x}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18
dsolve(diff($\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)-4 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+5 * \mathrm{y}(\mathrm{x})=0, \mathrm{y}(\mathrm{x})$, singsol=all)

$$
y(x)=\mathrm{e}^{2 x}\left(c_{1} \sin (x)+\cos (x) c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 22
DSolve[y'' $[x]-4 * y$ ' $[x]+5 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{2 x}\left(c_{2} \cos (x)+c_{1} \sin (x)\right)
$$

4.7 problem 1 (g)

4.7.1 Solving as second order linear constant coeff ode 394
4.7.2 Solving using Kovacic algorithm 396
4.7.3 Maple step by step solution . 400

Internal problem ID [5950]
Internal file name [OUTPUT/5198_Sunday_June_05_2022_03_27_16_PM_19777031/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 52
Problem number: 1(g).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+(-1+3 i) y^{\prime}-3 i y=0
$$

4.7.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-1+3 i, C=-3 i$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+(-1+3 i) \lambda \mathrm{e}^{\lambda x}-3 i \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+(-1+3 i) \lambda-3 i=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-1+3 i, C=-3 i$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{1-3 i}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-1+3 i^{2}-(4)(1)(-3 i)} \\
& =\frac{1}{2}-\frac{3 i}{2} \pm \frac{1}{2}+\frac{3 i}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}-\frac{3 i}{2}+\frac{1}{2}+\frac{3 i}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{3 i}{2}-\frac{1}{2}+\frac{3 i}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{(-3 i) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{x}+\mathrm{e}^{-3 i x} c_{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+\mathrm{e}^{-3 i x} c_{2} \tag{1}
\end{equation*}
$$

Figure 93: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}+\mathrm{e}^{-3 i x} c_{2}
$$

Verified OK.

4.7.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+(-1+3 i) y^{\prime}-3 i y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-1+3 i \tag{3}\\
& C=-3 i
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4+3 i}{2} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4+3 i \\
& t=2
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-2+\frac{3 i}{2}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 85: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-2+\frac{3 i}{2}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{\left(\frac{1}{2}+\frac{3 i}{2}\right) x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-1+3 i}{1} d x} \\
& =z_{1} e^{\left(\frac{1}{2}-\frac{3 i}{2}\right) x} \\
& =z_{1}\left(\mathrm{e}^{\left(\frac{1}{2}-\frac{3 i}{2}\right) x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1+3 i}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{(1-3 i) x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\left(-\frac{1}{10}+\frac{3 i}{10}\right) \mathrm{e}^{(-1-3 i) x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}\left(\left(-\frac{1}{10}+\frac{3 i}{10}\right) \mathrm{e}^{(-1-3 i) x}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+\left(-\frac{1}{10}+\frac{3 i}{10}\right) c_{2} \mathrm{e}^{-3 i x} \tag{1}
\end{equation*}
$$

Figure 94: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}+\left(-\frac{1}{10}+\frac{3 i}{10}\right) c_{2} \mathrm{e}^{-3 i x}
$$

Verified OK.

4.7.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+(-1+3 \mathrm{I}) y^{\prime}-3 \mathrm{I} y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+(-1+3 \mathrm{I}) r-3 \mathrm{I}=0
$$

- Factor the characteristic polynomial

$$
(r-1)(r+3 \mathrm{I})=0
$$

- Roots of the characteristic polynomial
$r=(1,-3 \mathrm{I})$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{x}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=0$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{x}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16
dsolve(diff $(y(x), x \$ 2)+(3 * I-1) * \operatorname{diff}(y(x), x)-3 * I * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-3 i x}
$$

\checkmark Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 22
DSolve[y''[x]+(3*I-1)*y'[x]-3*I*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow c_{1} e^{-3 i x}+c_{2} e^{x}
$$

4.8 problem 2(a)

4.8.1 Existence and uniqueness analysis 402
4.8.2 Solving as second order linear constant coeff ode 403
4.8.3 Solving using Kovacic algorithm 405
4.8.4 Maple step by step solution . 410

Internal problem ID [5951]
Internal file name [OUTPUT/5199_Sunday_June_05_2022_03_27_18_PM_96449350/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 52
Problem number: 2(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+y^{\prime}-6 y=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=0\right]
$$

4.8.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =-6 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y^{\prime}-6 y=0
$$

The domain of $p(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-6$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

4.8.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=1, C=-6$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}-6 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+\lambda-6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=1, C=-6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)(-6)} \\
& =-\frac{1}{2} \pm \frac{5}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{5}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{5}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-3
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-3) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-3 x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1}+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=2 c_{1} \mathrm{e}^{2 x}-3 c_{2} \mathrm{e}^{-3 x}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=2 c_{1}-3 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{3}{5} \\
& c_{2}=\frac{2}{5}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{3 \mathrm{e}^{2 x}}{5}+\frac{2 \mathrm{e}^{-3 x}}{5}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 \mathrm{e}^{2 x}}{5}+\frac{2 \mathrm{e}^{-3 x}}{5} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{3 \mathrm{e}^{2 x}}{5}+\frac{2 \mathrm{e}^{-3 x}}{5}
$$

Verified OK.

4.8.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y^{\prime}-6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=1 \tag{3}\\
& C=-6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{25}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=25 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{25 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 87: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{25}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{5 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{5 x}}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x}\right)+c_{2}\left(\mathrm{e}^{-3 x}\left(\frac{\mathrm{e}^{5 x}}{5}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{2 x}}{5} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1}+\frac{c_{2}}{5} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x}+\frac{2 c_{2} \mathrm{e}^{2 x}}{5}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=-3 c_{1}+\frac{2 c_{2}}{5} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{2}{5} \\
& c_{2}=3
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{3 \mathrm{e}^{2 x}}{5}+\frac{2 \mathrm{e}^{-3 x}}{5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{3 \mathrm{e}^{2 x}}{5}+\frac{2 \mathrm{e}^{-3 x}}{5} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{3 \mathrm{e}^{2 x}}{5}+\frac{2 \mathrm{e}^{-3 x}}{5}
$$

Verified OK.

4.8.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+y^{\prime}-6 y=0, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+r-6=0
$$

- Factor the characteristic polynomial

$$
(r+3)(r-2)=0
$$

- Roots of the characteristic polynomial

$$
r=(-3,2)
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-3 x}
$$

- $\quad 2 n d$ solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{2 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{2 x}
$$

Check validity of solution $y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{2 x}$

- Use initial condition $y(0)=1$
$1=c_{1}+c_{2}$
- Compute derivative of the solution

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x}+2 c_{2} \mathrm{e}^{2 x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$
$0=-3 c_{1}+2 c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=\frac{2}{5}, c_{2}=\frac{3}{5}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{\left(3 \mathrm{e}^{5 x}+2\right) \mathrm{e}^{-3 x}}{5}
$$

- \quad Solution to the IVP

$$
y=\frac{\left(3 \mathrm{e}^{5 x}+2\right) \mathrm{e}^{-3 x}}{5}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

Solution by Maple
Time used: 0.031 (sec). Leaf size: 18

```
dsolve([diff(y(x),x$2)+diff(y(x),x)-6*y(x)=0,y(0) = 1, D(y)(0) = 0],y(x), singsol=all)
```

$$
y(x)=\frac{\left(3 \mathrm{e}^{5 x}+2\right) \mathrm{e}^{-3 x}}{5}
$$

Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 23

```
DSolve[{y''[x]+y'[x]-6*y[x]==0,{y[0]==1,y'[0]==0}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{1}{5} e^{-3 x}\left(3 e^{5 x}+2\right)
$$

4.9 problem 2(b)

4.9.1 Existence and uniqueness analysis 412
4.9.2 Solving as second order linear constant coeff ode 413
4.9.3 Solving using Kovacic algorithm 415
4.9.4 Maple step by step solution . 420

Internal problem ID [5952]
Internal file name [OUTPUT/5200_Sunday_June_05_2022_03_27_19_PM_9050429/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 52
Problem number: 2(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+y^{\prime}-6 y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=1\right]
$$

4.9.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =-6 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y^{\prime}-6 y=0
$$

The domain of $p(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-6$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

4.9.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=1, C=-6$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}-6 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+\lambda-6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=1, C=-6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)(-6)} \\
& =-\frac{1}{2} \pm \frac{5}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{5}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{5}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-3
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-3) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-3 x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=2 c_{1} \mathrm{e}^{2 x}-3 c_{2} \mathrm{e}^{-3 x}
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=2 c_{1}-3 c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{5} \\
& c_{2}=-\frac{1}{5}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\mathrm{e}^{2 x}}{5}-\frac{\mathrm{e}^{-3 x}}{5}
$$

Which simplifies to

$$
y=\frac{\left(\mathrm{e}^{5 x}-1\right) \mathrm{e}^{-3 x}}{5}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\mathrm{e}^{5 x}-1\right) \mathrm{e}^{-3 x}}{5} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{\left(\mathrm{e}^{5 x}-1\right) \mathrm{e}^{-3 x}}{5}
$$

Verified OK.

4.9.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y^{\prime}-6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=1 \tag{3}\\
& C=-6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{25}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=25 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{25 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 89: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{25}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{5 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-3 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{5 x}}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x}\right)+c_{2}\left(\mathrm{e}^{-3 x}\left(\frac{\mathrm{e}^{5 x}}{5}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{2 x}}{5} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{c_{2}}{5} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x}+\frac{2 c_{2} \mathrm{e}^{2 x}}{5}
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=-3 c_{1}+\frac{2 c_{2}}{5} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{5} \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\mathrm{e}^{2 x}}{5}-\frac{\mathrm{e}^{-3 x}}{5}
$$

Which simplifies to

$$
y=\frac{\left(\mathrm{e}^{5 x}-1\right) \mathrm{e}^{-3 x}}{5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(\mathrm{e}^{5 x}-1\right) \mathrm{e}^{-3 x}}{5} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\left(\mathrm{e}^{5 x}-1\right) \mathrm{e}^{-3 x}}{5}
$$

Verified OK.

4.9.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+y^{\prime}-6 y=0, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+r-6=0
$$

- Factor the characteristic polynomial

$$
(r+3)(r-2)=0
$$

- Roots of the characteristic polynomial

$$
r=(-3,2)
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-3 x}
$$

- $\quad 2 n d$ solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{2 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{2 x}
$$

Check validity of solution $y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{2 x}$

- Use initial condition $y(0)=0$
$0=c_{1}+c_{2}$
- Compute derivative of the solution

$$
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 x}+2 c_{2} \mathrm{e}^{2 x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=1$

$$
1=-3 c_{1}+2 c_{2}
$$

- Solve for c_{1} and c_{2} $\left\{c_{1}=-\frac{1}{5}, c_{2}=\frac{1}{5}\right\}$
- Substitute constant values into general solution and simplify

$$
y=\frac{\left(e^{5 x}-1\right) e^{-3 x}}{5}
$$

- \quad Solution to the IVP

$$
y=\frac{\left(e^{5 x}-1\right) e^{-3 x}}{5}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

Solution by Maple
Time used: 0.031 (sec). Leaf size: 16

```
dsolve([diff(y(x),x$2)+diff(y(x),x)-6*y(x)=0,y(0)=0, D(y)(0) = 1],y(x), singsol=all)
```

$$
y(x)=\frac{\left(\mathrm{e}^{5 x}-1\right) \mathrm{e}^{-3 x}}{5}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 21

```
DSolve[{y''[x]+y'[x]-6*y[x]==0,{y[0]==0,y'[0]==1}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{1}{5} e^{-3 x}\left(e^{5 x}-1\right)
$$

4.10 problem 3(a)

4.10.1 Solving as second order linear constant coeff ode 422
4.10.2 Solving as second order ode can be made integrable ode . . . 425
4.10.3 Solving using Kovacic algorithm 426
4.10.4 Maple step by step solution . 430

Internal problem ID [5953]
Internal file name [OUTPUT/5201_Sunday_June_05_2022_03_27_20_PM_43362679/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 52
Problem number: 3(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "second__order_ode_can__be_made_integrable"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}+y=0
$$

With initial conditions

$$
\left[y(0)=1, y\left(\frac{\pi}{2}\right)=2\right]
$$

4.10.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
$$

Or

$$
y=\cos (x) c_{1}+c_{2} \sin (x)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=\frac{\pi}{2}$ in the above gives

$$
\begin{equation*}
2=c_{2} \tag{1A}
\end{equation*}
$$

substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 \sin (x)+\cos (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \sin (x)+\cos (x) \tag{1}
\end{equation*}
$$

Figure 99: Solution plot
Verification of solutions

$$
y=2 \sin (x)+\cos (x)
$$

Verified OK.

4.10.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}+y^{\prime} y=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+y^{\prime} y\right) d x=0 \\
\frac{y^{\prime 2}}{2}+\frac{y^{2}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{-y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{-y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{-y^{2}+2 c_{1}}} d y & =\int d x \\
\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =c_{2}+x
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{-y^{2}+2 c_{1}}} d y & =\int d x \\
-\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =x+c_{3}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the First solution

$$
\begin{equation*}
\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right)=c_{2}+x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=\frac{\pi}{2}$ in the above gives

$$
\begin{equation*}
\arctan \left(\frac{2}{\sqrt{-4+2 c_{1}}}\right)=c_{2}+\frac{\pi}{2} \tag{1~A}
\end{equation*}
$$

substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
\arctan \left(\frac{1}{\sqrt{-1+2 c_{1}}}\right)=c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Looking at the Second solution

$$
\begin{equation*}
-\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right)=x+c_{3} \tag{2}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=\frac{\pi}{2}$ in the above gives

$$
\begin{equation*}
-\arctan \left(\frac{2}{\sqrt{-4+2 c_{1}}}\right)=\frac{\pi}{2}+c_{3} \tag{1~A}
\end{equation*}
$$

substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
-\arctan \left(\frac{1}{\sqrt{-1+2 c_{1}}}\right)=c_{3} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Verification of solutions N/A

4.10.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 91: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=\frac{\pi}{2}$ in the above gives

$$
\begin{equation*}
2=c_{2} \tag{1~A}
\end{equation*}
$$

substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 \sin (x)+\cos (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \sin (x)+\cos (x) \tag{1}
\end{equation*}
$$

Figure 100: Solution plot

Verification of solutions

$$
y=2 \sin (x)+\cos (x)
$$

Verified OK.

4.10.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+y=0, y(0)=1, y\left(\frac{\pi}{2}\right)=2\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-4})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}, \mathrm{I})
$$

- 1st solution of the ODE

$$
y_{1}(x)=\cos (x)
$$

- 2 nd solution of the ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=\cos (x) c_{1}+c_{2} \sin (x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 11

```
dsolve([diff (y(x),x$2)+y(x)=0,y(0) = 1, y(1/2*Pi) = 2],y(x), singsol=all)
```

$$
y(x)=2 \sin (x)+\cos (x)
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 12

$$
\text { DSolve }\left[\left\{y y^{\prime}[x]+y[x]==0,\{y[0]==1, y[\mathrm{Pi} / 2]==2\}\right\}, y[x], x, \text { IncludeSingularSolutions } \rightarrow>\right.\text { True] }
$$

$$
y(x) \rightarrow 2 \sin (x)+\cos (x)
$$

4.11 problem 3(b)

4.11.1 Solving as second order linear constant coeff ode 432
4.11.2 Solving as second order ode can be made integrable ode 434
4.11.3 Solving using Kovacic algorithm 436
4.11.4 Maple step by step solution . 439

Internal problem ID [5954]
Internal file name [OUTPUT/5202_Sunday_June_05_2022_03_27_21_PM_88438460/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 52
Problem number: 3(b).

ODE order: 2.

ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "second__order_ode_can__be_made_integrable"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}+y=0
$$

With initial conditions

$$
[y(0)=0, y(\pi)=0]
$$

4.11.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
$$

Or

$$
y=\cos (x) c_{1}+c_{2} \sin (x)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=\pi$ in the above gives

$$
\begin{equation*}
0=-c_{1} \tag{1~A}
\end{equation*}
$$

substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
c_{1}=0
$$

Substituting these values back in above solution results in

$$
y=c_{2} \sin (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} \sin (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{2} \sin (x)
$$

Verified OK.

4.11.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}+y^{\prime} y=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+y^{\prime} y\right) d x=0 \\
\frac{y^{\prime 2}}{2}+\frac{y^{2}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =\sqrt{-y^{2}+2 c_{1}} \tag{1}\\
y^{\prime} & =-\sqrt{-y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{-y^{2}+2 c_{1}}} d y & =\int d x \\
\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =c_{2}+x
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{-y^{2}+2 c_{1}}} d y & =\int d x \\
-\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =x+c_{3}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the First solution

$$
\begin{equation*}
\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right)=c_{2}+x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=\pi$ in the above gives

$$
\begin{equation*}
0=c_{2}+\pi \tag{1~A}
\end{equation*}
$$

substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Looking at the Second solution

$$
\begin{equation*}
-\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right)=x+c_{3} \tag{2}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=\pi$ in the above gives

$$
\begin{equation*}
0=\pi+c_{3} \tag{1~A}
\end{equation*}
$$

substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{3} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Verification of solutions N/A

4.11.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	no condition

Table 93: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the above solution

$$
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=\pi$ in the above gives

$$
\begin{equation*}
0=-c_{1} \tag{1~A}
\end{equation*}
$$

substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
c_{1}=0
$$

Substituting these values back in above solution results in

$$
y=c_{2} \sin (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} \sin (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{2} \sin (x)
$$

Verified OK.

4.11.4 Maple step by step solution

Let's solve
$\left[y^{\prime \prime}+y=0, y(0)=0, y(\pi)=0\right]$

- Highest derivative means the order of the ODE is 2 $y^{\prime \prime}$
- Characteristic polynomial of ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-4})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}, \mathrm{I})
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\cos (x)
$$

- $\quad 2 n d$ solution of the ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=\cos (x) c_{1}+c_{2} \sin (x)
$$

Maple trace

- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 8

```
dsolve([diff(y(x),x$2)+y(x)=0,y(0) = 0, y(Pi) = 0],y(x), singsol=all)
```

$$
y(x)=c_{1} \sin (x)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 10

```
DSolve \(\left[\left\{y^{\prime}\right.\right.\) ' \(\left.[x]+y[x]==0,\{y[0]==0, y[P i]==0\}\right\}, y[x], x\), IncludeSingularSolutions \(->\) True \(]\)
\(y(x) \rightarrow c_{1} \sin (x)\)
```


4.12 problem 3(c)

4.12.1 Solving as second order linear constant coeff ode 441
4.12.2 Solving as second order ode can be made integrable ode 443
4.12.3 Solving using Kovacic algorithm 445
4.12.4 Maple step by step solution . 449

Internal problem ID [5955]
Internal file name [OUTPUT/5203_Sunday_June_05_2022_03_27_23_PM_76068316/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 52
Problem number: 3(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "second__order_ode_can_bbe_made_integrable"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}+y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}\left(\frac{\pi}{2}\right)=0\right]
$$

4.12.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
$$

Or

$$
y=\cos (x) c_{1}+c_{2} \sin (x)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\sin (x) c_{1}+c_{2} \cos (x)
$$

substituting $y^{\prime}=0$ and $x=\frac{\pi}{2}$ in the above gives

$$
\begin{equation*}
0=-c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
c_{1}=0
$$

Substituting these values back in above solution results in

$$
y=c_{2} \sin (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} \sin (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{2} \sin (x)
$$

Verified OK.

4.12.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}+y^{\prime} y=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+y^{\prime} y\right) d x=0 \\
\frac{y^{\prime 2}}{2}+\frac{y^{2}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{-y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{-y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{-y^{2}+2 c_{1}}} d y & =\int d x \\
\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =c_{2}+x
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{-y^{2}+2 c_{1}}} d y & =\int d x \\
-\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =x+c_{3}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the First solution

$$
\begin{equation*}
\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right)=c_{2}+x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\left(\tan \left(c_{2}+x\right)^{2}+1\right) \sqrt{2} \sqrt{\frac{c_{1}}{\tan \left(c_{2}+x\right)^{2}+1}}-\frac{\tan \left(c_{2}+x\right)^{2} \sqrt{2} c_{1}}{\sqrt{\frac{c_{1}}{\tan \left(c_{2}+x\right)^{2}+1}}\left(\tan \left(c_{2}+x\right)^{2}+1\right)}
$$

substituting $y^{\prime}=0$ and $x=\frac{\pi}{2}$ in the above gives

$$
\begin{equation*}
0=\frac{\sin \left(c_{2}\right)^{2} c_{1} \sqrt{2}}{\sqrt{c_{1} \sin \left(c_{2}\right)^{2}}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Looking at the Second solution

$$
\begin{equation*}
-\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right)=x+c_{3} \tag{2}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{3} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\left(\tan \left(x+c_{3}\right)^{2}+1\right) \sqrt{2} \sqrt{\frac{c_{1}}{\tan \left(x+c_{3}\right)^{2}+1}}+\frac{\tan \left(x+c_{3}\right)^{2} \sqrt{2} c_{1}}{\sqrt{\frac{c_{1}}{\tan \left(x+c_{3}\right)^{2}+1}}\left(\tan \left(x+c_{3}\right)^{2}+1\right)}
$$

substituting $y^{\prime}=0$ and $x=\frac{\pi}{2}$ in the above gives

$$
\begin{equation*}
0=-\frac{\sin \left(c_{3}\right)^{2} c_{1} \sqrt{2}}{\sqrt{c_{1} \sin \left(c_{3}\right)^{2}}} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Verification of solutions N/A

4.12.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 95: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\sin (x) c_{1}+c_{2} \cos (x)
$$

substituting $y^{\prime}=0$ and $x=\frac{\pi}{2}$ in the above gives

$$
\begin{equation*}
0=-c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
c_{1}=0
$$

Substituting these values back in above solution results in

$$
y=c_{2} \sin (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} \sin (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{2} \sin (x)
$$

Verified OK.

4.12.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+y=0, y(0)=0,\left.y^{\prime}\right|_{\left\{x=\frac{\pi}{2}\right\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r $r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}, \mathrm{I})
$$

- 1st solution of the ODE

$$
y_{1}(x)=\cos (x)
$$

- \quad 2nd solution of the ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- \quad Substitute in solutions

$$
y=\cos (x) c_{1}+c_{2} \sin (x)
$$

$\square \quad$ Check validity of solution $y=\cos (x) c_{1}+c_{2} \sin (x)$

- Use initial condition $y(0)=0$
$0=c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=-\sin (x) c_{1}+c_{2} \cos (x)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\left\{x=\frac{\pi}{2}\right\}}=0$

$$
0=-c_{1}
$$

- Solve for c_{1} and c_{2}
$\left\{c_{1}=0, c_{2}=c_{2}\right\}$
- Substitute constant values into general solution and simplify

$$
y=c_{2} \sin (x)
$$

- \quad Solution to the IVP

$$
y=c_{2} \sin (x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 8

```
dsolve([diff(y(x),x$2)+y(x)=0,y(0) = 0, D(y)(1/2*Pi) = 0],y(x), singsol=all)
```

$$
y(x)=c_{1} \sin (x)
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 10
DSolve[\{y' ' $\left.[x]+y[x]==0,\left\{y[0]==0, y^{\prime}[P i / 2]==0\right\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{1} \sin (x)
$$

4.13 problem 3(d)

4.13.1 Solving as second order linear constant coeff ode 452
4.13.2 Solving as second order ode can be made integrable ode 455
4.13.3 Solving using Kovacic algorithm 456
4.13.4 Maple step by step solution . 460

Internal problem ID [5956]
Internal file name [OUTPUT/5204_Sunday_June_05_2022_03_27_24_PM_9716775/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 52
Problem number: 3(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "second__order_ode_can__be_made_integrable"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}+y=0
$$

With initial conditions

$$
\left[y(0)=0, y\left(\frac{\pi}{2}\right)=0\right]
$$

4.13.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
$$

Or

$$
y=\cos (x) c_{1}+c_{2} \sin (x)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=\frac{\pi}{2}$ in the above gives

$$
\begin{equation*}
0=c_{2} \tag{1~A}
\end{equation*}
$$

substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=0 \tag{1}
\end{equation*}
$$

Figure 101: Solution plot
Verification of solutions

$$
y=0
$$

Verified OK.

4.13.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}+y^{\prime} y=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+y^{\prime} y\right) d x=0 \\
\frac{y^{\prime 2}}{2}+\frac{y^{2}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{-y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{-y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{-y^{2}+2 c_{1}}} d y & =\int d x \\
\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =c_{2}+x
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{-y^{2}+2 c_{1}}} d y & =\int d x \\
-\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =x+c_{3}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the First solution

$$
\begin{equation*}
\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right)=c_{2}+x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=\frac{\pi}{2}$ in the above gives

$$
\begin{equation*}
0=c_{2}+\frac{\pi}{2} \tag{1~A}
\end{equation*}
$$

substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Looking at the Second solution

$$
\begin{equation*}
-\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right)=x+c_{3} \tag{2}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=\frac{\pi}{2}$ in the above gives

$$
\begin{equation*}
0=\frac{\pi}{2}+c_{3} \tag{1~A}
\end{equation*}
$$

substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{3} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. There is no solution for the constants of integrations. This solution is removed.

Verification of solutions N/A

4.13.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 97: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=\frac{\pi}{2}$ in the above gives

$$
\begin{equation*}
0=c_{2} \tag{1~A}
\end{equation*}
$$

substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=0 \tag{1}
\end{equation*}
$$

Figure 102: Solution plot

Verification of solutions

$$
y=0
$$

Verified OK.

4.13.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+y=0, y(0)=0, y\left(\frac{\pi}{2}\right)=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-4})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}, \mathrm{I})
$$

- 1st solution of the ODE

$$
y_{1}(x)=\cos (x)
$$

- 2 nd solution of the ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=\cos (x) c_{1}+c_{2} \sin (x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

Solution by Maple
Time used: 0.015 (sec). Leaf size: 5

```
dsolve([diff (y(x),x$2)+y(x)=0,y(0) = 0, y(1/2*Pi) = 0],y(x), singsol=all)
```

$$
y(x)=0
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 6

$$
\text { DSolve }[\{y \text { ' ' }[x]+y[x]==0,\{y[0]==0, y[P i / 2]==0\}\}, y[x], x, \text { IncludeSingularSolutions } \rightarrow>\text { True }]
$$

$$
y(x) \rightarrow 0
$$

5 Chapter 2. Linear equations with constant coefficients. Page 59

5.1 problem 1(a) . 463
5.2 problem 1(b) . 473
5.3 problem 1(c) . 483
5.4 problem 1(d) . 491

5.1 problem 1(a)

5.1.1 Existence and uniqueness analysis 463
5.1.2 Solving as second order linear constant coeff ode 464
5.1.3 Solving using Kovacic algorithm 466
5.1.4 Maple step by step solution . 471

Internal problem ID [5957]
Internal file name [OUTPUT/5205_Sunday_June_05_2022_03_27_25_PM_76562253/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 59
Problem number: 1(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-2 y^{\prime}-3 y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=1\right]
$$

5.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-2 \\
q(x) & =-3 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-2 y^{\prime}-3 y=0
$$

The domain of $p(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-3$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

5.1.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2, C=-3$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}-3 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 \lambda-3=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2, C=-3$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-2^{2}-(4)(1)(-3)} \\
& =1 \pm 2
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=1+2 \\
& \lambda_{2}=1-2
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =3 \\
\lambda_{2} & =-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(3) x}+c_{2} e^{(-1) x}
\end{aligned}
$$

Or

$$
y=\mathrm{e}^{3 x} c_{1}+c_{2} \mathrm{e}^{-x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{3 x} c_{1}+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=3 \mathrm{e}^{3 x} c_{1}-c_{2} \mathrm{e}^{-x}
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=3 c_{1}-c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{4} \\
& c_{2}=-\frac{1}{4}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\mathrm{e}^{3 x}}{4}-\frac{\mathrm{e}^{-x}}{4}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{3 x}}{4}-\frac{\mathrm{e}^{-x}}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{3 x}}{4}-\frac{\mathrm{e}^{-x}}{4}
$$

Verified OK.

5.1.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 y^{\prime}-3 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=-3
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 99: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-2 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{4 x}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{3 x}}{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{c_{2}}{4} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+\frac{3 c_{2} \mathrm{e}^{3 x}}{4}
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=-c_{1}+\frac{3 c_{2}}{4} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{4} \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\mathrm{e}^{3 x}}{4}-\frac{\mathrm{e}^{-x}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{3 x}}{4}-\frac{\mathrm{e}^{-x}}{4} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{3 x}}{4}-\frac{\mathrm{e}^{-x}}{4}
$$

Verified OK.

5.1.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}-2 y^{\prime}-3 y=0, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-2 r-3=0
$$

- Factor the characteristic polynomial

$$
(r+1)(r-3)=0
$$

- Roots of the characteristic polynomial

$$
r=(-1,3)
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-x}
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{3 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- \quad Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{3 x}
$$

Check validity of solution $y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{3 x}$

- Use initial condition $y(0)=0$
$0=c_{1}+c_{2}$
- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+3 c_{2} \mathrm{e}^{3 x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=1$
$1=-c_{1}+3 c_{2}$
- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=-\frac{1}{4}, c_{2}=\frac{1}{4}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{\mathrm{e}^{3 x}}{4}-\frac{\mathrm{e}^{-x}}{4}
$$

- \quad Solution to the IVP

$$
y=\frac{\mathrm{e}^{3 x}}{4}-\frac{\mathrm{e}^{-x}}{4}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 17
dsolve([diff $(y(x), x \$ 2)-2 * \operatorname{diff}(y(x), x)-3 * y(x)=0, y(0)=0, D(y)(0)=1], y(x)$, singsol=all)

$$
y(x)=\frac{\mathrm{e}^{3 x}}{4}-\frac{\mathrm{e}^{-x}}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 21
DSolve $\left\{\left\{y\right.\right.$ '' $[x]-2 * y$ ' $\left.[x]-3 * y[x]==0,\left\{y[0]==0, y^{\prime}[0]==1\right\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True

$$
y(x) \rightarrow \frac{1}{4} e^{-x}\left(e^{4 x}-1\right)
$$

5.2 problem 1(b)

5.2.1 Existence and uniqueness analysis 473
5.2.2 Solving as second order linear constant coeff ode 474
5.2.3 Solving using Kovacic algorithm 477
5.2.4 Maple step by step solution . 481

Internal problem ID [5958]
Internal file name [OUTPUT/5206_Sunday_June_05_2022_03_27_26_PM_81244003/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 59
Problem number: 1(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+(1+4 i) y^{\prime}+y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0\right]
$$

5.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =1+4 i \\
q(x) & =1 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+(1+4 i) y^{\prime}+y=0
$$

The domain of $p(x)=1+4 i$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

5.2.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=1+4 i, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+(1+4 i) \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+(1+4 i) \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=1+4 i, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-1-4 i}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1+4 i^{2}-(4)(1)(1)} \\
& =-\frac{1}{2}-2 i \pm \frac{\sqrt{-19+8 i}}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}-2 i+\frac{\sqrt{-19+8 i}}{2} \\
& \lambda_{2}=-\frac{1}{2}-2 i-\frac{\sqrt{-19+8 i}}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}-2 i+\frac{\sqrt{-19+8 i}}{2} \\
& \lambda_{2}=-\frac{1}{2}-2 i-\frac{\sqrt{-19+8 i}}{2}
\end{aligned}
$$

The roots are complex but they are not conjugate of each others. Hence simplification using Euler relation is not possible here. Therefore the final solution is

$$
\begin{aligned}
y & =c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& =c_{1} e^{\left(-\frac{1}{2}-2 i+\frac{\sqrt{-19+8 i}}{2}\right) x}+c_{2} e^{\left(-\frac{1}{2}-2 i-\frac{\sqrt{-19+8 i}}{2}\right) x}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\left(-\frac{1}{2}-2 i+\frac{\sqrt{-19+8 i}}{2}\right) x}+c_{2} \mathrm{e}^{\left(-\frac{1}{2}-2 i-\frac{\sqrt{-19+8 i}}{2}\right) x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1}\left(-\frac{1}{2}-2 i+\frac{\sqrt{-19+8 i}}{2}\right) \mathrm{e}^{\left(-\frac{1}{2}-2 i+\frac{\sqrt{-19+8 i}}{2}\right) x}+c_{2}\left(-\frac{1}{2}-2 i-\frac{\sqrt{-19+8 i}}{2}\right) \mathrm{e}^{\left(-\frac{1}{2}-2 i-\frac{\sqrt{-19+8 i}}{2}\right) x}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=\frac{\left(c_{1}-c_{2}\right) \sqrt{-19+8 i}}{2}+\left(-\frac{1}{2}-2 i\right) c_{1}+\left(-\frac{1}{2}-2 i\right) c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=0 \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=0
$$

Verified OK.

5.2.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+(1+4 i) y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=1+4 i \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-19+8 i}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-19+8 i \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{19}{4}+2 i\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 101: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{19}{4}+2 i$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{\frac{x \sqrt{-19+8 i}}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1+4 i}{1} d x}
\end{aligned}
$$

$$
\begin{aligned}
& =z_{1} e^{\left(-\frac{1}{2}-2 i\right) x} \\
& =z_{1}\left(\mathrm{e}^{\left(-\frac{1}{2}-2 i\right) x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{(1+4 i-\sqrt{-19+8 i) x}}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1+4 i}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{(-1-4 i) x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\left(\frac{19}{425}+\frac{8 i}{425}\right) \sqrt{-19+8 i} \mathrm{e}^{-x \sqrt{-19+8 i}}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
& y=c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{(1+4 i-\sqrt{-19+8 i}) x}{2}}\right)+c_{2}\left(\mathrm{e}^{-\frac{(1+4 i-\sqrt{-19+8 i}) x}{2}}\left(\left(\frac{19}{425}+\frac{8 i}{425}\right) \sqrt{-19+8 i} \mathrm{e}^{-x \sqrt{-19+8 i}}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{(1+4 i-\sqrt{-19+8 i) x}}{2}}+\left(\frac{19}{425}+\frac{8 i}{425}\right) c_{2} \sqrt{-19+8 i} \mathrm{e}^{-\frac{(1+4 i+\sqrt{-19+8 i) x}}{2}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\left(\frac{19}{425}+\frac{8 i}{425}\right) \sqrt{-19+8 i} c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$y^{\prime}=c_{1}\left(-\frac{1}{2}-2 i+\frac{\sqrt{-19+8 i}}{2}\right) \mathrm{e}^{-\frac{(1+4 i-\sqrt{-19+8 i}) x}{2}}+\left(\frac{19}{425}+\frac{8 i}{425}\right) c_{2} \sqrt{-19+8 i}\left(-\frac{1}{2}-2 i-\frac{\sqrt{-19+8 i}}{2}\right.$
substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=\frac{\left(425 c_{1}+(13-84 i) c_{2}\right) \sqrt{-19+8 i}}{850}+\left(-\frac{1}{2}-2 i\right) c_{1}+\frac{c_{2}}{2} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=0 \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=0
$$

Verified OK.

5.2.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+(1+4 \mathrm{I}) y^{\prime}+y=0, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE
$r^{2}+(1+4 \mathrm{I}) r+1=0$
- Factor the characteristic polynomial
$4 \mathrm{I} r+r^{2}+r+1=0$
- Roots of the characteristic polynomial
$r=\left(-\frac{1}{2}-2 \mathrm{I}+\frac{\sqrt{-19+8 \mathrm{I}}}{2},-\frac{1}{2}-2 \mathrm{I}-\frac{\sqrt{-19+8 \mathrm{I}}}{2}\right)$
- 1st solution of the ODE
$y_{1}(x)=\mathrm{e}^{\left(-\frac{1}{2}+\frac{\sqrt{-38+10 \sqrt{17}}}{4}\right) x} \cos \left(\left(-2+\frac{\sqrt{38+10 \sqrt{17}}}{4}\right) x\right)$
- \quad 2nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{\left(-\frac{1}{2}+\frac{\sqrt{-38+10 \sqrt{17}}}{4}\right) x} \sin \left(\left(-2+\frac{\sqrt{38+10 \sqrt{17}}}{4}\right) x\right)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- \quad Substitute in solutions
$y=c_{1} \mathrm{e}^{\left(-\frac{1}{2}+\frac{\sqrt{-38+10 \sqrt{17}}}{4}\right) x} \cos \left(\left(-2+\frac{\sqrt{38+10 \sqrt{17}}}{4}\right) x\right)+c_{2} \mathrm{e}^{\left(-\frac{1}{2}+\frac{\sqrt{-38+10 \sqrt{17}}}{4}\right) x} \sin \left(\left(-2+\frac{\sqrt{38+10 \sqrt{1}}}{4}\right.\right.$
Check validity of solution $y=c_{1} \mathrm{e}^{\left(-\frac{1}{2}+\frac{\sqrt{-38+10 \sqrt{17}}}{4}\right) x} \cos \left(\left(-2+\frac{\sqrt{38+10 \sqrt{17}}}{4}\right) x\right)+c_{2} \mathrm{e}^{\left(-\frac{1}{2}+\frac{\sqrt{-38+10}}{4}\right.}$
- Use initial condition $y(0)=0$
$0=c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=c_{1}\left(-\frac{1}{2}+\frac{\sqrt{-38+10 \sqrt{17}}}{4}\right) \mathrm{e}^{\left(-\frac{1}{2}+\frac{\sqrt{-38+10 \sqrt{17}}}{4}\right) x} \cos \left(\left(-2+\frac{\sqrt{38+10 \sqrt{17}}}{4}\right) x\right)-c_{1} \mathrm{e}^{\left(-\frac{1}{2}+\frac{\sqrt{-38+10 \sqrt{17}}}{4}\right) x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$

$$
0=c_{1}\left(-\frac{1}{2}+\frac{\sqrt{-38+10 \sqrt{17}}}{4}\right)+c_{2}\left(-2+\frac{\sqrt{38+10 \sqrt{17}}}{4}\right)
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=0, c_{2}=0\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=0
$$

- \quad Solution to the IVP

$$
y=0
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.156 (sec). Leaf size: 5

```
dsolve([diff(y(x),x$2)+(4*I+1)*diff(y(x),x)+y(x)=0,y(0) = 0, D(y)(0) = 0],y(x), singsol=all)
```

$$
y(x)=0
$$

\checkmark Solution by Mathematica
Time used: 0.054 (sec). Leaf size: 6
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[x]+(4 * I+1) * y{ }^{\prime}[x]+y[x]==0,\left\{y[0]==0, y^{\prime}[0]==0\right\}\right\}, y[x], x\right.$, IncludeSingularSolutions $->$

$$
y(x) \rightarrow 0
$$

5.3 problem 1(c)

5.3.1 Existence and uniqueness analysis 483
5.3.2 Solving as second order linear constant coeff ode 484
5.3.3 Solving using Kovacic algorithm 486

Internal problem ID [5959]
Internal file name [OUTPUT/5207_Sunday_June_05_2022_03_27_28_PM_34164133/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 59
Problem number: 1(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+(-1+3 i) y^{\prime}-3 i y=0
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=0\right]
$$

5.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-1+3 i \\
q(x) & =-3 i \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+(-1+3 i) y^{\prime}-3 i y=0
$$

The domain of $p(x)=-1+3 i$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-3 i$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

5.3.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-1+3 i, C=-3 i$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+(-1+3 i) \lambda \mathrm{e}^{\lambda x}-3 i \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+(-1+3 i) \lambda-3 i=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-1+3 i, C=-3 i$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{1-3 i}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-1+3 i^{2}-(4)(1)(-3 i)} \\
& =\frac{1}{2}-\frac{3 i}{2} \pm \frac{1}{2}+\frac{3 i}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}-\frac{3 i}{2}+\frac{1}{2}+\frac{3 i}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{3 i}{2}-\frac{1}{2}+\frac{3 i}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{(-3 i) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{x}+\mathrm{e}^{-3 i x} c_{2}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+\mathrm{e}^{-3 i x} c_{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1}+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \mathrm{e}^{x}-3 i \mathrm{e}^{-3 i x} c_{2}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=-3 c_{2} i+c_{1} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{9}{5}+\frac{3 i}{5} \\
& c_{2}=\frac{1}{5}-\frac{3 i}{5}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{9 \mathrm{e}^{x}}{5}+\frac{3 i \mathrm{e}^{x}}{5}+\frac{\mathrm{e}^{-3 i x}}{5}-\frac{3 i \mathrm{e}^{-3 i x}}{5}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(\frac{1}{5}-\frac{3 i}{5}\right) \mathrm{e}^{-3 i x}+\left(\frac{9}{5}+\frac{3 i}{5}\right) \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(\frac{1}{5}-\frac{3 i}{5}\right) \mathrm{e}^{-3 i x}+\left(\frac{9}{5}+\frac{3 i}{5}\right) \mathrm{e}^{x}
$$

Verified OK.

5.3.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+(-1+3 i) y^{\prime}-3 i y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-1+3 i \tag{3}\\
& C=-3 i
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4+3 i}{2} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4+3 i \\
& t=2
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-2+\frac{3 i}{2}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 103: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case
one are met. Therefore

$$
L=[1]
$$

Since $r=-2+\frac{3 i}{2}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{\left(\frac{1}{2}+\frac{3 i}{2}\right) x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-1+3 i}{1} d x} \\
& =z_{1} e^{\left(\frac{1}{2}-\frac{3 i}{2}\right) x} \\
& =z_{1}\left(\mathrm{e}^{\left(\frac{1}{2}-\frac{3 i}{2}\right) x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1+3 i}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{(1-3 i) x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\left(-\frac{1}{10}+\frac{3 i}{10}\right) \mathrm{e}^{(-1-3 i) x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}\left(\left(-\frac{1}{10}+\frac{3 i}{10}\right) \mathrm{e}^{(-1-3 i) x}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+\left(-\frac{1}{10}+\frac{3 i}{10}\right) c_{2} \mathrm{e}^{-3 i x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=2$ and $x=0$ in the above gives

$$
\begin{equation*}
2=c_{1}+\left(-\frac{1}{10}+\frac{3 i}{10}\right) c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \mathrm{e}^{x}+\left(\frac{9}{10}+\frac{3 i}{10}\right) c_{2} \mathrm{e}^{-3 i x}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+\left(\frac{9}{10}+\frac{3 i}{10}\right) c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{9}{5}+\frac{3 i}{5} \\
& c_{2}=-2
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{9 \mathrm{e}^{x}}{5}+\frac{3 i \mathrm{e}^{x}}{5}+\frac{\mathrm{e}^{-3 i x}}{5}-\frac{3 i \mathrm{e}^{-3 i x}}{5}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\left(\frac{1}{5}-\frac{3 i}{5}\right) \mathrm{e}^{-3 i x}+\left(\frac{9}{5}+\frac{3 i}{5}\right) \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(\frac{1}{5}-\frac{3 i}{5}\right) \mathrm{e}^{-3 i x}+\left(\frac{9}{5}+\frac{3 i}{5}\right) \mathrm{e}^{x}
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 20

```
dsolve([diff (y(x),x$2)+(3*I-1)*diff (y(x),x)-3*I*y(x)=0,y(0) = 2, D(y)(0) = 0],y(x), singsol=
```

$$
y(x)=\left(\frac{9}{5}+\frac{3 i}{5}\right) \mathrm{e}^{x}+\left(\frac{1}{5}-\frac{3 i}{5}\right) \mathrm{e}^{-3 i x}
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 31
DSolve $\left[\left\{y^{\prime}{ }^{\prime}[x]+(3 * I-1) * y\right.\right.$ ' $[x]-3 * I * y[x]==0,\{y[0]==2, y$ ' $\left.[0]==0\}\right\}, y[x], x$, IncludeSingularSolutions

$$
y(x) \rightarrow \frac{1}{5} e^{-3 i x}\left((9+3 i) e^{(1+3 i) x}+(1-3 i)\right)
$$

5.4 problem 1(d)

5.4.1 Existence and uniqueness analysis 491
5.4.2 Solving as second order linear constant coeff ode 492
5.4.3 Solving as second order ode can be made integrable ode 495
5.4.4 Solving using Kovacic algorithm 497
5.4.5 Maple step by step solution . 501

Internal problem ID [5960]
Internal file name [OUTPUT/5208_Sunday_June_05_2022_03_27_29_PM_32949906/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 59
Problem number: 1(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant__coeff", "second__order_ode_can_bbe_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+10 y=0
$$

With initial conditions

$$
\left[y(0)=\pi, y^{\prime}(0)=\pi^{2}\right]
$$

5.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =10 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+10 y=0
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=10$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

5.4.2 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=10$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+10 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+10=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=10$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(10)} \\
& = \pm i \sqrt{10}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \sqrt{10} \\
& \lambda_{2}=-i \sqrt{10}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \sqrt{10} \\
& \lambda_{2}=-i \sqrt{10}
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=\sqrt{10}$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (\sqrt{10} x)+c_{2} \sin (\sqrt{10} x)\right)
$$

Or

$$
y=c_{1} \cos (\sqrt{10} x)+c_{2} \sin (\sqrt{10} x)
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (\sqrt{10} x)+c_{2} \sin (\sqrt{10} x) \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=\pi$ and $x=0$ in the above gives

$$
\begin{equation*}
\pi=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \sqrt{10} \sin (\sqrt{10} x)+c_{2} \sqrt{10} \cos (\sqrt{10} x)
$$

substituting $y^{\prime}=\pi^{2}$ and $x=0$ in the above gives

$$
\begin{equation*}
\pi^{2}=c_{2} \sqrt{10} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\pi \\
& c_{2}=\frac{\sqrt{10} \pi^{2}}{10}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\cos (\sqrt{10} x) \pi+\frac{\sin (\sqrt{10} x) \sqrt{10} \pi^{2}}{10}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\cos (\sqrt{10} x) \pi+\frac{\sin (\sqrt{10} x) \sqrt{10} \pi^{2}}{10} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\cos (\sqrt{10} x) \pi+\frac{\sin (\sqrt{10} x) \sqrt{10} \pi^{2}}{10}
$$

Verified OK.

5.4.3 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}+10 y^{\prime} y=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+10 y^{\prime} y\right) d x=0 \\
\frac{y^{\prime 2}}{2}+5 y^{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{-10 y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{-10 y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{-10 y^{2}+2 c_{1}}} d y & =\int d x \\
\frac{\sqrt{10} \arctan \left(\frac{\sqrt{10} y}{\sqrt{-10 y^{2}+2 c_{1}}}\right)}{10} & =c_{2}+x
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{-10 y^{2}+2 c_{1}}} d y & =\int d x \\
-\frac{\sqrt{10} \arctan \left(\frac{\sqrt{10} y}{\sqrt{-10 y^{2}+2 c_{1}}}\right)}{10} & =x+c_{3}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.

Looking at the First solution

$$
\begin{equation*}
\frac{\sqrt{10} \arctan \left(\frac{\sqrt{10} y}{\sqrt{-10 y^{2}+2 c_{1}}}\right)}{10}=c_{2}+x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=\pi$ and $x=0$ in the above gives

$$
\begin{equation*}
\frac{\arctan \left(\frac{\sqrt{5} \pi}{\sqrt{-5 \pi^{2}+c_{1}}}\right) \sqrt{10}}{10}=c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$y^{\prime}=\left(\tan \left(\left(c_{2}+x\right) \sqrt{10}\right)^{2}+1\right) \sqrt{2} \sqrt{\frac{c_{1}}{\tan \left(\left(c_{2}+x\right) \sqrt{10}\right)^{2}+1}}-\frac{\tan \left(\left(c_{2}+x\right) \sqrt{10}\right)^{2} \sqrt{2} c_{1}}{\sqrt{\frac{c_{1}}{\tan \left(\left(c_{2}+x\right) \sqrt{10}\right)^{2}+1}}\left(\tan \left(\left(c_{2}+x\right) \sqrt{10}\right.\right.}$
substituting $y^{\prime}=\pi^{2}$ and $x=0$ in the above gives

$$
\begin{equation*}
\pi^{2}=\frac{\cos \left(c_{2} \sqrt{10}\right)^{2} c_{1} \sqrt{2}}{\sqrt{c_{1} \cos \left(c_{2} \sqrt{10}\right)^{2}}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{2} \pi^{4}+5 \pi^{2} \\
& c_{2}=\frac{\arctan \left(\frac{\sqrt{10}}{\pi}\right) \sqrt{10}}{10}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
\frac{\arctan \left(\frac{\sqrt{10} y}{\sqrt{-10 y^{2}+\pi^{4}+10 \pi^{2}}}\right) \sqrt{10}}{10}=\frac{\arctan \left(\frac{\sqrt{10}}{\pi}\right) \sqrt{10}}{10}+x
$$

Looking at the Second solution

$$
\begin{equation*}
-\frac{\sqrt{10} \arctan \left(\frac{\sqrt{10} y}{\sqrt{-10 y^{2}+2 c_{1}}}\right)}{10}=x+c_{3} \tag{2}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=\pi$ and $x=0$ in the above gives

$$
\begin{equation*}
-\frac{\arctan \left(\frac{\sqrt{5} \pi}{\sqrt{-5 \pi^{2}+c_{1}}}\right) \sqrt{10}}{10}=c_{3} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\left(\tan \left(\left(x+c_{3}\right) \sqrt{10}\right)^{2}+1\right) \sqrt{2} \sqrt{\frac{c_{1}}{\tan \left(\left(x+c_{3}\right) \sqrt{10}\right)^{2}+1}}+\frac{\tan \left(\left(x+c_{3}\right) \sqrt{10}\right)^{2} \sqrt{2} c_{1}}{\sqrt{\frac{c_{1}}{\tan \left(\left(x+c_{3}\right) \sqrt{10}\right)^{2}+1}}\left(\operatorname { t a n } \left(\left(x+c_{3}\right) \sqrt{1}\right.\right.}
$$

substituting $y^{\prime}=\pi^{2}$ and $x=0$ in the above gives

$$
\begin{equation*}
\pi^{2}=-\frac{\cos \left(c_{3} \sqrt{10}\right)^{2} c_{1} \sqrt{2}}{\sqrt{c_{1} \cos \left(c_{3} \sqrt{10}\right)^{2}}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{3}\right\}$. There is no solution for the constants of integrations. This solution is removed.
Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\arctan \left(\frac{\sqrt{10} y}{\sqrt{-10 y^{2}+\pi^{4}+10 \pi^{2}}}\right) \sqrt{10}}{10}=\frac{\arctan \left(\frac{\sqrt{10}}{\pi}\right) \sqrt{10}}{10}+x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
\frac{\arctan \left(\frac{\sqrt{10} y}{\sqrt{-10 y^{2}+\pi^{4}+10 \pi^{2}}}\right) \sqrt{10}}{10}=\frac{\arctan \left(\frac{\sqrt{10}}{\pi}\right) \sqrt{10}}{10}+x
$$

Verified OK.

5.4.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+10 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=10
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-10}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-10 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-10 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 104: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-10$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (\sqrt{10} x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (\sqrt{10} x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (\sqrt{10} x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (\sqrt{10} x) \int \frac{1}{\cos (\sqrt{10} x)^{2}} d x \\
& =\cos (\sqrt{10} x)\left(\frac{\sqrt{10} \tan (\sqrt{10} x)}{10}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (\sqrt{10} x))+c_{2}\left(\cos (\sqrt{10} x)\left(\frac{\sqrt{10} \tan (\sqrt{10} x)}{10}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \cos (\sqrt{10} x)+\frac{c_{2} \sqrt{10} \sin (\sqrt{10} x)}{10} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=\pi$ and $x=0$ in the above gives

$$
\begin{equation*}
\pi=c_{1} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \sqrt{10} \sin (\sqrt{10} x)+c_{2} \cos (\sqrt{10} x)
$$

substituting $y^{\prime}=\pi^{2}$ and $x=0$ in the above gives

$$
\begin{equation*}
\pi^{2}=c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\pi \\
& c_{2}=\pi^{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\cos (\sqrt{10} x) \pi+\frac{\sin (\sqrt{10} x) \sqrt{10} \pi^{2}}{10}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\cos (\sqrt{10} x) \pi+\frac{\sin (\sqrt{10} x) \sqrt{10} \pi^{2}}{10} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\cos (\sqrt{10} x) \pi+\frac{\sin (\sqrt{10} x) \sqrt{10} \pi^{2}}{10}
$$

Verified OK.

5.4.5 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+10 y=0, y(0)=\pi,\left.y^{\prime}\right|_{\{x=0\}}=\pi^{2}\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}+10=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-40})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-\mathrm{I} \sqrt{10}, \mathrm{I} \sqrt{10})
$$

- 1st solution of the ODE

$$
y_{1}(x)=\cos (\sqrt{10} x)
$$

- $\quad 2$ nd solution of the ODE
$y_{2}(x)=\sin (\sqrt{10} x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- \quad Substitute in solutions
$y=c_{1} \cos (\sqrt{10} x)+c_{2} \sin (\sqrt{10} x)$
Check validity of solution $y=c_{1} \cos (\sqrt{10} x)+c_{2} \sin (\sqrt{10} x)$
- Use initial condition $y(0)=\pi$

$$
\pi=c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=-c_{1} \sqrt{10} \sin (\sqrt{10} x)+c_{2} \sqrt{10} \cos (\sqrt{10} x)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=\pi^{2}$

$$
\pi^{2}=c_{2} \sqrt{10}
$$

- Solve for c_{1} and c_{2}
$\left\{c_{1}=\pi, c_{2}=\frac{\sqrt{10} \pi^{2}}{10}\right\}$
- Substitute constant values into general solution and simplify

$$
y=\frac{\pi(\sin (\sqrt{10} x) \sqrt{10} \pi+10 \cos (\sqrt{10} x))}{10}
$$

- \quad Solution to the IVP

$$
y=\frac{\pi(\sin (\sqrt{10} x) \sqrt{10} \pi+10 \cos (\sqrt{10} x))}{10}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.063 (sec). Leaf size: 27
dsolve([diff $(y(x), x \$ 2)+10 * y(x)=0, y(0)=P i, D(y)(0)=P i \wedge 2], y(x)$, singsol=all)

$$
y(x)=\frac{\pi(\pi \sqrt{10} \sin (\sqrt{10} x)+10 \cos (\sqrt{10} x))}{10}
$$

\checkmark Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 33
DSolve[\{y' $\left.\quad[x]+10 * y[x]==0,\left\{y[0]==P i, y^{\prime}[0]==P i \sim 2\right\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{\pi^{2} \sin (\sqrt{10} x)}{\sqrt{10}}+\pi \cos (\sqrt{10} x)
$$

6 Chapter 2. Linear equations with constant coefficients. Page 69

6.1 problem 1(a) 505
6.2 problem 1(b) 516
6.3 problem 1(c) 527
6.4 problem 1(d) 540
6.5 problem 1(e) 551
6.6 problem 1(f) 562
6.7 problem 1(g) 573
6.8 problem 1(h) 584
6.9 problem 1(i) 597
6.10 problem 1(j) 608
6.11 problem 4(c) 619

6.1 problem 1(a)

6.1.1 Solving as second order linear constant coeff ode 505
6.1.2 Solving using Kovacic algorithm 508
6.1.3 Maple step by step solution . 513

Internal problem ID [5961]
Internal file name [OUTPUT/5209_Sunday_June_05_2022_03_27_31_PM_85388453/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 69
Problem number: 1(a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y=\cos (x)
$$

6.1.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=4, f(x)=\cos (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Or

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\cos (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (x), \sin (x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (2 x), \sin (2 x)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
3 A_{1} \cos (x)+3 A_{2} \sin (x)=\cos (x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{3}, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\cos (x)}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+\left(\frac{\cos (x)}{3}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{\cos (x)}{3} \tag{1}
\end{equation*}
$$

Figure 109: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{\cos (x)}{3}
$$

Verified OK.

6.1.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-4 \\
t & =1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 106: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (2 x) \int \frac{1}{\cos (2 x)^{2}} d x \\
& =\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 x))+c_{2}\left(\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\cos (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (x), \sin (x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (2 x)}{2}, \cos (2 x)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
3 A_{1} \cos (x)+3 A_{2} \sin (x)=\cos (x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{3}, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\cos (x)}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}\right)+\left(\frac{\cos (x)}{3}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}+\frac{\cos (x)}{3} \tag{1}
\end{equation*}
$$

Figure 110: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}+\frac{\cos (x)}{3}
$$

Verified OK.

6.1.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y=\cos (x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+4=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-16})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-2 \mathrm{I}, 2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (2 x)
$$

- \quad 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (2 x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\cos (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
-2 \sin (2 x) & 2 \cos (2 x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=2
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\cos (2 x)\left(\int 4 \cos (x)^{2} \sin (x) d x\right)}{4}+\frac{\sin (2 x)\left(\int(\cos (x)+\cos (3 x)) d x\right)}{4}
$$

- Compute integrals

$$
y_{p}(x)=\frac{\cos (x)}{3}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{\cos (x)}{3}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 21
dsolve(diff $(y(x), x \$ 2)+4 * y(x)=\cos (x), y(x)$, singsol=all)

$$
y(x)=\sin (2 x) c_{2}+\cos (2 x) c_{1}+\frac{\cos (x)}{3}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 26
DSolve[y'' $[\mathrm{x}]+4 * \mathrm{y}[\mathrm{x}]==\operatorname{Cos}[\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{\cos (x)}{3}+c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

6.2 problem 1(b)

6.2.1 Solving as second order linear constant coeff ode 516
6.2.2 Solving using Kovacic algorithm 520
6.2.3 Maple step by step solution . 525

Internal problem ID [5962]
Internal file name [OUTPUT/5210_Sunday_June_05_2022_03_27_32_PM_59574836/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 69
Problem number: 1(b).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+9 y=\sin (3 x)
$$

6.2.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=9, f(x)=\sin (3 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(9)} \\
& = \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
$$

Or

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\sin (3 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 x), \sin (3 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (3 x), \sin (3 x)\}
$$

Since $\cos (3 x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
[\{x \cos (3 x), x \sin (3 x)\}]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \cos (3 x)+A_{2} x \sin (3 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-6 A_{1} \sin (3 x)+6 A_{2} \cos (3 x)=\sin (3 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{6}, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{x \cos (3 x)}{6}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)+\left(-\frac{x \cos (3 x)}{6}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)-\frac{x \cos (3 x)}{6} \tag{1}
\end{equation*}
$$

Figure 111: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)-\frac{x \cos (3 x)}{6}
$$

Verified OK.

6.2.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-9 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-9 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 108: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (3 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (3 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (3 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (3 x) \int \frac{1}{\cos (3 x)^{2}} d x \\
& =\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (3 x))+c_{2}\left(\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\sin (3 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (3 x), \sin (3 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (3 x)}{3}, \cos (3 x)\right\}
$$

Since $\cos (3 x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
[\{x \cos (3 x), x \sin (3 x)\}]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \cos (3 x)+A_{2} x \sin (3 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-6 A_{1} \sin (3 x)+6 A_{2} \cos (3 x)=\sin (3 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{6}, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{x \cos (3 x)}{6}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}\right)+\left(-\frac{x \cos (3 x)}{6}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}-\frac{x \cos (3 x)}{6} \tag{1}
\end{equation*}
$$

Figure 112: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}-\frac{x \cos (3 x)}{6}
$$

Verified OK.

6.2.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+9 y=\sin (3 x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}+9=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial

$$
r=(-3 \mathrm{I}, 3 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\cos (3 x)$
- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\sin (3 x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sin (3 x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (3 x) & \sin (3 x) \\
-3 \sin (3 x) & 3 \cos (3 x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=3$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\cos (3 x)\left(\int \sin (3 x)^{2} d x\right)}{3}+\frac{\sin (3 x)\left(\int \sin (6 x) d x\right)}{6}
$$

- Compute integrals

$$
y_{p}(x)=\frac{\sin (3 x)}{36}-\frac{x \cos (3 x)}{6}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+\frac{\sin (3 x)}{36}-\frac{x \cos (3 x)}{6}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.015 (sec). Leaf size: 24

```
dsolve(diff(y(x),x$2)+9*y(x)=sin(3*x),y(x), singsol=all)
```

$$
y(x)=\frac{\left(-x+6 c_{1}\right) \cos (3 x)}{6}+\sin (3 x) c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 33

```
DSolve[y''[x]+9*y[x]==Sin[3*x],y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow\left(-\frac{x}{6}+c_{1}\right) \cos (3 x)+\frac{1}{36}\left(1+36 c_{2}\right) \sin (3 x)
$$

6.3 problem 1(c)

6.3.1 Solving as second order linear constant coeff ode 527

6.3.2 Solving using Kovacic algorithm 532
6.3.3 Maple step by step solution 537

Internal problem ID [5963]
Internal file name [OUTPUT/5211_Sunday_June_05_2022_03_27_34_PM_71151919/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 69
Problem number: 1(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y=\tan (x)
$$

6.3.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=\tan (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
$$

Or

$$
y=\cos (x) c_{1}+c_{2} \sin (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\cos (x) c_{1}+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x) \tan (x)}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \sin (x) \tan (x) d x
$$

Hence

$$
u_{1}=\sin (x)-\ln (\sec (x)+\tan (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\tan (x) \cos (x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \sin (x) d x
$$

Hence

$$
u_{2}=-\cos (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=(\sin (x)-\ln (\sec (x)+\tan (x))) \cos (x)-\cos (x) \sin (x)
$$

Which simplifies to

$$
y_{p}(x)=-\cos (x) \ln (\sec (x)+\tan (x))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+(-\cos (x) \ln (\sec (x)+\tan (x)))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x)-\cos (x) \ln (\sec (x)+\tan (x)) \tag{1}
\end{equation*}
$$

Figure 113: Slope field plot

Verification of solutions

$$
y=\cos (x) c_{1}+c_{2} \sin (x)-\cos (x) \ln (\sec (x)+\tan (x))
$$

Verified OK.

6.3.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 110: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\cos (x) c_{1}+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x) \tan (x)}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \sin (x) \tan (x) d x
$$

Hence

$$
u_{1}=\sin (x)-\ln (\sec (x)+\tan (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\tan (x) \cos (x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \sin (x) d x
$$

Hence

$$
u_{2}=-\cos (x)
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=(\sin (x)-\ln (\sec (x)+\tan (x))) \cos (x)-\cos (x) \sin (x)
$$

Which simplifies to

$$
y_{p}(x)=-\cos (x) \ln (\sec (x)+\tan (x))
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+(-\cos (x) \ln (\sec (x)+\tan (x)))
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x)-\cos (x) \ln (\sec (x)+\tan (x)) \tag{1}
\end{equation*}
$$

Figure 114: Slope field plot

Verification of solutions

$$
y=\cos (x) c_{1}+c_{2} \sin (x)-\cos (x) \ln (\sec (x)+\tan (x))
$$

Verified OK.

6.3.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y=\tan (x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial
$r=(-\mathrm{I}, \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x)
$$

- $\quad 2 \mathrm{nd}$ solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=\cos (x) c_{1}+c_{2} \sin (x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\tan (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=1
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\cos (x)\left(\int \sin (x) \tan (x) d x\right)+\sin (x)\left(\int \sin (x) d x\right)
$$

- Compute integrals

$$
y_{p}(x)=-\cos (x) \ln (\sec (x)+\tan (x))
$$

- Substitute particular solution into general solution to ODE

$$
y=\cos (x) c_{1}+c_{2} \sin (x)-\cos (x) \ln (\sec (x)+\tan (x))
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 23

```
dsolve(diff(y(x),x$2)+y(x)=tan(x),y(x), singsol=all)
```

$$
y(x)=\sin (x) c_{2}+\cos (x) c_{1}-\cos (x) \ln (\sec (x)+\tan (x))
$$

\checkmark Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 23
DSolve[y''[x]+y[x]==Tan[x],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \cos (x)(-\operatorname{arctanh}(\sin (x)))+c_{1} \cos (x)+c_{2} \sin (x)
$$

6.4 problem 1(d)

6.4.1 Solving as second order linear constant coeff ode 540
6.4.2 Solving using Kovacic algorithm 543
6.4.3 Maple step by step solution . 548

Internal problem ID [5964]
Internal file name [OUTPUT/5212_Sunday_June_05_2022_03_27_35_PM_73300072/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 69
Problem number: 1(d).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+2 i y^{\prime}+y=x
$$

6.4.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=2 i, C=1, f(x)=x$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 i y^{\prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=2 i, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 i \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+2 i \lambda+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=2 i, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-2 i}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2 i^{2}-(4)(1)(1)} \\
& =-i \pm i \sqrt{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-i+i \sqrt{2} \\
& \lambda_{2}=-i-i \sqrt{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i(\sqrt{2}-1) \\
& \lambda_{2}=-i(1+\sqrt{2})
\end{aligned}
$$

The roots are complex but they are not conjugate of each others. Hence simplification using Euler relation is not possible here. Therefore the final solution is

$$
\begin{aligned}
y & =c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& =c_{1} e^{i(\sqrt{2}-1) x}+c_{2} e^{-i(1+\sqrt{2}) x}
\end{aligned}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{i(\sqrt{2}-1) x}+c_{2} \mathrm{e}^{-i(1+\sqrt{2}) x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, x\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{i(\sqrt{2}-1) x}, \mathrm{e}^{-i(1+\sqrt{2}) x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
A_{2} x+2 i A_{2}+A_{1}=x
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-2 i, A_{2}=1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-2 i+x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{i(\sqrt{2}-1) x}+c_{2} \mathrm{e}^{-i(1+\sqrt{2}) x}\right)+(-2 i+x)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{i(\sqrt{2}-1) x}+c_{2} \mathrm{e}^{-i(1+\sqrt{2}) x}-2 i+x \tag{1}
\end{equation*}
$$

Figure 115: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{i(\sqrt{2}-1) x}+c_{2} \mathrm{e}^{-i(1+\sqrt{2}) x}-2 i+x
$$

Verified OK.

6.4.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+2 i y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=2 i \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-2}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-2 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-2 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 112: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-2$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x \sqrt{2})
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{12 i}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-i x} \\
& =z_{1}\left(\mathrm{e}^{-i x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x \sqrt{2}) \mathrm{e}^{-i x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2 i}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 i x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\sqrt{2} \tan (x \sqrt{2})}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos (x \sqrt{2}) \mathrm{e}^{-i x}\right)+c_{2}\left(\cos (x \sqrt{2}) \mathrm{e}^{-i x}\left(\frac{\sqrt{2} \tan (x \sqrt{2})}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+2 i y^{\prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (x \sqrt{2}) \mathrm{e}^{-i x}+\frac{c_{2} \mathrm{e}^{-i x} \sqrt{2} \sin (x \sqrt{2})}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, x\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\cos (x \sqrt{2}) \mathrm{e}^{-i x}, \frac{\mathrm{e}^{-i x} \sqrt{2} \sin (x \sqrt{2})}{2}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
A_{2} x+2 i A_{2}+A_{1}=x
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-2 i, A_{2}=1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-2 i+x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x \sqrt{2}) \mathrm{e}^{-i x}+\frac{c_{2} \mathrm{e}^{-i x} \sqrt{2} \sin (x \sqrt{2})}{2}\right)+(-2 i+x)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (x \sqrt{2}) \mathrm{e}^{-i x}+\frac{c_{2} \mathrm{e}^{-i x} \sqrt{2} \sin (x \sqrt{2})}{2}-2 i+x \tag{1}
\end{equation*}
$$

Figure 116: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (x \sqrt{2}) \mathrm{e}^{-i x}+\frac{c_{2} \mathrm{e}^{-i x} \sqrt{2} \sin (x \sqrt{2})}{2}-2 i+x
$$

Verified OK.

6.4.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+2 \mathrm{I} y^{\prime}+y=x
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+2 \mathrm{I} r+1=0$
- Use quadratic formula to solve for r $r=\frac{(-2 \mathrm{I}) \pm(\sqrt{-8})}{2}$
- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}-\mathrm{I} \sqrt{2},-\mathrm{I}+\mathrm{I} \sqrt{2})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos ((1+\sqrt{2}) x)
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin ((1+\sqrt{2}) x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos ((1+\sqrt{2}) x)+c_{2} \sin ((1+\sqrt{2}) x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=x\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos ((1+\sqrt{2}) x) & \sin ((1+\sqrt{2}) x) \\
-(1+\sqrt{2}) \sin ((1+\sqrt{2}) x) & (1+\sqrt{2}) \cos ((1+\sqrt{2}) x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=1+\sqrt{2}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\frac{-\cos ((1+\sqrt{2}) x)\left(\int \sin ((1+\sqrt{2}) x) x d x\right)+\sin ((1+\sqrt{2}) x)\left(\int \cos ((1+\sqrt{2}) x) x d x\right)}{1+\sqrt{2}}
$$

- Compute integrals

$$
y_{p}(x)=\frac{x}{(1+\sqrt{2})^{2}}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos ((1+\sqrt{2}) x)+c_{2} \sin ((1+\sqrt{2}) x)+\frac{x}{(1+\sqrt{2})^{2}}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 34

```
dsolve(diff(y(x),x$2)+2*I*diff(y(x),x)+y(x)=x,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-i x} \sin (\sqrt{2} x) c_{2}+\mathrm{e}^{-i x} \cos (\sqrt{2} x) c_{1}+x-2 i
$$

Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 44
DSolve[y''[x]+2*I*y'[x]+y[x]==x,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x+c_{1} e^{-i(1+\sqrt{2}) x}+c_{2} e^{i(\sqrt{2}-1) x}-2 i
$$

6.5 problem 1(e)

6.5.1 Solving as second order linear constant coeff ode 551
6.5.2 Solving using Kovacic algorithm 554
6.5.3 Maple step by step solution . 559

Internal problem ID [5965]
Internal file name [OUTPUT/5213_Sunday_June_05_2022_03_27_37_PM_28932921/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 69
Problem number: 1(e).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-4 y^{\prime}+5 y=3 \mathrm{e}^{-x}+2 x^{2}
$$

6.5.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-4, C=5, f(x)=3 \mathrm{e}^{-x}+2 x^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y^{\prime}+5 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-4, C=5$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-4 \lambda \mathrm{e}^{\lambda x}+5 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-4 \lambda+5=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-4, C=5$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-4^{2}-(4)(1)(5)} \\
& =2 \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lambda_{1} & =2+i \\
\lambda_{2} & =2-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2+i \\
& \lambda_{2}=2-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=2$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{2 x}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{2 x}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 \mathrm{e}^{-x}+2 x^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-x}\right\},\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\cos (x) \mathrm{e}^{2 x}, \sin (x) \mathrm{e}^{2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-x}+A_{2}+A_{3} x+A_{4} x^{2}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
10 A_{1} \mathrm{e}^{-x}+2 A_{4}-4 A_{3}-8 A_{4} x+5 A_{2}+5 A_{3} x+5 A_{4} x^{2}=3 \mathrm{e}^{-x}+2 x^{2}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{3}{10}, A_{2}=\frac{44}{125}, A_{3}=\frac{16}{25}, A_{4}=\frac{2}{5}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{3 \mathrm{e}^{-x}}{10}+\frac{44}{125}+\frac{16 x}{25}+\frac{2 x^{2}}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{2 x}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)\right)+\left(\frac{3 \mathrm{e}^{-x}}{10}+\frac{44}{125}+\frac{16 x}{25}+\frac{2 x^{2}}{5}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+\frac{3 \mathrm{e}^{-x}}{10}+\frac{44}{125}+\frac{16 x}{25}+\frac{2 x^{2}}{5} \tag{1}
\end{equation*}
$$

Figure 117: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 x}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+\frac{3 \mathrm{e}^{-x}}{10}+\frac{44}{125}+\frac{16 x}{25}+\frac{2 x^{2}}{5}
$$

Verified OK.

6.5.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-4 y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-4 \tag{3}\\
& C=5
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 114: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d x} \\
& =z_{1} e^{2 x} \\
& =z_{1}\left(\mathrm{e}^{2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x) \mathrm{e}^{2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos (x) \mathrm{e}^{2 x}\right)+c_{2}\left(\cos (x) \mathrm{e}^{2 x}(\tan (x))\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y^{\prime}+5 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (x) \mathrm{e}^{2 x}+c_{2} \sin (x) \mathrm{e}^{2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 \mathrm{e}^{-x}+2 x^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-x}\right\},\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\cos (x) \mathrm{e}^{2 x}, \sin (x) \mathrm{e}^{2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-x}+A_{2}+A_{3} x+A_{4} x^{2}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
10 A_{1} \mathrm{e}^{-x}+2 A_{4}-4 A_{3}-8 A_{4} x+5 A_{2}+5 A_{3} x+5 A_{4} x^{2}=3 \mathrm{e}^{-x}+2 x^{2}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{3}{10}, A_{2}=\frac{44}{125}, A_{3}=\frac{16}{25}, A_{4}=\frac{2}{5}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{3 \mathrm{e}^{-x}}{10}+\frac{44}{125}+\frac{16 x}{25}+\frac{2 x^{2}}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x) \mathrm{e}^{2 x}+c_{2} \sin (x) \mathrm{e}^{2 x}\right)+\left(\frac{3 \mathrm{e}^{-x}}{10}+\frac{44}{125}+\frac{16 x}{25}+\frac{2 x^{2}}{5}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{2 x}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+\frac{3 \mathrm{e}^{-x}}{10}+\frac{44}{125}+\frac{16 x}{25}+\frac{2 x^{2}}{5}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 x}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+\frac{3 \mathrm{e}^{-x}}{10}+\frac{44}{125}+\frac{16 x}{25}+\frac{2 x^{2}}{5} \tag{1}
\end{equation*}
$$

Figure 118: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 x}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+\frac{3 \mathrm{e}^{-x}}{10}+\frac{44}{125}+\frac{16 x}{25}+\frac{2 x^{2}}{5}
$$

Verified OK.

6.5.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-4 y^{\prime}+5 y=3 \mathrm{e}^{-x}+2 x^{2}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-4 r+5=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{4 \pm(\sqrt{-4})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(2-\mathrm{I}, 2+\mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x) \mathrm{e}^{2 x}
$$

- 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x) \mathrm{e}^{2 x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE

$$
y=\mathrm{e}^{2 x} \cos (x) c_{1}+\mathrm{e}^{2 x} \sin (x) c_{2}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=3 \mathrm{e}^{-x}+2 x^{2}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) \mathrm{e}^{2 x} & \sin (x) \mathrm{e}^{2 x} \\
-\sin (x) \mathrm{e}^{2 x}+2 \cos (x) \mathrm{e}^{2 x} & \cos (x) \mathrm{e}^{2 x}+2 \sin (x) \mathrm{e}^{2 x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{4 x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\mathrm{e}^{2 x}\left(\cos (x)\left(\int \sin (x) \mathrm{e}^{-2 x}\left(3 \mathrm{e}^{-x}+2 x^{2}\right) d x\right)-\sin (x)\left(\int \cos (x) \mathrm{e}^{-2 x}\left(3 \mathrm{e}^{-x}+2 x^{2}\right) d x\right)\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{3 \mathrm{e}^{-x}}{10}+\frac{44}{125}+\frac{16 x}{25}+\frac{2 x^{2}}{5}
$$

- Substitute particular solution into general solution to ODE

$$
y=\mathrm{e}^{2 x} \cos (x) c_{1}+\mathrm{e}^{2 x} \sin (x) c_{2}+\frac{2 x^{2}}{5}+\frac{3 \mathrm{e}^{-x}}{10}+\frac{16 x}{25}+\frac{44}{125}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 36

```
dsolve(diff(y(x),x$2)-4*diff(y(x),x)+5*y(x)=3*exp(-x)+2*x^2,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{2 x} \sin (x) c_{2}+\mathrm{e}^{2 x} \cos (x) c_{1}+\frac{3 \mathrm{e}^{-x}}{10}+\frac{2 x^{2}}{5}+\frac{16 x}{25}+\frac{44}{125}
$$

\checkmark Solution by Mathematica
Time used: 0.316 (sec). Leaf size: 47
DSolve[y''[x]-4*y'[x]+5*y[x]==3*Exp[-x]+2*x^2,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{250}\left(100 x^{2}+160 x+75 e^{-x}+88\right)+c_{2} e^{2 x} \cos (x)+c_{1} e^{2 x} \sin (x)
$$

6.6 problem 1(f)

6.6.1 Solving as second order linear constant coeff ode 562
6.6.2 Solving using Kovacic algorithm 565
6.6.3 Maple step by step solution . 570

Internal problem ID [5966]
Internal file name [OUTPUT/5214_Sunday_June_05_2022_03_27_39_PM_49247672/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 69
Problem number: 1(f).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-7 y^{\prime}+6 y=\sin (x)
$$

6.6.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-7, C=6, f(x)=\sin (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-7 y^{\prime}+6 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-7, C=6$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-7 \lambda \mathrm{e}^{\lambda x}+6 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-7 \lambda+6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-7, C=6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{7}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-7^{2}-(4)(1)(6)} \\
& =\frac{7}{2} \pm \frac{5}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lambda_{1} & =\frac{7}{2}+\frac{5}{2} \\
\lambda_{2} & =\frac{7}{2}-\frac{5}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=6 \\
& \lambda_{2}=1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(6) x}+c_{2} e^{(1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{6 x}+c_{2} \mathrm{e}^{x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{6 x}+c_{2} \mathrm{e}^{x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\sin (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (x), \sin (x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{6 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
5 A_{1} \cos (x)+5 A_{2} \sin (x)+7 A_{1} \sin (x)-7 A_{2} \cos (x)=\sin (x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{7}{74}, A_{2}=\frac{5}{74}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{7 \cos (x)}{74}+\frac{5 \sin (x)}{74}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{6 x}+c_{2} \mathrm{e}^{x}\right)+\left(\frac{7 \cos (x)}{74}+\frac{5 \sin (x)}{74}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{6 x}+c_{2} \mathrm{e}^{x}+\frac{7 \cos (x)}{74}+\frac{5 \sin (x)}{74} \tag{1}
\end{equation*}
$$

Figure 119: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{6 x}+c_{2} \mathrm{e}^{x}+\frac{7 \cos (x)}{74}+\frac{5 \sin (x)}{74}
$$

Verified OK.

6.6.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-7 y^{\prime}+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-7 \tag{3}\\
& C=6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{25}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=25 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{25 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 116: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{25}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{5 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-7}{1} d x} \\
& =z_{1} e^{\frac{7 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{7 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-7}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{7 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{5 x}}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}\left(\frac{\mathrm{e}^{5 x}}{5}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-7 y^{\prime}+6 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{x}+\frac{c_{2} \mathrm{e}^{6 x}}{5}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\sin (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (x), \sin (x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{6 x}}{5}, \mathrm{e}^{x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
5 A_{1} \cos (x)+5 A_{2} \sin (x)+7 A_{1} \sin (x)-7 A_{2} \cos (x)=\sin (x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{7}{74}, A_{2}=\frac{5}{74}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{7 \cos (x)}{74}+\frac{5 \sin (x)}{74}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}+\frac{c_{2} \mathrm{e}^{6 x}}{5}\right)+\left(\frac{7 \cos (x)}{74}+\frac{5 \sin (x)}{74}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+\frac{c_{2} \mathrm{e}^{6 x}}{5}+\frac{7 \cos (x)}{74}+\frac{5 \sin (x)}{74} \tag{1}
\end{equation*}
$$

Figure 120: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}+\frac{c_{2} \mathrm{e}^{6 x}}{5}+\frac{7 \cos (x)}{74}+\frac{5 \sin (x)}{74}
$$

Verified OK.

6.6.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-7 y^{\prime}+6 y=\sin (x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}-7 r+6=0
$$

- Factor the characteristic polynomial

$$
(r-1)(r-6)=0
$$

- Roots of the characteristic polynomial
$r=(1,6)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{x}$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{6 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{6 x}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function $\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sin (x)\right]$
- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{x} & \mathrm{e}^{6 x} \\ \mathrm{e}^{x} & 6 \mathrm{e}^{6 x}\end{array}\right]$
- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=5 \mathrm{e}^{7 x}$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=-\frac{\mathrm{e}^{x}\left(\int \mathrm{e}^{-x} \sin (x) d x\right)}{5}+\frac{\mathrm{e}^{6 x}\left(\int \sin (x) \mathrm{e}^{-6 x} d x\right)}{5}$
- Compute integrals
$y_{p}(x)=\frac{7 \cos (x)}{74}+\frac{5 \sin (x)}{74}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{6 x}+\frac{7 \cos (x)}{74}+\frac{5 \sin (x)}{74}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(diff(y(x),x$2)-7*diff (y(x),x)+6*y(x)=sin(x),y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{6 x} c_{2}+\mathrm{e}^{x} c_{1}+\frac{7 \cos (x)}{74}+\frac{5 \sin (x)}{74}
$$

\checkmark Solution by Mathematica
Time used: 0.063 (sec). Leaf size: 32
DSolve[y''[x]-7*y'[x]+6*y[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \frac{5 \sin (x)}{74}+\frac{7 \cos (x)}{74}+c_{1} e^{x}+c_{2} e^{6 x}
$$

6.7 problem 1(g)

6.7.1 Solving as second order linear constant coeff ode 573
6.7.2 Solving using Kovacic algorithm 577]
6.7.3 Maple step by step solution . 581

Internal problem ID [5967]
Internal file name [OUTPUT/5215_Sunday_June_05_2022_03_27_40_PM_60845922/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 69
Problem number: 1(g).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y=2 \sin (x) \sin (2 x)
$$

6.7.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=\cos (x)-\cos (3 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
$$

Or

$$
y=\cos (x) c_{1}+c_{2} \sin (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\cos (x) c_{1}+c_{2} \sin (x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\cos (x)-\cos (3 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (x), \sin (x)\},\{\cos (3 x), \sin (3 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (x), \sin (x)\}
$$

Since $\cos (x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
[\{\cos (x) x, \sin (x) x\},\{\cos (3 x), \sin (3 x)\}]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} \cos (x) x+A_{2} \sin (x) x+A_{3} \cos (3 x)+A_{4} \sin (3 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-2 A_{1} \sin (x)+2 A_{2} \cos (x)-8 A_{3} \cos (3 x)-8 A_{4} \sin (3 x)=\cos (x)-\cos (3 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=\frac{1}{2}, A_{3}=\frac{1}{8}, A_{4}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\sin (x) x}{2}+\frac{\cos (3 x)}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+\left(\frac{\sin (x) x}{2}+\frac{\cos (3 x)}{8}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x)+\frac{\sin (x) x}{2}+\frac{\cos (3 x)}{8} \tag{1}
\end{equation*}
$$

Figure 121: Slope field plot

Verification of solutions

$$
y=\cos (x) c_{1}+c_{2} \sin (x)+\frac{\sin (x) x}{2}+\frac{\cos (3 x)}{8}
$$

Verified OK.

6.7.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 118: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\cos (x) c_{1}+c_{2} \sin (x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
4 \cos (x) \sin (x)^{2}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (x), \sin (x)\},\{\cos (3 x), \sin (3 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (x), \sin (x)\}
$$

Since $\cos (x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
[\{\cos (x) x, \sin (x) x\},\{\cos (3 x), \sin (3 x)\}]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} \cos (x) x+A_{2} \sin (x) x+A_{3} \cos (3 x)+A_{4} \sin (3 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-2 A_{1} \sin (x)+2 A_{2} \cos (x)-8 A_{3} \cos (3 x)-8 A_{4} \sin (3 x)=\cos (x)-\cos (3 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=\frac{1}{2}, A_{3}=\frac{1}{8}, A_{4}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\sin (x) x}{2}+\frac{\cos (3 x)}{8}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+\left(\frac{\sin (x) x}{2}+\frac{\cos (3 x)}{8}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x)+\frac{\sin (x) x}{2}+\frac{\cos (3 x)}{8} \tag{1}
\end{equation*}
$$

Figure 122: Slope field plot

Verification of solutions

$$
y=\cos (x) c_{1}+c_{2} \sin (x)+\frac{\sin (x) x}{2}+\frac{\cos (3 x)}{8}
$$

Verified OK.

6.7.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y=\cos (x)-\cos (3 x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-4})}{2}
$$

- Roots of the characteristic polynomial
$r=(-\mathrm{I}, \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x)
$$

- \quad 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE

$$
y=\cos (x) c_{1}+c_{2} \sin (x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\cos (x)-\cos (3 x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=1
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-4 \cos (x)\left(\int \sin (x)^{3} \cos (x) d x\right)+\frac{\sin (x)\left(\int(1-\cos (4 x)) d x\right)}{2}
$$

- Compute integrals

$$
y_{p}(x)=\frac{\sin (x)(-\cos (x) \sin (x)+x)}{2}
$$

- Substitute particular solution into general solution to ODE

$$
y=\cos (x) c_{1}+c_{2} \sin (x)+\frac{\sin (x)(-\cos (x) \sin (x)+x)}{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

```
dsolve(diff(y(x),x$2)+y(x)=2*sin}(\textrm{x})*\operatorname{sin}(2*x),y(x), singsol=all
```

$$
y(x)=-\frac{\cos (x) \sin (x)^{2}}{2}+\frac{\left(2 c_{2}+x\right) \sin (x)}{2}+\cos (x) c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 33
DSolve[y'' $[x]+y[x]==2 * \operatorname{Sin}[x] * \operatorname{Sin}[2 * x], y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{8}\left(\cos (3 x)+\left(-1+8 c_{1}\right) \cos (x)+4\left(x+2 c_{2}\right) \sin (x)\right)
$$

6.8 problem 1(h)

6.8.1 Solving as second order linear constant coeff ode 584
6.8.2 Solving using Kovacic algorithm 588
6.8.3 Maple step by step solution . 594

Internal problem ID [5968]
Internal file name [OUTPUT/5216_Sunday_June_05_2022_03_27_42_PM_83336233/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 69
Problem number: 1(h).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y=\sec (x)
$$

6.8.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=\sec (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
$$

Or

$$
y=\cos (x) c_{1}+c_{2} \sin (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\cos (x) c_{1}+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x) \sec (x)}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \tan (x) d x
$$

Hence

$$
u_{1}=\ln (\cos (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\sec (x) \cos (x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int 1 d x
$$

Hence

$$
u_{2}=x
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\ln (\cos (x)) \cos (x)+\sin (x) x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+(\ln (\cos (x)) \cos (x)+\sin (x) x)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x)+\ln (\cos (x)) \cos (x)+\sin (x) x \tag{1}
\end{equation*}
$$

Figure 123: Slope field plot

Verification of solutions

$$
y=\cos (x) c_{1}+c_{2} \sin (x)+\ln (\cos (x)) \cos (x)+\sin (x) x
$$

Verified OK.

6.8.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 120: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\cos (x) c_{1}+c_{2} \sin (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
$$

Therefore

$$
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
$$

Which simplifies to

$$
W=\cos (x)^{2}+\sin (x)^{2}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\sin (x) \sec (x)}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \tan (x) d x
$$

Hence

$$
u_{1}=\ln (\cos (x))
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\sec (x) \cos (x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int 1 d x
$$

Hence

$$
u_{2}=x
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\ln (\cos (x)) \cos (x)+\sin (x) x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+(\ln (\cos (x)) \cos (x)+\sin (x) x)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x)+\ln (\cos (x)) \cos (x)+\sin (x) x \tag{1}
\end{equation*}
$$

Figure 124: Slope field plot

Verification of solutions

$$
y=\cos (x) c_{1}+c_{2} \sin (x)+\ln (\cos (x)) \cos (x)+\sin (x) x
$$

Verified OK.

6.8.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y=\sec (x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r $r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}, \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x)
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- \quad Substitute in solutions of the homogeneous ODE

$$
y=\cos (x) c_{1}+c_{2} \sin (x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sec (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=1
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\cos (x)\left(\int \tan (x) d x\right)+\sin (x)\left(\int 1 d x\right)
$$

- Compute integrals

$$
y_{p}(x)=\ln (\cos (x)) \cos (x)+\sin (x) x
$$

- Substitute particular solution into general solution to ODE

$$
y=\cos (x) c_{1}+c_{2} \sin (x)+\ln (\cos (x)) \cos (x)+\sin (x) x
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 22

```
dsolve(diff(y(x),x$2)+y(x)=sec(x),y(x), singsol=all)
```

$$
y(x)=-\ln (\sec (x)) \cos (x)+\cos (x) c_{1}+\sin (x)\left(x+c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 22
DSolve[y''[x]+y[x]==Sec[x],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow\left(x+c_{2}\right) \sin (x)+\cos (x)\left(\log (\cos (x))+c_{1}\right)
$$

6.9 problem 1(i)

6.9.1 Solving as second order linear constant coeff ode 597
6.9.2 Solving using Kovacic algorithm 600
6.9.3 Maple step by step solution . 605

Internal problem ID [5969]
Internal file name [OUTPUT/5217_Sunday_June_05_2022_03_27_43_PM_95613046/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 69
Problem number: 1(i).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
4 y^{\prime \prime}-y=\mathrm{e}^{x}
$$

6.9.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=4, B=0, C=-1, f(x)=\mathrm{e}^{x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
4 y^{\prime \prime}-y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=4, B=0, C=-1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
4 \lambda^{2} \mathrm{e}^{\lambda x}-\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
4 \lambda^{2}-1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=4, B=0, C=-1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(4)} \pm \frac{1}{(2)(4)} \sqrt{0^{2}-(4)(4)(-1)} \\
& = \pm \frac{1}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+\frac{1}{2} \\
& \lambda_{2}=-\frac{1}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =\frac{1}{2} \\
\lambda_{2} & =-\frac{1}{2}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(\frac{1}{2}\right) x}+c_{2} e^{\left(-\frac{1}{2}\right) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-\frac{x}{2}}, \mathrm{e}^{\frac{x}{2}}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
3 A_{1} \mathrm{e}^{x}=\mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{x}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}}\right)+\left(\frac{\mathrm{e}^{x}}{3}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}}+\frac{\mathrm{e}^{x}}{3} \tag{1}
\end{equation*}
$$

Figure 125: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-\frac{x}{2}}+\frac{\mathrm{e}^{x}}{3}
$$

Verified OK.

6.9.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
4 y^{\prime \prime}-y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=4 \\
& B=0 \tag{3}\\
& C=-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 122: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{1}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-\frac{x}{2}}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{x}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-\frac{x}{2}} \int \frac{1}{\mathrm{e}^{-x}} d x \\
& =\mathrm{e}^{-\frac{x}{2}}\left(\mathrm{e}^{x}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{2}}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
4 y^{\prime \prime}-y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} \mathrm{e}^{\frac{x}{2}}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-\frac{x}{2}}, \mathrm{e}^{\frac{x}{2}}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
3 A_{1} \mathrm{e}^{x}=\mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{3}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\mathrm{e}^{x}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} \mathrm{e}^{\frac{x}{2}}\right)+\left(\frac{\mathrm{e}^{x}}{3}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} \mathrm{e}^{\frac{x}{2}}+\frac{\mathrm{e}^{x}}{3} \tag{1}
\end{equation*}
$$

Figure 126: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} \mathrm{e}^{\frac{x}{2}}+\frac{\mathrm{e}^{x}}{3}
$$

Verified OK.

6.9.3 Maple step by step solution

Let's solve
$4 y^{\prime \prime}-y=\mathrm{e}^{x}$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{y}{4}+\frac{\mathrm{e}^{x}}{4}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{y}{4}=\frac{\mathrm{e}^{x}}{4}$
- Characteristic polynomial of homogeneous ODE
$r^{2}-\frac{1}{4}=0$
- Factor the characteristic polynomial

$$
\frac{(2 r-1)(2 r+1)}{4}=0
$$

- Roots of the characteristic polynomial

$$
r=\left(-\frac{1}{2}, \frac{1}{2}\right)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
$$

- $\quad 2 n d$ solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{\frac{x}{2}}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} \mathrm{e}^{\frac{x}{2}}+y_{p}(x)$
\square
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\frac{\mathrm{e}^{x}}{4}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{x}{2}} & \mathrm{e}^{\frac{x}{2}} \\
-\frac{\mathrm{e}^{-\frac{x}{2}}}{2} & \frac{\mathrm{e}^{\frac{x}{2}}}{2}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=1
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\mathrm{e}^{-\frac{x}{2}}\left(\int \mathrm{e}^{\frac{3 x}{2}} d x\right)}{4}+\frac{\mathrm{e}^{\frac{x}{2}}\left(\int \mathrm{e}^{\frac{x}{2}} d x\right)}{4}
$$

- Compute integrals

$$
y_{p}(x)=\frac{\mathrm{e}^{x}}{3}
$$

- \quad Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} \mathrm{e}^{\frac{x}{2}}+\frac{\mathrm{e}^{x}}{3}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 21

```
dsolve(4*diff(y(x),x$2)-y(x)=exp(x),y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{\frac{x}{2}} c_{2}+c_{1} \mathrm{e}^{-\frac{x}{2}}+\frac{\mathrm{e}^{x}}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 33
DSolve[4*y''[x]-y[x]==Exp[x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{e^{x}}{3}+c_{1} e^{x / 2}+c_{2} e^{-x / 2}
$$

6.10 problem 1(j)

6.10.1 Solving as second order linear constant coeff ode 608
6.10.2 Solving using Kovacic algorithm 611
6.10.3 Maple step by step solution . 616

Internal problem ID [5970]
Internal file name [OUTPUT/5218_Sunday_June_05_2022_03_27_45_PM_87728478/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 69
Problem number: 1(j).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
6 y^{\prime \prime}+5 y^{\prime}-6 y=x
$$

6.10.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=6, B=5, C=-6, f(x)=x$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
6 y^{\prime \prime}+5 y^{\prime}-6 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=6, B=5, C=-6$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
6 \lambda^{2} \mathrm{e}^{\lambda x}+5 \lambda \mathrm{e}^{\lambda x}-6 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
6 \lambda^{2}+5 \lambda-6=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=6, B=5, C=-6$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-5}{(2)(6)} \pm \frac{1}{(2)(6)} \sqrt{5^{2}-(4)(6)(-6)} \\
& =-\frac{5}{12} \pm \frac{13}{12}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=-\frac{5}{12}+\frac{13}{12} \\
& \lambda_{2}=-\frac{5}{12}-\frac{13}{12}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =\frac{2}{3} \\
\lambda_{2} & =-\frac{3}{2}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(\frac{2}{3}\right) x}+c_{2} e^{\left(-\frac{3}{2}\right) x}
\end{aligned}
$$

Or

$$
y=\mathrm{e}^{\frac{2 x}{3}} c_{1}+c_{2} \mathrm{e}^{-\frac{3 x}{2}}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\mathrm{e}^{\frac{2 x}{3}} c_{1}+c_{2} \mathrm{e}^{-\frac{3 x}{2}}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

x

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, x\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-\frac{3 x}{2}}, \mathrm{e}^{\frac{2 x}{3}}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-6 A_{2} x-6 A_{1}+5 A_{2}=x
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{5}{36}, A_{2}=-\frac{1}{6}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{x}{6}-\frac{5}{36}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{\frac{2 x}{3}} c_{1}+c_{2} \mathrm{e}^{-\frac{3 x}{2}}\right)+\left(-\frac{x}{6}-\frac{5}{36}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{2 x}{3}} c_{1}+c_{2} \mathrm{e}^{-\frac{3 x}{2}}-\frac{x}{6}-\frac{5}{36} \tag{1}
\end{equation*}
$$

Figure 127: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{2 x}{3}} c_{1}+c_{2} \mathrm{e}^{-\frac{3 x}{2}}-\frac{x}{6}-\frac{5}{36}
$$

Verified OK.

6.10.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
6 y^{\prime \prime}+5 y^{\prime}-6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=6 \\
& B=5 \tag{3}\\
& C=-6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{169}{144} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=169 \\
& t=144
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{169 z(x)}{144} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 124: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{169}{144}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{13 x}{12}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{5}{6} d x} \\
& =z_{1} e^{-\frac{5 x}{12}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{5 x}{12}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-\frac{3 x}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{5}{6} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{5 x}{6}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{6 \mathrm{e}^{\frac{13 x}{6}}}{13}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{3 x}{2}}\right)+c_{2}\left(\mathrm{e}^{-\frac{3 x}{2}}\left(\frac{6 \mathrm{e}^{\frac{13 x}{6}}}{13}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
6 y^{\prime \prime}+5 y^{\prime}-6 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-\frac{3 x}{2}}+\frac{6 c_{2} \mathrm{e}^{\frac{2 x}{3}}}{13}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, x\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{6 \mathrm{e}^{\frac{2 x}{3}}}{13}, \mathrm{e}^{-\frac{3 x}{2}}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-6 A_{2} x-6 A_{1}+5 A_{2}=x
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{5}{36}, A_{2}=-\frac{1}{6}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{x}{6}-\frac{5}{36}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-\frac{3 x}{2}}+\frac{6 c_{2} \mathrm{e}^{\frac{2 x}{3}}}{13}\right)+\left(-\frac{x}{6}-\frac{5}{36}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{3 x}{2}}+\frac{6 c_{2} \mathrm{e}^{\frac{2 x}{3}}}{13}-\frac{x}{6}-\frac{5}{36} \tag{1}
\end{equation*}
$$

Figure 128: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-\frac{3 x}{2}}+\frac{6 c_{2} \mathrm{e}^{\frac{2 x}{3}}}{13}-\frac{x}{6}-\frac{5}{36}
$$

Verified OK.

6.10.3 Maple step by step solution

Let's solve

$$
6 y^{\prime \prime}+5 y^{\prime}-6 y=x
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{5 y^{\prime}}{6}+y+\frac{x}{6}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{5 y^{\prime}}{6}-y=\frac{x}{6}$
- Characteristic polynomial of homogeneous ODE

$$
r^{2}+\frac{5}{6} r-1=0
$$

- Factor the characteristic polynomial

$$
\frac{(2 r+3)(3 r-2)}{6}=0
$$

- Roots of the characteristic polynomial

$$
r=\left(-\frac{3}{2}, \frac{2}{3}\right)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{\frac{2 x}{3}}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-\frac{3 x}{2}}+c_{2} \mathrm{e}^{\frac{2 x}{3}}+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\frac{x}{6}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{3 x}{2}} & \mathrm{e}^{\frac{2 x}{3}} \\
-\frac{3 \mathrm{e}^{-\frac{3 x}{2}}}{2} & \frac{2 \mathrm{e}^{\frac{2 x}{3}}}{3}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\frac{13 e^{-\frac{5 x}{6}}}{6}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\frac{\left(\mathrm{e}^{\frac{13 x}{6}}\left(\int x \mathrm{e}^{-\frac{2 x}{3}} d x\right)-\left(\int x \mathrm{e}^{\frac{3 x}{2}} d x\right)\right) \mathrm{e}^{-\frac{3 x}{2}}}{13}
$$

- Compute integrals

$$
y_{p}(x)=-\frac{x}{6}-\frac{5}{36}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-\frac{3 x}{2}}+c_{2} \mathrm{e}^{\frac{2 x}{3}}-\frac{x}{6}-\frac{5}{36}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 29

```
dsolve(6*diff(y(x),x$2)+5*diff(y(x),x)-6*y(x)=x,y(x), singsol=all)
```

$$
y(x)=-\frac{\left(\left(x+\frac{5}{6}\right) \mathrm{e}^{\frac{3 x}{2}}-6 \mathrm{e}^{\frac{13 x}{6}} c_{2}-6 c_{1}\right) \mathrm{e}^{-\frac{3 x}{2}}}{6}
$$

Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 34
DSolve[6*y''[x]+5*y'[x]-6*y[x]==x,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\frac{x}{6}+c_{1} e^{2 x / 3}+c_{2} e^{-3 x / 2}-\frac{5}{36}
$$

6.11 problem 4(c)

6.11.1 Existence and uniqueness analysis 619
6.11.2 Solving as second order linear constant coeff ode 620
6.11.3 Solving using Kovacic algorithm 625
6.11.4 Maple step by step solution . 632

Internal problem ID [5971]
Internal file name [OUTPUT/5219_Sunday_June_05_2022_03_27_46_PM_50415/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 69
Problem number: 4(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+\omega^{2} y=A \cos (\omega x)
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=1\right]
$$

6.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =\omega^{2} \\
F & =A \cos (\omega x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\omega^{2} y=A \cos (\omega x)
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\omega^{2}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. The domain of $F=A \cos (\omega x)$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

6.11.2 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=\omega^{2}, f(x)=A \cos (\omega x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+\omega^{2} y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=\omega^{2}$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\omega^{2} \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+\omega^{2}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=\omega^{2}$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)\left(\omega^{2}\right)} \\
& = \pm \sqrt{-\omega^{2}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+\sqrt{-\omega^{2}} \\
& \lambda_{2}=-\sqrt{-\omega^{2}}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=\sqrt{-\omega^{2}} \\
& \lambda_{2}=-\sqrt{-\omega^{2}}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(\sqrt{-\omega^{2}}\right) x}+c_{2} e^{\left(-\sqrt{-\omega^{2}}\right) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{\sqrt{-\omega^{2}} x}+c_{2} \mathrm{e}^{-\sqrt{-\omega^{2}} x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{\sqrt{-\omega^{2}} x}+c_{2} \mathrm{e}^{-\sqrt{-\omega^{2}} x}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{\sqrt{-\omega^{2}} x} \\
& y_{2}=\mathrm{e}^{-\sqrt{-\omega^{2}} x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{\sqrt{-\omega^{2}} x} & \mathrm{e}^{-\sqrt{-\omega^{2}} x} \\
\frac{d}{d x}\left(\mathrm{e}^{\sqrt{-\omega^{2}} x}\right) & \frac{d}{d x}\left(\mathrm{e}^{-\sqrt{-\omega^{2}} x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{\sqrt{-\omega^{2}} x} & \mathrm{e}^{-\sqrt{-\omega^{2}} x} \\
\sqrt{-\omega^{2}} \mathrm{e}^{\sqrt{-\omega^{2}} x} & -\sqrt{-\omega^{2}} \mathrm{e}^{-\sqrt{-\omega^{2}} x}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{\sqrt{-\omega^{2}} x}\right)\left(-\sqrt{-\omega^{2}} \mathrm{e}^{-\sqrt{-\omega^{2}} x}\right)-\left(\mathrm{e}^{-\sqrt{-\omega^{2}} x}\right)\left(\sqrt{-\omega^{2}} \mathrm{e}^{\sqrt{-\omega^{2}} x}\right)
$$

Which simplifies to

$$
W=-2 \mathrm{e}^{\sqrt{-\omega^{2}} x} \sqrt{-\omega^{2}} \mathrm{e}^{-\sqrt{-\omega^{2}} x}
$$

Which simplifies to

$$
W=-2 \sqrt{-\omega^{2}}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\mathrm{e}^{-\sqrt{-\omega^{2}} x} A \cos (\omega x)}{-2 \sqrt{-\omega^{2}}} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{\mathrm{e}^{-\sqrt{-\omega^{2}} x} A \cos (\omega x)}{2 \sqrt{-\omega^{2}}} d x
$$

Hence

$$
\begin{aligned}
& u_{1}= \\
& -\frac{-\frac{A \mathrm{e}^{-\sqrt{-\omega^{2}} x}}{4 \omega}-\frac{A x \mathrm{e}^{-\sqrt{-\omega^{2}} x} \tan \left(\frac{\omega x}{2}\right)}{2}+\frac{A \sqrt{-\omega^{2}} x \mathrm{e}^{-\sqrt{-\omega^{2}} x}}{4 \omega}+\frac{A \mathrm{e}^{-\sqrt{-\omega^{2}} x} \tan \left(\frac{\omega x}{2}\right)^{2}}{4 \omega}-\frac{A \sqrt{-\omega^{2}} x \mathrm{e}^{-\sqrt{-\omega^{2}} x} \tan \left(\frac{\omega x}{2}\right)^{2}}{4 \omega}}{\omega\left(1+\tan \left(\frac{\omega x}{2}\right)^{2}\right)}
\end{aligned}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{\sqrt{-\omega^{2}} x} A \cos (\omega x)}{-2 \sqrt{-\omega^{2}}} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{\mathrm{e}^{\sqrt{-\omega^{2}} x} A \cos (\omega x)}{2 \sqrt{-\omega^{2}}} d x
$$

Hence
u_{2}

$$
=\frac{\frac{A \mathrm{e}^{\sqrt{-\omega^{2}} x}}{4 \omega}+\frac{A x \mathrm{e}^{\sqrt{-\omega^{2}} x} \tan \left(\frac{\omega x}{2}\right)}{2}-\frac{A \mathrm{e}^{\sqrt{-\omega^{2}} x} \tan \left(\frac{\omega x}{2}\right)^{2}}{4 \omega}+\frac{A \sqrt{-\omega^{2}} x \mathrm{e}^{\sqrt{-\omega^{2}} x}}{4 \omega}-\frac{A \sqrt{-\omega^{2}} x \mathrm{e}^{\sqrt{-\omega^{2}} x} \tan \left(\frac{\omega x}{2}\right)^{2}}{4 \omega}}{\omega\left(1+\tan \left(\frac{\omega x}{2}\right)^{2}\right)}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{A \mathrm{e}^{-\sqrt{-\omega^{2}} x}\left(-\sqrt{-\omega^{2}} x \cos (\omega x)+x \omega \sin (\omega x)+\cos (\omega x)\right)}{4 \omega^{2}} \\
& u_{2}=\frac{A \mathrm{e}^{\sqrt{-\omega^{2}} x}\left(\sqrt{-\omega^{2}} x \cos (\omega x)+x \omega \sin (\omega x)+\cos (\omega x)\right)}{4 \omega^{2}}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \frac{A \mathrm{e}^{-\sqrt{-\omega^{2}} x}\left(-\sqrt{-\omega^{2}} x \cos (\omega x)+x \omega \sin (\omega x)+\cos (\omega x)\right) \mathrm{e}^{\sqrt{-\omega^{2}} x}}{4 \omega^{2}} \\
& +\frac{A \mathrm{e}^{\sqrt{-\omega^{2}} x}\left(\sqrt{-\omega^{2}} x \cos (\omega x)+x \omega \sin (\omega x)+\cos (\omega x)\right) \mathrm{e}^{-\sqrt{-\omega^{2}} x}}{4 \omega^{2}}
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=\frac{A(x \omega \sin (\omega x)+\cos (\omega x))}{2 \omega^{2}}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{\sqrt{-\omega^{2}} x}+c_{2} \mathrm{e}^{-\sqrt{-\omega^{2}} x}\right)+\left(\frac{A(x \omega \sin (\omega x)+\cos (\omega x))}{2 \omega^{2}}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\sqrt{-\omega^{2}} x}+c_{2} \mathrm{e}^{-\sqrt{-\omega^{2}} x}+\frac{A(x \omega \sin (\omega x)+\cos (\omega x))}{2 \omega^{2}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=\frac{\left(2 c_{1}+2 c_{2}\right) \omega^{2}+A}{2 \omega^{2}} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \sqrt{-\omega^{2}} \mathrm{e}^{\sqrt{-\omega^{2}} x}-c_{2} \sqrt{-\omega^{2}} \mathrm{e}^{-\sqrt{-\omega^{2}} x}+\frac{A x \cos (\omega x)}{2}
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=\left(c_{1}-c_{2}\right) \sqrt{-\omega^{2}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{A+2 \sqrt{-\omega^{2}}}{4 \omega^{2}} \\
& c_{2}=-\frac{A-2 \sqrt{-\omega^{2}}}{4 \omega^{2}}
\end{aligned}
$$

Substituting these values back in above solution results in
$y=\frac{2 A \sin (\omega x) \omega x+2 A \cos (\omega x)-A \mathrm{e}^{\sqrt{-\omega^{2}} x}-A \mathrm{e}^{-\sqrt{-\omega^{2}} x}-2 \sqrt{-\omega^{2}} \mathrm{e}^{\sqrt{-\omega^{2}} x}+2 \sqrt{-\omega^{2}} \mathrm{e}^{-\sqrt{-\omega^{2}} x}}{4 \omega^{2}}$
Which simplifies to
$y=\frac{\left(-A+2 \sqrt{-\omega^{2}}\right) \mathrm{e}^{-\sqrt{-\omega^{2}} x}+\left(-A-2 \sqrt{-\omega^{2}}\right) \mathrm{e}^{\sqrt{-\omega^{2}} x}+2 A(x \omega \sin (\omega x)+\cos (\omega x))}{4 \omega^{2}}$
Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(-A+2 \sqrt{-\omega^{2}}\right) \mathrm{e}^{-\sqrt{-\omega^{2}} x}+\left(-A-2 \sqrt{-\omega^{2}}\right) \mathrm{e}^{\sqrt{-\omega^{2}} x}+2 A(x \omega \sin (\omega x)+\cos (\omega x))}{4 \omega^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions
$y=\frac{\left(-A+2 \sqrt{-\omega^{2}}\right) \mathrm{e}^{-\sqrt{-\omega^{2}} x}+\left(-A-2 \sqrt{-\omega^{2}}\right) \mathrm{e}^{\sqrt{-\omega^{2}} x}+2 A(x \omega \sin (\omega x)+\cos (\omega x))}{4 \omega^{2}}$
Verified OK.

6.11.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+\omega^{2} y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=\omega^{2}
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-\omega^{2}}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-\omega^{2} \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\omega^{2}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 126: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\omega^{2}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{\sqrt{-\omega^{2}} x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{\sqrt{-\omega^{2}} x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{\sqrt{-\omega^{2}} x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{\sqrt{-\omega^{2}} x} \int \frac{1}{\mathrm{e}^{2 \sqrt{-\omega^{2}} x} d x} \\
& =\mathrm{e}^{\sqrt{-\omega^{2}} x}\left(\frac{\sqrt{-\omega^{2}} \mathrm{e}^{-2 \sqrt{-\omega^{2}} x}}{2 \omega^{2}}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\sqrt{-\omega^{2}} x}\right)+c_{2}\left(\mathrm{e}^{\sqrt{-\omega^{2}} x}\left(\frac{\sqrt{-\omega^{2}} \mathrm{e}^{-2 \sqrt{-\omega^{2}} x}}{2 \omega^{2}}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+\omega^{2} y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{\sqrt{-\omega^{2}} x}+\frac{c_{2} \mathrm{e}^{-\sqrt{-\omega^{2}} x} \sqrt{-\omega^{2}}}{2 \omega^{2}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{\sqrt{-\omega^{2}} x} \\
& y_{2}=\frac{\mathrm{e}^{-\sqrt{-\omega^{2}} x} \sqrt{-\omega^{2}}}{2 \omega^{2}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{\sqrt{-\omega^{2}} x} & \frac{\mathrm{e}^{-\sqrt{-\omega^{2}} x} \sqrt{-\omega^{2}}}{2 \omega^{2}} \\
\frac{d}{d x}\left(\mathrm{e}^{\sqrt{-\omega^{2}} x}\right) & \frac{d}{d x}\left(\frac{\mathrm{e}^{-\sqrt{-\omega^{2}} x} \sqrt{-\omega^{2}}}{2 \omega^{2}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{\sqrt{-\omega^{2}} x} & \frac{\mathrm{e}^{-\sqrt{-\omega^{2}} x} \sqrt{-\omega^{2}}}{2 \omega^{2}} \\
\sqrt{-\omega^{2}} \mathrm{e}^{\sqrt{-\omega^{2}} x} & \frac{\mathrm{e}^{-\sqrt{-\omega^{2}} x}}{2}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{\sqrt{-\omega^{2}} x}\right)\left(\frac{\mathrm{e}^{-\sqrt{-\omega^{2}} x}}{2}\right)-\left(\frac{\mathrm{e}^{-\sqrt{-\omega^{2}} x} \sqrt{-\omega^{2}}}{2 \omega^{2}}\right)\left(\sqrt{-\omega^{2}} \mathrm{e}^{\sqrt{-\omega^{2}} x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{\sqrt{-\omega^{2}} x} \mathrm{e}^{-\sqrt{-\omega^{2}} x}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{-\sqrt{-\omega^{2}} x} \sqrt{-\omega^{2}} A \cos (\omega x)}{2 \omega^{2}}}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\mathrm{e}^{-\sqrt{-\omega^{2}} x} \sqrt{-\omega^{2}} A \cos (\omega x)}{2 \omega^{2}} d x
$$

Hence

$$
\begin{aligned}
& u_{1}= \\
& -\frac{-\frac{A \mathrm{e}^{-\sqrt{-\omega^{2} x}}}{4 \omega}-\frac{A x \mathrm{e}^{-\sqrt{-\omega^{2}} x} \tan \left(\frac{\omega x}{2}\right)}{2}+\frac{A \sqrt{-\omega^{2}} x \mathrm{e}^{-\sqrt{-\omega^{2}} x}}{4 \omega}+\frac{A \mathrm{e}^{-\sqrt{-\omega^{2}} x} \tan \left(\frac{\omega x}{2}\right)^{2}}{4 \omega}-\frac{A \sqrt{-\omega^{2}} x \mathrm{e}^{-\sqrt{-\omega^{2} x} \tan \left(\frac{\omega x}{2}\right)^{2}}}{4 \omega}}{\omega\left(1+\tan \left(\frac{\omega x}{2}\right)^{2}\right)}
\end{aligned}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{\sqrt{-\omega^{2}} x} A \cos (\omega x)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int \mathrm{e}^{\sqrt{-\omega^{2}} x} A \cos (\omega x) d x
$$

Hence

$$
u_{2}=\frac{\frac{A \mathrm{e}^{\sqrt{-\omega^{2}} x} \tan \left(\frac{\omega x}{2}\right)}{\omega}+\frac{A x \mathrm{e}^{\sqrt{ }-\omega^{2} x}}{2}-\frac{A x \mathrm{e}^{\sqrt{-\omega^{2}} x} \tan \left(\frac{\omega x}{2}\right)^{2}}{2}-\frac{A \sqrt{-\omega^{2}} x \mathrm{e}^{\sqrt{-\omega^{2}} x} \tan \left(\frac{\omega x}{2}\right)}{\omega}}{1+\tan \left(\frac{\omega x}{2}\right)^{2}}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{A \mathrm{e}^{-\sqrt{-\omega^{2}} x}\left(-\sqrt{-\omega^{2}} x \cos (\omega x)+x \omega \sin (\omega x)+\cos (\omega x)\right)}{4 \omega^{2}} \\
& u_{2}=\frac{A \mathrm{e}^{\sqrt{-\omega^{2}} x}\left(\omega x \cos (\omega x)-\sqrt{-\omega^{2}} x \sin (\omega x)+\sin (\omega x)\right)}{2 \omega}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & \frac{A \mathrm{e}^{-\sqrt{-\omega^{2}} x}\left(-\sqrt{-\omega^{2}} x \cos (\omega x)+x \omega \sin (\omega x)+\cos (\omega x)\right) \mathrm{e}^{\sqrt{-\omega^{2}} x}}{4 \omega^{2}} \\
& +\frac{A \mathrm{e}^{\sqrt{-\omega^{2}} x}\left(\omega x \cos (\omega x)-\sqrt{-\omega^{2}} x \sin (\omega x)+\sin (\omega x)\right) \mathrm{e}^{-\sqrt{-\omega^{2}} x} \sqrt{-\omega^{2}}}{4 \omega^{3}}
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=\frac{A\left(2 \sin (\omega x) \omega^{2} x+\omega \cos (\omega x)+\sqrt{-\omega^{2}} \sin (\omega x)\right)}{4 \omega^{3}}
$$

Therefore the general solution is

$$
\begin{aligned}
& y=y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{\sqrt{-\omega^{2}} x}+\frac{c_{2} \mathrm{e}^{-\sqrt{-\omega^{2}} x} \sqrt{-\omega^{2}}}{2 \omega^{2}}\right)+\left(\frac{A\left(2 \sin (\omega x) \omega^{2} x+\omega \cos (\omega x)+\sqrt{-\omega^{2}} \sin (\omega x)\right)}{4 \omega^{3}}\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\sqrt{-\omega^{2}} x}+\frac{c_{2} \mathrm{e}^{-\sqrt{-\omega^{2}} x} \sqrt{-\omega^{2}}}{2 \omega^{2}}+\frac{A\left(2 \sin (\omega x) \omega^{2} x+\omega \cos (\omega x)+\sqrt{-\omega^{2}} \sin (\omega x)\right)}{4 \omega^{3}} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=\frac{4 c_{1} \omega^{2}+2 \sqrt{-\omega^{2}} c_{2}+A}{4 \omega^{2}} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives
$y^{\prime}=c_{1} \sqrt{-\omega^{2}} \mathrm{e}^{\sqrt{-\omega^{2}} x}+\frac{c_{2} \mathrm{e}^{-\sqrt{-\omega^{2}} x}}{2}+\frac{A\left(2 \omega^{3} \cos (\omega x) x+\sin (\omega x) \omega^{2}+\sqrt{-\omega^{2}} \omega \cos (\omega x)\right)}{4 \omega^{3}}$
substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=\frac{\left(4 c_{1} \omega^{2}+A\right) \sqrt{-\omega^{2}}+2 c_{2} \omega^{2}}{4 \omega^{2}} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{A+2 \sqrt{-\omega^{2}}}{4 \omega^{2}} \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in
$y=\frac{2 A \sin (\omega x) \omega^{2} x+A \cos (\omega x) \omega+A \sin (\omega x) \sqrt{-\omega^{2}}-\mathrm{e}^{\sqrt{-\omega^{2}} x} A \omega-2 \mathrm{e}^{\sqrt{-\omega^{2}} x} \sqrt{-\omega^{2}} \omega+2 \mathrm{e}^{-\sqrt{-\omega^{2}} x} \sqrt{-c}}{4 \omega^{3}}$
Which simplifies to
y
$=\frac{2 \mathrm{e}^{-\sqrt{-\omega^{2}} x} \sqrt{-\omega^{2}} \omega-\omega\left(A+2 \sqrt{-\omega^{2}}\right) \mathrm{e}^{\sqrt{-\omega^{2}} x}+A \sin (\omega x) \sqrt{-\omega^{2}}+2 \omega\left(x \omega \sin (\omega x)+\frac{\cos (\omega x)}{2}\right) A}{4 \omega^{3}}$

Summary

The solution(s) found are the following
y
$=\frac{2 \mathrm{e}^{-\sqrt{-\omega^{2}} x} \sqrt{-\omega^{2}} \omega-\omega\left(A+2 \sqrt{-\omega^{2}}\right) \mathrm{e}^{\sqrt{-\omega^{2}} x}+A \sin (\omega x) \sqrt{-\omega^{2}}+2 \omega\left(x \omega \sin (\omega x)+\frac{\cos (\omega x)}{2}\right) A}{4 \omega^{3}}$

Verification of solutions

$=\frac{2 \mathrm{e}^{-\sqrt{-\omega^{2}} x} \sqrt{-\omega^{2}} \omega-\omega\left(A+2 \sqrt{-\omega^{2}}\right) \mathrm{e}^{\sqrt{-\omega^{2}} x}+A \sin (\omega x) \sqrt{-\omega^{2}}+2 \omega\left(x \omega \sin (\omega x)+\frac{\cos (\omega x)}{2}\right) A}{4 \omega^{3}}$
Verified OK.

6.11.4 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+\omega^{2} y=A \cos (\omega x), y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
\omega^{2}+r^{2}=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm\left(\sqrt{-4 \omega^{2}}\right)}{2}
$$

- Roots of the characteristic polynomial

$$
r=\left(\sqrt{-\omega^{2}},-\sqrt{-\omega^{2}}\right)
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{\sqrt{-\omega^{2}} x}
$$

- \quad 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{-\sqrt{-\omega^{2}} x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{\sqrt{-\omega^{2}} x}+c_{2} \mathrm{e}^{-\sqrt{-\omega^{2}} x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=A \cos (\omega x)\right]
$$

- Wronskian of solutions of the homogeneous equation
$W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{\sqrt{-\omega^{2}} x} & \mathrm{e}^{-\sqrt{-\omega^{2}} x} \\ \sqrt{-\omega^{2}} \mathrm{e}^{\sqrt{-\omega^{2}} x} & -\sqrt{-\omega^{2}} \mathrm{e}^{-\sqrt{-\omega^{2}} x}\end{array}\right]$
- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=-2 \sqrt{-\omega^{2}}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\frac{A\left(\mathrm{e}^{\sqrt{-\omega^{2}} x}\left(\int \mathrm{e}^{-\sqrt{-\omega^{2}} x} \cos (\omega x) d x\right)-\mathrm{e}^{-\sqrt{-\omega^{2}} x}\left(\int \mathrm{e}^{\sqrt{-\omega^{2}} x} \cos (\omega x) d x\right)\right)}{2 \sqrt{-\omega^{2}}}
$$

- Compute integrals

$$
y_{p}(x)=\frac{\left(\sin (\omega x)\left(2 \sqrt{-\omega^{2}} x-1\right) \omega+\cos (\omega x) \sqrt{-\omega^{2}}\right) A}{4 \sqrt{-\omega^{2}} \omega^{2}}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{\sqrt{-\omega^{2}} x}+c_{2} \mathrm{e}^{-\sqrt{-\omega^{2}} x}+\frac{\left(\sin (\omega x)\left(2 \sqrt{-\omega^{2}} x-1\right) \omega+\cos (\omega x) \sqrt{-\omega^{2}}\right) A}{4 \sqrt{-\omega^{2} \omega^{2}}}$
$\square \quad$ Check validity of solution $y=c_{1} \mathrm{e}^{\sqrt{-\omega^{2}} x}+c_{2} \mathrm{e}^{-\sqrt{-\omega^{2}} x}+\frac{\left(\sin (\omega x)\left(2 \sqrt{-\omega^{2}} x-1\right) \omega+\cos (\omega x) \sqrt{-\omega^{2}}\right) A}{4 \sqrt{-\omega^{2}} \omega^{2}}$
- Use initial condition $y(0)=0$

$$
0=c_{1}+c_{2}+\frac{A}{4 \omega^{2}}
$$

- Compute derivative of the solution

$$
y^{\prime}=c_{1} \sqrt{-\omega^{2}} \mathrm{e}^{\sqrt{-\omega^{2}} x}-c_{2} \sqrt{-\omega^{2}} \mathrm{e}^{-\sqrt{-\omega^{2}} x}+\frac{\left(\omega^{2} \cos (\omega x)\left(2 \sqrt{-\omega^{2}} x-1\right)+\sin (\omega x) \sqrt{-\omega^{2}} \omega\right) A}{4 \sqrt{-\omega^{2} \omega^{2}}}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=1$
$1=\sqrt{-\omega^{2}} c_{1}-\sqrt{-\omega^{2}} c_{2}-\frac{A}{4 \sqrt{-\omega^{2}}}$
- Solve for c_{1} and c_{2}
$\left\{c_{1}=-\frac{A+2 \sqrt{-\omega^{2}}}{4 \omega^{2}}, c_{2}=\frac{\sqrt{-\omega^{2}}}{2 \omega^{2}}\right\}$
- Substitute constant values into general solution and simplify
$y=\frac{2 A \sin (\omega x) \sqrt{-\omega^{2}} \omega x+A \cos (\omega x) \sqrt{-\omega^{2}}-A \omega \sin (\omega x)-\mathrm{e}^{\sqrt{-\omega^{2}} x} \sqrt{-\omega^{2}} A+2 \mathrm{e}^{\sqrt{-\omega^{2}} x} \omega^{2}-2 \omega^{2} \mathrm{e}^{-\sqrt{-\omega^{2}} x}}{4 \sqrt{-\omega^{2} \omega^{2}}}$
- \quad Solution to the IVP
$y=\frac{2 A \sin (\omega x) \sqrt{-\omega^{2}} \omega x+A \cos (\omega x) \sqrt{-\omega^{2}}-A \omega \sin (\omega x)-\mathrm{e}^{\sqrt{-\omega^{2}} x} \sqrt{-\omega^{2}} A+2 \mathrm{e}^{\sqrt{-\omega^{2}} x} \omega^{2}-2 \omega^{2} \mathrm{e}^{-\sqrt{-\omega^{2}} x}}{4 \sqrt{-\omega^{2}} \omega^{2}}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 18
dsolve([diff($\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+$ omega^2*y $(\mathrm{x})=\mathrm{A} * \cos (0 \operatorname{meg} a * \mathrm{x}), \mathrm{y}(0)=0, \mathrm{D}(\mathrm{y})(0)=1], \mathrm{y}(\mathrm{x})$, singsol=all)

$$
y(x)=\frac{\sin (\omega x)\left(1+\frac{A x}{2}\right)}{\omega}
$$

\checkmark Solution by Mathematica
Time used: 0.058 (sec). Leaf size: 21
DSolve $\left[\left\{y^{\prime}\right.\right.$ ' $\left.^{[x]}+\backslash[\text { Omega }]^{\sim} 2 * y[x]==A * \operatorname{Cos}[\backslash[0 \mathrm{mega}] * x],\left\{y[0]==0, y^{\prime}[0]==1\right\}\right\}, y[x], x$, IncludeSingular

$$
y(x) \rightarrow \frac{(A x+2) \sin (x \omega)}{2 \omega}
$$

7 Chapter 2. Linear equations with constant coefficients. Page 74

7.1 problem 4(a) . 636
7.2 problem 4(b)

641
7.3 problem 4(c) . 648
7.4 problem 4(d)

653
7.5 problem 4(f) . 655
7.6 problem 4(g) . 661
7.7 problem 4(h) . 667
7.8 problem 4(i) . 672

7.1 problem 4(a)

7.1.1 Maple step by step solution . 637

Internal problem ID [5972]
Internal file name [OUTPUT/5220_Sunday_June_05_2022_03_27_49_PM_89684670/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 74
Problem number: 4(a).
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-8 y=0
$$

The characteristic equation is

$$
\lambda^{3}-8=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=i \sqrt{3}-1 \\
& \lambda_{3}=-i \sqrt{3}-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{(i \sqrt{3}-1) x} c_{2}+\mathrm{e}^{(-i \sqrt{3}-1) x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{2 x} \\
& y_{2}=\mathrm{e}^{(i \sqrt{3}-1) x} \\
& y_{3}=\mathrm{e}^{(-i \sqrt{3}-1) x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{(i \sqrt{3}-1) x} c_{2}+\mathrm{e}^{(-i \sqrt{3}-1) x} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{(i \sqrt{3}-1) x} c_{2}+\mathrm{e}^{(-i \sqrt{3}-1) x} c_{3}
$$

Verified OK.

7.1.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-8 y=0
$$

- Highest derivative means the order of the ODE is 3 $y^{\prime \prime \prime}$Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=8 y_{1}(x)$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=8 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- \quad System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
8 & 0 & 0
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
8 & 0 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right],\left[-\mathrm{I} \sqrt{3}-1,\left[\begin{array}{c}
\frac{1}{(-\mathrm{I} \sqrt{3}-1)^{2}} \\
\frac{1}{-\mathrm{I} \sqrt{3}-1} \\
1
\end{array}\right]\right],\left[\mathrm{I} \sqrt{3}-1,\left[\begin{array}{c}
\frac{1}{(\mathrm{I} \sqrt{3}-1)^{2}} \\
\frac{1}{\mathrm{I} \sqrt{3}-1} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I} \sqrt{3}-1,\left[\begin{array}{c}
\frac{1}{(-\mathrm{I} \sqrt{3}-1)^{2}} \\
\frac{1}{-\mathrm{I} \sqrt{3}-1} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(-\mathrm{I} \sqrt{3}-1) x} \cdot\left[\begin{array}{c}
\frac{1}{(-\mathrm{I} \sqrt{3}-1)^{2}} \\
\frac{1}{-\mathrm{I} \sqrt{3}-1} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
\mathrm{e}^{-x} \cdot(\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)) \cdot\left[\begin{array}{c}
\frac{1}{(-\mathrm{I} \sqrt{3}-1)^{2}} \\
\frac{1}{-\mathrm{I} \sqrt{3}-1} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
\frac{\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)}{(-\mathrm{I} \sqrt{3}-1)^{2}} \\
\frac{\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)}{-\mathrm{I} \sqrt{3}-1} \\
\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-\frac{\cos (\sqrt{3} x)}{8}-\frac{\sqrt{3} \sin (\sqrt{3} x)}{8} \\
-\frac{\cos (\sqrt{3} x)}{4}+\frac{\sqrt{3} \sin (\sqrt{3} x)}{4} \\
\cos (\sqrt{3} x)
\end{array}\right], \vec{y}_{3}(x)=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-\frac{\sqrt{3} \cos (\sqrt{3} x)}{8}+\frac{\sin (\sqrt{3} x)}{8} \\
\frac{\sqrt{3} \cos (\sqrt{3} x)}{4}+\frac{\sin (\sqrt{3} x)}{4} \\
-\sin (\sqrt{3} x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)
$$

- Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-\frac{\cos (\sqrt{3} x)}{8}-\frac{\sqrt{3} \sin (\sqrt{3} x)}{8} \\
-\frac{\cos (\sqrt{3} x)}{4}+\frac{\sqrt{3} \sin (\sqrt{3} x)}{4} \\
\cos (\sqrt{3} x)
\end{array}\right]+c_{3} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-\frac{\sqrt{3} \cos (\sqrt{3} x)}{8}+\frac{\sin (\sqrt{3} x)}{8} \\
\frac{\sqrt{3} \cos (\sqrt{3} x)}{4}+\frac{\sin (\sqrt{3} x)}{4} \\
-\sin (\sqrt{3} x)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=-\frac{\mathrm{e}^{-x}\left(c_{3} \sqrt{3}+c_{2}\right) \cos (\sqrt{3} x)}{8}-\frac{\mathrm{e}^{-x}\left(\sqrt{3} c_{2}-c_{3}\right) \sin (\sqrt{3} x)}{8}+\frac{c_{1} \mathrm{e}^{2 x}}{4}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 35

```
dsolve(diff(y(x),x$3)-8*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-x} \sin (\sqrt{3} x)+c_{3} \mathrm{e}^{-x} \cos (\sqrt{3} x)
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 42
DSolve[y''' $[x]-8 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-x}\left(c_{1} e^{3 x}+c_{2} \cos (\sqrt{3} x)+c_{3} \sin (\sqrt{3} x)\right)
$$

7.2 problem 4(b)

7.2.1 Maple step by step solution . 642

Internal problem ID [5973]
Internal file name [OUTPUT/5221_Sunday_June_05_2022_03_27_50_PM_1305271/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 74
Problem number: 4(b).
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}+16 y=0
$$

The characteristic equation is

$$
\lambda^{4}+16=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=\sqrt{2}+i \sqrt{2} \\
& \lambda_{2}=-\sqrt{2}+i \sqrt{2} \\
& \lambda_{3}=-\sqrt{2}-i \sqrt{2} \\
& \lambda_{4}=-i \sqrt{2}+\sqrt{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{(-i \sqrt{2}+\sqrt{2}) x} c_{1}+\mathrm{e}^{(-\sqrt{2}+i \sqrt{2}) x} c_{2}+\mathrm{e}^{(-\sqrt{2}-i \sqrt{2}) x} c_{3}+\mathrm{e}^{(\sqrt{2}+i \sqrt{2}) x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{(-i \sqrt{2}+\sqrt{2}) x} \\
& y_{2}=\mathrm{e}^{(-\sqrt{2}+i \sqrt{2}) x} \\
& y_{3}=\mathrm{e}^{(-\sqrt{2}-i \sqrt{2}) x} \\
& y_{4}=\mathrm{e}^{(\sqrt{2}+i \sqrt{2}) x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{(-i \sqrt{2}+\sqrt{2}) x} c_{1}+\mathrm{e}^{(-\sqrt{2}+i \sqrt{2}) x} c_{2}+\mathrm{e}^{(-\sqrt{2}-i \sqrt{2}) x} c_{3}+\mathrm{e}^{(\sqrt{2}+i \sqrt{2}) x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{(-i \sqrt{2}+\sqrt{2}) x} c_{1}+\mathrm{e}^{(-\sqrt{2}+i \sqrt{2}) x} c_{2}+\mathrm{e}^{(-\sqrt{2}-i \sqrt{2}) x} c_{3}+\mathrm{e}^{(\sqrt{2}+i \sqrt{2}) x} c_{4}
$$

Verified OK.

7.2.1 Maple step by step solution

Let's solve
$y^{\prime \prime \prime \prime}+16 y=0$

- Highest derivative means the order of the ODE is 4 $y^{\prime \prime \prime \prime}$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Isolate for $y_{4}^{\prime}(x)$ using original ODE
$y_{4}^{\prime}(x)=-16 y_{1}(x)$

Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=-16 y_{1}(x)\right]$

- Define vector
$\vec{y}(x)=\left[\begin{array}{l}y_{1}(x) \\ y_{2}(x) \\ y_{3}(x) \\ y_{4}(x)\end{array}\right]$
- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-16 & 0 & 0 & 0
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-16 & 0 & 0 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$-\sqrt{2}-\mathrm{I} \sqrt{2}$,	$\frac{1}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{3}}$ $\frac{1}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{2}}$ $\frac{1}{-\sqrt{2}-\mathrm{I} \sqrt{2}}$ 1		$-\sqrt{2}+\mathrm{I} \sqrt{2}$	$\frac{1}{(-\sqrt{2}+\mathrm{I} \sqrt{2})^{3}}$ $\frac{1}{(-\sqrt{2}+\mathrm{I} \sqrt{2})^{2}}$ $\frac{1}{-\sqrt{2}+\mathrm{I} \sqrt{2}}$ 1	$\sqrt{2}+\mathrm{I} \sqrt{2}$,	$\begin{aligned} & \frac{1}{(\sqrt{2}+\mathrm{I} \sqrt{2})^{3}} \\ & \frac{1}{(\sqrt{2}+\mathrm{I} \sqrt{2})^{2}} \\ & \frac{1}{\sqrt{2}+\mathrm{I} \sqrt{2}} \end{aligned}$ 1

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\sqrt{2}-\mathrm{I} \sqrt{2},\left[\begin{array}{c}
\frac{1}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{3}} \\
\frac{1}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{2}} \\
\frac{1}{-\sqrt{2}-\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(-\sqrt{2}-\mathrm{I} \sqrt{2}) x} \cdot\left[\begin{array}{c}
\frac{1}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{3}} \\
\frac{1}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{2}} \\
\frac{1}{-\sqrt{2}-\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
\mathrm{e}^{-x \sqrt{2}} \cdot(\cos (x \sqrt{2})-\mathrm{I} \sin (x \sqrt{2})) \cdot\left[\begin{array}{c}
\frac{1}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{3}} \\
\frac{1}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{2}} \\
\frac{1}{-\sqrt{2}-\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-x \sqrt{2}} \cdot\left[\begin{array}{c}
\frac{\cos (x \sqrt{2})-\mathrm{I} \sin (x \sqrt{2})}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{3}} \\
\frac{\cos (x \sqrt{2})-\mathrm{I} \sin (x \sqrt{2})}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{2}} \\
\frac{\cos (x \sqrt{2})-\mathrm{I} \sin (x \sqrt{2})}{-\sqrt{2}-\mathrm{I} \sqrt{2}} \\
\cos (x \sqrt{2})-\mathrm{I} \sin (x \sqrt{2})
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{1}(x)=\mathrm{e}^{-x \sqrt{2}} \cdot\left[\begin{array}{c}
\frac{\cos (x \sqrt{2}) \sqrt{2}}{16}+\frac{\sin (x \sqrt{2}) \sqrt{2}}{16} \\
-\frac{\sin (x \sqrt{2})}{4} \\
-\frac{\cos (x \sqrt{2}) \sqrt{2}}{4}+\frac{\sin (x \sqrt{2}) \sqrt{2}}{4} \\
\cos (x \sqrt{2})
\end{array}\right], \vec{y}_{2}(x)=\mathrm{e}^{-x \sqrt{2}} \cdot\left[\begin{array}{c}
\frac{\cos (x \sqrt{2}) \sqrt{2}}{16}-\frac{\sin (x \sqrt{2}) \sqrt{2}}{16} \\
-\frac{\cos (x \sqrt{2})}{4} \\
\frac{\cos (x \sqrt{2}) \sqrt{2}}{4}+\frac{\sin (x \sqrt{2}) \sqrt{2}}{4} \\
-\sin (x \sqrt{2})
\end{array}\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[\sqrt{2}+\mathrm{I} \sqrt{2},\left[\begin{array}{c}
\frac{1}{(\sqrt{2}+\mathrm{I} \sqrt{2})^{3}} \\
\frac{1}{(\sqrt{2}+\mathrm{I} \sqrt{2})^{2}} \\
\frac{1}{\sqrt{2}+\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(\sqrt{2}+\mathrm{I} \sqrt{2}) x} \cdot\left[\begin{array}{c}
\frac{1}{(\sqrt{2}+\mathrm{I} \sqrt{2})^{3}} \\
\frac{1}{(\sqrt{2}+\mathrm{I} \sqrt{2})^{2}} \\
\frac{1}{\sqrt{2}+\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
\mathrm{e}^{x \sqrt{2}} \cdot(\cos (x \sqrt{2})+\mathrm{I} \sin (x \sqrt{2})) \cdot\left[\begin{array}{c}
\frac{1}{(\sqrt{2}+\mathrm{I} \sqrt{2})^{3}} \\
\frac{1}{(\sqrt{2}+\mathrm{I} \sqrt{2})^{2}} \\
\frac{1}{\sqrt{2}+\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{x \sqrt{2}} \cdot\left[\begin{array}{c}
\frac{\cos (x \sqrt{2})+\mathrm{I} \sin (x \sqrt{2})}{(\sqrt{2}+\mathrm{I} \sqrt{2})^{3}} \\
\frac{\cos (x \sqrt{2})+\mathrm{I} \sin (x \sqrt{2})}{(\sqrt{2}+\mathrm{I} \sqrt{2})^{2}} \\
\frac{\cos (x \sqrt{2})+\mathrm{I} \sin (x \sqrt{2})}{\sqrt{2}+\mathrm{I} \sqrt{2}} \\
\cos (x \sqrt{2})+\mathrm{I} \sin (x \sqrt{2})
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{3}(x)=\mathrm{e}^{x \sqrt{2}} \cdot\left[\begin{array}{c}
-\frac{\cos (x \sqrt{2}) \sqrt{2}}{16}+\frac{\sin (x \sqrt{2}) \sqrt{2}}{16} \\
\frac{\sin (x \sqrt{2})}{4} \\
\frac{\cos (x \sqrt{2}) \sqrt{2}}{4}+\frac{\sin (x \sqrt{2}) \sqrt{2}}{4} \\
\cos (x \sqrt{2})
\end{array}\right], \vec{y}_{4}(x)=\mathrm{e}^{x \sqrt{2}} \cdot\left[\begin{array}{c}
-\frac{\cos (x \sqrt{2}) \sqrt{2}}{16}-\frac{\sin (x \sqrt{2}) \sqrt{2}}{16} \\
-\frac{\cos (x \sqrt{2})}{4} \\
-\frac{\cos (x \sqrt{2}) \sqrt{2}}{4}+\frac{\sin (x \sqrt{2}) \sqrt{2}}{4} \\
\sin (x \sqrt{2})
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-x \sqrt{2}} \cdot\left[\begin{array}{c}
\frac{\cos (x \sqrt{2}) \sqrt{2}}{16}+\frac{\sin (x \sqrt{2}) \sqrt{2}}{16} \\
-\frac{\sin (x \sqrt{2})}{4} \\
-\frac{\cos (x \sqrt{2}) \sqrt{2}}{4}+\frac{\sin (x \sqrt{2}) \sqrt{2}}{4} \\
\cos (x \sqrt{2})
\end{array}\right]+c_{2} \mathrm{e}^{-x \sqrt{2}} \cdot\left[\begin{array}{c}
\frac{\cos (x \sqrt{2}) \sqrt{2}}{16}-\frac{\sin (x \sqrt{2}) \sqrt{2}}{16} \\
-\frac{\cos (x \sqrt{2})}{4} \\
\frac{\cos (x \sqrt{2}) \sqrt{2}}{4}+\frac{\sin (x \sqrt{2}) \sqrt{2}}{4} \\
-\sin (x \sqrt{2})
\end{array}\right]+\mathrm{e}^{x \sqrt{2}} c_{3} .
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{\sqrt{2}\left(\left(\left(c_{1}+c_{2}\right) \cos (x \sqrt{2})+\sin (x \sqrt{2})\left(c_{1}-c_{2}\right)\right) \mathrm{e}^{-x \sqrt{2}}-\left(\left(c_{3}+c_{4}\right) \cos (x \sqrt{2})-\sin (x \sqrt{2})\left(c_{3}-c_{4}\right)\right) \mathrm{e}^{x \sqrt{2}}\right)}{16}
$$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 65

```
dsolve(diff(y(x),x$4)+16*y(x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
y(x)= & -c_{1} \mathrm{e}^{-\sqrt{2} x} \sin (\sqrt{2} x)-c_{2} \mathrm{e}^{\sqrt{2} x} \sin (\sqrt{2} x) \\
& +c_{3} \mathrm{e}^{-\sqrt{2} x} \cos (\sqrt{2} x)+c_{4} \mathrm{e}^{\sqrt{2} x} \cos (\sqrt{2} x)
\end{aligned}
$$

Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 67
DSolve[y'C' $[\mathrm{x}]+16 * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-\sqrt{2} x}\left(\left(c_{1} e^{2 \sqrt{2} x}+c_{2}\right) \cos (\sqrt{2} x)+\left(c_{4} e^{2 \sqrt{2} x}+c_{3}\right) \sin (\sqrt{2} x)\right)
$$

7.3 problem 4(c)

7.3.1 Maple step by step solution . 649

Internal problem ID [5974]
Internal file name [OUTPUT/5222_Sunday_June_05_2022_03_27_51_PM_4576512/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 74
Problem number: 4(c).
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-5 y^{\prime \prime}+6 y^{\prime}=0
$$

The characteristic equation is

$$
\lambda^{3}-5 \lambda^{2}+6 \lambda=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=3 \\
& \lambda_{3}=2
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1}+c_{2} \mathrm{e}^{2 x}+c_{3} \mathrm{e}^{3 x}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\mathrm{e}^{2 x} \\
& y_{3}=\mathrm{e}^{3 x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+c_{2} \mathrm{e}^{2 x}+c_{3} \mathrm{e}^{3 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}+c_{2} \mathrm{e}^{2 x}+c_{3} \mathrm{e}^{3 x}
$$

Verified OK.

7.3.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-5 y^{\prime \prime}+6 y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=5 y_{3}(x)-6 y_{2}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=5 y_{3}(x)-6 y_{2}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -6 & 5
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -6 & 5
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A
$\left[\left[\left[0,\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right],\left[2,\left[\begin{array}{c}\frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right],\left[3,\left[\begin{array}{c}\frac{1}{9} \\ \frac{1}{3} \\ 1\end{array}\right]\right]\right]\right.$
- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair
$\vec{y}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[3,\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{2} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+c_{3} \mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]+\left[\begin{array}{c}
c_{1} \\
0 \\
0
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{c_{2} \mathrm{e}^{2 x}}{4}+\frac{c_{3} \mathrm{e}^{3 x}}{9}+c_{1}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18
dsolve(diff $(y(x), x \$ 3)-5 * \operatorname{diff}(y(x), x \$ 2)+6 * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1}+c_{2} \mathrm{e}^{2 x}+c_{3} \mathrm{e}^{3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 30
DSolve[y'''[x]-5*y''[x]+6*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \frac{1}{2} c_{1} e^{2 x}+\frac{1}{3} c_{2} e^{3 x}+c_{3}
$$

7.4 problem 4(d)

Internal problem ID [5975]
Internal file name [OUTPUT/5223_Sunday_June_05_2022_03_27_52_PM_23069737/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 74
Problem number: 4(d).
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-i y^{\prime \prime}+4 y^{\prime}-4 i y=0
$$

The characteristic equation is

$$
\lambda^{3}-i \lambda^{2}+4 \lambda-4 i=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =-2 i \\
\lambda_{2} & =2 i \\
\lambda_{3} & =i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{-2 i x} c_{1}+\mathrm{e}^{2 i x} c_{2}+\mathrm{e}^{i x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 i x} \\
& y_{2}=\mathrm{e}^{2 i x} \\
& y_{3}=\mathrm{e}^{i x}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-2 i x} c_{1}+\mathrm{e}^{2 i x} c_{2}+\mathrm{e}^{i x} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-2 i x} c_{1}+\mathrm{e}^{2 i x} c_{2}+\mathrm{e}^{i x} c_{3}
$$

Verified OK.
Maple trace

- Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 26
dsolve(diff $(y(x), x \$ 3)-I * \operatorname{diff}(y(x), x \$ 2)+4 * \operatorname{diff}(y(x), x)-4 * I * y(x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1} \mathrm{e}^{i x}+c_{2} \mathrm{e}^{2 i x}+c_{3} \mathrm{e}^{-2 i x}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 36
DSolve[y'''[x]-I*y' '[x]+4*y'[x]-4*I*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-2 i x}\left(c_{2} e^{4 i x}+c_{3} e^{3 i x}+c_{1}\right)
$$

7.5 problem 4(f)

7.5.1 Maple step by step solution

Internal problem ID [5976]
Internal file name [OUTPUT/5224_Sunday_June_05_2022_03_27_53_PM_58330443/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 74
Problem number: 4(f).
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}+5 y^{\prime \prime}+4 y=0
$$

The characteristic equation is

$$
\lambda^{4}+5 \lambda^{2}+4=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i \\
& \lambda_{3}=i \\
& \lambda_{4}=-i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-i x}+\mathrm{e}^{-2 i x} c_{2}+\mathrm{e}^{2 i x} c_{3}+\mathrm{e}^{i x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-i x} \\
& y_{2}=\mathrm{e}^{-2 i x} \\
& y_{3}=\mathrm{e}^{2 i x} \\
& y_{4}=\mathrm{e}^{i x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-i x}+\mathrm{e}^{-2 i x} c_{2}+\mathrm{e}^{2 i x} c_{3}+\mathrm{e}^{i x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-i x}+\mathrm{e}^{-2 i x} c_{2}+\mathrm{e}^{2 i x} c_{3}+\mathrm{e}^{i x} c_{4}
$$

Verified OK.

7.5.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime \prime}+5 y^{\prime \prime}+4 y=0
$$

- Highest derivative means the order of the ODE is 4
$y^{\prime \prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$
$y_{4}(x)=y^{\prime \prime \prime}$
- Isolate for $y_{4}^{\prime}(x)$ using original ODE
$y_{4}^{\prime}(x)=-5 y_{3}(x)-4 y_{1}(x)$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=-5 y_{3}(x)-4 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-4 & 0 & -5 & 0
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-4 & 0 & -5 & 0
\end{array}\right]
$$

- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-2 \mathrm{I},\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right],\left[-\mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
\mathrm{I} \\
-1 \\
-\mathrm{I} \\
1
\end{array}\right]\right],\left[2 \mathrm{I},\left[\begin{array}{c}
\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
-\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-2 \mathrm{I},\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-2 \mathrm{I} x} \cdot\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and cos

$$
(\cos (2 x)-I \sin (2 x)) \cdot\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\frac{\mathrm{I}}{8}(\cos (2 x)-\mathrm{I} \sin (2 x)) \\
-\frac{\cos (2 x)}{4}+\frac{\mathrm{I} \sin (2 x)}{4} \\
\frac{\mathrm{I}}{2}(\cos (2 x)-\mathrm{I} \sin (2 x)) \\
\cos (2 x)-\mathrm{I} \sin (2 x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{1}(x)=\left[\begin{array}{c}
-\frac{\sin (2 x)}{8} \\
-\frac{\cos (2 x)}{4} \\
\frac{\sin (2 x)}{2} \\
\cos (2 x)
\end{array}\right], \vec{y}_{2}(x)=\left[\begin{array}{c}
-\frac{\cos (2 x)}{8} \\
\frac{\sin (2 x)}{4} \\
\frac{\cos (2 x)}{2} \\
-\sin (2 x)
\end{array}\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{I} x} \cdot\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
-\cos (x)+\mathrm{I} \sin (x) \\
\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{3}(x)=\left[\begin{array}{c}
-\sin (x) \\
-\cos (x) \\
\sin (x) \\
\cos (x)
\end{array}\right], \vec{y}_{4}(x)=\left[\begin{array}{c}
-\cos (x) \\
\sin (x) \\
\cos (x) \\
-\sin (x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=\left[\begin{array}{c}
-c_{4} \cos (x)-c_{3} \sin (x)-\frac{c_{2} \cos (2 x)}{8}-\frac{\sin (2 x) c_{1}}{8} \\
c_{4} \sin (x)-c_{3} \cos (x)+\frac{c_{2} \sin (2 x)}{4}-\frac{c_{1} \cos (2 x)}{4} \\
c_{4} \cos (x)+c_{3} \sin (x)+\frac{c_{2} \cos (2 x)}{2}+\frac{\sin (2 x) c_{1}}{2} \\
-c_{4} \sin (x)+c_{3} \cos (x)-c_{2} \sin (2 x)+c_{1} \cos (2 x)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE $y=-c_{4} \cos (x)-c_{3} \sin (x)-\frac{c_{2} \cos (2 x)}{8}-\frac{\sin (2 x) c_{1}}{8}$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 29

```
dsolve(diff(y(x),x$4)+5*\operatorname{diff}(y(x),x$2)+4*y(x)=0,y(x), singsol=all)
```

$$
y(x)=2 c_{2} \cos (x)^{2}+\left(2 c_{1} \sin (x)+c_{4}\right) \cos (x)+c_{3} \sin (x)-c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 30
DSolve[y''''[x]+5*y''[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow c_{1} \cos (2 x)+c_{4} \sin (x)+\cos (x)\left(2 c_{2} \sin (x)+c_{3}\right)
$$

7.6 problem 4(g)

7.6.1 Maple step by step solution . 662

Internal problem ID [5977]
Internal file name [OUTPUT/5225_Sunday_June_05_2022_03_27_55_PM_82770425/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 74
Problem number: 4(g).
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}-16 y=0
$$

The characteristic equation is

$$
\lambda^{4}-16=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-2 \\
& \lambda_{3}=2 i \\
& \lambda_{4}=-2 i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{-2 i x} c_{3}+\mathrm{e}^{2 i x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=\mathrm{e}^{2 x} \\
& y_{3}=\mathrm{e}^{-2 i x} \\
& y_{4}=\mathrm{e}^{2 i x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{-2 i x} c_{3}+\mathrm{e}^{2 i x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{-2 i x} c_{3}+\mathrm{e}^{2 i x} c_{4}
$$

Verified OK.

7.6.1 Maple step by step solution

Let's solve
$y^{\prime \prime \prime \prime}-16 y=0$

- Highest derivative means the order of the ODE is 4
$y^{\prime \prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$
$y_{4}(x)=y^{\prime \prime \prime}$
- Isolate for $y_{4}^{\prime}(x)$ using original ODE
$y_{4}^{\prime}(x)=16 y_{1}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=16 y_{1}(x)\right]$
- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
16 & 0 & 0 & 0
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
16 & 0 & 0 & 0
\end{array}\right]
$$

- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{c}
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{8} \\ \frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-2 \mathrm{I},\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]
$$

- \quad Solution from eigenpair

$$
\mathrm{e}^{-2 \mathrm{I} x} \cdot\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
(\cos (2 x)-\mathrm{I} \sin (2 x)) \cdot\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\frac{\mathrm{I}}{8}(\cos (2 x)-\mathrm{I} \sin (2 x)) \\
-\frac{\cos (2 x)}{4}+\frac{\mathrm{I} \sin (2 x)}{4} \\
\frac{\mathrm{I}}{2}(\cos (2 x)-\mathrm{I} \sin (2 x)) \\
\cos (2 x)-\mathrm{I} \sin (2 x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{3}(x)=\left[\begin{array}{c}
-\frac{\sin (2 x)}{8} \\
-\frac{\cos (2 x)}{4} \\
\frac{\sin (2 x)}{2} \\
\cos (2 x)
\end{array}\right], \vec{y}_{4}(x)=\left[\begin{array}{c}
-\frac{\cos (2 x)}{8} \\
\frac{\sin (2 x)}{4} \\
\frac{\cos (2 x)}{2} \\
-\sin (2 x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)
$$

- Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{c_{3} \sin (2 x)}{8}-\frac{c_{4} \cos (2 x)}{8} \\
-\frac{c_{3} \cos (2 x)}{4}+\frac{c_{4} \sin (2 x)}{4} \\
\frac{c_{3} \sin (2 x)}{2}+\frac{c_{4} \cos (2 x)}{2} \\
c_{3} \cos (2 x)-c_{4} \sin (2 x)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=-\frac{c_{1} \mathrm{e}^{-2 x}}{8}+\frac{c_{2} \mathrm{e}^{2 x}}{8}-\frac{c_{4} \cos (2 x)}{8}-\frac{c_{3} \sin (2 x)}{8}$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 29

```
dsolve(diff(y(x),x$4)-16*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-2 x}+c_{3} \sin (2 x)+c_{4} \cos (2 x)
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 36

```
DSolve[y''''[x]-16*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow c_{1} e^{2 x}+c_{3} e^{-2 x}+c_{2} \cos (2 x)+c_{4} \sin (2 x)
$$

7.7 problem 4(h)

7.7.1 Maple step by step solution . 668

Internal problem ID [5978]
Internal file name [OUTPUT/5226_Sunday_June_05_2022_03_27_56_PM_99880841/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 74
Problem number: 4(h).
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-3 y^{\prime}-2 y=0
$$

The characteristic equation is

$$
\lambda^{3}-3 \lambda-2=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-1 \\
& \lambda_{3}=-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+\mathrm{e}^{2 x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=x \mathrm{e}^{-x} \\
& y_{3}=\mathrm{e}^{2 x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+\mathrm{e}^{2 x} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+\mathrm{e}^{2 x} c_{3}
$$

Verified OK.

7.7.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-3 y^{\prime}-2 y=0
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=3 y_{2}(x)+2 y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=3 y_{2}(x)+2 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- \quad System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
2 & 3 & 0
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
2 & 3 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[-1,\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- \quad First solution from eigenvalue - 1

$$
\vec{y}_{1}(x)=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=-1$ is the eigenvalue, a $\vec{y}_{2}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})$
- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{2}(x)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $\vec{y}_{2}(x)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue -1

$$
\left(\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
2 & 3 & 0
\end{array}\right]-(-1) \cdot\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}
$\vec{p}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
- \quad Second solution from eigenvalue -1

$$
\vec{y}_{2}(x)=\mathrm{e}^{-x} \cdot\left(x \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}
$$

- Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-x} \cdot\left(x \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)+\mathrm{e}^{2 x} c_{3} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\left(c_{2}(1+x)+c_{1}\right) \mathrm{e}^{-x}+\frac{\mathrm{e}^{2 x} c_{3}}{4}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

```
dsolve(diff(y(x),x$3)-3*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\left(c_{3} x+c_{2}\right) \mathrm{e}^{-x}+\mathrm{e}^{2 x} c_{1}
$$

Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 26

```
DSolve[y'''[x]-3*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow e^{-x}\left(c_{2} x+c_{3} e^{3 x}+c_{1}\right)
$$

7.8 problem 4(i)

Internal problem ID [5979]
Internal file name [OUTPUT/5227_Sunday_June_05_2022_03_27_57_PM_31923992/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 74
Problem number: 4(i).
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-3 i y^{\prime \prime}-3 y^{\prime}+i y=0
$$

The characteristic equation is

$$
\lambda^{3}-3 i \lambda^{2}-3 \lambda+i=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =i \\
\lambda_{2} & =i \\
\lambda_{3} & =i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{i x}+\mathrm{e}^{i x} c_{2} x+x^{2} \mathrm{e}^{i x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
y_{1} & =\mathrm{e}^{i x} \\
y_{2} & =x \mathrm{e}^{i x} \\
y_{3} & =x^{2} \mathrm{e}^{i x}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{i x}+\mathrm{e}^{i x} c_{2} x+x^{2} \mathrm{e}^{i x} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{i x}+\mathrm{e}^{i x} c_{2} x+x^{2} \mathrm{e}^{i x} c_{3}
$$

Verified OK.
Maple trace
'Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 20
dsolve(diff $(y(x), x \$ 3)-3 * I * \operatorname{diff}(y(x), x \$ 2)-3 * \operatorname{diff}(y(x), x)+I * y(x)=0, y(x), \quad$ singsol $=a l l)$

$$
y(x)=\mathrm{e}^{i x}\left(c_{3} x^{2}+c_{2} x+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 25
DSolve $\left[y\right.$ '' ' $[x]-3 * I * y{ }^{\prime}$ ' $[x]-3 * y$ ' $[x]+I * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{i x}\left(x\left(c_{3} x+c_{2}\right)+c_{1}\right)
$$

8 Chapter 2. Linear equations with constant coefficients. Page 79

8.1 problem 1(c) . 675
8.2 problem 2(c) . 682

8.1 problem 1(c)

$$
\text { 8.1.1 Maple step by step solution . } 677
$$

Internal problem ID [5980]
Internal file name [OUTPUT/5228_Sunday_June_05_2022_03_27_58_PM_63047303/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 79
Problem number: 1(c).
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-4 y^{\prime}=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=1, y^{\prime \prime}(0)=0\right]
$$

The characteristic equation is

$$
\lambda^{3}-4 \lambda=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=2 \\
& \lambda_{3}=-2
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1}+c_{2} \mathrm{e}^{-2 x}+\mathrm{e}^{2 x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\mathrm{e}^{-2 x} \\
& y_{3}=\mathrm{e}^{2 x}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1}+c_{2} \mathrm{e}^{-2 x}+\mathrm{e}^{2 x} c_{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}+c_{3} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-2 c_{2} \mathrm{e}^{-2 x}+2 \mathrm{e}^{2 x} c_{3}
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=-2 c_{2}+2 c_{3} \tag{2~A}
\end{equation*}
$$

Taking two derivatives of the solution gives

$$
y^{\prime \prime}=4 c_{2} \mathrm{e}^{-2 x}+4 \mathrm{e}^{2 x} c_{3}
$$

substituting $y^{\prime \prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=4 c_{2}+4 c_{3} \tag{3~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}, c_{3}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=-\frac{1}{4} \\
& c_{3}=\frac{1}{4}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{\mathrm{e}^{-2 x}}{4}+\frac{\mathrm{e}^{2 x}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-2 x}}{4}+\frac{\mathrm{e}^{2 x}}{4} \tag{1}
\end{equation*}
$$

Figure 129: Solution plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-2 x}}{4}+\frac{\mathrm{e}^{2 x}}{4}
$$

Verified OK.

8.1.1 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime \prime}-4 y^{\prime}=0, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=1,\left.y^{\prime \prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

$\square \quad$ Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=4 y_{2}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=4 y_{2}(x)\right]$
- Define vector
$\vec{y}(x)=\left[\begin{array}{l}y_{1}(x) \\ y_{2}(x) \\ y_{3}(x)\end{array}\right]$
- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 4 & 0
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix
$A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 4 & 0\end{array}\right]$
- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
$$

- Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+\mathrm{e}^{2 x} c_{3} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
c_{2} \\
0 \\
0
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{c_{1} \mathrm{e}^{-2 x}}{4}+\frac{\mathrm{e}^{2 x} c_{3}}{4}+c_{2}
$$

- Use the initial condition $y(0)=0$
$0=\frac{c_{1}}{4}+\frac{c_{3}}{4}+c_{2}$
- Calculate the 1st derivative of the solution

$$
y^{\prime}=-\frac{c_{1} \mathrm{e}^{-2 x}}{2}+\frac{\mathrm{e}^{2 x} c_{3}}{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=1$

$$
1=-\frac{c_{1}}{2}+\frac{c_{3}}{2}
$$

- Calculate the 2 nd derivative of the solution

$$
y^{\prime \prime}=c_{1} \mathrm{e}^{-2 x}+\mathrm{e}^{2 x} c_{3}
$$

- Use the initial condition $\left.y^{\prime \prime}\right|_{\{x=0\}}=0$

$$
0=c_{1}+c_{3}
$$

- \quad Solve for the unknown coefficients
$\left\{c_{1}=-1, c_{2}=0, c_{3}=1\right\}$
- \quad Solution to the IVP

$$
y=-\frac{\mathrm{e}^{-2 x}}{4}+\frac{\mathrm{e}^{2 x}}{4}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 17

```
dsolve([diff (y(x),x$3)-4*\operatorname{diff}(y(x),x)=0,y(0)=0,D(y)(0) = 1,(D@@2)(y)(0) = 0],y(x), sings
```

$$
y(x)=\frac{\mathrm{e}^{2 x}}{4}-\frac{\mathrm{e}^{-2 x}}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 69
DSolve $\left[\left\{y\right.\right.$ '' ' $[\mathrm{x}]-4 * y[\mathrm{x}]==0,\left\{\mathrm{y}[0]==0, \mathrm{y}^{\prime}[0]==1, \mathrm{y}\right.$ ' $\left.\left.[0]==0\right\}\right\}, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow I

$$
y(x) \rightarrow \frac{e^{-\frac{x}{\sqrt[3]{2}}}\left(e^{\frac{3 x}{\sqrt[3]{2}}}+\sqrt{3} \sin \left(\frac{\sqrt{3} x}{\sqrt[3]{2}}\right)-\cos \left(\frac{\sqrt{3} x}{\sqrt[3]{2}}\right)\right)}{32^{2 / 3}}
$$

8.2 problem 2(c)

8.2.1 Maple step by step solution . 685

Internal problem ID [5981]
Internal file name [OUTPUT/5229_Sunday_June_05_2022_03_28_00_PM_96542066/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 79
Problem number: 2(c).
ODE order: 5.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{(5)}-y^{\prime \prime \prime \prime}-y^{\prime}+y=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=0, y^{\prime \prime}(0)=0, y^{\prime \prime \prime}(0)=0, y^{\prime \prime \prime \prime}(0)=0\right]
$$

The characteristic equation is

$$
\lambda^{5}-\lambda^{4}-\lambda+1=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =-1 \\
\lambda_{2} & =i \\
\lambda_{3} & =-i \\
\lambda_{4} & =1 \\
\lambda_{5} & =1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+x \mathrm{e}^{x} c_{3}+\mathrm{e}^{-i x} c_{4}+\mathrm{e}^{i x} c_{5}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{x} \\
& y_{3}=x \mathrm{e}^{x} \\
& y_{4}=\mathrm{e}^{-i x} \\
& y_{5}=\mathrm{e}^{i x}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+x \mathrm{e}^{x} c_{3}+\mathrm{e}^{-i x} c_{4}+\mathrm{e}^{i x} c_{5} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1}+c_{2}+c_{4}+c_{5} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+c_{3} \mathrm{e}^{x}+x \mathrm{e}^{x} c_{3}-i \mathrm{e}^{-i x} c_{4}+i \mathrm{e}^{i x} c_{5}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=-c_{4} i+c_{5} i-c_{1}+c_{2}+c_{3} \tag{2~A}
\end{equation*}
$$

Taking two derivatives of the solution gives

$$
y^{\prime \prime}=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+2 c_{3} \mathrm{e}^{x}+x \mathrm{e}^{x} c_{3}-\mathrm{e}^{-i x} c_{4}-\mathrm{e}^{i x} c_{5}
$$

substituting $y^{\prime \prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}+2 c_{3}-c_{4}-c_{5} \tag{3~A}
\end{equation*}
$$

Taking three derivatives of the solution gives

$$
y^{\prime \prime \prime}=-c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+3 c_{3} \mathrm{e}^{x}+x \mathrm{e}^{x} c_{3}+i \mathrm{e}^{-i x} c_{4}-i \mathrm{e}^{i x} c_{5}
$$

substituting $y^{\prime \prime \prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{4} i-c_{5} i-c_{1}+c_{2}+3 c_{3} \tag{4~A}
\end{equation*}
$$

Taking four derivatives of the solution gives

$$
y^{\prime \prime \prime \prime}=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+4 c_{3} \mathrm{e}^{x}+x \mathrm{e}^{x} c_{3}+\mathrm{e}^{-i x} c_{4}+\mathrm{e}^{i x} c_{5}
$$

substituting $y^{\prime \prime \prime \prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}+4 c_{3}+c_{4}+c_{5} \tag{5~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}, 4 \mathrm{~A}, 5 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right\}$. Solving for the constants gives

$$
\begin{aligned}
c_{1} & =\frac{1}{8} \\
c_{2} & =\frac{5}{8} \\
c_{3} & =-\frac{1}{4} \\
c_{4} & =\frac{1}{8}-\frac{i}{8} \\
c_{5} & =\frac{1}{8}+\frac{i}{8}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\mathrm{e}^{-x}}{8}+\frac{5 \mathrm{e}^{x}}{8}-\frac{x \mathrm{e}^{x}}{4}+\frac{\cos (x)}{4}-\frac{\sin (x)}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-x}}{8}+\frac{5 \mathrm{e}^{x}}{8}-\frac{x \mathrm{e}^{x}}{4}+\frac{\cos (x)}{4}-\frac{\sin (x)}{4} \tag{1}
\end{equation*}
$$

Figure 130: Solution plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-x}}{8}+\frac{5 \mathrm{e}^{x}}{8}-\frac{x \mathrm{e}^{x}}{4}+\frac{\cos (x)}{4}-\frac{\sin (x)}{4}
$$

Verified OK.

8.2.1 Maple step by step solution

Let's solve

$$
\left[y^{(5)}-y^{\prime \prime \prime \prime}-y^{\prime}+y=0, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=0,\left.y^{\prime \prime}\right|_{\{x=0\}}=0,\left.y^{\prime \prime \prime}\right|_{\{x=0\}}=0,\left.y^{\prime \prime \prime \prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 5
$y^{(5)}$
$\square \quad$ Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$
$y_{4}(x)=y^{\prime \prime \prime}$
- Define new variable $y_{5}(x)$
$y_{5}(x)=y^{\prime \prime \prime \prime}$
- Isolate for $y_{5}^{\prime}(x)$ using original ODE
$y_{5}^{\prime}(x)=y_{5}(x)+y_{2}(x)-y_{1}(x)$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{5}(x)=y_{4}^{\prime}(x), y_{5}^{\prime}(x)=y_{5}(x)+y_{2}(x)-y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x) \\
y_{5}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
-1 & 1 & 0 & 0 & 1
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
-1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

- Consider eigenpair
$\left[-1,\left[\begin{array}{c}1 \\ -1 \\ 1 \\ -1 \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]\right]
$$

- \quad First solution from eigenvalue 1

$$
\vec{y}_{2}(x)=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=1$ is the eigenvalue, an $\vec{y}_{3}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})$
- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{3}(x)$ into the homogeneous system

$$
\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})
$$

- Use the fact that \vec{v} is an eigenvector of A

$$
\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})
$$

- \quad Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $\vec{y}_{3}(x)$ to be a solution to the homogeneous system

$$
(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}
$$

- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 1

$$
\left(\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
-1 & 1 & 0 & 0 & 1
\end{array}\right]-1 \cdot\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue 1

$$
\vec{y}_{3}(x)=\mathrm{e}^{x} \cdot\left(x \cdot\left[\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right)
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored
$\left[-\mathrm{I},\left[\begin{array}{c}1 \\ -\mathrm{I} \\ -1 \\ \mathrm{I} \\ 1\end{array}\right]\right]$
- Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{I} x} \cdot\left[\begin{array}{c}
1 \\
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
1 \\
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
\cos (x)-\mathrm{I} \sin (x) \\
-\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
-\cos (x)+\mathrm{I} \sin (x) \\
\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{4}(x)=\left[\begin{array}{c}
\cos (x) \\
-\sin (x) \\
-\cos (x) \\
\sin (x) \\
\cos (x)
\end{array}\right], \vec{y}_{5}(x)=\left[\begin{array}{c}
-\sin (x) \\
-\cos (x) \\
\sin (x) \\
\cos (x) \\
-\sin (x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)+c_{5} \vec{y}_{5}(x)
$$

- Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{x} \cdot\left[\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{x} \cdot\left(x \cdot\left[\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right)+\left[\begin{array}{c}
c_{4} \cos (x)-c_{5} \sin (x) \\
-c_{4} \sin (x)-c_{5} \cos (x) \\
-c_{4} \cos (x)+c_{5} \sin (x) \\
c_{4} \sin (x)+c_{5} \cos (x) \\
c_{4} \cos (x)-c_{5} \sin (x)
\end{array}\right.
$$

- First component of the vector is the solution to the ODE

$$
y=c_{1} \mathrm{e}^{-x}+\left(c_{3}(x-1)+c_{2}\right) \mathrm{e}^{x}+c_{4} \cos (x)-c_{5} \sin (x)
$$

- Use the initial condition $y(0)=1$
$1=c_{1}-c_{3}+c_{2}+c_{4}$
- Calculate the 1st derivative of the solution

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+c_{3} \mathrm{e}^{x}+\left(c_{3}(x-1)+c_{2}\right) \mathrm{e}^{x}-c_{4} \sin (x)-c_{5} \cos (x)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$

$$
0=-c_{1}+c_{2}-c_{5}
$$

- Calculate the 2nd derivative of the solution

$$
y^{\prime \prime}=c_{1} \mathrm{e}^{-x}+2 c_{3} \mathrm{e}^{x}+\left(c_{3}(x-1)+c_{2}\right) \mathrm{e}^{x}-c_{4} \cos (x)+c_{5} \sin (x)
$$

- Use the initial condition $\left.y^{\prime \prime}\right|_{\{x=0\}}=0$

$$
0=c_{1}+c_{3}+c_{2}-c_{4}
$$

- Calculate the 3rd derivative of the solution

$$
y^{\prime \prime \prime}=-c_{1} \mathrm{e}^{-x}+3 c_{3} \mathrm{e}^{x}+\left(c_{3}(x-1)+c_{2}\right) \mathrm{e}^{x}+c_{4} \sin (x)+c_{5} \cos (x)
$$

- Use the initial condition $\left.y^{\prime \prime \prime}\right|_{\{x=0\}}=0$

$$
0=-c_{1}+2 c_{3}+c_{2}+c_{5}
$$

- \quad Calculate the 4 th derivative of the solution

$$
y^{\prime \prime \prime \prime}=c_{1} \mathrm{e}^{-x}+4 c_{3} \mathrm{e}^{x}+\left(c_{3}(x-1)+c_{2}\right) \mathrm{e}^{x}+c_{4} \cos (x)-c_{5} \sin (x)
$$

- Use the initial condition $\left.y^{\prime \prime \prime \prime}\right|_{\{x=0\}}=0$

$$
0=c_{1}+3 c_{3}+c_{2}+c_{4}
$$

- Solve for the unknown coefficients

$$
\left\{c_{1}=\frac{1}{8}, c_{2}=\frac{3}{8}, c_{3}=-\frac{1}{4}, c_{4}=\frac{1}{4}, c_{5}=\frac{1}{4}\right\}
$$

- \quad Solution to the IVP

$$
y=\frac{\mathrm{e}^{-x}}{8}+\frac{(-2 x+5) \mathrm{e}^{x}}{8}+\frac{\cos (x)}{4}-\frac{\sin (x)}{4}
$$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 28
dsolve ([diff $(y(x), x \$ 5)-\operatorname{diff}(y(x), x \$ 4)-\operatorname{diff}(y(x), x)+y(x)=0, y(0)=1, D(y)(0)=0, \quad(D @ @ 2)(y)(0$

$$
y(x)=\frac{\mathrm{e}^{-x}}{8}+\frac{(-2 x+5) \mathrm{e}^{x}}{8}+\frac{\cos (x)}{4}-\frac{\sin (x)}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 34

$$
y(x) \rightarrow \frac{1}{8}\left(-2 e^{x} x+e^{-x}+5 e^{x}-2 \sin (x)+2 \cos (x)\right)
$$

9 Chapter 2. Linear equations with constant coefficients. Page 83
9.1 problem 1(a) 694
9.2 problem 1(b) 704
9.3 problem 1(c) 714
9.4 problem 1(d) 720
9.5 problem 1(e) 723
9.6 problem 2 729
9.7 problem 3(a) 736
9.8 problem 3(b) 738
9.9 problem 5(b) 747

9.1 problem 1(a)

9.1.1 Solving as second order linear constant coeff ode 694
9.1.2 Solving as second order ode can be made integrable ode 696
9.1.3 Solving using Kovacic algorithm 698
9.1.4 Maple step by step solution . 702

Internal problem ID [5982]
Internal file name [OUTPUT/5230_Sunday_June_05_2022_03_28_02_PM_72058856/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 83
Problem number: 1(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "second__order_ode_can__be_made_integrable"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}+y=0
$$

9.1.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=+i \\
\lambda_{2}=-i
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
$$

Or

$$
y=\cos (x) c_{1}+c_{2} \sin (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x) \tag{1}
\end{equation*}
$$

Figure 131: Slope field plot

Verification of solutions

$$
y=\cos (x) c_{1}+c_{2} \sin (x)
$$

Verified OK.

9.1.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}+y^{\prime} y=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+y^{\prime} y\right) d x=0 \\
\frac{y^{\prime 2}}{2}+\frac{y^{2}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{-y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{-y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{-y^{2}+2 c_{1}}} d y & =\int d x \\
\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =c_{2}+x
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{-y^{2}+2 c_{1}}} d y & =\int d x \\
-\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =x+c_{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =c_{2}+x \tag{1}\\
-\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =x+c_{3} \tag{2}
\end{align*}
$$

Figure 132: Slope field plot

Verification of solutions

$$
\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right)=c_{2}+x
$$

Verified OK.

$$
-\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right)=x+c_{3}
$$

Verified OK.

9.1.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 136: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x) \tag{1}
\end{equation*}
$$

Figure 133: Slope field plot

Verification of solutions

$$
y=\cos (x) c_{1}+c_{2} \sin (x)
$$

Verified OK.

9.1.4 Maple step by step solution

Let's solve
$y^{\prime \prime}+y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}, \mathrm{I})
$$

- 1st solution of the ODE

$$
y_{1}(x)=\cos (x)
$$

- $\quad 2 n d$ solution of the ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=\cos (x) c_{1}+c_{2} \sin (x)
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve(diff(y(x),x$2)+y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \sin (x)+\cos (x) c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 16

```
DSolve[y''[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow c_{1} \cos (x)+c_{2} \sin (x)
$$

9.2 problem 1(b)

9.2.1 Solving as second order linear constant coeff ode 704
9.2.2 Solving as second order ode can be made integrable ode 706
9.2.3 Solving using Kovacic algorithm 708
9.2.4 Maple step by step solution . 712

Internal problem ID [5983]
Internal file name [OUTPUT/5231_Sunday_June_05_2022_03_28_03_PM_32615447/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 83
Problem number: 1(b).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "second__order_oode_can_bbe_made_integrable"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-y=0
$$

9.2.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=-1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-1)} \\
& = \pm 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+1 \\
& \lambda_{2}=-1
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{(-1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Figure 134: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}
$$

Verified OK.

9.2.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}-y^{\prime} y=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}-y^{\prime} y\right) d x=0 \\
\frac{y^{\prime 2}}{2}-\frac{y^{2}}{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{y^{2}+2 c_{1}}} d y & =\int d x \\
\ln \left(y+\sqrt{y^{2}+2 c_{1}}\right) & =c_{2}+x
\end{aligned}
$$

Raising both side to exponential gives

$$
y+\sqrt{y^{2}+2 c_{1}}=\mathrm{e}^{c_{2}+x}
$$

Which simplifies to

$$
y+\sqrt{y^{2}+2 c_{1}}=c_{3} \mathrm{e}^{x}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{y^{2}+2 c_{1}}} d y & =\int d x \\
-\ln \left(y+\sqrt{y^{2}+2 c_{1}}\right) & =x+c_{4}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{y+\sqrt{y^{2}+2 c_{1}}}=\mathrm{e}^{x+c_{4}}
$$

Which simplifies to

$$
\frac{1}{y+\sqrt{y^{2}+2 c_{1}}}=c_{5} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\left(\mathrm{e}^{2 x} c_{3}^{2}-2 c_{1}\right) \mathrm{e}^{-x}}{2 c_{3}} \tag{1}\\
& y=-\frac{\left(2 c_{1} c_{5}^{2} \mathrm{e}^{2 x}-1\right) \mathrm{e}^{-x}}{2 c_{5}} \tag{2}
\end{align*}
$$

Figure 135: Slope field plot

Verification of solutions

$$
y=\frac{\left(\mathrm{e}^{2 x} c_{3}^{2}-2 c_{1}\right) \mathrm{e}^{-x}}{2 c_{3}}
$$

Verified OK.

$$
y=-\frac{\left(2 c_{1} c_{5}^{2} \mathrm{e}^{2 x}-1\right) \mathrm{e}^{-x}}{2 c_{5}}
$$

Verified OK.

9.2.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 138: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-x} \int \frac{1}{\mathrm{e}^{-2 x}} d x \\
& =\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2} \tag{1}
\end{equation*}
$$

Figure 136: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2}
$$

Verified OK.

9.2.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-1=0
$$

- Factor the characteristic polynomial

$$
(r-1)(r+1)=0
$$

- Roots of the characteristic polynomial

$$
r=(-1,1)
$$

- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-x}
$$

- 2 nd solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

```
dsolve(diff(y(x),x$2)-y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{x} c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 20

```
DSolve[y''[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow c_{1} e^{x}+c_{2} e^{-x}
$$

9.3 problem 1(c)

$$
\text { 9.3.1 Maple step by step solution . } 715
$$

Internal problem ID [5984]
Internal file name [OUTPUT/5232_Sunday_June_05_2022_03_28_04_PM_84836869/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 83
Problem number: 1(c).
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}-y=0
$$

The characteristic equation is

$$
\lambda^{4}-1=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=-1 \\
& \lambda_{3}=i \\
& \lambda_{4}=-i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{-i x} c_{3}+\mathrm{e}^{i x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{x} \\
& y_{3}=\mathrm{e}^{-i x} \\
& y_{4}=\mathrm{e}^{i x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{-i x} c_{3}+\mathrm{e}^{i x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{-i x} c_{3}+\mathrm{e}^{i x} c_{4}
$$

Verified OK.

9.3.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime \prime}-y=0
$$

- Highest derivative means the order of the ODE is 4
$y^{\prime \prime \prime \prime}$Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$
$y_{4}(x)=y^{\prime \prime \prime}$
- Isolate for $y_{4}^{\prime}(x)$ using original ODE
$y_{4}^{\prime}(x)=y_{1}(x)$
Convert linear ODE into a system of first order ODEs $\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=y_{1}(x)\right]$
- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)$
- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{I} x} \cdot\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
-\cos (x)+\mathrm{I} \sin (x) \\
\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{3}(x)=\left[\begin{array}{c}
-\sin (x) \\
-\cos (x) \\
\sin (x) \\
\cos (x)
\end{array}\right], \vec{y}_{4}(x)=\left[\begin{array}{c}
-\cos (x) \\
\sin (x) \\
\cos (x) \\
-\sin (x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{x} \cdot\left[\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-c_{3} \sin (x)-c_{4} \cos (x) \\
-c_{3} \cos (x)+c_{4} \sin (x) \\
c_{3} \sin (x)+c_{4} \cos (x) \\
c_{3} \cos (x)-c_{4} \sin (x)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE $y=-c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}-c_{4} \cos (x)-c_{3} \sin (x)$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(diff(y(x),x$4)-y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{x} c_{2}+c_{3} \sin (x)+c_{4} \cos (x)
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 30
DSolve[y'' '' $[\mathrm{x}]-\mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}]$, x , IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{1} e^{x}+c_{3} e^{-x}+c_{2} \cos (x)+c_{4} \sin (x)
$$

9.4 problem 1(d)

Internal problem ID [5985]
Internal file name [OUTPUT/5233_Sunday_June_05_2022_03_28_05_PM_69631145/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 83
Problem number: 1(d).
ODE order: 5.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_high_order, _missing_x]]
```

$$
y^{(5)}+2 y=0
$$

The characteristic equation is

$$
\lambda^{5}+2=0
$$

The roots of the above equation are
$\lambda_{1}=\cos \left(\frac{\pi}{5}\right) 2^{\frac{1}{5}}+i \sin \left(\frac{\pi}{5}\right) 2^{\frac{1}{5}}$
$\lambda_{2}=\left(\left(\frac{\sqrt{5}}{4}-\frac{1}{4}\right) \cos \left(\frac{\pi}{5}\right)-\frac{\sqrt{2} \sqrt{5+\sqrt{5}} \sin \left(\frac{\pi}{5}\right)}{4}\right) 2^{\frac{1}{5}}+i\left(\frac{\sqrt{2} \sqrt{5+\sqrt{5}} \cos \left(\frac{\pi}{5}\right)}{4}+\left(\frac{\sqrt{5}}{4}-\frac{1}{4}\right) \sin (\right.$
$\lambda_{3}=\left(\left(-\frac{\sqrt{5}}{4}-\frac{1}{4}\right) \cos \left(\frac{\pi}{5}\right)-\frac{\sqrt{2} \sqrt{5-\sqrt{5}} \sin \left(\frac{\pi}{5}\right)}{4}\right) 2^{\frac{1}{5}}+i\left(\frac{\sqrt{2} \sqrt{5-\sqrt{5}} \cos \left(\frac{\pi}{5}\right)}{4}+\left(-\frac{\sqrt{5}}{4}-\frac{1}{4}\right) \mathrm{si}\right.$
$\lambda_{4}=\left(\left(-\frac{\sqrt{5}}{4}-\frac{1}{4}\right) \cos \left(\frac{\pi}{5}\right)+\frac{\sqrt{2} \sqrt{5-\sqrt{5}} \sin \left(\frac{\pi}{5}\right)}{4}\right) 2^{\frac{1}{5}}+i\left(-\frac{\sqrt{2} \sqrt{5-\sqrt{5}} \cos \left(\frac{\pi}{5}\right)}{4}+\left(-\frac{\sqrt{5}}{4}-\frac{1}{4}\right)\right.$
$\lambda_{5}=\left(\left(\frac{\sqrt{5}}{4}-\frac{1}{4}\right) \cos \left(\frac{\pi}{5}\right)+\frac{\sqrt{2} \sqrt{5+\sqrt{5}} \sin \left(\frac{\pi}{5}\right)}{4}\right) 2^{\frac{1}{5}}+i\left(-\frac{\sqrt{2} \sqrt{5+\sqrt{5}} \cos \left(\frac{\pi}{5}\right)}{4}+\left(\frac{\sqrt{5}}{4}-\frac{1}{4}\right) \sin \right.$
Therefore the homogeneous solution is

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{\left(\left(\left(\frac{\sqrt{5}}{4}-\frac{1}{4}\right) \cos \left(\frac{\pi}{5}\right)-\frac{\sqrt{2} \sqrt{5+\sqrt{5}} \sin \left(\frac{\pi}{5}\right)}{4}\right) 2^{\frac{1}{5}}+i\left(\frac{\sqrt{2} \sqrt{5+\sqrt{5}} \cos \left(\frac{\pi}{5}\right)}{4}+\left(\frac{\sqrt{5}}{4}-\frac{1}{4}\right) \sin \left(\frac{\pi}{5}\right)\right) 2^{\frac{1}{5}}\right) x}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\left.y_{4}=\mathrm{e}^{\left(\left(\left(\frac{\sqrt{5}}{4}-\frac{1}{4}\right) \cos \left(\frac{\pi}{5}\right)+\frac{\sqrt{2} \sqrt{5}+\sqrt{5}}{4} \sin \left(\frac{\pi}{5}\right)\right.\right.}\right)^{2^{\frac{1}{5}}+i\left(-\frac{\sqrt{2} \sqrt{5}+\sqrt{5}}{4} \cos \left(\frac{\pi}{5}\right)\right.}+\left(\frac{\sqrt{5}}{4}-\frac{1}{4}\right) \sin \left(\frac{\pi}{5}\right)\right) 2^{\frac{1}{5}}\right) x \\
& y_{5}=\mathrm{e}^{\left(\cos \left(\frac{\pi}{5}\right) 2^{\frac{1}{5}}+i \sin \left(\frac{\pi}{5}\right) 2^{\frac{1}{5}}\right) x}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
& y=\mathrm{e}^{\left(\left(\left(\frac{\sqrt{5}}{4}-\frac{1}{4}\right) \cos \left(\frac{\pi}{5}\right)-\frac{\sqrt{2} \sqrt{5+\sqrt{5}} \sin \left(\frac{\pi}{5}\right)}{4}\right) 2^{\left.\frac{1}{5}+i\left(\frac{\sqrt{2} \sqrt{5+\sqrt{5}} \cos \left(\frac{\pi}{5}\right)}{4}+\left(\frac{\sqrt{5}}{4}-\frac{1}{4}\right) \sin \left(\frac{\pi}{5}\right)\right) 2^{\frac{1}{5}}\right) x} c_{1}\right.} \\
& +\mathrm{e}^{\left(\left(\left(-\frac{\sqrt{5}}{4}-\frac{1}{4}\right) \cos \left(\frac{\pi}{5}\right)-\frac{\sqrt{2} \sqrt{5}-\sqrt{5} \sin \left(\frac{\pi}{5}\right)}{4}\right) 2^{\left.\frac{1}{5}+i\left(\frac{\sqrt{2} \sqrt{5-\sqrt{5}} \cos \left(\frac{\pi}{5}\right)}{4}+\left(-\frac{\sqrt{5}}{4}-\frac{1}{4}\right) \sin \left(\frac{\pi}{5}\right)\right) 2^{\frac{1}{5}}\right) x} c_{2}\right.} \\
& +\mathrm{e}^{\left.\left(\left(\left(-\frac{\sqrt{5}}{4}-\frac{1}{4}\right) \cos \left(\frac{\pi}{5}\right)+\frac{\sqrt{2} \sqrt{5-\sqrt{5}} \sin \left(\frac{\pi}{5}\right)}{4}\right) 2^{\frac{1}{5}+i\left(-\frac{\sqrt{2} \sqrt{5}-\sqrt{5}}{4} \cos \left(\frac{\pi}{5}\right)\right.}+\left(-\frac{\sqrt{5}}{4}-\frac{1}{4}\right) \sin \left(\frac{\pi}{5}\right)\right) 2^{\frac{1}{5}}\right) x} c_{3} \\
& \left.+\mathrm{e}^{\left(\left(\left(\frac{\sqrt{5}}{4}-\frac{1}{4}\right) \cos \left(\frac{\pi}{5}\right)+\frac{\sqrt{2} \sqrt{5}+\sqrt{5}}{4} \sin \left(\frac{\pi}{5}\right)\right.\right.}\right) 2^{\left.\frac{1}{5}+i\left(-\frac{\sqrt{2} \sqrt{5+\sqrt{5}} \cos \left(\frac{\pi}{5}\right)}{4}+\left(\frac{\sqrt{5}}{4}-\frac{1}{4}\right) \sin \left(\frac{\pi}{5}\right)\right) 2^{\frac{1}{5}}\right) x} c_{4} \\
& +\mathrm{e}^{\left(\cos \left(\frac{\pi}{5}\right) 2^{\frac{1}{5}}+i \sin \left(\frac{\pi}{5}\right) 2^{\frac{1}{5}}\right) x} c_{5}
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
y= & \mathrm{e}^{\left(\left(\left(\frac{\sqrt{5}}{4}-\frac{1}{4}\right) \cos \left(\frac{\pi}{5}\right)-\frac{\sqrt{2} \sqrt{5}+\sqrt{5} \sin \left(\frac{\pi}{5}\right)}{4}\right) 2^{\left.\frac{1}{5}+i\left(\frac{\sqrt{2} \sqrt{5+\sqrt{5}} \cos \left(\frac{\pi}{5}\right)}{4}+\left(\frac{\sqrt{5}}{4}-\frac{1}{4}\right) \sin \left(\frac{\pi}{5}\right)\right) 2^{1^{5}}\right) x} c_{1}\right.} \\
& +\mathrm{e}^{\left(\left(\left(-\frac{\sqrt{5}}{4}-\frac{1}{4}\right) \cos \left(\frac{\pi}{5}\right)-\frac{\sqrt{2} \sqrt{5-\sqrt{5}} \sin \left(\frac{\pi}{5}\right)}{4}\right) 2^{\left.\frac{1}{5}+i\left(\frac{\sqrt{2} \sqrt{5-\sqrt{5}} \cos \left(\frac{\pi}{5}\right)}{4}+\left(-\frac{\sqrt{5}}{4}-\frac{1}{4}\right) \sin \left(\frac{\pi}{5}\right)\right) 2^{\frac{1}{5}}\right) x} c_{2}\right.} \\
& +\mathrm{e}^{\left(\left(\left(-\frac{\sqrt{5}}{4}-\frac{1}{4}\right) \cos \left(\frac{\pi}{5}\right)+\frac{\sqrt{2} \sqrt{5-\sqrt{5}} \sin \left(\frac{\pi}{5}\right)}{4}\right) 2^{\left.\frac{1}{5}+i\left(-\frac{\sqrt{2} \sqrt{5-\sqrt{5}} \cos \left(\frac{\pi}{5}\right)}{4}+\left(-\frac{\sqrt{5}}{4}-\frac{1}{4}\right) \sin \left(\frac{\pi}{5}\right)\right) 2^{\frac{1}{5}}\right) x} c_{3}\right.} \\
& +\mathrm{e}^{\left(\left(\left(\frac{\sqrt{5}}{4}-\frac{1}{4}\right) \cos \left(\frac{\pi}{5}\right)+\frac{\sqrt{2} \sqrt{5+\sqrt{5}} \sin \left(\frac{\pi}{5}\right)}{4}\right) 2^{\frac{1}{5}}+i\left(-\frac{\sqrt{2} \sqrt{5+\sqrt{5}} \cos \left(\frac{\pi}{5}\right)}{4}+\left(\frac{\sqrt{5}}{4}-\frac{1}{4}\right) \sin \left(\frac{\pi}{5}\right)\right) 2^{\frac{1}{5}}\right) x} c_{4} \\
& +\mathrm{e}^{\left(\cos \left(\frac{\pi}{5}\right) 2^{\frac{1}{5}}+i \sin \left(\frac{\pi}{5}\right) 2^{\frac{1}{5}}\right) x} c_{5}
\end{aligned}
$$

Verified OK.

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 140

```
dsolve(diff(y(x),x$5)+2*y(x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=c_{1} \mathrm{e}^{\frac{\left(-i 2^{\frac{7}{10}} \sqrt{5-\sqrt{5}}+2^{\frac{1}{5}} \sqrt{5}+2^{\frac{1}{5}}\right) x}{4}}+c_{2} \mathrm{e}^{-\frac{x\left(i(\sqrt{5}+1) 2 \frac{7}{10} \sqrt{5-\sqrt{5}}+22^{\frac{1}{5}}(\sqrt{5}-1)\right)}{8}} \\
& +c_{3} \mathrm{e}^{-2^{\frac{1}{5}} x}+c_{4} \mathrm{e}^{\frac{\left(i(\sqrt{5}+1) 2^{\frac{7}{10}} \sqrt{5-\sqrt{5}}-22^{\frac{1}{5}}(\sqrt{5}-1)\right) x}{8}}+c_{5} \mathrm{e}^{2^{\frac{1}{5}}\left(\cos \left(\frac{\pi}{5}\right)+i \sin \left(\frac{\pi}{5}\right)\right) x}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 180

```
DSolve[y'''''[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow e^{-\frac{(\sqrt{5}-1) x}{22^{4 / 5}}}\left(c_{5} e^{\frac{(\sqrt{5}-5) x}{22^{4 / 5}}}\right. \\
& \quad+c_{3} e^{\frac{\sqrt{5} x}{2^{4 / 5}}} \cos \left(\frac{\sqrt{5-\sqrt{5}} x}{22^{3 / 10}}\right)+c_{4} \cos \left(\frac{\sqrt{5+\sqrt{5}} x}{22^{3 / 10}}\right)+c_{2} e^{\frac{\sqrt{5} x}{2^{4 / 5}}} \sin \left(\frac{\sqrt{5-\sqrt{5}} x}{22^{3 / 10}}\right)+c_{1} \sin \left(\frac{\sqrt{5+\sqrt{5}} x}{22^{3 / 10}}\right)
\end{aligned}
$$

9.5 problem 1(e)

9.5.1 Maple step by step solution . 7724

Internal problem ID [5986]
Internal file name [OUTPUT/5234_Sunday_June_05_2022_03_28_06_PM_17994693/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 83
Problem number: 1(e).
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}-5 y^{\prime \prime}+4 y=0
$$

The characteristic equation is

$$
\lambda^{4}-5 \lambda^{2}+4=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-2 \\
& \lambda_{3}=1 \\
& \lambda_{4}=-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}+c_{3} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{-2 x} \\
& y_{3}=\mathrm{e}^{x} \\
& y_{4}=\mathrm{e}^{2 x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}+c_{3} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}+c_{3} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{4}
$$

Verified OK.

9.5.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime \prime}-5 y^{\prime \prime}+4 y=0
$$

- Highest derivative means the order of the ODE is 4 $y^{\prime \prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$
$y_{4}(x)=y^{\prime \prime \prime}$
- Isolate for $y_{4}^{\prime}(x)$ using original ODE
$y_{4}^{\prime}(x)=5 y_{3}(x)-4 y_{1}(x)$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=5 y_{3}(x)-4 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-4 & 0 & 5 & 0
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-4 & 0 & 5 & 0
\end{array}\right]
$$

- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A
$\left[\left[\left[-2,\left[\begin{array}{c}-\frac{1}{8} \\ \frac{1}{4} \\ -\frac{1}{2} \\ 1\end{array}\right]\right],\left[-1,\left[\begin{array}{c}-1 \\ 1 \\ -1 \\ 1\end{array}\right]\right],\left[1,\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\right],\left[2,\left[\begin{array}{c}\frac{1}{8} \\ \frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]\right]\right.$
- Consider eigenpair

$$
\left[-2,\left[\begin{array}{c}
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[1,\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{4}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+c_{4} \vec{y}_{4}
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{x} \cdot\left[\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}\right]+\mathrm{e}^{2 x} c_{4} \cdot\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=-\frac{\left(-\mathrm{e}^{4 x} c_{4}-8 c_{3} \mathrm{e}^{3 x}+8 c_{2} \mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-2 x}}{8}$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 27
dsolve(diff $(y(x), x \$ 4)-5 * \operatorname{diff}(y(x), x \$ 2)+4 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\left(\mathrm{e}^{4 x} c_{1}+c_{4} \mathrm{e}^{3 x}+\mathrm{e}^{x} c_{2}+c_{3}\right) \mathrm{e}^{-2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 35
DSolve[y''''[x]-5*y''[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-2 x}\left(c_{2} e^{x}+e^{3 x}\left(c_{4} e^{x}+c_{3}\right)+c_{1}\right)
$$

9.6 problem 2

9.6.1 Maple step by step solution

Internal problem ID [5987]
Internal file name [OUTPUT/5235_Sunday_June_05_2022_03_28_07_PM_72595949/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 83
Problem number: 2.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}+y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=1, y^{\prime \prime}(0)=0\right]
$$

The characteristic equation is

$$
\lambda^{3}+1=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=\frac{1}{2}-\frac{i \sqrt{3}}{2} \\
& \lambda_{3}=\frac{1}{2}+\frac{i \sqrt{3}}{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{\left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{2}+\mathrm{e}^{\left(\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{\left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} \\
& y_{3}=\mathrm{e}^{\left(\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{\left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{2}+\mathrm{e}^{\left(\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}+c_{3} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+\left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) \mathrm{e}^{\left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{2}+\left(\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) \mathrm{e}^{\left(\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{3}
$$

substituting $y^{\prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=\frac{i\left(c_{2}-c_{3}\right) \sqrt{3}}{2}-c_{1}+\frac{c_{2}}{2}+\frac{c_{3}}{2} \tag{2~A}
\end{equation*}
$$

Taking two derivatives of the solution gives

$$
y^{\prime \prime}=c_{1} \mathrm{e}^{-x}+\left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)^{2} \mathrm{e}^{\left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{2}+\left(\frac{1}{2}-\frac{i \sqrt{3}}{2}\right)^{2} \mathrm{e}^{\left(\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{3}
$$

substituting $y^{\prime \prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=\frac{i\left(c_{2}-c_{3}\right) \sqrt{3}}{2}+c_{1}-\frac{c_{2}}{2}-\frac{c_{3}}{2} \tag{3A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}, c_{3}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{3} \\
& c_{2}=-\frac{(-\sqrt{3}+3 i) \sqrt{3}}{18} \\
& c_{3}=\frac{\sqrt{3}(\sqrt{3}+3 i)}{18}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{\mathrm{e}^{-x}}{3}-\frac{i \sqrt{3} \mathrm{e}^{\frac{(1+i \sqrt{3}) x}{2}}}{6}+\frac{\mathrm{e}^{\frac{(1+i \sqrt{3}) x}{2}}}{6}+\frac{i \sqrt{3} \mathrm{e}^{-\frac{(i \sqrt{3}-1) x}{2}}}{6}+\frac{\mathrm{e}^{-\frac{(i \sqrt{3}-1) x}{2}}}{6}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(1+i \sqrt{3}) \mathrm{e}^{-\frac{(i \sqrt{3}-1) x}{2}}}{6}-\frac{i \sqrt{3} \mathrm{e}^{\frac{(1+i \sqrt{3}) x}{2}}}{6}-\frac{\mathrm{e}^{-x}}{3}+\frac{\mathrm{e}^{\frac{(1+i \sqrt{3}) x}{2}}}{6} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{(1+i \sqrt{3}) \mathrm{e}^{-\frac{(i \sqrt{3}-1) x}{2}}}{6}-\frac{i \sqrt{3} \mathrm{e}^{\frac{(1+i \sqrt{3}) x}{2}}}{6}-\frac{\mathrm{e}^{-x}}{3}+\frac{\mathrm{e}^{\frac{(1+i \sqrt{3}) x}{2}}}{6}
$$

Verified OK.

9.6.1 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime \prime}+y=0, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=1,\left.y^{\prime \prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$
$y_{3}(x)=y^{\prime \prime}$
- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=-y_{1}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=-y_{1}(x)\right]$
- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & 0 & 0
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & 0 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]\right],\left[\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{\left(\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair
$\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$
- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) x} \cdot\left[\begin{array}{c}
\frac{1}{\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
\mathrm{e}^{\frac{x}{2}} \cdot\left(\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)\right) \cdot\left[\begin{array}{c}
\frac{1}{\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{\frac{x}{2}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)}{\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)}{\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\mathrm{e}^{\frac{x}{2}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2} \\
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2} \\
\cos \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right], \vec{y}_{3}(x)=\mathrm{e}^{\frac{x}{2}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}-\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
-\sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{\frac{x}{2}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2} \\
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2} \\
\cos \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]+c_{3} \mathrm{e}^{\frac{x}{2}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}-\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
-\sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\left(-\frac{\mathrm{e}^{\frac{3 x}{2}}\left(-c_{3} \sqrt{3}+c_{2}\right) \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\mathrm{e}^{\frac{3 x}{2}}\left(\sqrt{3} c_{2}+c_{3}\right) \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}+c_{1}\right) \mathrm{e}^{-x}
$$

- Use the initial condition $y(0)=0$
$0=\frac{c_{3} \sqrt{3}}{2}-\frac{c_{2}}{2}+c_{1}$
- \quad Calculate the 1 st derivative of the solution

$$
y^{\prime}=\left(-\frac{3 \mathrm{e}^{\frac{3 x}{2}}\left(-c_{3} \sqrt{3}+c_{2}\right) \cos \left(\frac{\sqrt{3} x}{2}\right)}{4}+\frac{\mathrm{e}^{\frac{3 x}{2}}\left(-c_{3} \sqrt{3}+c_{2}\right) \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{4}+\frac{3 \mathrm{e}^{\frac{3 x}{2}}\left(\sqrt{3} c_{2}+c_{3}\right) \sin \left(\frac{\sqrt{3} x}{2}\right)}{4}+\frac{\mathrm{e}^{\frac{3 x}{2}}\left(\sqrt{3} c_{2}+c_{3}\right.}{}\right.
$$

- \quad Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=1$
$1=\frac{c_{3} \sqrt{3}}{4}-\frac{c_{2}}{4}+\frac{\left(\sqrt{3} c_{2}+c_{3}\right) \sqrt{3}}{4}-c_{1}$
- \quad Calculate the 2 nd derivative of the solution

$$
y^{\prime \prime}=\left(-\frac{3 \mathrm{e}^{\frac{3 x}{2}}\left(-c_{3} \sqrt{3}+c_{2}\right) \cos \left(\frac{\sqrt{3} x}{2}\right)}{4}+\frac{3 \mathrm{e}^{\frac{3 x}{2}}\left(-c_{3} \sqrt{3}+c_{2}\right) \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{4}+\frac{3 \mathrm{e}^{\frac{3 x}{2}}\left(\sqrt{3} c_{2}+c_{3}\right) \sin \left(\frac{\sqrt{3} x}{2}\right)}{4}+\frac{3 \mathrm{e}^{\frac{3 x}{2}}\left(\sqrt{3} c_{2}-\right.}{}\right.
$$

- Use the initial condition $\left.y^{\prime \prime}\right|_{\{x=0\}}=0$
$0=-\frac{c_{3} \sqrt{3}}{4}+\frac{c_{2}}{4}+\frac{\left(\sqrt{3} c_{2}+c_{3}\right) \sqrt{3}}{4}+c_{1}$
- \quad Solve for the unknown coefficients
$\left\{c_{1}=-\frac{1}{3}, c_{2}=\frac{1}{3}, c_{3}=\frac{\sqrt{3}}{3}\right\}$
- \quad Solution to the IVP
$y=\frac{\mathrm{e}^{-x}\left(\sqrt{3} \mathrm{e}^{\frac{3 x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)+\mathrm{e}^{\frac{3 x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)-1\right)}{3}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.078 (sec). Leaf size: 39

```
dsolve([diff(y(x),x$3)+y(x)=0,y(0) = 0, D(y)(0) = 1, (D@@2) (y)(0) = 0],y(x), singsol=all)
```

$$
y(x)=\frac{\left(\mathrm{e}^{\frac{3 x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}+\mathrm{e}^{\frac{3 x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)-1\right) \mathrm{e}^{-x}}{3}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 59
DSolve $\left[\left\{y y^{\prime \prime}\right.\right.$ ' $[x]+y[x]==0,\{y[0]==0, y$ ' $[0]==1, y$ ' $\left.[0]==0\}\right\}, y[x], x$, IncludeSingularSolutions $->$ Tru

$$
y(x) \rightarrow \frac{1}{3} e^{-x}\left(\sqrt{3} e^{3 x / 2} \sin \left(\frac{\sqrt{3} x}{2}\right)+e^{3 x / 2} \cos \left(\frac{\sqrt{3} x}{2}\right)-1\right)
$$

9.7 problem 3(a)

Internal problem ID [5988]
Internal file name [OUTPUT/5236_Sunday_June_05_2022_03_28_09_PM_26492945/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 83
Problem number: 3(a).
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-i y^{\prime \prime}+y^{\prime}-i y=0
$$

The characteristic equation is

$$
\lambda^{3}-i \lambda^{2}+\lambda-i=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=-i \\
& \lambda_{2}=i \\
& \lambda_{3}=i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-i x}+c_{2} \mathrm{e}^{i x}+x \mathrm{e}^{i x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-i x} \\
& y_{2}=\mathrm{e}^{i x} \\
& y_{3}=x \mathrm{e}^{i x}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-i x}+c_{2} \mathrm{e}^{i x}+x \mathrm{e}^{i x} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-i x}+c_{2} \mathrm{e}^{i x}+x \mathrm{e}^{i x} c_{3}
$$

Verified OK.
Maple trace

- Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23
dsolve($\operatorname{diff}(y(x), x \$ 3)-I * \operatorname{diff}(y(x), x \$ 2)+\operatorname{diff}(y(x), x)-I * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\left(c_{3} x+c_{2}\right) \mathrm{e}^{i x}+\mathrm{e}^{-i x} c_{1}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 31
DSolve[y'' ' $[\mathrm{x}]-\mathrm{I} * \mathrm{y}$ '' $[\mathrm{x}]+\mathrm{y}$ '[x]-I*y[x]==0,y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-i x}\left(e^{2 i x}\left(c_{3} x+c_{2}\right)+c_{1}\right)
$$

9.8 problem 3(b)

9.8.1 Solving as second order linear constant coeff ode 738
9.8.2 Solving as linear second order ode solved by an integrating factor ode
9.8.3 Solving using Kovacic algorithm 741
9.8.4 Maple step by step solution . 745

Internal problem ID [5989]
Internal file name [OUTPUT/5237_Sunday_June_05_2022_03_28_10_PM_90187819/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 83
Problem number: 3(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-2 i y^{\prime}-y=0
$$

9.8.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2 i, C=-1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 i \lambda \mathrm{e}^{\lambda x}-\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 i \lambda-1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2 i, C=-1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2 i}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(-2 i)^{2}-(4)(1)(-1)} \\
& =i
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-i$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{i x}+c_{2} x \mathrm{e}^{i x} \tag{1}
\end{equation*}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{i x}+\mathrm{e}^{i x} c_{2} x \tag{1}
\end{equation*}
$$

Figure 137: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{i x}+\mathrm{e}^{i x} c_{2} x
$$

Verified OK.

9.8.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-2 i$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-2 i d x} \\
& =\mathrm{e}^{-i x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(y \mathrm{e}^{-i x}\right)^{\prime \prime} & =0
\end{aligned}
$$

Integrating once gives

$$
\left(y \mathrm{e}^{-i x}\right)^{\prime}=c_{1}
$$

Integrating again gives

$$
\left(y \mathrm{e}^{-i x}\right)=c_{1} x+c_{2}
$$

Hence the solution is

$$
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{-i x}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{i x}+c_{2} \mathrm{e}^{i x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{i x}+c_{2} \mathrm{e}^{i x} \tag{1}
\end{equation*}
$$

Figure 138: Slope field plot

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{i x}+c_{2} \mathrm{e}^{i x}
$$

Verified OK.

9.8.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 i y^{\prime}-y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 i \tag{3}\\
& C=-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 143: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2 i}{1} d x} \\
& =z_{1} e^{i x} \\
& =z_{1}\left(\mathrm{e}^{i x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{i x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2 i}{1}} d x}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 i x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{i x}\right)+c_{2}\left(\mathrm{e}^{i x}(x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{i x}+\mathrm{e}^{i x} c_{2} x \tag{1}
\end{equation*}
$$

Figure 139: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{i x}+\mathrm{e}^{i x} c_{2} x
$$

Verified OK.

9.8.4 Maple step by step solution

Let's solve
$y^{\prime \prime}-2 \mathrm{I} y^{\prime}-y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE
$r^{2}-2 \mathrm{I} r-1=0$
- Factor the characteristic polynomial
$(-r+\mathrm{I})^{2}=0$
- Root of the characteristic polynomial

$$
r=\mathrm{I}
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{\mathrm{I} x}
$$

- Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence $y_{2}(x)=x \mathrm{e}^{\mathrm{I} x}$
- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{\mathrm{I} x}+\mathrm{e}^{\mathrm{I} x} c_{2} x
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15
dsolve(diff $(y(x), x \$ 2)-2 * I * \operatorname{diff}(y(x), x)-y(x)=0, y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{i x}\left(c_{2} x+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 20
DSolve[y''[x]-2*I*y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{i x}\left(c_{2} x+c_{1}\right)
$$

9.9 problem 5(b)

Internal problem ID [5990]
Internal file name [OUTPUT/5238_Sunday_June_05_2022_03_28_11_PM_31224304/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 83
Problem number: 5(b).
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_high_order, _missing_x]]
Unable to solve or complete the solution.

$$
y^{\prime \prime \prime \prime}-k^{4} y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0, y(1)=0, y^{\prime}(1)=0\right]
$$

The characteristic equation is

$$
-k^{4}+\lambda^{4}=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=k \\
& \lambda_{2}=-k \\
& \lambda_{3}=i k \\
& \lambda_{4}=-i k
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{i k x} c_{1}+\mathrm{e}^{k x} c_{2}+\mathrm{e}^{-i k x} c_{3}+\mathrm{e}^{-k x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{i k x} \\
& y_{2}=\mathrm{e}^{k x} \\
& y_{3}=\mathrm{e}^{-i k x} \\
& y_{4}=\mathrm{e}^{-k x}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\mathrm{e}^{i k x} c_{1}+\mathrm{e}^{k x} c_{2}+\mathrm{e}^{-i k x} c_{3}+\mathrm{e}^{-k x} c_{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=\mathrm{e}^{i k} c_{1}+\mathrm{e}^{k} c_{2}+\mathrm{e}^{-i k} c_{3}+\mathrm{e}^{-k} c_{4} \tag{1~A}
\end{equation*}
$$

substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}+c_{3}+c_{4} \tag{2~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=i k \mathrm{e}^{i k x} c_{1}+k \mathrm{e}^{k x} c_{2}-i k \mathrm{e}^{-i k x} c_{3}-k \mathrm{e}^{-k x} c_{4}
$$

substituting $y^{\prime}=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=\left(i \mathrm{e}^{i k} c_{1}+\mathrm{e}^{k} c_{2}-i \mathrm{e}^{-i k} c_{3}-\mathrm{e}^{-k} c_{4}\right) k \tag{3A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=i k \mathrm{e}^{i k x} c_{1}+k \mathrm{e}^{k x} c_{2}-i k \mathrm{e}^{-i k x} c_{3}-k \mathrm{e}^{-k x} c_{4}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=\left(c_{1} i-c_{3} i+c_{2}-c_{4}\right) k \tag{4~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}, 4 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=0 \\
& c_{3}=0 \\
& c_{4}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=0 \tag{1}
\end{equation*}
$$

Figure 140: Solution plot

Verification of solutions

$$
y=0
$$

Verified OK.
Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.094 (sec). Leaf size: 5
dsolve([diff $\left.(y(x), x \$ 4)-k^{\wedge} 4 * y(x)=0, y(0)=0, D(y)(0)=0, y(1)=0, D(y)(1)=0\right], y(x)$, singso

$$
y(x)=0
$$

\checkmark Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 6
DSolve $\left[\left\{y^{\prime} \mathbf{' C '}^{\prime}[\mathrm{x}]-\mathrm{k}^{\wedge} 4 * \mathrm{y}[\mathrm{x}]==0,\left\{\mathrm{y}[0]==0, \mathrm{y}[1]==0, \mathrm{y}^{\prime}[0]==0, \mathrm{y}^{\prime}[1]==0\right\}\right\}, \mathrm{y}[\mathrm{x}], \mathrm{x}\right.$, IncludeSingularSolu

$$
y(x) \rightarrow 0
$$

10 Chapter 2. Linear equations with constant coefficients. Page 89

10.1 problem 1(a) . 752
10.2 problem 1(b) . 760
10.3 problem 1(c) . 771
10.4 problem 1(d) . 781
10.5 problem 1(e) . 785
10.6 problem 1(f) . 796

10.1 problem 1(a)

10.1.1 Maple step by step solution

Internal problem ID [5991]
Internal file name [OUTPUT/5239_Sunday_June_05_2022_03_28_13_PM_86747064/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 89
Problem number: 1(a).
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _with_linear_symmetries]]

$$
y^{\prime \prime \prime}-y=x
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}-y=0
$$

The characteristic equation is

$$
\lambda^{3}-1=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{3}}{2} \\
& \lambda_{3}=-\frac{1}{2}+\frac{i \sqrt{3}}{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{x}+\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{2}+\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} \\
& y_{3}=\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}-y=x
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{1, x\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{x}, \mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x}, \mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{2} x+A_{1}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-A_{2} x-A_{1}=x
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=-1\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-x
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}+\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{2}+\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{3}\right)+(-x)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{2}+\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{3}-x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}+\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{2}+\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{3}-x
$$

Verified OK.

10.1.1 Maple step by step solution

Let's solve
$y^{\prime \prime \prime}-y=x$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=x+y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=x+y_{1}(x)\right]$

- Define vector
$\vec{y}(x)=\left[\begin{array}{l}y_{1}(x) \\ y_{2}(x) \\ y_{3}(x)\end{array}\right]$
- System to solve
$\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{l}0 \\ 0 \\ x\end{array}\right]$
- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{l}0 \\ 0 \\ x\end{array}\right]$
- Define the coefficient matrix
$A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$
- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}$
- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A
- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) x} \cdot\left[\begin{array}{c}
\frac{1}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and cos

$$
\mathrm{e}^{-\frac{x}{2}} \cdot\left(\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)\right) \cdot\left[\begin{array}{c}
\frac{1}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)}{-\frac{1}{2}-\frac{\sqrt{3}}{2}} \\
\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2} \\
-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2} \\
\cos \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right], \vec{y}_{3}(x)=\mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
-\sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\vec{y}_{p}(x)$

Fundamental matrix

- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{x} & \mathrm{e}^{-\frac{x}{2}}\left(-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}\right) & \mathrm{e}^{-\frac{x}{2}}\left(-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2}\right) \\
\mathrm{e}^{x} & \mathrm{e}^{-\frac{x}{2}}\left(-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}\right) & \mathrm{e}^{-\frac{x}{2}}\left(\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2}\right) \\
\mathrm{e}^{x} & \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) & -\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{x} & \mathrm{e}^{-\frac{x}{2}}\left(-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}\right) & \mathrm{e}^{-\frac{x}{2}}\left(-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2}\right) \\
\mathrm{e}^{x} & \mathrm{e}^{-\frac{x}{2}}\left(-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}\right) & \mathrm{e}^{-\frac{x}{2}\left(\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2}\right)} \\
\mathrm{e}^{x} & \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) & -\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{ccc}
1 & -\frac{1}{2} & -\frac{\sqrt{2}}{2} \\
1 & -\frac{1}{2} & \frac{\sqrt{3}}{2} \\
1 & 1 & 0
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{x}}{3}+\frac{2 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{3} & \frac{\mathrm{e}^{x}}{3}-\frac{\mathrm{e}^{-\frac{x}{2} \cos \left(\frac{\sqrt{3} x}{2}\right)}}{3}+\frac{\mathrm{e}^{-\frac{x}{2} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)}}{3} & \frac{\mathrm{e}^{x}}{3}-\frac{\mathrm{e}^{-\frac{x}{2}} \cos (\sqrt{ }}{3} \\
\frac{\mathrm{e}^{x}}{3}-\frac{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{3}-\frac{\mathrm{e}^{-\frac{x}{2}} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)}{3} & \frac{\mathrm{e}^{x}}{3}+\frac{2 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{3} & \frac{\mathrm{e}^{x}}{3}-\frac{\mathrm{e}^{-\frac{x}{2} \cos \left(\frac{\sqrt{ }}{}\right.}}{3} \\
\frac{\mathrm{e}^{x}}{3}-\frac{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{3}+\frac{\mathrm{e}^{-\frac{x}{2} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)}}{3} & \frac{\mathrm{e}^{x}}{3}-\frac{\mathrm{e}^{-\frac{x}{2} \cos \left(\frac{\sqrt{3} x}{2}\right)}}{3}-\frac{\mathrm{e}^{-\frac{x}{2} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)}}{3} & \frac{\mathrm{e}^{x}}{3}+
\end{array}\right.
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$

$$
\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)
$$

- Take the derivative of the particular solution

$$
\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)
$$

- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
\frac{\mathrm{e}^{-\frac{x}{2}} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)}{3}-x+\frac{\mathrm{e}^{x}}{3}-\frac{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{3} \\
\frac{\mathrm{e}^{x}}{3}+\frac{2 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{3}-1 \\
-\frac{\mathrm{e}^{-\frac{x}{2}}\left(-\mathrm{e}^{\frac{3 x}{2}}+\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}+\cos \left(\frac{\sqrt{3} x}{2}\right)\right)}{3}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\left[\begin{array}{c}
\frac{\mathrm{e}^{-\frac{x}{2} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)}}{3}-x+\frac{\mathrm{e}^{x}}{3}-\frac{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{3} \\
\frac{\mathrm{e}^{x}}{3}+\frac{2 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{3}-1 \\
-\frac{\mathrm{e}^{-\frac{x}{2}}\left(-\mathrm{e}^{\frac{3 x}{2}}+\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}+\cos \left(\frac{\sqrt{3} x}{2}\right)\right)}{3}
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=-\frac{\left(c_{3} \sqrt{3}+c_{2}+\frac{2}{3}\right) \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\left(\left(c_{2}-\frac{2}{3}\right) \sqrt{3}-c_{3}\right) \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\left(6 c_{1}+2\right) \mathrm{e}^{x}}{6}-x
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 38

```
dsolve(diff(y(x),x$3)-y(x)=x,y(x), singsol=all)
```

$$
y(x)=-x+\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{3} \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 57
DSolve[y''' $[x]-y[x]==x, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow-x+c_{1} e^{x}+c_{2} e^{-x / 2} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{3} e^{-x / 2} \sin \left(\frac{\sqrt{3} x}{2}\right)
$$

10.2 problem 1(b)

10.2.1 Maple step by step solution 765

Internal problem ID [5992]
Internal file name [OUTPUT/5240_Sunday_June_05_2022_03_28_15_PM_82884444/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 89
Problem number: 1(b).
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _with_linear_symmetries]]

$$
y^{\prime \prime \prime}-8 y=\mathrm{e}^{i x}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}-8 y=0
$$

The characteristic equation is

$$
\lambda^{3}-8=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=i \sqrt{3}-1 \\
& \lambda_{3}=-i \sqrt{3}-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{(i \sqrt{3}-1) x} c_{2}+\mathrm{e}^{(-i \sqrt{3}-1) x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{2 x} \\
& y_{2}=\mathrm{e}^{(i \sqrt{3}-1) x} \\
& y_{3}=\mathrm{e}^{(-i \sqrt{3}-1) x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}-8 y=\mathrm{e}^{i x}
$$

Let the particular solution be

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}
$$

Where y_{i} are the basis solutions found above for the homogeneous solution y_{h} and $U_{i}(x)$ are functions to be determined as follows

$$
U_{i}=(-1)^{n-i} \int \frac{F(x) W_{i}(x)}{a W(x)} d x
$$

Where $W(x)$ is the Wronskian and $W_{i}(x)$ is the Wronskian that results after deleting the last row and the i-th column of the determinant and n is the order of the ODE or equivalently, the number of basis solutions, and a is the coefficient of the leading derivative in the ODE, and $F(x)$ is the RHS of the ODE. Therefore, the first step is to find the Wronskian $W(x)$. This is given by

$$
W(x)=\left|\begin{array}{ccc}
y_{1} & y_{2} & y_{3} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}
\end{array}\right|
$$

Substituting the fundamental set of solutions y_{i} found above in the Wronskian gives

$$
\begin{aligned}
W & =\left[\begin{array}{ccc}
\mathrm{e}^{2 x} & \mathrm{e}^{(i \sqrt{3}-1) x} & \mathrm{e}^{-(1+i \sqrt{3}) x} \\
2 \mathrm{e}^{2 x} & (i \sqrt{3}-1) \mathrm{e}^{(i \sqrt{3}-1) x} & (-i \sqrt{3}-1) \mathrm{e}^{-(1+i \sqrt{3}) x} \\
4 \mathrm{e}^{2 x} & (i \sqrt{3}-1)^{2} \mathrm{e}^{(i \sqrt{3}-1) x} & (1+i \sqrt{3})^{2} \mathrm{e}^{-(1+i \sqrt{3}) x}
\end{array}\right] \\
|W| & =-24 i \mathrm{e}^{2 x} \sqrt{3} \mathrm{e}^{-(1+i \sqrt{3}) x} \mathrm{e}^{(i \sqrt{3}-1) x}
\end{aligned}
$$

The determinant simplifies to

$$
|W|=-24 i \sqrt{3}
$$

Now we determine W_{i} for each U_{i}.

$$
\begin{aligned}
& W_{1}(x)=\operatorname{det}\left[\begin{array}{cc}
\mathrm{e}^{(i \sqrt{3}-1) x} & \mathrm{e}^{-(1+i \sqrt{3}) x} \\
(i \sqrt{3}-1) \mathrm{e}^{(i \sqrt{3}-1) x} & (-i \sqrt{3}-1) \mathrm{e}^{-(1+i \sqrt{3}) x}
\end{array}\right] \\
&=-2 i \sqrt{3} \mathrm{e}^{-2 x} \\
& \begin{aligned}
W_{2}(x) & =\operatorname{det}\left[\begin{array}{cc}
\mathrm{e}^{2 x} & \mathrm{e}^{-(1+i \sqrt{3}) x} \\
2 \mathrm{e}^{2 x} & (-i \sqrt{3}-1) \mathrm{e}^{-(1+i \sqrt{3}) x}
\end{array}\right] \\
& =-\mathrm{e}^{-(i \sqrt{3}-1) x}(i \sqrt{3}+3)
\end{aligned} \\
& W_{3}(x)=\operatorname{det}\left[\begin{array}{cc}
\mathrm{e}^{2 x} & \mathrm{e}^{(i \sqrt{3}-1) x} \\
2 \mathrm{e}^{2 x} & (i \sqrt{3}-1) \mathrm{e}^{(i \sqrt{3}-1) x}
\end{array}\right] \\
&=\mathrm{e}^{(1+i \sqrt{3}) x}(i \sqrt{3}-3)
\end{aligned}
$$

Now we are ready to evaluate each $U_{i}(x)$.

$$
\begin{aligned}
U_{1} & =(-1)^{3-1} \int \frac{F(x) W_{1}(x)}{a W(x)} d x \\
& =(-1)^{2} \int \frac{\left(\mathrm{e}^{i x}\right)\left(-2 i \sqrt{3} \mathrm{e}^{-2 x}\right)}{(1)(-24 i \sqrt{3})} d x \\
& =\int \frac{-2 i \mathrm{e}^{i x} \sqrt{3} \mathrm{e}^{-2 x}}{-24 i \sqrt{3}} d x \\
& =\int\left(\frac{\mathrm{e}^{(-2+i) x}}{12}\right) d x \\
& =\left(-\frac{1}{30}-\frac{i}{60}\right) \mathrm{e}^{(-2+i) x}
\end{aligned}
$$

$$
\begin{aligned}
& U_{2}=(-1)^{3-2} \int \frac{F(x) W_{2}(x)}{a W(x)} d x \\
& =(-1)^{1} \int \frac{\left(\mathrm{e}^{i x}\right)\left(-\mathrm{e}^{-(i \sqrt{3}-1) x}(i \sqrt{3}+3)\right)}{(1)(-24 i \sqrt{3})} d x \\
& =-\int \frac{-\mathrm{e}^{i x} \mathrm{e}^{-(i \sqrt{3}-1) x}(i \sqrt{3}+3)}{-24 i \sqrt{3}} d x \\
& =-\int\left(-\frac{(-\sqrt{3}+3 i) \sqrt{3} \mathrm{e}^{(-i \sqrt{3}+1+i) x}}{72}\right) d x \\
& =\frac{(3 i \sqrt{3}+5+i+2 \sqrt{3})(-\sqrt{3}+3 i) \sqrt{3} \mathrm{e}^{-x(i \sqrt{3}-1-i)}}{936} \\
& =\frac{(3 i \sqrt{3}+5+i+2 \sqrt{3})(-\sqrt{3}+3 i) \sqrt{3} \mathrm{e}^{-x(i \sqrt{3}-1-i)}}{936} \\
& U_{3}=(-1)^{3-3} \int \frac{F(x) W_{3}(x)}{a W(x)} d x \\
& =(-1)^{0} \int \frac{\left(\mathrm{e}^{i x}\right)\left(\mathrm{e}^{(1+i \sqrt{3}) x}(i \sqrt{3}-3)\right)}{(1)(-24 i \sqrt{3})} d x \\
& =\int \frac{\mathrm{e}^{i x} \mathrm{e}^{(1+i \sqrt{3}) x}(i \sqrt{3}-3)}{-24 i \sqrt{3}} d x \\
& =\int\left(-\frac{\sqrt{3} \mathrm{e}^{x(i \sqrt{3}+1+i)}(\sqrt{3}+3 i)}{72}\right) d x \\
& =\frac{(3 i \sqrt{3}+2 \sqrt{3}-5-i) \sqrt{3} \mathrm{e}^{x(i \sqrt{3}+1+i)}(\sqrt{3}+3 i)}{936}
\end{aligned}
$$

Now that all the U_{i} functions have been determined, the particular solution is found from

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}
$$

Hence

$$
\begin{aligned}
y_{p} & =\left(\left(-\frac{1}{30}-\frac{i}{60}\right) \mathrm{e}^{(-2+i) x}\right)\left(\mathrm{e}^{2 x}\right) \\
& +\left(\frac{(3 i \sqrt{3}+5+i+2 \sqrt{3})(-\sqrt{3}+3 i) \sqrt{3} \mathrm{e}^{-x(i \sqrt{3}-1-i)}}{936}\right)\left(\mathrm{e}^{(i \sqrt{3}-1) x}\right) \\
& +\left(\frac{(3 i \sqrt{3}+2 \sqrt{3}-5-i) \sqrt{3} \mathrm{e}^{x(i \sqrt{3}+1+i)}(\sqrt{3}+3 i)}{936}\right)\left(\mathrm{e}^{(-i \sqrt{3}-1) x}\right)
\end{aligned}
$$

Therefore the particular solution is

$$
y_{p}=\left(-\frac{8}{65}+\frac{i}{65}\right) \mathrm{e}^{i x}
$$

Which simplifies to

$$
y_{p}=\left(-\frac{8}{65}+\frac{i}{65}\right) \cos (x)+\left(-\frac{1}{65}-\frac{8 i}{65}\right) \sin (x)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{(i \sqrt{3}-1) x} c_{2}+\mathrm{e}^{(-i \sqrt{3}-1) x} c_{3}\right)+\left(\left(-\frac{8}{65}+\frac{i}{65}\right) \cos (x)+\left(-\frac{1}{65}-\frac{8 i}{65}\right) \sin (x)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
y=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{(i \sqrt{3}-1) x} c_{2}+\mathrm{e}^{(-i \sqrt{3}-1) x} c_{3}+\left(-\frac{8}{65}+\frac{i}{65}\right) \cos (x)+\left(-\frac{1}{65}-\frac{8 i}{65}\right) \sin (x)
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x}+\mathrm{e}^{(i \sqrt{3}-1) x} c_{2}+\mathrm{e}^{(-i \sqrt{3}-1) x} c_{3}+\left(-\frac{8}{65}+\frac{i}{65}\right) \cos (x)+\left(-\frac{1}{65}-\frac{8 i}{65}\right) \sin (x)
$$

Verified OK.

10.2.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}-8 y=\mathrm{e}^{\mathrm{I} x}
$$

- Highest derivative means the order of the ODE is 3 $y^{\prime \prime \prime}$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=\mathrm{e}^{\mathrm{I} x}+8 y_{1}(x)$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=\mathrm{e}^{\mathrm{I} x}+8 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve
$\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 8 & 0 & 0\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}0 \\ 0 \\ \mathrm{e}^{\mathrm{I} x}\end{array}\right]$
- Define the forcing function
$\vec{f}(x)=\left[\begin{array}{c}0 \\ 0 \\ \mathrm{e}^{\mathrm{I} x}\end{array}\right]$
- Define the coefficient matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
8 & 0 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right],\left[-\mathrm{I} \sqrt{3}-1,\left[\begin{array}{c}
\frac{1}{(-\mathrm{I} \sqrt{3}-1)^{2}} \\
\frac{1}{-\mathrm{I} \sqrt{3}-1} \\
1
\end{array}\right]\right],\left[\mathrm{I} \sqrt{3}-1,\left[\begin{array}{c}
\frac{1}{(\mathrm{I} \sqrt{3}-1)^{2}} \\
\frac{1}{\mathrm{I} \sqrt{3}-1} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I} \sqrt{3}-1,\left[\begin{array}{c}
\frac{1}{(-\mathrm{I} \sqrt{3}-1)^{2}} \\
\frac{1}{-\mathrm{I} \sqrt{3}-1} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(-\mathrm{I} \sqrt{3}-1) x} \cdot\left[\begin{array}{c}
\frac{1}{(-\mathrm{I} \sqrt{3}-1)^{2}} \\
\frac{1}{-\mathrm{I} \sqrt{3}-1} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
\mathrm{e}^{-x} \cdot(\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)) \cdot\left[\begin{array}{c}
\frac{1}{(-\mathrm{I} \sqrt{3}-1)^{2}} \\
\frac{1}{-\mathrm{I} \sqrt{3}-1} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
\frac{\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)}{(-\mathrm{I} \sqrt{3}-1)^{2}} \\
\frac{\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)}{-\mathrm{I} \sqrt{3}-1} \\
\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-\frac{\cos (\sqrt{3} x)}{8}-\frac{\sqrt{3} \sin (\sqrt{3} x)}{8} \\
-\frac{\cos (\sqrt{3} x)}{4}+\frac{\sqrt{3} \sin (\sqrt{3} x)}{4} \\
\cos (\sqrt{3} x)
\end{array}\right], \vec{y}_{3}(x)=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-\frac{\sqrt{3} \cos (\sqrt{3} x)}{8}+\frac{\sin (\sqrt{3} x)}{8} \\
\frac{\sqrt{3} \cos (\sqrt{3} x)}{4}+\frac{\sin (\sqrt{3} x)}{4} \\
-\sin (\sqrt{3} x)
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\vec{y}_{p}(x)$

$\square \quad$ Fundamental matrix

- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{2 x}}{4} & \mathrm{e}^{-x}\left(-\frac{\cos (\sqrt{3} x)}{8}-\frac{\sqrt{3} \sin (\sqrt{3} x)}{8}\right) & \mathrm{e}^{-x}\left(-\frac{\sqrt{3} \cos (\sqrt{3} x)}{8}+\frac{\sin (\sqrt{3} x)}{8}\right) \\
\frac{\mathrm{e}^{2 x}}{2} & \mathrm{e}^{-x}\left(-\frac{\cos (\sqrt{3} x)}{4}+\frac{\sqrt{3} \sin (\sqrt{3} x)}{4}\right) & \mathrm{e}^{-x}\left(\frac{\sqrt{3} \cos (\sqrt{3} x)}{4}+\frac{\sin (\sqrt{3} x)}{4}\right) \\
\mathrm{e}^{2 x} & \mathrm{e}^{-x} \cos (\sqrt{3} x) & -\mathrm{e}^{-x} \sin (\sqrt{3} x)
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t

$$
\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}
$$

- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{2 x}}{4} & \mathrm{e}^{-x}\left(-\frac{\cos (\sqrt{3} x)}{8}-\frac{\sqrt{3} \sin (\sqrt{3} x)}{8}\right) & \mathrm{e}^{-x}\left(-\frac{\sqrt{3} \cos (\sqrt{3} x)}{8}+\frac{\sin (\sqrt{3} x)}{8}\right) \\
\frac{\mathrm{e}^{2 x}}{2} & \mathrm{e}^{-x}\left(-\frac{\cos (\sqrt{3} x)}{4}+\frac{\sqrt{3} \sin (\sqrt{3} x)}{4}\right) \\
\mathrm{e}^{2 x} & \mathrm{e}^{-x} \cos (\sqrt{3} x) & \mathrm{e}^{-x}\left(\frac{\sqrt{3} \cos (\sqrt{3} x)}{4}+\frac{\sin (\sqrt{3} x)}{4}\right)
\end{array}\right] \cdot \frac{-\mathrm{e}^{-x} \sin (\sqrt{3} x)}{\left[\begin{array}{ccc}
\frac{1}{4} & -\frac{1}{8} & - \\
\frac{1}{2} & -\frac{1}{4} & - \\
1 & 1
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{2 x}}{3}+\frac{2 \mathrm{e}^{-x} \cos (\sqrt{3} x)}{3} & \frac{\mathrm{e}^{-x} \sin (\sqrt{3} x) \sqrt{3}}{6}-\frac{\mathrm{e}^{-x} \cos (\sqrt{3} x)}{6}+\frac{\mathrm{e}^{2 x}}{6} & -\frac{\mathrm{e}^{-x} \sin }{6} \\
\frac{2 \mathrm{e}^{2 x}}{3}-\frac{2 \mathrm{e}^{-x} \cos (\sqrt{3} x)}{3}-\frac{2 \mathrm{e}^{-x} \sin (\sqrt{3} x) \sqrt{3}}{3} & \frac{\mathrm{e}^{2 x}}{3}+\frac{2 \mathrm{e}^{-x} \cos (\sqrt{3} x)}{3} \\
\frac{4 \mathrm{e}^{2 x}}{3}-\frac{4 \mathrm{e}^{-x} \cos (\sqrt{3} x)}{3}+\frac{4 \mathrm{e}^{-x} \sin (\sqrt{3} x) \sqrt{3}}{3} & \frac{2 \mathrm{e}^{2 x}}{3}-\frac{2 \mathrm{e}^{-x} \cos (\sqrt{3} x)}{3}-\frac{2 \mathrm{e}^{-x} \sin (\sqrt{3} x) \sqrt{3}}{3} & \frac{\mathrm{e}^{-x} \sin (}{}
\end{array}\right.
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution $\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs $\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der $A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$
$\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s$
- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
\left(\frac{7}{78}-\frac{5 \mathrm{I}}{156}\right) \mathrm{e}^{-x} \cos (\sqrt{3} x)+\left(\frac{1}{78}+\frac{\mathrm{I}}{52}\right) \mathrm{e}^{-x} \sqrt{3} \sin (\sqrt{3} x)+\left(-\frac{8}{65}+\frac{\mathrm{I}}{65}\right) \mathrm{e}^{\mathrm{I} x}+\left(\frac{1}{30}+\frac{\mathrm{I}}{60}\right. \\
\left(-\frac{2}{39}+\frac{7 \mathrm{I}}{78}\right) \mathrm{e}^{-x} \cos (\sqrt{3} x)+\left(-\frac{4}{39}+\frac{\mathrm{I}}{78}\right) \mathrm{e}^{-x} \sqrt{3} \sin (\sqrt{3} x)-\left(\frac{1}{65}+\frac{8 \mathrm{I}}{65}\right) \mathrm{e}^{\mathrm{I} x}+\left(\frac{1}{15}+\frac{\mathrm{I}}{30}\right. \\
-\left(\frac{10}{39}+\frac{2 \mathrm{I}}{39}\right) \mathrm{e}^{-x} \cos (\sqrt{3} x)+\left(\frac{2}{13}-\frac{4 \mathrm{I}}{39}\right) \mathrm{e}^{-x} \sqrt{3} \sin (\sqrt{3} x)+\left(\frac{8}{65}-\frac{\mathrm{I}}{65}\right) \mathrm{e}^{\mathrm{I} x}+\left(\frac{2}{15}+\frac{\mathrm{I}}{15}\right.
\end{array}\right.
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\left[\begin{array}{c}
\left(\frac{7}{78}-\frac{5 \mathrm{I}}{156}\right) \mathrm{e}^{-x} \cos (\sqrt{3} x)+\left(\frac{1}{78}+\frac{\mathrm{I}}{52}\right) \mathrm{e}^{-x} \sqrt{3} \sin (\sqrt{3} x) \\
\left(-\frac{2}{39}+\frac{7 \mathrm{I}}{78}\right) \mathrm{e}^{-x} \cos (\sqrt{3} x)+\left(-\frac{4}{39}+\frac{\mathrm{I}}{78}\right) \mathrm{e}^{-x} \sqrt{3} \sin (\sqrt{3} x \\
-\left(\frac{10}{39}+\frac{2 \mathrm{I}}{39}\right) \mathrm{e}^{-x} \cos (\sqrt{3} x)+\left(\frac{2}{13}-\frac{4 \mathrm{I}}{39}\right) \mathrm{e}^{-x} \sqrt{3} \sin (\sqrt{3} x
\end{array}\right.
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{5\left(-\frac{39 c_{3} \sqrt{3}}{10}+\frac{14}{5}-\mathrm{I}-\frac{39 c_{2}}{10}\right) \mathrm{e}^{-x} \cos (\sqrt{3} x)}{156}+\frac{\left(\left(\frac{2}{3}+\mathrm{I}-\frac{13 c_{2}}{2}\right) \sqrt{3}+\frac{13 c_{3}}{2}\right) \mathrm{e}^{-x} \sin (\sqrt{3} x)}{52}+\left(-\frac{8}{65}+\frac{\mathrm{I}}{65}\right) \mathrm{e}^{\mathrm{I} x}+\frac{\mathrm{e}^{2 x}(2+\mathrm{I}+}{60}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 44

```
dsolve(diff(y(x),x$3)-8*y(x)=exp(I*x),y(x), singsol=all)
```

$$
y(x)=\left(-\frac{8}{65}+\frac{i}{65}\right) \mathrm{e}^{i x}+\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-x} \cos (\sqrt{3} x)+c_{3} \mathrm{e}^{-x} \sin (\sqrt{3} x)
$$

\checkmark Solution by Mathematica
Time used: 0.472 (sec). Leaf size: 59
DSolve[y'' ' $[\mathrm{x}]-8 * y[\mathrm{x}]==\operatorname{Exp}[\mathrm{I} * \mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{65} e^{-x}\left(-(8-i) e^{(1+i) x}+65 c_{1} e^{3 x}+65 c_{2} \cos (\sqrt{3} x)+65 c_{3} \sin (\sqrt{3} x)\right)
$$

10.3 problem 1(c)

10.3.1 Maple step by step solution . 773

Internal problem ID [5993]
Internal file name [OUTPUT/5241_Sunday_June_05_2022_03_28_16_PM_76447078/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 89
Problem number: 1(c).
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime \prime \prime}+16 y=\cos (x)
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime \prime}+16 y=0
$$

The characteristic equation is

$$
\lambda^{4}+16=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=\sqrt{2}+i \sqrt{2} \\
& \lambda_{2}=-\sqrt{2}+i \sqrt{2} \\
& \lambda_{3}=-\sqrt{2}-i \sqrt{2} \\
& \lambda_{4}=-i \sqrt{2}+\sqrt{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{(-i \sqrt{2}+\sqrt{2}) x} c_{1}+\mathrm{e}^{(-\sqrt{2}+i \sqrt{2}) x} c_{2}+\mathrm{e}^{(-\sqrt{2}-i \sqrt{2}) x} c_{3}+\mathrm{e}^{(\sqrt{2}+i \sqrt{2}) x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{(-i \sqrt{2}+\sqrt{2}) x} \\
& y_{2}=\mathrm{e}^{(-\sqrt{2}+i \sqrt{2}) x} \\
& y_{3}=\mathrm{e}^{(-\sqrt{2}-i \sqrt{2}) x} \\
& y_{4}=\mathrm{e}^{(\sqrt{2}+i \sqrt{2}) x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime \prime}+16 y=\cos (x)
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\cos (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (x), \sin (x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{(-\sqrt{2}-i \sqrt{2}) x}, \mathrm{e}^{(-\sqrt{2}+i \sqrt{2}) x}, \mathrm{e}^{(\sqrt{2}+i \sqrt{2}) x}, \mathrm{e}^{(-i \sqrt{2}+\sqrt{2}) x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
17 A_{1} \cos (x)+17 A_{2} \sin (x)=\cos (x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{17}, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\cos (x)}{17}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{(-i \sqrt{2}+\sqrt{2}) x} c_{1}+\mathrm{e}^{(-\sqrt{2}+i \sqrt{2}) x} c_{2}+\mathrm{e}^{(-\sqrt{2}-i \sqrt{2}) x} c_{3}+\mathrm{e}^{(\sqrt{2}+i \sqrt{2}) x} c_{4}\right)+\left(\frac{\cos (x)}{17}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{(1-i) \sqrt{2} x} c_{1}+\mathrm{e}^{(-1+i) \sqrt{2} x} c_{2}+\mathrm{e}^{(-1-i) \sqrt{2} x} c_{3}+\mathrm{e}^{(1+i) \sqrt{2} x} c_{4}+\frac{\cos (x)}{17}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{(1-i) \sqrt{2} x} c_{1}+\mathrm{e}^{(-1+i) \sqrt{2} x} c_{2}+\mathrm{e}^{(-1-i) \sqrt{2} x} c_{3}+\mathrm{e}^{(1+i) \sqrt{2} x} c_{4}+\frac{\cos (x)}{17} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{(1-i) \sqrt{2} x} c_{1}+\mathrm{e}^{(-1+i) \sqrt{2} x} c_{2}+\mathrm{e}^{(-1-i) \sqrt{2} x} c_{3}+\mathrm{e}^{(1+i) \sqrt{2} x} c_{4}+\frac{\cos (x)}{17}
$$

Verified OK.

10.3.1 Maple step by step solution

Let's solve
$y^{\prime \prime \prime \prime}+16 y=\cos (x)$

- Highest derivative means the order of the ODE is 4 $y^{\prime \prime \prime \prime}$

$\square \quad$ Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Isolate for $y_{4}^{\prime}(x)$ using original ODE

$$
y_{4}^{\prime}(x)=\cos (x)-16 y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=\cos (x)-16 y_{1}(x)\right]$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-16 & 0 & 0 & 0
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
0 \\
\cos (x)
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(x)=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\cos (x)
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-16 & 0 & 0 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A
- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\sqrt{2}-\mathrm{I} \sqrt{2},\left[\begin{array}{c}
\frac{1}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{3}} \\
\frac{1}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{2}} \\
\frac{1}{-\sqrt{2}-\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(-\sqrt{2}-\mathrm{I} \sqrt{2}) x} \cdot\left[\begin{array}{c}
\frac{1}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{3}} \\
\frac{1}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{2}} \\
\frac{1}{-\sqrt{2}-\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
\mathrm{e}^{-x \sqrt{2}} \cdot(\cos (x \sqrt{2})-\mathrm{I} \sin (x \sqrt{2})) \cdot\left[\begin{array}{c}
\frac{1}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{3}} \\
\frac{1}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{2}} \\
\frac{1}{-\sqrt{2}-\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-x \sqrt{2}} \cdot\left[\begin{array}{c}
\frac{\cos (x \sqrt{2})-\mathrm{I} \sin (x \sqrt{2})}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{3}} \\
\frac{\cos (x \sqrt{2})-\mathrm{I} \sin (x \sqrt{2})}{(-\sqrt{2}-\mathrm{I} \sqrt{2})^{2}} \\
\frac{\cos (x \sqrt{2})-\mathrm{I} \sin (x \sqrt{2})}{-\sqrt{2}-\mathrm{I} \sqrt{2}} \\
\cos (x \sqrt{2})-\mathrm{I} \sin (x \sqrt{2})
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\begin{array}{c}
\vec{y}_{1}(x)=\mathrm{e}^{-x \sqrt{2}} \cdot\left[\begin{array}{c}
\frac{\cos (x \sqrt{2}) \sqrt{2}}{16}+\frac{\sin (x \sqrt{2}) \sqrt{2}}{16} \\
-\frac{\sin (x \sqrt{2})}{4} \\
-\frac{\cos (x \sqrt{2}) \sqrt{2}}{4}+\frac{\sin (x \sqrt{2}) \sqrt{2}}{4} \\
\cos (x \sqrt{2})
\end{array}\right], \vec{y}_{2}(x)=\mathrm{e}^{-x \sqrt{2}} \cdot\left[\begin{array}{c}
\frac{\cos (x \sqrt{2}) \sqrt{2}}{16}-\frac{\sin (x \sqrt{2}) \sqrt{2}}{16} \\
-\frac{\cos (x \sqrt{2})}{4} \\
-\sin (x \sqrt{2})
\end{array}\right]
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[\sqrt{2}+\mathrm{I} \sqrt{2},\left[\begin{array}{c}
\frac{1}{(\sqrt{2}+\mathrm{I} \sqrt{2})^{3}} \\
\frac{1}{(\sqrt{2}+\mathrm{I} \sqrt{2})^{2}} \\
\frac{1}{\sqrt{2}+\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(\sqrt{2}+\mathrm{I} \sqrt{2}) x} \cdot\left[\begin{array}{c}
\frac{1}{(\sqrt{2}+\mathrm{I} \sqrt{2})^{3}} \\
\frac{1}{(\sqrt{2}+\mathrm{I} \sqrt{2})^{2}} \\
\frac{1}{\sqrt{2}+\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
\mathrm{e}^{x \sqrt{2}} \cdot(\cos (x \sqrt{2})+\mathrm{I} \sin (x \sqrt{2})) \cdot\left[\begin{array}{c}
\frac{1}{(\sqrt{2}+\mathrm{I} \sqrt{2})^{3}} \\
\frac{1}{(\sqrt{2}+\mathrm{I} \sqrt{2})^{2}} \\
\frac{1}{\sqrt{2}+\mathrm{I} \sqrt{2}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{x \sqrt{2}} \cdot\left[\begin{array}{c}
\frac{\cos (x \sqrt{2})+\mathrm{I} \sin (x \sqrt{2})}{(\sqrt{2}+\mathrm{I} \sqrt{2})^{3}} \\
\frac{\cos (x \sqrt{2})+\mathrm{I} \sin (x \sqrt{2})}{(\sqrt{2}+\mathrm{I} \sqrt{2})^{2}} \\
\frac{\cos (x \sqrt{2})+\mathrm{I} \sin (x \sqrt{2})}{\sqrt{2}+\mathrm{I} \sqrt{2}} \\
\cos (x \sqrt{2})+\mathrm{I} \sin (x \sqrt{2})
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{3}(x)=\mathrm{e}^{x \sqrt{2}} \cdot\left[\begin{array}{c}
-\frac{\cos (x \sqrt{2}) \sqrt{2}}{16}+\frac{\sin (x \sqrt{2}) \sqrt{2}}{16} \\
\frac{\sin (x \sqrt{2})}{4} \\
\frac{\cos (x \sqrt{2}) \sqrt{2}}{4}+\frac{\sin (x \sqrt{2}) \sqrt{2}}{4} \\
\cos (x \sqrt{2})
\end{array}\right], \vec{y}_{4}(x)=\mathrm{e}^{x \sqrt{2}} \cdot\left[\begin{array}{c}
-\frac{\cos (x \sqrt{2}) \sqrt{2}}{16}-\frac{\sin (x \sqrt{2}) \sqrt{2}}{16} \\
-\frac{\cos (x \sqrt{2})}{4} \\
-\frac{\cos (x \sqrt{2}) \sqrt{2}}{4}+\frac{\sin (x \sqrt{2}) \sqrt{2}}{4} \\
\sin (x \sqrt{2})
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution \vec{y}_{p} $\vec{y}(x)=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)+\vec{y}_{p}(x)$

$\square \quad$ Fundamental matrix

- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{-x \sqrt{2}}\left(\frac{\cos (x \sqrt{2}) \sqrt{2}}{16}+\frac{\sin (x \sqrt{2}) \sqrt{2}}{16}\right) & \mathrm{e}^{-x \sqrt{2}}\left(\frac{\cos (x \sqrt{2}) \sqrt{2}}{16}-\frac{\sin (x \sqrt{2}) \sqrt{2}}{16}\right) & \mathrm{e}^{x \sqrt{2}}\left(-\frac{\cos (x \sqrt{2})}{16}\right. \\
-\frac{\mathrm{e}^{-x \sqrt{2}} \sin (x \sqrt{2})}{4} & -\frac{\mathrm{e}^{-x \sqrt{2}} \cos (x \sqrt{2})}{4} \\
\mathrm{e}^{-x \sqrt{2}}\left(-\frac{\cos (x \sqrt{2}) \sqrt{2}}{4}+\frac{\sin (x \sqrt{2}) \sqrt{2}}{4}\right) & \mathrm{e}^{-x \sqrt{2}}\left(\frac{\cos (x \sqrt{2}) \sqrt{2}}{4}+\frac{\sin (x \sqrt{2}) \sqrt{2}}{4}\right) & \mathrm{e}^{x \sqrt{2}}\left(\frac{\cos (x \sqrt{2})}{4}\right. \\
\mathrm{e}^{-x \sqrt{2} \cos (x \sqrt{2})} & -\mathrm{e}^{-x \sqrt{2}} \sin (x \sqrt{2}) & \mathrm{e}^{x \sqrt{2} \mathrm{~s}} \mathrm{c}
\end{array}\right.
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{-x \sqrt{2}}\left(\frac{\cos (x \sqrt{2}) \sqrt{2}}{16}+\frac{\sin (x \sqrt{2}) \sqrt{2}}{16}\right) & \mathrm{e}^{-x \sqrt{2}}\left(\frac{\cos (x \sqrt{2}) \sqrt{2}}{16}-\frac{\sin (x \sqrt{2}) \sqrt{2}}{16}\right) & \mathrm{e}^{x \sqrt{2}}\left(-\frac{\cos (x \sqrt{2}}{16}\right. \\
-\frac{\mathrm{e}^{-x \sqrt{2}} \sin (x \sqrt{2})}{4} & -\frac{\mathrm{e}^{-x \sqrt{2}} \cos (x \sqrt{2})}{4} \\
\mathrm{e}^{-x \sqrt{2}}\left(-\frac{\cos (x \sqrt{2}) \sqrt{2}}{4}+\frac{\sin (x \sqrt{2}) \sqrt{2}}{4}\right) & \mathrm{e}^{-x \sqrt{2}}\left(\frac{\cos (x \sqrt{2}) \sqrt{2}}{4}+\frac{\sin (x \sqrt{2}) \sqrt{2}}{4}\right) & \mathrm{e}^{x \sqrt{2}\left(\frac{\cos (x \sqrt{2})}{4}\right.} \begin{array}{c}
\left.\mathrm{e}^{x \sqrt{2}}\right) \\
\mathrm{e}^{-x \sqrt{2} \cos (x \sqrt{2})}
\end{array} \mathrm{e}^{-x \sqrt{2} \sin (x \sqrt{2})}
\end{array}\right.
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{cc}
\frac{\cos (x \sqrt{2})\left(\mathrm{e}^{-x \sqrt{2}}+\mathrm{e}^{x \sqrt{2}}\right)}{2} & \frac{\sqrt{2}\left(\mathrm{e}^{-x \sqrt{2}}\right.}{2}+\mathrm{e}^{\frac{\sqrt{2}\left((-\cos (x \sqrt{2})-\sin (x \sqrt{2})) \mathrm{e}^{-x \sqrt{2}}+\mathrm{e}^{x \sqrt{2}}(\cos (x \sqrt{2})-\sin (x \sqrt{2}))\right)}{2}} \\
2 \sin (x \sqrt{2})\left(\mathrm{e}^{-x \sqrt{2}}-\mathrm{e}^{x \sqrt{2}}\right) & \frac{\sqrt{2}((-\cos }{} \\
-2 \sqrt{2}\left(\mathrm{e}^{-x \sqrt{2}}(-\cos (x \sqrt{2})+\sin (x \sqrt{2}))+\mathrm{e}^{x \sqrt{2}}(\cos (x \sqrt{2})+\sin (x \sqrt{2}))\right)
\end{array}\right.
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution
$\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs

$$
\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- The fundamental matrix has columns that are solutions to the homogeneous system so its der

$$
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
$$

- Cancel like terms

$$
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
$$

- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
\frac{\mathrm{e}^{-x \sqrt{2}}\left((-4 \cos (x \sqrt{2})+\sin (x \sqrt{2})) \mathrm{e}^{2 x \sqrt{2}}+8 \cos (x) \mathrm{e}^{x \sqrt{2}}-4 \cos (x \sqrt{2})-\sin (x \sqrt{2})\right)}{136} \\
\frac{3\left(\cos (x \sqrt{2})+\frac{5 \sin (x \sqrt{2})}{3}\right) \sqrt{2} \mathrm{e}^{-x \sqrt{2}}}{136}-\frac{3 \mathrm{e}^{x \sqrt{2}} \cos (x \sqrt{2}) \sqrt{2}}{136}+\frac{5 \mathrm{e}^{x \sqrt{2}} \sin (x \sqrt{2}) \sqrt{2}}{136}-\frac{\sin (x)}{17} \\
-\frac{\left(\left(-\frac{\cos (x \sqrt{2})}{2}-2 \sin (x \sqrt{2})\right) \mathrm{e}^{2 x \sqrt{2}}+\cos (x) \mathrm{e}^{x \sqrt{2}}-\frac{\cos (x \sqrt{2})}{2}+2 \sin (x \sqrt{2})\right) \mathrm{e}^{-x \sqrt{2}}}{17} \\
-\frac{5 \sqrt{2}\left(\cos (x \sqrt{2})-\frac{3 \sin (x \sqrt{2})}{5}\right) \mathrm{e}^{-x \sqrt{2}}}{34}+\frac{5 \mathrm{e}^{x \sqrt{2}} \cos (x \sqrt{2}) \sqrt{2}}{34}+\frac{3 \mathrm{e}^{x \sqrt{2}} \sin (x \sqrt{2}) \sqrt{2}}{34}+\frac{\sin (x)}{17}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)+\left[\begin{array}{r}
\frac{\mathrm{e}^{-x \sqrt{2}}\left((-4 \cos (x \sqrt{2})+\sin (x \sqrt{2})) \mathrm{e}^{2 x \sqrt{2}}+8 \cos (x\right.}{136} \\
\begin{array}{l}
\frac{3\left(\cos (x \sqrt{2})+\frac{5 \sin (x \sqrt{2})}{3}\right) \sqrt{2} \mathrm{e}^{-x \sqrt{2}}}{136}-\frac{3 \mathrm{e}^{x \sqrt{2}} \cos (x \sqrt{2}}{136} \\
-\frac{\left(\left(-\frac{\cos (x \sqrt{2})}{2}-2 \sin (x \sqrt{2})\right) \mathrm{e}^{2 x \sqrt{2}}+\cos (x) \mathrm{e}^{x \sqrt{2}}\right.}{17}
\end{array} \\
-\frac{5 \sqrt{2}\left(\cos (x \sqrt{2})-\frac{3 \sin (x \sqrt{2})}{5}\right) \mathrm{e}^{-x \sqrt{2}}}{34}+\frac{5 \mathrm{e}^{x \sqrt{2}} \cos (x \sqrt{2}}{34}
\end{array}\right.
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{\mathrm{e}^{-x \sqrt{2}}\left(\left(\left(-\frac{8}{17}+\left(-c_{4}-c_{3}\right) \sqrt{2}\right) \cos (x \sqrt{2})+\sin (x \sqrt{2})\left(\frac{2}{17}+\left(c_{3}-c_{4}\right) \sqrt{2}\right)\right) \mathrm{e}^{2 x \sqrt{2}}+\left(-\frac{8}{17}+\left(c_{1}+c_{2}\right) \sqrt{2}\right) \cos (x \sqrt{2})+\left(-\frac{2}{17}+\left(c_{1}-\right.\right.\right.}{16}
$$

Maple trace

- Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 67

```
dsolve(diff (y(x),x$4)+16*y(x)=cos(x),y(x), singsol=all)
```

$$
\begin{aligned}
y(x)= & c_{4} \mathrm{e}^{-\sqrt{2} x} \sin (\sqrt{2} x)+c_{2} \mathrm{e}^{\sqrt{2} x} \sin (\sqrt{2} x) \\
& +c_{3} \mathrm{e}^{-\sqrt{2} x} \cos (\sqrt{2} x)+c_{1} \mathrm{e}^{\sqrt{2} x} \cos (\sqrt{2} x)+\frac{\cos (x)}{17}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.762 (sec). Leaf size: 74

```
DSolve[y''''[x]+16*y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{\cos (x)}{17}+e^{-\sqrt{2} x}\left(\left(c_{1} e^{2 \sqrt{2} x}+c_{2}\right) \cos (\sqrt{2} x)+\left(c_{4} e^{2 \sqrt{2} x}+c_{3}\right) \sin (\sqrt{2} x)\right)
$$

10.4 problem 1(d)

Internal problem ID [5994]
Internal file name [OUTPUT/5242_Sunday_June_05_2022_03_28_18_PM_84877747/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 89
Problem number: 1(d).
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _with_linear_symmetries]]

$$
y^{\prime \prime \prime \prime}-4 y^{\prime \prime \prime}+6 y^{\prime \prime}-4 y^{\prime}+y=\mathrm{e}^{x}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime \prime}-4 y^{\prime \prime \prime}+6 y^{\prime \prime}-4 y^{\prime}+y=0
$$

The characteristic equation is

$$
\lambda^{4}-4 \lambda^{3}+6 \lambda^{2}-4 \lambda+1=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=1 \\
& \lambda_{3}=1 \\
& \lambda_{4}=1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}+x^{2} \mathrm{e}^{x} c_{3}+x^{3} \mathrm{e}^{x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=x \mathrm{e}^{x} \\
& y_{3}=x^{2} \mathrm{e}^{x} \\
& y_{4}=x^{3} \mathrm{e}^{x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime \prime}-4 y^{\prime \prime \prime}+6 y^{\prime \prime}-4 y^{\prime}+y=\mathrm{e}^{x}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\mathrm{e}^{x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x^{3} \mathrm{e}^{x}, x \mathrm{e}^{x}, x^{2} \mathrm{e}^{x}, \mathrm{e}^{x}\right\}
$$

Since e^{x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x \mathrm{e}^{x}\right\}\right]
$$

Since $x \mathrm{e}^{x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{2} \mathrm{e}^{x}\right\}\right]
$$

Since $x^{2} \mathrm{e}^{x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{3} \mathrm{e}^{x}\right\}\right]
$$

Since $x^{3} \mathrm{e}^{x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{4} \mathrm{e}^{x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x^{4} \mathrm{e}^{x}
$$

The unknowns $\left\{A_{1}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
24 A_{1} \mathrm{e}^{x}=\mathrm{e}^{x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{24}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{x^{4} \mathrm{e}^{x}}{24}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}+x^{2} \mathrm{e}^{x} c_{3}+x^{3} \mathrm{e}^{x} c_{4}\right)+\left(\frac{x^{4} \mathrm{e}^{x}}{24}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{x}\left(c_{4} x^{3}+c_{3} x^{2}+c_{2} x+c_{1}\right)+\frac{x^{4} \mathrm{e}^{x}}{24}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{4} x^{3}+c_{3} x^{2}+c_{2} x+c_{1}\right)+\frac{x^{4} \mathrm{e}^{x}}{24} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{x}\left(c_{4} x^{3}+c_{3} x^{2}+c_{2} x+c_{1}\right)+\frac{x^{4} \mathrm{e}^{x}}{24}
$$

Verified OK.

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 27
dsolve(diff $(y(x), x \$ 4)-4 * \operatorname{diff}(y(x), x \$ 3)+6 * \operatorname{diff}(y(x), x \$ 2)-4 * \operatorname{diff}(y(x), x)+y(x)=e x p(x), y(x)$, \sin

$$
y(x)=\mathrm{e}^{x}\left(\frac{1}{24} x^{4}+c_{1}+c_{2} x+c_{3} x^{2}+x^{3} c_{4}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 39
DSolve[y''''[x]-4*y'''[x]+6*y''[x]-4*y'[x]+y[x]==Exp[x],y[x],x,IncludeSingularSolutions $->$ T

$$
y(x) \rightarrow \frac{1}{24} e^{x}\left(x^{4}+24 c_{4} x^{3}+24 c_{3} x^{2}+24 c_{2} x+24 c_{1}\right)
$$

10.5 problem 1(e)

10.5.1 Maple step by step solution 790

Internal problem ID [5995]
Internal file name [OUTPUT/5243_Sunday_June_05_2022_03_28_20_PM_18327027/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 89
Problem number: 1(e).
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime \prime \prime}-y=\cos (x)
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime \prime}-y=0
$$

The characteristic equation is

$$
\lambda^{4}-1=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1 \\
\lambda_{3} & =i \\
\lambda_{4} & =-i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{-i x} c_{3}+\mathrm{e}^{i x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{x} \\
& y_{3}=\mathrm{e}^{-i x} \\
& y_{4}=\mathrm{e}^{i x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime \prime}-y=\cos (x)
$$

Let the particular solution be

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}+U_{4} y_{4}
$$

Where y_{i} are the basis solutions found above for the homogeneous solution y_{h} and $U_{i}(x)$ are functions to be determined as follows

$$
U_{i}=(-1)^{n-i} \int \frac{F(x) W_{i}(x)}{a W(x)} d x
$$

Where $W(x)$ is the Wronskian and $W_{i}(x)$ is the Wronskian that results after deleting the last row and the i-th column of the determinant and n is the order of the ODE or equivalently, the number of basis solutions, and a is the coefficient of the leading derivative in the ODE, and $F(x)$ is the RHS of the ODE. Therefore, the first step is to find the Wronskian $W(x)$. This is given by

$$
W(x)=\left|\begin{array}{cccc}
y_{1} & y_{2} & y_{3} & y_{4} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} & y_{4}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime} & y_{4}^{\prime \prime} \\
y_{1}^{\prime \prime \prime} & y_{2}^{\prime \prime \prime} & y_{3}^{\prime \prime \prime} & y_{4}^{\prime \prime \prime}
\end{array}\right|
$$

Substituting the fundamental set of solutions y_{i} found above in the Wronskian gives

$$
\begin{aligned}
& W=\left[\begin{array}{cccc}
\mathrm{e}^{-x} & \mathrm{e}^{x} & \mathrm{e}^{-i x} & \mathrm{e}^{i x} \\
-\mathrm{e}^{-x} & \mathrm{e}^{x} & -i \mathrm{e}^{-i x} & i \mathrm{e}^{i x} \\
\mathrm{e}^{-x} & \mathrm{e}^{x} & -\mathrm{e}^{-i x} & -\mathrm{e}^{i x} \\
-\mathrm{e}^{-x} & \mathrm{e}^{x} & i \mathrm{e}^{-i x} & -i \mathrm{e}^{i x}
\end{array}\right] \\
&|W|=16 i \mathrm{e}^{-x} \mathrm{e}^{x} \mathrm{e}^{-i x} \mathrm{e}^{i x}
\end{aligned}
$$

The determinant simplifies to

$$
|W|=16 i
$$

Now we determine W_{i} for each U_{i}.

$$
\begin{aligned}
& W_{1}(x)=\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{x} & \mathrm{e}^{-i x} & \mathrm{e}^{i x} \\
\mathrm{e}^{x} & -i \mathrm{e}^{-i x} & i \mathrm{e}^{i x} \\
\mathrm{e}^{x} & -\mathrm{e}^{-i x} & -\mathrm{e}^{i x}
\end{array}\right] \\
&=4 i \mathrm{e}^{x} \\
& \begin{aligned}
W_{2}(x) & =\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{-x} & \mathrm{e}^{-i x} & \mathrm{e}^{i x} \\
-\mathrm{e}^{-x} & -i \mathrm{e}^{-i x} & i \mathrm{e}^{i x} \\
\mathrm{e}^{-x} & -\mathrm{e}^{-i x} & -\mathrm{e}^{i x}
\end{array}\right] \\
& =4 i \mathrm{e}^{-x} \\
& =-4 \mathrm{e}^{i x} \\
W_{3}(x) & =\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{-x} & \mathrm{e}^{x} & \mathrm{e}^{i x} \\
-\mathrm{e}^{-x} & \mathrm{e}^{x} & i \mathrm{e}^{i x} \\
\mathrm{e}^{-x} & \mathrm{e}^{x} & -\mathrm{e}^{i x}
\end{array}\right] \\
& \\
W_{4}(x) & =\operatorname{det}\left[\begin{array}{ccc}
\mathrm{e}^{-x} & \mathrm{e}^{x} & \mathrm{e}^{-i x} \\
-\mathrm{e}^{-x} & \mathrm{e}^{x} & -i \mathrm{e}^{-i x} \\
\mathrm{e}^{-x} & \mathrm{e}^{x} & -\mathrm{e}^{-i x}
\end{array}\right]
\end{aligned} \\
&=-4 \mathrm{e}^{-i x}
\end{aligned}
$$

Now we are ready to evaluate each $U_{i}(x)$.

$$
\begin{aligned}
U_{1} & =(-1)^{4-1} \int \frac{F(x) W_{1}(x)}{a W(x)} d x \\
& =(-1)^{3} \int \frac{(\cos (x))\left(4 i \mathrm{e}^{x}\right)}{(1)(16 i)} d x \\
& =-\int \frac{4 i \cos (x) \mathrm{e}^{x}}{16 i} d x \\
& =-\int\left(\frac{\cos (x) \mathrm{e}^{x}}{4}\right) d x \\
& =-\frac{\cos (x) \mathrm{e}^{x}}{8}-\frac{\sin (x) \mathrm{e}^{x}}{8}
\end{aligned}
$$

$$
\begin{aligned}
U_{2} & =(-1)^{4-2} \int \frac{F(x) W_{2}(x)}{a W(x)} d x \\
& =(-1)^{2} \int \frac{(\cos (x))\left(4 i \mathrm{e}^{-x}\right)}{(1)(16 i)} d x \\
& =\int \frac{4 i \cos (x) \mathrm{e}^{-x}}{16 i} d x \\
& =\int\left(\frac{\mathrm{e}^{-x} \cos (x)}{4}\right) d x \\
& =-\frac{\mathrm{e}^{-x} \cos (x)}{8}+\frac{\mathrm{e}^{-x} \sin (x)}{8}
\end{aligned}
$$

$$
\begin{aligned}
U_{3} & =(-1)^{4-3} \int \frac{F(x) W_{3}(x)}{a W(x)} d x \\
& =(-1)^{1} \int \frac{(\cos (x))\left(-4 \mathrm{e}^{i x}\right)}{(1)(16 i)} d x \\
& =-\int \frac{-4 \cos (x) \mathrm{e}^{i x}}{16 i} d x \\
& =-\int\left(\frac{i \cos (x) \mathrm{e}^{i x}}{4}\right) d x \\
& =-\frac{i x}{8}-\frac{\mathrm{e}^{2 i x}}{16}
\end{aligned}
$$

$$
U_{4}=(-1)^{4-4} \int \frac{F(x) W_{4}(x)}{a W(x)} d x
$$

$$
=(-1)^{0} \int \frac{(\cos (x))\left(-4 \mathrm{e}^{-i x}\right)}{(1)(16 i)} d x
$$

$$
=\int \frac{-4 \cos (x) \mathrm{e}^{-i x}}{16 i} d x
$$

$$
=\int\left(\frac{i \cos (x) \mathrm{e}^{-i x}}{4}\right) d x
$$

$$
=\int \frac{i \cos (x) \mathrm{e}^{-i x}}{4} d x
$$

Now that all the U_{i} functions have been determined, the particular solution is found from

$$
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}+U_{4} y_{4}
$$

Hence

$$
\begin{aligned}
y_{p} & =\left(-\frac{\cos (x) \mathrm{e}^{x}}{8}-\frac{\sin (x) \mathrm{e}^{x}}{8}\right)\left(\mathrm{e}^{-x}\right) \\
& +\left(-\frac{\mathrm{e}^{-x} \cos (x)}{8}+\frac{\mathrm{e}^{-x} \sin (x)}{8}\right)\left(\mathrm{e}^{x}\right) \\
& +\left(-\frac{i x}{8}-\frac{\mathrm{e}^{2 i x}}{16}\right)\left(\mathrm{e}^{-i x}\right) \\
& +\left(\int \frac{i \cos (x) \mathrm{e}^{-i x}}{4} d x\right)\left(\mathrm{e}^{i x}\right)
\end{aligned}
$$

Therefore the particular solution is

$$
y_{p}=-\frac{5 \cos (x)}{16}+\frac{(i-4 x) \sin (x)}{16}
$$

Which simplifies to

$$
y_{p}=-\frac{5 \cos (x)}{16}+\frac{(i-4 x) \sin (x)}{16}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{-i x} c_{3}+\mathrm{e}^{i x} c_{4}\right)+\left(-\frac{5 \cos (x)}{16}+\frac{(i-4 x) \sin (x)}{16}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{-i x} c_{3}+\mathrm{e}^{i x} c_{4}-\frac{5 \cos (x)}{16}+\frac{(i-4 x) \sin (x)}{16} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{-i x} c_{3}+\mathrm{e}^{i x} c_{4}-\frac{5 \cos (x)}{16}+\frac{(i-4 x) \sin (x)}{16}
$$

Verified OK.

10.5.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime \prime}-y=\cos (x)
$$

- Highest derivative means the order of the ODE is 4 $y^{\prime \prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Isolate for $y_{4}^{\prime}(x)$ using original ODE
$y_{4}^{\prime}(x)=\cos (x)+y_{1}(x)$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=\cos (x)+y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
0 \\
\cos (x)
\end{array}\right]
$$

- Define the forcing function

$$
\vec{f}(x)=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\cos (x)
\end{array}\right]
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\right],\left[-\mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
\mathrm{I} \\
-1 \\
-\mathrm{I} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{I} x} \cdot\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
-\cos (x)+\mathrm{I} \sin (x) \\
\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{3}(x)=\left[\begin{array}{c}
-\sin (x) \\
-\cos (x) \\
\sin (x) \\
\cos (x)
\end{array}\right], \vec{y}_{4}(x)=\left[\begin{array}{c}
-\cos (x) \\
\sin (x) \\
\cos (x) \\
-\sin (x)
\end{array}\right]\right]
$$

- General solution of the system of ODEs can be written in terms of the particular solution $\vec{y}_{p}($ $\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)+\vec{y}_{p}(x)$

$\square \quad$ Fundamental matrix

- Let $\phi(x)$ be the matrix whose columns are the independent solutions of the homogeneous syst

$$
\phi(x)=\left[\begin{array}{cccc}
-\mathrm{e}^{-x} & \mathrm{e}^{x} & -\sin (x) & -\cos (x) \\
\mathrm{e}^{-x} & \mathrm{e}^{x} & -\cos (x) & \sin (x) \\
-\mathrm{e}^{-x} & \mathrm{e}^{x} & \sin (x) & \cos (x) \\
\mathrm{e}^{-x} & \mathrm{e}^{x} & \cos (x) & -\sin (x)
\end{array}\right]
$$

- The fundamental matrix, $\Phi(x)$ is a normalized version of $\phi(x)$ satisfying $\Phi(0)=I$ where I is t $\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}$
- Substitute the value of $\phi(x)$ and $\phi(0)$

$$
\Phi(x)=\left[\begin{array}{cccc}
-\mathrm{e}^{-x} & \mathrm{e}^{x} & -\sin (x) & -\cos (x) \\
\mathrm{e}^{-x} & \mathrm{e}^{x} & -\cos (x) & \sin (x) \\
-\mathrm{e}^{-x} & \mathrm{e}^{x} & \sin (x) & \cos (x) \\
\mathrm{e}^{-x} & \mathrm{e}^{x} & \cos (x) & -\sin (x)
\end{array}\right] \cdot \frac{4}{\left[\begin{array}{cccc}
-1 & 1 & 0 & -1 \\
1 & 1 & -1 & 0 \\
-1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]}
$$

- Evaluate and simplify to get the fundamental matrix

$$
\Phi(x)=\left[\begin{array}{cccc}
\frac{\cos (x)}{2}+\frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4} & -\frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4}+\frac{\sin (x)}{2} & \frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4}-\frac{\cos (x)}{2} & -\frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4}-\frac{\sin (x)}{2} \\
-\frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4}-\frac{\sin (x)}{2} & \frac{\cos (x)}{2}+\frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4} & -\frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4}+\frac{\sin (x)}{2} & \frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4}-\frac{\cos (x)}{2} \\
\frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4}-\frac{\cos (x)}{2} & -\frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4}-\frac{\sin (x)}{2} & \frac{\cos (x)}{2}+\frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4} & -\frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4}+\frac{\sin (x)}{2} \\
-\frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4}+\frac{\sin (x)}{2} & \frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4}-\frac{\cos (x)}{2} & -\frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4}-\frac{\sin (x)}{2} & \frac{\cos (x)}{2}+\frac{\mathrm{e}^{-x}}{4}+\frac{\mathrm{e}^{x}}{4}
\end{array}\right]
$$

Find a particular solution of the system of ODEs using variation of parameters

- Let the particular solution be the fundamental matrix multiplied by $\vec{v}(x)$ and solve for $\vec{v}(x)$ $\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)$
- Take the derivative of the particular solution
$\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)$
- Substitute particular solution and its derivative into the system of ODEs
$\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- The fundamental matrix has columns that are solutions to the homogeneous system so its der $A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)$
- Cancel like terms
$\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)$
- Multiply by the inverse of the fundamental matrix

$$
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
$$

- Integrate to solve for $\vec{v}(x)$

$$
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
$$

- Plug $\vec{v}(x)$ into the equation for the particular solution

$$
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
$$

- Plug in the fundamental matrix and the forcing function and compute

$$
\vec{y}_{p}(x)=\left[\begin{array}{c}
\frac{\mathrm{e}^{-x}}{8}+\frac{\mathrm{e}^{x}}{8}-\frac{\cos (x)}{4}-\frac{\sin (x) x}{4} \\
-\frac{\cos (x) x}{4}-\frac{\mathrm{e}^{-x}}{8}+\frac{\mathrm{e}^{x}}{8} \\
\frac{\mathrm{e}^{-x}}{8}+\frac{\mathrm{e}^{x}}{8}-\frac{\cos (x)}{4}+\frac{\sin (x) x}{4} \\
\frac{\sin (x)}{2}+\frac{\cos (x) x}{4}-\frac{\mathrm{e}^{-x}}{8}+\frac{\mathrm{e}^{x}}{8}
\end{array}\right]
$$

- Plug particular solution back into general solution

$$
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)+\left[\begin{array}{c}
\frac{\mathrm{e}^{-x}}{8}+\frac{\mathrm{e}^{x}}{8}-\frac{\cos (x)}{4}-\frac{\sin (x) x}{4} \\
-\frac{\cos (x) x}{4}-\frac{\mathrm{e}^{-x}}{8}+\frac{\mathrm{e}^{x}}{8} \\
\frac{\mathrm{e}^{-x}}{8}+\frac{\mathrm{e}^{x}}{8}-\frac{\cos (x)}{4}+\frac{\sin (x) x}{4} \\
\frac{\sin (x)}{2}+\frac{\cos (x) x}{4}-\frac{\mathrm{e}^{-x}}{8}+\frac{\mathrm{e}^{x}}{8}
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=-c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\frac{\mathrm{e}^{-x}}{8}+\frac{\mathrm{e}^{x}}{8}-\frac{\cos (x)}{4}-\frac{\sin (x) x}{4}-c_{4} \cos (x)-c_{3} \sin (x)
$$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 4; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 4; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 35

```
dsolve(diff(y(x),x$4)-y(x)=cos(x),y(x), singsol=all)
```

$$
y(x)=c_{4} \mathrm{e}^{-x}+\frac{\left(4 c_{1}-1\right) \cos (x)}{4}+\frac{\left(-x+4 c_{3}\right) \sin (x)}{4}+\mathrm{e}^{x} c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 40

```
DSolve[y''''[x]-y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow c_{1} e^{x}+c_{3} e^{-x}+\left(-\frac{1}{2}+c_{2}\right) \cos (x)+\left(-\frac{x}{4}+c_{4}\right) \sin (x)
$$

10.6 problem 1(f)

10.6.1 Solving as second order linear constant coeff ode

796
$\begin{array}{ll}\text { 10.6.2 } & \text { Solving as linear second order ode solved by an integrating factor } \\ & \text { ode . } 801\end{array}$
10.6.3 Solving using Kovacic algorithm 802
10.6.4 Maple step by step solution . 809

Internal problem ID [5996]
Internal file name [OUTPUT/5244_Sunday_June_05_2022_03_28_22_PM_60486184/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 89
Problem number: 1(f).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-2 i y^{\prime}-y=\mathrm{e}^{i x}-2 \mathrm{e}^{-i x}
$$

10.6.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-2 i, C=-1, f(x)=-\cos (x)+3 i \sin (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 i y^{\prime}-y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-2 i, C=-1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 i \lambda \mathrm{e}^{\lambda x}-\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-2 i \lambda-1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-2 i, C=-1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{2 i}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(-2 i)^{2}-(4)(1)(-1)} \\
& =i
\end{aligned}
$$

Hence this is the case of a double root $\lambda_{1,2}=-i$. Therefore the solution is

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{i x}+c_{2} x \mathrm{e}^{i x} \tag{1}
\end{equation*}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{i x}+\mathrm{e}^{i x} c_{2} x
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{i x} \\
& y_{2}=x \mathrm{e}^{i x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{i x} & x \mathrm{e}^{i x} \\
\frac{d}{d x}\left(\mathrm{e}^{i x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{i x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{i x} & x \mathrm{e}^{i x} \\
i \mathrm{e}^{i x} & \mathrm{e}^{i x}+i \mathrm{e}^{i x} x
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{i x}\right)\left(\mathrm{e}^{i x}+i \mathrm{e}^{i x} x\right)-\left(x \mathrm{e}^{i x}\right)\left(i \mathrm{e}^{i x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{2 i x}
$$

Which simplifies to

$$
W=\mathrm{e}^{2 i x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x \mathrm{e}^{i x}(-\cos (x)+3 i \sin (x))}{\mathrm{e}^{2 i x}} d x
$$

Which simplifies to

$$
u_{1}=-\int(-\cos (x)+3 i \sin (x)) x \mathrm{e}^{-i x} d x
$$

Hence

$$
\begin{aligned}
& u_{1} \\
&= \frac{\frac{\mathrm{e}^{-i x}}{4}-\frac{\mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)^{2}}{4}+\frac{x^{2} \mathrm{e}^{-i x}}{4}+\frac{x \mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)}{2}-\frac{x^{2} \mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)^{2}}{4}+\frac{i x \mathrm{e}^{-i x}}{4}-\frac{i x \mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)^{2}}{4}+\frac{i x^{2} \mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)}{2}}{1+\tan \left(\frac{x}{2}\right)^{2}} \\
&-\frac{3 i\left(\frac{i \mathrm{e}^{-i x}}{4}-\frac{i \mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)^{2}}{4}-\frac{x \mathrm{e}^{-i x}}{4}+\frac{x \mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)^{2}}{4}+\frac{x^{2} \mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)}{2}-\frac{i x^{2} \mathrm{e}^{-i x}}{4}+\frac{i x \mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)}{2}+\frac{i x^{2} \mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)^{2}}{4}\right)}{1+\tan \left(\frac{x}{2}\right)^{2}}
\end{aligned}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{i x}(-\cos (x)+3 i \sin (x))}{\mathrm{e}^{2 i x}} d x
$$

Which simplifies to

$$
u_{2}=\int(-\cos (x)+3 i \sin (x)) \mathrm{e}^{-i x} d x
$$

Hence

$$
\begin{aligned}
u_{2}= & -\frac{\mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)+i x \mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)+\frac{x \mathrm{e}^{-i x}}{2}-\frac{x \mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)^{2}}{2}}{1+\tan \left(\frac{x}{2}\right)^{2}} \\
& +\frac{3 i\left(x \mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)+i \mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)-\frac{i x \mathrm{e}^{-i x}}{2}+\frac{i x \mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)^{2}}{2}\right)}{1+\tan \left(\frac{x}{2}\right)^{2}}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{\mathrm{e}^{-i x}\left(\left(x^{2}-2 i x-2\right) \cos (x)+\sin (x) x(i x-2)\right)}{2} \\
& u_{2}=\mathrm{e}^{-i x}(i \sin (x) x+\cos (x) x-2 \sin (x))
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & -\frac{\mathrm{e}^{-i x}\left(\left(x^{2}-2 i x-2\right) \cos (x)+\sin (x) x(i x-2)\right) \mathrm{e}^{i x}}{2} \\
& +\mathrm{e}^{-i x}(i \sin (x) x+\cos (x) x-2 \sin (x)) x \mathrm{e}^{i x}
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=\frac{\left(x^{2}+2 i x+2\right) \cos (x)}{2}+\frac{\sin (x) x(i x-2)}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{i x}+\mathrm{e}^{i x} c_{2} x\right)+\left(\frac{\left(x^{2}+2 i x+2\right) \cos (x)}{2}+\frac{\sin (x) x(i x-2)}{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{i x}\left(c_{2} x+c_{1}\right)+\frac{\left(x^{2}+2 i x+2\right) \cos (x)}{2}+\frac{\sin (x) x(i x-2)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{i x}\left(c_{2} x+c_{1}\right)+\frac{\left(x^{2}+2 i x+2\right) \cos (x)}{2}+\frac{\sin (x) x(i x-2)}{2} \tag{1}
\end{equation*}
$$

Figure 141: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{i x}\left(c_{2} x+c_{1}\right)+\frac{\left(x^{2}+2 i x+2\right) \cos (x)}{2}+\frac{\sin (x) x(i x-2)}{2}
$$

Verified OK.

10.6.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form

$$
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
$$

Where $p(x)=-2 i$. Therefore, there is an integrating factor given by

$$
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-2 i d x} \\
& =\mathrm{e}^{-i x}
\end{aligned}
$$

Multiplying both sides of the ODE by the integrating factor $M(x)$ makes the left side of the ODE a complete differential

$$
\begin{aligned}
(M(x) y)^{\prime \prime} & =(-\cos (x)+3 i \sin (x)) \mathrm{e}^{-i x} \\
\left(y \mathrm{e}^{-i x}\right)^{\prime \prime} & =(-\cos (x)+3 i \sin (x)) \mathrm{e}^{-i x}
\end{aligned}
$$

Integrating once gives

$$
\left(y \mathrm{e}^{-i x}\right)^{\prime}=\mathrm{e}^{-i x}(i \sin (x) x+\cos (x) x-2 \sin (x))+c_{1}
$$

Integrating again gives

$$
\left(y \mathrm{e}^{-i x}\right)=-\frac{1}{2}+\frac{\mathrm{e}^{-2 i x}}{2}+\frac{x^{2}}{2}+x\left(c_{1}+i\right)+c_{2}
$$

Hence the solution is

$$
y=\frac{-\frac{1}{2}+\frac{\mathrm{e}^{-2 i x}}{2}+\frac{x^{2}}{2}+x\left(c_{1}+i\right)+c_{2}}{\mathrm{e}^{-i x}}
$$

Or

$$
y=c_{1} x \mathrm{e}^{i x}+\frac{x^{2} \mathrm{e}^{i x}}{2}+c_{2} \mathrm{e}^{i x}+i \mathrm{e}^{i x} x-\frac{\mathrm{e}^{i x}}{2}+\frac{\mathrm{e}^{-i x}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x \mathrm{e}^{i x}+\frac{x^{2} \mathrm{e}^{i x}}{2}+c_{2} \mathrm{e}^{i x}+i \mathrm{e}^{i x} x-\frac{\mathrm{e}^{i x}}{2}+\frac{\mathrm{e}^{-i x}}{2} \tag{1}
\end{equation*}
$$

Figure 142: Slope field plot

Verification of solutions

$$
y=c_{1} x \mathrm{e}^{i x}+\frac{x^{2} \mathrm{e}^{i x}}{2}+c_{2} \mathrm{e}^{i x}+i \mathrm{e}^{i x} x-\frac{\mathrm{e}^{i x}}{2}+\frac{\mathrm{e}^{-i x}}{2}
$$

Verified OK.

10.6.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-2 i y^{\prime}-y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-2 i \tag{3}\\
& C=-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 149: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is infinity then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=0$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=1
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2 i}{1} d x} \\
& =z_{1} e^{i x} \\
& =z_{1}\left(\mathrm{e}^{i x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{i x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2 i}{1}} d x}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 i x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{i x}\right)+c_{2}\left(\mathrm{e}^{i x}(x)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-2 i y^{\prime}-y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{i x}+\mathrm{e}^{i x} c_{2} x
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{i x} \\
& y_{2}=x \mathrm{e}^{i x}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{i x} & x \mathrm{e}^{i x} \\
\frac{d}{d x}\left(\mathrm{e}^{i x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{i x}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{i x} & x \mathrm{e}^{i x} \\
i \mathrm{e}^{i x} & \mathrm{e}^{i x}+i \mathrm{e}^{i x} x
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{i x}\right)\left(\mathrm{e}^{i x}+i \mathrm{e}^{i x} x\right)-\left(x \mathrm{e}^{i x}\right)\left(i \mathrm{e}^{i x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{2 i x}
$$

Which simplifies to

$$
W=\mathrm{e}^{2 i x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x \mathrm{e}^{i x}(-\cos (x)+3 i \sin (x))}{\mathrm{e}^{2 i x}} d x
$$

Which simplifies to

$$
u_{1}=-\int(-\cos (x)+3 i \sin (x)) x \mathrm{e}^{-i x} d x
$$

Hence

$$
\begin{aligned}
& u_{1} \\
&= \frac{\frac{\mathrm{e}^{-i x}}{4}-\frac{\mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)^{2}}{4}+\frac{x^{2} \mathrm{e}^{-i x}}{4}+\frac{x \mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)}{2}-\frac{x^{2} \mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)^{2}}{4}+\frac{i x \mathrm{e}^{-i x}}{4}-\frac{i x \mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)^{2}}{4}+\frac{i x^{2} \mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)}{2}}{1+\tan \left(\frac{x}{2}\right)^{2}} \\
&-\frac{3 i\left(\frac{i \mathrm{e}^{-i x}}{4}-\frac{i \mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)^{2}}{4}-\frac{x \mathrm{e}^{-i x}}{4}+\frac{x \mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)^{2}}{4}+\frac{x^{2} \mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)}{2}-\frac{i x^{2} \mathrm{e}^{-i x}}{4}+\frac{i x \mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)}{2}+\frac{i x^{2} \mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)^{2}}{4}\right)}{1+\tan \left(\frac{x}{2}\right)^{2}}
\end{aligned}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{i x}(-\cos (x)+3 i \sin (x))}{\mathrm{e}^{2 i x}} d x
$$

Which simplifies to

$$
u_{2}=\int(-\cos (x)+3 i \sin (x)) \mathrm{e}^{-i x} d x
$$

Hence

$$
\begin{aligned}
u_{2}= & -\frac{\mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)+i x \mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)+\frac{x \mathrm{e}^{-i x}}{2}-\frac{x \mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)^{2}}{2}}{1+\tan \left(\frac{x}{2}\right)^{2}} \\
& +\frac{3 i\left(x \mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)+i \mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)-\frac{i x \mathrm{e}^{-i x}}{2}+\frac{i x \mathrm{e}^{-i x} \tan \left(\frac{x}{2}\right)^{2}}{2}\right)}{1+\tan \left(\frac{x}{2}\right)^{2}}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{\mathrm{e}^{-i x}\left(\left(x^{2}-2 i x-2\right) \cos (x)+\sin (x) x(i x-2)\right)}{2} \\
& u_{2}=\mathrm{e}^{-i x}(i \sin (x) x+\cos (x) x-2 \sin (x))
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & -\frac{\mathrm{e}^{-i x}\left(\left(x^{2}-2 i x-2\right) \cos (x)+\sin (x) x(i x-2)\right) \mathrm{e}^{i x}}{2} \\
& +\mathrm{e}^{-i x}(i \sin (x) x+\cos (x) x-2 \sin (x)) x \mathrm{e}^{i x}
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=\frac{\left(x^{2}+2 i x+2\right) \cos (x)}{2}+\frac{\sin (x) x(i x-2)}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{i x}+\mathrm{e}^{i x} c_{2} x\right)+\left(\frac{\left(x^{2}+2 i x+2\right) \cos (x)}{2}+\frac{\sin (x) x(i x-2)}{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{i x}\left(c_{2} x+c_{1}\right)+\frac{\left(x^{2}+2 i x+2\right) \cos (x)}{2}+\frac{\sin (x) x(i x-2)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{i x}\left(c_{2} x+c_{1}\right)+\frac{\left(x^{2}+2 i x+2\right) \cos (x)}{2}+\frac{\sin (x) x(i x-2)}{2} \tag{1}
\end{equation*}
$$

Figure 143: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{i x}\left(c_{2} x+c_{1}\right)+\frac{\left(x^{2}+2 i x+2\right) \cos (x)}{2}+\frac{\sin (x) x(i x-2)}{2}
$$

Verified OK.

10.6.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-2 \mathrm{I} y^{\prime}-y=-\cos (x)+3 \mathrm{I} \sin (x)
$$

- Highest derivative means the order of the ODE is 2 $y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE $r^{2}-2 \mathrm{I} r-1=0$
- Factor the characteristic polynomial

$$
(-r+\mathrm{I})^{2}=0
$$

- Root of the characteristic polynomial

$$
r=\mathrm{I}
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{\mathrm{I} x}$
- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{\mathrm{I} x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{\mathrm{I} x}+\mathrm{e}^{\mathrm{I} x} c_{2} x+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=-\cos (x)+3 \mathrm{I} \sin (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{\mathrm{I} x} & x \mathrm{e}^{\mathrm{I} x} \\
\mathrm{Ie}^{\mathrm{I} x} & \mathrm{e}^{\mathrm{I} x}+\mathrm{I} x \mathrm{e}^{\mathrm{I} x}
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{2 \mathrm{I} x}
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=\mathrm{e}^{\mathrm{I} x}\left(\int(\cos (x)-3 \mathrm{I} \sin (x)) x \mathrm{e}^{-\mathrm{I} x} d x-x\left(\int(\cos (x)-3 \mathrm{I} \sin (x)) \mathrm{e}^{-\mathrm{I} x} d x\right)\right)
$$

- Compute integrals

$$
y_{p}(x)=\frac{\left(2 I x+x^{2}+2\right) \cos (x)}{2}+\frac{\sin (x) x(\mathrm{I} x-2)}{2}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{\mathrm{I} x}+\mathrm{e}^{\mathrm{I} x} c_{2} x+\frac{\left(2 \mathrm{I} x+x^{2}+2\right) \cos (x)}{2}+\frac{\sin (x) x(\mathrm{I} x-2)}{2}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 58
dsolve(diff $(y(x), x \$ 2)-2 * I * \operatorname{diff}(y(x), x)-y(x)=\exp (I * x)-2 * \exp (-I * x), y(x), \quad$ singsol $=a l l)$
$y(x)=-1+\cos \left(\frac{x}{2}\right)^{2}\left(x^{2}+2 i x+2\right)+\sin \left(\frac{x}{2}\right) x(i x-2) \cos \left(\frac{x}{2}\right)+\left(c_{1} x+c_{2}\right) \mathrm{e}^{i x}-i x-\frac{x^{2}}{2}$
\checkmark Solution by Mathematica
Time used: 0.177 (sec). Leaf size: 39
DSolve[y''[x]-2*I*y'[x]-y[x]==Exp[I*x]-2*Exp[-I*x],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \frac{1}{2} e^{-i x}\left(1+e^{2 i x}\left(x^{2}+2 c_{2} x+2 c_{1}\right)\right)
$$

11 Chapter 2. Linear equations with constant coefficients. Page 93

11.1 problem 1(a) . 813
11.2 problem 1(b)

824
11.3 problem 1(c) . 835
11.4 problem 1(d) . 847
11.5 problem 1(e) . 858
11.6 problem 1(f) . 869
11.7 problem 1(g) . 880
11.8 problem 1(h) . 891
11.9 problem 1(i) . 895

11.1 problem 1(a)

11.1.1 Solving as second order linear constant coeff ode 813
11.1.2 Solving using Kovacic algorithm 816
11.1.3 Maple step by step solution . 821

Internal problem ID [5997]
Internal file name [OUTPUT/5245_Sunday_June_05_2022_03_28_25_PM_22707088/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 93
Problem number: 1(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y=\cos (x)
$$

11.1.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=4, f(x)=\cos (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Or

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\cos (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (x), \sin (x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (2 x), \sin (2 x)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
3 A_{1} \cos (x)+3 A_{2} \sin (x)=\cos (x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{3}, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\cos (x)}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+\left(\frac{\cos (x)}{3}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{\cos (x)}{3} \tag{1}
\end{equation*}
$$

Figure 144: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{\cos (x)}{3}
$$

Verified OK.

11.1.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-4 \\
t & =1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 151: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (2 x) \int \frac{1}{\cos (2 x)^{2}} d x \\
& =\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 x))+c_{2}\left(\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\cos (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (x), \sin (x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (2 x)}{2}, \cos (2 x)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
3 A_{1} \cos (x)+3 A_{2} \sin (x)=\cos (x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{3}, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{\cos (x)}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}\right)+\left(\frac{\cos (x)}{3}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}+\frac{\cos (x)}{3} \tag{1}
\end{equation*}
$$

Figure 145: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}+\frac{\cos (x)}{3}
$$

Verified OK.

11.1.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y=\cos (x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+4=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial

$$
r=(-2 \mathrm{I}, 2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (2 x)
$$

- \quad 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (2 x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\cos (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
-2 \sin (2 x) & 2 \cos (2 x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=2
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\cos (2 x)\left(\int 4 \cos (x)^{2} \sin (x) d x\right)}{4}+\frac{\sin (2 x)\left(\int(\cos (x)+\cos (3 x)) d x\right)}{4}
$$

- Compute integrals

$$
y_{p}(x)=\frac{\cos (x)}{3}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{\cos (x)}{3}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 21
dsolve (diff $(y(x), x \$ 2)+4 * y(x)=\cos (x), y(x)$, singsol=all)

$$
y(x)=\sin (2 x) c_{2}+\cos (2 x) c_{1}+\frac{\cos (x)}{3}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 26
DSolve[y'' $[\mathrm{x}]+4 * \mathrm{y}[\mathrm{x}]==\operatorname{Cos}[\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{\cos (x)}{3}+c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

11.2 problem 1(b)

11.2.1 Solving as second order linear constant coeff ode 824
11.2.2 Solving using Kovacic algorithm 828
11.2.3 Maple step by step solution 833

Internal problem ID [5998]
Internal file name [OUTPUT/5246_Sunday_June_05_2022_03_28_26_PM_54439359/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 93
Problem number: 1(b).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+4 y=\sin (2 x)
$$

11.2.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=4, f(x)=\sin (2 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Or

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\sin (2 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 x), \sin (2 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (2 x), \sin (2 x)\}
$$

Since $\cos (2 x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
[\{x \cos (2 x), x \sin (2 x)\}]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \cos (2 x)+A_{2} x \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-4 A_{1} \sin (2 x)+4 A_{2} \cos (2 x)=\sin (2 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{4}, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{x \cos (2 x)}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+\left(-\frac{x \cos (2 x)}{4}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)-\frac{x \cos (2 x)}{4} \tag{1}
\end{equation*}
$$

Figure 146: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)-\frac{x \cos (2 x)}{4}
$$

Verified OK.

11.2.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+4 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 153: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (2 x) \int \frac{1}{\cos (2 x)^{2}} d x \\
& =\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 x))+c_{2}\left(\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
\sin (2 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
[\{\cos (2 x), \sin (2 x)\}]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (2 x)}{2}, \cos (2 x)\right\}
$$

Since $\cos (2 x)$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
[\{x \cos (2 x), x \sin (2 x)\}]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x \cos (2 x)+A_{2} x \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-4 A_{1} \sin (2 x)+4 A_{2} \cos (2 x)=\sin (2 x)
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{4}, A_{2}=0\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{x \cos (2 x)}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}\right)+\left(-\frac{x \cos (2 x)}{4}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}-\frac{x \cos (2 x)}{4} \tag{1}
\end{equation*}
$$

Figure 147: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}-\frac{x \cos (2 x)}{4}
$$

Verified OK.

11.2.3 Maple step by step solution

Let's solve
$y^{\prime \prime}+4 y=\sin (2 x)$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of homogeneous ODE
$r^{2}+4=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial

$$
r=(-2 \mathrm{I}, 2 \mathrm{I})
$$

- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\cos (2 x)$
- $\quad 2$ nd solution of the homogeneous ODE
$y_{2}(x)=\sin (2 x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sin (2 x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
-2 \sin (2 x) & 2 \cos (2 x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=2$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\cos (2 x)\left(\int \sin (2 x)^{2} d x\right)}{2}+\frac{\sin (2 x)\left(\int \sin (4 x) d x\right)}{4}
$$

- Compute integrals

$$
y_{p}(x)=\frac{\sin (2 x)}{16}-\frac{x \cos (2 x)}{4}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{\sin (2 x)}{16}-\frac{x \cos (2 x)}{4}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
dsolve(diff(y(x),x$2)+4*y(x)=sin(2*x),y(x), singsol=all)
```

$$
y(x)=\frac{\left(-x+4 c_{1}\right) \cos (2 x)}{4}+\sin (2 x) c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 33

```
DSolve[y''[x]+4*y[x]==Sin[2*x],y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow\left(-\frac{x}{4}+c_{1}\right) \cos (2 x)+\frac{1}{8}\left(1+16 c_{2}\right) \sin (x) \cos (x)
$$

11.3 problem 1(c)

11.3.1 Solving as second order linear constant coeff ode 835
11.3.2 Solving using Kovacic algorithm 838
11.3.3 Maple step by step solution 845

Internal problem ID [5999]
Internal file name [OUTPUT/5247_Sunday_June_05_2022_03_28_28_PM_81105194/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 93
Problem number: 1(c).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-4 y=3 \mathrm{e}^{2 x}+4 \mathrm{e}^{-x}
$$

11.3.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=-4, f(x)=3 \mathrm{e}^{2 x}+4 \mathrm{e}^{-x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=-4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-4)} \\
& = \pm 2
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 \\
& \lambda_{2}=-2
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
3 \mathrm{e}^{2 x}+4 \mathrm{e}^{-x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-x}\right\},\left\{\mathrm{e}^{2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-2 x}, \mathrm{e}^{2 x}\right\}
$$

Since $\mathrm{e}^{2 x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC__set becomes

$$
\left[\left\{\mathrm{e}^{-x}\right\},\left\{\mathrm{e}^{2 x} x\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-x}+A_{2} \mathrm{e}^{2 x} x
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
-3 A_{1} \mathrm{e}^{-x}+4 A_{2} \mathrm{e}^{2 x}=3 \mathrm{e}^{2 x}+4 \mathrm{e}^{-x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{4}{3}, A_{2}=\frac{3}{4}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{4 \mathrm{e}^{-x}}{3}+\frac{3 \mathrm{e}^{2 x} x}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}\right)+\left(-\frac{4 \mathrm{e}^{-x}}{3}+\frac{3 \mathrm{e}^{2 x} x}{4}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}-\frac{4 \mathrm{e}^{-x}}{3}+\frac{3 \mathrm{e}^{2 x} x}{4} \tag{1}
\end{equation*}
$$

Figure 148: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}-\frac{4 \mathrm{e}^{-x}}{3}+\frac{3 \mathrm{e}^{2 x} x}{4}
$$

Verified OK.

11.3.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 155: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-2 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-2 x} \int \frac{1}{\mathrm{e}^{-4 x}} d x \\
& =\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=\frac{\mathrm{e}^{2 x}}{4}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & \frac{\mathrm{e}^{2 x}}{4} \\
\frac{d}{d x}\left(\mathrm{e}^{-2 x}\right) & \frac{d}{d x}\left(\frac{\mathrm{e}^{2 x}}{4}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & \frac{\mathrm{e}^{2 x}}{4} \\
-2 \mathrm{e}^{-2 x} & \frac{\mathrm{e}^{2 x}}{2}
\end{array}\right|
$$

Therefore

$$
W=\left(\mathrm{e}^{-2 x}\right)\left(\frac{\mathrm{e}^{2 x}}{2}\right)-\left(\frac{\mathrm{e}^{2 x}}{4}\right)\left(-2 \mathrm{e}^{-2 x}\right)
$$

Which simplifies to

$$
W=\mathrm{e}^{-2 x} \mathrm{e}^{2 x}
$$

Which simplifies to

$$
W=1
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{\mathrm{e}^{2 x}\left(3 \mathrm{e}^{2 x}+4 \mathrm{e}^{-x}\right)}{4}}{1} d x
$$

Which simplifies to

$$
u_{1}=-\int\left(\frac{3 \mathrm{e}^{4 x}}{4}+\mathrm{e}^{x}\right) d x
$$

Hence

$$
u_{1}=-\mathrm{e}^{x}-\frac{3 \mathrm{e}^{4 x}}{16}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\mathrm{e}^{-2 x}\left(3 \mathrm{e}^{2 x}+4 \mathrm{e}^{-x}\right)}{1} d x
$$

Which simplifies to

$$
u_{2}=\int\left(3+4 \mathrm{e}^{-3 x}\right) d x
$$

Hence

$$
u_{2}=3 x-\frac{4 \mathrm{e}^{-3 x}}{3}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\left(-\mathrm{e}^{x}-\frac{3 \mathrm{e}^{4 x}}{16}\right) \mathrm{e}^{-2 x}+\frac{\left(3 x-\frac{4 \mathrm{e}^{-3 x}}{3}\right) \mathrm{e}^{2 x}}{4}
$$

Which simplifies to

$$
y_{p}(x)=\frac{3(4 x-1) \mathrm{e}^{2 x}}{16}-\frac{4 \mathrm{e}^{-x}}{3}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}\right)+\left(\frac{3(4 x-1) \mathrm{e}^{2 x}}{16}-\frac{4 \mathrm{e}^{-x}}{3}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}+\frac{3(4 x-1) \mathrm{e}^{2 x}}{16}-\frac{4 \mathrm{e}^{-x}}{3} \tag{1}
\end{equation*}
$$

Figure 149: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}+\frac{3(4 x-1) \mathrm{e}^{2 x}}{16}-\frac{4 \mathrm{e}^{-x}}{3}
$$

Verified OK.

11.3.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-4 y=3 \mathrm{e}^{2 x}+4 \mathrm{e}^{-x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE
$r^{2}-4=0$
- Factor the characteristic polynomial
$(r-2)(r+2)=0$
- Roots of the characteristic polynomial
$r=(-2,2)$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\mathrm{e}^{-2 x}
$$

- \quad 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\mathrm{e}^{2 x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=3 \mathrm{e}^{2 x}+4 \mathrm{e}^{-x}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 x} & \mathrm{e}^{2 x} \\
-2 \mathrm{e}^{-2 x} & 2 \mathrm{e}^{2 x}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=4$
- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\mathrm{e}^{-2 x}\left(\int\left(3 \mathrm{e}^{4 x}+4 \mathrm{e}^{x}\right) d x\right)}{4}+\frac{\mathrm{e}^{2 x}\left(\int\left(3+4 \mathrm{e}^{-3 x}\right) d x\right)}{4}
$$

- Compute integrals

$$
y_{p}(x)=\frac{3(4 x-1) \mathrm{e}^{2 x}}{16}-\frac{4 \mathrm{e}^{-x}}{3}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+\frac{3(4 x-1) \mathrm{e}^{2 x}}{16}-\frac{4 \mathrm{e}^{-x}}{3}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 29

```
dsolve(diff(y(x),x$2)-4*y(x)=3*exp(2*x)+4*exp(-x),y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-2 x}\left(\frac{\left(12 x+16 c_{2}-3\right) \mathrm{e}^{4 x}}{16}+c_{1}-\frac{4 \mathrm{e}^{x}}{3}\right)
$$

Solution by Mathematica
Time used: 0.345 (sec). Leaf size: 86

```
DSolve[y''[x]-4*y[x]==3*exp[2*x] +4*Exp[-x],y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow e^{-2 x}\left(e^{4 x} \int_{1}^{x} \frac{1}{4} e^{-3 K[1]}\left(3 e^{K[1]} \exp (2 K[1])+4\right) d K[1]+\int_{1}^{x}\right. \\
&\left.\quad-\frac{1}{4} e^{K[2]}\left(3 e^{K[2]} \exp (2 K[2])+4\right) d K[2]+c_{1} e^{4 x}+c_{2}\right)
\end{aligned}
$$

11.4 problem 1(d)

11.4.1 Solving as second order linear constant coeff ode 847
11.4.2 Solving using Kovacic algorithm 850
11.4.3 Maple step by step solution 855

Internal problem ID [6000]
Internal file name [OUTPUT/5248_Sunday_June_05_2022_03_28_29_PM_25528176/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 93
Problem number: 1(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}-y^{\prime}-2 y=x^{2}+\cos (x)
$$

11.4.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=-1, C=-2, f(x)=x^{2}+\cos (x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-y^{\prime}-2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-1, C=-2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\lambda \mathrm{e}^{\lambda x}-2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-\lambda-2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-1, C=-2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-1^{2}-(4)(1)(-2)} \\
& =\frac{1}{2} \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{3}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-x}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-x}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{2}+\cos (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\{\cos (x), \sin (x)\},\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{-x}, \mathrm{e}^{2 x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)+A_{3}+A_{4} x+A_{5} x^{2}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& -3 A_{1} \cos (x)-3 A_{2} \sin (x)+2 A_{5}+A_{1} \sin (x)-A_{2} \cos (x) \\
& -A_{4}-2 A_{5} x-2 A_{3}-2 A_{4} x-2 A_{5} x^{2}=x^{2}+\cos (x)
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{3}{10}, A_{2}=-\frac{1}{10}, A_{3}=-\frac{3}{4}, A_{4}=\frac{1}{2}, A_{5}=-\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{3 \cos (x)}{10}-\frac{\sin (x)}{10}-\frac{3}{4}+\frac{x}{2}-\frac{x^{2}}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-x}\right)+\left(-\frac{3 \cos (x)}{10}-\frac{\sin (x)}{10}-\frac{3}{4}+\frac{x}{2}-\frac{x^{2}}{2}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-x}-\frac{3 \cos (x)}{10}-\frac{\sin (x)}{10}-\frac{3}{4}+\frac{x}{2}-\frac{x^{2}}{2} \tag{1}
\end{equation*}
$$

Figure 150: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-x}-\frac{3 \cos (x)}{10}-\frac{\sin (x)}{10}-\frac{3}{4}+\frac{x}{2}-\frac{x^{2}}{2}
$$

Verified OK.

11.4.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}-y^{\prime}-2 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-1 \tag{3}\\
& C=-2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{9 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 157: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{3 x}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{3 x}}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}-y^{\prime}-2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{2 x}}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{2}+\cos (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\{\cos (x), \sin (x)\},\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\mathrm{e}^{2 x}}{3}, \mathrm{e}^{-x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)+A_{3}+A_{4} x+A_{5} x^{2}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& -3 A_{1} \cos (x)-3 A_{2} \sin (x)+2 A_{5}+A_{1} \sin (x)-A_{2} \cos (x) \\
& -A_{4}-2 A_{5} x-2 A_{3}-2 A_{4} x-2 A_{5} x^{2}=x^{2}+\cos (x)
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{3}{10}, A_{2}=-\frac{1}{10}, A_{3}=-\frac{3}{4}, A_{4}=\frac{1}{2}, A_{5}=-\frac{1}{2}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{3 \cos (x)}{10}-\frac{\sin (x)}{10}-\frac{3}{4}+\frac{x}{2}-\frac{x^{2}}{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{2 x}}{3}\right)+\left(-\frac{3 \cos (x)}{10}-\frac{\sin (x)}{10}-\frac{3}{4}+\frac{x}{2}-\frac{x^{2}}{2}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{2 x}}{3}-\frac{3 \cos (x)}{10}-\frac{\sin (x)}{10}-\frac{3}{4}+\frac{x}{2}-\frac{x^{2}}{2} \tag{1}
\end{equation*}
$$

Figure 151: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{2 x}}{3}-\frac{3 \cos (x)}{10}-\frac{\sin (x)}{10}-\frac{3}{4}+\frac{x}{2}-\frac{x^{2}}{2}
$$

Verified OK.

11.4.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-y^{\prime}-2 y=x^{2}+\cos (x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE $r^{2}-r-2=0$
- Factor the characteristic polynomial

$$
(r+1)(r-2)=0
$$

- Roots of the characteristic polynomial
$r=(-1,2)$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\mathrm{e}^{-x}$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(x)=\mathrm{e}^{2 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)$
$\square \quad$ Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=x^{2}+\cos (x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-x} & \mathrm{e}^{2 x} \\
-\mathrm{e}^{-x} & 2 \mathrm{e}^{2 x}
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=3 \mathrm{e}^{x}$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=-\frac{\mathrm{e}^{-x}\left(\int \mathrm{e}^{x}\left(x^{2}+\cos (x)\right) d x\right)}{3}+\frac{\mathrm{e}^{2 x}\left(\int \mathrm{e}^{-2 x}\left(x^{2}+\cos (x)\right) d x\right)}{3}$
- Compute integrals

$$
y_{p}(x)=-\frac{3 \cos (x)}{10}-\frac{\sin (x)}{10}-\frac{3}{4}+\frac{x}{2}-\frac{x^{2}}{2}
$$

- Substitute particular solution into general solution to ODE
$y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}-\frac{3 \cos (x)}{10}-\frac{\sin (x)}{10}-\frac{3}{4}+\frac{x}{2}-\frac{x^{2}}{2}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
dsolve(diff(y(x),x$2)-diff(y(x),x)-2*y(x)=x^2+cos(x),y(x), singsol=all)
```

$$
y(x)=c_{2} \mathrm{e}^{2 x}+c_{1} \mathrm{e}^{-x}-\frac{x^{2}}{2}-\frac{3 \cos (x)}{10}-\frac{\sin (x)}{10}+\frac{x}{2}-\frac{3}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.142 (sec). Leaf size: 44
DSolve[y''[x]-y'[x]-2*y[x]==x^2+Cos[x],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \frac{1}{20}\left(-10 x^{2}+10 x-2 \sin (x)-6 \cos (x)-15\right)+c_{1} e^{-x}+c_{2} e^{2 x}
$$

11.5 problem 1(e)

11.5.1 Solving as second order linear constant coeff ode 858
11.5.2 Solving using Kovacic algorithm 861
11.5.3 Maple step by step solution . 866

Internal problem ID [6001]
Internal file name [OUTPUT/5249_Sunday_June_05_2022_03_28_31_PM_29344672/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 93
Problem number: 1(e).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+9 y=x^{2} \mathrm{e}^{3 x}
$$

11.5.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=9, f(x)=x^{2} \mathrm{e}^{3 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=9$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(9)} \\
& = \pm 3 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=3$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
$$

Or

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{2} \mathrm{e}^{3 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x^{2} \mathrm{e}^{3 x}, \mathrm{e}^{3 x} x, \mathrm{e}^{3 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (3 x), \sin (3 x)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} x^{2} \mathrm{e}^{3 x}+A_{2} \mathrm{e}^{3 x} x+A_{3} \mathrm{e}^{3 x}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{3 x}+12 A_{1} x \mathrm{e}^{3 x}+18 A_{1} x^{2} \mathrm{e}^{3 x}+18 A_{2} \mathrm{e}^{3 x} x+6 A_{2} \mathrm{e}^{3 x}+18 A_{3} \mathrm{e}^{3 x}=x^{2} \mathrm{e}^{3 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{18}, A_{2}=-\frac{1}{27}, A_{3}=\frac{1}{162}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{x^{2} \mathrm{e}^{3 x}}{18}-\frac{\mathrm{e}^{3 x} x}{27}+\frac{\mathrm{e}^{3 x}}{162}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)+\left(\frac{x^{2} \mathrm{e}^{3 x}}{18}-\frac{\mathrm{e}^{3 x} x}{27}+\frac{\mathrm{e}^{3 x}}{162}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+\frac{x^{2} \mathrm{e}^{3 x}}{18}-\frac{\mathrm{e}^{3 x} x}{27}+\frac{\mathrm{e}^{3 x}}{162} \tag{1}
\end{equation*}
$$

Figure 152: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+\frac{x^{2} \mathrm{e}^{3 x}}{18}-\frac{\mathrm{e}^{3 x} x}{27}+\frac{\mathrm{e}^{3 x}}{162}
$$

Verified OK.

11.5.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-9 \\
t & =1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-9 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 159: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-9$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (3 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (3 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (3 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (3 x) \int \frac{1}{\cos (3 x)^{2}} d x \\
& =\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (3 x))+c_{2}\left(\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+9 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{2} \mathrm{e}^{3 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x^{2} \mathrm{e}^{3 x}, \mathrm{e}^{3 x} x, \mathrm{e}^{3 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\frac{\sin (3 x)}{3}, \cos (3 x)\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} x^{2} \mathrm{e}^{3 x}+A_{2} \mathrm{e}^{3 x} x+A_{3} \mathrm{e}^{3 x}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
2 A_{1} \mathrm{e}^{3 x}+12 A_{1} x \mathrm{e}^{3 x}+18 A_{1} x^{2} \mathrm{e}^{3 x}+18 A_{2} \mathrm{e}^{3 x} x+6 A_{2} \mathrm{e}^{3 x}+18 A_{3} \mathrm{e}^{3 x}=x^{2} \mathrm{e}^{3 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{1}{18}, A_{2}=-\frac{1}{27}, A_{3}=\frac{1}{162}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{x^{2} \mathrm{e}^{3 x}}{18}-\frac{\mathrm{e}^{3 x} x}{27}+\frac{\mathrm{e}^{3 x}}{162}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}\right)+\left(\frac{x^{2} \mathrm{e}^{3 x}}{18}-\frac{\mathrm{e}^{3 x} x}{27}+\frac{\mathrm{e}^{3 x}}{162}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}+\frac{x^{2} \mathrm{e}^{3 x}}{18}-\frac{\mathrm{e}^{3 x} x}{27}+\frac{\mathrm{e}^{3 x}}{162} \tag{1}
\end{equation*}
$$

Figure 153: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}+\frac{x^{2} \mathrm{e}^{3 x}}{18}-\frac{\mathrm{e}^{3 x} x}{27}+\frac{\mathrm{e}^{3 x}}{162}
$$

Verified OK.

11.5.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+9 y=x^{2} \mathrm{e}^{3 x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+9=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial
$r=(-3 \mathrm{I}, 3 \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (3 x)
$$

- $\quad 2$ nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (3 x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=x^{2} \mathrm{e}^{3 x}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (3 x) & \sin (3 x) \\
-3 \sin (3 x) & 3 \cos (3 x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=3
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\frac{\cos (3 x)\left(\int \sin (3 x) x^{2} \mathrm{e}^{3 x} d x\right)}{3}+\frac{\sin (3 x)\left(\int \cos (3 x) x^{2} \mathrm{e}^{3 x} d x\right)}{3}
$$

- Compute integrals

$$
y_{p}(x)=\frac{\mathrm{e}^{3 x}(3 x-1)^{2}}{162}
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+\frac{\mathrm{e}^{3 x}(3 x-1)^{2}}{162}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 28

```
dsolve(diff(y(x),x$2)+9*y(x)=x^2*exp(3*x),y(x), singsol=all)
```

$$
y(x)=\frac{\left(x-\frac{1}{3}\right)^{2} \mathrm{e}^{3 x}}{18}+\cos (3 x) c_{1}+\sin (3 x) c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 36
DSolve[y'' $[x]+9 * y[x]==x^{\wedge} 2 * \operatorname{Exp}[3 * x], y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{162} e^{3 x}(1-3 x)^{2}+c_{1} \cos (3 x)+c_{2} \sin (3 x)
$$

11.6 problem 1(f)

11.6.1 Solving as second order linear constant coeff ode 869
11.6.2 Solving using Kovacic algorithm 873
11.6.3 Maple step by step solution . 877

Internal problem ID [6002]
Internal file name [OUTPUT/5250_Sunday_June_05_2022_03_28_33_PM_86921640/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 93
Problem number: 1(f).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+y=x \mathrm{e}^{x} \cos (2 x)
$$

11.6.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=0, C=1, f(x)=x \mathrm{e}^{x} \cos (2 x)$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
$$

Or

$$
y=\cos (x) c_{1}+c_{2} \sin (x)
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\cos (x) c_{1}+c_{2} \sin (x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x \mathrm{e}^{x} \cos (2 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x} \cos (2 x), \mathrm{e}^{x} \sin (2 x), x \mathrm{e}^{x} \cos (2 x), x \mathrm{e}^{x} \sin (2 x)\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (x), \sin (x)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x} \cos (2 x)+A_{2} \mathrm{e}^{x} \sin (2 x)+A_{3} x \mathrm{e}^{x} \cos (2 x)+A_{4} x \mathrm{e}^{x} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& -2 A_{1} \mathrm{e}^{x} \cos (2 x)-4 A_{1} \mathrm{e}^{x} \sin (2 x)-2 A_{2} \mathrm{e}^{x} \sin (2 x)+4 A_{2} \mathrm{e}^{x} \cos (2 x)+2 A_{3} \mathrm{e}^{x} \cos (2 x) \\
& -4 A_{3} \mathrm{e}^{x} \sin (2 x)-2 A_{3} x \mathrm{e}^{x} \cos (2 x)-4 A_{3} x \mathrm{e}^{x} \sin (2 x)+2 A_{4} \mathrm{e}^{x} \sin (2 x) \\
& +4 A_{4} \mathrm{e}^{x} \cos (2 x)-2 A_{4} x \mathrm{e}^{x} \sin (2 x)+4 A_{4} x \mathrm{e}^{x} \cos (2 x)=x \mathrm{e}^{x} \cos (2 x)
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{11}{50}, A_{2}=-\frac{1}{25}, A_{3}=-\frac{1}{10}, A_{4}=\frac{1}{5}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{11 \mathrm{e}^{x} \cos (2 x)}{50}-\frac{\mathrm{e}^{x} \sin (2 x)}{25}-\frac{x \mathrm{e}^{x} \cos (2 x)}{10}+\frac{x \mathrm{e}^{x} \sin (2 x)}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
& y=y_{h}+y_{p} \\
& =\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+\left(\frac{11 \mathrm{e}^{x} \cos (2 x)}{50}-\frac{\mathrm{e}^{x} \sin (2 x)}{25}-\frac{x \mathrm{e}^{x} \cos (2 x)}{10}+\frac{x \mathrm{e}^{x} \sin (2 x)}{5}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
y=\cos (x) c_{1}+c_{2} \sin (x)+\frac{11 \mathrm{e}^{x} \cos (2 x)}{50}-\frac{\mathrm{e}^{x} \sin (2 x)}{25}-\frac{x \mathrm{e}^{x} \cos (2 x)}{10}+\frac{x \mathrm{e}^{x} \sin (2 x)}{5}(1)
$$

Figure 154: Slope field plot

Verification of solutions

$$
y=\cos (x) c_{1}+c_{2} \sin (x)+\frac{11 \mathrm{e}^{x} \cos (2 x)}{50}-\frac{\mathrm{e}^{x} \sin (2 x)}{25}-\frac{x \mathrm{e}^{x} \cos (2 x)}{10}+\frac{x \mathrm{e}^{x} \sin (2 x)}{5}
$$

Verified OK.

11.6.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 161: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=\cos (x) c_{1}+c_{2} \sin (x)
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x \mathrm{e}^{x} \cos (2 x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{x} \cos (2 x), \mathrm{e}^{x} \sin (2 x), x \mathrm{e}^{x} \cos (2 x), x \mathrm{e}^{x} \sin (2 x)\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\{\cos (x), \sin (x)\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{x} \cos (2 x)+A_{2} \mathrm{e}^{x} \sin (2 x)+A_{3} x \mathrm{e}^{x} \cos (2 x)+A_{4} x \mathrm{e}^{x} \sin (2 x)
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& -2 A_{1} \mathrm{e}^{x} \cos (2 x)-4 A_{1} \mathrm{e}^{x} \sin (2 x)-2 A_{2} \mathrm{e}^{x} \sin (2 x)+4 A_{2} \mathrm{e}^{x} \cos (2 x)+2 A_{3} \mathrm{e}^{x} \cos (2 x) \\
& -4 A_{3} \mathrm{e}^{x} \sin (2 x)-2 A_{3} x \mathrm{e}^{x} \cos (2 x)-4 A_{3} x \mathrm{e}^{x} \sin (2 x)+2 A_{4} \mathrm{e}^{x} \sin (2 x) \\
& +4 A_{4} \mathrm{e}^{x} \cos (2 x)-2 A_{4} x \mathrm{e}^{x} \sin (2 x)+4 A_{4} x \mathrm{e}^{x} \cos (2 x)=x \mathrm{e}^{x} \cos (2 x)
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{11}{50}, A_{2}=-\frac{1}{25}, A_{3}=-\frac{1}{10}, A_{4}=\frac{1}{5}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{11 \mathrm{e}^{x} \cos (2 x)}{50}-\frac{\mathrm{e}^{x} \sin (2 x)}{25}-\frac{x \mathrm{e}^{x} \cos (2 x)}{10}+\frac{x \mathrm{e}^{x} \sin (2 x)}{5}
$$

Therefore the general solution is

$$
\begin{aligned}
& y=y_{h}+y_{p} \\
& =\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+\left(\frac{11 \mathrm{e}^{x} \cos (2 x)}{50}-\frac{\mathrm{e}^{x} \sin (2 x)}{25}-\frac{x \mathrm{e}^{x} \cos (2 x)}{10}+\frac{x \mathrm{e}^{x} \sin (2 x)}{5}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
y=\cos (x) c_{1}+c_{2} \sin (x)+\frac{11 \mathrm{e}^{x} \cos (2 x)}{50}-\frac{\mathrm{e}^{x} \sin (2 x)}{25}-\frac{x \mathrm{e}^{x} \cos (2 x)}{10}+\frac{x \mathrm{e}^{x} \sin (2 x)}{5}(1)
$$

Figure 155: Slope field plot

Verification of solutions

$$
y=\cos (x) c_{1}+c_{2} \sin (x)+\frac{11 \mathrm{e}^{x} \cos (2 x)}{50}-\frac{\mathrm{e}^{x} \sin (2 x)}{25}-\frac{x \mathrm{e}^{x} \cos (2 x)}{10}+\frac{x \mathrm{e}^{x} \sin (2 x)}{5}
$$

Verified OK.

11.6.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+y=x \mathrm{e}^{x} \cos (2 x)
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial
$r=(-\mathrm{I}, \mathrm{I})$
- \quad 1st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x)
$$

- 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=\cos (x) c_{1}+c_{2} \sin (x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=x \mathrm{e}^{x} \cos (2 x)\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=1
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\cos (x)\left(\int \sin (x) x \mathrm{e}^{x} \cos (2 x) d x\right)+\sin (x)\left(\int \cos (x) x \mathrm{e}^{x} \cos (2 x) d x\right)
$$

- Compute integrals

$$
y_{p}(x)=-\frac{\mathrm{e}^{x}\left(\left(x-\frac{11}{5}\right) \cos (x)^{2}-2 \sin (x)\left(-\frac{1}{5}+x\right) \cos (x)-\frac{x}{2}+\frac{11}{10}\right)}{5}
$$

- Substitute particular solution into general solution to ODE

$$
y=\cos (x) c_{1}+c_{2} \sin (x)-\frac{\mathrm{e}^{x}\left(\left(x-\frac{11}{5}\right) \cos (x)^{2}-2 \sin (x)\left(-\frac{1}{5}+x\right) \cos (x)-\frac{x}{2}+\frac{11}{10}\right)}{5}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 42

```
dsolve(diff(y(x),x$2)+y(x)=x*exp(x)*\operatorname{cos}(2*x),y(x), singsol=all)
```

$$
\begin{aligned}
y(x)= & \frac{\left((-10 x+22) \cos (x)^{2}+(20 x-4) \sin (x) \cos (x)+5 x-11\right) \mathrm{e}^{x}}{50} \\
& +\cos (x) c_{1}+\sin (x) c_{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 45
DSolve[y''[x]+y[x]==x*Exp[x]*Cos[2*x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\frac{1}{50} e^{x}(2(1-5 x) \sin (2 x)+(5 x-11) \cos (2 x))+c_{1} \cos (x)+c_{2} \sin (x)
$$

11.7 problem 1(g)

11.7.1 Solving as second order linear constant coeff ode 880
11.7.2 Solving using Kovacic algorithm 883
11.7.3 Maple step by step solution . 888

Internal problem ID [6003]
Internal file name [OUTPUT/5251_Sunday_June_05_2022_03_28_34_PM_39858621/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 93
Problem number: 1(g).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]

$$
y^{\prime \prime}+i y^{\prime}+2 y=2 \cosh (2 x)+\mathrm{e}^{-2 x}
$$

11.7.1 Solving as second order linear constant coeff ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=1, B=i, C=2, f(x)=2 \mathrm{e}^{-2 x}+\mathrm{e}^{2 x}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+i y^{\prime}+2 y=0
$$

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=i, C=2$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+i \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+i \lambda+2=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=i, C=2$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{-i}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{i^{2}-(4)(1)(2)} \\
& =-\frac{i}{2} \pm \frac{3 i}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lambda_{1} & =-\frac{i}{2}+\frac{3 i}{2} \\
\lambda_{2} & =-\frac{i}{2}-\frac{3 i}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

The roots are complex but they are not conjugate of each others. Hence simplification using Euler relation is not possible here. Therefore the final solution is

$$
\begin{aligned}
y & =c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& =c_{1} e^{i x}+c_{2} e^{-2 i x}
\end{aligned}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \mathrm{e}^{i x}+\mathrm{e}^{-2 i x} c_{2}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \mathrm{e}^{-2 x}+\mathrm{e}^{2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-2 x}\right\},\left\{\mathrm{e}^{2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\mathrm{e}^{i x}, \mathrm{e}^{-2 i x}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-2 x}+A_{2} \mathrm{e}^{2 x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
6 A_{1} \mathrm{e}^{-2 x}+6 A_{2} \mathrm{e}^{2 x}+i\left(-2 A_{1} \mathrm{e}^{-2 x}+2 A_{2} \mathrm{e}^{2 x}\right)=2 \mathrm{e}^{-2 x}+\mathrm{e}^{2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{3}{10}+\frac{i}{10}, A_{2}=\frac{3}{20}-\frac{i}{20}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\left(\frac{3}{10}+\frac{i}{10}\right) \mathrm{e}^{-2 x}+\left(\frac{3}{20}-\frac{i}{20}\right) \mathrm{e}^{2 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{i x}+\mathrm{e}^{-2 i x} c_{2}\right)+\left(\left(\frac{3}{10}+\frac{i}{10}\right) \mathrm{e}^{-2 x}+\left(\frac{3}{20}-\frac{i}{20}\right) \mathrm{e}^{2 x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{i x}+\mathrm{e}^{-2 i x} c_{2}+\left(\frac{3}{10}+\frac{i}{10}\right) \mathrm{e}^{-2 x}+\left(\frac{3}{20}-\frac{i}{20}\right) \mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

Figure 156: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{i x}+\mathrm{e}^{-2 i x} c_{2}+\left(\frac{3}{10}+\frac{i}{10}\right) \mathrm{e}^{-2 x}+\left(\frac{3}{20}-\frac{i}{20}\right) \mathrm{e}^{2 x}
$$

Verified OK.

11.7.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}+i y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =i \tag{3}\\
C & =2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-\frac{9 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 163: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-\frac{9}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos \left(\frac{3 x}{2}\right)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{i}{1} d x} \\
& =z_{1} e^{-\frac{i x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{i x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos \left(\frac{3 x}{2}\right) \mathrm{e}^{-\frac{i x}{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{i}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-i x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{2 \tan \left(\frac{3 x}{2}\right)}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos \left(\frac{3 x}{2}\right) \mathrm{e}^{-\frac{i x}{2}}\right)+c_{2}\left(\cos \left(\frac{3 x}{2}\right) \mathrm{e}^{-\frac{i x}{2}}\left(\frac{2 \tan \left(\frac{3 x}{2}\right)}{3}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
y^{\prime \prime}+i y^{\prime}+2 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} \cos \left(\frac{3 x}{2}\right) \mathrm{e}^{-\frac{i x}{2}}+\frac{2 c_{2} \mathrm{e}^{-\frac{i x}{2}} \sin \left(\frac{3 x}{2}\right)}{3}
$$

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
2 \mathrm{e}^{-2 x}+\mathrm{e}^{2 x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-2 x}\right\},\left\{\mathrm{e}^{2 x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{\cos \left(\frac{3 x}{2}\right) \mathrm{e}^{-\frac{i x}{2}}, \frac{2 \mathrm{e}^{-\frac{i x}{2}} \sin \left(\frac{3 x}{2}\right)}{3}\right\}
$$

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-2 x}+A_{2} \mathrm{e}^{2 x}
$$

The unknowns $\left\{A_{1}, A_{2}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
6 A_{1} \mathrm{e}^{-2 x}+6 A_{2} \mathrm{e}^{2 x}+i\left(-2 A_{1} \mathrm{e}^{-2 x}+2 A_{2} \mathrm{e}^{2 x}\right)=2 \mathrm{e}^{-2 x}+\mathrm{e}^{2 x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=\frac{3}{10}+\frac{i}{10}, A_{2}=\frac{3}{20}-\frac{i}{20}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\left(\frac{3}{10}+\frac{i}{10}\right) \mathrm{e}^{-2 x}+\left(\frac{3}{20}-\frac{i}{20}\right) \mathrm{e}^{2 x}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos \left(\frac{3 x}{2}\right) \mathrm{e}^{-\frac{i x}{2}}+\frac{2 c_{2} \mathrm{e}^{-\frac{i x}{2}} \sin \left(\frac{3 x}{2}\right)}{3}\right)+\left(\left(\frac{3}{10}+\frac{i}{10}\right) \mathrm{e}^{-2 x}+\left(\frac{3}{20}-\frac{i}{20}\right) \mathrm{e}^{2 x}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\frac{\mathrm{e}^{-\frac{i x}{2}}\left(3 c_{1} \cos \left(\frac{3 x}{2}\right)+2 c_{2} \sin \left(\frac{3 x}{2}\right)\right)}{3}+\left(\frac{3}{10}+\frac{i}{10}\right) \mathrm{e}^{-2 x}+\left(\frac{3}{20}-\frac{i}{20}\right) \mathrm{e}^{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-\frac{i x}{2}}\left(3 c_{1} \cos \left(\frac{3 x}{2}\right)+2 c_{2} \sin \left(\frac{3 x}{2}\right)\right)}{3}+\left(\frac{3}{10}+\frac{i}{10}\right) \mathrm{e}^{-2 x}+\left(\frac{3}{20}-\frac{i}{20}\right) \mathrm{e}^{2 x} \tag{1}
\end{equation*}
$$

Figure 157: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-\frac{i x}{2}}\left(3 c_{1} \cos \left(\frac{3 x}{2}\right)+2 c_{2} \sin \left(\frac{3 x}{2}\right)\right)}{3}+\left(\frac{3}{10}+\frac{i}{10}\right) \mathrm{e}^{-2 x}+\left(\frac{3}{20}-\frac{i}{20}\right) \mathrm{e}^{2 x}
$$

Verified OK.

11.7.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+\mathrm{I} y^{\prime}+2 y=2 \mathrm{e}^{-2 x}+\mathrm{e}^{2 x}
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of homogeneous ODE

$$
r^{2}+\mathrm{I} r+2=0
$$

- Factor the characteristic polynomial

$$
-(-r+\mathrm{I})(r+2 \mathrm{I})=0
$$

- Roots of the characteristic polynomial
$r=(-2 \mathrm{I}, \mathrm{I})$
- $\quad 1$ st solution of the homogeneous ODE
$y_{1}(x)=\cos (2 x)$
- $\quad 2 n d$ solution of the homogeneous ODE
$y_{2}(x)=\sin (2 x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)$
- \quad Substitute in solutions of the homogeneous ODE
$y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+y_{p}(x)$
Find a particular solution $y_{p}(x)$ of the ODE
- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=2 \mathrm{e}^{-2 x}+\mathrm{e}^{2 x}\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
-2 \sin (2 x) & 2 \cos (2 x)
\end{array}\right]
$$

- Compute Wronskian
$W\left(y_{1}(x), y_{2}(x)\right)=2$
- Substitute functions into equation for $y_{p}(x)$
$y_{p}(x)=-\frac{\cos (2 x)\left(\int \sin (2 x)\left(2 \mathrm{e}^{-2 x}+\mathrm{e}^{2 x}\right) d x\right)}{2}+\frac{\sin (2 x)\left(\int \cos (2 x)\left(2 \mathrm{e}^{-2 x}+\mathrm{e}^{2 x}\right) d x\right)}{2}$
- Compute integrals
$y_{p}(x)=\frac{\mathrm{e}^{-2 x}}{4}+\frac{\mathrm{e}^{2 x}}{8}$
- Substitute particular solution into general solution to ODE
$y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{\mathrm{e}^{-2 x}}{4}+\frac{\mathrm{e}^{2 x}}{8}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 35
dsolve(diff $(y(x), x \$ 2)+I * \operatorname{diff}(y(x), x)+2 * y(x)=2 * \cosh (2 * x)+\exp (-2 * x), y(x)$, singsol=all)

$$
y(x)=c_{2} \mathrm{e}^{i x}+\mathrm{e}^{-2 i x} c_{1}+\left(\frac{3}{10}+\frac{i}{10}\right) \mathrm{e}^{-2 x}+\left(\frac{3}{20}-\frac{i}{20}\right) \mathrm{e}^{2 x}
$$

Solution by Mathematica
Time used: 0.157 (sec). Leaf size: 48
DSolve $[y$ '' $[x]+I * y$ ' $[x]+2 * y[x]==2 * \operatorname{Cosh}[2 * x]+\operatorname{Exp}[-2 * x], y[x], x$, IncludeSingularSolutions $->$ True $]$

$$
y(x) \rightarrow \frac{1}{20} e^{-2 x}\left((3-i) e^{4 x}+(6+2 i)\right)+c_{1} e^{-2 i x}+c_{2} e^{i x}
$$

11.8 problem 1(h)

Internal problem ID [6004]
Internal file name [OUTPUT/5252_Sunday_June_05_2022_03_28_36_PM_69622299/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 93
Problem number: 1(h).
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _quadrature]]

$$
y^{\prime \prime \prime}=x^{2}+\mathrm{e}^{-x} \sin (x)
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}=0
$$

The characteristic equation is

$$
\lambda^{3}=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =0 \\
\lambda_{2} & =0 \\
\lambda_{3} & =0
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{3} x^{2}+c_{2} x+c_{1}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=x \\
& y_{3}=x^{2}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}=x^{2}+\mathrm{e}^{-x} \sin (x)
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{2}+\mathrm{e}^{-x} \sin (x)
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{\mathrm{e}^{-x} \cos (x), \mathrm{e}^{-x} \sin (x)\right\},\left\{1, x, x^{2}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{1, x, x^{2}\right\}
$$

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{\mathrm{e}^{-x} \cos (x), \mathrm{e}^{-x} \sin (x)\right\},\left\{x, x^{2}, x^{3}\right\}\right]
$$

Since x is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{\mathrm{e}^{-x} \cos (x), \mathrm{e}^{-x} \sin (x)\right\},\left\{x^{2}, x^{3}, x^{4}\right\}\right]
$$

Since x^{2} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{\mathrm{e}^{-x} \cos (x), \mathrm{e}^{-x} \sin (x)\right\},\left\{x^{3}, x^{4}, x^{5}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} \mathrm{e}^{-x} \cos (x)+A_{2} \mathrm{e}^{-x} \sin (x)+A_{3} x^{3}+A_{4} x^{4}+A_{5} x^{5}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
\begin{aligned}
& -2 A_{1} \mathrm{e}^{-x} \sin (x)+2 A_{1} \mathrm{e}^{-x} \cos (x)+2 A_{2} \mathrm{e}^{-x} \cos (x) \\
& +2 A_{2} \mathrm{e}^{-x} \sin (x)+6 A_{3}+24 A_{4} x+60 A_{5} x^{2}=x^{2}+\mathrm{e}^{-x} \sin (x)
\end{aligned}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=-\frac{1}{4}, A_{2}=\frac{1}{4}, A_{3}=0, A_{4}=0, A_{5}=\frac{1}{60}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=-\frac{\mathrm{e}^{-x} \cos (x)}{4}+\frac{\mathrm{e}^{-x} \sin (x)}{4}+\frac{x^{5}}{60}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{3} x^{2}+c_{2} x+c_{1}\right)+\left(-\frac{\mathrm{e}^{-x} \cos (x)}{4}+\frac{\mathrm{e}^{-x} \sin (x)}{4}+\frac{x^{5}}{60}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{3} x^{2}+c_{2} x+c_{1}-\frac{\mathrm{e}^{-x} \cos (x)}{4}+\frac{\mathrm{e}^{-x} \sin (x)}{4}+\frac{x^{5}}{60} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{3} x^{2}+c_{2} x+c_{1}-\frac{\mathrm{e}^{-x} \cos (x)}{4}+\frac{\mathrm{e}^{-x} \sin (x)}{4}+\frac{x^{5}}{60}
$$

Verified OK.
Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 33
dsolve(diff $(y(x), x \$ 3)=x^{\wedge} 2+\exp (-x) * \sin (x), y(x)$, singsol=all)

$$
y(x)=\frac{\mathrm{e}^{-x}(-\cos (x)+\sin (x))}{4}+\frac{x^{5}}{60}+\frac{c_{1} x^{2}}{2}+c_{2} x+c_{3}
$$

\checkmark Solution by Mathematica
Time used: 0.114 (sec). Leaf size: 47
DSolve[y'''[x]==x^2+Exp[-x]*Sin[x],y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \frac{x^{5}}{60}+c_{3} x^{2}+\frac{1}{4} e^{-x} \sin (x)-\frac{1}{4} e^{-x} \cos (x)+c_{2} x+c_{1}
$$

11.9 problem 1(i)

Internal problem ID [6005]
Internal file name [OUTPUT/5253_Sunday_June_05_2022_03_28_38_PM_63402563/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 93
Problem number: 1(i).
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_3rd_order, _linear, _nonhomogeneous]]
```

$$
y^{\prime \prime \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=x^{2} \mathrm{e}^{-x}
$$

This is higher order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE And y_{p} is a particular solution to the nonhomogeneous ODE. y_{h} is the solution to

$$
y^{\prime \prime \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=0
$$

The characteristic equation is

$$
\lambda^{3}+3 \lambda^{2}+3 \lambda+1=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =-1 \\
\lambda_{2} & =-1 \\
\lambda_{3} & =-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+c_{3} x^{2} \mathrm{e}^{-x}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=x \mathrm{e}^{-x} \\
& y_{3}=x^{2} \mathrm{e}^{-x}
\end{aligned}
$$

Now the particular solution to the given ODE is found

$$
y^{\prime \prime \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=x^{2} \mathrm{e}^{-x}
$$

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

$$
x^{2} \mathrm{e}^{-x}
$$

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

$$
\left[\left\{x \mathrm{e}^{-x}, x^{2} \mathrm{e}^{-x}, \mathrm{e}^{-x}\right\}\right]
$$

While the set of the basis functions for the homogeneous solution found earlier is

$$
\left\{x \mathrm{e}^{-x}, x^{2} \mathrm{e}^{-x}, \mathrm{e}^{-x}\right\}
$$

Since e^{-x} is duplicated in the UC_set, then this basis is multiplied by extra x. The UC__set becomes

$$
\left[\left\{x \mathrm{e}^{-x}, x^{2} \mathrm{e}^{-x}, x^{3} \mathrm{e}^{-x}\right\}\right]
$$

Since $x \mathrm{e}^{-x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{2} \mathrm{e}^{-x}, x^{3} \mathrm{e}^{-x}, x^{4} \mathrm{e}^{-x}\right\}\right]
$$

Since $x^{2} \mathrm{e}^{-x}$ is duplicated in the UC_set, then this basis is multiplied by extra x. The UC_set becomes

$$
\left[\left\{x^{3} \mathrm{e}^{-x}, x^{4} \mathrm{e}^{-x}, x^{5} \mathrm{e}^{-x}\right\}\right]
$$

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.

$$
y_{p}=A_{1} x^{3} \mathrm{e}^{-x}+A_{2} x^{4} \mathrm{e}^{-x}+A_{3} x^{5} \mathrm{e}^{-x}
$$

The unknowns $\left\{A_{1}, A_{2}, A_{3}\right\}$ are found by substituting the above trial solution y_{p} into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives

$$
24 A_{2} x \mathrm{e}^{-x}+60 A_{3} x^{2} \mathrm{e}^{-x}+6 A_{1} \mathrm{e}^{-x}=x^{2} \mathrm{e}^{-x}
$$

Solving for the unknowns by comparing coefficients results in

$$
\left[A_{1}=0, A_{2}=0, A_{3}=\frac{1}{60}\right]
$$

Substituting the above back in the above trial solution y_{p}, gives the particular solution

$$
y_{p}=\frac{x^{5} \mathrm{e}^{-x}}{60}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+c_{3} x^{2} \mathrm{e}^{-x}\right)+\left(\frac{x^{5} \mathrm{e}^{-x}}{60}\right)
\end{aligned}
$$

Which simplifies to

$$
y=\mathrm{e}^{-x}\left(c_{3} x^{2}+c_{2} x+c_{1}\right)+\frac{x^{5} \mathrm{e}^{-x}}{60}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{3} x^{2}+c_{2} x+c_{1}\right)+\frac{x^{5} \mathrm{e}^{-x}}{60} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-x}\left(c_{3} x^{2}+c_{2} x+c_{1}\right)+\frac{x^{5} \mathrm{e}^{-x}}{60}
$$

Verified OK.

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
trying high order linear exact nonhomogeneous
trying differential order: 3; missing the dependent variable
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 24
dsolve(diff $(y(x), x \$ 3)+3 * \operatorname{diff}(y(x), x \$ 2)+3 * \operatorname{diff}(y(x), x)+y(x)=x^{\wedge} 2 * \exp (-x), y(x), \quad$ singsol=all)

$$
y(x)=\mathrm{e}^{-x}\left(\frac{1}{60} x^{5}+c_{1}+c_{2} x+c_{3} x^{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 34
DSolve[y'''[x]+3*y''[x]+3*y'[x]+y[x]==x^2*Exp[-x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{60} e^{-x}\left(x^{5}+60 c_{3} x^{2}+60 c_{2} x+60 c_{1}\right)
$$

12 Chapter 3. Linear equations with variable coefficients. Page 108

12.1 problem 1(c.1) . 900
12.2 problem 1(c.2) . 935
12.3 problem 2 . 970

12.1 problem 1(c.1)

12.1.1 Existence and uniqueness analysis 901
12.1.2 Solving as second order euler ode ode 901
12.1.3 Solving as second order change of variable on x method 2 ode . 904
12.1.4 Solving as second order change of variable on x method 1 ode . 907
12.1.5 Solving as second order change of variable on y method 2 ode . 910
12.1.6 Solving as second order integrable as is ode 914
12.1.7 Solving as second order ode non constant coeff transformation
on B ode . 916
12.1.8 $\begin{aligned} & \text { Solving as type second_order_integrable_as_is (not using ABC } \\ & \text { version) . } 919\end{aligned}$
12.1.9 Solving using Kovacic algorithm 922
12.1.10 Solving as exact linear second order ode ode 928
12.1.11 Maple step by step solution . 932

Internal problem ID [6006]
Internal file name [OUTPUT/5254_Sunday_June_05_2022_03_28_40_PM_67813326/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 3. Linear equations with variable coefficients. Page 108
Problem number: 1(c.1).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "exact linear second order ode", "second_order_integrable_as_is", "second_order_change_of_variable_on_x_method_1", "second__order_change_of_cvariable_on_x_method_2", "second_order_change_of_cvariable_on_y_method_2", "second_order_ode__non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
y^{\prime \prime}+\frac{y^{\prime}}{x}-\frac{y}{x^{2}}=0
$$

With initial conditions

$$
\left[y(1)=1, y^{\prime}(1)=0\right]
$$

The ode can be written as

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0
$$

Which shows it is a Euler ODE.

12.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =-\frac{1}{x^{2}} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{y^{\prime}}{x}-\frac{y}{x^{2}}=0
$$

The domain of $p(x)=\frac{1}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=-\frac{1}{x^{2}}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

12.1.2 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+x r x^{r-1}-x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+r x^{r}-x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+r-1=0
$$

Or

$$
\begin{equation*}
r^{2}-1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=1
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{x}+c_{2} x
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1}}{x}+c_{2} x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{c_{1}}{x^{2}}+c_{2}
$$

substituting $y^{\prime}=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=-c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{2} \\
& c_{2}=\frac{1}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{x^{2}+1}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}+1}{2 x} \tag{1}
\end{equation*}
$$

Figure 158: Solution plot

Verification of solutions

$$
y=\frac{x^{2}+1}{2 x}
$$

Verified OK.

12.1.3 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}-y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{x} d x\right)} d x \\
& =\int e^{-\ln (x)} d x \\
& =\int \frac{1}{x} d x \\
& =\ln (x) \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{1}{x^{2}}}{\frac{1}{x^{2}}} \\
& =-1 \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=-1$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}-\mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}-1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-1)} \\
& = \pm 1
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=+1 \\
\lambda_{2}=-1
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{(1) \tau}+c_{2} e^{(-1) \tau}
\end{aligned}
$$

Or

$$
y(\tau)=c_{1} \mathrm{e}^{\tau}+c_{2} \mathrm{e}^{-\tau}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} x^{2}+c_{2}}{x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1} x^{2}+c_{2}}{x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=c_{1}+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=2 c_{1}-\frac{c_{1} x^{2}+c_{2}}{x^{2}}
$$

substituting $y^{\prime}=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=c_{1}-c_{2} \tag{2A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{2} \\
& c_{2}=\frac{1}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{x^{2}+1}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}+1}{2 x} \tag{1}
\end{equation*}
$$

Figure 159: Solution plot

Verification of solutions

$$
y=\frac{x^{2}+1}{2 x}
$$

Verified OK.

12.1.4 Solving as second order change of variable on x method 1 ode

 In normal form the ode$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}-y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{-\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =\frac{1}{c \sqrt{-\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{1}{c \sqrt{-\frac{1}{x^{2}}} x^{3}}+\frac{1}{x} \frac{\sqrt{-\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{-\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{-\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{-\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\frac{\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}}{2 x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}}{2 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=i c_{2}+c_{1}-\frac{\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}}{2 x^{2}}
$$

substituting $y^{\prime}=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=i c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=0
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{x^{2}+1}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}+1}{2 x} \tag{1}
\end{equation*}
$$

Figure 160: Solution plot

Verification of solutions

$$
y=\frac{x^{2}+1}{2 x}
$$

Verified OK.

12.1.5 Solving as second order change of variable on y method 2 ode

 In normal form the ode$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}-y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n}{x^{2}}-\frac{1}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{3 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{3 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{3 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{3}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{3}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{3}{x} d x \\
\ln (u) & =-3 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-3 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{3}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x \\
& =\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=-\frac{c_{1}}{2}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1}}{2 x^{2}}+c_{2}
$$

substituting $y^{\prime}=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=\frac{c_{1}}{2}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=\frac{1}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{x^{2}+1}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}+1}{2 x} \tag{1}
\end{equation*}
$$

Figure 161: Solution plot
Verification of solutions

$$
y=\frac{x^{2}+1}{2 x}
$$

Verified OK.

12.1.6 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(x^{2} y^{\prime \prime}+x y^{\prime}-y\right) d x=0 \\
x^{2} y^{\prime}-x y=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=\frac{c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =\left(\frac{1}{x}\right)\left(\frac{c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(\frac{y}{x}\right) & =\left(\frac{c_{1}}{x^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x}=\int \frac{c_{1}}{x^{3}} \mathrm{~d} x \\
& \frac{y}{x}=-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=-\frac{c_{1}}{2 x}+c_{2} x
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-\frac{c_{1}}{2 x}+c_{2} x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=-\frac{c_{1}}{2}+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1}}{2 x^{2}}+c_{2}
$$

substituting $y^{\prime}=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=\frac{c_{1}}{2}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=\frac{1}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{x^{2}+1}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}+1}{2 x} \tag{1}
\end{equation*}
$$

Figure 162: Solution plot

Verification of solutions

$$
y=\frac{x^{2}+1}{2 x}
$$

Verified OK.

12.1.7 Solving as second order ode non constant coeff transformation on

 B odeGiven an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=x^{2} \\
& B=x \\
& C=-1 \\
& F=0
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(x^{2}\right)(0)+(x)(1)+(-1)(x) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
x^{3} v^{\prime \prime}+\left(3 x^{2}\right) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
x^{2}\left(u^{\prime}(x) x+3 u(x)\right)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{3}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{3}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{3}{x} d x \\
\ln (u) & =-3 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-3 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{3}}
\end{aligned}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =\frac{c_{1}}{x^{3}}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int \frac{c_{1}}{x^{3}} \mathrm{~d} x \\
& =-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y(x) & =B v \\
& =(x)\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) \\
& =\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=-\frac{c_{1}}{2}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1}}{2 x^{2}}+c_{2}
$$

substituting $y^{\prime}=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=\frac{c_{1}}{2}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=\frac{1}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{x^{2}+1}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}+1}{2 x} \tag{1}
\end{equation*}
$$

Figure 163: Solution plot

Verification of solutions

$$
y=\frac{x^{2}+1}{2 x}
$$

Verified OK.
12.1.8 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(x^{2} y^{\prime \prime}+x y^{\prime}-y\right) d x=0 \\
x^{2} y^{\prime}-x y=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=\frac{c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =\left(\frac{1}{x}\right)\left(\frac{c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(\frac{y}{x}\right) & =\left(\frac{c_{1}}{x^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x}=\int \frac{c_{1}}{x^{3}} \mathrm{~d} x \\
& \frac{y}{x}=-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=-\frac{c_{1}}{2 x}+c_{2} x
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-\frac{c_{1}}{2 x}+c_{2} x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=-\frac{c_{1}}{2}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1}}{2 x^{2}}+c_{2}
$$

substituting $y^{\prime}=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=\frac{c_{1}}{2}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=\frac{1}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{x^{2}+1}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}+1}{2 x} \tag{1}
\end{equation*}
$$

Figure 164: Solution plot

Verification of solutions

$$
y=\frac{x^{2}+1}{2 x}
$$

Verified OK.

12.1.9 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+x y^{\prime}-y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=x \tag{3}\\
& C=-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{3}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=3 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{3}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 165: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{3}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{3}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{3}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=-\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 x}+(-)(0) \\
& =-\frac{1}{2 x} \\
& =-\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{2 x}\right)(0)+\left(\left(\frac{1}{2 x^{2}}\right)+\left(-\frac{1}{2 x}\right)^{2}-\left(\frac{3}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{2 x} d x} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{2}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x}\right)+c_{2}\left(\frac{1}{x}\left(\frac{x^{2}}{2}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1}}{x}+\frac{c_{2} x}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=c_{1}+\frac{c_{2}}{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{c_{1}}{x^{2}}+\frac{c_{2}}{2}
$$

substituting $y^{\prime}=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=-c_{1}+\frac{c_{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{2} \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{x^{2}+1}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}+1}{2 x} \tag{1}
\end{equation*}
$$

Figure 165: Solution plot

Verification of solutions

$$
y=\frac{x^{2}+1}{2 x}
$$

Verified OK.

12.1.10 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
& p(x)=x^{2} \\
& q(x)=x \\
& r(x)=-1 \\
& s(x)=0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =2 \\
q^{\prime}(x) & =1
\end{aligned}
$$

Therefore (1) becomes

$$
2-(1)+(-1)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
x^{2} y^{\prime}-x y=c_{1}
$$

We now have a first order ode to solve which is

$$
x^{2} y^{\prime}-x y=c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=\frac{c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =\left(\frac{1}{x}\right)\left(\frac{c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(\frac{y}{x}\right) & =\left(\frac{c_{1}}{x^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x}=\int \frac{c_{1}}{x^{3}} \mathrm{~d} x \\
& \frac{y}{x}=-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=-\frac{c_{1}}{2 x}+c_{2} x
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-\frac{c_{1}}{2 x}+c_{2} x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=-\frac{c_{1}}{2}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1}}{2 x^{2}}+c_{2}
$$

substituting $y^{\prime}=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=\frac{c_{1}}{2}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=\frac{1}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{x^{2}+1}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}+1}{2 x} \tag{1}
\end{equation*}
$$

Figure 166: Solution plot

Verification of solutions

$$
y=\frac{x^{2}+1}{2 x}
$$

Verified OK.

12.1.11 Maple step by step solution

Let's solve

$$
\left[x^{2} y^{\prime \prime}+x y^{\prime}-y=0, y(1)=1,\left.y^{\prime}\right|_{\{x=1\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y^{\prime}}{x}+\frac{y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{x}-\frac{y}{x^{2}}=0$
- Multiply by denominators of the ODE

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0
$$

- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1 st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)+\frac{d}{d t} y(t)-y(t)=0$
- \quad Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)-y(t)=0
$$

- Characteristic polynomial of ODE

$$
r^{2}-1=0
$$

- Factor the characteristic polynomial
$(r-1)(r+1)=0$
- Roots of the characteristic polynomial
$r=(-1,1)$
- 1st solution of the ODE
$y_{1}(t)=\mathrm{e}^{-t}$
- \quad 2nd solution of the ODE
$y_{2}(t)=\mathrm{e}^{t}$
- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Substitute in solutions
$y(t)=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}$
- Change variables back using $t=\ln (x)$
$y=\frac{c_{1}}{x}+c_{2} x$
- \quad Simplify
$y=\frac{c_{1}}{x}+c_{2} x$
Check validity of solution $y=\frac{c_{1}}{x}+c_{2} x$
- Use initial condition $y(1)=1$
$1=c_{1}+c_{2}$
- Compute derivative of the solution $y^{\prime}=-\frac{c_{1}}{x^{2}}+c_{2}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=1\}}=0$

$$
0=-c_{1}+c_{2}
$$

- Solve for c_{1} and c_{2}
$\left\{c_{1}=\frac{1}{2}, c_{2}=\frac{1}{2}\right\}$
- Substitute constant values into general solution and simplify $y=\frac{x}{2}+\frac{1}{2 x}$
- \quad Solution to the IVP

$$
y=\frac{x}{2}+\frac{1}{2 x}
$$

Maple trace
'Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 13
dsolve $\left(\left[\operatorname{diff}(y(x), x \$ 2)+1 / x * \operatorname{diff}(y(x), x)-1 / x^{\wedge} 2 * y(x)=0, y(1)=1, D(y)(1)=0\right], y(x)\right.$, singsol=al

$$
y(x)=\frac{1}{2 x}+\frac{x}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 17
DSolve $\left[\left\{y^{\prime}\right.\right.$ ' $[x]+1 / x * y$ ' $\left.[x]-1 / x^{\wedge} 2 * y[x]==0,\left\{y[1]==1, y^{\prime}[1]==0\right\}\right\}, y[x], x$, IncludeSingularSolutions -

$$
y(x) \rightarrow \frac{x^{2}+1}{2 x}
$$

12.2 problem 1(c.2)

12.2.1 Existence and uniqueness analysis 936
12.2.2 Solving as second order euler ode ode 936
12.2.3 Solving as second order change of variable on x method 2 ode 939
12.2.4 Solving as second order change of variable on x method 1 ode 942
12.2.5 Solving as second order change of variable on y method 2 ode 945
12.2.6 Solving as second order integrable as is ode 949
12.2.7 Solving as second order ode non constant coeff transformation on B ode 951
12.2.8 Solving as type second_order_integrable_as_is (not using ABC version) 954
12.2.9 Solving using Kovacic algorithm 957
12.2.10 Solving as exact linear second order ode ode 963
12.2.11 Maple step by step solution 967

Internal problem ID [6007]
Internal file name [OUTPUT/5255_Sunday_June_05_2022_03_28_42_PM_16790640/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 3. Linear equations with variable coefficients. Page 108
Problem number: 1(c.2).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "exact linear second order ode", "second_order_integrable_as_is", "second_order_change_of_variable_on_x_method_1", "second__order_change_of_cvariable_on_x__method_2", "second__order_change_of__variable_on_y_method_2", "second__order_ode__non_constant__coeff_transformation__on_B"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
y^{\prime \prime}+\frac{y^{\prime}}{x}-\frac{y}{x^{2}}=0
$$

With initial conditions

$$
\left[y(1)=0, y^{\prime}(1)=1\right]
$$

The ode can be written as

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0
$$

Which shows it is a Euler ODE.

12.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =-\frac{1}{x^{2}} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{y^{\prime}}{x}-\frac{y}{x^{2}}=0
$$

The domain of $p(x)=\frac{1}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=-\frac{1}{x^{2}}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

12.2.2 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+x r x^{r-1}-x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+r x^{r}-x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+r-1=0
$$

Or

$$
\begin{equation*}
r^{2}-1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=1
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{x}+c_{2} x
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1}}{x}+c_{2} x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{c_{1}}{x^{2}}+c_{2}
$$

substituting $y^{\prime}=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=-c_{1}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{2} \\
& c_{2}=\frac{1}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{x^{2}-1}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}-1}{2 x} \tag{1}
\end{equation*}
$$

Figure 167: Solution plot

Verification of solutions

$$
y=\frac{x^{2}-1}{2 x}
$$

Verified OK.

12.2.3 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}-y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{x} d x\right)} d x \\
& =\int e^{-\ln (x)} d x \\
& =\int \frac{1}{x} d x \\
& =\ln (x) \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{1}{x^{2}}}{\frac{1}{x^{2}}} \\
& =-1 \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=-1$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}-\mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}-1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-1)} \\
& = \pm 1
\end{aligned}
$$

Hence

$$
\begin{gathered}
\lambda_{1}=+1 \\
\lambda_{2}=-1
\end{gathered}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{(1) \tau}+c_{2} e^{(-1) \tau}
\end{aligned}
$$

Or

$$
y(\tau)=c_{1} \mathrm{e}^{\tau}+c_{2} \mathrm{e}^{-\tau}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} x^{2}+c_{2}}{x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1} x^{2}+c_{2}}{x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=2 c_{1}-\frac{c_{1} x^{2}+c_{2}}{x^{2}}
$$

substituting $y^{\prime}=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=c_{1}-c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{1}{2} \\
& c_{2}=-\frac{1}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{x^{2}-1}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}-1}{2 x} \tag{1}
\end{equation*}
$$

Figure 168: Solution plot

Verification of solutions

$$
y=\frac{x^{2}-1}{2 x}
$$

Verified OK.

12.2.4 Solving as second order change of variable on x method 1 ode

 In normal form the ode$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}-y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{-\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =\frac{1}{c \sqrt{-\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{1}{c \sqrt{-\frac{1}{x^{2}}} x^{3}}+\frac{1}{x} \frac{\sqrt{-\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{-\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{-\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{-\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\frac{\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}}{2 x}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}}{2 x} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=c_{1} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=i c_{2}+c_{1}-\frac{\left(i c_{2}+c_{1}\right) x^{2}-i c_{2}+c_{1}}{2 x^{2}}
$$

substituting $y^{\prime}=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=i c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=0 \\
& c_{2}=-i
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{x^{2}-1}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}-1}{2 x} \tag{1}
\end{equation*}
$$

Figure 169: Solution plot

Verification of solutions

$$
y=\frac{x^{2}-1}{2 x}
$$

Verified OK.

12.2.5 Solving as second order change of variable on y method 2 ode

 In normal form the ode$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}-y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{1}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n}{x^{2}}-\frac{1}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{3 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{3 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{3 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{3}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{3}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{3}{x} d x \\
\ln (u) & =-3 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-3 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{3}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x \\
& =\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=-\frac{c_{1}}{2}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1}}{2 x^{2}}+c_{2}
$$

substituting $y^{\prime}=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=\frac{c_{1}}{2}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=\frac{1}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{x^{2}-1}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}-1}{2 x} \tag{1}
\end{equation*}
$$

Figure 170: Solution plot
Verification of solutions

$$
y=\frac{x^{2}-1}{2 x}
$$

Verified OK.

12.2.6 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(x^{2} y^{\prime \prime}+x y^{\prime}-y\right) d x=0 \\
x^{2} y^{\prime}-x y=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=\frac{c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =\left(\frac{1}{x}\right)\left(\frac{c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(\frac{y}{x}\right) & =\left(\frac{c_{1}}{x^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x}=\int \frac{c_{1}}{x^{3}} \mathrm{~d} x \\
& \frac{y}{x}=-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=-\frac{c_{1}}{2 x}+c_{2} x
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-\frac{c_{1}}{2 x}+c_{2} x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=-\frac{c_{1}}{2}+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1}}{2 x^{2}}+c_{2}
$$

substituting $y^{\prime}=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=\frac{c_{1}}{2}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=\frac{1}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{x^{2}-1}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}-1}{2 x} \tag{1}
\end{equation*}
$$

Figure 171: Solution plot

Verification of solutions

$$
y=\frac{x^{2}-1}{2 x}
$$

Verified OK.

12.2.7 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{array}{r}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v=0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v=0 \tag{1}
\end{array}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=x^{2} \\
& B=x \\
& C=-1 \\
& F=0
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(x^{2}\right)(0)+(x)(1)+(-1)(x) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
x^{3} v^{\prime \prime}+\left(3 x^{2}\right) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
x^{2}\left(u^{\prime}(x) x+3 u(x)\right)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{3}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{3}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{3}{x} d x \\
\ln (u) & =-3 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-3 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{3}}
\end{aligned}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =\frac{c_{1}}{x^{3}}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int \frac{c_{1}}{x^{3}} \mathrm{~d} x \\
& =-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y(x) & =B v \\
& =(x)\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) \\
& =\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{2 x^{2}}+c_{2}\right) x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=-\frac{c_{1}}{2}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1}}{2 x^{2}}+c_{2}
$$

substituting $y^{\prime}=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=\frac{c_{1}}{2}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=\frac{1}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{x^{2}-1}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}-1}{2 x} \tag{1}
\end{equation*}
$$

Figure 172: Solution plot

Verification of solutions

$$
y=\frac{x^{2}-1}{2 x}
$$

Verified OK.
12.2.8 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(x^{2} y^{\prime \prime}+x y^{\prime}-y\right) d x=0 \\
x^{2} y^{\prime}-x y=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=\frac{c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =\left(\frac{1}{x}\right)\left(\frac{c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(\frac{y}{x}\right) & =\left(\frac{c_{1}}{x^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x}=\int \frac{c_{1}}{x^{3}} \mathrm{~d} x \\
& \frac{y}{x}=-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=-\frac{c_{1}}{2 x}+c_{2} x
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-\frac{c_{1}}{2 x}+c_{2} x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=-\frac{c_{1}}{2}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1}}{2 x^{2}}+c_{2}
$$

substituting $y^{\prime}=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=\frac{c_{1}}{2}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=\frac{1}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{x^{2}-1}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}-1}{2 x} \tag{1}
\end{equation*}
$$

Figure 173: Solution plot

Verification of solutions

$$
y=\frac{x^{2}-1}{2 x}
$$

Verified OK.

12.2.9 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+x y^{\prime}-y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=x \tag{3}\\
& C=-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{3}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=3 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{3}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 167: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{3}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{3}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{3}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=-\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 x}+(-)(0) \\
& =-\frac{1}{2 x} \\
& =-\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{2 x}\right)(0)+\left(\left(\frac{1}{2 x^{2}}\right)+\left(-\frac{1}{2 x}\right)^{2}-\left(\frac{3}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{2 x} d x} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{2}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x}\right)+c_{2}\left(\frac{1}{x}\left(\frac{x^{2}}{2}\right)\right)
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=\frac{c_{1}}{x}+\frac{c_{2} x}{2} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=c_{1}+\frac{c_{2}}{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-\frac{c_{1}}{x^{2}}+\frac{c_{2}}{2}
$$

substituting $y^{\prime}=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=-c_{1}+\frac{c_{2}}{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{2} \\
& c_{2}=1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{x^{2}-1}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}-1}{2 x} \tag{1}
\end{equation*}
$$

Figure 174: Solution plot

Verification of solutions

$$
y=\frac{x^{2}-1}{2 x}
$$

Verified OK.

12.2.10 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
& p(x)=x^{2} \\
& q(x)=x \\
& r(x)=-1 \\
& s(x)=0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =2 \\
q^{\prime}(x) & =1
\end{aligned}
$$

Therefore (1) becomes

$$
2-(1)+(-1)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
x^{2} y^{\prime}-x y=c_{1}
$$

We now have a first order ode to solve which is

$$
x^{2} y^{\prime}-x y=c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=\frac{c_{1}}{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=\frac{c_{1}}{x^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =\left(\frac{1}{x}\right)\left(\frac{c_{1}}{x^{2}}\right) \\
\mathrm{d}\left(\frac{y}{x}\right) & =\left(\frac{c_{1}}{x^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x}=\int \frac{c_{1}}{x^{3}} \mathrm{~d} x \\
& \frac{y}{x}=-\frac{c_{1}}{2 x^{2}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=-\frac{c_{1}}{2 x}+c_{2} x
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=-\frac{c_{1}}{2 x}+c_{2} x \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=1$ in the above gives

$$
\begin{equation*}
0=-\frac{c_{1}}{2}+c_{2} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=\frac{c_{1}}{2 x^{2}}+c_{2}
$$

substituting $y^{\prime}=1$ and $x=1$ in the above gives

$$
\begin{equation*}
1=\frac{c_{1}}{2}+c_{2} \tag{2~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=1 \\
& c_{2}=\frac{1}{2}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{x^{2}-1}{2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x^{2}-1}{2 x} \tag{1}
\end{equation*}
$$

Figure 175: Solution plot

Verification of solutions

$$
y=\frac{x^{2}-1}{2 x}
$$

Verified OK.

12.2.11 Maple step by step solution

Let's solve

$$
\left[x^{2} y^{\prime \prime}+x y^{\prime}-y=0, y(1)=0,\left.y^{\prime}\right|_{\{x=1\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y^{\prime}}{x}+\frac{y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{x}-\frac{y}{x^{2}}=0$
- Multiply by denominators of the ODE

$$
x^{2} y^{\prime \prime}+x y^{\prime}-y=0
$$

- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1 st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)+\frac{d}{d t} y(t)-y(t)=0$
- \quad Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)-y(t)=0
$$

- Characteristic polynomial of ODE

$$
r^{2}-1=0
$$

- Factor the characteristic polynomial
$(r-1)(r+1)=0$
- Roots of the characteristic polynomial
$r=(-1,1)$
- \quad 1st solution of the ODE
$y_{1}(t)=\mathrm{e}^{-t}$
- 2 nd solution of the ODE
$y_{2}(t)=\mathrm{e}^{t}$
- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Substitute in solutions
$y(t)=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}$
- Change variables back using $t=\ln (x)$
$y=\frac{c_{1}}{x}+c_{2} x$
- \quad Simplify
$y=\frac{c_{1}}{x}+c_{2} x$
Check validity of solution $y=\frac{c_{1}}{x}+c_{2} x$
- Use initial condition $y(1)=0$
$0=c_{1}+c_{2}$
- Compute derivative of the solution $y^{\prime}=-\frac{c_{1}}{x^{2}}+c_{2}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=1\}}=1$

$$
1=-c_{1}+c_{2}
$$

- Solve for c_{1} and c_{2}
$\left\{c_{1}=-\frac{1}{2}, c_{2}=\frac{1}{2}\right\}$
- Substitute constant values into general solution and simplify
$y=\frac{x}{2}-\frac{1}{2 x}$
- \quad Solution to the IVP

$$
y=\frac{x}{2}-\frac{1}{2 x}
$$

Maple trace
'Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 13
dsolve $\left(\left[\operatorname{diff}(y(x), x \$ 2)+1 / x * \operatorname{diff}(y(x), x)-1 / x^{\wedge} 2 * y(x)=0, y(1)=0, D(y)(1)=1\right], y(x)\right.$, singsol=al

$$
y(x)=-\frac{1}{2 x}+\frac{x}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 17
DSolve $\left[\left\{y^{\prime}\right.\right.$ ' $[x]+1 / x * y$ ' $\left.[x]-1 / x^{\wedge} 2 * y[x]==0,\left\{y[1]==0, y^{\prime}[1]==1\right\}\right\}, y[x], x$, IncludeSingularSolutions -

$$
y(x) \rightarrow \frac{x^{2}-1}{2 x}
$$

12.3 problem 2

12.3.1 Solving as second order change of variable on x method 2 ode 971
12.3.2 Solving as second order change of variable on x method 1 ode 973
12.3.3 Solving as second order integrable as is ode 975
12.3.4 Solving as second order ode non constant coeff transformation on B ode 977
12.3.5 Solving as type second_order_integrable_as_is (not using ABC version) 979
12.3.6 Solving using Kovacic algorithm 981
12.3.7 Solving as exact linear second order ode ode 986
12.3.8 Maple step by step solution 988

Internal problem ID [6008]
Internal file name [OUTPUT/5256_Sunday_June_05_2022_03_28_43_PM_3532610/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY
Section: Chapter 3. Linear equations with variable coefficients. Page 108
Problem number: 2. 1961

ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is", "second_order_change_of_variable_on_x_method_1", "second__order_change_of__variable_on_x_method_2", "second_oorder__ode__non__constant__coeff__transformation__on_B"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
(3 x-1)^{2} y^{\prime \prime}+(9 x-3) y^{\prime}-9 y=0
$$

12.3.1 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
9\left(-\frac{1}{3}+x\right)^{2} y^{\prime \prime}+(9 x-3) y^{\prime}-9 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{9 x-3}{9\left(-\frac{1}{3}+x\right)^{2}} \\
& q(x)=-\frac{9}{(3 x-1)^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{9 x-3}{9\left(-\frac{1}{3}+x\right)^{2}} d x\right)} d x \\
& =\int e^{-\ln (3 x-1)} d x \\
& =\int \frac{1}{3 x-1} d x \\
& =\frac{\ln (3 x-1)}{3} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{9}{(3 x-1)^{2}}}{\frac{1}{(3 x-1)^{2}}} \\
& =-9 \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-9 y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=-9$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}-9 \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\mathrm{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}-9=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-9$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-9)} \\
& = \pm 3
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+3 \\
& \lambda_{2}=-3
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=3 \\
& \lambda_{2}=-3
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{(3) \tau}+c_{2} e^{(-3) \tau}
\end{aligned}
$$

Or

$$
y(\tau)=c_{1} \mathrm{e}^{3 \tau}+c_{2} \mathrm{e}^{-3 \tau}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{9\left(-\frac{1}{3}+x\right)^{2} c_{1}+c_{2}}{3 x-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{9\left(-\frac{1}{3}+x\right)^{2} c_{1}+c_{2}}{3 x-1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{9\left(-\frac{1}{3}+x\right)^{2} c_{1}+c_{2}}{3 x-1}
$$

Verified OK.

12.3.2 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
9\left(-\frac{1}{3}+x\right)^{2} y^{\prime \prime}+(9 x-3) y^{\prime}-9 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{3}{3 x-1} \\
& q(x)=-\frac{9}{(3 x-1)^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{3 \sqrt{-\frac{1}{(3 x-1)^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =\frac{9}{c \sqrt{-\frac{1}{(3 x-1)^{2}}}(3 x-1)^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{9}{c \sqrt{-\frac{1}{(3 x-1)^{2}}}(3 x-1)^{3}}+\frac{3}{3 x-1} \frac{3 \sqrt{-\frac{1}{(3 x-1)^{2}}}}{c}}{\left(\frac{3 \sqrt{-\frac{1}{(3 x-1)^{2}}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 3 \sqrt{-\frac{1}{(3 x-1)^{2}}} d x}{c} \\
& =\frac{\sqrt{-\frac{1}{(3 x-1)^{2}}}(3 x-1) \ln (3 x-1)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=\frac{\left(6 c_{1} x-2 c_{1}\right) \cosh (\ln (3 x-1))+9 i c_{2} x\left(x-\frac{2}{3}\right)}{6 x-2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(6 c_{1} x-2 c_{1}\right)\left(\frac{3 x}{2}-\frac{1}{2}+\frac{1}{6 x-2}\right)+9 i c_{2} x\left(x-\frac{2}{3}\right)}{6 x-2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(6 c_{1} x-2 c_{1}\right)\left(\frac{3 x}{2}-\frac{1}{2}+\frac{1}{6 x-2}\right)+9 i c_{2} x\left(x-\frac{2}{3}\right)}{6 x-2}
$$

Verified OK.

12.3.3 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(9\left(-\frac{1}{3}+x\right)^{2} y^{\prime \prime}+(9 x-3) y^{\prime}-9 y\right) d x=0 \\
(-9 x+3) y+\left(9 x^{2}-6 x+1\right) y^{\prime}=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{3}{3 x-1} \\
q(x) & =\frac{c_{1}}{9\left(-\frac{1}{3}+x\right)^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{3 y}{3 x-1}=\frac{c_{1}}{9\left(-\frac{1}{3}+x\right)^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{3 x-1} d x} \\
& =\frac{1}{3 x-1}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{9\left(-\frac{1}{3}+x\right)^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{3 x-1}\right) & =\left(\frac{1}{3 x-1}\right)\left(\frac{c_{1}}{9\left(-\frac{1}{3}+x\right)^{2}}\right) \\
\mathrm{d}\left(\frac{y}{3 x-1}\right) & =\left(\frac{c_{1}}{(3 x-1)^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{3 x-1}=\int \frac{c_{1}}{(3 x-1)^{3}} \mathrm{~d} x \\
& \frac{y}{3 x-1}=-\frac{c_{1}}{6(3 x-1)^{2}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{3 x-1}$ results in

$$
y=-\frac{c_{1}}{6(3 x-1)}+c_{2}(3 x-1)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{1}}{6(3 x-1)}+c_{2}(3 x-1) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{c_{1}}{6(3 x-1)}+c_{2}(3 x-1)
$$

Verified OK.

12.3.4 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{array}{r}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v=0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v=0 \tag{1}
\end{array}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=9\left(-\frac{1}{3}+x\right)^{2} \\
& B=9 x-3 \\
& C=-9 \\
& F=0
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(9\left(-\frac{1}{3}+x\right)^{2}\right)(0)+(9 x-3)(9)+(-9)(9 x-3) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
3(3 x-1)^{3} v^{\prime \prime}+\left(27(3 x-1)^{2}\right) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
3(3 x-1)^{3} u^{\prime}(x)+27(3 x-1)^{2} u(x)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{9 u}{3 x-1}
\end{aligned}
$$

Where $f(x)=-\frac{9}{3 x-1}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{9}{3 x-1} d x \\
\int \frac{1}{u} d u & =\int-\frac{9}{3 x-1} d x \\
\ln (u) & =-3 \ln (3 x-1)+c_{1} \\
u & =\mathrm{e}^{-3 \ln (3 x-1)+c_{1}} \\
& =\frac{c_{1}}{(3 x-1)^{3}}
\end{aligned}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =\frac{c_{1}}{(3 x-1)^{3}}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int \frac{c_{1}}{(3 x-1)^{3}} \mathrm{~d} x \\
& =-\frac{c_{1}}{6(3 x-1)^{2}}+c_{2}
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y(x) & =B v \\
& =(9 x-3)\left(-\frac{c_{1}}{6(3 x-1)^{2}}+c_{2}\right) \\
& =\frac{54\left(-\frac{1}{3}+x\right)^{2} c_{2}-c_{1}}{6 x-2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{54\left(-\frac{1}{3}+x\right)^{2} c_{2}-c_{1}}{6 x-2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{54\left(-\frac{1}{3}+x\right)^{2} c_{2}-c_{1}}{6 x-2}
$$

Verified OK.

12.3.5 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as

$$
9\left(-\frac{1}{3}+x\right)^{2} y^{\prime \prime}+(9 x-3) y^{\prime}-9 y=0
$$

Integrating both sides of the ODE w.r.t x gives

$$
\begin{gathered}
\int\left(9\left(-\frac{1}{3}+x\right)^{2} y^{\prime \prime}+(9 x-3) y^{\prime}-9 y\right) d x=0 \\
(-9 x+3) y+\left(9 x^{2}-6 x+1\right) y^{\prime}=c_{1}
\end{gathered}
$$

Which is now solved for y.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{3}{3 x-1} \\
& q(x)=\frac{c_{1}}{9\left(-\frac{1}{3}+x\right)^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{3 y}{3 x-1}=\frac{c_{1}}{9\left(-\frac{1}{3}+x\right)^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{3 x-1} d x} \\
& =\frac{1}{3 x-1}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{9\left(-\frac{1}{3}+x\right)^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{3 x-1}\right) & =\left(\frac{1}{3 x-1}\right)\left(\frac{c_{1}}{9\left(-\frac{1}{3}+x\right)^{2}}\right) \\
\mathrm{d}\left(\frac{y}{3 x-1}\right) & =\left(\frac{c_{1}}{(3 x-1)^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{3 x-1}=\int \frac{c_{1}}{(3 x-1)^{3}} \mathrm{~d} x \\
& \frac{y}{3 x-1}=-\frac{c_{1}}{6(3 x-1)^{2}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{3 x-1}$ results in

$$
y=-\frac{c_{1}}{6(3 x-1)}+c_{2}(3 x-1)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{1}}{6(3 x-1)}+c_{2}(3 x-1) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{c_{1}}{6(3 x-1)}+c_{2}(3 x-1)
$$

Verified OK.

12.3.6 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
9\left(-\frac{1}{3}+x\right)^{2} y^{\prime \prime}+(9 x-3) y^{\prime}-9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=9\left(-\frac{1}{3}+x\right)^{2} \\
& B=9 x-3 \tag{3}\\
& C=-9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{27}{4(3 x-1)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=27 \\
& t=4(3 x-1)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{27}{4(3 x-1)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 169: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4(3 x-1)^{2}$. There is a pole at $x=\frac{1}{3}$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

$\underline{\text { Attempting to find a solution using case } n=1}$.

Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{3}{4\left(-\frac{1}{3}+x\right)^{2}}
$$

For the pole at $x=\frac{1}{3}$ let b be the coefficient of $\frac{1}{\left(-\frac{1}{3}+x\right)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{27}{4(3 x-1)^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{3}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{27}{4(3 x-1)^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
$\frac{1}{3}$	2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{3}{2}$	$-\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to
determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=-\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2\left(-\frac{1}{3}+x\right)}+(-)(0) \\
& =-\frac{1}{2\left(-\frac{1}{3}+x\right)} \\
& =-\frac{3}{6 x-2}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{2\left(-\frac{1}{3}+x\right)}\right)(0)+\left(\left(\frac{1}{2\left(-\frac{1}{3}+x\right)^{2}}\right)+\left(-\frac{1}{2\left(-\frac{1}{3}+x\right)}\right)^{2}-\left(\frac{27}{4(3 x-1)^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{2\left(-\frac{1}{3}+x\right)} d x} \\
& =\frac{1}{\sqrt{3 x-1}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{9 x-3}{9\left(-\frac{1}{3}+x\right)^{2}} d x} \\
& =z_{1} e^{-\frac{\ln (3 x-1)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{3 x-1}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{3 x-1}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{9 x-3}{9\left(-\frac{1}{3}+x\right)^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (3 x-1)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{3}{2} x^{2}-x\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{3 x-1}\right)+c_{2}\left(\frac{1}{3 x-1}\left(\frac{3}{2} x^{2}-x\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{3 x-1}+\frac{c_{2} x(3 x-2)}{6 x-2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{3 x-1}+\frac{c_{2} x(3 x-2)}{6 x-2}
$$

Verified OK.

12.3.7 Solving as exact linear second order ode ode

An ode of the form

$$
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
$$

is exact if

$$
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
$$

For the given ode we have

$$
\begin{aligned}
& p(x)=9\left(-\frac{1}{3}+x\right)^{2} \\
& q(x)=9 x-3 \\
& r(x)=-9 \\
& s(x)=0
\end{aligned}
$$

Hence

$$
\begin{aligned}
p^{\prime \prime}(x) & =18 \\
q^{\prime}(x) & =9
\end{aligned}
$$

Therefore (1) becomes

$$
18-(9)+(-9)=0
$$

Hence the ode is exact. Since we now know the ode is exact, it can be written as

$$
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
$$

Integrating gives

$$
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
$$

Substituting the above values for p, q, r, s gives

$$
9\left(-\frac{1}{3}+x\right)^{2} y^{\prime}+(-9 x+3) y=c_{1}
$$

We now have a first order ode to solve which is

$$
9\left(-\frac{1}{3}+x\right)^{2} y^{\prime}+(-9 x+3) y=c_{1}
$$

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{3}{3 x-1} \\
& q(x)=\frac{c_{1}}{(3 x-1)^{2}}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{3 y}{3 x-1}=\frac{c_{1}}{(3 x-1)^{2}}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{3 x-1} d x} \\
& =\frac{1}{3 x-1}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{c_{1}}{(3 x-1)^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{3 x-1}\right) & =\left(\frac{1}{3 x-1}\right)\left(\frac{c_{1}}{(3 x-1)^{2}}\right) \\
\mathrm{d}\left(\frac{y}{3 x-1}\right) & =\left(\frac{c_{1}}{(3 x-1)^{3}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{3 x-1}=\int \frac{c_{1}}{(3 x-1)^{3}} \mathrm{~d} x \\
& \frac{y}{3 x-1}=-\frac{c_{1}}{6(3 x-1)^{2}}+c_{2}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{3 x-1}$ results in

$$
y=-\frac{c_{1}}{6(3 x-1)}+c_{2}(3 x-1)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{1}}{6(3 x-1)}+c_{2}(3 x-1) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{c_{1}}{6(3 x-1)}+c_{2}(3 x-1)
$$

Verified OK.

12.3.8 Maple step by step solution

Let's solve
$9\left(-\frac{1}{3}+x\right)^{2} y^{\prime \prime}+(9 x-3) y^{\prime}-9 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{3 y^{\prime}}{3 x-1}+\frac{9 y}{(3 x-1)^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{3 y^{\prime}}{3 x-1}-\frac{9 y}{(3 x-1)^{2}}=0$
$\square \quad$ Check to see if $x_{0}=\frac{1}{3}$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{3}{3 x-1}, P_{3}(x)=-\frac{9}{(3 x-1)^{2}}\right]$
- $\left(-\frac{1}{3}+x\right) \cdot P_{2}(x)$ is analytic at $x=\frac{1}{3}$

$$
\left.\left(\left(-\frac{1}{3}+x\right) \cdot P_{2}(x)\right)\right|_{x=\frac{1}{3}}=1
$$

- $\left(-\frac{1}{3}+x\right)^{2} \cdot P_{3}(x)$ is analytic at $x=\frac{1}{3}$
$\left.\left(\left(-\frac{1}{3}+x\right)^{2} \cdot P_{3}(x)\right)\right|_{x=\frac{1}{3}}=-1$
- $\quad x=\frac{1}{3}$ is a regular singular point

Check to see if $x_{0}=\frac{1}{3}$ is a regular singular point
$x_{0}=\frac{1}{3}$

- Multiply by denominators
$(3 x-1)^{2} y^{\prime \prime}+(9 x-3) y^{\prime}-9 y=0$
- Change variables using $x=u+\frac{1}{3}$ so that the regular singular point is at $u=0$
$9 u^{2}\left(\frac{d^{2}}{d u^{2}} y(u)\right)+9 u\left(\frac{d}{d u} y(u)\right)-9 y(u)=0$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
\square
Rewrite DE with series expansions
- Convert $u \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion
$u \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r}$
- Convert $u^{2} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion
$u^{2} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r}$
Rewrite DE with series expansions

$$
\sum_{k=0}^{\infty} 9 a_{k}(k+r+1)(k+r-1) u^{k+r}=0
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$r=0$
- Each term in the series must be 0, giving the recursion relation
$\left(9 k^{2}-9\right) a_{k}=0$
- Recursion relation that defines series solution to ODE

$$
a_{k}=0
$$

- Recursion relation for $r=0$

$$
a_{k}=0
$$

- \quad Solution for $r=0$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k}=0\right]
$$

- Revert the change of variables $u=-\frac{1}{3}+x$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}\left(-\frac{1}{3}+x\right)^{k}, a_{k}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
dsolve((3*x-1)^2*diff (y (x),x$2)+(9*x-3)*diff (y (x), x) -9*y (x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{9\left(x-\frac{1}{3}\right)^{2} c_{2}+9 c_{1}}{9 x-3}
$$

\checkmark Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 39
DSolve[(3*x-1) $2 *$ y' ' $[\mathrm{x}]+(9 * x-3) * y$ ' $[\mathrm{x}]-9 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{c_{1}\left(-9 x^{2}+6 x-2\right)-3 i c_{2} x(3 x-2)}{6 x-2}
$$

13 Chapter 3. Linear equations with variable coefficients. Page 121

13.1 problem 1(a) . 992
13.2 problem 1(b) . 996
13.3 problem 1(c) . 1000
13.4 problem 1(d) . 1004
13.5 problem 1(e) . 1009
13.6 problem 1(f) . 1014
13.7 problem 2 . 1018

13.1 problem 1(a)

13.1.1 Maple step by step solution 993

Internal problem ID [6009]
Internal file name [OUTPUT/5257_Sunday_June_05_2022_03_28_44_PM_50954804/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 3. Linear equations with variable coefficients. Page 121
Problem number: 1(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_euler_ode", "second__order_change__of_cvariable_on_x_method_1", "second_order_change_of_cvariable_on_x_method_2", "second_order_change_of_cvariable__on_y_method_2"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
x^{2} y^{\prime \prime}-7 x y^{\prime}+15 y=0
$$

Given that one solution of the ode is

$$
y_{1}=x^{3}
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=-\frac{7}{x}
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=x^{3}\left(\int \frac{\mathrm{e}^{-\left(\int-\frac{7}{x} d x\right)}}{x^{6}} d x\right) \\
& y_{2}(x)=x^{3} \int \frac{x^{7}}{x^{6}}, d x \\
& y_{2}(x)=x^{3}\left(\int x d x\right) \\
& y_{2}(x)=\frac{x^{5}}{2}
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x^{3}+\frac{1}{2} c_{2} x^{5}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{3}+\frac{1}{2} c_{2} x^{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{3}+\frac{1}{2} c_{2} x^{5}
$$

Verified OK.

13.1.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}-7 x y^{\prime}+15 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{7 y^{\prime}}{x}-\frac{15 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{7 y^{\prime}}{x}+\frac{15 y}{x^{2}}=0$
- Multiply by denominators of the ODE
$x^{2} y^{\prime \prime}-7 x y^{\prime}+15 y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)-7 \frac{d}{d t} y(t)+15 y(t)=0$
- \quad Simplify
$\frac{d^{2}}{d t^{2}} y(t)-8 \frac{d}{d t} y(t)+15 y(t)=0$
- Characteristic polynomial of ODE
$r^{2}-8 r+15=0$
- Factor the characteristic polynomial
$(r-3)(r-5)=0$
- Roots of the characteristic polynomial

$$
r=(3,5)
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{3 t}
$$

- $\quad 2 n d$ solution of the ODE

$$
y_{2}(t)=\mathrm{e}^{5 t}
$$

- General solution of the ODE

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

- Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{5 t}
$$

- \quad Change variables back using $t=\ln (x)$

$$
y=c_{2} x^{5}+c_{1} x^{3}
$$

- Simplify

$$
y=x^{3}\left(c_{2} x^{2}+c_{1}\right)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 15

```
dsolve([x^2*diff(y(x),x$2)-7*x*diff(y(x),x)+15*y(x)=0, x^3], singsol=all)
```

$$
y(x)=x^{3}\left(c_{1} x^{2}+c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 18

```
DSolve[x^2*y''[x]-7*x*y'[x]+15*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow x^{3}\left(c_{2} x^{2}+c_{1}\right)
$$

13.2 problem 1(b)

13.2.1 Maple step by step solution 997

Internal problem ID [6010]
Internal file name [OUTPUT/5258_Sunday_June_05_2022_03_28_46_PM_84153657/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 3. Linear equations with variable coefficients. Page 121
Problem number: 1(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order__euler__ode", "second__order_change__of_cariable_oon_x_method_1", "second_order_change_of_cvariable_on_x_method_2", "second_order_change_of__variable__on_y__method_2", "second_order_ode__non_constant__coeff_transformation_on_B"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
x^{2} y^{\prime \prime}-x y^{\prime}+y=0
$$

Given that one solution of the ode is

$$
y_{1}=x
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=-\frac{1}{x}
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=x\left(\int \frac{\mathrm{e}^{-\left(\int-\frac{1}{x} d x\right)}}{x^{2}} d x\right) \\
& y_{2}(x)=x \int \frac{x}{x^{2}}, d x \\
& y_{2}(x)=\left(\int \frac{1}{x} d x\right) x \\
& y_{2}(x)=\ln (x) x
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x+c_{2} \ln (x) x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x+c_{2} \ln (x) x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x+c_{2} \ln (x) x
$$

Verified OK.

13.2.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}-x y^{\prime}+y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{y^{\prime}}{x}-\frac{y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{y^{\prime}}{x}+\frac{y}{x^{2}}=0
$$

- Multiply by denominators of the ODE

$$
x^{2} y^{\prime \prime}-x y^{\prime}+y=0
$$

- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{d}{d t} y(t)\right)-\frac{d}{d t} y(t)+y(t)=0$
- \quad Simplify
$\frac{d^{2}}{d t^{2}} y(t)-2 \frac{d}{d t} y(t)+y(t)=0$
- Characteristic polynomial of ODE
$r^{2}-2 r+1=0$
- Factor the characteristic polynomial

$$
(r-1)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=1
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{t}
$$

- Repeated root, multiply $y_{1}(t)$ by t to ensure linear independence

$$
y_{2}(t)=t \mathrm{e}^{t}
$$

- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{t}+c_{2} t \mathrm{e}^{t}
$$

- \quad Change variables back using $t=\ln (x)$

$$
y=c_{1} x+c_{2} \ln (x) x
$$

- Simplify

$$
y=x\left(c_{1}+c_{2} \ln (x)\right)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve([x^2*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=0,x],singsol=all)
```

$$
y(x)=x\left(c_{2} \ln (x)+c_{1}\right)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 15

```
DSolve[x^2*y''[x]-x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow x\left(c_{2} \log (x)+c_{1}\right)
$$

13.3 problem 1(c)

13.3.1 Maple step by step solution

1001
Internal problem ID [6011]
Internal file name [OUTPUT/5259_Sunday_June_05_2022_03_28_47_PM_54326568/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 3. Linear equations with variable coefficients. Page 121
Problem number: 1(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_change_of_cvariable_on_y_method_1", "linear__second_order_ode_solved_by_an tegrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-4 x y^{\prime}+\left(4 x^{2}-2\right) y=0
$$

Given that one solution of the ode is

$$
y_{1}=\mathrm{e}^{x^{2}}
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=-4 x
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=\mathrm{e}^{x^{2}}\left(\int \mathrm{e}^{-\left(\int-4 x d x\right)} \mathrm{e}^{-2 x^{2}} d x\right) \\
& y_{2}(x)=\mathrm{e}^{x^{2}} \int \frac{\mathrm{e}^{2 x^{2}}}{\mathrm{e}^{2 x^{2}}}, d x \\
& y_{2}(x)=\mathrm{e}^{x^{2}}\left(\int 1 d x\right) \\
& y_{2}(x)=x \mathrm{e}^{x^{2}}
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} \mathrm{e}^{x^{2}}+c_{2} x \mathrm{e}^{x^{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x^{2}}+c_{2} x \mathrm{e}^{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x^{2}}+c_{2} x \mathrm{e}^{x^{2}}
$$

Verified OK.

13.3.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-4 x y^{\prime}+\left(4 x^{2}-2\right) y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k}
$$Rewrite ODE with series expansions

- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$
$x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}$
- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
$$

- Convert $x \cdot y^{\prime}$ to series expansion

$$
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}
$$

- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$

$$
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
$$

Rewrite ODE with series expansions

$$
2 a_{2}-2 a_{0}+\left(6 a_{3}-6 a_{1}\right) x+\left(\sum_{k=2}^{\infty}\left(a_{k+2}(k+2)(k+1)-2 a_{k}(2 k+1)+4 a_{k-2}\right) x^{k}\right)=0
$$

- \quad The coefficients of each power of x must be 0

$$
\left[2 a_{2}-2 a_{0}=0,6 a_{3}-6 a_{1}=0\right]
$$

- \quad Solve for the dependent coefficient(s)

$$
\left\{a_{2}=a_{0}, a_{3}=a_{1}\right\}
$$

- Each term in the series must be 0, giving the recursion relation

$$
\left(k^{2}+3 k+2\right) a_{k+2}-4 a_{k} k-2 a_{k}+4 a_{k-2}=0
$$

- \quad Shift index using $k->k+2$

$$
\left((k+2)^{2}+3 k+8\right) a_{k+4}-4 a_{k+2}(k+2)-2 a_{k+2}+4 a_{k}=0
$$

- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=\frac{2\left(2 k a_{k+2}-2 a_{k}+5 a_{k+2}\right)}{k^{2}+7 k+12}, a_{2}=a_{0}, a_{3}=a_{1}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve([diff(y(x),x$2)-4*x*diff(y(x),x)+(4*x^2-2)*y(x)=0,exp(x^2)],singsol=all)
```

$$
y(x)=\mathrm{e}^{x^{2}}\left(c_{2} x+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 18
DSolve[y''[x]-4*x*y'[x]+(4*x^2-2)*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{x^{2}}\left(c_{2} x+c_{1}\right)
$$

13.4 problem 1(d)

13.4.1 Maple step by step solution

1005
Internal problem ID [6012]
Internal file name [OUTPUT/5260_Sunday_June_05_2022_03_28_48_PM_65912661/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 3. Linear equations with variable coefficients. Page 121
Problem number: 1(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order__ode_non_constant__coeff_transformation_on_B"

Maple gives the following as the ode type
[_Laguerre]

$$
x y^{\prime \prime}-(1+x) y^{\prime}+y=0
$$

Given that one solution of the ode is

$$
y_{1}=\mathrm{e}^{x}
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=\frac{-1-x}{x}
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=\mathrm{e}^{x}\left(\int \mathrm{e}^{-\left(\int \frac{-1-x}{x} d x\right)} \mathrm{e}^{-2 x} d x\right) \\
& y_{2}(x)=\mathrm{e}^{x} \int \frac{\mathrm{e}^{x+\ln (x)}}{\mathrm{e}^{2 x}}, d x \\
& y_{2}(x)=\mathrm{e}^{x}\left(\int x \mathrm{e}^{-x} d x\right) \\
& y_{2}(x)=-\mathrm{e}^{x}(1+x) \mathrm{e}^{-x}
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} \mathrm{e}^{x}-c_{2} \mathrm{e}^{x}(1+x) \mathrm{e}^{-x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}-c_{2} \mathrm{e}^{x}(1+x) \mathrm{e}^{-x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}-c_{2} \mathrm{e}^{x}(1+x) \mathrm{e}^{-x}
$$

Verified OK.

13.4.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x+(-1-x) y^{\prime}+y=0
$$

- Highest derivative means the order of the ODE is 2 $y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y}{x}+\frac{(1+x) y^{\prime}}{x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{(1+x) y^{\prime}}{x}+\frac{y}{x}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions

$$
\left[P_{2}(x)=-\frac{1+x}{x}, P_{3}(x)=\frac{1}{x}\right]
$$

- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$

$$
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-1
$$

- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$

$$
\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0
$$

- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point

$$
x_{0}=0
$$

- Multiply by denominators

$$
y^{\prime \prime} x+(-1-x) y^{\prime}+y=0
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
$$

Rewrite ODE with series expansions

- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=0 . .1$

$$
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
$$

- Convert $x \cdot y^{\prime \prime}$ to series expansion

$$
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
$$

- Shift index using $k->k+1$

$$
x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}
$$

Rewrite ODE with series expansions

$$
a_{0} r(-2+r) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(k+r-1)-a_{k}(k+r-1)\right) x^{k+r}\right)=0
$$

- a_{0} cannot be 0 by assumption, giving the indicial equation

$$
r(-2+r)=0
$$

- Values of r that satisfy the indicial equation
$r \in\{0,2\}$
- Each term in the series must be 0, giving the recursion relation
$(k+r-1)\left(a_{k+1}(k+1+r)-a_{k}\right)=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+1}=\frac{a_{k}}{k+1+r}
$$

- Recursion relation for $r=0$

$$
a_{k+1}=\frac{a_{k}}{k+1}
$$

- \quad Solution for $r=0$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=\frac{a_{k}}{k+1}\right]
$$

- \quad Recursion relation for $r=2$
$a_{k+1}=\frac{a_{k}}{k+3}$
- \quad Solution for $r=2$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+1}=\frac{a_{k}}{k+3}\right]$
- Combine solutions and rename parameters
$\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+2}\right), a_{k+1}=\frac{a_{k}}{k+1}, b_{k+1}=\frac{b_{k}}{k+3}\right]$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Reducible group (found another exponential solution)
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve([x*diff(y(x),x$2)-(x+1)*diff (y (x), x)+y(x)=0, exp (x)], singsol=all)
```

$$
y(x)=\mathrm{e}^{x} c_{2}+c_{1} x+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 19

```
DSolve[x*y''[x]-(x+1)*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow c_{1} e^{x}-c_{2}(x+1)
$$

13.5 problem 1(e)

13.5.1 Maple step by step solution

1010
Internal problem ID [6013]
Internal file name [OUTPUT/5261_Sunday_June_05_2022_03_28_49_PM_68004065/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 3. Linear equations with variable coefficients. Page 121
Problem number: 1(e).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_change_of__variable_on_y_method_2", "second_order_ode__non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[_Gegenbauer]

$$
\left(-x^{2}+1\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0
$$

Given that one solution of the ode is

$$
y_{1}=x
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=-\frac{2 x}{-x^{2}+1}
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=x\left(\int \frac{\mathrm{e}^{-\left(\int-\frac{2 x}{-x^{2}+1} d x\right)}}{x^{2}} d x\right) \\
& y_{2}(x)=x \int \frac{\mathrm{e}^{-\ln (x-1)-\ln (1+x)}}{x^{2}}, d x \\
& y_{2}(x)=x\left(\int \frac{1}{x^{2}\left(x^{2}-1\right)} d x\right) \\
& y_{2}(x)=x\left(-\frac{\ln (1+x)}{2}+\frac{\ln (x-1)}{2}+\frac{1}{x}\right)
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x+c_{2} x\left(-\frac{\ln (1+x)}{2}+\frac{\ln (x-1)}{2}+\frac{1}{x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x+c_{2} x\left(-\frac{\ln (1+x)}{2}+\frac{\ln (x-1)}{2}+\frac{1}{x}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x+c_{2} x\left(-\frac{\ln (1+x)}{2}+\frac{\ln (x-1)}{2}+\frac{1}{x}\right)
$$

Verified OK.

13.5.1 Maple step by step solution

Let's solve

$$
\left(-x^{2}+1\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0
$$

- Highest derivative means the order of the ODE is 2 $y^{\prime \prime}$
- Isolate 2 nd derivative

$$
y^{\prime \prime}=-\frac{2 x y^{\prime}}{x^{2}-1}+\frac{2 y}{x^{2}-1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{2 x y^{\prime}}{x^{2}-1}-\frac{2 y}{x^{2}-1}=0$
Check to see if x_{0} is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{2 x}{x^{2}-1}, P_{3}(x)=-\frac{2}{x^{2}-1}\right]$
- $(1+x) \cdot P_{2}(x)$ is analytic at $x=-1$
$\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=1$
- $(1+x)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$

$$
\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0
$$

- $x=-1$ is a regular singular point

Check to see if x_{0} is a regular singular point $x_{0}=-1$

- Multiply by denominators
$\left(x^{2}-1\right) y^{\prime \prime}+2 x y^{\prime}-2 y=0$
- Change variables using $x=u-1$ so that the regular singular point is at $u=0$ $\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(2 u-2)\left(\frac{d}{d u} y(u)\right)-2 y(u)=0$
- Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$
$u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}$
- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=1 . .2$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$
$u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}$
Rewrite ODE with series expansions
$-2 a_{0} r^{2} u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-2 a_{k+1}(k+1+r)^{2}+a_{k}(k+r+2)(k+r-1)\right) u^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$-2 r^{2}=0$
- Values of r that satisfy the indicial equation
$r=0$
- Each term in the series must be 0 , giving the recursion relation
$-2 a_{k+1}(k+1)^{2}+a_{k}(k+2)(k-1)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{a_{k}(k+2)(k-1)}{2(k+1)^{2}}$
- Recursion relation for $r=0$; series terminates at $k=1$
$a_{k+1}=\frac{a_{k}(k+2)(k-1)}{2(k+1)^{2}}$
- Apply recursion relation for $k=0$
$a_{1}=-a_{0}$
- Terminating series solution of the ODE for $r=0$. Use reduction of order to find the second li $y(u)=a_{0} \cdot(-u+1)$
- \quad Revert the change of variables $u=1+x$
[$\left.y=-a_{0} x\right]$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 25

```
dsolve([(1-x^2)*diff(y(x),x$2)-2*x*diff (y (x),x)+2*y(x)=0,x], singsol=all)
```

$$
y(x)=-\frac{c_{2} \ln (x+1) x}{2}+\frac{c_{2} \ln (x-1) x}{2}+c_{1} x+c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 33
DSolve[(1- $\left.x^{\wedge} 2\right) * y^{\prime \prime}[x]-2 * x * y$ ' $[x]+2 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow c_{1} x-\frac{1}{2} c_{2}(x \log (1-x)-x \log (x+1)+2)
$$

13.6 problem 1(f)

13.6.1 Maple step by step solution

1016
Internal problem ID [6014]
Internal file name [OUTPUT/5262_Sunday_June_05_2022_03_28_50_PM_9372561/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 3. Linear equations with variable coefficients. Page 121
Problem number: 1(f).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_change__of_variable_on_y_method_2", "second_order_ode__non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-2 x y^{\prime}+2 y=0
$$

Given that one solution of the ode is

$$
y_{1}=x
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=-2 x
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=x\left(\int \frac{\mathrm{e}^{-\left(\int-2 x d x\right)}}{x^{2}} d x\right) \\
& y_{2}(x)=x \int \frac{\mathrm{e}^{x^{2}}}{x^{2}}, d x \\
& y_{2}(x)=x\left(\int \frac{\mathrm{e}^{x^{2}}}{x^{2}} d x\right) \\
& y_{2}(x)=x\left(-\frac{\mathrm{e}^{x^{2}}}{x}+\sqrt{\pi} \operatorname{erfi}(x)\right)
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x+c_{2} x\left(-\frac{\mathrm{e}^{x^{2}}}{x}+\sqrt{\pi} \operatorname{erfi}(x)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x+c_{2} x\left(-\frac{\mathrm{e}^{x^{2}}}{x}+\sqrt{\pi} \operatorname{erfi}(x)\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x+c_{2} x\left(-\frac{\mathrm{e}^{x^{2}}}{x}+\sqrt{\pi} \operatorname{erfi}(x)\right)
$$

Verified OK.

13.6.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-2 x y^{\prime}+2 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
Rewrite DE with series expansions
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}$
- Convert $y^{\prime \prime}$ to series expansion
$y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}$
- Shift index using $k->k+2$
$y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}$
Rewrite DE with series expansions
$\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)-2 a_{k}(k-1)\right) x^{k}=0$
- Each term in the series must be 0 , giving the recursion relation $\left(k^{2}+3 k+2\right) a_{k+2}-2 a_{k}(k-1)=0$
- Recursion relation that defines the series solution to the ODE
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=\frac{2 a_{k}(k-1)}{k^{2}+3 k+2}\right]$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 23

```
dsolve([diff (y (x),x$2)-2*x*diff (y (x), x) +2*y (x)=0, x], singsol=all)
```

$$
y(x)=\mathrm{e}^{x^{2}} c_{2}+x\left(-\sqrt{\pi} c_{2} \operatorname{erfi}(x)+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 43
DSolve [y''[x]-2*x*y' $[x]+2 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow-\sqrt{\pi} c_{2} \sqrt{x^{2}} \operatorname{erfi}\left(\sqrt{x^{2}}\right)+c_{2} e^{x^{2}}+2 c_{1} x
$$

13.7 problem 2

13.7.1 Maple step by step solution . 1020

Internal problem ID [6015]
Internal file name [OUTPUT/5263_Sunday_June_05_2022_03_28_52_PM_74182912/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 3. Linear equations with variable coefficients. Page 121
Problem number: 2.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_ODE__non_constant__coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order, _with_linear_symmetries]]

$$
x^{3} y^{\prime \prime \prime}-3 x^{2} y^{\prime \prime}+6 x y^{\prime}-6 y=0
$$

This is Euler ODE of higher order. Let $y=x^{\lambda}$. Hence

$$
\begin{aligned}
y^{\prime} & =\lambda x^{\lambda-1} \\
y^{\prime \prime} & =\lambda(\lambda-1) x^{\lambda-2} \\
y^{\prime \prime \prime} & =\lambda(\lambda-1)(\lambda-2) x^{\lambda-3}
\end{aligned}
$$

Substituting these back into

$$
x^{3} y^{\prime \prime \prime}-3 x^{2} y^{\prime \prime}+6 x y^{\prime}-6 y=0
$$

gives

$$
6 x \lambda x^{\lambda-1}-3 x^{2} \lambda(\lambda-1) x^{\lambda-2}+x^{3} \lambda(\lambda-1)(\lambda-2) x^{\lambda-3}-6 x^{\lambda}=0
$$

Which simplifies to

$$
6 \lambda x^{\lambda}-3 \lambda(\lambda-1) x^{\lambda}+\lambda(\lambda-1)(\lambda-2) x^{\lambda}-6 x^{\lambda}=0
$$

And since $x^{\lambda} \neq 0$ then dividing through by x^{λ}, the above becomes

$$
6 \lambda-3 \lambda(\lambda-1)+\lambda(\lambda-1)(\lambda-2)-6=0
$$

Simplifying gives the characteristic equation as

$$
\lambda^{3}-6 \lambda^{2}+11 \lambda-6=0
$$

Solving the above gives the following roots

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=2 \\
& \lambda_{3}=3
\end{aligned}
$$

This table summarises the result

root	multiplicity	type of root
1	1	real root
2	1	real root
3	1	real root

The solution is generated by going over the above table. For each real root λ of multiplicity one generates a $c_{1} x^{\lambda}$ basis solution. Each real root of multiplicty two, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ basis solutions. Each real root of multiplicty three, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ and $c_{3} x^{\lambda} \ln (x)^{2}$ basis solutions, and so on. Each complex root $\alpha \pm i \beta$ of multiplicity one generates $x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity two generates $\ln (x) x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity three generates $\ln (x)^{2} x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2}\right.$ basis solutions. And so on. Using the above show that the solution is

$$
y=c_{3} x^{3}+c_{2} x^{2}+c_{1} x
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=x \\
& y_{2}=x^{2} \\
& y_{3}=x^{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{3} x^{3}+c_{2} x^{2}+c_{1} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{3} x^{3}+c_{2} x^{2}+c_{1} x
$$

Verified OK.

13.7.1 Maple step by step solution

Let's solve

$$
x^{3} y^{\prime \prime \prime}-3 x^{2} y^{\prime \prime}+6 x y^{\prime}-6 y=0
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

- Isolate 3rd derivative
$y^{\prime \prime \prime}=\frac{6 y}{x^{3}}+\frac{3\left(y^{\prime \prime} x-2 y^{\prime}\right)}{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime \prime}-\frac{3 y^{\prime \prime}}{x}+\frac{6 y^{\prime}}{x^{2}}-\frac{6 y}{x^{3}}=0$
- Multiply by denominators of the ODE
$x^{3} y^{\prime \prime \prime}-3 x^{2} y^{\prime \prime}+6 x y^{\prime}-6 y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule

$$
y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
$$

- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
$$

- Calculate the 3 rd derivative of y with respect to x , using the chain rule

$$
y^{\prime \prime \prime}=\left(\frac{d^{3}}{d t^{3}} y(t)\right) t^{\prime}(x)^{3}+3 t^{\prime}(x) t^{\prime \prime}(x)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+t^{\prime \prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
$$

- Compute derivative

$$
y^{\prime \prime \prime}=\frac{\frac{d^{3}}{d t^{3}} y(t)}{x^{3}}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}
$$

Substitute the change of variables back into the ODE

$$
x^{3}\left(\frac{d^{3}}{d t^{3}} y(t)-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}\right)-3 x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)+6 \frac{d}{d t} y(t)-6 y(t)=0
$$

- \quad Simplify

$$
\frac{d^{3}}{d t^{3}} y(t)-6 \frac{d^{2}}{d t^{2}} y(t)+11 \frac{d}{d t} y(t)-6 y(t)=0
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(t)$

$$
y_{1}(t)=y(t)
$$

- Define new variable $y_{2}(t)$

$$
y_{2}(t)=\frac{d}{d t} y(t)
$$

- Define new variable $y_{3}(t)$

$$
y_{3}(t)=\frac{d^{2}}{d t^{2}} y(t)
$$

- Isolate for $\frac{d}{d t} y_{3}(t)$ using original ODE

$$
\frac{d}{d t} y_{3}(t)=6 y_{3}(t)-11 y_{2}(t)+6 y_{1}(t)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(t)=\frac{d}{d t} y_{1}(t), y_{3}(t)=\frac{d}{d t} y_{2}(t), \frac{d}{d t} y_{3}(t)=6 y_{3}(t)-11 y_{2}(t)+6 y_{1}(t)\right]
$$

- Define vector

$$
\vec{y}(t)=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t)
\end{array}\right]
$$

- System to solve

$$
\frac{d}{d t} \vec{y}(t)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
6 & -11 & 6
\end{array}\right] \cdot \vec{y}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
6 & -11 & 6
\end{array}\right]
$$

- Rewrite the system as

$$
\frac{d}{d t} \vec{y}(t)=A \cdot \vec{y}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

- Consider eigenpair
$\left[1,\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{t} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[3,\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
$$

- Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{t} \cdot\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+c_{3} \mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

- First component of the vector is the solution to the ODE $y(t)=c_{1} e^{t}+\frac{c_{2} e^{2 t}}{4}+\frac{c_{3} 3^{3 t}}{9}$
- Change variables back using $t=\ln (x)$
$y=c_{1} x+\frac{1}{4} c_{2} x^{2}+\frac{1}{9} c_{3} x^{3}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16
dsolve([x^3*diff $\left.(y(x), x \$ 3)-3 * x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+6 * x * \operatorname{diff}(y(x), x)-6 * y(x)=0, x\right]$, singsol=all)

$$
y(x)=x\left(c_{2} x^{2}+c_{1} x+c_{3}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 19
DSolve $\left[x^{\wedge} 3 * y\right.$ '' ' $[x]-3 * x^{\wedge} 2 * y$ ' ' $[x]+6 * x * y$ ' $[x]-6 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow x\left(x\left(c_{3} x+c_{2}\right)+c_{1}\right)
$$

14 Chapter 3. Linear equations with variable coefficients. Page 124

14.1 problem 1 . 1026
14.2 problem 2 . 1030
14.3 problem 3 . 1034

14.1 problem 1

14.1.1 Maple step by step solution

Internal problem ID [6016]
Internal file name [OUTPUT/5264_Sunday_June_05_2022_03_28_53_PM_30888276/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 3. Linear equations with variable coefficients. Page 124
Problem number: 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_euler_ode", "exact linear second order ode", "second__order_integrable_as_is" Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
x^{2} y^{\prime \prime}-2 y=0
$$

Given that one solution of the ode is

$$
y_{1}=x^{2}
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=0
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=x^{2}\left(\int \frac{\mathrm{e}^{-\left(\int 0 d x\right)}}{x^{4}} d x\right) \\
& y_{2}(x)=x^{2} \int \frac{1}{x^{4}}, d x \\
& y_{2}(x)=x^{2}\left(\int \frac{1}{x^{4}} d x\right) \\
& y_{2}(x)=-\frac{1}{3 x}
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x^{2}-\frac{c_{2}}{3 x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2}-\frac{c_{2}}{3 x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{2}-\frac{c_{2}}{3 x}
$$

Verified OK.

14.1.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}-2 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{2 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{2 y}{x^{2}}=0$
- Multiply by denominators of the ODE
$x^{2} y^{\prime \prime}-2 y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)-2 y(t)=0$
- \quad Simplify
$\frac{d^{2}}{d t^{2}} y(t)-\frac{d}{d t} y(t)-2 y(t)=0$
- Characteristic polynomial of ODE
$r^{2}-r-2=0$
- Factor the characteristic polynomial
$(r+1)(r-2)=0$
- Roots of the characteristic polynomial
$r=(-1,2)$
- 1st solution of the ODE
$y_{1}(t)=\mathrm{e}^{-t}$
- $\quad 2$ nd solution of the ODE
$y_{2}(t)=\mathrm{e}^{2 t}$
- General solution of the ODE

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

- \quad Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{2 t}
$$

- \quad Change variables back using $t=\ln (x)$

$$
y=\frac{c_{1}}{x}+c_{2} x^{2}
$$

- \quad Simplify

$$
y=\frac{c_{1}}{x}+c_{2} x^{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve([x^2*diff(y(x),x$2)-2*y(x)=0, x^2],singsol=all)
```

$$
y(x)=\frac{c_{1} x^{3}+c_{2}}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 18

```
DSolve[x^2*y''[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{c_{2} x^{3}+c_{1}}{x}
$$

14.2 problem 2

14.2.1 Maple step by step solution

1031
Internal problem ID [6017]
Internal file name [OUTPUT/5265_Sunday_June_05_2022_03_28_54_PM_20156416/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 3. Linear equations with variable coefficients. Page 124
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order__euler__ode", "second__order_change__of_cariable_oon_x_method_1", "second_order_change_of_cvariable_on_x_method_2", "second_order_change_of__variable__on_y__method_2", "second_order_ode__non_constant__coeff_transformation_on_B"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
x^{2} y^{\prime \prime}-x y^{\prime}+y=0
$$

Given that one solution of the ode is

$$
y_{1}=x
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=-\frac{1}{x}
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=x\left(\int \frac{\mathrm{e}^{-\left(\int-\frac{1}{x} d x\right)}}{x^{2}} d x\right) \\
& y_{2}(x)=x \int \frac{x}{x^{2}}, d x \\
& y_{2}(x)=\left(\int \frac{1}{x} d x\right) x \\
& y_{2}(x)=\ln (x) x
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x+c_{2} \ln (x) x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x+c_{2} \ln (x) x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x+c_{2} \ln (x) x
$$

Verified OK.

14.2.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}-x y^{\prime}+y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{y^{\prime}}{x}-\frac{y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{y^{\prime}}{x}+\frac{y}{x^{2}}=0
$$

- Multiply by denominators of the ODE

$$
x^{2} y^{\prime \prime}-x y^{\prime}+y=0
$$

- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{d}{d t} y(t)\right)-\frac{d}{d t} y(t)+y(t)=0$
- \quad Simplify
$\frac{d^{2}}{d t^{2}} y(t)-2 \frac{d}{d t} y(t)+y(t)=0$
- Characteristic polynomial of ODE
$r^{2}-2 r+1=0$
- Factor the characteristic polynomial

$$
(r-1)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=1
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{t}
$$

- Repeated root, multiply $y_{1}(t)$ by t to ensure linear independence

$$
y_{2}(t)=t \mathrm{e}^{t}
$$

- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{t}+c_{2} t \mathrm{e}^{t}
$$

- \quad Change variables back using $t=\ln (x)$

$$
y=c_{1} x+c_{2} \ln (x) x
$$

- Simplify

$$
y=x\left(c_{1}+c_{2} \ln (x)\right)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve([x^2*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=0,x],singsol=all)
```

$$
y(x)=x\left(c_{2} \ln (x)+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 15

```
DSolve[x^2*y''[x]-x*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow x\left(c_{2} \log (x)+c_{1}\right)
$$

14.3 problem 3

14.3.1 Solving as second order change of variable on y method 1 ode . 1034
14.3.2 Solving as second order bessel ode ode 1037
14.3.3 Solving using Kovacic algorithm 1038
14.3.4 Maple step by step solution . 1041

Internal problem ID [6018]
Internal file name [OUTPUT/5266_Sunday_June_05_2022_03_28_55_PM_15202253/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 3. Linear equations with variable coefficients. Page 124
Problem number: 3.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_bessel_ode", "second__order__change__of__variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+y\left(x^{2}+2\right)=0
$$

14.3.1 Solving as second order change of variable on y method 1 ode

In normal form the given ode is written as

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{4}{x} \\
& q(x)=\frac{x^{2}+2}{x^{2}}
\end{aligned}
$$

Calculating the Liouville ode invariant Q given by

$$
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{x^{2}+2}{x^{2}}-\frac{\left(\frac{4}{x}\right)^{\prime}}{2}-\frac{\left(\frac{4}{x}\right)^{2}}{4} \\
& =\frac{x^{2}+2}{x^{2}}-\frac{\left(-\frac{4}{x^{2}}\right)}{2}-\frac{\left(\frac{16}{x^{2}}\right)}{4} \\
& =\frac{x^{2}+2}{x^{2}}-\left(-\frac{2}{x^{2}}\right)-\frac{4}{x^{2}} \\
& =1
\end{aligned}
$$

Since the Liouville ode invariant does not depend on the independent variable x then the transformation

$$
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
$$

is used to change the original ode to a constant coefficients ode in v. In (3) the term $z(x)$ is given by

$$
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{4}{2}} \\
& =\frac{1}{x^{2}} \tag{5}
\end{align*}
$$

Hence (3) becomes

$$
\begin{equation*}
y=\frac{v(x)}{x^{2}} \tag{4}
\end{equation*}
$$

Applying this change of variable to the original ode results in

$$
v^{\prime \prime}(x)+v(x)=0
$$

Which is now solved for $v(x)$ This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A v^{\prime \prime}(x)+B v^{\prime}(x)+C v(x)=0
$$

Where in the above $A=1, B=0, C=1$. Let the solution be $v(x)=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=1$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =i \\
\lambda_{2} & =-i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=1$. Therefore the final solution, when using Euler relation, can be written as

$$
v(x)=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
v(x)=e^{0}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
$$

Or

$$
v(x)=\cos (x) c_{1}+c_{2} \sin (x)
$$

Now that $v(x)$ is known, then

$$
\begin{align*}
y & =v(x) z(x) \\
& =\left(\cos (x) c_{1}+c_{2} \sin (x)\right)(z(x)) \tag{7}
\end{align*}
$$

But from (5)

$$
z(x)=\frac{1}{x^{2}}
$$

Hence (7) becomes

$$
y=\frac{\cos (x) c_{1}+c_{2} \sin (x)}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\cos (x) c_{1}+c_{2} \sin (x)}{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\cos (x) c_{1}+c_{2} \sin (x)}{x^{2}}
$$

Verified OK.

14.3.2 Solving as second order bessel ode ode

Writing the ode as

$$
\begin{equation*}
x^{2} y^{\prime \prime}+4 x y^{\prime}+y\left(x^{2}+2\right)=0 \tag{1}
\end{equation*}
$$

Bessel ode has the form

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(-n^{2}+x^{2}\right) y=0 \tag{2}
\end{equation*}
$$

The generalized form of Bessel ode is given by Bowman (1958) as the following

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(1-2 \alpha) x y^{\prime}+\left(\beta^{2} \gamma^{2} x^{2 \gamma}-n^{2} \gamma^{2}+\alpha^{2}\right) y=0 \tag{3}
\end{equation*}
$$

With the standard solution

$$
\begin{equation*}
y=x^{\alpha}\left(c_{1} \operatorname{BesselJ}\left(n, \beta x^{\gamma}\right)+c_{2} \operatorname{BesselY}\left(n, \beta x^{\gamma}\right)\right) \tag{4}
\end{equation*}
$$

Comparing (3) to (1) and solving for α, β, n, γ gives

$$
\begin{aligned}
\alpha & =-\frac{3}{2} \\
\beta & =1 \\
n & =-\frac{1}{2} \\
\gamma & =1
\end{aligned}
$$

Substituting all the above into (4) gives the solution as

$$
y=\frac{c_{1} \sqrt{2} \cos (x)}{x^{2} \sqrt{\pi}}+\frac{c_{2} \sqrt{2} \sin (x)}{x^{2} \sqrt{\pi}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \sqrt{2} \cos (x)}{x^{2} \sqrt{\pi}}+\frac{c_{2} \sqrt{2} \sin (x)}{x^{2} \sqrt{\pi}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \sqrt{2} \cos (x)}{x^{2} \sqrt{\pi}}+\frac{c_{2} \sqrt{2} \sin (x)}{x^{2} \sqrt{\pi}}
$$

Verified OK.

14.3.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+4 x y^{\prime}+y\left(x^{2}+2\right) & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=4 x \tag{3}\\
& C=x^{2}+2
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is	no condition
allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 180: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-1$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{14 x}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-2 \ln (x)} \\
& =z_{1}\left(\frac{1}{x^{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{\cos (x)}{x^{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-4 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\tan (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{\cos (x)}{x^{2}}\right)+c_{2}\left(\frac{\cos (x)}{x^{2}}(\tan (x))\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} \cos (x)}{x^{2}}+\frac{c_{2} \sin (x)}{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} \cos (x)}{x^{2}}+\frac{c_{2} \sin (x)}{x^{2}}
$$

Verified OK.

14.3.4 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+4 x y^{\prime}+y\left(x^{2}+2\right)=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{\left(x^{2}+2\right) y}{x^{2}}-\frac{4 y^{\prime}}{x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{4 y^{\prime}}{x}+\frac{\left(x^{2}+2\right) y}{x^{2}}=0
$$

Check to see if $x_{0}=0$ is a regular singular point

- Define functions

$$
\left[P_{2}(x)=\frac{4}{x}, P_{3}(x)=\frac{x^{2}+2}{x^{2}}\right]
$$

- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=4$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$

$$
\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=2
$$

- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators
$x^{2} y^{\prime \prime}+4 x y^{\prime}+y\left(x^{2}+2\right)=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$
$x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}$
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}(2+r)(1+r) x^{r}+a_{1}(3+r)(2+r) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(k+r+2)(k+r+1)+a_{k-2}\right) x^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(2+r)(1+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{-2,-1\}$
- Each term must be 0

$$
a_{1}(3+r)(2+r)=0
$$

- \quad Solve for the dependent coefficient(s)
$a_{1}=0$
- Each term in the series must be 0, giving the recursion relation
$a_{k}(k+r+2)(k+r+1)+a_{k-2}=0$
- \quad Shift index using $k->k+2$

$$
a_{k+2}(k+4+r)(k+3+r)+a_{k}=0
$$

- Recursion relation that defines series solution to ODE

$$
a_{k+2}=-\frac{a_{k}}{(k+4+r)(k+3+r)}
$$

- \quad Recursion relation for $r=-2$

$$
a_{k+2}=-\frac{a_{k}}{(k+2)(k+1)}
$$

- \quad Solution for $r=-2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-2}, a_{k+2}=-\frac{a_{k}}{(k+2)(k+1)}, a_{1}=0\right]
$$

- \quad Recursion relation for $r=-1$

$$
a_{k+2}=-\frac{a_{k}}{(k+3)(k+2)}
$$

- \quad Solution for $r=-1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-1}, a_{k+2}=-\frac{a_{k}}{(k+3)(k+2)}, a_{1}=0\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-2}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k-1}\right), a_{k+2}=-\frac{a_{k}}{(k+2)(k+1)}, a_{1}=0, b_{k+2}=-\frac{b_{k}}{(k+3)(k+2)}, b_{1}=0\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 17
dsolve $\left(x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+4 * x * \operatorname{diff}(y(x), x)+\left(2+x^{\wedge} 2\right) * y(x)=0, y(x)\right.$, singsol=all)

$$
y(x)=\frac{c_{1} \sin (x)+\cos (x) c_{2}}{x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 37
DSolve $\left[x^{\wedge} 2 * y\right.$ ' ' $[x]+4 * x * y$ ' $[x]+\left(2+x^{\wedge} 2\right) * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{2 c_{1} e^{-i x}-i c_{2} e^{i x}}{2 x^{2}}
$$

15 Chapter 3. Linear equations with variable coefficients. Page 130
15.1 problem 1(a) 1046
15.2 problem 1(b) 1055
15.3 problem 1(c) 1065
15.4 problem 1(d) 1074
15.5 problem 1(e) 1084
15.6 problem 2 1094
15.7 problem 3 1106
15.8 problem 4 1116
15.9 problem 5 1128
15.10problem 6 1131
15.11problem 7 1143
15.12problem 8 1158

15.1 problem 1(a)

15.1.1 Maple step by step solution 1053

Internal problem ID [6019]
Internal file name [OUTPUT/5267_Sunday_June_05_2022_03_28_57_PM_36183594/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 3. Linear equations with variable coefficients. Page 130
Problem number: 1(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second_order_change_of_cvariable_on_y_method_2", "second order series method. Taylor series method", "second__order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type

```
[_Hermite]
```

$$
y^{\prime \prime}-x y^{\prime}+y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using

Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{242}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{243}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-y+x y^{\prime} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\left(-y+x y^{\prime}\right) x \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\left(x^{2}+1\right)\left(-y+x y^{\prime}\right) \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =x\left(x^{2}+3\right)\left(-y+x y^{\prime}\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(-y+x y^{\prime}\right)\left(x^{4}+6 x^{2}+3\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-y(0) \\
& F_{1}=0 \\
& F_{2}=-y(0) \\
& F_{3}=0 \\
& F_{4}=-3 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}-\frac{1}{240} x^{6}\right) y(0)+x y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\sum_{n=1}^{\infty}\left(-n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}+a_{0}=0 \\
a_{2}=-\frac{a_{0}}{2}
\end{gathered}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)-n a_{n}+a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{a_{n}(n-1)}{(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=0
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}-a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{a_{0}}{24}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}-2 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=0
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}-3 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{a_{0}}{240}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}-4 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=0
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{1}{2} a_{0} x^{2}-\frac{1}{24} a_{0} x^{4}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}\right) a_{0}+a_{1} x+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}\right) c_{1}+c_{2} x+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}-\frac{1}{240} x^{6}\right) y(0)+x y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}\right) c_{1}+c_{2} x+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}-\frac{1}{240} x^{6}\right) y(0)+x y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}\right) c_{1}+c_{2} x+O\left(x^{6}\right)
$$

Verified OK.

15.1.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=-y+x y^{\prime}
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-x y^{\prime}+y=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
Rewrite DE with series expansions
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}$
- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$
$y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}$
Rewrite DE with series expansions
$\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)-a_{k}(k-1)\right) x^{k}=0$
- Each term in the series must be 0, giving the recursion relation $\left(k^{2}+3 k+2\right) a_{k+2}-a_{k}(k-1)=0$
- Recursion relation that defines the series solution to the ODE
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=\frac{a_{k}(k-1)}{k^{2}+3 k+2}\right]$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
Order:=6;
dsolve(diff ( }\textrm{y}(\textrm{x}),\textrm{x}$2)-\textrm{x}*\operatorname{diff}(\textrm{y}(\textrm{x}),\textrm{x})+\textrm{y}(\textrm{x})=0,y(\textrm{x}),\mathrm{ ,type='series',}\textrm{x}=0)
```

$$
y(x)=\left(1-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}\right) y(0)+D(y)(0) x+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 27

AsymptoticDSolveValue $[y$ ' ' $[\mathrm{x}]-\mathrm{x} * \mathrm{y}$ ' $[\mathrm{x}]+\mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{1}\left(-\frac{x^{4}}{24}-\frac{x^{2}}{2}+1\right)+c_{2} x
$$

15.2 problem 1(b)

15.2.1 Maple step by step solution . 1062

Internal problem ID [6020]
Internal file name [OUTPUT/5268_Sunday_June_05_2022_03_28_58_PM_87853364/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 3. Linear equations with variable coefficients. Page 130
Problem number: 1(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+3 x^{2} y^{\prime}-x y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{245}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{246}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-3 x^{2} y^{\prime}+x y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =9 y^{\prime} x^{4}-3 y x^{3}-5 x y^{\prime}+y \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-27 y^{\prime} x^{6}+9 y x^{5}+48 y^{\prime} x^{3}-14 y x^{2}-4 y^{\prime} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(81 x^{8}-297 x^{5}+142 x^{2}\right) y^{\prime}-27 y x\left(x^{6}-\frac{31}{9} x^{3}+\frac{32}{27}\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(-243 x^{10}+1512 x^{7}-1818 x^{4}+252 x\right) y^{\prime}+81\left(x^{9}-6 x^{6}+\frac{514}{81} x^{3}-\frac{32}{81}\right) y
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=y(0) \\
& F_{2}=-4 y^{\prime}(0) \\
& F_{3}=0 \\
& F_{4}=-32 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1+\frac{1}{6} x^{3}-\frac{2}{45} x^{6}\right) y(0)+\left(x-\frac{1}{6} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-3 x^{2}\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} 3 n x^{1+n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-x^{1+n} a_{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=1}^{\infty} 3 n x^{1+n} a_{n} & =\sum_{n=2}^{\infty} 3(n-1) a_{n-1} x^{n} \\
\sum_{n=0}^{\infty}\left(-x^{1+n} a_{n}\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\left(\sum_{n=2}^{\infty} 3(n-1) a_{n-1} x^{n}\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=1$ gives

$$
6 a_{3}-a_{0}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=\frac{a_{0}}{6}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(1+n)+3(n-1) a_{n-1}-a_{n-1}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n-1}(3 n-4)}{(n+2)(1+n)} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}+2 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{a_{1}}{6}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+5 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=0
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+8 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{2 a_{0}}{45}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+11 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{11 a_{1}}{252}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+\frac{1}{6} a_{0} x^{3}-\frac{1}{6} a_{1} x^{4}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+\frac{x^{3}}{6}\right) a_{0}+\left(x-\frac{1}{6} x^{4}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1+\frac{x^{3}}{6}\right) c_{1}+\left(x-\frac{1}{6} x^{4}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1+\frac{1}{6} x^{3}-\frac{2}{45} x^{6}\right) y(0)+\left(x-\frac{1}{6} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1+\frac{x^{3}}{6}\right) c_{1}+\left(x-\frac{1}{6} x^{4}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1+\frac{1}{6} x^{3}-\frac{2}{45} x^{6}\right) y(0)+\left(x-\frac{1}{6} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1+\frac{x^{3}}{6}\right) c_{1}+\left(x-\frac{1}{6} x^{4}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

15.2.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=-3 x^{2} y^{\prime}+x y
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+3 x^{2} y^{\prime}-x y=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
Rewrite ODE with series expansions
- Convert $x \cdot y$ to series expansion

$$
x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+1}
$$

- Shift index using $k->k-1$

$$
x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k}
$$

- Convert $x^{2} \cdot y^{\prime}$ to series expansion

$$
x^{2} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k+1}
$$

- Shift index using $k->k-1$
$x^{2} \cdot y^{\prime}=\sum_{k=1}^{\infty} a_{k-1}(k-1) x^{k}$
- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$
$y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}$
Rewrite ODE with series expansions
$2 a_{2}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k-1}(3 k-4)\right) x^{k}\right)=0$
- \quad Each term must be 0

$$
2 a_{2}=0
$$

- Each term in the series must be 0 , giving the recursion relation

$$
\left(k^{2}+3 k+2\right) a_{k+2}+3 a_{k-1} k-4 a_{k-1}=0
$$

- \quad Shift index using $k->k+1$

$$
\left((k+1)^{2}+3 k+5\right) a_{k+3}+3 a_{k}(k+1)-4 a_{k}=0
$$

- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=-\frac{a_{k}(3 k-1)}{k^{2}+5 k+6}, 2 a_{2}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
        -> hyper3: Equivalence to 1F1 under a power @ Moebius
        <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
    <- Kummer successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
Order:=6;
dsolve(diff(y(x),x$2)+3*x`2*diff (y(x),x)-x*y(x)=0,y(x),type='series', x=0);
```

$$
y(x)=\left(1+\frac{x^{3}}{6}\right) y(0)+\left(x-\frac{1}{6} x^{4}\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28
AsymptoticDSolveValue [y' $\quad[x]+3 * x^{\wedge} 2 * y$ ' $\left.[x]-x * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{2}\left(x-\frac{x^{4}}{6}\right)+c_{1}\left(\frac{x^{3}}{6}+1\right)
$$

15.3 problem 1(c)

15.3.1 Maple step by step solution . 1071

Internal problem ID [6021]
Internal file name [OUTPUT/5269_Sunday_June_05_2022_03_29_00_PM_31831911/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 3. Linear equations with variable coefficients. Page 130
Problem number: 1(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_bessel_ode", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_Emden, _Fowler]]
```

$$
y^{\prime \prime}-y x^{2}=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{248}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{249}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =y x^{2} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =x\left(x y^{\prime}+2 y\right) \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =y x^{4}+4 x y^{\prime}+2 y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =y^{\prime} x^{4}+8 y x^{3}+6 y^{\prime} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =12 y^{\prime} x^{3}+x^{2} y\left(x^{4}+30\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=0 \\
& F_{2}=2 y(0) \\
& F_{3}=6 y^{\prime}(0) \\
& F_{4}=0
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1+\frac{x^{4}}{12}\right) y(0)+\left(x+\frac{1}{20} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x^{2} \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=0}^{\infty}\left(-x^{n+2} a_{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n} \\
\sum_{n=0}^{\infty}\left(-x^{n+2} a_{n}\right) & =\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)-a_{n-2}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{a_{n-2}}{(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}-a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{12}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}-a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{1}}{20}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}-a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=0
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}-a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=0
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+\frac{1}{12} a_{0} x^{4}+\frac{1}{20} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+\frac{x^{4}}{12}\right) a_{0}+\left(x+\frac{1}{20} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1+\frac{x^{4}}{12}\right) c_{1}+\left(x+\frac{1}{20} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1+\frac{x^{4}}{12}\right) y(0)+\left(x+\frac{1}{20} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1+\frac{x^{4}}{12}\right) c_{1}+\left(x+\frac{1}{20} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1+\frac{x^{4}}{12}\right) y(0)+\left(x+\frac{1}{20} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1+\frac{x^{4}}{12}\right) c_{1}+\left(x+\frac{1}{20} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

15.3.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=y x^{2}
$$

- Highest derivative means the order of the ODE is 2 $y^{\prime \prime}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-y x^{2}=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
Rewrite ODE with series expansions
- Convert $x^{2} \cdot y$ to series expansion

$$
x^{2} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+2}
$$

- Shift index using $k->k-2$

$$
x^{2} \cdot y=\sum_{k=2}^{\infty} a_{k-2} x^{k}
$$

- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$

$$
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
$$

Rewrite ODE with series expansions

$$
6 a_{3} x+2 a_{2}+\left(\sum_{k=2}^{\infty}\left(a_{k+2}(k+2)(k+1)-a_{k-2}\right) x^{k}\right)=0
$$

- The coefficients of each power of x must be 0

$$
\left[2 a_{2}=0,6 a_{3}=0\right]
$$

- \quad Solve for the dependent coefficient(s)
$\left\{a_{2}=0, a_{3}=0\right\}$
- Each term in the series must be 0 , giving the recursion relation $\left(k^{2}+3 k+2\right) a_{k+2}-a_{k-2}=0$
- \quad Shift index using $k->k+2$
$\left((k+2)^{2}+3 k+8\right) a_{k+4}-a_{k}=0$
- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=\frac{a_{k}}{k^{2}+7 k+12}, a_{2}=0, a_{3}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
Order:=6;
dsolve(diff(y(x),x$2)-x^2*y(x)=0,y(x),type='series', x=0);
```

$$
y(x)=\left(1+\frac{x^{4}}{12}\right) y(0)+\left(x+\frac{1}{20} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28
AsymptoticDSolveValue[y' $\left.[\mathrm{x}]-\mathrm{x}^{\wedge} 2 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
y(x) \rightarrow c_{2}\left(\frac{x^{5}}{20}+x\right)+c_{1}\left(\frac{x^{4}}{12}+1\right)
$$

15.4 problem 1(d)

15.4.1 Maple step by step solution
. 1081
Internal problem ID [6022]
Internal file name [OUTPUT/5270_Sunday_June_05_2022_03_29_01_PM_84068285/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 3. Linear equations with variable coefficients. Page 130
Problem number: 1(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+y^{\prime} x^{3}+y x^{2}=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{251}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{252}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-y^{\prime} x^{3}-y x^{2} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\left(\left(x^{5}-4 x\right) y^{\prime}+y\left(x^{4}-2\right)\right) x \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\left(-x^{9}+11 x^{5}-10 x\right) y^{\prime}-y\left(x^{8}-9 x^{4}+2\right) \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(x^{12}-21 x^{8}+74 x^{4}-12\right) y^{\prime}+y x^{3}\left(x^{8}-19 x^{4}+46\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =-\left(\left(x^{13}-34 x^{9}+261 x^{5}-354 x\right) y^{\prime}+y\left(x^{12}-32 x^{8}+207 x^{4}-150\right)\right) x^{2}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=0 \\
& F_{2}=-2 y(0) \\
& F_{3}=-12 y^{\prime}(0) \\
& F_{4}=0
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1-\frac{x^{4}}{12}\right) y(0)+\left(x-\frac{1}{10} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x^{3}-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x^{2} \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n x^{2+n} a_{n}\right)+\left(\sum_{n=0}^{\infty} x^{2+n} a_{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(2+n) a_{2+n}(1+n) x^{n} \\
\sum_{n=1}^{\infty} n x^{2+n} a_{n} & =\sum_{n=3}^{\infty}(n-2) a_{n-2} x^{n} \\
\sum_{n=0}^{\infty} x^{2+n} a_{n} & =\sum_{n=2}^{\infty} a_{n-2} x^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(2+n) a_{2+n}(1+n) x^{n}\right)+\left(\sum_{n=3}^{\infty}(n-2) a_{n-2} x^{n}\right)+\left(\sum_{n=2}^{\infty} a_{n-2} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=2$ gives

$$
12 a_{4}+a_{0}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{4}=-\frac{a_{0}}{12}
$$

For $3 \leq n$, the recurrence equation is

$$
\begin{equation*}
(2+n) a_{2+n}(1+n)+(n-2) a_{n-2}+a_{n-2}=0 \tag{4}
\end{equation*}
$$

Solving for a_{2+n}, gives

$$
\begin{equation*}
a_{2+n}=-\frac{a_{n-2}(n-1)}{(2+n)(1+n)} \tag{5}
\end{equation*}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+2 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=-\frac{a_{1}}{10}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+3 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=0
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+4 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=0
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{1}{12} a_{0} x^{4}-\frac{1}{10} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{x^{4}}{12}\right) a_{0}+\left(x-\frac{1}{10} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{x^{4}}{12}\right) c_{1}+\left(x-\frac{1}{10} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-\frac{x^{4}}{12}\right) y(0)+\left(x-\frac{1}{10} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1-\frac{x^{4}}{12}\right) c_{1}+\left(x-\frac{1}{10} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1-\frac{x^{4}}{12}\right) y(0)+\left(x-\frac{1}{10} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1-\frac{x^{4}}{12}\right) c_{1}+\left(x-\frac{1}{10} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

15.4.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=-y^{\prime} x^{3}-y x^{2}
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+y^{\prime} x^{3}+y x^{2}=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
Rewrite ODE with series expansions
- Convert $x^{2} \cdot y$ to series expansion
$x^{2} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+2}$
- Shift index using $k->k-2$
$x^{2} \cdot y=\sum_{k=2}^{\infty} a_{k-2} x^{k}$
- Convert $x^{3} \cdot y^{\prime}$ to series expansion
$x^{3} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k+2}$
- Shift index using $k->k-2$
$x^{3} \cdot y^{\prime}=\sum_{k=2}^{\infty} a_{k-2}(k-2) x^{k}$
- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$
$y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}$
Rewrite ODE with series expansions
$6 a_{3} x+2 a_{2}+\left(\sum_{k=2}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k-2}(k-1)\right) x^{k}\right)=0$
- The coefficients of each power of x must be 0

$$
\left[2 a_{2}=0,6 a_{3}=0\right]
$$

- \quad Solve for the dependent coefficient(s)

$$
\left\{a_{2}=0, a_{3}=0\right\}
$$

- Each term in the series must be 0 , giving the recursion relation

$$
\left(k^{2}+3 k+2\right) a_{k+2}+a_{k-2}(k-1)=0
$$

- \quad Shift index using $k->k+2$

$$
\left((k+2)^{2}+3 k+8\right) a_{k+4}+a_{k}(k+1)=0
$$

- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=-\frac{a_{k}(k+1)}{k^{2}+7 k+12}, a_{2}=0, a_{3}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
        -> hyper3: Equivalence to 1F1 under a power @ Moebius
        <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
    <- Kummer successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
Order:=6;
dsolve(diff(y(x), x$2)+x^3*diff(y(x),x)+x^2*y(x)=0,y(x),type='series', x=0);
```

$$
y(x)=\left(1-\frac{x^{4}}{12}\right) y(0)+\left(x-\frac{1}{10} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28
AsymptoticDSolveValue [y' ' $[x]+x^{\wedge} 3 * y$ ' $\left.[x]+x^{\wedge} 2 * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{2}\left(x-\frac{x^{5}}{10}\right)+c_{1}\left(1-\frac{x^{4}}{12}\right)
$$

15.5 problem 1(e)

15.5.1 Maple step by step solution

1091
Internal problem ID [6023]
Internal file name [OUTPUT/5271_Sunday_June_05_2022_03_29_03_PM_57526431/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 3. Linear equations with variable coefficients. Page 130
Problem number: 1(e).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_linear_constant_coeff", "second__order_ode_can__be_made_integrable", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}+y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{254}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{255}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =-y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =y^{\prime} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =-y
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-y(0) \\
& F_{1}=-y^{\prime}(0) \\
& F_{2}=y(0) \\
& F_{3}=y^{\prime}(0) \\
& F_{4}=-y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}\right) y(0)+\left(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

For $0 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)+a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n}}{(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=0$ the recurrence equation gives

$$
2 a_{2}+a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{2}=-\frac{a_{0}}{2}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}+a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=-\frac{a_{1}}{6}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}+a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{24}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{1}}{120}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{a_{0}}{720}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{a_{1}}{5040}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{1}{2} a_{0} x^{2}-\frac{1}{6} a_{1} x^{3}+\frac{1}{24} a_{0} x^{4}+\frac{1}{120} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right) a_{0}+\left(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right) c_{1}+\left(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}\right) y(0)+\left(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right) c_{1}+\left(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Figure 176: Slope field plot

Verification of solutions

$$
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}\right) y(0)+\left(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right) c_{1}+\left(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

15.5.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=-y
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+y=0
$$

- Characteristic polynomial of ODE

$$
r^{2}+1=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial
$r=(-\mathrm{I}, \mathrm{I})$
- 1st solution of the ODE
$y_{1}(x)=\cos (x)$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\sin (x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=\cos (x) c_{1}+c_{2} \sin (x)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
Order:=6;
dsolve(diff(y(x),x$2)+y(x)=0,y(x),type='series',x=0);
```

$$
y(x)=\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right) y(0)+\left(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42
AsymptoticDSolveValue[y'' $[\mathrm{x}]+\mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{2}\left(\frac{x^{5}}{120}-\frac{x^{3}}{6}+x\right)+c_{1}\left(\frac{x^{4}}{24}-\frac{x^{2}}{2}+1\right)
$$

15.6 problem 2

15.6.1 Existence and uniqueness analysis 1094
15.6.2 Maple step by step solution . 1102

Internal problem ID [6024]
Internal file name [OUTPUT/5272_Sunday_June_05_2022_03_29_04_PM_58711402/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 3. Linear equations with variable coefficients. Page 130
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second__order_change_of__variable_on_y_method_2", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+(x-1)^{2} y^{\prime}-(x-1) y=0
$$

With initial conditions

$$
\left[y(1)=1, y^{\prime}(1)=0\right]
$$

With the expansion point for the power series method at $x=1$.

15.6.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =(x-1)^{2} \\
q(x) & =1-x \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+(x-1)^{2} y^{\prime}+(1-x) y=0
$$

The domain of $p(x)=(x-1)^{2}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=1-x$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.
The ode does not have its expansion point at $x=0$, therefore to simplify the computation of power series expansion, change of variable is made on the independent variable to shift the initial conditions and the expasion point back to zero. The new ode is then solved more easily since the expansion point is now at zero. The solution converted back to the original independent variable. Let

$$
t=x-1
$$

The ode is converted to be in terms of the new independent variable t. This results in

$$
\frac{d^{2}}{d t^{2}} y(t)+\left(\frac{d}{d t} y(t)\right) t^{2}-t y(t)=0
$$

With its expansion point and initial conditions now at $t=0$. With initial conditions now becoming

$$
\begin{aligned}
y(0) & =1 \\
y^{\prime}(0) & =0
\end{aligned}
$$

The transformed ODE is now solved. Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the
case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{257}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{258}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\left(\frac{d}{d t} y(t)\right) t^{2}+t y(t) \\
F_{1} & =\frac{d F_{0}}{d t} \\
& =\frac{\partial F_{0}}{\partial t}+\frac{\partial F_{0}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{0}}{\partial \frac{d}{d t} y(t)} F_{0} \\
& =\left(\frac{d}{d t} y(t)\right) t^{4}-y(t) t^{3}-t\left(\frac{d}{d t} y(t)\right)+y(t) \\
F_{2} & =\frac{d F_{1}}{d t} \\
& =\frac{\partial F_{1}}{\partial t}+\frac{\partial F_{1}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{1}}{\partial \frac{d}{d t} y(t)} F_{1} \\
& =-t^{2}\left(t^{3}-4\right)\left(t\left(\frac{d}{d t} y(t)\right)-y(t)\right) \\
F_{3} & =\frac{d F_{2}}{d t} \\
& =\frac{\partial F_{2}}{\partial t}+\frac{\partial F_{2}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{2}}{\partial \frac{d}{d t} y(t)} F_{2} \\
& =\left(t^{8}-9 t^{5}+8 t^{2}\right)\left(\frac{d}{d t} y(t)\right)+\left(-t^{7}+9 t^{4}-8 t\right) y(t) \\
F_{4} & =\frac{d F_{3}}{d t} \\
& =\frac{\partial F_{3}}{\partial t}+\frac{\partial F_{3}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{3}}{\partial \frac{d}{d t} y(t)} F_{3} \\
& =-\left(t^{9}-16 t^{6}+44 t^{3}-8\right)\left(t\left(\frac{d}{d t} y(t)\right)-y(t)\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $t=0$ and $y(0)=1$ and $y^{\prime}(0)=0$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=1 \\
& F_{2}=0 \\
& F_{3}=0 \\
& F_{4}=-8
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y(t)=1+\frac{t^{3}}{6}-\frac{t^{6}}{90}+O\left(t^{6}\right)
$$

$$
y(t)=1+\frac{t^{3}}{6}-\frac{t^{6}}{90}+O\left(t^{6}\right)
$$

Since the expansion point $t=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

Then

$$
\begin{aligned}
\frac{d}{d t} y(t) & =\sum_{n=1}^{\infty} n a_{n} t^{n-1} \\
\frac{d^{2}}{d t^{2}} y(t) & =\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}=-\left(\sum_{n=1}^{\infty} n a_{n} t^{n-1}\right) t^{2}+t\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}\right)+\left(\sum_{n=1}^{\infty} n t^{1+n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-t^{1+n} a_{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of t be n in each summation term. Going over each summation term above with power of t in it which is not already t^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) t^{n} \\
\sum_{n=1}^{\infty} n t^{1+n} a_{n} & =\sum_{n=2}^{\infty}(n-1) a_{n-1} t^{n} \\
\sum_{n=0}^{\infty}\left(-t^{1+n} a_{n}\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1} t^{n}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of t are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) t^{n}\right)+\left(\sum_{n=2}^{\infty}(n-1) a_{n-1} t^{n}\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} t^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=1$ gives

$$
6 a_{3}-a_{0}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=\frac{a_{0}}{6}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(1+n)+(n-1) a_{n-1}-a_{n-1}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n-1}(n-2)}{(n+2)(1+n)} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=0
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=0
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+2 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{a_{0}}{90}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+3 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=0
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y(t) & =\sum_{n=0}^{\infty} a_{n} t^{n} \\
& =a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y(t)=a_{0}+a_{1} t+\frac{1}{6} a_{0} t^{3}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y(t)=\left(1+\frac{t^{3}}{6}\right) a_{0}+a_{1} t+O\left(t^{6}\right) \tag{3}
\end{equation*}
$$

At $t=0$ the solution above becomes

$$
\begin{gathered}
y(t)=\left(1+\frac{t^{3}}{6}\right) c_{1}+c_{2} t+O\left(t^{6}\right) \\
y(t)=1+\frac{t^{3}}{6}+O\left(t^{6}\right)
\end{gathered}
$$

Replacing t in the above with the original independent variable $x s u \operatorname{sing} t=x-1$ results in

$$
y=1+\frac{(x-1)^{3}}{6}-\frac{(x-1)^{6}}{90}+O\left((x-1)^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=1+\frac{(x-1)^{3}}{6}-\frac{(x-1)^{6}}{90}+O\left((x-1)^{6}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=1+\frac{(x-1)^{3}}{6}-\frac{(x-1)^{6}}{90}+O\left((x-1)^{6}\right)
$$

Verified OK.

15.6.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+(x-1)^{2} y^{\prime}+(1-x) y=0, y(1)=1,\left.y^{\prime}\right|_{\{x=1\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

Rewrite ODE with series expansions

- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$

$$
x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
$$

- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=0 . .2$

$$
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)}^{\infty} a_{k} k x^{k-1+m}
$$

- Shift index using $k->k+1-m$

$$
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)+m-1}^{\infty} a_{k+1-m}(k+1-m) x^{k}
$$

- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$

$$
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
$$

Rewrite ODE with series expansions
$2 a_{2}+a_{1}+a_{0}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k+1}(k+1)-a_{k}(2 k-1)+a_{k-1}(k-2)\right) x^{k}\right)=0$

- \quad Each term must be 0
$2 a_{2}+a_{1}+a_{0}=0$
- Each term in the series must be 0 , giving the recursion relation

$$
k^{2} a_{k+2}+\left(-2 a_{k}+a_{k-1}+a_{k+1}+3 a_{k+2}\right) k+a_{k}-2 a_{k-1}+a_{k+1}+2 a_{k+2}=0
$$

- \quad Shift index using $k->k+1$
$(k+1)^{2} a_{k+3}+\left(-2 a_{k+1}+a_{k}+a_{k+2}+3 a_{k+3}\right)(k+1)+a_{k+1}-2 a_{k}+a_{k+2}+2 a_{k+3}=0$
- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=-\frac{a_{k} k-2 a_{k+1} k+k a_{k+2}-a_{k}-a_{k+1}+2 a_{k+2}}{k^{2}+5 k+6}, 2 a_{2}+a_{1}+a_{0}=0\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
    Solution has integrals. Trying a special function solution free of integrals...
    -> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
        -> Mathieu
            -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
            -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
            <- Heun successful: received ODE is equivalent to the HeunT ODE, case c = 0
        Special function solution also has integrals. Returning default Liouvillian solution.
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
Order:=6;
dsolve([diff(y(x),x$2)+(x-1)^2*diff(y(x),x)-(x-1)*y(x)=0,y(1) = 1, D(y)(1) = 0],y(x),type='s
```

$$
y(x)=1+\frac{1}{6}(x-1)^{3}+\mathrm{O}\left((x-1)^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 14
AsymptoticDSolveValue[\{y' $\left.\left.\quad[\mathrm{x}]+(\mathrm{x}-1)^{\wedge} 2 * y{ }^{\prime}[\mathrm{x}]-(\mathrm{x}-1) * \mathrm{y}[\mathrm{x}]==0,\left\{\mathrm{y}[1]==1, \mathrm{y}^{\prime}[1]==0\right\}\right\}, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 1,5\}\right]$

$$
y(x) \rightarrow \frac{1}{6}(x-1)^{3}+1
$$

15.7 problem 3

15.7.1 Existence and uniqueness analysis 1106

Internal problem ID [6025]
Internal file name [OUTPUT/5273_Sunday_June_05_2022_03_29_08_PM_63537463/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 3. Linear equations with variable coefficients. Page 130
Problem number: 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
\left(x^{2}+1\right) y^{\prime \prime}+y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=1\right]
$$

With the expansion point for the power series method at $x=0$.

15.7.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =\frac{1}{x^{2}+1} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{y}{x^{2}+1}=0
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\frac{1}{x^{2}+1}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{260}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{261}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{y}{x^{2}+1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{-x^{2} y^{\prime}+2 x y-y^{\prime}}{\left(x^{2}+1\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{4 y^{\prime} x^{3}-5 y x^{2}+4 x y^{\prime}+3 y}{\left(x^{2}+1\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(-17 x^{4}-10 x^{2}+7\right) y^{\prime}+16 y x\left(x^{2}-2\right)}{\left(x^{2}+1\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{\left(84 x^{5}-24 x^{3}-108 x\right) y^{\prime}+\left(-63 x^{4}+282 x^{2}-39\right) y}{\left(x^{2}+1\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=0$ and $y^{\prime}(0)=1$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=-1 \\
& F_{2}=0 \\
& F_{3}=7 \\
& F_{4}=0
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=x-\frac{x^{3}}{6}+\frac{7 x^{5}}{120}+O\left(x^{6}\right)
$$

$$
y=x-\frac{x^{3}}{6}+\frac{7 x^{5}}{120}+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(x^{2}+1\right) y^{\prime \prime}+y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(x^{2}+1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}+a_{0}=0 \\
a_{2}=-\frac{a_{0}}{2}
\end{gathered}
$$

$n=1$ gives

$$
6 a_{3}+a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{a_{1}}{6}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
n a_{n}(n-1)+(n+2) a_{n+2}(n+1)+a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n}\left(n^{2}-n+1\right)}{(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
3 a_{2}+12 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{8}
$$

For $n=3$ the recurrence equation gives

$$
7 a_{3}+20 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{7 a_{1}}{120}
$$

For $n=4$ the recurrence equation gives

$$
13 a_{4}+30 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{13 a_{0}}{240}
$$

For $n=5$ the recurrence equation gives

$$
21 a_{5}+42 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{7 a_{1}}{240}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{1}{2} a_{0} x^{2}-\frac{1}{6} a_{1} x^{3}+\frac{1}{8} a_{0} x^{4}+\frac{7}{120} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}\right) a_{0}+\left(x-\frac{1}{6} x^{3}+\frac{7}{120} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
\begin{gathered}
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}\right) c_{1}+\left(x-\frac{1}{6} x^{3}+\frac{7}{120} x^{5}\right) c_{2}+O\left(x^{6}\right) \\
y=x-\frac{x^{3}}{6}+\frac{7 x^{5}}{120}+O\left(x^{6}\right)
\end{gathered}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=x-\frac{x^{3}}{6}+\frac{7 x^{5}}{120}+O\left(x^{6}\right) \tag{1}\\
& y=x-\frac{x^{3}}{6}+\frac{7 x^{5}}{120}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=x-\frac{x^{3}}{6}+\frac{7 x^{5}}{120}+O\left(x^{6}\right)
$$

Verified OK.

$$
y=x-\frac{x^{3}}{6}+\frac{7 x^{5}}{120}+O\left(x^{6}\right)
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Whittaker
        -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
        -> heuristic approach
        -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
        <- hyper3 successful: received ODE is equivalent to the 2F1 ODE
    <- hypergeometric successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
Order:=6;
dsolve([(1+x^2)*diff (y(x),x$2)+y(x)=0,y(0) = 0, D(y)(0) = 1],y(x),type='series',x=0);
```

$$
y(x)=x-\frac{1}{6} x^{3}+\frac{7}{120} x^{5}+\mathrm{O}\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 19
AsymptoticDSolveValue[\{(1+x^2)*y' ' $[x]+y[x]==0,\{y[0]==0, y$ ' $[0]==1\}\}, y[x],\{x, 0,5\}]$

$$
y(x) \rightarrow \frac{7 x^{5}}{120}-\frac{x^{3}}{6}+x
$$

15.8 problem 4

15.8.1 Existence and uniqueness analysis 1116

Internal problem ID [6026]
Internal file name [OUTPUT/5274_Sunday_June_05_2022_03_29_11_PM_66482120/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 3. Linear equations with variable coefficients. Page 130
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_bessel_ode_form_A", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+\mathrm{e}^{x} y=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=0\right]
$$

With the expansion point for the power series method at $x=0$.

15.8.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =\mathrm{e}^{x} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\mathrm{e}^{x} y=0
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\mathrm{e}^{x}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{263}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{264}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\mathrm{e}^{x} y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =-\mathrm{e}^{x}\left(y+y^{\prime}\right) \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\mathrm{e}^{x}\left(-2 y^{\prime}+\left(\mathrm{e}^{x}-1\right) y\right) \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(4 y+y^{\prime}\right) \mathrm{e}^{2 x}-\mathrm{e}^{x}\left(y+3 y^{\prime}\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(11 y+6 y^{\prime}\right) \mathrm{e}^{2 x}-\mathrm{e}^{3 x} y-\mathrm{e}^{x}\left(4 y^{\prime}+y\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=1$ and $y^{\prime}(0)=0$ gives

$$
\begin{aligned}
& F_{0}=-1 \\
& F_{1}=-1 \\
& F_{2}=0 \\
& F_{3}=3 \\
& F_{4}=9
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
& y=1-\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{5}}{40}+\frac{x^{6}}{80}+O\left(x^{6}\right) \\
& y=1-\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{5}}{40}+\frac{x^{6}}{80}+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\mathrm{e}^{x}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Expanding e^{x} as Taylor series around $x=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
\mathrm{e}^{x} & =1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\ldots \\
& =1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}
\end{aligned}
$$

Hence the ODE in Eq (1) becomes

$$
\begin{aligned}
& \left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right) \\
& +\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0
\end{aligned}
$$

Expanding the second term in (1) gives

$$
\begin{aligned}
& \left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+1 \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+x \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+\frac{x^{2}}{2} \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& +\frac{x^{3}}{6} \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+\frac{x^{4}}{24} \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+\frac{x^{5}}{120} \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+\frac{x^{6}}{720} \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0
\end{aligned}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} x^{1+n} a_{n}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+2} a_{n}}{2}\right) \tag{2}\\
& +\left(\sum_{n=0}^{\infty} \frac{x^{n+3} a_{n}}{6}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+4} a_{n}}{24}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+5} a_{n}}{120}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+6} a_{n}}{720}\right)=0
\end{align*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=0}^{\infty} x^{1+n} a_{n} & =\sum_{n=1}^{\infty} a_{n-1} x^{n} \\
\sum_{n=0}^{\infty} \frac{x^{n+2} a_{n}}{2} & =\sum_{n=2}^{\infty} \frac{a_{n-2} x^{n}}{2} \\
\sum_{n=0}^{\infty} \frac{x^{n+3} a_{n}}{6} & =\sum_{n=3}^{\infty} \frac{a_{n-3} x^{n}}{6} \\
\sum_{n=0}^{\infty} \frac{x^{n+4} a_{n}}{24} & =\sum_{n=4}^{\infty} \frac{a_{n-4} x^{n}}{24} \\
\sum_{n=0}^{\infty} \frac{x^{n+5} a_{n}}{120} & =\sum_{n=5}^{\infty} \frac{a_{n-5} x^{n}}{120} \\
\sum_{n=0}^{\infty} \frac{x^{n+6} a_{n}}{720} & =\sum_{n=6}^{\infty} \frac{a_{n-6} x^{n}}{720}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n}\right)+\left(\sum_{n=2}^{\infty} \frac{a_{n-2} x^{n}}{2}\right) \tag{3}\\
& +\left(\sum_{n=3}^{\infty} \frac{a_{n-3} x^{n}}{6}\right)+\left(\sum_{n=4}^{\infty} \frac{a_{n-4} x^{n}}{24}\right)+\left(\sum_{n=5}^{\infty} \frac{a_{n-5} x^{n}}{120}\right)+\left(\sum_{n=6}^{\infty} \frac{a_{n-6} x^{n}}{720}\right)=0
\end{align*}
$$

$n=0$ gives

$$
2 a_{2}+a_{0}=0
$$

$$
a_{2}=-\frac{a_{0}}{2}
$$

$n=1$ gives

$$
6 a_{3}+a_{1}+a_{0}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{a_{0}}{6}-\frac{a_{1}}{6}
$$

$n=2$ gives

$$
12 a_{4}+a_{2}+a_{1}+\frac{a_{0}}{2}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{4}=-\frac{a_{1}}{12}
$$

$n=3$ gives

$$
20 a_{5}+a_{3}+a_{2}+\frac{a_{1}}{2}+\frac{a_{0}}{6}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{5}=\frac{a_{0}}{40}-\frac{a_{1}}{60}
$$

$n=4$ gives

$$
30 a_{6}+a_{4}+a_{3}+\frac{a_{2}}{2}+\frac{a_{1}}{6}+\frac{a_{0}}{24}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{6}=\frac{a_{0}}{80}+\frac{a_{1}}{360}
$$

$n=5$ gives

$$
42 a_{7}+a_{5}+a_{4}+\frac{a_{3}}{2}+\frac{a_{2}}{6}+\frac{a_{1}}{24}+\frac{a_{0}}{120}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{7}=\frac{a_{0}}{315}+\frac{17 a_{1}}{5040}
$$

For $6 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(1+n)+a_{n}+a_{n-1}+\frac{a_{n-2}}{2}+\frac{a_{n-3}}{6}+\frac{a_{n-4}}{24}+\frac{a_{n-5}}{120}+\frac{a_{n-6}}{720}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{aligned}
a_{n+2}= & -\frac{720 a_{n}+720 a_{n-1}+360 a_{n-2}+120 a_{n-3}+30 a_{n-4}+6 a_{n-5}+a_{n-6}}{720(n+2)(1+n)} \\
(5)= & -\frac{a_{n}}{(n+2)(1+n)}-\frac{a_{n-6}}{720(n+2)(1+n)}-\frac{a_{n-5}}{120(n+2)(1+n)} \\
& -\frac{a_{n-4}}{24(n+2)(1+n)}-\frac{a_{n-3}}{6(n+2)(1+n)}-\frac{a_{n-2}}{2(n+2)(1+n)}-\frac{a_{n-1}}{(n+2)(1+n)}
\end{aligned}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{a_{0} x^{2}}{2}+\left(-\frac{a_{0}}{6}-\frac{a_{1}}{6}\right) x^{3}-\frac{a_{1} x^{4}}{12}+\left(\frac{a_{0}}{40}-\frac{a_{1}}{60}\right) x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{40} x^{5}\right) a_{0}+\left(x-\frac{1}{6} x^{3}-\frac{1}{12} x^{4}-\frac{1}{60} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{40} x^{5}\right) c_{1}+\left(x-\frac{1}{6} x^{3}-\frac{1}{12} x^{4}-\frac{1}{60} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

$$
y=1-\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{5}}{40}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=1-\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{5}}{40}+\frac{x^{6}}{80}+O\left(x^{6}\right) \tag{1}\\
& y=1-\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{5}}{40}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=1-\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{5}}{40}+\frac{x^{6}}{80}+O\left(x^{6}\right)
$$

Verified OK.

$$
y=1-\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{5}}{40}+O\left(x^{6}\right)
$$

Verified OK.

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
    trying a quadrature
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
    Change of variables used:
        [x = ln(t)]
    Linear ODE actually solved:
        u(t)+diff(u(t),t)+t*diff(diff(u(t),t),t) = 0
<- change of variables successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
Order:=6;
dsolve([diff(y(x),x$2)+exp(x)*y(x)=0,y(0) = 1, D(y)(0) = 0],y(x),type='series', x=0);
\[
y(x)=1-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{40} x^{5}+\mathrm{O}\left(x^{6}\right)
\]
```

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 56
AsymptoticDSolveValue[\{y''[x]+Exp[x]*y[x]==0,\{\}\},y[x],\{x,0,5\}]

$$
y(x) \rightarrow c_{2}\left(-\frac{x^{5}}{60}-\frac{x^{4}}{12}-\frac{x^{3}}{6}+x\right)+c_{1}\left(\frac{x^{5}}{40}-\frac{x^{3}}{6}-\frac{x^{2}}{2}+1\right)
$$

15.9 problem 5

15.9.1 Maple step by step solution

1128
Internal problem ID [6027]
Internal file name [OUTPUT/5275_Sunday_June_05_2022_03_29_13_PM_38106072/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 3. Linear equations with variable coefficients. Page 130
Problem number: 5.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_3rd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
y^{\prime \prime \prime}-x y=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=0, y^{\prime \prime}(0)=0\right]
$$

Unable to solve this ODE. Initial conditions are used to solve for the constants of integration.

15.9.1 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime \prime}-x y=0, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=0,\left.y^{\prime \prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k}
$$Rewrite ODE with series expansions

- Convert $x \cdot y$ to series expansion

$$
x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+1}
$$

- Shift index using $k->k-1$

$$
x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k}
$$

- Convert $y^{\prime \prime \prime}$ to series expansion

$$
y^{\prime \prime \prime}=\sum_{k=3}^{\infty} a_{k} k(k-1)(k-2) x^{k-3}
$$

- Shift index using $k->k+3$

$$
y^{\prime \prime \prime}=\sum_{k=0}^{\infty} a_{k+3}(k+3)(k+2)(k+1) x^{k}
$$

Rewrite ODE with series expansions

$$
6 a_{3}+\left(\sum_{k=1}^{\infty}\left(a_{k+3}(k+3)(k+2)(k+1)-a_{k-1}\right) x^{k}\right)=0
$$

- Each term must be 0
$6 a_{3}=0$
- Each term in the series must be 0, giving the recursion relation $\left(k^{3}+6 k^{2}+11 k+6\right) a_{k+3}-a_{k-1}=0$
- \quad Shift index using $k->k+1$
$\left((k+1)^{3}+6(k+1)^{2}+11 k+17\right) a_{k+4}-a_{k}=0$
- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=\frac{a_{k}}{k^{3}+9 k^{2}+26 k+24}, 6 a_{3}=0\right]
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying high order exact linear fully integrable
trying to convert to a linear ODE with constant coefficients
trying differential order: 3; missing the dependent variable
trying Louvillian solutions for 3rd order ODEs, imprimitive case
-> pFq: Equivalence to the 3F2 or one of its 3 confluent cases under a power @ Moebius
<- pFq successful: received ODE is equivalent to the OF2 ODE, case c = 0
```

Solution by Maple
Time used: 0.031 (sec). Leaf size: 14

```
dsolve([diff (y (x),x$3)-x*y(x)=0,y(0) = 1, D(y)(0) = 0, (D@@2)(y)(0) = 0],y(x), singsol=all)
```

$$
y(x)=\text { hypergeom }\left([],\left[\frac{1}{2}, \frac{3}{4}\right], \frac{x^{4}}{64}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 21
DSolve[\{y'''[x]-x*y[x]==0,\{y[0]==1,y'[0]==0,y'[0]==0\}\},y[x],x,IncludeSingularSolutions $->$ T

$$
y(x) \rightarrow{ }_{0} F_{2}\left(; \frac{1}{2}, \frac{3}{4} ; \frac{x^{4}}{64}\right)
$$

15.10 problem 6

15.10.1 Maple step by step solution

1139
Internal problem ID [6028]
Internal file name [OUTPUT/5276_Sunday_June_05_2022_03_29_14_PM_70586326/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 3. Linear equations with variable coefficients. Page 130
Problem number: 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[_Gegenbauer]

$$
\left(-x^{2}+1\right) y^{\prime \prime}-2 x y^{\prime}+\alpha(\alpha+1) y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{266}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{267}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =\frac{\alpha^{2} y+\alpha y-2 x y^{\prime}}{x^{2}-1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{\left(x^{2} \alpha^{2}+x^{2} \alpha-\alpha^{2}+6 x^{2}-\alpha+2\right) y^{\prime}-4 \alpha x y(\alpha+1)}{\left(x^{2}-1\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-\frac{8\left(\left(\left(\alpha^{2}+\alpha+3\right) x^{2}-\alpha^{2}-\alpha+3\right) x y^{\prime}-\frac{y \alpha\left(\left(\alpha^{2}+\alpha+18\right) x^{2}-\alpha^{2}-\alpha+6\right)(\alpha+1)}{8}\right)(x-1)(1+x)}{\left(x^{2}-1\right)^{4}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{(x-1)(1+x)\left(\left(\left(\alpha^{4}+2 \alpha^{3}+59 \alpha^{2}+58 \alpha+120\right) x^{4}+\left(-2 \alpha^{4}-4 \alpha^{3}-46 \alpha^{2}-44 \alpha+240\right) x^{2}+\alpha^{4}+\right.\right.}{\left(x^{2}-1\right)^{5}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =-\frac{18\left(\left(40+\left(x^{4}-2 x^{2}+1\right) \alpha^{4}+2\left(x^{4}-2 x^{2}+1\right) \alpha^{3}+\left(-\frac{26}{3} x^{2}-17+\frac{77}{3} x^{4}\right) \alpha^{2}+2\left(-9-\frac{10}{3} x^{2}+\frac{37}{3} x\right.\right.\right.}{}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-y(0) \alpha(\alpha+1) \\
& F_{1}=-y^{\prime}(0) \alpha^{2}-y^{\prime}(0) \alpha+2 y^{\prime}(0) \\
& F_{2}=y(0) \alpha^{4}+2 y(0) \alpha^{3}-5 y(0) \alpha^{2}-6 y(0) \alpha \\
& F_{3}=y^{\prime}(0) \alpha^{4}+2 y^{\prime}(0) \alpha^{3}-13 y^{\prime}(0) \alpha^{2}-14 y^{\prime}(0) \alpha+24 y^{\prime}(0) \\
& F_{4}=-y(0) \alpha^{6}-3 y(0) \alpha^{5}+23 y(0) \alpha^{4}+51 y(0) \alpha^{3}-94 y(0) \alpha^{2}-120 y(0) \alpha
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
y= & \left(1-\frac{1}{2} x^{2} \alpha^{2}-\frac{1}{2} x^{2} \alpha+\frac{1}{24} \alpha^{4} x^{4}+\frac{1}{12} \alpha^{3} x^{4}-\frac{5}{24} \alpha^{2} x^{4}-\frac{1}{4} \alpha x^{4}-\frac{1}{720} x^{6} \alpha^{6}-\frac{1}{240} x^{6} \alpha^{5}\right. \\
& \left.+\frac{23}{720} x^{6} \alpha^{4}+\frac{17}{240} x^{6} \alpha^{3}-\frac{47}{360} x^{6} \alpha^{2}-\frac{1}{6} x^{6} \alpha\right) y(0) \\
& +\left(x-\frac{1}{6} \alpha^{2} x^{3}-\frac{1}{6} \alpha x^{3}+\frac{1}{3} x^{3}+\frac{1}{120} x^{5} \alpha^{4}+\frac{1}{60} x^{5} \alpha^{3}-\frac{13}{120} x^{5} \alpha^{2}-\frac{7}{60} x^{5} \alpha+\frac{1}{5} x^{5}\right) y^{\prime}(0) \\
& +O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(-x^{2}+1\right) y^{\prime \prime}-2 x y^{\prime}+\left(\alpha^{2}+\alpha\right) y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(-x^{2}+1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)-2 x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\left(\alpha^{2}+\alpha\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{align*}
\sum_{n=2}^{\infty} & \left(-x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right) \tag{2}\\
& +\sum_{n=1}^{\infty}\left(-2 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty}\left(\alpha^{2}+\alpha\right) a_{n} x^{n}\right)=0
\end{align*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{gather*}
\sum_{n=2}^{\infty}\left(-x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
+\sum_{n=1}^{\infty}\left(-2 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty}\left(\alpha^{2}+\alpha\right) a_{n} x^{n}\right)=0
\end{gather*}
$$

$n=0$ gives

$$
\begin{aligned}
& 2 a_{2}+a_{0} \alpha(\alpha+1)=0 \\
& a_{2}=-\frac{1}{2} a_{0} \alpha^{2}-\frac{1}{2} a_{0} \alpha
\end{aligned}
$$

$n=1$ gives

$$
6 a_{3}-2 a_{1}+a_{1} \alpha(\alpha+1)=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{1}{6} a_{1} \alpha^{2}-\frac{1}{6} a_{1} \alpha+\frac{1}{3} a_{1}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
-n a_{n}(n-1)+(n+2) a_{n+2}(n+1)-2 n a_{n}+a_{n} \alpha(\alpha+1)=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n}\left(\alpha^{2}-n^{2}+\alpha-n\right)}{(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
-6 a_{2}+12 a_{4}+a_{2} \alpha(\alpha+1)=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{5}{24} a_{0} \alpha^{2}-\frac{1}{4} a_{0} \alpha+\frac{1}{24} a_{0} \alpha^{4}+\frac{1}{12} a_{0} \alpha^{3}
$$

For $n=3$ the recurrence equation gives

$$
-12 a_{3}+20 a_{5}+a_{3} \alpha(\alpha+1)=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=-\frac{13}{120} a_{1} \alpha^{2}-\frac{7}{60} a_{1} \alpha+\frac{1}{5} a_{1}+\frac{1}{120} a_{1} \alpha^{4}+\frac{1}{60} a_{1} \alpha^{3}
$$

For $n=4$ the recurrence equation gives

$$
-20 a_{4}+30 a_{6}+a_{4} \alpha(\alpha+1)=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{47}{360} a_{0} \alpha^{2}-\frac{1}{6} a_{0} \alpha+\frac{23}{720} a_{0} \alpha^{4}+\frac{17}{240} a_{0} \alpha^{3}-\frac{1}{720} a_{0} \alpha^{6}-\frac{1}{240} a_{0} \alpha^{5}
$$

For $n=5$ the recurrence equation gives

$$
-30 a_{5}+42 a_{7}+a_{5} \alpha(\alpha+1)=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{5}{63} a_{1} \alpha^{2}-\frac{37}{420} a_{1} \alpha+\frac{1}{7} a_{1}+\frac{41}{5040} a_{1} \alpha^{4}+\frac{29}{1680} a_{1} \alpha^{3}-\frac{1}{5040} a_{1} \alpha^{6}-\frac{1}{1680} a_{1} \alpha^{5}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
\begin{aligned}
y= & a_{0}+a_{1} x+\left(-\frac{1}{2} a_{0} \alpha^{2}-\frac{1}{2} a_{0} \alpha\right) x^{2}+\left(-\frac{1}{6} a_{1} \alpha^{2}-\frac{1}{6} a_{1} \alpha+\frac{1}{3} a_{1}\right) x^{3} \\
& +\left(-\frac{5}{24} a_{0} \alpha^{2}-\frac{1}{4} a_{0} \alpha+\frac{1}{24} a_{0} \alpha^{4}+\frac{1}{12} a_{0} \alpha^{3}\right) x^{4} \\
& +\left(-\frac{13}{120} a_{1} \alpha^{2}-\frac{7}{60} a_{1} \alpha+\frac{1}{5} a_{1}+\frac{1}{120} a_{1} \alpha^{4}+\frac{1}{60} a_{1} \alpha^{3}\right) x^{5}+\ldots
\end{aligned}
$$

Collecting terms, the solution becomes

$$
\begin{align*}
y= & \left(1+\left(-\frac{1}{2} \alpha^{2}-\frac{1}{2} \alpha\right) x^{2}+\left(-\frac{5}{24} \alpha^{2}-\frac{1}{4} \alpha+\frac{1}{24} \alpha^{4}+\frac{1}{12} \alpha^{3}\right) x^{4}\right) a_{0}+(x \\
& \left.+\left(-\frac{1}{6} \alpha^{2}-\frac{1}{6} \alpha+\frac{1}{3}\right) x^{3}+\left(-\frac{13}{120} \alpha^{2}-\frac{7}{60} \alpha+\frac{1}{5}+\frac{1}{120} \alpha^{4}+\frac{1}{60} \alpha^{3}\right) x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{align*}
$$

At $x=0$ the solution above becomes

$$
\begin{aligned}
y= & \left(1+\left(-\frac{1}{2} \alpha^{2}-\frac{1}{2} \alpha\right) x^{2}+\left(-\frac{5}{24} \alpha^{2}-\frac{1}{4} \alpha+\frac{1}{24} \alpha^{4}+\frac{1}{12} \alpha^{3}\right) x^{4}\right) c_{1}+(x \\
& \left.+\left(-\frac{1}{6} \alpha^{2}-\frac{1}{6} \alpha+\frac{1}{3}\right) x^{3}+\left(-\frac{13}{120} \alpha^{2}-\frac{7}{60} \alpha+\frac{1}{5}+\frac{1}{120} \alpha^{4}+\frac{1}{60} \alpha^{3}\right) x^{5}\right) c_{2}+O\left(x^{6}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
y= & \left(1-\frac{1}{2} x^{2} \alpha^{2}-\frac{1}{2} x^{2} \alpha+\frac{1}{24} \alpha^{4} x^{4}+\frac{1}{12} \alpha^{3} x^{4}-\frac{5}{24} \alpha^{2} x^{4}-\frac{1}{4} \alpha x^{4}-\frac{1}{720} x^{6} \alpha^{6}-\frac{1}{240} x^{6} \alpha^{5}\right. \\
& \left.+\frac{23}{720} x^{6} \alpha^{4}+\frac{17}{240} x^{6} \alpha^{3}-\frac{47}{360} x^{6} \alpha^{2}-\frac{1}{6} x^{6} \alpha\right) y(0)+\left(x-\frac{1}{6} \alpha^{2} x^{3}-\frac{1}{6} \alpha x^{3}+\frac{1}{3}\left(x^{3}\right)\right. \\
& \left.+\frac{1}{120} x^{5} \alpha^{4}+\frac{1}{60} x^{5} \alpha^{3}-\frac{13}{120} x^{5} \alpha^{2}-\frac{7}{60} x^{5} \alpha+\frac{1}{5} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \\
y= & \left(1+\left(-\frac{1}{2} \alpha^{2}-\frac{1}{2} \alpha\right) x^{2}+\left(-\frac{5}{24} \alpha^{2}-\frac{1}{4} \alpha+\frac{1}{24} \alpha^{4}+\frac{1}{12} \alpha^{3}\right) x^{4}\right) c_{1} \\
& +\left(x+\left(-\frac{1}{6} \alpha^{2}-\frac{1}{6} \alpha+\frac{1}{3}\right) x^{3}+\left(-\frac{13}{120} \alpha^{2}-\frac{7}{60} \alpha+\frac{1}{5}+\frac{1}{120} \alpha^{4}+\frac{1}{60} \alpha^{3}\right) x^{5}\right)(2) c_{2} \\
& +O\left(x^{6}\right)
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
y= & \left(1-\frac{1}{2} x^{2} \alpha^{2}-\frac{1}{2} x^{2} \alpha+\frac{1}{24} \alpha^{4} x^{4}+\frac{1}{12} \alpha^{3} x^{4}-\frac{5}{24} \alpha^{2} x^{4}-\frac{1}{4} \alpha x^{4}-\frac{1}{720} x^{6} \alpha^{6}-\frac{1}{240} x^{6} \alpha^{5}\right. \\
& \left.+\frac{23}{720} x^{6} \alpha^{4}+\frac{17}{240} x^{6} \alpha^{3}-\frac{47}{360} x^{6} \alpha^{2}-\frac{1}{6} x^{6} \alpha\right) y(0) \\
& +\left(x-\frac{1}{6} \alpha^{2} x^{3}-\frac{1}{6} \alpha x^{3}+\frac{1}{3} x^{3}+\frac{1}{120} x^{5} \alpha^{4}+\frac{1}{60} x^{5} \alpha^{3}-\frac{13}{120} x^{5} \alpha^{2}-\frac{7}{60} x^{5} \alpha+\frac{1}{5} x^{5}\right) y^{\prime}(0) \\
& +O\left(x^{6}\right)
\end{aligned}
$$

Verified OK.

$$
\begin{aligned}
y= & \left(1+\left(-\frac{1}{2} \alpha^{2}-\frac{1}{2} \alpha\right) x^{2}+\left(-\frac{5}{24} \alpha^{2}-\frac{1}{4} \alpha+\frac{1}{24} \alpha^{4}+\frac{1}{12} \alpha^{3}\right) x^{4}\right) c_{1}+(x \\
& \left.+\left(-\frac{1}{6} \alpha^{2}-\frac{1}{6} \alpha+\frac{1}{3}\right) x^{3}+\left(-\frac{13}{120} \alpha^{2}-\frac{7}{60} \alpha+\frac{1}{5}+\frac{1}{120} \alpha^{4}+\frac{1}{60} \alpha^{3}\right) x^{5}\right) c_{2}+O\left(x^{6}\right)
\end{aligned}
$$

Verified OK.

15.10.1 Maple step by step solution

Let's solve

$$
\left(-x^{2}+1\right) y^{\prime \prime}-2 x y^{\prime}+\left(\alpha^{2}+\alpha\right) y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{\alpha(\alpha+1) y}{x^{2}-1}-\frac{2 x y^{\prime}}{x^{2}-1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{2 x y^{\prime}}{x^{2}-1}-\frac{\alpha(\alpha+1) y}{x^{2}-1}=0
$$

Check to see if x_{0} is a regular singular point

- Define functions

$$
\left[P_{2}(x)=\frac{2 x}{x^{2}-1}, P_{3}(x)=-\frac{\alpha(\alpha+1)}{x^{2}-1}\right]
$$

- $(1+x) \cdot P_{2}(x)$ is analytic at $x=-1$

$$
\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=1
$$

- $(1+x)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$

$$
\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0
$$

- $x=-1$ is a regular singular point

Check to see if x_{0} is a regular singular point

$$
x_{0}=-1
$$

- Multiply by denominators
$\left(x^{2}-1\right) y^{\prime \prime}+2 x y^{\prime}-\alpha(\alpha+1) y=0$
- \quad Change variables using $x=u-1$ so that the regular singular point is at $u=0$
$\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(2 u-2)\left(\frac{d}{d u} y(u)\right)+\left(-\alpha^{2}-\alpha\right) y(u)=0$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=1$.. 2

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
-2 a_{0} r^{2} u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-2 a_{k+1}(k+1+r)^{2}-a_{k}(r+1+k+\alpha)(-r-k+\alpha)\right) u^{k+r}\right)=0
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation

$$
-2 r^{2}=0
$$

- Values of r that satisfy the indicial equation

$$
r=0
$$

- Each term in the series must be 0, giving the recursion relation

$$
-2 a_{k+1}(k+1)^{2}+a_{k}(1+k+\alpha)(k-\alpha)=0
$$

- Recursion relation that defines series solution to ODE

$$
a_{k+1}=-\frac{a_{k}(1+k+\alpha)(-k+\alpha)}{2(k+1)^{2}}
$$

- \quad Recursion relation for $r=0$

$$
a_{k+1}=-\frac{a_{k}(1+k+\alpha)(-k+\alpha)}{2(k+1)^{2}}
$$

- \quad Solution for $r=0$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=-\frac{a_{k}(1+k+\alpha)(-k+\alpha)}{2(k+1)^{2}}\right]
$$

- \quad Revert the change of variables $u=1+x$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k}, a_{k+1}=-\frac{a_{k}(1+k+\alpha)(-k+\alpha)}{2(k+1)^{2}}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    <- Legendre successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 101

```
Order:=6;
dsolve((1-x^2)*diff (y(x),x$2)-2*x*diff (y(x),x)+alpha*(alpha+1)*y(x)=0,y(x),type='series', x=0
y(x)=(1-\frac{\alpha(\alpha+1)\mp@subsup{x}{}{2}}{2}+\frac{\alpha(\mp@subsup{\alpha}{}{3}+2\mp@subsup{\alpha}{}{2}-5\alpha-6)\mp@subsup{x}{}{4}}{24})y(0)
\[
+\left(x-\frac{\left(\alpha^{2}+\alpha-2\right) x^{3}}{6}+\frac{\left(\alpha^{4}+2 \alpha^{3}-13 \alpha^{2}-14 \alpha+24\right) x^{5}}{120}\right) D(y)(0)+O\left(x^{6}\right)
\]
```

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 127
AsymptoticDSolveValue $\left[\left(1-x^{\wedge} 2\right) * y\right.$ ' $\quad[\mathrm{x}]-2 * x * y$ ' $[\mathrm{x}]+\backslash[$ Alpha $\left.] *(\backslash[A 1 \mathrm{pha}]+1) * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
\begin{aligned}
y(x) \rightarrow & c_{2}\left(\frac{1}{60}\left(-\alpha^{2}-\alpha\right) x^{5}-\frac{1}{120}\left(-\alpha^{2}-\alpha\right)\left(\alpha^{2}+\alpha\right) x^{5}-\frac{1}{10}\left(\alpha^{2}+\alpha\right) x^{5}+\frac{x^{5}}{5}\right. \\
& \left.-\frac{1}{6}\left(\alpha^{2}+\alpha\right) x^{3}+\frac{x^{3}}{3}+x\right)+c_{1}\left(\frac{1}{24}\left(\alpha^{2}+\alpha\right)^{2} x^{4}-\frac{1}{4}\left(\alpha^{2}+\alpha\right) x^{4}-\frac{1}{2}\left(\alpha^{2}+\alpha\right) x^{2}+1\right)
\end{aligned}
$$

15.11 problem 7

15.11.1 Solving as second order change of variable on x method 2 ode . 1143
15.11.2 Solving as second order change of variable on x method 1 ode . 1146
15.11.3 Solving using Kovacic algorithm 1148
15.11.4 Maple step by step solution . 1154

Internal problem ID [6029]
Internal file name [OUTPUT/5277_Sunday_June_05_2022_03_29_16_PM_49957946/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 3. Linear equations with variable coefficients. Page 130
Problem number: 7 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_change__of_variable_on_x_method_1", "second_order_change_of__variable_on_x_method_2"

Maple gives the following as the ode type

```
[_Gegenbauer, [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
```

$$
\left(-x^{2}+1\right) y^{\prime \prime}-x y^{\prime}+\alpha^{2} y=0
$$

15.11.1 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
\left(-x^{2}+1\right) y^{\prime \prime}-x y^{\prime}+\alpha^{2} y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =\frac{x}{x^{2}-1} \\
q(x) & =\frac{\alpha^{2}}{-x^{2}+1}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{x}{x^{2}-1} d x\right)} d x \\
& =\int e^{-\frac{\ln (x-1)}{2}-\frac{\ln (1+x)}{2}} d x \\
& =\int \frac{1}{\sqrt{x-1} \sqrt{1+x}} d x \\
& =\frac{\sqrt{(x-1)(1+x)} \ln \left(x+\sqrt{x^{2}-1}\right)}{\sqrt{x-1} \sqrt{1+x}} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{\alpha^{2}}{-x^{2}+1}}{\frac{1}{(x-1)(1+x)}} \\
& =-\alpha^{2} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\alpha^{2} y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=-\alpha^{2}$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}-\alpha^{2} \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
-\alpha^{2}+\lambda^{2}=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-\alpha^{2}$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)\left(-\alpha^{2}\right)} \\
& = \pm \sqrt{\alpha^{2}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+\sqrt{\alpha^{2}} \\
& \lambda_{2}=-\sqrt{\alpha^{2}}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=\sqrt{\alpha^{2}} \\
& \lambda_{2}=-\sqrt{\alpha^{2}}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{\left(\sqrt{\alpha^{2}}\right) \tau}+c_{2} e^{\left(-\sqrt{\alpha^{2}}\right) \tau}
\end{aligned}
$$

Or

$$
y(\tau)=c_{1} \mathrm{e}^{\sqrt{\alpha^{2}} \tau}+c_{2} \mathrm{e}^{-\sqrt{\alpha^{2}} \tau}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=c_{1}\left(x+\sqrt{x^{2}-1}\right)^{\alpha}+c_{2}\left(x+\sqrt{x^{2}-1}\right)^{-\alpha}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}\left(x+\sqrt{x^{2}-1}\right)^{\alpha}+c_{2}\left(x+\sqrt{x^{2}-1}\right)^{-\alpha} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}\left(x+\sqrt{x^{2}-1}\right)^{\alpha}+c_{2}\left(x+\sqrt{x^{2}-1}\right)^{-\alpha}
$$

Verified OK.

15.11.2 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
\left(-x^{2}+1\right) y^{\prime \prime}-x y^{\prime}+\alpha^{2} y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =\frac{x}{x^{2}-1} \\
q(x) & =-\frac{\alpha^{2}}{x^{2}-1}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{-\frac{\alpha^{2}}{x^{2}-1}}}{c} \tag{6}\\
\tau^{\prime \prime} & =\frac{\alpha^{2} x}{c \sqrt{-\frac{\alpha^{2}}{x^{2}-1}}\left(x^{2}-1\right)^{2}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{\alpha^{2} x}{c \sqrt{-\frac{\alpha^{2}}{x^{2}-1}\left(x^{2}-1\right)^{2}}}+\frac{x}{x^{2}-1} \frac{\sqrt{-\frac{\alpha^{2}}{x^{2}-1}}}{c}}{\left(\frac{\sqrt{-\frac{\alpha^{2}}{x^{2}-1}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{-\frac{\alpha^{2}}{x^{2}-1}} d x}{c} \\
& =\frac{\sqrt{-\frac{\alpha^{2}}{x^{2}-1}} \sqrt{x^{2}-1} \ln \left(x+\sqrt{x^{2}-1}\right)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
\begin{aligned}
y= & c_{1} \cos \left(\alpha \sqrt{-\frac{1}{x^{2}-1}} \sqrt{x^{2}-1} \ln \left(x+\sqrt{x^{2}-1}\right)\right) \\
& +c_{2} \sin \left(\alpha \sqrt{-\frac{1}{x^{2}-1}} \sqrt{x^{2}-1} \ln \left(x+\sqrt{x^{2}-1}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} \cos \left(\alpha \sqrt{-\frac{1}{x^{2}-1}} \sqrt{x^{2}-1} \ln \left(x+\sqrt{x^{2}-1}\right)\right) \tag{1}\\
& +c_{2} \sin \left(\alpha \sqrt{-\frac{1}{x^{2}-1}} \sqrt{x^{2}-1} \ln \left(x+\sqrt{x^{2}-1}\right)\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} \cos \left(\alpha \sqrt{-\frac{1}{x^{2}-1}} \sqrt{x^{2}-1} \ln \left(x+\sqrt{x^{2}-1}\right)\right) \\
& +c_{2} \sin \left(\alpha \sqrt{-\frac{1}{x^{2}-1}} \sqrt{x^{2}-1} \ln \left(x+\sqrt{x^{2}-1}\right)\right)
\end{aligned}
$$

Verified OK.

15.11.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
\left(-x^{2}+1\right) y^{\prime \prime}-x y^{\prime}+\alpha^{2} y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=-x^{2}+1 \\
& B=-x \tag{3}\\
& C=\alpha^{2}
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4 x^{2} \alpha^{2}-4 \alpha^{2}-x^{2}-2}{4\left(x^{2}-1\right)^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 x^{2} \alpha^{2}-4 \alpha^{2}-x^{2}-2 \\
& t=4\left(x^{2}-1\right)^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{4 x^{2} \alpha^{2}-4 \alpha^{2}-x^{2}-2}{4\left(x^{2}-1\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 190: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-2 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4\left(x^{2}-1\right)^{2}$. There is a pole at $x=1$ of order 2 . There is a pole at $x=-1$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Unable to find solution using case one
Attempting to find a solution using case $n=2$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{3}{16(x-1)^{2}}+\frac{\frac{1}{16}+\frac{\alpha^{2}}{2}}{x-1}-\frac{3}{16(1+x)^{2}}+\frac{-\frac{\alpha^{2}}{2}-\frac{1}{16}}{1+x}
$$

For the pole at $x=1$ let b be the coefficient of $\frac{1}{(x-1)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{3}{16}$. Hence

$$
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{1,2,3\}
\end{aligned}
$$

For the pole at $x=-1$ let b be the coefficient of $\frac{1}{(1+x)^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{3}{16}$. Hence

$$
\begin{aligned}
E_{c} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{1,2,3\}
\end{aligned}
$$

Since the order of r at ∞ is 2 then let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{4 x^{2} \alpha^{2}-4 \alpha^{2}-x^{2}-2}{4\left(x^{2}-1\right)^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=1$. Hence

$$
\begin{aligned}
E_{\infty} & =\{2,2+2 \sqrt{1+4 b}, 2-2 \sqrt{1+4 b}\} \\
& =\{2\}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ for case 2 of Kovacic algorithm.

pole c location	pole order	E_{c}
1	2	$\{1,2,3\}$
-1	2	$\{1,2,3\}$

Order of r at ∞	E_{∞}
2	$\{2\}$

Using the family $\left\{e_{1}, e_{2}, \ldots, e_{\infty}\right\}$ given by

$$
e_{1}=1, e_{2}=1, e_{\infty}=2
$$

Gives a non negative integer d (the degree of the polynomial $p(x)$), which is generated using

$$
\begin{aligned}
d & =\frac{1}{2}\left(e_{\infty}-\sum_{c \in \Gamma} e_{c}\right) \\
& =\frac{1}{2}(2-(1+(1))) \\
& =0
\end{aligned}
$$

We now form the following rational function

$$
\begin{aligned}
\theta & =\frac{1}{2} \sum_{c \in \Gamma} \frac{e_{c}}{x-c} \\
& =\frac{1}{2}\left(\frac{1}{(x-(1))}+\frac{1}{(x-(-1))}\right) \\
& =\frac{1}{2 x-2}+\frac{1}{2+2 x}
\end{aligned}
$$

Now we search for a monic polynomial $p(x)$ of degree $d=0$ such that

$$
\begin{equation*}
p^{\prime \prime \prime}+3 \theta p^{\prime \prime}+\left(3 \theta^{2}+3 \theta^{\prime}-4 r\right) p^{\prime}+\left(\theta^{\prime \prime}+3 \theta \theta^{\prime}+\theta^{3}-4 r \theta-2 r^{\prime}\right) p=0 \tag{1A}
\end{equation*}
$$

Since $d=0$, then letting

$$
\begin{equation*}
p=1 \tag{2A}
\end{equation*}
$$

Substituting p and θ into Eq. (1A) gives

$$
0=0
$$

And solving for p gives

$$
p=1
$$

Now that $p(x)$ is found let

$$
\begin{aligned}
\phi & =\theta+\frac{p^{\prime}}{p} \\
& =\frac{1}{2 x-2}+\frac{1}{2+2 x}
\end{aligned}
$$

Let ω be the solution of

$$
\omega^{2}-\phi \omega+\left(\frac{1}{2} \phi^{\prime}+\frac{1}{2} \phi^{2}-r\right)=0
$$

Substituting the values for ϕ and r into the above equation gives

$$
w^{2}-\left(\frac{1}{2 x-2}+\frac{1}{2+2 x}\right) w+\frac{-4 x^{2} \alpha^{2}+4 \alpha^{2}+x^{2}}{4\left(x^{2}-1\right)^{2}}=0
$$

Solving for ω gives

$$
\omega=\frac{x+2 \alpha \sqrt{x^{2}-1}}{2(x-1)(1+x)}
$$

Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{x+2 \alpha \sqrt{x^{2}-1}}{2(x-1)(1+x)} d x} \\
& =\left(x^{2}-1\right)^{\frac{1}{4}}\left(x+\sqrt{x^{2}-1}\right)^{\alpha}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-x}{-x^{2}+1} d x} \\
& =z_{1} e^{-\frac{\ln (x-1)}{4}-\frac{\ln (1+x)}{4}} \\
& =z_{1}\left(\frac{1}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{\left(x^{2}-1\right)^{\frac{1}{4}}\left(x+\sqrt{x^{2}-1}\right)^{\alpha}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-x}{-x^{2}+1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{\ln (x-1)}{2}-\frac{\ln (1+x)}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{\left(x+\sqrt{x^{2}-1}\right)^{-2 \alpha}}{2 \alpha}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y= & c_{1} y_{1}+c_{2} y_{2} \\
= & c_{1}\left(\frac{\left(x^{2}-1\right)^{\frac{1}{4}}\left(x+\sqrt{x^{2}-1}\right)^{\alpha}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}\right) \\
& +c_{2}\left(\frac{\left(x^{2}-1\right)^{\frac{1}{4}}\left(x+\sqrt{x^{2}-1}\right)^{\alpha}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}\left(-\frac{\left(x+\sqrt{x^{2}-1}\right)^{-2 \alpha}}{2 \alpha}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}\left(x^{2}-1\right)^{\frac{1}{4}}\left(x+\sqrt{x^{2}-1}\right)^{\alpha}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}-\frac{c_{2}\left(x^{2}-1\right)^{\frac{1}{4}}\left(x+\sqrt{x^{2}-1}\right)^{-\alpha}}{2 \alpha(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}\left(x^{2}-1\right)^{\frac{1}{4}}\left(x+\sqrt{x^{2}-1}\right)^{\alpha}}{(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}-\frac{c_{2}\left(x^{2}-1\right)^{\frac{1}{4}}\left(x+\sqrt{x^{2}-1}\right)^{-\alpha}}{2 \alpha(x-1)^{\frac{1}{4}}(1+x)^{\frac{1}{4}}}
$$

Verified OK.

15.11.4 Maple step by step solution

Let's solve
$\left(-x^{2}+1\right) y^{\prime \prime}-x y^{\prime}+\alpha^{2} y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate $2 n d$ derivative
$y^{\prime \prime}=-\frac{x y^{\prime}}{x^{2}-1}+\frac{\alpha^{2} y}{x^{2}-1}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{x y^{\prime}}{x^{2}-1}-\frac{\alpha^{2} y}{x^{2}-1}=0$
$\square \quad$ Check to see if x_{0} is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{x}{x^{2}-1}, P_{3}(x)=-\frac{\alpha^{2}}{x^{2}-1}\right]$
- $(1+x) \cdot P_{2}(x)$ is analytic at $x=-1$
$\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=\frac{1}{2}$
- $(1+x)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$
$\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0$
- $x=-1$ is a regular singular point

Check to see if x_{0} is a regular singular point
$x_{0}=-1$

- Multiply by denominators
$\left(x^{2}-1\right) y^{\prime \prime}+x y^{\prime}-\alpha^{2} y=0$
- \quad Change variables using $x=u-1$ so that the regular singular point is at $u=0$
$\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(u-1)\left(\frac{d}{d u} y(u)\right)-\alpha^{2} y(u)=0$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=1 . .2$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
-a_{0} r(-1+2 r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-a_{1+k}(1+k+r)(1+2 k+2 r)-a_{k}(\alpha+k+r)(\alpha-k-r)\right) u^{k+r}\right.
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$-r(-1+2 r)=0$
- Values of r that satisfy the indicial equation
$r \in\left\{0, \frac{1}{2}\right\}$
- Each term in the series must be 0 , giving the recursion relation

$$
-2\left(\frac{1}{2}+k+r\right)(1+k+r) a_{1+k}+a_{k}(\alpha+k+r)(k+r-\alpha)=0
$$

- Recursion relation that defines series solution to ODE

$$
a_{1+k}=-\frac{a_{k}(\alpha+k+r)(\alpha-k-r)}{(1+2 k+2 r)(1+k+r)}
$$

- Recursion relation for $r=0$
$a_{1+k}=-\frac{a_{k}(\alpha+k)(\alpha-k)}{(1+2 k)(1+k)}$
- \quad Solution for $r=0$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{1+k}=-\frac{a_{k}(\alpha+k)(\alpha-k)}{(1+2 k)(1+k)}\right]
$$

- \quad Revert the change of variables $u=1+x$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k}, a_{1+k}=-\frac{a_{k}(\alpha+k)(\alpha-k)}{(1+2 k)(1+k)}\right]
$$

- Recursion relation for $r=\frac{1}{2}$

$$
a_{1+k}=-\frac{a_{k}\left(\alpha+k+\frac{1}{2}\right)\left(\alpha-k-\frac{1}{2}\right)}{(2+2 k)\left(\frac{3}{2}+k\right)}
$$

- \quad Solution for $r=\frac{1}{2}$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{1}{2}}, a_{1+k}=-\frac{a_{k}\left(\alpha+k+\frac{1}{2}\right)\left(\alpha-k-\frac{1}{2}\right)}{(2+2 k)\left(\frac{3}{2}+k\right)}\right]
$$

- \quad Revert the change of variables $u=1+x$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k+\frac{1}{2}}, a_{1+k}=-\frac{a_{k}\left(\alpha+k+\frac{1}{2}\right)\left(\alpha-k-\frac{1}{2}\right)}{(2+2 k)\left(\frac{3}{2}+k\right)}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(1+x)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}(1+x)^{k+\frac{1}{2}}\right), a_{k+1}=-\frac{a_{k}(\alpha+k)(\alpha-k)}{(1+2 k)(k+1)}, b_{k+1}=-\frac{b_{k}\left(\alpha+k+\frac{1}{2}\right)\left(\alpha-k-\frac{1}{2}\right)}{(2 k+2)\left(\frac{3}{2}+k\right)}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 33
dsolve($\left(1-x^{\wedge} 2\right) * \operatorname{diff}(y(x), x \$ 2)-x * \operatorname{diff}(y(x), x)+\operatorname{alpha}{ }^{\wedge} 2 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1}\left(x+\sqrt{x^{2}-1}\right)^{-\alpha}+c_{2}\left(x+\sqrt{x^{2}-1}\right)^{\alpha}
$$

\checkmark Solution by Mathematica
Time used: 0.089 (sec). Leaf size: 91

DSolve[(1-x~2)*y''[x]-x*y'[x]+$$
Alpha] \(2 * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
y(x) \rightarrow & c_{1} \cosh \left(\frac{1}{2} \alpha\left(\log \left(1-\frac{x}{\sqrt{x^{2}-1}}\right)-\log \left(\frac{x}{\sqrt{x^{2}-1}}+1\right)\right)\right) \\
& -i c_{2} \sinh \left(\frac{1}{2} \alpha\left(\log \left(1-\frac{x}{\sqrt{x^{2}-1}}\right)-\log \left(\frac{x}{\sqrt{x^{2}-1}}+1\right)\right)\right)
\end{aligned}
$$

15.12 problem 8

15.12.1 Maple step by step solution . 1158

Internal problem ID [6030]
Internal file name [OUTPUT/5278_Sunday_June_05_2022_03_29_18_PM_68325152/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 3. Linear equations with variable coefficients. Page 130
Problem number: 8.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
Unable to solve or complete the solution.

$$
y^{\prime \prime}-2 x y^{\prime}+2 \alpha y=0
$$

15.12.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-2 x y^{\prime}+2 \alpha y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
$\square \quad$ Rewrite DE with series expansions
- Convert $x \cdot y^{\prime}$ to series expansion

$$
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}
$$

- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$

$$
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
$$

Rewrite DE with series expansions

$$
\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)+2 a_{k}(\alpha-k)\right) x^{k}=0
$$

- Each term in the series must be 0 , giving the recursion relation

$$
\left(k^{2}+3 k+2\right) a_{k+2}-2 a_{k}(k-\alpha)=0
$$

- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{2 a_{k}(\alpha-k)}{k^{2}+3 k+2}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
        -> hyper3: Equivalence to 1F1 under a power @ Moebius
        <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
    <- Kummer successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.079 (sec). Leaf size: 31
dsolve(diff $(y(x), x \$ 2)-2 * x * \operatorname{diff}(y(x), x)+2 * \operatorname{lilpha*y}(x)=0, y(x)$, singsol=all)

$$
y(x)=x\left(\text { KummerM }\left(\frac{1}{2}-\frac{\alpha}{2}, \frac{3}{2}, x^{2}\right) c_{1}+\operatorname{KummerU}\left(\frac{1}{2}-\frac{\alpha}{2}, \frac{3}{2}, x^{2}\right) c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.062 (sec). Leaf size: 91

DSolve[(1- $\left.x^{\wedge} 2\right) * y^{\prime}$ '[x]-x*y'[x]+\[Alpha] $2 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
y(x) \rightarrow & c_{1} \cosh \left(\frac{1}{2} \alpha\left(\log \left(1-\frac{x}{\sqrt{x^{2}-1}}\right)-\log \left(\frac{x}{\sqrt{x^{2}-1}}+1\right)\right)\right) \\
& -i c_{2} \sinh \left(\frac{1}{2} \alpha\left(\log \left(1-\frac{x}{\sqrt{x^{2}-1}}\right)-\log \left(\frac{x}{\sqrt{x^{2}-1}}+1\right)\right)\right)
\end{aligned}
$$

16 Chapter 4. Linear equations with Regular Singular Points. Page 149

16.1 problem 1(a) . 1162
16.2 problem 1(b) . 1176
16.3 problem 1(c) . 1193
16.4 problem 1(d) . 1209
16.5 problem 1(e) . 1237
16.6 problem 2(a) . 1244
16.7 problem 2(b) . 1272
16.8 problem 2(c) . 1289
16.9 problem 2(d) . 1304

16.1 problem 1(a)

16.1.1 Solving as second order euler ode ode 1162
16.1.2 Solving as second order change of variable on x method 2 ode . 1163
16.1.3 Solving as second order change of variable on y method 2 ode . 1166
16.1.4 Solving using Kovacic algorithm 1168
16.1.5 Maple step by step solution . 1173

Internal problem ID [6031]
Internal file name [OUTPUT/5279_Sunday_June_05_2022_03_29_20_PM_47389931/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 149
Problem number: 1(a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second__order_change_of_cvariable_on_x_method_2", "second_order_change_of__variable_on_y__method__2"

Maple gives the following as the ode type

```
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F( x)]•]
```

$$
x^{2} y^{\prime \prime}+2 x y^{\prime}-6 y=0
$$

16.1.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+2 x r x^{r-1}-6 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+2 r x^{r}-6 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+2 r-6=0
$$

Or

$$
\begin{equation*}
r^{2}+r-6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-3 \\
& r_{2}=2
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{x^{3}}+c_{2} x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x^{3}}+c_{2} x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x^{3}}+c_{2} x^{2}
$$

Verified OK.

16.1.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+2 x y^{\prime}-6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=-\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0$. Eq (4) simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{2}{x} d x\right)} d x \\
& =\int e^{-2 \ln (x)} d x \\
& =\int \frac{1}{x^{2}} d x \\
& =-\frac{1}{x} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{6}{x^{2}}}{\frac{1}{x^{4}}} \\
& =-6 x^{2} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-6 x^{2} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
-6 x^{2}=-\frac{6}{\tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{6 y(\tau)}{\tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}-6 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
\tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}-6 \tau^{r}=0
$$

Simplifying gives

$$
r(r-1) \tau^{r}+0 \tau^{r}-6 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
r(r-1)+0-6=0
$$

Or

$$
\begin{equation*}
r^{2}-r-6=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-2 \\
& r_{2}=3
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=\frac{c_{1}}{\tau^{2}}+c_{2} \tau^{3}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} x^{5}-c_{2}}{x^{3}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x^{5}-c_{2}}{x^{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} x^{5}-c_{2}}{x^{3}}
$$

Verified OK.

16.1.3 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+2 x y^{\prime}-6 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=-\frac{6}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{2 n}{x^{2}}-\frac{6}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=2 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{6 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{6 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{6 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{6 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{6}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{6}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{6}{x} d x \\
\ln (u) & =-6 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-6 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{6}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{5 x^{5}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{5 x^{5}}+c_{2}\right) x^{2} \\
& =\frac{5 c_{2} x^{5}-c_{1}}{5 x^{3}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{5 x^{5}}+c_{2}\right) x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(-\frac{c_{1}}{5 x^{5}}+c_{2}\right) x^{2}
$$

Verified OK.

16.1.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+2 x y^{\prime}-6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=2 x \tag{3}\\
& C=-6
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{6}{x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=6 \\
& t=x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{6}{x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 193: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{6}{x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=6$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=3 \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-2
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{6}{x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=6$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=3 \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-2
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{6}{x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	3	-2

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	3	-2

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=-2$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-2-(-2) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{2}{x}+(-)(0) \\
& =-\frac{2}{x} \\
& =-\frac{2}{x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{2}{x}\right)(0)+\left(\left(\frac{2}{x^{2}}\right)+\left(-\frac{2}{x}\right)^{2}-\left(\frac{6}{x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\ln (x)} \\
& =z_{1}\left(\frac{1}{x}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x^{3}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{5}}{5}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x^{3}}\right)+c_{2}\left(\frac{1}{x^{3}}\left(\frac{x^{5}}{5}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x^{3}}+\frac{c_{2} x^{2}}{5} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x^{3}}+\frac{c_{2} x^{2}}{5}
$$

Verified OK.

16.1.5 Maple step by step solution

Let's solve
$x^{2} y^{\prime \prime}+2 x y^{\prime}-6 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{2 y^{\prime}}{x}+\frac{6 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{2 y^{\prime}}{x}-\frac{6 y}{x^{2}}=0
$$

- Multiply by denominators of the ODE

$$
x^{2} y^{\prime \prime}+2 x y^{\prime}-6 y=0
$$

- Make a change of variables

$$
t=\ln (x)
$$

Substitute the change of variables back into the ODE

- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{d}{d t} y(t), 2 \frac{d}{x^{2}} y(t)-6 y(t)=0\right.$
- \quad Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)+\frac{d}{d t} y(t)-6 y(t)=0
$$

- Characteristic polynomial of ODE
$r^{2}+r-6=0$
- Factor the characteristic polynomial
$(r+3)(r-2)=0$
- Roots of the characteristic polynomial

$$
r=(-3,2)
$$

- $\quad 1$ st solution of the ODE
$y_{1}(t)=\mathrm{e}^{-3 t}$
- \quad 2nd solution of the ODE

$$
y_{2}(t)=\mathrm{e}^{2 t}
$$

- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- \quad Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{2 t}
$$

- \quad Change variables back using $t=\ln (x)$

$$
y=\frac{c_{1}}{x^{3}}+c_{2} x^{2}
$$

- \quad Simplify

$$
y=\frac{c_{1}}{x^{3}}+c_{2} x^{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

```
dsolve(x^2*\operatorname{diff}(y(x),x$2)+2*x*\operatorname{diff}(y(x),x)-6*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{c_{1} x^{5}+c_{2}}{x^{3}}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 18
DSolve $[x \sim 2 * y$ ' ' $[x]+2 * x * y$ ' $[x]-6 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{c_{2} x^{5}+c_{1}}{x^{3}}
$$

16.2 problem 1(b)

16.2.1 Solving as second order euler ode ode 1176
16.2.2 Solving as second order change of variable on x method 2 ode . 1177
16.2.3 Solving as second order change of variable on y method 2 ode . 1180
16.2.4 Solving as second order ode non constant coeff transformation on B ode
16.2.5 Solving using Kovacic algorithm 1185
16.2.6 Maple step by step solution . 1190

Internal problem ID [6032]
Internal file name [OUTPUT/5280_Sunday_June_05_2022_03_29_22_PM_91398161/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 149
Problem number: 1(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_2", "second_order_change_of__variable_on_y_method_2", "second_order_ode__non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type

```
[[_Emden, _Fowler]]
```

$$
2 x^{2} y^{\prime \prime}+x y^{\prime}-y=0
$$

16.2.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
2 x^{2}(r(r-1)) x^{r-2}+x r x^{r-1}-x^{r}=0
$$

Simplifying gives

$$
2 r(r-1) x^{r}+r x^{r}-x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
2 r(r-1)+r-1=0
$$

Or

$$
\begin{equation*}
2 r^{2}-r-1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=-\frac{1}{2}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=c_{1} x+\frac{c_{2}}{\sqrt{x}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x+\frac{c_{2}}{\sqrt{x}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x+\frac{c_{2}}{\sqrt{x}}
$$

Verified OK.

16.2.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
2 x^{2} y^{\prime \prime}+x y^{\prime}-y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{2 x} \\
& q(x)=-\frac{1}{2 x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{2 x} d x\right)} d x \\
& =\int e^{-\frac{\ln (x)}{2}} d x \\
& =\int \frac{1}{\sqrt{x}} d x \\
& =2 \sqrt{x} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{1}{2 x^{2}}}{\frac{1}{x}} \\
& =-\frac{1}{2 x} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{y(\tau)}{2 x} & =0
\end{aligned}
$$

But in terms of τ

$$
-\frac{1}{2 x}=-\frac{2}{\tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{2 y(\tau)}{\tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}-2 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
\tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}-2 \tau^{r}=0
$$

Simplifying gives

$$
r(r-1) \tau^{r}+0 \tau^{r}-2 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
r(r-1)+0-2=0
$$

Or

$$
\begin{equation*}
r^{2}-r-2=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=2
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r_{1}}$ and $y_{2}=\tau^{r_{2}}$. Hence

$$
y(\tau)=\frac{c_{1}}{\tau}+c_{2} \tau^{2}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1}}{2 \sqrt{x}}+4 c_{2} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{2 \sqrt{x}}+4 c_{2} x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{2 \sqrt{x}}+4 c_{2} x
$$

Verified OK.

16.2.3 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
2 x^{2} y^{\prime \prime}+x y^{\prime}-y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
p(x) & =\frac{1}{2 x} \\
q(x) & =-\frac{1}{2 x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n}{2 x^{2}}-\frac{1}{2 x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=1 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\frac{5 v^{\prime}(x)}{2 x} & =0 \\
v^{\prime \prime}(x)+\frac{5 v^{\prime}(x)}{2 x} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{5 u(x)}{2 x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{5 u}{2 x}
\end{aligned}
$$

Where $f(x)=-\frac{5}{2 x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{5}{2 x} d x \\
\int \frac{1}{u} d u & =\int-\frac{5}{2 x} d x \\
\ln (u) & =-\frac{5 \ln (x)}{2}+c_{1} \\
u & =\mathrm{e}^{-\frac{5 \ln (x)}{2}+c_{1}} \\
& =\frac{c_{1}}{x^{\frac{5}{2}}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{2 c_{1}}{3 x^{\frac{3}{2}}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{2 c_{1}}{3 x^{\frac{3}{2}}}+c_{2}\right) x \\
& =\left(-\frac{2 c_{1}}{3 x^{\frac{3}{2}}}+c_{2}\right) x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(-\frac{2 c_{1}}{3 x^{\frac{3}{2}}}+c_{2}\right) x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(-\frac{2 c_{1}}{3 x^{\frac{3}{2}}}+c_{2}\right) x
$$

Verified OK.

16.2.4 Solving as second order ode non constant coeff transformation on B ode

Given an ode of the form

$$
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
$$

This method reduces the order ode the ODE by one by applying the transformation

$$
y=B v
$$

This results in

$$
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
$$

And now the original ode becomes

$$
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
$$

If the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero, then this method works and can be used to solve

$$
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
$$

By Using $u=v^{\prime}$ which reduces the order of the above ode to one. The new ode is

$$
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
$$

The above ode is first order ode which is solved for u. Now a new ode $v^{\prime}=u$ is solved for v as first order ode. Then the final solution is obtain from $y=B v$.

This method works only if the term $A B^{\prime \prime}+B B^{\prime}+C B$ is zero. The given ODE shows that

$$
\begin{aligned}
& A=2 x^{2} \\
& B=x \\
& C=-1 \\
& F=0
\end{aligned}
$$

The above shows that for this ode

$$
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(2 x^{2}\right)(0)+(x)(1)+(-1)(x) \\
& =0
\end{aligned}
$$

Hence the ode in v given in (1) now simplifies to

$$
2 x^{3} v^{\prime \prime}+\left(5 x^{2}\right) v^{\prime}=0
$$

Now by applying $v^{\prime}=u$ the above becomes

$$
2 x^{3} u^{\prime}(x)+5 x^{2} u(x)=0
$$

Which is now solved for u. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{5 u}{2 x}
\end{aligned}
$$

Where $f(x)=-\frac{5}{2 x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{5}{2 x} d x \\
\int \frac{1}{u} d u & =\int-\frac{5}{2 x} d x \\
\ln (u) & =-\frac{5 \ln (x)}{2}+c_{1} \\
u & =\mathrm{e}^{-\frac{5 \ln (x)}{2}+c_{1}} \\
& =\frac{c_{1}}{x^{\frac{5}{2}}}
\end{aligned}
$$

The ode for v now becomes

$$
\begin{aligned}
v^{\prime} & =u \\
& =\frac{c_{1}}{x^{\frac{5}{2}}}
\end{aligned}
$$

Which is now solved for v. Integrating both sides gives

$$
\begin{aligned}
v(x) & =\int \frac{c_{1}}{x^{\frac{5}{2}}} \mathrm{~d} x \\
& =-\frac{2 c_{1}}{3 x^{\frac{3}{2}}}+c_{2}
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y(x) & =B v \\
& =(x)\left(-\frac{2 c_{1}}{3 x^{\frac{3}{2}}}+c_{2}\right) \\
& =\left(-\frac{2 c_{1}}{3 x^{\frac{3}{2}}}+c_{2}\right) x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(-\frac{2 c_{1}}{3 x^{\frac{3}{2}}}+c_{2}\right) x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(-\frac{2 c_{1}}{3 x^{\frac{3}{2}}}+c_{2}\right) x
$$

Verified OK.

16.2.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
2 x^{2} y^{\prime \prime}+x y^{\prime}-y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=2 x^{2} \\
& B=x \tag{3}\\
& C=-1
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{5}{16 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=5 \\
& t=16 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{5}{16 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 195: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=16 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{5}{16 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{5}{16}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{4} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{4}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{5}{16 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{5}{16}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{4} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{4}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{5}{16 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{5}{4}$	$-\frac{1}{4}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{5}{4}$	$-\frac{1}{4}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=-\frac{1}{4}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{4}-\left(-\frac{1}{4}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{4 x}+(-)(0) \\
& =-\frac{1}{4 x} \\
& =-\frac{1}{4 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{1}{4 x}\right)(0)+\left(\left(\frac{1}{4 x^{2}}\right)+\left(-\frac{1}{4 x}\right)^{2}-\left(\frac{5}{16 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{4 x} d x} \\
& =\frac{1}{x^{\frac{1}{4}}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{2 x^{2}} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{4}} \\
& =z_{1}\left(\frac{1}{x^{\frac{1}{4}}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{\sqrt{x}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{2 x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{\ln (x)}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{2 x^{\frac{3}{2}}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{\sqrt{x}}\right)+c_{2}\left(\frac{1}{\sqrt{x}}\left(\frac{2 x^{\frac{3}{2}}}{3}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{\sqrt{x}}+\frac{2 c_{2} x}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{\sqrt{x}}+\frac{2 c_{2} x}{3}
$$

Verified OK.

16.2.6 Maple step by step solution

Let's solve
$2 x^{2} y^{\prime \prime}+x y^{\prime}-y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y^{\prime}}{2 x}+\frac{y}{2 x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{y^{\prime}}{2 x}-\frac{y}{2 x^{2}}=0
$$

- Multiply by denominators of the ODE
$2 x^{2} y^{\prime \prime}+x y^{\prime}-y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d} t y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$2 x^{2}\left(\frac{\frac{d^{2}}{d t} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)+\frac{d}{d t} y(t)-y(t)=0$
- \quad Simplify
$2 \frac{d^{2}}{d t^{2}} y(t)-\frac{d}{d t} y(t)-y(t)=0$
- Isolate 2nd derivative
$\frac{d^{2}}{d t^{2}} y(t)=\frac{\frac{d}{d t} y(t)}{2}+\frac{y(t)}{2}$
- Group terms with $y(t)$ on the lhs of the ODE and the rest on the rhs of the ODE; ODE is lin
$\frac{d^{2}}{d t^{2}} y(t)-\frac{\frac{d}{d t} y(t)}{2}-\frac{y(t)}{2}=0$
- Characteristic polynomial of ODE
$r^{2}-\frac{1}{2} r-\frac{1}{2}=0$
- Factor the characteristic polynomial
$\frac{(2 r+1)(r-1)}{2}=0$
- Roots of the characteristic polynomial
$r=\left(1,-\frac{1}{2}\right)$
- 1st solution of the ODE
$y_{1}(t)=\mathrm{e}^{t}$
- \quad 2nd solution of the ODE
$y_{2}(t)=\mathrm{e}^{-\frac{t}{2}}$
- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- Substitute in solutions
$y(t)=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{-\frac{t}{2}}$
- \quad Change variables back using $t=\ln (x)$
$y=c_{1} x+\frac{c_{2}}{\sqrt{x}}$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve(2*x^2*diff(y(x),x$2)+x*diff(y(x),x)-y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} x+\frac{c_{2}}{\sqrt{x}}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 18
DSolve[2*x^2*y' ' $[x]+x * y$ ' $[x]-y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{c_{1}}{\sqrt{x}}+c_{2} x
$$

16.3 problem 1(c)

16.3.1 Solving as second order euler ode ode 1193
16.3.2 Solving as second order change of variable on x method 2 ode . 1194
16.3.3 Solving as second order change of variable on x method 1 ode . 1197
16.3.4 Solving as second order change of variable on y method 2 ode . 1199
16.3.5 Solving using Kovacic algorithm 1201
16.3.6 Maple step by step solution . 1206

Internal problem ID [6033]
Internal file name [OUTPUT/5281_Sunday_June_05_2022_03_29_23_PM_90527720/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 149
Problem number: 1(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_cvariable_on_x_method_1", "second_order_change__of_variable_on_x_method__2", "second_order_change_of_cvariable__on_y_method_2"

Maple gives the following as the ode type

```
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F( x)]•]
```

$$
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=0
$$

16.3.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+x r x^{r-1}-4 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+r x^{r}-4 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+r-4=0
$$

Or

$$
\begin{equation*}
r^{2}-4=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-2 \\
& r_{2}=2
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=\frac{c_{1}}{x^{2}}+c_{2} x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x^{2}}+c_{2} x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x^{2}}+c_{2} x^{2}
$$

Verified OK.

16.3.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{x} d x\right)} d x \\
& =\int e^{-\ln (x)} d x \\
& =\int \frac{1}{x} d x \\
& =\ln (x) \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{4}{x^{2}}}{\frac{1}{x^{2}}} \\
& =-4 \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-4 y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=-4$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}-4 \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}-4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-4)} \\
& = \pm 2
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 \\
& \lambda_{2}=-2
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{(2) \tau}+c_{2} e^{(-2) \tau}
\end{aligned}
$$

Or

$$
y(\tau)=c_{1} \mathrm{e}^{2 \tau}+c_{2} \mathrm{e}^{-2 \tau}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{c_{1} x^{4}+c_{2}}{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1} x^{4}+c_{2}}{x^{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1} x^{4}+c_{2}}{x^{2}}
$$

Verified OK.

16.3.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{2 \sqrt{-\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =\frac{2}{c \sqrt{-\frac{1}{x^{2}}}} x^{3}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{2}{c \sqrt{-\frac{1}{x^{2}}} x^{3}}+\frac{1}{x} \frac{2 \sqrt{-\frac{1}{x^{2}}}}{c}}{\left(\frac{2 \sqrt{-\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 2 \sqrt{-\frac{1}{x^{2}}} d x}{c} \\
& =\frac{2 \sqrt{-\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} \cosh (2 \ln (x))+i c_{2} \sinh (2 \ln (x))
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cosh (2 \ln (x))+i c_{2} \sinh (2 \ln (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \cosh (2 \ln (x))+i c_{2} \sinh (2 \ln (x))
$$

Verified OK.

16.3.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n}{x^{2}}-\frac{4}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=2 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{5 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{5 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{5 u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{5 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{5}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{5}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{5}{x} d x \\
\ln (u) & =-5 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-5 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{5}}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{4 x^{4}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{4 x^{4}}+c_{2}\right) x^{2} \\
& =\frac{4 c_{2} x^{4}-c_{1}}{4 x^{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(-\frac{c_{1}}{4 x^{4}}+c_{2}\right) x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(-\frac{c_{1}}{4 x^{4}}+c_{2}\right) x^{2}
$$

Verified OK.

16.3.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+x y^{\prime}-4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=x \tag{3}\\
& C=-4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{15}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=15 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{15}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 197: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{15}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{15}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{3}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{15}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{15}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{3}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{15}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{5}{2}$	$-\frac{3}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{5}{2}$	$-\frac{3}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=-\frac{3}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{3}{2}-\left(-\frac{3}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{3}{2 x}+(-)(0) \\
& =-\frac{3}{2 x} \\
& =-\frac{3}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(-\frac{3}{2 x}\right)(0)+\left(\left(\frac{3}{2 x^{2}}\right)+\left(-\frac{3}{2 x}\right)^{2}-\left(\frac{15}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{3}{2 x} d x} \\
& =\frac{1}{x^{\frac{3}{2}}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\frac{1}{x^{2}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{4}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x^{2}}\right)+c_{2}\left(\frac{1}{x^{2}}\left(\frac{x^{4}}{4}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x^{2}}+\frac{c_{2} x^{2}}{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x^{2}}+\frac{c_{2} x^{2}}{4}
$$

Verified OK.

16.3.6 Maple step by step solution

Let's solve
$x^{2} y^{\prime \prime}+x y^{\prime}-4 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y^{\prime}}{x}+\frac{4 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{x}-\frac{4 y}{x^{2}}=0$
- Multiply by denominators of the ODE

$$
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=0
$$

- Make a change of variables

$$
t=\ln (x)
$$

Substitute the change of variables back into the ODE

- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)+\frac{d}{d t} y(t)-4 y(t)=0$
- \quad Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)-4 y(t)=0
$$

- Characteristic polynomial of ODE
$r^{2}-4=0$
- Factor the characteristic polynomial
$(r-2)(r+2)=0$
- Roots of the characteristic polynomial

$$
r=(-2,2)
$$

- 1st solution of the ODE
$y_{1}(t)=\mathrm{e}^{-2 t}$
- $\quad 2$ nd solution of the ODE

$$
y_{2}(t)=\mathrm{e}^{2 t}
$$

- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- \quad Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{2 t}
$$

- \quad Change variables back using $t=\ln (x)$

$$
y=\frac{c_{1}}{x^{2}}+c_{2} x^{2}
$$

- \quad Simplify

$$
y=\frac{c_{1}}{x^{2}}+c_{2} x^{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 15

```
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)-4*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{c_{1} x^{4}+c_{2}}{x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 18

```
DSolve[x^2*y''[x]+x*y'[x]-4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{c_{2} x^{4}+c_{1}}{x^{2}}
$$

16.4 problem 1(d)

16.4.1 Solving as second order euler ode ode 1209
16.4.2 Solving as second order change of variable on x method 2 ode . 1213
16.4.3 Solving as second order change of variable on x method 1 ode . 1218
16.4.4 Solving as second order change of variable on y method 2 ode . 1223
16.4.5 Solving using Kovacic algorithm 1228

Internal problem ID [6034]
Internal file name [OUTPUT/5282_Sunday_June_05_2022_03_29_24_PM_28936060/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 149
Problem number: 1(d).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_cariable_on_x_method_1", "second_order_change__of_variable_on_x_method_2", "second_order_change_of_cvariable_on_y__method_2"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y=x^{2}
$$

16.4.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-5 x, C=9, f(x)=x^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-5 x r x^{r-1}+9 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-5 r x^{r}+9 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-5 r+9=0
$$

Or

$$
\begin{equation*}
r^{2}-6 r+9=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=3 \\
& r_{2}=3
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r}$ and $y_{2}=x^{r} \ln (x)$. Hence

$$
y=c_{1} x^{3}+c_{2} x^{3} \ln (x)
$$

Next, we find the particular solution to the ODE

$$
x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y=x^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{3} \\
& y_{2}=x^{3} \ln (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{3} & x^{3} \ln (x) \\
\frac{d}{d x}\left(x^{3}\right) & \frac{d}{d x}\left(x^{3} \ln (x)\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{3} & x^{3} \ln (x) \\
3 x^{2} & 3 \ln (x) x^{2}+x^{2}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{3}\right)\left(3 \ln (x) x^{2}+x^{2}\right)-\left(x^{3} \ln (x)\right)\left(3 x^{2}\right)
$$

Which simplifies to

$$
W=x^{5}
$$

Which simplifies to

$$
W=x^{5}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{5} \ln (x)}{x^{7}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\ln (x)}{x^{2}} d x
$$

Hence

$$
u_{1}=\frac{\ln (x)}{x}+\frac{1}{x}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{5}}{x^{7}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{x^{2}} d x
$$

Hence

$$
u_{2}=-\frac{1}{x}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{1+\ln (x)}{x} \\
& u_{2}=-\frac{1}{x}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=(1+\ln (x)) x^{2}-\ln (x) x^{2}
$$

Which simplifies to

$$
y_{p}(x)=x^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =x^{2}+c_{1} x^{3}+c_{2} x^{3} \ln (x)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}+c_{1} x^{3}+c_{2} x^{3} \ln (x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}+c_{1} x^{3}+c_{2} x^{3} \ln (x)
$$

Verified OK.

16.4.2 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{5}{x} \\
& q(x)=\frac{9}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{5}{x} d x\right)} d x \\
& =\int e^{5 \ln (x)} d x \\
& =\int x^{5} d x \\
& =\frac{x^{6}}{6} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{9}{x^{2}}}{x^{10}} \\
& =\frac{9}{x^{12}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{9 y(\tau)}{x^{12}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{9}{x^{12}}=\frac{1}{4 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{y(\tau)}{4 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
4\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
4 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+\tau^{r}=0
$$

Simplifying gives

$$
4 r(r-1) \tau^{r}+0 \tau^{r}+\tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
4 r(r-1)+0+1=0
$$

Or

$$
\begin{equation*}
4 r^{2}-4 r+1=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
$$

Since the roots are equal, then the general solution is

$$
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=\tau^{r}$ and $y_{2}=\tau^{r} \ln (\tau)$. Hence

$$
y(\tau)=c_{1} \sqrt{\tau}+c_{2} \sqrt{\tau} \ln (\tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\sqrt{6} \sqrt{x^{6}}\left(c_{1}+c_{2} \ln \left(x^{6}\right)-c_{2} \ln (3)-c_{2} \ln (2)\right)}{6}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=\frac{\sqrt{6} \sqrt{x^{6}}\left(c_{1}+c_{2} \ln \left(x^{6}\right)-c_{2} \ln (3)-c_{2} \ln (2)\right)}{6}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sqrt{x^{6}} \\
& y_{2}=\frac{\sqrt{6} \sqrt{x^{6}} \ln \left(x^{6}\right)}{6}-\frac{\sqrt{6} \sqrt{x^{6}} \ln (3)}{6}-\frac{\sqrt{6} \sqrt{x^{6}} \ln (2)}{6}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sqrt{x^{6}} & \frac{\sqrt{6} \sqrt{x^{6}} \ln \left(x^{6}\right)}{6}-\frac{\sqrt{6} \sqrt{x^{6}} \ln (3)}{6}-\frac{\sqrt{6} \sqrt{x^{6}} \ln (2)}{6} \\
\frac{d}{d x}\left(\sqrt{x^{6}}\right) & \frac{d}{d x}\left(\frac{\sqrt{6} \sqrt{x^{6}} \ln \left(x^{6}\right)}{6}-\frac{\sqrt{6} \sqrt{x^{6}} \ln (3)}{6}-\frac{\sqrt{6} \sqrt{x^{6}} \ln (2)}{6}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\sqrt{x^{6}} & \frac{\sqrt{6} \sqrt{x^{6}} \ln \left(x^{6}\right)}{6}-\frac{\sqrt{6} \sqrt{x^{6}} \ln (3)}{6}-\frac{\sqrt{6} \sqrt{x^{6}} \ln (2)}{6} \\
\frac{3 x^{5}}{\sqrt{x^{6}}} & \frac{\sqrt{6} \ln \left(x^{6}\right) x^{5}}{2 \sqrt{x^{6}}}+\frac{\sqrt{6} \sqrt{x^{6}}}{x}-\frac{\sqrt{6} \ln (3) x^{5}}{2 \sqrt{x^{6}}}-\frac{\sqrt{6} \ln (2) x^{5}}{2 \sqrt{x^{6}}}
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(\sqrt{x^{6}}\right)\left(\frac{\sqrt{6} \ln \left(x^{6}\right) x^{5}}{2 \sqrt{x^{6}}}+\frac{\sqrt{6} \sqrt{x^{6}}}{x}-\frac{\sqrt{6} \ln (3) x^{5}}{2 \sqrt{x^{6}}}-\frac{\sqrt{6} \ln (2) x^{5}}{2 \sqrt{x^{6}}}\right) \\
& -\left(\frac{\sqrt{6} \sqrt{x^{6}} \ln \left(x^{6}\right)}{6}-\frac{\sqrt{6} \sqrt{x^{6}} \ln (3)}{6}-\frac{\sqrt{6} \sqrt{x^{6}} \ln (2)}{6}\right)\left(\frac{3 x^{5}}{\sqrt{x^{6}}}\right)
\end{aligned}
$$

Which simplifies to

$$
W=\sqrt{6} x^{5}
$$

Which simplifies to

$$
W=\sqrt{6} x^{5}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(\frac{\sqrt{6} \sqrt{x^{6}} \ln \left(x^{6}\right)}{6}-\frac{\sqrt{6} \sqrt{x^{6}} \ln (3)}{6}-\frac{\sqrt{6} \sqrt{x^{6}} \ln (2)}{6}\right) x^{2}}{x^{7} \sqrt{6}} d x
$$

Which simplifies for $0<x$ to

$$
u_{1}=-\int \frac{6 \ln (x)-\ln (3)-\ln (2)}{6 x^{2}} d x
$$

Hence

$$
u_{1}=-\frac{-6 \ln (x)-6+\ln (3)+\ln (2)}{6 x}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\sqrt{x^{6}} x^{2}}{x^{7} \sqrt{6}} d x
$$

Which simplifies for $0<x$ to

$$
u_{2}=\int \frac{\sqrt{6}}{6 x^{2}} d x
$$

Hence

$$
u_{2}=-\frac{\sqrt{6}}{6 x}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & -\frac{(-6 \ln (x)-6+\ln (3)+\ln (2)) \sqrt{x^{6}}}{6 x} \\
& -\frac{\sqrt{6}\left(\frac{\sqrt{6} \sqrt{x^{6}} \ln \left(x^{6}\right)}{6}-\frac{\sqrt{6} \sqrt{x^{6}} \ln (3)}{6}-\frac{\sqrt{6} \sqrt{x^{6}} \ln (2)}{6}\right)}{6 x}
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=x^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{\sqrt{6} \sqrt{x^{6}}\left(c_{1}+c_{2} \ln \left(x^{6}\right)-c_{2} \ln (3)-c_{2} \ln (2)\right)}{6}\right)+\left(x^{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{6} \sqrt{x^{6}}\left(c_{1}+c_{2} \ln \left(x^{6}\right)-c_{2} \ln (3)-c_{2} \ln (2)\right)}{6}+x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\sqrt{6} \sqrt{x^{6}}\left(c_{1}+c_{2} \ln \left(x^{6}\right)-c_{2} \ln (3)-c_{2} \ln (2)\right)}{6}+x^{2}
$$

Verified OK. $\{0<x\}$

16.4.3 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-5 x, C=9, f(x)=x^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{5}{x} \\
& q(x)=\frac{9}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{3 \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{3}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{3}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{5}{x} \frac{3 \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{3 \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-2 c
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-2 c\left(\frac{d}{d \tau} y(\tau)\right)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{c \tau} c_{1}
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 3 \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{3 \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} x^{3}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y=x^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sqrt{x^{6}} \\
& y_{2}=\frac{\sqrt{6} \sqrt{x^{6}} \ln \left(x^{6}\right)}{6}-\frac{\sqrt{6} \sqrt{x^{6}} \ln (3)}{6}-\frac{\sqrt{6} \sqrt{x^{6}} \ln (2)}{6}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sqrt{x^{6}} & \frac{\sqrt{6} \sqrt{x^{6}} \ln \left(x^{6}\right)}{6}-\frac{\sqrt{6} \sqrt{x^{6}} \ln (3)}{6}-\frac{\sqrt{6} \sqrt{x^{6}} \ln (2)}{6} \\
\frac{d}{d x}\left(\sqrt{x^{6}}\right) & \frac{d}{d x}\left(\frac{\sqrt{6} \sqrt{x^{6}} \ln \left(x^{6}\right)}{6}-\frac{\sqrt{6} \sqrt{x^{6}} \ln (3)}{6}-\frac{\sqrt{6} \sqrt{x^{6}} \ln (2)}{6}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\sqrt{x^{6}} & \frac{\sqrt{6} \sqrt{x^{6}} \ln \left(x^{6}\right)}{6}-\frac{\sqrt{6} \sqrt{x^{6}} \ln (3)}{6}-\frac{\sqrt{6} \sqrt{x^{6}} \ln (2)}{6} \\
\frac{3 x^{5}}{\sqrt{x^{6}}} & \frac{\sqrt{6} \ln \left(x^{6}\right) x^{5}}{2 \sqrt{x^{6}}}+\frac{\sqrt{6} \sqrt{x^{6}}}{x}-\frac{\sqrt{6} \ln (3) x^{5}}{2 \sqrt{x^{6}}}-\frac{\sqrt{6} \ln (2) x^{5}}{2 \sqrt{x^{6}}}
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & \left(\sqrt{x^{6}}\right)\left(\frac{\sqrt{6} \ln \left(x^{6}\right) x^{5}}{2 \sqrt{x^{6}}}+\frac{\sqrt{6} \sqrt{x^{6}}}{x}-\frac{\sqrt{6} \ln (3) x^{5}}{2 \sqrt{x^{6}}}-\frac{\sqrt{6} \ln (2) x^{5}}{2 \sqrt{x^{6}}}\right) \\
& -\left(\frac{\sqrt{6} \sqrt{x^{6}} \ln \left(x^{6}\right)}{6}-\frac{\sqrt{6} \sqrt{x^{6}} \ln (3)}{6}-\frac{\sqrt{6} \sqrt{x^{6}} \ln (2)}{6}\right)\left(\frac{3 x^{5}}{\sqrt{x^{6}}}\right)
\end{aligned}
$$

Which simplifies to

$$
W=\sqrt{6} x^{5}
$$

Which simplifies to

$$
W=\sqrt{6} x^{5}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\left(\frac{\sqrt{6} \sqrt{x^{6}} \ln \left(x^{6}\right)}{6}-\frac{\sqrt{6} \sqrt{x^{6}} \ln (3)}{6}-\frac{\sqrt{6} \sqrt{x^{6}} \ln (2)}{6}\right) x^{2}}{x^{7} \sqrt{6}} d x
$$

Which simplifies for $0<x$ to

$$
u_{1}=-\int \frac{6 \ln (x)-\ln (3)-\ln (2)}{6 x^{2}} d x
$$

Hence

$$
u_{1}=-\frac{-6 \ln (x)-6+\ln (3)+\ln (2)}{6 x}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\sqrt{x^{6}} x^{2}}{x^{7} \sqrt{6}} d x
$$

Which simplifies for $0<x$ to

$$
u_{2}=\int \frac{\sqrt{6}}{6 x^{2}} d x
$$

Hence

$$
u_{2}=-\frac{\sqrt{6}}{6 x}
$$

Therefore the particular solution, from equation (1) is

$$
\begin{aligned}
y_{p}(x)= & -\frac{(-6 \ln (x)-6+\ln (3)+\ln (2)) \sqrt{x^{6}}}{6 x} \\
& -\frac{\sqrt{6}\left(\frac{\sqrt{6} \sqrt{x^{6}} \ln \left(x^{6}\right)}{6}-\frac{\sqrt{6} \sqrt{x^{6}} \ln (3)}{6}-\frac{\sqrt{6} \sqrt{x^{6}} \ln (2)}{6}\right)}{6 x}
\end{aligned}
$$

Which simplifies to

$$
y_{p}(x)=x^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} x^{3}\right)+\left(x^{2}\right) \\
& =c_{1} x^{3}+x^{2}
\end{aligned}
$$

Which simplifies to

$$
y=c_{1} x^{3}+x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{3}+x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{3}+x^{2}
$$

Verified OK. $\{0<x\}$

16.4.4 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=-5 x, C=9, f(x)=x^{2}$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{5}{x} \\
& q(x)=\frac{9}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{5 n}{x^{2}}+\frac{9}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=3 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
& v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{1}{x} d x \\
\ln (u) & =-\ln (x)+c_{1} \\
u & =\mathrm{e}^{-\ln (x)+c_{1}} \\
& =\frac{c_{1}}{x}
\end{aligned}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(c_{1} \ln (x)+c_{2}\right) x^{3} \\
& =\left(c_{1} \ln (x)+c_{2}\right) x^{3}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y=x^{2}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{3} \\
& y_{2}=x^{3} \ln (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{3} & x^{3} \ln (x) \\
\frac{d}{d x}\left(x^{3}\right) & \frac{d}{d x}\left(x^{3} \ln (x)\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{3} & x^{3} \ln (x) \\
3 x^{2} & 3 \ln (x) x^{2}+x^{2}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{3}\right)\left(3 \ln (x) x^{2}+x^{2}\right)-\left(x^{3} \ln (x)\right)\left(3 x^{2}\right)
$$

Which simplifies to

$$
W=x^{5}
$$

Which simplifies to

$$
W=x^{5}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{5} \ln (x)}{x^{7}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\ln (x)}{x^{2}} d x
$$

Hence

$$
u_{1}=-\frac{-1-\ln (x)}{x}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{5}}{x^{7}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{x^{2}} d x
$$

Hence

$$
u_{2}=-\frac{1}{x}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{1+\ln (x)}{x} \\
& u_{2}=-\frac{1}{x}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=(1+\ln (x)) x^{2}-\ln (x) x^{2}
$$

Which simplifies to

$$
y_{p}(x)=x^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(c_{1} \ln (x)+c_{2}\right) x^{3}\right)+\left(x^{2}\right) \\
& =x^{2}+\left(c_{1} \ln (x)+c_{2}\right) x^{3}
\end{aligned}
$$

Which simplifies to

$$
y=x^{2}+\left(c_{1} \ln (x)+c_{2}\right) x^{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}+\left(c_{1} \ln (x)+c_{2}\right) x^{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}+\left(c_{1} \ln (x)+c_{2}\right) x^{3}
$$

Verified OK. $\{0<x\}$

16.4.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-5 x \tag{3}\\
& C=9
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{1}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 199: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{1}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{1}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{1}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{1}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}$	$\frac{1}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}$	$\frac{1}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=\frac{1}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 x}+(-)(0) \\
& =\frac{1}{2 x} \\
& =\frac{1}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{1}{2 x}\right)(0)+\left(\left(-\frac{1}{2 x^{2}}\right)+\left(\frac{1}{2 x}\right)^{2}-\left(-\frac{1}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{5 x}{x^{2}} d x} \\
& =z_{1} e^{\frac{5 \ln (x)}{2}} \\
& =z_{1}\left(x^{\frac{5}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{3}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-5 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{5 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\ln (x))
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{3}\right)+c_{2}\left(x^{3}(\ln (x))\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}-5 x y^{\prime}+9 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} x^{3}+c_{2} x^{3} \ln (x)
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{3} \\
& y_{2}=x^{3} \ln (x)
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{3} & x^{3} \ln (x) \\
\frac{d}{d x}\left(x^{3}\right) & \frac{d}{d x}\left(x^{3} \ln (x)\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{3} & x^{3} \ln (x) \\
3 x^{2} & 3 \ln (x) x^{2}+x^{2}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{3}\right)\left(3 \ln (x) x^{2}+x^{2}\right)-\left(x^{3} \ln (x)\right)\left(3 x^{2}\right)
$$

Which simplifies to

$$
W=x^{5}
$$

Which simplifies to

$$
W=x^{5}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{5} \ln (x)}{x^{7}} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\ln (x)}{x^{2}} d x
$$

Hence

$$
u_{1}=-\frac{-1-\ln (x)}{x}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{5}}{x^{7}} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{1}{x^{2}} d x
$$

Hence

$$
u_{2}=-\frac{1}{x}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=\frac{1+\ln (x)}{x} \\
& u_{2}=-\frac{1}{x}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=(1+\ln (x)) x^{2}-\ln (x) x^{2}
$$

Which simplifies to

$$
y_{p}(x)=x^{2}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} x^{3}+c_{2} x^{3} \ln (x)\right)+\left(x^{2}\right)
\end{aligned}
$$

Which simplifies to

$$
y=x^{3}\left(c_{1}+c_{2} \ln (x)\right)+x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{3}\left(c_{1}+c_{2} \ln (x)\right)+x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{3}\left(c_{1}+c_{2} \ln (x)\right)+x^{2}
$$

Verified OK. $\{0<x\}$
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    <- LODE of Euler type successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

```
dsolve(x^2*diff(y(x),x$2)-5*x*diff(y(x),x)+9*y(x)=x^2,y(x), singsol=all)
```

$$
y(x)=x^{2}\left(\ln (x) c_{1} x+c_{2} x+1\right)
$$

\checkmark Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 22
DSolve[x^2*y''[x]-5*x*y'[x]+9*y[x]==x^2,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x^{2}\left(c_{1} x+3 c_{2} x \log (x)+1\right)
$$

16.5 problem 1(e)

16.5.1 Maple step by step solution

1239
Internal problem ID [6035]
Internal file name [OUTPUT/5283_Sunday_June_05_2022_03_29_26_PM_70302027/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 149
Problem number: 1(e).
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_OODE_non_constant__coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order, _exact, _linear, _homogeneous]]

$$
x^{3} y^{\prime \prime \prime}+2 x^{2} y^{\prime \prime}-x y^{\prime}+y=0
$$

This is Euler ODE of higher order. Let $y=x^{\lambda}$. Hence

$$
\begin{aligned}
y^{\prime} & =\lambda x^{\lambda-1} \\
y^{\prime \prime} & =\lambda(\lambda-1) x^{\lambda-2} \\
y^{\prime \prime \prime} & =\lambda(\lambda-1)(\lambda-2) x^{\lambda-3}
\end{aligned}
$$

Substituting these back into

$$
x^{3} y^{\prime \prime \prime}+2 x^{2} y^{\prime \prime}-x y^{\prime}+y=0
$$

gives

$$
-x \lambda x^{\lambda-1}+2 x^{2} \lambda(\lambda-1) x^{\lambda-2}+x^{3} \lambda(\lambda-1)(\lambda-2) x^{\lambda-3}+x^{\lambda}=0
$$

Which simplifies to

$$
-\lambda x^{\lambda}+2 \lambda(\lambda-1) x^{\lambda}+\lambda(\lambda-1)(\lambda-2) x^{\lambda}+x^{\lambda}=0
$$

And since $x^{\lambda} \neq 0$ then dividing through by x^{λ}, the above becomes

$$
-\lambda+2 \lambda(\lambda-1)+\lambda(\lambda-1)(\lambda-2)+1=0
$$

Simplifying gives the characteristic equation as

$$
(\lambda+1)(\lambda-1)^{2}=0
$$

Solving the above gives the following roots

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=1 \\
& \lambda_{3}=1
\end{aligned}
$$

This table summarises the result

root	multiplicity	type of root
-1	1	real root
1	2	real root

The solution is generated by going over the above table. For each real root λ of multiplicity one generates a $c_{1} x^{\lambda}$ basis solution. Each real root of multiplicty two, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ basis solutions. Each real root of multiplicty three, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ and $c_{3} x^{\lambda} \ln (x)^{2}$ basis solutions, and so on. Each complex root $\alpha \pm i \beta$ of multiplicity one generates $x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity two generates $\ln (x) x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity three generates $\ln (x)^{2} x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2}\right.$ basis solutions. And so on. Using the above show that the solution is

$$
y=\frac{c_{1}}{x}+c_{2} x+c_{3} \ln (x) x
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\frac{1}{x} \\
& y_{2}=x \\
& y_{3}=\ln (x) x
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x}+c_{2} x+c_{3} \ln (x) x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x}+c_{2} x+c_{3} \ln (x) x
$$

Verified OK.

16.5.1 Maple step by step solution

Let's solve

$$
x^{3} y^{\prime \prime \prime}+2 x^{2} y^{\prime \prime}-x y^{\prime}+y=0
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

- Isolate 3rd derivative

$$
y^{\prime \prime \prime}=-\frac{y}{x^{3}}-\frac{2 y^{\prime \prime} x-y^{\prime}}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime \prime}+\frac{2 y^{\prime \prime}}{x}-\frac{y^{\prime}}{x^{2}}+\frac{y}{x^{3}}=0
$$

- Multiply by denominators of the ODE

$$
x^{3} y^{\prime \prime \prime}+2 x^{2} y^{\prime \prime}-x y^{\prime}+y=0
$$

- Make a change of variables

$$
t=\ln (x)
$$

Substitute the change of variables back into the ODE

- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2 nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
$$

- Calculate the 3 rd derivative of y with respect to x , using the chain rule

$$
y^{\prime \prime \prime}=\left(\frac{d^{3}}{d t^{3}} y(t)\right) t^{\prime}(x)^{3}+3 t^{\prime}(x) t^{\prime \prime}(x)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+t^{\prime \prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
$$

- Compute derivative

$$
y^{\prime \prime \prime}=\frac{\frac{d^{3}}{d t^{3}} y(t)}{x^{3}}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}
$$

Substitute the change of variables back into the ODE

$$
x^{3}\left(\frac{d^{3}}{d t^{3} y(t)} x^{3}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}\right)+2 x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)-\frac{d}{d t} y(t)+y(t)=0
$$

- Simplify

$$
\frac{d^{3}}{d t^{3}} y(t)-\frac{d^{2}}{d t^{2}} y(t)-\frac{d}{d t} y(t)+y(t)=0
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(t)$

$$
y_{1}(t)=y(t)
$$

- Define new variable $y_{2}(t)$

$$
y_{2}(t)=\frac{d}{d t} y(t)
$$

- Define new variable $y_{3}(t)$

$$
y_{3}(t)=\frac{d^{2}}{d t^{2}} y(t)
$$

- Isolate for $\frac{d}{d t} y_{3}(t)$ using original ODE

$$
\frac{d}{d t} y_{3}(t)=y_{3}(t)+y_{2}(t)-y_{1}(t)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(t)=\frac{d}{d t} y_{1}(t), y_{3}(t)=\frac{d}{d t} y_{2}(t), \frac{d}{d t} y_{3}(t)=y_{3}(t)+y_{2}(t)-y_{1}(t)\right]
$$

- Define vector

$$
\vec{y}(t)=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t)
\end{array}\right]
$$

- \quad System to solve

$$
\frac{d}{d t} \vec{y}(t)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & 1 & 1
\end{array}\right] \cdot \vec{y}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & 1 & 1
\end{array}\right]
$$

- Rewrite the system as
$\frac{d}{d t} \vec{y}(t)=A \cdot \vec{y}(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- \quad First solution from eigenvalue 1

$$
\vec{y}_{2}(t)=\mathrm{e}^{t} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=1$ is the eigenvalue, an $\vec{y}_{3}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- Note that the t multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- Substitute $\vec{y}_{3}(t)$ into the homogeneous system

$$
\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})
$$

- Use the fact that \vec{v} is an eigenvector of A

$$
\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})
$$

- Simplify equation

$$
\lambda \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition \vec{p} must meet for $\vec{y}_{3}(t)$ to be a solution to the homogeneous system

$$
(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}
$$

- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 1

$$
\left(\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & 1 & 1
\end{array}\right]-1 \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue 1

$$
\vec{y}_{3}(t)=\mathrm{e}^{t} \cdot\left(t \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(t)+c_{3} \vec{y}_{3}(t)
$$

- Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-t} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{t} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{t} \cdot\left(t \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]\right)
$$

- First component of the vector is the solution to the ODE

$$
y(t)=c_{1} \mathrm{e}^{-t}+\mathrm{e}^{t}\left((t-1) c_{3}+c_{2}\right)
$$

- Change variables back using $t=\ln (x)$

$$
y=\frac{c_{1}}{x}+x\left((\ln (x)-1) c_{3}+c_{2}\right)
$$

- \quad Simplify

$$
y=c_{3} \ln (x) x+c_{2} x-c_{3} x+\frac{c_{1}}{x}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 22
dsolve ($x^{\wedge} 3 * \operatorname{diff}(y(x), x \$ 3)+2 * x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)-x * \operatorname{diff}(y(x), x)+y(x)=0, y(x)$, singsol=all)

$$
y(x)=\frac{c_{3} \ln (x) x^{2}+c_{2} x^{2}+c_{1}}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 22
DSolve $\left[x^{\wedge}-3 * y\right.$ ' ' ' $[x]+2 * x^{\wedge} 2 * y$ ' ' $[x]-x * y$ ' $[x]+y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{c_{1}}{x}+c_{2} x+c_{3} x \log (x)
$$

16.6 problem 2(a)

16.6.1 Solving as second order euler ode ode 1244
16.6.2 Solving as second order change of variable on x method 2 ode . 1248
16.6.3 Solving as second order change of variable on x method 1 ode . 1253
16.6.4 Solving as second order change of variable on y method 2 ode . 1258
16.6.5 Solving using Kovacic algorithm 1263

Internal problem ID [6036]
Internal file name [OUTPUT/5284_Sunday_June_05_2022_03_29_27_PM_41308682/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 149
Problem number: 2(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_cariable_on_x_method_1", "second_order_change__of_variable_on_x_method_2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}+x y^{\prime}+4 y=1
$$

16.6.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=x, C=4, f(x)=1$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+x y^{\prime}+4 y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+x r x^{r-1}+4 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+r x^{r}+4 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+r+4=0
$$

Or

$$
\begin{equation*}
r^{2}+4=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-2 i \\
& r_{2}=2 i
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=0$ and $\beta=-2$. Hence the solution becomes

$$
\begin{aligned}
y & =c_{1} x^{r_{1}}+c_{2} x^{r_{2}} \\
& =c_{1} x^{\alpha+i \beta}+c_{2} x^{\alpha-i \beta} \\
& =x^{\alpha}\left(c_{1} x^{i \beta}+c_{2} x^{-i \beta}\right) \\
& =x^{\alpha}\left(c_{1} e^{\ln \left(x^{i \beta}\right)}+c_{2} e^{\ln \left(x^{-i \beta}\right)}\right) \\
& =x^{\alpha}\left(c_{1} e^{i(\beta \ln x)}+c_{2} e^{-i(\beta \ln x)}\right)
\end{aligned}
$$

Using the values for $\alpha=0, \beta=-2$, the above becomes

$$
y=x^{0}\left(c_{1} e^{-2 i \ln (x)}+c_{2} e^{2 i \ln (x)}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y=c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
$$

Next, we find the particular solution to the ODE

$$
x^{2} y^{\prime \prime}+x y^{\prime}+4 y=1
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\cos (2 \ln (x)) \\
& y_{2}=-\sin (2 \ln (x))
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\cos (2 \ln (x)) & -\sin (2 \ln (x)) \\
\frac{d}{d x}(\cos (2 \ln (x))) & \frac{d}{d x}(-\sin (2 \ln (x)))
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\cos (2 \ln (x)) & -\sin (2 \ln (x)) \\
-\frac{2 \sin (2 \ln (x))}{x} & -\frac{2 \cos (2 \ln (x))}{x}
\end{array}\right|
$$

Therefore

$$
W=(\cos (2 \ln (x)))\left(-\frac{2 \cos (2 \ln (x))}{x}\right)-(-\sin (2 \ln (x)))\left(-\frac{2 \sin (2 \ln (x))}{x}\right)
$$

Which simplifies to

$$
W=-\frac{2\left(\cos (2 \ln (x))^{2}+\sin (2 \ln (x))^{2}\right)}{x}
$$

Which simplifies to

$$
W=-\frac{2}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-\sin (2 \ln (x))}{-2 x} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{\sin (2 \ln (x))}{2 x} d x
$$

Hence

$$
u_{1}=\frac{\cos (2 \ln (x))}{4}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\cos (2 \ln (x))}{-2 x} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{\cos (2 \ln (x))}{2 x} d x
$$

Hence

$$
u_{2}=-\frac{\sin (2 \ln (x))}{4}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\cos (2 \ln (x))^{2}}{4}+\frac{\sin (2 \ln (x))^{2}}{4}
$$

Which simplifies to

$$
y_{p}(x)=\frac{1}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\frac{1}{4}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{4}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{1}{4}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
$$

Verified OK.

16.6.2 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+x y^{\prime}+4 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0$. Eq (4) simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{x} d x\right)} d x \\
& =\int e^{-\ln (x)} d x \\
& =\int \frac{1}{x} d x \\
& =\ln (x) \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{4}{x^{2}}}{\frac{1}{x^{2}}} \\
& =4 \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+4 y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}+4 \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y(\tau)=e^{\alpha \tau}\left(c_{1} \cos (\beta \tau)+c_{2} \sin (\beta \tau)\right)
$$

Which becomes

$$
y(\tau)=e^{0}\left(c_{1} \cos (2 \tau)+c_{2} \sin (2 \tau)\right)
$$

Or

$$
y(\tau)=c_{1} \cos (2 \tau)+c_{2} \sin (2 \tau)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sin (\ln (x)) \cos (\ln (x)) \\
& y_{2}=2 \cos (\ln (x))^{2}-1
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sin (\ln (x)) \cos (\ln (x)) & 2 \cos (\ln (x))^{2}-1 \\
\frac{d}{d x}(\sin (\ln (x)) \cos (\ln (x))) & \frac{d}{d x}\left(2 \cos (\ln (x))^{2}-1\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\sin (\ln (x)) \cos (\ln (x)) & 2 \cos (\ln (x))^{2}-1 \\
\frac{\cos (\ln (x))^{2}}{x}-\frac{\sin (\ln (x))^{2}}{x} & -\frac{4 \cos (\ln (x)) \sin (\ln (x))}{x}
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & (\sin (\ln (x)) \cos (\ln (x)))\left(-\frac{4 \cos (\ln (x)) \sin (\ln (x))}{x}\right) \\
& -\left(2 \cos (\ln (x))^{2}-1\right)\left(\frac{\cos (\ln (x))^{2}}{x}-\frac{\sin (\ln (x))^{2}}{x}\right)
\end{aligned}
$$

Which simplifies to

$$
W=-\frac{2 \sin (\ln (x))^{2} \cos (\ln (x))^{2}+2 \cos (\ln (x))^{4}+\sin (\ln (x))^{2}-\cos (\ln (x))^{2}}{x}
$$

Which simplifies to

$$
W=-\frac{1}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{2 \cos (\ln (x))^{2}-1}{-x} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{\cos (2 \ln (x))}{x} d x
$$

Hence

$$
u_{1}=\frac{\sin (2 \ln (x))}{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\sin (\ln (x)) \cos (\ln (x))}{-x} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{\sin (2 \ln (x))}{2 x} d x
$$

Hence

$$
u_{2}=\frac{\cos (2 \ln (x))}{4}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\sin (2 \ln (x)) \sin (\ln (x)) \cos (\ln (x))}{2}+\frac{\cos (2 \ln (x))\left(2 \cos (\ln (x))^{2}-1\right)}{4}
$$

Which simplifies to

$$
y_{p}(x)=\frac{1}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))\right)+\left(\frac{1}{4}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{4}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{1}{4}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
$$

Verified OK.

16.6.3 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=x, C=4, f(x)=1$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous $\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+x y^{\prime}+4 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{2}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{2}{c \sqrt{\frac{1}{x^{2}}} x^{3}}+\frac{1}{x} \frac{2 \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{2 \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 2 \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}+x y^{\prime}+4 y=1
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=\sin (\ln (x)) \cos (\ln (x)) \\
& y_{2}=2 \cos (\ln (x))^{2}-1
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
\sin (\ln (x)) \cos (\ln (x)) & 2 \cos (\ln (x))^{2}-1 \\
\frac{d}{d x}(\sin (\ln (x)) \cos (\ln (x))) & \frac{d}{d x}\left(2 \cos (\ln (x))^{2}-1\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
\sin (\ln (x)) \cos (\ln (x)) & 2 \cos (\ln (x))^{2}-1 \\
\frac{\cos (\ln (x))^{2}}{x}-\frac{\sin (\ln (x))^{2}}{x} & -\frac{4 \cos (\ln (x)) \sin (\ln (x))}{x}
\end{array}\right|
$$

Therefore

$$
\begin{aligned}
W= & (\sin (\ln (x)) \cos (\ln (x)))\left(-\frac{4 \cos (\ln (x)) \sin (\ln (x))}{x}\right) \\
& -\left(2 \cos (\ln (x))^{2}-1\right)\left(\frac{\cos (\ln (x))^{2}}{x}-\frac{\sin (\ln (x))^{2}}{x}\right)
\end{aligned}
$$

Which simplifies to

$$
W=-\frac{2 \sin (\ln (x))^{2} \cos (\ln (x))^{2}+2 \cos (\ln (x))^{4}+\sin (\ln (x))^{2}-\cos (\ln (x))^{2}}{x}
$$

Which simplifies to

$$
W=-\frac{1}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{2 \cos (\ln (x))^{2}-1}{-x} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{\cos (2 \ln (x))}{x} d x
$$

Hence

$$
u_{1}=\frac{\sin (2 \ln (x))}{2}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{\sin (\ln (x)) \cos (\ln (x))}{-x} d x
$$

Which simplifies to

$$
u_{2}=\int-\frac{\sin (2 \ln (x))}{2 x} d x
$$

Hence

$$
u_{2}=\frac{\cos (2 \ln (x))}{4}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\frac{\sin (2 \ln (x)) \sin (\ln (x)) \cos (\ln (x))}{2}+\frac{\cos (2 \ln (x))\left(2 \cos (\ln (x))^{2}-1\right)}{4}
$$

Which simplifies to

$$
y_{p}(x)=\frac{1}{4}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))\right)+\left(\frac{1}{4}\right) \\
& =\frac{1}{4}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
\end{aligned}
$$

Which simplifies to

$$
y=\frac{1}{4}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{4}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{1}{4}+c_{1} \cos (2 \ln (x))+c_{2} \sin (2 \ln (x))
$$

Verified OK.

16.6.4 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=x, C=4, f(x)=1$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+x y^{\prime}+4 y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+4 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n}{x^{2}}+\frac{4}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=2 i \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{4 i}{x}+\frac{1}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{(1+4 i) v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{(1+4 i) u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{(-1-4 i) u}{x}
\end{aligned}
$$

Where $f(x)=\frac{-1-4 i}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{-1-4 i}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{-1-4 i}{x} d x \\
\ln (u) & =(-1-4 i) \ln (x)+c_{1} \\
u & =\mathrm{e}^{(-1-4 i) \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{(-1-4 i) \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{1} x^{-4 i}}{x}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\frac{i c_{1} x^{-4 i}}{4}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\frac{i c_{1} x^{-4 i}}{4}+c_{2}\right) x^{2 i} \\
& =x^{2 i} c_{2}+\frac{i x^{-2 i} c_{1}}{4}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}+x y^{\prime}+4 y=1
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{2 i} \\
& y_{2}=x^{2 i} x^{-4 i}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{2 i} & x^{2 i} x^{-4 i} \\
\frac{d}{d x}\left(x^{2 i}\right) & \frac{d}{d x}\left(x^{2 i} x^{-4 i}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{2 i} & x^{2 i} x^{-4 i} \\
\frac{2 i x^{2 i}}{x} & -\frac{2 i x^{2 i} x^{-4 i}}{x}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{2 i}\right)\left(-\frac{2 i x^{2 i} x^{-4 i}}{x}\right)-\left(x^{2 i} x^{-4 i}\right)\left(\frac{2 i x^{2 i}}{x}\right)
$$

Which simplifies to

$$
W=-\frac{4 i x^{4 i} x^{-4 i}}{x}
$$

Which simplifies to

$$
W=-\frac{4 i}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x^{2 i} x^{-4 i}}{-4 i x} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{i x^{-1-2 i}}{4} d x
$$

Hence

$$
u_{1}=\text { undefined }
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{2 i}}{-4 i x} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{i x^{-1+2 i}}{4} d x
$$

Hence

$$
u_{2}=\text { undefined }
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\text { undefined } x^{2 i}+\text { undefined } x^{2 i} x^{-4 i}
$$

Which simplifies to

$$
y_{p}(x)=\operatorname{undefined}\left(x^{2 i}+x^{-2 i}\right)
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(\frac{i c_{1} x^{-4 i}}{4}+c_{2}\right) x^{2 i}\right)+\left(\text { undefined }\left(x^{2 i}+x^{-2 i}\right)\right) \\
& =\text { undefined }\left(x^{2 i}+x^{-2 i}\right)+\left(\frac{i c_{1} x^{-4 i}}{4}+c_{2}\right) x^{2 i}
\end{aligned}
$$

Which simplifies to

$$
y=\frac{\left(i c_{1}+\text { undefined }\right) x^{-2 i}}{4}+\left(\text { undefined }+c_{2}\right) x^{2 i}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(i c_{1}+\text { undefined }\right) x^{-2 i}}{4}+\left(\text { undefined }+c_{2}\right) x^{2 i} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(i c_{1}+\text { undefined }\right) x^{-2 i}}{4}+\left(\text { undefined }+c_{2}\right) x^{2 i}
$$

Verified OK.

16.6.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+x y^{\prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=x \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-17}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-17 \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{17}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 201: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{17}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{17}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+2 i \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-2 i
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{17}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{17}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+2 i \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-2 i
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{17}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}+2 i$	$\frac{1}{2}-2 i$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}+2 i$	$\frac{1}{2}-2 i$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to
determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=\frac{1}{2}-2 i$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-2 i-\left(\frac{1}{2}-2 i\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-2 i}{x}+(-)(0) \\
& =\frac{\frac{1}{2}-2 i}{x} \\
& =\frac{\frac{1}{2}-2 i}{x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{gathered}
(0)+2\left(\frac{\frac{1}{2}-2 i}{x}\right)(0)+\left(\left(\frac{-\frac{1}{2}+2 i}{x^{2}}\right)+\left(\frac{\frac{1}{2}-2 i}{x}\right)^{2}-\left(-\frac{17}{4 x^{2}}\right)\right)=0 \\
0=0
\end{gathered}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2}-2 i} x d x \\
& =x^{\frac{1}{2}-2 i}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{-2 i}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{i x^{4 i}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{-2 i}\right)+c_{2}\left(x^{-2 i}\left(-\frac{i x^{4 i}}{4}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+x y^{\prime}+4 y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=x^{-2 i} c_{1}-\frac{i c_{2} x^{2 i}}{4}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
y_{1} & =x^{-2 i} \\
y_{2} & =-\frac{i x^{2 i}}{4}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{-2 i} & -\frac{i x^{2 i}}{4} \\
\frac{d}{d x}\left(x^{-2 i}\right) & \frac{d}{d x}\left(-\frac{i x^{2 i}}{4}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{-2 i} & -\frac{i x^{2 i}}{4} \\
-\frac{2 i x^{-2 i}}{x} & \frac{x^{2 i}}{2 x}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{-2 i}\right)\left(\frac{x^{2 i}}{2 x}\right)-\left(-\frac{i x^{2 i}}{4}\right)\left(-\frac{2 i x^{-2 i}}{x}\right)
$$

Which simplifies to

$$
W=\frac{x^{2 i} x^{-2 i}}{x}
$$

Which simplifies to

$$
W=\frac{1}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{-\frac{i x^{2 i}}{4}}{x} d x
$$

Which simplifies to

$$
u_{1}=-\int-\frac{i x^{-1+2 i}}{4} d x
$$

Hence

$$
u_{1}=\text { undefined }
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{-2 i}}{x} d x
$$

Which simplifies to

$$
u_{2}=\int x^{-1-2 i} d x
$$

Hence

$$
u_{2}=\text { undefined }
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=\text { undefined } x^{-2 i}-i \text { undefined } x^{2 i}
$$

Which simplifies to

$$
y_{p}(x)=\left(i x^{2 i}+x^{-2 i}\right) \text { undefined }
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(x^{-2 i} c_{1}-\frac{i c_{2} x^{2 i}}{4}\right)+\left(\left(i x^{2 i}+x^{-2 i}\right) \text { undefined }\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=x^{-2 i} c_{1}-\frac{i c_{2} x^{2 i}}{4}+\left(i x^{2 i}+x^{-2 i}\right) \text { undefined } \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{-2 i} c_{1}-\frac{i c_{2} x^{2 i}}{4}+\left(i x^{2 i}+x^{-2 i}\right) \text { undefined }
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    <- LODE of Euler type successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 20
dsolve $\left(x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+x * \operatorname{diff}(y(x), x)+4 * y(x)=1, y(x)\right.$, singsol=all)

$$
y(x)=\sin (2 \ln (x)) c_{2}+\cos (2 \ln (x)) c_{1}+\frac{1}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 25
DSolve $\left[\mathrm{x}^{\wedge} 2 * \mathrm{y}^{\prime \prime}[\mathrm{x}]+\mathrm{x} * \mathrm{y}^{\prime}[\mathrm{x}]+4 * \mathrm{y}[\mathrm{x}]==1, \mathrm{y}[\mathrm{x}], \mathrm{x}\right.$, IncludeSingularSolutions \rightarrow True $]$

$$
y(x) \rightarrow c_{1} \cos (2 \log (x))+c_{2} \sin (2 \log (x))+\frac{1}{4}
$$

16.7 problem 2(b)

16.7.1 Solving as second order euler ode ode 1272
16.7.2 Solving as second order change of variable on x method 2 ode . 1274
16.7.3 Solving as second order change of variable on x method 1 ode . 1277
16.7.4 Solving as second order change of variable on y method 2 ode . 1279
16.7.5 Solving using Kovacic algorithm 1281
16.7.6 Maple step by step solution . 1286

Internal problem ID [6037]
Internal file name [OUTPUT/5285_Sunday_June_05_2022_03_29_29_PM_62290384/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 149
Problem number: 2(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_cvariable_on_x_method_1", "second_order_change__of_variable_on_x_method_2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+5 y=0
$$

16.7.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}-3 x r x^{r-1}+5 x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}-3 r x^{r}+5 x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)-3 r+5=0
$$

Or

$$
\begin{equation*}
r^{2}-4 r+5=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
r_{1} & =2-i \\
r_{2} & =2+i
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=2$ and $\beta=-1$. Hence the solution becomes

$$
\begin{aligned}
y & =c_{1} x^{r_{1}}+c_{2} x^{r_{2}} \\
& =c_{1} x^{\alpha+i \beta}+c_{2} x^{\alpha-i \beta} \\
& =x^{\alpha}\left(c_{1} x^{i \beta}+c_{2} x^{-i \beta}\right) \\
& =x^{\alpha}\left(c_{1} e^{\ln \left(x^{i \beta}\right)}+c_{2} e^{\ln \left(x^{-i \beta}\right)}\right) \\
& =x^{\alpha}\left(c_{1} e^{i(\beta \ln x)}+c_{2} e^{-i(\beta \ln x)}\right)
\end{aligned}
$$

Using the values for $\alpha=2, \beta=-1$, the above becomes

$$
y=x^{2}\left(c_{1} e^{-i \ln (x)}+c_{2} e^{i \ln (x)}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y=x^{2}\left(c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))\right)
$$

Verified OK.

16.7.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 x y^{\prime}+5 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{5}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{3}{x} d x\right)} d x \\
& =\int e^{3 \ln (x)} d x \\
& =\int x^{3} d x \\
& =\frac{x^{4}}{4} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{5}{x^{2}}}{x^{6}} \\
& =\frac{5}{x^{8}} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{5 y(\tau)}{x^{8}} & =0
\end{aligned}
$$

But in terms of τ

$$
\frac{5}{x^{8}}=\frac{5}{16 \tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{5 y(\tau)}{16 \tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
16\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+5 y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
16 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+5 \tau^{r}=0
$$

Simplifying gives

$$
16 r(r-1) \tau^{r}+0 \tau^{r}+5 \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
16 r(r-1)+0+5=0
$$

Or

$$
\begin{equation*}
16 r^{2}-16 r+5=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{2}-\frac{i}{4} \\
& r_{2}=\frac{1}{2}+\frac{i}{4}
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=\frac{1}{2}$ and $\beta=-\frac{1}{4}$. Hence the solution becomes

$$
\begin{aligned}
y(\tau) & =c_{1} \tau^{r_{1}}+c_{2} \tau^{r_{2}} \\
& =c_{1} \tau^{\alpha+i \beta}+c_{2} \tau^{\alpha-i \beta} \\
& =\tau^{\alpha}\left(c_{1} \tau^{i \beta}+c_{2} \tau^{-i \beta}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{\ln \left(\tau^{i \beta}\right)}+c_{2} e^{\ln \left(\tau^{-i \beta}\right)}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{i(\beta \ln \tau)}+c_{2} e^{-i(\beta \ln \tau)}\right)
\end{aligned}
$$

Using the values for $\alpha=\frac{1}{2}, \beta=-\frac{1}{4}$, the above becomes

$$
y(\tau)=\tau^{\frac{1}{2}}\left(c_{1} e^{-\frac{i \ln (\tau)}{4}}+c_{2} e^{\frac{i \ln (\tau)}{4}}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y(\tau)=\sqrt{\tau}\left(c_{1} \cos \left(\frac{\ln (\tau)}{4}\right)+c_{2} \sin \left(\frac{\ln (\tau)}{4}\right)\right)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{\left(c_{1} \cos \left(-\frac{\ln (2)}{2}+\ln (x)\right)+c_{2} \sin \left(-\frac{\ln (2)}{2}+\ln (x)\right)\right) x^{2}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(c_{1} \cos \left(-\frac{\ln (2)}{2}+\ln (x)\right)+c_{2} \sin \left(-\frac{\ln (2)}{2}+\ln (x)\right)\right) x^{2}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\left(c_{1} \cos \left(-\frac{\ln (2)}{2}+\ln (x)\right)+c_{2} \sin \left(-\frac{\ln (2)}{2}+\ln (x)\right)\right) x^{2}}{2}
$$

Verified OK.

16.7.3 Solving as second order change of variable on x method 1 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 x y^{\prime}+5 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{5}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{5} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{5}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{5}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{3}{x} \frac{\sqrt{5} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{5} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-\frac{4 c \sqrt{5}}{5}
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{4 c \sqrt{5}\left(\frac{d}{d \tau} y(\tau)\right)}{5}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=\mathrm{e}^{\frac{2 \sqrt{5} c \tau}{5}}\left(c_{1} \cos \left(\frac{\sqrt{5} c \tau}{5}\right)+c_{2} \sin \left(\frac{\sqrt{5} c \tau}{5}\right)\right)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{5} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{5} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=x^{2}\left(c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x^{2}\left(c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))\right)
$$

Verified OK.

16.7.4 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 x y^{\prime}+5 y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{5}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{3 n}{x^{2}}+\frac{5}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=2+i \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{4+2 i}{x}-\frac{3}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{(1+2 i) v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{(1+2 i) u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{(-1-2 i) u}{x}
\end{aligned}
$$

Where $f(x)=\frac{-1-2 i}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{-1-2 i}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{-1-2 i}{x} d x \\
\ln (u) & =(-1-2 i) \ln (x)+c_{1} \\
u & =\mathrm{e}^{(-1-2 i) \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{(-1-2 i) \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{1} x^{-2 i}}{x}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\frac{i x^{-2 i} c_{1}}{2}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\frac{i x^{-2 i} c_{1}}{2}+c_{2}\right) x^{2+i} \\
& =c_{2} x^{2+i}+\frac{i c_{1} x^{2-i}}{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(\frac{i x^{-2 i} c_{1}}{2}+c_{2}\right) x^{2+i} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(\frac{i x^{-2 i} c_{1}}{2}+c_{2}\right) x^{2+i}
$$

Verified OK.

16.7.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}-3 x y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=-3 x \tag{3}\\
& C=5
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-5}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-5 \\
t & =4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{5}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. \{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 202: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole
larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=-\frac{5}{4 x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{5}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+i \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-i
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=-\frac{5}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{5}{4}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+i \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-i
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=-\frac{5}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}+i$	$\frac{1}{2}-i$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}+i$	$\frac{1}{2}-i$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=\frac{1}{2}-i$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-i-\left(\frac{1}{2}-i\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-i}{x}+(-)(0) \\
& =\frac{\frac{1}{2}-i}{x} \\
& =\frac{\frac{1}{2}-i}{x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{\frac{1}{2}-i}{x}\right)(0)+\left(\left(\frac{-\frac{1}{2}+i}{x^{2}}\right)+\left(\frac{\frac{1}{2}-i}{x}\right)^{2}-\left(-\frac{5}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2}-i} x d x \\
& =x^{\frac{1}{2}-i}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3 x}{x^{2}} d x} \\
& =z_{1} e^{\frac{3 \ln (x)}{2}} \\
& =z_{1}\left(x^{\frac{3}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{2-i}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{i x^{2 i}}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{2-i}\right)+c_{2}\left(x^{2-i}\left(-\frac{i x^{2 i}}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2-i}-\frac{i c_{2} x^{2+i}}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{2-i}-\frac{i c_{2} x^{2+i}}{2}
$$

Verified OK.

16.7.6 Maple step by step solution

Let's solve
$x^{2} y^{\prime \prime}-3 x y^{\prime}+5 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=\frac{3 y^{\prime}}{x}-\frac{5 y}{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{3 y^{\prime}}{x}+\frac{5 y}{x^{2}}=0$
- Multiply by denominators of the ODE

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+5 y=0
$$

- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{d}{d t} y(t), 3 \frac{d}{x^{2}} y(t)+5 y(t)=0\right.$
- \quad Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)-4 \frac{d}{d t} y(t)+5 y(t)=0
$$

- Characteristic polynomial of ODE
$r^{2}-4 r+5=0$
- Use quadratic formula to solve for r
$r=\frac{4 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial
$r=(2-\mathrm{I}, 2+\mathrm{I})$
- $\quad 1$ st solution of the ODE
$y_{1}(t)=\mathrm{e}^{2 t} \cos (t)$
- $\quad 2$ nd solution of the ODE
$y_{2}(t)=\mathrm{e}^{2 t} \sin (t)$
- General solution of the ODE
$y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$
- \quad Substitute in solutions
$y(t)=c_{1} \mathrm{e}^{2 t} \cos (t)+c_{2} \mathrm{e}^{2 t} \sin (t)$
- Change variables back using $t=\ln (x)$
$y=c_{1} x^{2} \cos (\ln (x))+c_{2} x^{2} \sin (\ln (x))$
- Simplify
$y=x^{2}\left(c_{1} \cos (\ln (x))+c_{2} \sin (\ln (x))\right)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(x^2*diff(y(x),x$2)-3*x*\operatorname{diff}(y(x),x)+5*y(x)=0,y(x), singsol=all)
```

$$
y(x)=x^{2}\left(c_{1} \sin (\ln (x))+c_{2} \cos (\ln (x))\right)
$$

\checkmark Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 22

```
DSolve[x^2*y''[x]-3*x*y'[x]+5*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow x^{2}\left(c_{2} \cos (\log (x))+c_{1} \sin (\log (x))\right)
$$

16.8 problem 2(c)

16.8.1 Solving as second order euler ode ode 1289
16.8.2 Solving as second order change of variable on x method 2 ode . 1290
16.8.3 Solving as second order change of variable on y method 2 ode . 1293
16.8.4 Solving using Kovacic algorithm 1296
16.8.5 Maple step by step solution . 1301

Internal problem ID [6038]
Internal file name [OUTPUT/5286_Sunday_June_05_2022_03_29_30_PM_70934068/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 149
Problem number: 2(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second__order_change_of_cvariable_on_x_method_2", "second_order_change_of__variable_on_y__method__2"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
x^{2} y^{\prime \prime}+(-2-i) x y^{\prime}+3 i y=0
$$

16.8.1 Solving as second order euler ode ode

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}(-2-i) x r x^{r-1}+3 i x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}(-2-i) r x^{r}+3 i x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)(-2-i) r+3 i=0
$$

Or

$$
\begin{equation*}
3 i+r^{2}+(-3-i) r=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=3 \\
& r_{2}=i
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=c_{1} x^{3}+c_{2} x^{i}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{3}+c_{2} x^{i} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{3}+c_{2} x^{i}
$$

Verified OK.

16.8.2 Solving as second order change of variable on x method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(-2-i) x y^{\prime}+3 i y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{-2-i}{x} \\
& q(x)=\frac{3 i}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0 . \mathrm{Eq}(4)$ simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{-2-i}{x} d x\right)} d x \\
& =\int e^{(2+i) \ln (x)} d x \\
& =\int x^{2+i} d x \\
& =\left(\frac{3}{10}-\frac{i}{10}\right) x^{3+i} \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{3 i}{x^{2}}}{x^{4+2 i}} \\
& =3 i x^{-6-2 i} \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+3 i x^{-6-2 i} y(\tau) & =0
\end{aligned}
$$

But in terms of τ

$$
3 i x^{-6-2 i}=\frac{\frac{9}{50}+\frac{6 i}{25}}{\tau^{2}}
$$

Hence the above ode becomes

$$
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{\left(\frac{9}{50}+\frac{6 i}{25}\right) y(\tau)}{\tau^{2}}=0
$$

The above ode is now solved for $y(\tau)$. The ode can be written as

$$
50\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+(9+12 i) y(\tau)=0
$$

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be $y(\tau)=\tau^{r}$, then $y^{\prime}=r \tau^{r-1}$ and $y^{\prime \prime}=r(r-1) \tau^{r-2}$. Substituting these back into the given ODE gives

$$
50 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+(9+12 i) \tau^{r}=0
$$

Simplifying gives

$$
50 r(r-1) \tau^{r}+0 \tau^{r}+(9+12 i) \tau^{r}=0
$$

Since $\tau^{r} \neq 0$ then dividing throughout by τ^{r} gives

$$
50 r(r-1)+0+9+12 i=0
$$

Or

$$
\begin{equation*}
50 r^{2}-50 r+12 i+9=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=\frac{1}{10}+\frac{3 i}{10} \\
& r_{2}=\frac{9}{10}-\frac{3 i}{10}
\end{aligned}
$$

The roots are complex conjugate of each others. Let the roots be

$$
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
$$

Where in this case $\alpha=\frac{1}{10}$ and $\beta=\frac{3}{10}$. Hence the solution becomes

$$
\begin{aligned}
y(\tau) & =c_{1} \tau^{r_{1}}+c_{2} \tau^{r_{2}} \\
& =c_{1} \tau^{\alpha+i \beta}+c_{2} \tau^{\alpha-i \beta} \\
& =\tau^{\alpha}\left(c_{1} \tau^{i \beta}+c_{2} \tau^{-i \beta}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{\ln \left(\tau^{i \beta}\right)}+c_{2} e^{\ln \left(\tau^{-i \beta}\right)}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{i(\beta \ln \tau)}+c_{2} e^{-i(\beta \ln \tau)}\right)
\end{aligned}
$$

Using the values for $\alpha=\frac{1}{10}, \beta=\frac{3}{10}$, the above becomes

$$
y(\tau)=\tau^{\frac{1}{10}}\left(c_{1} e^{\frac{3 i \ln (\tau)}{10}}+c_{2} e^{-\frac{3 i \ln (\tau)}{10}}\right)
$$

Using Euler relation, the expression $c_{1} e^{i A}+c_{2} e^{-i A}$ is transformed to $c_{1} \cos A+c_{1} \sin A$ where the constants are free to change. Applying this to the above result gives

$$
y(\tau)=\tau^{\frac{1}{10}}\left(c_{1} \cos \left(\frac{3 \ln (\tau)}{10}\right)+c_{2} \sin \left(\frac{3 \ln (\tau)}{10}\right)\right)
$$

The above solution is now transformed back to y using (6) which results in

$$
y=\frac{10^{\frac{4}{5}}\left((30-10 i) x^{3+i}\right)^{\frac{1}{10}}\left(c_{1} \cos \left(\frac{3 \ln \left(\left(\frac{3}{10}-\frac{i}{10}\right) x^{3+i}\right)}{10}\right)+c_{2} \sin \left(\frac{3 \ln \left(\left(\frac{3}{10}-\frac{i}{10}\right) x^{3+i}\right)}{10}\right)\right)}{10}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{10^{\frac{4}{5}}\left((30-10 i) x^{3+i}\right)^{\frac{1}{10}}\left(c_{1} \cos \left(\frac{3 \ln \left(\left(\frac{3}{10}-\frac{i}{10}\right) x^{3+i}\right)}{10}\right)+c_{2} \sin \left(\frac{3 \ln \left(\left(\frac{3}{10}-\frac{i}{10}\right) x^{3+i}\right)}{10}\right)\right)}{10} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{10^{\frac{4}{5}}\left((30-10 i) x^{3+i}\right)^{\frac{1}{10}}\left(c_{1} \cos \left(\frac{3 \ln \left(\left(\frac{3}{10}-\frac{i}{10}\right) x^{3+i}\right)}{10}\right)+c_{2} \sin \left(\frac{3 \ln \left(\left(\frac{3}{10}-\frac{i}{10}\right) x^{3+i}\right)}{10}\right)\right)}{10}
$$

Verified OK.

16.8.3 Solving as second order change of variable on y method 2 ode

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+(-2-i) x y^{\prime}+3 i y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{-2-i}{x} \\
& q(x)=\frac{3 i}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{(-2-i) n}{x^{2}}+\frac{3 i}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=3 \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{6}{x}+\frac{-2-i}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{(4-i) v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{(4-i) u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{(-4+i) u}{x}
\end{aligned}
$$

Where $f(x)=\frac{-4+i}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{-4+i}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{-4+i}{x} d x \\
\ln (u) & =(-4+i) \ln (x)+c_{1} \\
u & =\mathrm{e}^{(-4+i) \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{(-4+i) \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{1} x^{i}}{x^{4}}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\left(-\frac{3}{10}-\frac{i}{10}\right) c_{1} x^{-3+i}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\left(-\frac{3}{10}-\frac{i}{10}\right) c_{1} x^{-3+i}+c_{2}\right) x^{3} \\
& =-\frac{x^{3}\left((3+i) c_{1} x^{-3+i}-10 c_{2}\right)}{10}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(\left(-\frac{3}{10}-\frac{i}{10}\right) c_{1} x^{-3+i}+c_{2}\right) x^{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(\left(-\frac{3}{10}-\frac{i}{10}\right) c_{1} x^{-3+i}+c_{2}\right) x^{3}
$$

Verified OK.

16.8.4 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+(-2-i) x y^{\prime}+3 i y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=(-2-i) x \tag{3}\\
& C=3 i
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{7-6 i}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=7-6 i \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{\frac{7}{4}-\frac{3 i}{2}}{x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 204: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{\frac{7}{4}-\frac{3 i}{2}}{x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=\frac{7}{4}-\frac{3 i}{2}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=2-\frac{i}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-1+\frac{i}{2}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{\frac{7}{4}-\frac{3 i}{2}}{x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=\frac{7}{4}-\frac{3 i}{2}$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=2-\frac{i}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-1+\frac{i}{2}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{\frac{7}{4}-\frac{3 i}{2}}{x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$2-\frac{i}{2}$	$-1+\frac{i}{2}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$2-\frac{i}{2}$	$-1+\frac{i}{2}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω.

Trying $\alpha_{\infty}^{-}=-1+\frac{i}{2}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-1+\frac{i}{2}-\left(-1+\frac{i}{2}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{-1+\frac{i}{2}}{x}+(-)(0) \\
& =\frac{-1+\frac{i}{2}}{x} \\
& =\frac{-1+\frac{i}{2}}{x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{-1+\frac{i}{2}}{x}\right)(0)+\left(\left(\frac{1-\frac{i}{2}}{x^{2}}\right)+\left(\frac{-1+\frac{i}{2}}{x}\right)^{2}-\left(\frac{\frac{7}{4}-\frac{3 i}{2}}{x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{-1+\frac{i}{2}}{x} d x} \\
& =x^{-1+\frac{i}{2}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{(-2-i) x}{x^{2}} d x} \\
& =z_{1} e^{\left(1+\frac{i}{2}\right) \ln (x)} \\
& =z_{1}\left(x^{1+\frac{i}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{i}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{(-2-i) x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{(2+i) \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\left(\frac{3}{10}+\frac{i}{10}\right) x^{3-i}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{i}\right)+c_{2}\left(x^{i}\left(\left(\frac{3}{10}+\frac{i}{10}\right) x^{3-i}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{i}+\left(\frac{3}{10}+\frac{i}{10}\right) c_{2} x^{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{i}+\left(\frac{3}{10}+\frac{i}{10}\right) c_{2} x^{3}
$$

Verified OK.

16.8.5 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}-(2+\mathrm{I}) x y^{\prime}+3 \mathrm{I} y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{3 \mathrm{I} y}{x^{2}}+\frac{(2+\mathrm{I}) y^{\prime}}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{(2+\mathrm{I}) y^{\prime}}{x}+\frac{3 \mathrm{I} y}{x^{2}}=0$
- Multiply by denominators of the ODE
$x^{2} y^{\prime \prime}-(2+\mathrm{I}) x y^{\prime}+3 \mathrm{I} y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x, using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE

$$
x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)-(2+\mathrm{I})\left(\frac{d}{d t} y(t)\right)+3 \mathrm{I} y(t)=0
$$

- \quad Simplify

$$
\frac{d^{2}}{d t^{2}} y(t)-(3+\mathrm{I})\left(\frac{d}{d t} y(t)\right)+3 \mathrm{I} y(t)=0
$$

- Characteristic polynomial of ODE
$r^{2}-(3+\mathrm{I}) r+3 \mathrm{I}=0$
- Factor the characteristic polynomial

$$
-(r-3)(-r+\mathrm{I})=0
$$

- Roots of the characteristic polynomial

$$
r=(3, \mathrm{I})
$$

- 1st solution of the ODE

$$
y_{1}(t)=\mathrm{e}^{3 t}
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(t)=0
$$

- General solution of the ODE

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

- Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{3 t}
$$

- Change variables back using $t=\ln (x)$

$$
y=c_{1} x^{3}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve(x^2*diff(y(x),x$2)-(2+I)*x*diff (y(x),x)+3*I*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} x^{3}+c_{2} x^{i}
$$

\checkmark Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 20
DSolve $\left[x^{\sim} 2 * y\right.$ ' ' $[x]-(2+I) * x * y$ ' $[x]+3 * I * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{1} x^{i}+c_{2} x^{3}
$$

16.9 problem 2(d)

16.9.1 Solving as second order euler ode ode 1304
16.9.2 Solving as second order change of variable on x method 2 ode . 1308
16.9.3 Solving as second order change of variable on x method 1 ode . 1313
16.9.4 Solving as second order change of variable on y method 2 ode . 1318
16.9.5 Solving using Kovacic algorithm 1323

Internal problem ID [6039]
Internal file name [OUTPUT/5287_Sunday_June_05_2022_03_29_32_PM_10541990/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 149
Problem number: 2(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second__order_change_of_cvariable_on_x_method_1", "second_order_change__of_variable_on_x_method_2", "second_order_change_of_cvariable_on_y__method_2"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
x^{2} y^{\prime \prime}+x y^{\prime}-4 \pi y=x
$$

16.9.1 Solving as second order euler ode ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=x, C=-4 \pi, f(x)=x$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+x y^{\prime}-4 \pi y=0
$$

This is Euler second order ODE. Let the solution be $y=x^{r}$, then $y^{\prime}=r x^{r-1}$ and $y^{\prime \prime}=r(r-1) x^{r-2}$. Substituting these back into the given ODE gives

$$
x^{2}(r(r-1)) x^{r-2}+x r x^{r-1}-4 \pi x^{r}=0
$$

Simplifying gives

$$
r(r-1) x^{r}+r x^{r}-4 \pi x^{r}=0
$$

Since $x^{r} \neq 0$ then dividing throughout by x^{r} gives

$$
r(r-1)+r-4 \pi=0
$$

Or

$$
\begin{equation*}
r^{2}-4 \pi=0 \tag{1}
\end{equation*}
$$

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are

$$
\begin{aligned}
& r_{1}=-2 \sqrt{\pi} \\
& r_{2}=2 \sqrt{\pi}
\end{aligned}
$$

Since the roots are real and distinct, then the general solution is

$$
y=c_{1} y_{1}+c_{2} y_{2}
$$

Where $y_{1}=x^{r_{1}}$ and $y_{2}=x^{r_{2}}$. Hence

$$
y=c_{1} x^{-2 \sqrt{\pi}}+c_{2} x^{2 \sqrt{\pi}}
$$

Next, we find the particular solution to the ODE

$$
x^{2} y^{\prime \prime}+x y^{\prime}-4 \pi y=x
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{-2 \sqrt{\pi}} \\
& y_{2}=x^{2 \sqrt{\pi}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{-2 \sqrt{\pi}} & x^{2 \sqrt{\pi}} \\
\frac{d}{d x}\left(x^{-2 \sqrt{\pi}}\right) & \frac{d}{d x}\left(x^{2 \sqrt{\pi}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{-2 \sqrt{\pi}} & x^{2 \sqrt{\pi}} \\
-\frac{2 x^{-2 \sqrt{\pi}} \sqrt{\pi}}{x} & \frac{2 x^{2 \sqrt{\pi}} \sqrt{\pi}}{x}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{-2 \sqrt{\pi}}\right)\left(\frac{2 x^{2 \sqrt{\pi}} \sqrt{\pi}}{x}\right)-\left(x^{2 \sqrt{\pi}}\right)\left(-\frac{2 x^{-2 \sqrt{\pi}} \sqrt{\pi}}{x}\right)
$$

Which simplifies to

$$
W=\frac{4 x^{-2 \sqrt{\pi}} x^{2 \sqrt{\pi}} \sqrt{\pi}}{x}
$$

Which simplifies to

$$
W=\frac{4 \sqrt{\pi}}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x x^{2 \sqrt{\pi}}}{4 \sqrt{\pi} x} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{x^{2 \sqrt{\pi}}}{4 \sqrt{\pi}} d x
$$

Hence

$$
u_{1}=-\frac{x^{1+2 \sqrt{\pi}}}{4 \sqrt{\pi}(1+2 \sqrt{\pi})}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{-2 \sqrt{\pi}} x}{4 \sqrt{\pi} x} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{x^{-2 \sqrt{\pi}}}{4 \sqrt{\pi}} d x
$$

Hence

$$
u_{2}=-\frac{x^{-2 \sqrt{\pi}+1}}{4 \sqrt{\pi}(2 \sqrt{\pi}-1)}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{x^{1+2 \sqrt{\pi}}}{\sqrt{\pi}(4+8 \sqrt{\pi})} \\
& u_{2}=-\frac{x^{-2 \sqrt{\pi}+1}}{\sqrt{\pi}(8 \sqrt{\pi}-4)}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{x^{1+2 \sqrt{\pi}} x^{-2 \sqrt{\pi}}}{\sqrt{\pi}(4+8 \sqrt{\pi})}-\frac{x^{-2 \sqrt{\pi}+1} x^{2 \sqrt{\pi}}}{\sqrt{\pi}(8 \sqrt{\pi}-4)}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{x}{4 \pi-1}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =-\frac{x}{4 \pi-1}+c_{1} x^{-2 \sqrt{\pi}}+c_{2} x^{2 \sqrt{\pi}}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x}{4 \pi-1}+c_{1} x^{-2 \sqrt{\pi}}+c_{2} x^{2 \sqrt{\pi}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{x}{4 \pi-1}+c_{1} x^{-2 \sqrt{\pi}}+c_{2} x^{2 \sqrt{\pi}}
$$

Verified OK.

16.9.2 Solving as second order change of variable on x method 2 ode

This is second order non-homogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+x y^{\prime}-4 \pi y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}-4 \pi y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{4 \pi}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) gives

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $p_{1}=0$. Eq (4) simplifies to

$$
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
$$

This ode is solved resulting in

$$
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{x} d x\right)} d x \\
& =\int \mathrm{e}^{-\ln (x)} d x \\
& =\int \frac{1}{x} d x \\
& =\ln (x) \tag{6}
\end{align*}
$$

Using (6) to evaluate q_{1} from (5) gives

$$
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{4 \pi}{x^{2}}}{\frac{1}{x^{2}}} \\
& =-4 \pi \tag{7}
\end{align*}
$$

Substituting the above in (3) and noting that now $p_{1}=0$ results in

$$
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-4 \pi y(\tau) & =0
\end{aligned}
$$

The above ode is now solved for $y(\tau)$.This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
$$

Where in the above $A=1, B=0, C=-4 \pi$. Let the solution be $y(\tau)=e^{\lambda \tau}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}-4 \pi \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda \tau}$ gives

$$
\begin{equation*}
\lambda^{2}-4 \pi=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-4 \pi$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-4 \pi)} \\
& = \pm 2 \sqrt{\pi}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 \sqrt{\pi} \\
& \lambda_{2}=-2 \sqrt{\pi}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 \sqrt{\pi} \\
& \lambda_{2}=-2 \sqrt{\pi}
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{(2 \sqrt{\pi}) \tau}+c_{2} e^{(-2 \sqrt{\pi}) \tau}
\end{aligned}
$$

Or

$$
y(\tau)=c_{1} \mathrm{e}^{2 \sqrt{\pi} \tau}+c_{2} \mathrm{e}^{-2 \sqrt{\pi} \tau}
$$

The above solution is now transformed back to y using (6) which results in

$$
y=c_{1} x^{2 \sqrt{\pi}}+c_{2} x^{-2 \sqrt{\pi}}
$$

Therefore the homogeneous solution y_{h} is

$$
y_{h}=c_{1} x^{2 \sqrt{\pi}}+c_{2} x^{-2 \sqrt{\pi}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{-2 \sqrt{\pi}} \\
& y_{2}=x^{2 \sqrt{\pi}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE. The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{-2 \sqrt{\pi}} & x^{2 \sqrt{\pi}} \\
\frac{d}{d x}\left(x^{-2 \sqrt{\pi}}\right) & \frac{d}{d x}\left(x^{2 \sqrt{\pi}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{-2 \sqrt{\pi}} & x^{2 \sqrt{\pi}} \\
-\frac{2 x^{-2 \sqrt{\pi}} \sqrt{\pi}}{x} & \frac{2 x^{2 \sqrt{\pi}} \sqrt{\pi}}{x}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{-2 \sqrt{\pi}}\right)\left(\frac{2 x^{2 \sqrt{\pi}} \sqrt{\pi}}{x}\right)-\left(x^{2 \sqrt{\pi}}\right)\left(-\frac{2 x^{-2 \sqrt{\pi}} \sqrt{\pi}}{x}\right)
$$

Which simplifies to

$$
W=\frac{4 \sqrt{\pi}}{x}
$$

Which simplifies to

$$
W=\frac{4 \sqrt{\pi}}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x x^{2 \sqrt{\pi}}}{4 \sqrt{\pi} x} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{x^{2 \sqrt{\pi}}}{4 \sqrt{\pi}} d x
$$

Hence

$$
u_{1}=-\frac{x^{1+2 \sqrt{\pi}}}{4 \sqrt{\pi}(1+2 \sqrt{\pi})}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{-2 \sqrt{\pi}} x}{4 \sqrt{\pi} x} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{x^{-2 \sqrt{\pi}}}{4 \sqrt{\pi}} d x
$$

Hence

$$
u_{2}=-\frac{x^{-2 \sqrt{\pi}+1}}{4 \sqrt{\pi}(2 \sqrt{\pi}-1)}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{x^{1+2 \sqrt{\pi}}}{\sqrt{\pi}(4+8 \sqrt{\pi})} \\
& u_{2}=-\frac{x^{-2 \sqrt{\pi}+1}}{\sqrt{\pi}(8 \sqrt{\pi}-4)}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{x^{1+2 \sqrt{\pi}} x^{-2 \sqrt{\pi}}}{\sqrt{\pi}(4+8 \sqrt{\pi})}-\frac{x^{-2 \sqrt{\pi}+1} x^{2 \sqrt{\pi}}}{\sqrt{\pi}(8 \sqrt{\pi}-4)}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{x}{4 \pi-1}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} x^{2 \sqrt{\pi}}+c_{2} x^{-2 \sqrt{\pi}}\right)+\left(-\frac{x}{4 \pi-1}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2 \sqrt{\pi}}+c_{2} x^{-2 \sqrt{\pi}}-\frac{x}{4 \pi-1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{2 \sqrt{\pi}}+c_{2} x^{-2 \sqrt{\pi}}-\frac{x}{4 \pi-1}
$$

Verified OK.

16.9.3 Solving as second order change of variable on x method 1 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=x, C=-4 \pi, f(x)=x$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+x y^{\prime}-4 \pi y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}-4 \pi y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{4 \pi}{x^{2}}
\end{aligned}
$$

Applying change of variables $\tau=g(x)$ to (2) results

$$
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
$$

Where τ is the new independent variable, and

$$
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
$$

Let $q_{1}=c^{2}$ where c is some constant. Therefore from (5)

$$
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{2 \sqrt{-\frac{\pi}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =\frac{2 \pi}{c \sqrt{-\frac{\pi}{x^{2}}} x^{3}}
\end{align*}
$$

Substituting the above into (4) results in

$$
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{2 \pi}{c \sqrt{-\frac{\pi}{x^{2}}} x^{3}}+\frac{1}{x} \frac{2 \sqrt{-\frac{\pi}{x^{2}}}}{c}}{\left(\frac{2 \sqrt{-\frac{\pi}{x^{2}}}}{c}\right)^{2}} \\
& =0
\end{aligned}
$$

Therefore ode (3) now becomes

$$
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
$$

The above ode is now solved for $y(\tau)$. Since the ode is now constant coefficients, it can be easily solved to give

$$
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
$$

Now from (6)

$$
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 2 \sqrt{-\frac{\pi}{x^{2}}} d x}{c} \\
& =\frac{2 \sqrt{-\frac{\pi}{x^{2}}} x \ln (x)}{c}
\end{aligned}
$$

Substituting the above into the solution obtained gives

$$
y=c_{1} \cosh (2 \sqrt{\pi} \ln (x))+i c_{2} \sinh (2 \sqrt{\pi} \ln (x))
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}+x y^{\prime}-4 \pi y=x
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{-2 \sqrt{\pi}} \\
& y_{2}=x^{2 \sqrt{\pi}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{-2 \sqrt{\pi}} & x^{2 \sqrt{\pi}} \\
\frac{d}{d x}\left(x^{-2 \sqrt{\pi}}\right) & \frac{d}{d x}\left(x^{2 \sqrt{\pi}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{-2 \sqrt{\pi}} & x^{2 \sqrt{\pi}} \\
-\frac{2 x^{-2 \sqrt{\pi}} \sqrt{\pi}}{x} & \frac{2 x^{2 \sqrt{\pi}} \sqrt{\pi}}{x}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{-2 \sqrt{\pi}}\right)\left(\frac{2 x^{2 \sqrt{\pi}} \sqrt{\pi}}{x}\right)-\left(x^{2 \sqrt{\pi}}\right)\left(-\frac{2 x^{-2 \sqrt{\pi}} \sqrt{\pi}}{x}\right)
$$

Which simplifies to

$$
W=\frac{4 \sqrt{\pi}}{x}
$$

Which simplifies to

$$
W=\frac{4 \sqrt{\pi}}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x x^{2 \sqrt{\pi}}}{4 \sqrt{\pi} x} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{x^{2 \sqrt{\pi}}}{4 \sqrt{\pi}} d x
$$

Hence

$$
u_{1}=-\frac{x^{1+2 \sqrt{\pi}}}{4 \sqrt{\pi}(1+2 \sqrt{\pi})}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{-2 \sqrt{\pi}} x}{4 \sqrt{\pi} x} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{x^{-2 \sqrt{\pi}}}{4 \sqrt{\pi}} d x
$$

Hence

$$
u_{2}=-\frac{x^{-2 \sqrt{\pi}+1}}{4 \sqrt{\pi}(2 \sqrt{\pi}-1)}
$$

Which simplifies to

$$
\begin{aligned}
u_{1} & =-\frac{x^{1+2 \sqrt{\pi}}}{\sqrt{\pi}(4+8 \sqrt{\pi})} \\
u_{2} & =-\frac{x^{-2 \sqrt{\pi}+1}}{\sqrt{\pi}(8 \sqrt{\pi}-4)}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{x^{1+2 \sqrt{\pi}} x^{-2 \sqrt{\pi}}}{\sqrt{\pi}(4+8 \sqrt{\pi})}-\frac{x^{-2 \sqrt{\pi}+1} x^{2 \sqrt{\pi}}}{\sqrt{\pi}(8 \sqrt{\pi}-4)}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{x}{4 \pi-1}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cosh (2 \sqrt{\pi} \ln (x))+i c_{2} \sinh (2 \sqrt{\pi} \ln (x))\right)+\left(-\frac{x}{4 \pi-1}\right) \\
& =-\frac{x}{4 \pi-1}+c_{1} \cosh (2 \sqrt{\pi} \ln (x))+i c_{2} \sinh (2 \sqrt{\pi} \ln (x))
\end{aligned}
$$

Which simplifies to

$$
y=-\frac{x}{4 \pi-1}+c_{1} \cosh (2 \sqrt{\pi} \ln (x))+i c_{2} \sinh (2 \sqrt{\pi} \ln (x))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x}{4 \pi-1}+c_{1} \cosh (2 \sqrt{\pi} \ln (x))+i c_{2} \sinh (2 \sqrt{\pi} \ln (x)) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{x}{4 \pi-1}+c_{1} \cosh (2 \sqrt{\pi} \ln (x))+i c_{2} \sinh (2 \sqrt{\pi} \ln (x))
$$

Verified OK.

16.9.4 Solving as second order change of variable on y method 2 ode

This is second order non-homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
$$

Where $A=x^{2}, B=x, C=-4 \pi, f(x)=x$. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the non-homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. Solving for y_{h} from

$$
x^{2} y^{\prime \prime}+x y^{\prime}-4 \pi y=0
$$

In normal form the ode

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}-4 \pi y=0 \tag{1}
\end{equation*}
$$

Becomes

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{4 \pi}{x^{2}}
\end{aligned}
$$

Applying change of variables on the depndent variable $y=v(x) x^{n}$ to (2) gives the following ode where the dependent variables is $v(x)$ and not y.

$$
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
$$

Let the coefficient of $v(x)$ above be zero. Hence

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
$$

Substituting the earlier values found for $p(x)$ and $q(x)$ into (4) gives

$$
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n}{x^{2}}-\frac{4 \pi}{x^{2}}=0 \tag{5}
\end{equation*}
$$

Solving (5) for n gives

$$
\begin{equation*}
n=2 \sqrt{\pi} \tag{6}
\end{equation*}
$$

Substituting this value in (3) gives

$$
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{4 \sqrt{\pi}}{x}+\frac{1}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{(4 \sqrt{\pi}+1) v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
$$

Using the substitution

$$
u(x)=v^{\prime}(x)
$$

Then (7) becomes

$$
\begin{equation*}
u^{\prime}(x)+\frac{(4 \sqrt{\pi}+1) u(x)}{x}=0 \tag{8}
\end{equation*}
$$

The above is now solved for $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{(-4 \sqrt{\pi}-1) u}{x}
\end{aligned}
$$

Where $f(x)=\frac{-4 \sqrt{\pi}-1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{-4 \sqrt{\pi}-1}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{-4 \sqrt{\pi}-1}{x} d x \\
\ln (u) & =(-4 \sqrt{\pi}-1) \ln (x)+c_{1} \\
u & =\mathrm{e}^{(-4 \sqrt{\pi}-1) \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{(-4 \sqrt{\pi}-1) \ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{1} x^{-4 \sqrt{\pi}}}{x}
$$

Now that $u(x)$ is known, then

$$
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1} x^{-4 \sqrt{\pi}}}{4 \sqrt{\pi}}+c_{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1} x^{-4 \sqrt{\pi}}}{4 \sqrt{\pi}}+c_{2}\right) x^{2 \sqrt{\pi}} \\
& =-\frac{-4 x^{2 \sqrt{\pi}} c_{2} \sqrt{\pi}+c_{1} x^{-2 \sqrt{\pi}}}{4 \sqrt{\pi}}
\end{aligned}
$$

Now the particular solution to this ODE is found

$$
x^{2} y^{\prime \prime}+x y^{\prime}-4 \pi y=x
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{-2 \sqrt{\pi}} \\
& y_{2}=x^{2 \sqrt{\pi}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{-2 \sqrt{\pi}} & x^{2 \sqrt{\pi}} \\
\frac{d}{d x}\left(x^{-2 \sqrt{\pi}}\right) & \frac{d}{d x}\left(x^{2 \sqrt{\pi}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{-2 \sqrt{\pi}} & x^{2 \sqrt{\pi}} \\
-\frac{2 x^{-2 \sqrt{\pi}} \sqrt{\pi}}{x} & \frac{2 x^{2 \sqrt{\pi}} \sqrt{\pi}}{x}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{-2 \sqrt{\pi}}\right)\left(\frac{2 x^{2 \sqrt{\pi}} \sqrt{\pi}}{x}\right)-\left(x^{2 \sqrt{\pi}}\right)\left(-\frac{2 x^{-2 \sqrt{\pi}} \sqrt{\pi}}{x}\right)
$$

Which simplifies to

$$
W=\frac{4 \sqrt{\pi}}{x}
$$

Which simplifies to

$$
W=\frac{4 \sqrt{\pi}}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{x x^{2 \sqrt{\pi}}}{4 \sqrt{\pi} x} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{x^{2 \sqrt{\pi}}}{4 \sqrt{\pi}} d x
$$

Hence

$$
u_{1}=-\frac{x^{1+2 \sqrt{\pi}}}{4 \sqrt{\pi}(1+2 \sqrt{\pi})}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{-2 \sqrt{\pi}} x}{4 \sqrt{\pi} x} d x
$$

Which simplifies to

$$
u_{2}=\int \frac{x^{-2 \sqrt{\pi}}}{4 \sqrt{\pi}} d x
$$

Hence

$$
u_{2}=-\frac{x^{-2 \sqrt{\pi}+1}}{4 \sqrt{\pi}(2 \sqrt{\pi}-1)}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{x^{1+2 \sqrt{\pi}}}{\sqrt{\pi}(4+8 \sqrt{\pi})} \\
& u_{2}=-\frac{x^{-2 \sqrt{\pi}+1}}{\sqrt{\pi}(8 \sqrt{\pi}-4)}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{x^{1+2 \sqrt{\pi}} x^{-2 \sqrt{\pi}}}{\sqrt{\pi}(4+8 \sqrt{\pi})}-\frac{x^{-2 \sqrt{\pi}+1} x^{2 \sqrt{\pi}}}{\sqrt{\pi}(8 \sqrt{\pi}-4)}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{x}{4 \pi-1}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(-\frac{c_{1} x^{-4 \sqrt{\pi}}}{4 \sqrt{\pi}}+c_{2}\right) x^{2 \sqrt{\pi}}\right)+\left(-\frac{x}{4 \pi-1}\right) \\
& =-\frac{x}{4 \pi-1}+\left(-\frac{c_{1} x^{-4 \sqrt{\pi}}}{4 \sqrt{\pi}}+c_{2}\right) x^{2 \sqrt{\pi}}
\end{aligned}
$$

Which simplifies to

$$
y=-\frac{x}{4 \pi-1}+\left(-\frac{c_{1} x^{-4 \sqrt{\pi}}}{4 \sqrt{\pi}}+c_{2}\right) x^{2 \sqrt{\pi}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x}{4 \pi-1}+\left(-\frac{c_{1} x^{-4 \sqrt{\pi}}}{4 \sqrt{\pi}}+c_{2}\right) x^{2 \sqrt{\pi}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{x}{4 \pi-1}+\left(-\frac{c_{1} x^{-4 \sqrt{\pi}}}{4 \sqrt{\pi}}+c_{2}\right) x^{2 \sqrt{\pi}}
$$

Verified OK.

16.9.5 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
x^{2} y^{\prime \prime}+x y^{\prime}-4 \pi y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=x^{2} \\
& B=x \tag{3}\\
& C=-4 \pi
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-1+16 \pi}{4 x^{2}} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=-1+16 \pi \\
& t=4 x^{2}
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{-1+16 \pi}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	no condition

Table 206: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
$$

The poles of r in eq. (7) and the order of each pole are determined by solving for the roots of $t=4 x^{2}$. There is a pole at $x=0$ of order 2 . Since there is no odd order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at ∞ is 2 then the necessary conditions for case three are met. Therefore

$$
L=[1,2,4,6,12]
$$

Attempting to find a solution using case $n=1$.
Looking at poles of order 2. The partial fractions decomposition of r is

$$
r=\frac{-\frac{1}{4}+4 \pi}{x^{2}}
$$

For the pole at $x=0$ let b be the coefficient of $\frac{1}{x^{2}}$ in the partial fractions decomposition of r given above. Therefore $b=-\frac{1}{4}+4 \pi$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+2 \sqrt{\pi} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-2 \sqrt{\pi}
\end{aligned}
$$

Since the order of r at ∞ is 2 then $[\sqrt{r}]_{\infty}=0$. Let b be the coefficient of $\frac{1}{x^{2}}$ in the Laurent series expansion of r at ∞. which can be found by dividing the leading coefficient of s by the leading coefficient of t from

$$
r=\frac{s}{t}=\frac{-1+16 \pi}{4 x^{2}}
$$

Since the $\operatorname{gcd}(s, t)=1$. This gives $b=-\frac{1}{4}+4 \pi$. Hence

$$
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+2 \sqrt{\pi} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-2 \sqrt{\pi}
\end{aligned}
$$

The following table summarizes the findings so far for poles and for the order of r at ∞ where r is

$$
r=\frac{-1+16 \pi}{4 x^{2}}
$$

pole c location	pole order	$[\sqrt{r}]_{c}$	α_{c}^{+}	α_{c}^{-}
0	2	0	$\frac{1}{2}+2 \sqrt{\pi}$	$\frac{1}{2}-2 \sqrt{\pi}$

Order of r at ∞	$[\sqrt{r}]_{\infty}$	α_{∞}^{+}	α_{∞}^{-}
2	0	$\frac{1}{2}+2 \sqrt{\pi}$	$\frac{1}{2}-2 \sqrt{\pi}$

Now that the all $[\sqrt{r}]_{c}$ and its associated $\alpha_{c}^{ \pm}$have been determined for all the poles in the set Γ and $[\sqrt{r}]_{\infty}$ and its associated $\alpha_{\infty}^{ \pm}$have also been found, the next step is to determine possible non negative integer d from these using

$$
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
$$

Where $s(c)$ is either + or - and $s(\infty)$ is the sign of $\alpha_{\infty}^{ \pm}$. This is done by trial over all set of families $s=(s(c))_{c \in \Gamma \cup \infty}$ until such d is found to work in finding candidate ω. Trying $\alpha_{\infty}^{-}=\frac{1}{2}-2 \sqrt{\pi}$ then

$$
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-2 \sqrt{\pi}-\left(\frac{1}{2}-2 \sqrt{\pi}\right) \\
& =0
\end{aligned}
$$

Since d an integer and $d \geq 0$ then it can be used to find ω using

$$
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
$$

The above gives

$$
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-2 \sqrt{\pi}}{x}+(-)(0) \\
& =\frac{\frac{1}{2}-2 \sqrt{\pi}}{x} \\
& =\frac{1-4 \sqrt{\pi}}{2 x}
\end{aligned}
$$

Now that ω is determined, the next step is find a corresponding minimal polynomial $p(x)$ of degree $d=0$ to solve the ode. The polynomial $p(x)$ needs to satisfy the equation

$$
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
$$

Let

$$
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
$$

Substituting the above in eq. (1A) gives

$$
\begin{array}{r}
(0)+2\left(\frac{\frac{1}{2}-2 \sqrt{\pi}}{x}\right)(0)+\left(\left(-\frac{\frac{1}{2}-2 \sqrt{\pi}}{x^{2}}\right)+\left(\frac{\frac{1}{2}-2 \sqrt{\pi}}{x}\right)^{2}-\left(\frac{-1+16 \pi}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
$$

The equation is satisfied since both sides are zero. Therefore the first solution to the ode $z^{\prime \prime}=r z$ is

$$
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2}-2 \sqrt{\pi}} x \\
& =x^{\frac{1}{2}-2 \sqrt{\pi}}
\end{aligned}
$$

The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{d} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=x^{-2 \sqrt{\pi}}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{4 \sqrt{\pi}}}{4 \sqrt{\pi}}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{-2 \sqrt{\pi}}\right)+c_{2}\left(x^{-2 \sqrt{\pi}}\left(\frac{x^{4 \sqrt{\pi}}}{4 \sqrt{\pi}}\right)\right)
\end{aligned}
$$

This is second order nonhomogeneous ODE. Let the solution be

$$
y=y_{h}+y_{p}
$$

Where y_{h} is the solution to the homogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0$, and y_{p} is a particular solution to the nonhomogeneous ODE $A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)$. y_{h} is the solution to

$$
x^{2} y^{\prime \prime}+x y^{\prime}-4 \pi y=0
$$

The homogeneous solution is found using the Kovacic algorithm which results in

$$
y_{h}=c_{1} x^{-2 \sqrt{\pi}}+\frac{c_{2} x^{2 \sqrt{\pi}}}{4 \sqrt{\pi}}
$$

The particular solution y_{p} can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on x as well. Let

$$
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
$$

Where u_{1}, u_{2} to be determined, and y_{1}, y_{2} are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as

$$
\begin{aligned}
& y_{1}=x^{-2 \sqrt{\pi}} \\
& y_{2}=\frac{x^{2 \sqrt{\pi}}}{4 \sqrt{\pi}}
\end{aligned}
$$

In the Variation of parameters u_{1}, u_{2} are found using

$$
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
$$

Where $W(x)$ is the Wronskian and a is the coefficient in front of $y^{\prime \prime}$ in the given ODE.
The Wronskian is given by $W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|$. Hence

$$
W=\left|\begin{array}{cc}
x^{-2 \sqrt{\pi}} & \frac{x^{2 \sqrt{ }}}{4 \sqrt{\pi}} \\
\frac{d}{d x}\left(x^{-2 \sqrt{\pi}}\right) & \frac{d}{d x}\left(\frac{x^{2} \sqrt{\pi}}{4 \sqrt{\pi}}\right)
\end{array}\right|
$$

Which gives

$$
W=\left|\begin{array}{cc}
x^{-2 \sqrt{\pi}} & \frac{x^{2 \sqrt{ }}}{4 \sqrt{\pi}} \\
-\frac{2 x^{-2 \sqrt{\pi}} \sqrt{\pi}}{x} & \frac{x^{2 \sqrt{\pi}}}{2 x}
\end{array}\right|
$$

Therefore

$$
W=\left(x^{-2 \sqrt{\pi}}\right)\left(\frac{x^{2 \sqrt{\pi}}}{2 x}\right)-\left(\frac{x^{2 \sqrt{\pi}}}{4 \sqrt{\pi}}\right)\left(-\frac{2 x^{-2 \sqrt{\pi}} \sqrt{\pi}}{x}\right)
$$

Which simplifies to

$$
W=\frac{x^{2 \sqrt{\pi}} x^{-2 \sqrt{\pi}}}{x}
$$

Which simplifies to

$$
W=\frac{1}{x}
$$

Therefore Eq. (2) becomes

$$
u_{1}=-\int \frac{\frac{x^{2} \sqrt{\pi} x}{4 \sqrt{\pi}}}{x} d x
$$

Which simplifies to

$$
u_{1}=-\int \frac{x^{2 \sqrt{\pi}}}{4 \sqrt{\pi}} d x
$$

Hence

$$
u_{1}=-\frac{x^{1+2 \sqrt{\pi}}}{4 \sqrt{\pi}(1+2 \sqrt{\pi})}
$$

And Eq. (3) becomes

$$
u_{2}=\int \frac{x^{-2 \sqrt{\pi}} x}{x} d x
$$

Which simplifies to

$$
u_{2}=\int x^{-2 \sqrt{\pi}} d x
$$

Hence

$$
u_{2}=-\frac{x^{-2 \sqrt{\pi}+1}}{2 \sqrt{\pi}-1}
$$

Which simplifies to

$$
\begin{aligned}
& u_{1}=-\frac{x^{1+2 \sqrt{\pi}}}{\sqrt{\pi}(4+8 \sqrt{\pi})} \\
& u_{2}=-\frac{x^{-2 \sqrt{\pi}+1}}{2 \sqrt{\pi}-1}
\end{aligned}
$$

Therefore the particular solution, from equation (1) is

$$
y_{p}(x)=-\frac{x^{1+2 \sqrt{\pi}} x^{-2 \sqrt{\pi}}}{\sqrt{\pi}(4+8 \sqrt{\pi})}-\frac{x^{-2 \sqrt{\pi}+1} x^{2 \sqrt{\pi}}}{4(2 \sqrt{\pi}-1) \sqrt{\pi}}
$$

Which simplifies to

$$
y_{p}(x)=-\frac{x}{4 \pi-1}
$$

Therefore the general solution is

$$
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} x^{-2 \sqrt{\pi}}+\frac{c_{2} x^{2 \sqrt{\pi}}}{4 \sqrt{\pi}}\right)+\left(-\frac{x}{4 \pi-1}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{-2 \sqrt{\pi}}+\frac{c_{2} x^{2 \sqrt{\pi}}}{4 \sqrt{\pi}}-\frac{x}{4 \pi-1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{-2 \sqrt{\pi}}+\frac{c_{2} x^{2 \sqrt{\pi}}}{4 \sqrt{\pi}}-\frac{x}{4 \pi-1}
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    <- LODE of Euler type successful
<- solving first the homogeneous part of the ODE successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 44

```
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)-4*Pi*y(x)=x,y(x), singsol=all)
```

$$
y(x)=\frac{c_{2}(4 \pi-1) x^{-2 \sqrt{\pi}}+c_{1}(4 \pi-1) x^{2 \sqrt{\pi}}-x}{4 \pi-1}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 39
DSolve[x^2*y''[x]+x*y'[x]-4*Pi*y[x]==x,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow c_{2} x^{2 \sqrt{\pi}}+c_{1} x^{-2 \sqrt{\pi}}+\frac{x}{1-4 \pi}
$$

17 Chapter 4. Linear equations with Regular Singular Points. Page 154
17.1 problem 1(a) 1333
17.2 problem 1(b) 1350
17.3 problem 1(c) 1365
17.4 problem 1(d) 1369
17.5 problem 1(e) 1386
17.6 problem 1(f) 1399
17.7 problem $1(\mathrm{~g})$ 1417
17.8 problem 2(b) 1427
17.9 problem 2(c) 1442
17.10problem 2(d) 1458

17.1 problem 1(a)

17.1.1 Maple step by step solution

Internal problem ID [6040]
Internal file name [OUTPUT/5288_Sunday_June_05_2022_03_29_33_PM_87366917/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 154
Problem number: 1(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}+\left(x^{2}+x\right) y^{\prime}-y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+\left(x^{2}+x\right) y^{\prime}-y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1+x}{x} \\
& q(x)=-\frac{1}{x^{2}}
\end{aligned}
$$

Table 207: Table $p(x), q(x)$ singularites.

$p(x)=\frac{1+x}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=-\frac{1}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+\left(x^{2}+x\right) y^{\prime}-y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(x^{2}+x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)=\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r}\right) \tag{2B}\\
& +\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)-a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r-a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)+x^{r} r-x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}-1\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-1=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=-1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}-1\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=2$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{1+n} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n-1}(n+r-1)+a_{n}(n+r)-a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{1+n+r} \tag{4}
\end{equation*}
$$

Which for the root $r=1$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{2+n} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=1$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=-\frac{1}{2+r}
$$

Which for the root $r=1$ becomes

$$
a_{1}=-\frac{1}{3}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{2+r}$	$-\frac{1}{3}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{1}{(2+r)(3+r)}
$$

Which for the root $r=1$ becomes

$$
a_{2}=\frac{1}{12}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{2+r}$	$-\frac{1}{3}$
a_{2}	$\frac{1}{(2+r)(3+r)}$	$\frac{1}{12}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{1}{(3+r)(2+r)(4+r)}
$$

Which for the root $r=1$ becomes

$$
a_{3}=-\frac{1}{60}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{2+r}$	$-\frac{1}{3}$
a_{2}	$\frac{1}{(2+r)(3+r)}$	$\frac{1}{12}$
a_{3}	$-\frac{1}{(3+r)(2+r)(4+r)}$	$-\frac{1}{60}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{1}{(2+r)(4+r)(3+r)(5+r)}
$$

Which for the root $r=1$ becomes

$$
a_{4}=\frac{1}{360}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{2+r}$	$-\frac{1}{3}$
a_{2}	$\frac{1}{(2+r)(3+r)}$	$\frac{1}{12}$
a_{3}	$-\frac{1}{(3+r)(2+r)(4+r)}$	$-\frac{1}{60}$
a_{4}	$\frac{1}{(2+r)(4+r)(3+r)(5+r)}$	$\frac{1}{360}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=-\frac{1}{(2+r)(3+r)(5+r)(6+r)(4+r)}
$$

Which for the root $r=1$ becomes

$$
a_{5}=-\frac{1}{2520}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{2+r}$	$-\frac{1}{3}$
a_{2}	$\frac{1}{(2+r)(3+r)}$	$\frac{1}{12}$
a_{3}	$-\frac{1}{(3+r)(2+r)(4+r)}$	$-\frac{1}{60}$
a_{4}	$\frac{1}{(2+r)(4+r)(3+r)(5+r)}$	$\frac{1}{360}$
a_{5}	$-\frac{1}{(2+r)(3+r)(5+r)(6+r)(4+r)}$	$-\frac{1}{2520}$

For $n=6$, using the above recursive equation gives

$$
a_{6}=\frac{1}{(2+r)(3+r)(6+r)(4+r)(5+r)(7+r)}
$$

Which for the root $r=1$ becomes

$$
a_{6}=\frac{1}{20160}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{2+r}$	$-\frac{1}{3}$
a_{2}	$\frac{1}{(2+r)(3+r)}$	$\frac{1}{12}$
a_{3}	$-\frac{1}{(3+r)(2+r)(4+r)}$	$-\frac{1}{60}$
a_{4}	$\frac{1}{(2+r)(4+r)(3+r)(5+r)}$	$\frac{1}{360}$
a_{5}	$-\frac{1}{(2+r)(3+r)(5+r)(6+r)(4+r)}$	$-\frac{1}{2520}$
a_{6}	$\frac{1}{(2+r)(3+r)(6+r)(4+r)(5+r)(7+r)}$	$\frac{1}{20160}$

For $n=7$, using the above recursive equation gives

$$
a_{7}=-\frac{1}{(2+r)(3+r)(4+r)(5+r)(7+r)(8+r)(6+r)}
$$

Which for the root $r=1$ becomes

$$
a_{7}=-\frac{1}{181440}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{2+r}$	$-\frac{1}{3}$
a_{2}	$\frac{1}{(2+r)(3+r)}$	$\frac{1}{12}$
a_{3}	$-\frac{1}{(3+r)(2+r)(4+r)}$	$-\frac{1}{60}$
a_{4}	$\frac{1}{(2+r)(4+r)(3+r)(5+r)}$	$\frac{1}{360}$
a_{5}	$-\frac{1}{(2+r)(3+r)(5+r)(6+r)(4+r)}$	$-\frac{1}{2520}$
a_{6}	$\frac{1}{(2+r)(3+r)(6+r)(4+r)(5+r)(7+r)}$	$\frac{1}{20160}$
a_{7}	$-\frac{1}{(2+r)(3+r)(4+r)(5+r)(7+r)(8+r)(6+r)}$	$-\frac{1}{181440}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =x\left(1-\frac{x}{3}+\frac{x^{2}}{12}-\frac{x^{3}}{60}+\frac{x^{4}}{360}-\frac{x^{5}}{2520}+\frac{x^{6}}{20160}-\frac{x^{7}}{181440}+O\left(x^{8}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=2$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{2}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{2} \\
& =\frac{1}{(2+r)(3+r)}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{1}{(2+r)(3+r)} & =\lim _{r \rightarrow-1} \frac{1}{(2+r)(3+r)} \\
& =\frac{1}{2}
\end{aligned}
$$

The limit is $\frac{1}{2}$. Since the limit exists then the log term is not needed and we can set $C=0$. Therefore the second solution has the form

$$
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-1}
\end{aligned}
$$

Eq (3) derived above is used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
b_{n}(n+r)(n+r-1)+b_{n-1}(n+r-1)+b_{n}(n+r)-b_{n}=0 \tag{4}
\end{equation*}
$$

Which for for the root $r=-1$ becomes

$$
\begin{equation*}
b_{n}(n-1)(n-2)+b_{n-1}(n-2)+b_{n}(n-1)-b_{n}=0 \tag{4~A}
\end{equation*}
$$

Solving for b_{n} from the recursive equation (4) gives

$$
\begin{equation*}
b_{n}=-\frac{b_{n-1}}{1+n+r} \tag{5}
\end{equation*}
$$

Which for the root $r=-1$ becomes

$$
\begin{equation*}
b_{n}=-\frac{b_{n-1}}{n} \tag{6}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-1$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
b_{1}=-\frac{1}{2+r}
$$

Which for the root $r=-1$ becomes

$$
b_{1}=-1
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{1}{2+r}$	-1

For $n=2$, using the above recursive equation gives

$$
b_{2}=\frac{1}{(2+r)(3+r)}
$$

Which for the root $r=-1$ becomes

$$
b_{2}=\frac{1}{2}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{1}{2+r}$	-1
b_{2}	$\frac{1}{(2+r)(3+r)}$	$\frac{1}{2}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=-\frac{1}{(3+r)(2+r)(4+r)}
$$

Which for the root $r=-1$ becomes

$$
b_{3}=-\frac{1}{6}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{1}{2+r}$	-1
b_{2}	$\frac{1}{(2+r)(3+r)}$	$\frac{1}{2}$
b_{3}	$-\frac{1}{(3+r)(2+r)(4+r)}$	$-\frac{1}{6}$

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{1}{(2+r)(4+r)(3+r)(5+r)}
$$

Which for the root $r=-1$ becomes

$$
b_{4}=\frac{1}{24}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{1}{2+r}$	-1
b_{2}	$\frac{1}{(2+r)(3+r)}$	$\frac{1}{2}$
b_{3}	$-\frac{1}{(3+r)(2+r)(4+r)}$	$-\frac{1}{6}$
b_{4}	$\frac{1}{(2+r)(4+r)(3+r)(5+r)}$	$\frac{1}{24}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=-\frac{1}{(2+r)(3+r)(5+r)(6+r)(4+r)}
$$

Which for the root $r=-1$ becomes

$$
b_{5}=-\frac{1}{120}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{1}{2+r}$	-1
b_{2}	$\frac{1}{(2+r)(3+r)}$	$\frac{1}{2}$
b_{3}	$-\frac{1}{(3+r)(2+r)(4+r)}$	$-\frac{1}{6}$
b_{4}	$\frac{1}{(2+r)(4+r)(3+r)(5+r)}$	$\frac{1}{24}$
b_{5}	$-\frac{1}{(2+r)(3+r)(5+r)(6+r)(4+r)}$	$-\frac{1}{120}$

For $n=6$, using the above recursive equation gives

$$
b_{6}=\frac{1}{(2+r)(3+r)(6+r)(4+r)(5+r)(7+r)}
$$

Which for the root $r=-1$ becomes

$$
b_{6}=\frac{1}{720}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{1}{2+r}$	-1
b_{2}	$\frac{1}{(2+r)(3+r)}$	$\frac{1}{2}$
b_{3}	$-\frac{1}{(3+r)(2+r)(4+r)}$	$-\frac{1}{6}$
b_{4}	$\frac{1}{(2+r)(4+r)(3+r)(5+r)}$	$\frac{1}{24}$
b_{5}	$-\frac{1}{(2+r)(3+r)(5+r)(6+r)(4+r)}$	$-\frac{1}{120}$
b_{6}	$\frac{1}{(2+r)(3+r)(6+r)(4+r)(5+r)(7+r)}$	$\frac{1}{720}$

For $n=7$, using the above recursive equation gives

$$
b_{7}=-\frac{1}{(2+r)(3+r)(4+r)(5+r)(7+r)(8+r)(6+r)}
$$

Which for the root $r=-1$ becomes

$$
b_{7}=-\frac{1}{5040}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{1}{2+r}$	-1
b_{2}	$\frac{1}{(2+r)(3+r)}$	$\frac{1}{2}$
b_{3}	$-\frac{1}{(3+r)(2+r)(4+r)}$	$-\frac{1}{6}$
b_{4}	$\frac{1}{(2+r)(4+r)(3+r)(5+r)}$	$\frac{1}{24}$
b_{5}	$-\frac{1}{(2+r)(3+r)(5+r)(6+r)(4+r)}$	$-\frac{1}{120}$
b_{6}	$\frac{1}{(2+r)(3+r)(6+r)(4+r)(5+r)(7+r)}$	$\frac{1}{720}$
b_{7}	$-\frac{1}{(2+r)(3+r)(4+r)(5+r)(7+r)(8+r)(6+r)}$	$-\frac{1}{5040}$

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =x\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots\right) \\
& =\frac{1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{x^{6}}{720}-\frac{x^{7}}{5040}+O\left(x^{8}\right)}{x}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x\left(1-\frac{x}{3}+\frac{x^{2}}{12}-\frac{x^{3}}{60}+\frac{x^{4}}{360}-\frac{x^{5}}{2520}+\frac{x^{6}}{20160}-\frac{x^{7}}{181440}+O\left(x^{8}\right)\right) \\
& +\frac{c_{2}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{x^{6}}{720}-\frac{x^{7}}{5040}+O\left(x^{8}\right)\right)}{x}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x\left(1-\frac{x}{3}+\frac{x^{2}}{12}-\frac{x^{3}}{60}+\frac{x^{4}}{360}-\frac{x^{5}}{2520}+\frac{x^{6}}{20160}-\frac{x^{7}}{181440}+O\left(x^{8}\right)\right) \\
& +\frac{c_{2}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{x^{6}}{720}-\frac{x^{7}}{5040}+O\left(x^{8}\right)\right)}{x}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x\left(1-\frac{x}{3}+\frac{x^{2}}{12}-\frac{x^{3}}{60}+\frac{x^{4}}{360}-\frac{x^{5}}{2520}+\frac{x^{6}}{20160}-\frac{x^{7}}{181440}+O\left(x^{8}\right)\right) \tag{1}\\
& +\frac{c_{2}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{x^{6}}{720}-\frac{x^{7}}{5040}+O\left(x^{8}\right)\right)}{x}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x\left(1-\frac{x}{3}+\frac{x^{2}}{12}-\frac{x^{3}}{60}+\frac{x^{4}}{360}-\frac{x^{5}}{2520}+\frac{x^{6}}{20160}-\frac{x^{7}}{181440}+O\left(x^{8}\right)\right) \\
& +\frac{c_{2}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{x^{6}}{720}-\frac{x^{7}}{5040}+O\left(x^{8}\right)\right)}{x}
\end{aligned}
$$

Verified OK.

17.1.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+\left(x^{2}+x\right) y^{\prime}-y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{y}{x^{2}}-\frac{(1+x) y^{\prime}}{x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{(1+x) y^{\prime}}{x}-\frac{y}{x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{1+x}{x}, P_{3}(x)=-\frac{1}{x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-1$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators
$x^{2} y^{\prime \prime}+x(1+x) y^{\prime}-y=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=1 . .2$
$x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}$
- Shift index using $k->k+1-m$
$x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions
$a_{0}(1+r)(-1+r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(k+r+1)(k+r-1)+a_{k-1}(k+r-1)\right) x^{k+r}\right)=0$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(1+r)(-1+r)=0$
- Values of r that satisfy the indicial equation

$$
r \in\{-1,1\}
$$

- Each term in the series must be 0 , giving the recursion relation
$(k+r-1)\left(a_{k}(k+r+1)+a_{k-1}\right)=0$
- \quad Shift index using $k->k+1$
$(k+r)\left(a_{k+1}(k+2+r)+a_{k}\right)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=-\frac{a_{k}}{k+2+r}$
- \quad Recursion relation for $r=-1$

$$
a_{k+1}=-\frac{a_{k}}{k+1}
$$

- \quad Solution for $r=-1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-1}, a_{k+1}=-\frac{a_{k}}{k+1}\right]
$$

- Recursion relation for $r=1$

$$
a_{k+1}=-\frac{a_{k}}{k+3}
$$

- \quad Solution for $r=1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1}, a_{k+1}=-\frac{a_{k}}{k+3}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-1}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+1}\right), a_{k+1}=-\frac{a_{k}}{k+1}, b_{k+1}=-\frac{b_{k}}{k+3}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Reducible group (found another exponential solution)
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 53

```
Order:=8;
dsolve(x^2*diff(y(x),x$2)+(x+x^2)*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);
```

$$
\begin{aligned}
y(x)= & c_{1} x\left(1-\frac{1}{3} x+\frac{1}{12} x^{2}-\frac{1}{60} x^{3}+\frac{1}{360} x^{4}-\frac{1}{2520} x^{5}+\frac{1}{20160} x^{6}-\frac{1}{181440} x^{7}+\mathrm{O}\left(x^{8}\right)\right) \\
& +\frac{c_{2}\left(-2+2 x-x^{2}+\frac{1}{3} x^{3}-\frac{1}{12} x^{4}+\frac{1}{60} x^{5}-\frac{1}{360} x^{6}+\frac{1}{2520} x^{7}+\mathrm{O}\left(x^{8}\right)\right)}{x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 92
AsymptoticDSolveValue $\left[x^{\wedge} 2 * y\right.$ ' ' $\left.[x]+\left(x+x^{\wedge} 2\right) * y '[x]-y[x]==0, y[x],\{x, 0,7\}\right]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(\frac{x^{5}}{720}-\frac{x^{4}}{120}+\frac{x^{3}}{24}-\frac{x^{2}}{6}+\frac{x}{2}+\frac{1}{x}-1\right) \\
& +c_{2}\left(\frac{x^{7}}{20160}-\frac{x^{6}}{2520}+\frac{x^{5}}{360}-\frac{x^{4}}{60}+\frac{x^{3}}{12}-\frac{x^{2}}{3}+x\right)
\end{aligned}
$$

17.2 problem 1(b)

Internal problem ID [6041]
Internal file name [OUTPUT/5289_Sunday_June_05_2022_03_29_37_PM_51446362/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 154
Problem number: 1(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
3 x^{2} y^{\prime \prime}+y^{\prime} x^{6}+2 x y=0
$$

With the expansion point for the power series method at $x=0$.
The ODE is

$$
3 x^{2} y^{\prime \prime}+y^{\prime} x^{6}+2 x y=0
$$

Or

$$
x\left(y^{\prime} x^{5}+3 y^{\prime \prime} x+2 y\right)=0
$$

For $x \neq 0$ the above simplifies to

$$
y^{\prime} x^{5}+3 y^{\prime \prime} x+2 y=0
$$

The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
3 x^{2} y^{\prime \prime}+y^{\prime} x^{6}+2 x y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =\frac{x^{4}}{3} \\
q(x) & =\frac{2}{3 x}
\end{aligned}
$$

Table 209: Table $p(x), q(x)$ singularites.

$p(x)=\frac{x^{4}}{3}$	
singularity	type
$x=\infty$	"regular"
$x=-\infty$	"regular"

$q(x)=\frac{2}{3 x}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $[\infty,-\infty, 0]$
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
3 x^{2} y^{\prime \prime}+y^{\prime} x^{6}+2 x y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& 3 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right) x^{6}+2 x\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{5+n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 2 x^{1+n+r} a_{n}\right)=0 \tag{2~A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} x^{5+n+r} a_{n}(n+r) & =\sum_{n=5}^{\infty} a_{n-5}(n-5+r) x^{n+r} \\
\sum_{n=0}^{\infty} 2 x^{1+n+r} a_{n} & =\sum_{n=1}^{\infty} 2 a_{n-1} x^{n+r}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=5}^{\infty} a_{n-5}(n-5+r) x^{n+r}\right)+\left(\sum_{n=1}^{\infty} 2 a_{n-1} x^{n+r}\right)=0 \tag{2B}
\end{equation*}
$$

The indicial equation is obtained from $n=0$. From $\mathrm{Eq}(2 \mathrm{~B})$ this gives

$$
3 x^{n+r} a_{n}(n+r)(n+r-1)=0
$$

When $n=0$ the above becomes

$$
3 x^{r} a_{0} r(-1+r)=0
$$

Or

$$
3 x^{r} a_{0} r(-1+r)=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
3 x^{r} r(-1+r)=0
$$

Since the above is true for all x then the indicial equation becomes

$$
3 r(-1+r)=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=0
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
3 x^{r} r(-1+r)=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=1$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{1+n} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=-\frac{2}{3 r(1+r)}
$$

Substituting $n=2$ in Eq. (2B) gives

$$
a_{2}=\frac{4}{9 r(1+r)^{2}(2+r)}
$$

Substituting $n=3$ in Eq. (2B) gives

$$
a_{3}=-\frac{8}{27 r(1+r)^{2}(2+r)^{2}(3+r)}
$$

Substituting $n=4$ in Eq. (2B) gives

$$
a_{4}=\frac{16}{81 r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)}
$$

For $5 \leq n$ the recursive equation is

$$
\begin{equation*}
3 a_{n}(n+r)(n+r-1)+a_{n-5}(n-5+r)+2 a_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{n a_{n-5}+r a_{n-5}-5 a_{n-5}+2 a_{n-1}}{3(n+r)(n+r-1)} \tag{4}
\end{equation*}
$$

Which for the root $r=1$ becomes

$$
\begin{equation*}
a_{n}=\frac{-n a_{n-5}+4 a_{n-5}-2 a_{n-1}}{3(1+n) n} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=1$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2}{3 r(1+r)}$	$-\frac{1}{3}$
a_{2}	$\frac{4}{9 r(1+r)^{2}(2+r)}$	$\frac{1}{27}$
a_{3}	$-\frac{8}{27 r(1+r)^{2}(2+r)^{2}(3+r)}$	$-\frac{1}{486}$
a_{4}	$\frac{16}{81 r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)}$	$\frac{1}{14580}$

For $n=5$, using the above recursive equation gives
$a_{5}=\frac{-81 r^{9}-1296 r^{8}-8586 r^{7}-30456 r^{6}-62289 r^{5}-73224 r^{4}-45684 r^{3}-11664 r^{2}-32}{243 r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)}$
Which for the root $r=1$ becomes

$$
a_{5}=-\frac{7291}{656100}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2}{3 r(1+r)}$	$-\frac{1}{3}$
a_{2}	$\frac{4}{9 r(1+r)^{2}(2+r)}$	$\frac{1}{27}$
a_{3}	$-\frac{8}{27 r(1+r)^{2}(2+r)^{2}(3+r)}$	$-\frac{1}{486}$
a_{4}	$\frac{16}{81 r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)}$	$\frac{1}{14580}$
a_{5}	$\frac{-81 r^{9}-1296 r^{8}-8586 r^{7}-30456 r^{6}-62289 r^{5}-73224 r^{4}-45684 r^{3}-11664 r^{2}-32}{243 r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)}$	$-\frac{7291}{656100}$

For $n=6$, using the above recursive equation gives
$a_{6}=\frac{\frac{4}{9} r^{9}+\frac{82}{9} r^{8}+\frac{752}{9} r^{7}+\frac{4052}{9} r^{6}+\frac{14084}{9} r^{5}+\frac{32498}{9} r^{4}+\frac{49288}{9} r^{3}+\frac{46888}{9} r^{2}+\frac{8384}{3} r+\frac{466624}{729}}{r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)^{2}(6+r)}$
Which for the root $r=1$ becomes

$$
a_{6}=\frac{225991}{41334300}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2}{3 r(1+r)}$	$-\frac{1}{3}$
a_{2}	$\frac{4}{9 r(1+r)^{2}(2+r)}$	$\frac{1}{27}$
a_{3}	$-\frac{8}{27 r(1+r)^{2}(2+r)^{2}(3+r)}$	$-\frac{1}{486}$
a_{4}	$\frac{16}{81 r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)}$	$\frac{1}{14580}$
a_{5}	$\frac{-81 r^{9}-1296 r^{8}-8586 r^{7}-30456 r^{6}-62289 r^{5}-73224 r^{4}-45684 r^{3}-11664 r^{2}-32}{243 r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)}$	$-\frac{7291}{656100}$
a_{6}	$\frac{\frac{4}{9} r^{9}+\frac{82}{9} r^{8}+\frac{752}{9} r^{7}+\frac{4052}{9} r^{6}+\frac{14084}{9} r^{5}+\frac{32498}{9} r^{4}+\frac{49288}{9} r^{3}+\frac{46888}{9} r^{2}+\frac{8384}{3} r+\frac{46624}{729}}{r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)^{2}(6+r)}$	$\frac{225991}{41334300}$

For $n=7$, using the above recursive equation gives $a_{7}=\frac{-\frac{4}{9} r^{9}-\frac{100}{9} r^{8}-\frac{392}{3} r^{7}-\frac{25400}{27} r^{6}-\frac{13516}{3} r^{5}-\frac{396140}{27} r^{4}-\frac{289024}{9} r^{3}-\frac{1219760}{27} r^{2}-\frac{331648}{9} r-\frac{28926848}{2187}}{r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)^{2}(6+r)^{2}(7+r)}$
Which for the root $r=1$ becomes

$$
a_{7}=-\frac{2522341}{3472081200}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2}{3 r(1+r)}$	$-\frac{1}{3}$
a_{2}	$\frac{4}{9 r(1+r)^{2}(2+r)}$	$\frac{1}{27}$
a_{3}	$-\frac{8}{27 r(1+r)^{2}(2+r)^{2}(3+r)}$	$-\frac{1}{486}$
a_{4}	$\frac{16}{81 r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)}$	$\frac{1}{14580}$
a_{5}	$\frac{-81 r^{9}-1296 r^{8}-8586 r^{7}-304566^{6}-62289 r^{5}-73224 r^{4}-45684 r^{3}-11664 r^{2}-32}{243 r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)}$	$-\frac{7291}{656100}$
a_{6}	$\frac{\frac{4}{9} r^{9}+\frac{82}{9} r^{8}+\frac{752}{9} r^{7}+\frac{4052}{9} r^{6}+\frac{14084}{9} r^{5}+\frac{32498}{9} r^{4}+\frac{49288}{9} r^{3}+\frac{46888}{9} r^{2}+\frac{8384}{3} r+\frac{466624}{729}}{r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)^{2}(6+r)}$	$\frac{225991}{41334300}$
a_{7}	$\frac{-\frac{4}{9} r^{9}-\frac{100}{9} r^{8}-\frac{392}{3} r^{7}-\frac{25400}{27} r^{6}-\frac{13516}{3} r^{5}-\frac{396140}{27} r^{4}-\frac{289024}{9} r^{3}-\frac{1219760}{27} r^{2}-\frac{331648}{9} r-\frac{28926848}{2187}}{r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)^{2}(6+r)^{2}(7+r)}$	$-\frac{2522341}{3472081200}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =x\left(1-\frac{x}{3}+\frac{x^{2}}{27}-\frac{x^{3}}{486}+\frac{x^{4}}{14580}-\frac{7291 x^{5}}{656100}+\frac{225991 x^{6}}{41334300}-\frac{2522341 x^{7}}{3472081200}+O\left(x^{8}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=1$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{1}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{1} \\
& =-\frac{2}{3 r(1+r)}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}}-\frac{2}{3 r(1+r)} & =\lim _{r \rightarrow 0}-\frac{2}{3 r(1+r)} \\
& =\text { undefined }
\end{aligned}
$$

Since the limit does not exist then the log term is needed. Therefore the second solution has the form

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Therefore

$$
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
$$

Substituting these back into the given ode $3 x^{2} y^{\prime \prime}+y^{\prime} x^{6}+2 x y=0$ gives

$$
\begin{aligned}
& 3 x^{2}\left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \\
& +\left(C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)\right) x^{6} \\
& +2 x\left(C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)\right)=0
\end{aligned}
$$

Which can be written as

$$
\begin{align*}
& \left(\left(y_{1}^{\prime}(x) x^{6}+3 y_{1}^{\prime \prime}(x) x^{2}+2 y_{1}(x) x\right) \ln (x)+3 x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)\right. \\
& \left.+y_{1}(x) x^{5}\right) C+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) x^{6} \tag{7}\\
& +3 x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right)+2 x\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

But since $y_{1}(x)$ is a solution to the ode, then

$$
y_{1}^{\prime}(x) x^{6}+3 y_{1}^{\prime \prime}(x) x^{2}+2 y_{1}(x) x=0
$$

Eq (7) simplifes to

$$
\begin{align*}
& \left(3 x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)+y_{1}(x) x^{5}\right) C+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) x^{6} \tag{8}\\
& +3 x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right)+2 x\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Substituting $y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}$ into the above gives

$$
\begin{align*}
& \left(6\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) x+\left(x^{5}-3\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\right)\right) C \\
& +\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) x^{6} \tag{9}\\
& +3\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right) x^{2}+2 x\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Since $r_{1}=1$ and $r_{2}=0$ then the above becomes

$$
\begin{align*}
& \left(6\left(\sum_{n=0}^{\infty} x^{n} a_{n}(1+n)\right) x+\left(x^{5}-3\right)\left(\sum_{n=0}^{\infty} a_{n} x^{1+n}\right)\right) C \tag{10}\\
& +\left(\sum_{n=0}^{\infty} x^{n-1} b_{n} n\right) x^{6}+3\left(\sum_{n=0}^{\infty} x^{-2+n} b_{n} n(n-1)\right) x^{2}+2 x\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 6 C x^{1+n} a_{n}(1+n)\right)+\left(\sum_{n=0}^{\infty} C x^{n+6} a_{n}\right)+\sum_{n=0}^{\infty}\left(-3 C x^{1+n} a_{n}\right) \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} n x^{5+n} b_{n}\right)+\left(\sum_{n=0}^{\infty} 3 n x^{n} b_{n}(n-1)\right)+\left(\sum_{n=0}^{\infty} 2 x^{1+n} b_{n}\right)=0
\end{align*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} 6 C x^{1+n} a_{n}(1+n) & =\sum_{n=1}^{\infty} 6 C a_{n-1} n x^{n} \\
\sum_{n=0}^{\infty} C x^{n+6} a_{n} & =\sum_{n=6}^{\infty} C a_{n-6} x^{n} \\
\sum_{n=0}^{\infty}\left(-3 C x^{1+n} a_{n}\right) & =\sum_{n=1}^{\infty}\left(-3 C a_{n-1} x^{n}\right) \\
\sum_{n=0}^{\infty} n x^{5+n} b_{n} & =\sum_{n=5}^{\infty}(n-5) b_{n-5} x^{n} \\
\sum_{n=0}^{\infty} 2 x^{1+n} b_{n} & =\sum_{n=1}^{\infty} 2 b_{n-1} x^{n}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=1}^{\infty} 6 C a_{n-1} n x^{n}\right)+\left(\sum_{n=6}^{\infty} C a_{n-6} x^{n}\right)+\sum_{n=1}^{\infty}\left(-3 C a_{n-1} x^{n}\right) \tag{2B}\\
& \quad+\left(\sum_{n=5}^{\infty}(n-5) b_{n-5} x^{n}\right)+\left(\sum_{n=0}^{\infty} 3 n x^{n} b_{n}(n-1)\right)+\left(\sum_{n=1}^{\infty} 2 b_{n-1} x^{n}\right)=0
\end{align*}
$$

For $n=0$ in Eq. (2B), we choose arbitray value for b_{0} as $b_{0}=1$. For $n=N$, where $N=1$ which is the difference between the two roots, we are free to choose $b_{1}=0$. Hence for $n=1, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
3 C+2=0
$$

Which is solved for C. Solving for C gives

$$
C=-\frac{2}{3}
$$

For $n=2, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
9 C a_{1}+2 b_{1}+6 b_{2}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
6 b_{2}+2=0
$$

Solving the above for b_{2} gives

$$
b_{2}=-\frac{1}{3}
$$

For $n=3, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
15 C a_{2}+2 b_{2}+18 b_{3}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
18 b_{3}-\frac{28}{27}=0
$$

Solving the above for b_{3} gives

$$
b_{3}=\frac{14}{243}
$$

For $n=4, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
21 C a_{3}+2 b_{3}+36 b_{4}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
36 b_{4}+\frac{35}{243}=0
$$

Solving the above for b_{4} gives

$$
b_{4}=-\frac{35}{8748}
$$

For $n=5, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
27 C a_{4}+2 b_{4}+60 b_{5}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
60 b_{5}-\frac{101}{10935}=0
$$

Solving the above for b_{5} gives

$$
b_{5}=\frac{101}{656100}
$$

For $n=6, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(a_{0}+33 a_{5}\right) C+b_{1}+2 b_{5}+90 b_{6}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-\frac{69199}{164025}+90 b_{6}=0
$$

Solving the above for b_{6} gives

$$
b_{6}=\frac{69199}{14762250}
$$

For $n=7, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(a_{1}+39 a_{6}\right) C+2 b_{2}+2 b_{6}+126 b_{7}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-\frac{19882543}{34445250}+126 b_{7}=0
$$

Solving the above for b_{7} gives

$$
b_{7}=\frac{19882543}{4340101500}
$$

Now that we found all b_{n} and C, we can calculate the second solution from

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Using the above value found for $C=-\frac{2}{3}$ and all b_{n}, then the second solution becomes

$$
\begin{aligned}
& y_{2}(x)=-\frac{2}{3}\left(x \left(1-\frac{x}{3}+\frac{x^{2}}{27}-\frac{x^{3}}{486}+\frac{x^{4}}{14580}-\frac{7291 x^{5}}{656100}+\frac{225991 x^{6}}{41334300}-\frac{2522341 x^{7}}{3472081200}\right.\right. \\
&\left.\left.+O\left(x^{8}\right)\right)\right) \ln (x)+1 \\
&-\frac{x^{2}}{3}+\frac{14 x^{3}}{243}-\frac{35 x^{4}}{8748}+\frac{101 x^{5}}{656100}+\frac{69199 x^{6}}{14762250}+\frac{19882543 x^{7}}{4340101500}+O\left(x^{8}\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x\left(1-\frac{x}{3}+\frac{x^{2}}{27}-\frac{x^{3}}{486}+\frac{x^{4}}{14580}-\frac{7291 x^{5}}{656100}+\frac{225991 x^{6}}{41334300}-\frac{2522341 x^{7}}{3472081200}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(-\frac{2}{3}\left(x\left(1-\frac{x}{3}+\frac{x^{2}}{27}-\frac{x^{3}}{486}+\frac{x^{4}}{14580}-\frac{7291 x^{5}}{656100}+\frac{225991 x^{6}}{41334300}-\frac{2522341 x^{7}}{3472081200}+O\left(x^{8}\right)\right)\right) \ln (x)\right. \\
& \left.\quad+1-\frac{x^{2}}{3}+\frac{14 x^{3}}{243}-\frac{35 x^{4}}{8748}+\frac{101 x^{5}}{656100}+\frac{69199 x^{6}}{14762250}+\frac{19882543 x^{7}}{4340101500}+O\left(x^{8}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x\left(1-\frac{x}{3}+\frac{x^{2}}{27}-\frac{x^{3}}{486}+\frac{x^{4}}{14580}-\frac{7291 x^{5}}{656100}+\frac{225991 x^{6}}{41334300}-\frac{2522341 x^{7}}{3472081200}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(-\frac{2 x\left(1-\frac{x}{3}+\frac{x^{2}}{27}-\frac{x^{3}}{486}+\frac{x^{4}}{14580}-\frac{7291 x^{5}}{65600}+\frac{225991 x^{6}}{41334300}-\frac{2522341 x^{7}}{3472081200}+O\left(x^{8}\right)\right) \ln (x)}{3}\right. \\
& \left.+1-\frac{x^{2}}{3}+\frac{14 x^{3}}{243}-\frac{35 x^{4}}{8748}+\frac{101 x^{5}}{656100}+\frac{69199 x^{6}}{14762250}+\frac{19882543 x^{7}}{4340101500}+O\left(x^{8}\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x\left(1-\frac{x}{3}+\frac{x^{2}}{27}-\frac{x^{3}}{486}+\frac{x^{4}}{14580}-\frac{7291 x^{5}}{656100}+\frac{225991 x^{6}}{41334300}-\frac{2522341 x^{7}}{3472081200}+O\left(x^{8}\right)\right) \\
+ & c_{2}\left(-\frac{2 x\left(1-\frac{x}{3}+\frac{x^{2}}{27}-\frac{x^{3}}{486}+\frac{x^{4}}{14580}-\frac{7291 x^{5}}{656100}+\frac{225991 x^{6}}{41334300}-\frac{2522341 x^{7}}{3472081200}+O\left(x^{8}\right)\right) \ln (x)}{3}\right. \\
& \left.+1-\frac{x^{2}}{3}+\frac{14 x^{3}}{243}-\frac{35 x^{4}}{8748}+\frac{101 x^{5}}{656100}+\frac{69199 x^{6}}{14762250}+\frac{19882543 x^{7}}{4340101500}+O\left(x^{8}\right)\right) \tag{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x\left(1-\frac{x}{3}+\frac{x^{2}}{27}-\frac{x^{3}}{486}+\frac{x^{4}}{14580}-\frac{7291 x^{5}}{656100}+\frac{225991 x^{6}}{41334300}-\frac{2522341 x^{7}}{3472081200}+O\left(x^{8}\right)\right) \\
+ & c_{2}\left(-\frac{2 x\left(1-\frac{x}{3}+\frac{x^{2}}{27}-\frac{x^{3}}{486}+\frac{x^{4}}{14580}-\frac{7291 x^{5}}{656100}+\frac{225991 x^{6}}{41334300}-\frac{2522341 x^{7}}{3472081200}+O\left(x^{8}\right)\right) \ln (x)}{3}\right. \\
& \left.+1-\frac{x^{2}}{3}+\frac{14 x^{3}}{243}-\frac{35 x^{4}}{8748}+\frac{101 x^{5}}{656100}+\frac{69199 x^{6}}{14762250}+\frac{19882543 x^{7}}{4340101500}+O\left(x^{8}\right)\right)
\end{aligned}
$$

Verified OK.

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
```

 -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
 trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F}$ ([a
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear $\mathrm{qDE}_{3} 3^{\text {with }}$ constant coefficients
trying to convert to an ODE of Bessel type
trying to convert to an ODE of Bessel type
\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 70

```
Order:=8;
dsolve(3*x^2*diff(y(x),x$2)+x^6*diff(y(x),x)+2*x*y(x)=0,y(x),type='series',x=0);
```

$$
\begin{aligned}
y(x)=c_{1} x(1 & -\frac{1}{3} x+\frac{1}{27} x^{2}-\frac{1}{486} x^{3}+\frac{1}{14580} x^{4}-\frac{7291}{656100} x^{5}+\frac{225991}{41334300} x^{6} \\
- & \left.\frac{2522341}{3472081200} x^{7}+\mathrm{O}\left(x^{8}\right)\right)+c_{2}\left(\operatorname { l n } (x) \left(-\frac{2}{3} x+\frac{2}{9} x^{2}-\frac{2}{81} x^{3}+\frac{1}{729} x^{4}\right.\right. \\
- & \left.\frac{1}{21870} x^{5}+\frac{7291}{984150} x^{6}-\frac{225991}{62001450} x^{7}+\mathrm{O}\left(x^{8}\right)\right)+\left(1-\frac{1}{3} x^{2}+\frac{14}{243} x^{3}\right. \\
& \left.\left.\quad-\frac{35}{8748} x^{4}+\frac{101}{656100} x^{5}+\frac{69199}{14762250} x^{6}+\frac{19882543}{4340101500} x^{7}+\mathrm{O}\left(x^{8}\right)\right)\right)
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 121

$$
\begin{aligned}
& y(x) \rightarrow c_{1}\left(\frac{x\left(7291 x^{5}-45 x^{4}+1350 x^{3}-24300 x^{2}+218700 x-656100\right) \log (x)}{984150}\right. \\
& \left.\quad+\frac{-80332 x^{6}+5895 x^{5}-158625 x^{4}+2430000 x^{3}-16402500 x^{2}+19683000 x+29524500}{29524500}\right) \\
& \quad+c_{2}\left(\frac{225991 x^{7}}{41334300}-\frac{7291 x^{6}}{656100}+\frac{x^{5}}{14580}-\frac{x^{4}}{486}+\frac{x^{3}}{27}-\frac{x^{2}}{3}+x\right)
\end{aligned}
$$

17.3 problem 1(c)

Internal problem ID [6042]
Internal file name [OUTPUT/5290_Sunday_June_05_2022_03_29_41_PM_43044529/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 154
Problem number: 1(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Irregular singular point"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

Unable to solve or complete the solution.

$$
x^{2} y^{\prime \prime}-5 y^{\prime}+3 y x^{2}=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}-5 y^{\prime}+3 y x^{2}=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =-\frac{5}{x^{2}} \\
q(x) & =3
\end{aligned}
$$

Table 210: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{5}{x^{2}}$	
singularity	type
$x=0$	"irregular"

$q(x)=3$	
singularity	type

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: []
Irregular singular points : $[0, \infty]$
Since $x=0$ is not an ordinary point, then we will now check if it is a regular singular point. Unable to solve since $x=0$ is not regular singular point. Terminating.

Verification of solutions N/A

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
        -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunD ODE, case c = 0
```

X Solution by Maple

```
Order:=8;
dsolve(x^2*diff(y(x),x$2)-5*diff(y(x),x)+3*x^2*y(x)=0,y(x),type='series',x=0);
```

No solution found
\checkmark Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 106
AsymptoticDSolveValue [x^2*y' $\quad[x]-5 * y$ ' $[x]+3 * x \wedge 2 * y[x]==0, y[x],\{x, 0,7\}]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(\frac{339 x^{7}}{8750}+\frac{49 x^{6}}{1250}+\frac{18 x^{5}}{625}+\frac{3 x^{4}}{50}+\frac{x^{3}}{5}+1\right) \\
& +c_{2} e^{-5 / x}\left(-\frac{302083 x^{7}}{218750}+\frac{5243 x^{6}}{6250}-\frac{357 x^{5}}{625}+\frac{113 x^{4}}{250}-\frac{49 x^{3}}{125}+\frac{6 x^{2}}{25}-\frac{2 x}{5}+1\right) x^{2}
\end{aligned}
$$

17.4 problem 1(d)

17.4.1 Maple step by step solution

1382
Internal problem ID [6043]
Internal file name [OUTPUT/5291_Sunday_June_05_2022_03_29_43_PM_77397404/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 154
Problem number: 1(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
y^{\prime \prime} x+4 y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
y^{\prime \prime} x+4 y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =\frac{4}{x}
\end{aligned}
$$

Table 211: Table $p(x), q(x)$ singularites.

\[

\]

$q(x)=\frac{4}{x}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
y^{\prime \prime} x+4 y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x+4\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n+r}\right)=0 \tag{2~A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r-1} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} 4 a_{n} x^{n+r}=\sum_{n=1}^{\infty} 4 a_{n-1} x^{n+r-1}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r-1$.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} 4 a_{n-1} x^{n+r-1}\right)=0 \tag{2B}
\end{equation*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r-1} a_{n}(n+r)(n+r-1)=0
$$

When $n=0$ the above becomes

$$
x^{-1+r} a_{0} r(-1+r)=0
$$

Or

$$
x^{-1+r} a_{0} r(-1+r)=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
x^{-1+r} r(-1+r)=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r(-1+r)=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=0
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
x^{-1+r} r(-1+r)=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=1$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+4 a_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{4 a_{n-1}}{(n+r)(n+r-1)} \tag{4}
\end{equation*}
$$

Which for the root $r=1$ becomes

$$
\begin{equation*}
a_{n}=-\frac{4 a_{n-1}}{(n+1) n} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=1$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=-\frac{4}{(1+r) r}
$$

Which for the root $r=1$ becomes

$$
a_{1}=-2
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{4}{(1+r) r}$	-2

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{16}{r(1+r)^{2}(2+r)}
$$

Which for the root $r=1$ becomes

$$
a_{2}=\frac{4}{3}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{4}{(1+r) r}$	-2
a_{2}	$\frac{16}{r(1+r)^{2}(2+r)}$	$\frac{4}{3}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{64}{r(1+r)^{2}(2+r)^{2}(3+r)}
$$

Which for the root $r=1$ becomes

$$
a_{3}=-\frac{4}{9}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{4}{(1+r) r}$	-2
a_{2}	$\frac{16}{r(1+r)^{2}(2+r)}$	$\frac{4}{3}$
a_{3}	$-\frac{64}{r(1+r)^{2}(2+r)^{2}(3+r)}$	$-\frac{4}{9}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{256}{r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)}
$$

Which for the root $r=1$ becomes

$$
a_{4}=\frac{4}{45}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{4}{(1+r) r}$	-2
a_{2}	$\frac{16}{r(1+r)^{2}(2+r)}$	$\frac{4}{3}$
a_{3}	$-\frac{64}{r(1+r)^{2}(2+r)^{2}(3+r)}$	$-\frac{4}{9}$
a_{4}	$\frac{256}{r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)}$	$\frac{4}{45}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=-\frac{1024}{r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)}
$$

Which for the root $r=1$ becomes

$$
a_{5}=-\frac{8}{675}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{4}{(1+r) r}$	-2
a_{2}	$\frac{16}{r(1+r)^{2}(2+r)}$	$\frac{4}{3}$
a_{3}	$-\frac{64}{r(1+r)^{2}(2+r)^{2}(3+r)}$	$-\frac{4}{9}$
a_{4}	$\frac{256}{r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)}$	$\frac{4}{45}$
a_{5}	$-\frac{1024}{r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)}$	$-\frac{8}{675}$

For $n=6$, using the above recursive equation gives

$$
a_{6}=\frac{4096}{r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)^{2}(6+r)}
$$

Which for the root $r=1$ becomes

$$
a_{6}=\frac{16}{14175}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{4}{(1+r) r}$	-2
a_{2}	$\frac{16}{r(1+r)^{2}(2+r)}$	$\frac{4}{3}$
a_{3}	$-\frac{64}{r(1+r)^{2}(2+r)^{2}(3+r)}$	$-\frac{4}{9}$
a_{4}	$\frac{256}{r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)}$	$\frac{4}{45}$
a_{5}	$-\frac{1024}{r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)}$	$-\frac{8}{675}$
a_{6}	$\frac{4096}{r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)^{2}(6+r)}$	$\frac{16}{14175}$

For $n=7$, using the above recursive equation gives

$$
a_{7}=-\frac{16384}{r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)^{2}(6+r)^{2}(7+r)}
$$

Which for the root $r=1$ becomes

$$
a_{7}=-\frac{8}{99225}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{4}{(1+r) r}$	-2
a_{2}	$\frac{16}{r(1+r)^{2}(2+r)}$	$\frac{4}{3}$
a_{3}	$-\frac{64}{r(1+r)^{2}(2+r)^{2}(3+r)}$	$-\frac{4}{9}$
a_{4}	$\frac{256}{r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)}$	$\frac{4}{45}$
a_{5}	$-\frac{1024}{r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)}$	$-\frac{8}{675}$
a_{6}	$\frac{4096}{r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)^{2}(6+r)}$	$\frac{16}{14175}$
a_{7}	$-\frac{16384}{r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)^{2}(6+r)^{2}(7+r)}$	$-\frac{8}{99225}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =x\left(1-2 x+\frac{4 x^{2}}{3}-\frac{4 x^{3}}{9}+\frac{4 x^{4}}{45}-\frac{8 x^{5}}{675}+\frac{16 x^{6}}{14175}-\frac{8 x^{7}}{99225}+O\left(x^{8}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=1$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{1}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{1} \\
& =-\frac{4}{(1+r) r}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}}-\frac{4}{(1+r) r} & =\lim _{r \rightarrow 0}-\frac{4}{(1+r) r} \\
& =\text { undefined }
\end{aligned}
$$

Since the limit does not exist then the log term is needed. Therefore the second solution has the form

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Therefore

$$
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
$$

Substituting these back into the given ode $y^{\prime \prime} x+4 y=0$ gives

$$
\begin{aligned}
& \left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x \\
& +4 C y_{1}(x) \ln (x)+4\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{aligned}
$$

Which can be written as

$$
\begin{align*}
& \left(\left(y_{1}^{\prime \prime}(x) x+4 y_{1}(x)\right) \ln (x)+\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right) x\right) C \tag{7}\\
& +\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x+4\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

But since $y_{1}(x)$ is a solution to the ode, then

$$
y_{1}^{\prime \prime}(x) x+4 y_{1}(x)=0
$$

Eq (7) simplifes to

$$
\begin{align*}
& \left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right) x C+\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) x \tag{8}\\
& +4\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Substituting $y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}$ into the above gives

$$
\begin{align*}
& \frac{\left(2\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) x-\left(\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\right)\right) C}{x} \tag{9}\\
& +\frac{\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right) x^{2}+4\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right) x}{x}=0
\end{align*}
$$

Since $r_{1}=1$ and $r_{2}=0$ then the above becomes

$$
\begin{align*}
& \frac{\left(2\left(\sum_{n=0}^{\infty} x^{n} a_{n}(n+1)\right) x-\left(\sum_{n=0}^{\infty} a_{n} x^{n+1}\right)\right) C}{x} \tag{10}\\
& +\frac{\left(\sum_{n=0}^{\infty} x^{-2+n} b_{n} n(n-1)\right) x^{2}+4\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right) x}{x}=0
\end{align*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} 2 C x^{n} a_{n}(n+1)\right)+\sum_{n=0}^{\infty}\left(-C x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} n x^{n-1} b_{n}(n-1)\right)+\left(\sum_{n=0}^{\infty} 4 b_{n} x^{n}\right)=0 \tag{2~A}
\end{equation*}
$$

The next step is to make all powers of x be $n-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n-1} and
adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} 2 C x^{n} a_{n}(n+1) & =\sum_{n=1}^{\infty} 2 C a_{n-1} n x^{n-1} \\
\sum_{n=0}^{\infty}\left(-C x^{n} a_{n}\right) & =\sum_{n=1}^{\infty}\left(-C a_{n-1} x^{n-1}\right) \\
\sum_{n=0}^{\infty} 4 b_{n} x^{n} & =\sum_{n=1}^{\infty} 4 b_{n-1} x^{n-1}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n-1$.

$$
\begin{align*}
& \left(\sum_{n=1}^{\infty} 2 C a_{n-1} n x^{n-1}\right)+\sum_{n=1}^{\infty}\left(-C a_{n-1} x^{n-1}\right) \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} n x^{n-1} b_{n}(n-1)\right)+\left(\sum_{n=1}^{\infty} 4 b_{n-1} x^{n-1}\right)=0
\end{align*}
$$

For $n=0$ in Eq. (2B), we choose arbitray value for b_{0} as $b_{0}=1$. For $n=N$, where $N=1$ which is the difference between the two roots, we are free to choose $b_{1}=0$. Hence for $n=1$, Eq (2B) gives

$$
C+4=0
$$

Which is solved for C. Solving for C gives

$$
C=-4
$$

For $n=2, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
3 C a_{1}+4 b_{1}+2 b_{2}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
2 b_{2}+24=0
$$

Solving the above for b_{2} gives

$$
b_{2}=-12
$$

For $n=3, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
5 C a_{2}+4 b_{2}+6 b_{3}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
6 b_{3}-\frac{224}{3}=0
$$

Solving the above for b_{3} gives

$$
b_{3}=\frac{112}{9}
$$

For $n=4, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
7 C a_{3}+4 b_{3}+12 b_{4}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
12 b_{4}+\frac{560}{9}=0
$$

Solving the above for b_{4} gives

$$
b_{4}=-\frac{140}{27}
$$

For $n=5, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
9 C a_{4}+4 b_{4}+20 b_{5}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
20 b_{5}-\frac{3232}{135}=0
$$

Solving the above for b_{5} gives

$$
b_{5}=\frac{808}{675}
$$

For $n=6, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
11 C a_{5}+4 b_{5}+30 b_{6}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
30 b_{6}+\frac{3584}{675}=0
$$

Solving the above for b_{6} gives

$$
b_{6}=-\frac{1792}{10125}
$$

For $n=7, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
13 C a_{6}+4 b_{6}+42 b_{7}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
42 b_{7}-\frac{18112}{23625}=0
$$

Solving the above for b_{7} gives

$$
b_{7}=\frac{9056}{496125}
$$

Now that we found all b_{n} and C, we can calculate the second solution from

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Using the above value found for $C=-4$ and all b_{n}, then the second solution becomes

$$
\begin{aligned}
y_{2}(x)= & (-4)\left(x\left(1-2 x+\frac{4 x^{2}}{3}-\frac{4 x^{3}}{9}+\frac{4 x^{4}}{45}-\frac{8 x^{5}}{675}+\frac{16 x^{6}}{14175}-\frac{8 x^{7}}{99225}+O\left(x^{8}\right)\right)\right) \ln (x) \\
& +1-12 x^{2}+\frac{112 x^{3}}{9}-\frac{140 x^{4}}{27}+\frac{808 x^{5}}{675}-\frac{1792 x^{6}}{10125}+\frac{9056 x^{7}}{496125}+O\left(x^{8}\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x\left(1-2 x+\frac{4 x^{2}}{3}-\frac{4 x^{3}}{9}+\frac{4 x^{4}}{45}-\frac{8 x^{5}}{675}+\frac{16 x^{6}}{14175}-\frac{8 x^{7}}{99225}+O\left(x^{8}\right)\right) \\
& +c_{2}\left((-4)\left(x\left(1-2 x+\frac{4 x^{2}}{3}-\frac{4 x^{3}}{9}+\frac{4 x^{4}}{45}-\frac{8 x^{5}}{675}+\frac{16 x^{6}}{14175}-\frac{8 x^{7}}{99225}+O\left(x^{8}\right)\right)\right) \ln (x)\right. \\
& \left.\quad+1-12 x^{2}+\frac{112 x^{3}}{9}-\frac{140 x^{4}}{27}+\frac{808 x^{5}}{675}-\frac{1792 x^{6}}{10125}+\frac{9056 x^{7}}{496125}+O\left(x^{8}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x\left(1-2 x+\frac{4 x^{2}}{3}-\frac{4 x^{3}}{9}+\frac{4 x^{4}}{45}-\frac{8 x^{5}}{675}+\frac{16 x^{6}}{14175}-\frac{8 x^{7}}{99225}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(-4 x\left(1-2 x+\frac{4 x^{2}}{3}-\frac{4 x^{3}}{9}+\frac{4 x^{4}}{45}-\frac{8 x^{5}}{675}+\frac{16 x^{6}}{14175}-\frac{8 x^{7}}{99225}+O\left(x^{8}\right)\right) \ln (x)\right. \\
& \left.+1-12 x^{2}+\frac{112 x^{3}}{9}-\frac{140 x^{4}}{27}+\frac{808 x^{5}}{675}-\frac{1792 x^{6}}{10125}+\frac{9056 x^{7}}{496125}+O\left(x^{8}\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
y= & c_{1} x\left(1-2 x+\frac{4 x^{2}}{3}-\frac{4 x^{3}}{9}+\frac{4 x^{4}}{45}-\frac{8 x^{5}}{675}+\frac{16 x^{6}}{14175}-\frac{8 x^{7}}{99225}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(-4 x\left(1-2 x+\frac{4 x^{2}}{3}-\frac{4 x^{3}}{9}+\frac{4 x^{4}}{45}-\frac{8 x^{5}}{675}+\frac{16 x^{6}}{14175}-\frac{8 x^{7}}{99225}+O\left(x^{8}\right)\right) \ln \left({ }^{(}\right)\right) \\
& \left.+1-12 x^{2}+\frac{112 x^{3}}{9}-\frac{140 x^{4}}{27}+\frac{808 x^{5}}{675}-\frac{1792 x^{6}}{10125}+\frac{9056 x^{7}}{496125}+O\left(x^{8}\right)\right)
\end{aligned}
$$

Verification of solutions

$$
\left.\left.\begin{array}{rl}
y= & c_{1} x(1-2 x
\end{array}\right)+\frac{4 x^{2}}{3}-\frac{4 x^{3}}{9}+\frac{4 x^{4}}{45}-\frac{8 x^{5}}{675}+\frac{16 x^{6}}{14175}-\frac{8 x^{7}}{99225}+O\left(x^{8}\right)\right), ~\left(-4 x\left(1-2 x+\frac{4 x^{2}}{3}-\frac{4 x^{3}}{9}+\frac{4 x^{4}}{45}-\frac{8 x^{5}}{675}+\frac{16 x^{6}}{14175}-\frac{8 x^{7}}{99225}+O\left(x^{8}\right)\right) \ln (x)\right)
$$

Verified OK.

17.4.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime} x+4 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{4 y}{x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{4 y}{x}=0
$$

$\square \quad$ Check to see if $x_{0}=0$ is a regular singular point

- Define functions

$$
\left[P_{2}(x)=0, P_{3}(x)=\frac{4}{x}\right]
$$

- $x \cdot P_{2}(x)$ is analytic at $x=0$

$$
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0
$$

- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators
$y^{\prime \prime} x+4 y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
$\square \quad$ Rewrite ODE with series expansions
- Convert $x \cdot y^{\prime \prime}$ to series expansion
$x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}$
- Shift index using $k->k+1$
$x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}$
Rewrite ODE with series expansions
$a_{0} r(-1+r) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(k+r)+4 a_{k}\right) x^{k+r}\right)=0$
- a_{0} cannot be 0 by assumption, giving the indicial equation
$r(-1+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{0,1\}$
- Each term in the series must be 0 , giving the recursion relation
$a_{k+1}(k+1+r)(k+r)+4 a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=-\frac{4 a_{k}}{(k+1+r)(k+r)}$
- Recursion relation for $r=0$
$a_{k+1}=-\frac{4 a_{k}}{(k+1) k}$
- \quad Solution for $r=0$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=-\frac{4 a_{k}}{(k+1) k}\right]
$$

- Recursion relation for $r=1$

$$
a_{k+1}=-\frac{4 a_{k}}{(k+2)(k+1)}
$$

- \quad Solution for $r=1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1}, a_{k+1}=-\frac{4 a_{k}}{(k+2)(k+1)}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+1}\right), a_{k+1}=-\frac{4 a_{k}}{(k+1) k}, b_{k+1}=-\frac{4 b_{k}}{(k+2)(k+1)}\right]
$$

Maple trace

```
-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 70

```
Order:=8;
dsolve(x*diff(y(x),x$2)+4*y(x)=0,y(x),type='series',x=0);
```

$$
\begin{aligned}
y(x)= & c_{1} x\left(1-2 x+\frac{4}{3} x^{2}-\frac{4}{9} x^{3}+\frac{4}{45} x^{4}-\frac{8}{675} x^{5}+\frac{16}{14175} x^{6}-\frac{8}{99225} x^{7}+\mathrm{O}\left(x^{8}\right)\right) \\
+ & c_{2}\left(\ln (x)\left((-4) x+8 x^{2}-\frac{16}{3} x^{3}+\frac{16}{9} x^{4}-\frac{16}{45} x^{5}+\frac{32}{675} x^{6}-\frac{64}{14175} x^{7}+\mathrm{O}\left(x^{8}\right)\right)\right. \\
& \left.+\left(1-12 x^{2}+\frac{112}{9} x^{3}-\frac{140}{27} x^{4}+\frac{808}{675} x^{5}-\frac{1792}{10125} x^{6}+\frac{9056}{496125} x^{7}+\mathrm{O}\left(x^{8}\right)\right)\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 119
AsymptoticDSolveValue[x*y' ' $[\mathrm{x}]+4 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(\frac{4}{675} x\left(8 x^{5}-60 x^{4}+300 x^{3}-900 x^{2}+1350 x-675\right) \log (x)\right. \\
& \left.+\frac{-2272 x^{6}+15720 x^{5}-70500 x^{4}+180000 x^{3}-202500 x^{2}+40500 x+10125}{10125}\right) \\
& +c_{2}\left(\frac{16 x^{7}}{14175}-\frac{8 x^{6}}{675}+\frac{4 x^{5}}{45}-\frac{4 x^{4}}{9}+\frac{4 x^{3}}{3}-2 x^{2}+x\right)
\end{aligned}
$$

17.5 problem 1(e)

17.5.1 Maple step by step solution

1396
Internal problem ID [6044]
Internal file name [OUTPUT/5292_Sunday_June_05_2022_03_29_46_PM_1192623/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 154
Problem number: 1(e).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type

```
[_Gegenbauer]
```

$$
\left(-x^{2}+1\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0
$$

With the expansion point for the power series method at $x=1$.
The ode does not have its expansion point at $x=0$, therefore to simplify the computation of power series expansion, change of variable is made on the independent variable to shift the initial conditions and the expasion point back to zero. The new ode is then solved more easily since the expansion point is now at zero. The solution converted back to the original independent variable. Let

$$
t=x-1
$$

The ode is converted to be in terms of the new independent variable t. This results in

$$
\left(-(t+1)^{2}+1\right)\left(\frac{d^{2}}{d t^{2}} y(t)\right)-2(t+1)\left(\frac{d}{d t} y(t)\right)+2 y(t)=0
$$

With its expansion point and initial conditions now at $t=0$. The transformed ODE is now solved. The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
\left(-t^{2}-2 t\right)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+(-2 t-2)\left(\frac{d}{d t} y(t)\right)+2 y(t)=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
\frac{d^{2}}{d t^{2}} y(t)+p(t) \frac{d}{d t} y(t)+q(t) y(t)=0
$$

Where

$$
\begin{aligned}
p(t) & =\frac{2 t+2}{t(t+2)} \\
q(t) & =-\frac{2}{t(t+2)}
\end{aligned}
$$

Table 213: Table $p(t), q(t)$ singularites.

$p(t)=\frac{2 t+2}{t(t+2)}$	
singularity	type
$t=-2$	"regular"
$t=0$	"regular"

$q(t)=-\frac{2}{t(t+2)}$	
singularity	type
$t=-2$	"regular"
$t=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $[-2,0, \infty]$
Irregular singular points : []
Since $t=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
-\left(\frac{d^{2}}{d t^{2}} y(t)\right) t(t+2)+(-2 t-2)\left(\frac{d}{d t} y(t)\right)+2 y(t)=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n+r}
$$

Then

$$
\begin{aligned}
\frac{d}{d t} y(t) & =\sum_{n=0}^{\infty}(n+r) a_{n} t^{n+r-1} \\
\frac{d^{2}}{d t^{2}} y(t) & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} t^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& -\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} t^{n+r-2}\right) t(t+2) \tag{1}\\
& +(-2 t-2)\left(\sum_{n=0}^{\infty}(n+r) a_{n} t^{n+r-1}\right)+2\left(\sum_{n=0}^{\infty} a_{n} t^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
\sum_{n=0}^{\infty} & \left(-t^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-2 t^{n+r-1} a_{n}(n+r)(n+r-1)\right) \tag{2~A}\\
& +\sum_{n=0}^{\infty}\left(-2 t^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-2(n+r) a_{n} t^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} t^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of t be $n+r-1$ in each summation term. Going over each summation term above with power of t in it which is not already t^{n+r-1} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(-t^{n+r} a_{n}(n+r)(n+r-1)\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1)(n+r-2) t^{n+r-1}\right) \\
\sum_{n=0}^{\infty}\left(-2 t^{n+r} a_{n}(n+r)\right) & =\sum_{n=1}^{\infty}\left(-2 a_{n-1}(n+r-1) t^{n+r-1}\right) \\
\sum_{n=0}^{\infty} 2 a_{n} t^{n+r} & =\sum_{n=1}^{\infty} 2 a_{n-1} t^{n+r-1}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of t are the same and equal to $n+r-1$.

$$
\begin{align*}
\sum_{n=1}^{\infty} & \left(-a_{n-1}(n+r-1)(n+r-2) t^{n+r-1}\right) \\
& +\sum_{n=0}^{\infty}\left(-2 t^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-2 a_{n-1}(n+r-1) t^{n+r-1}\right) \tag{2B}\\
& +\sum_{n=0}^{\infty}\left(-2(n+r) a_{n} t^{n+r-1}\right)+\left(\sum_{n=1}^{\infty} 2 a_{n-1} t^{n+r-1}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From $\mathrm{Eq}(2 \mathrm{~B})$ this gives

$$
-2 t^{n+r-1} a_{n}(n+r)(n+r-1)-2(n+r) a_{n} t^{n+r-1}=0
$$

When $n=0$ the above becomes

$$
-2 t^{-1+r} a_{0} r(-1+r)-2 r a_{0} t^{-1+r}=0
$$

Or

$$
\left(-2 t^{-1+r} r(-1+r)-2 r t^{-1+r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
-2 t^{-1+r} r^{2}=0
$$

Since the above is true for all t then the indicial equation becomes

$$
-2 r^{2}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=0 \\
& r_{2}=0
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
-2 t^{-1+r} r^{2}=0
$$

Solving for r gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form

$$
\begin{equation*}
y_{1}(t)=\sum_{n=0}^{\infty} a_{n} t^{n+r} \tag{1~A}
\end{equation*}
$$

Now the second solution y_{2} is found using

$$
\begin{equation*}
y_{2}(t)=y_{1}(t) \ln (t)+\left(\sum_{n=1}^{\infty} b_{n} t^{n+r}\right) \tag{1B}
\end{equation*}
$$

Then the general solution will be

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

In $\mathrm{Eq}(1 \mathrm{~B})$ the sum starts from 1 and not zero. In $\mathrm{Eq}(1 \mathrm{~A}), a_{0}$ is never zero, and is arbitrary and is typically taken as $a_{0}=1$, and $\left\{c_{1}, c_{2}\right\}$ are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first solution $y_{1}(t)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{align*}
& -a_{n-1}(n+r-1)(n+r-2)-2 a_{n}(n+r)(n+r-1) \tag{3}\\
& \quad-2 a_{n-1}(n+r-1)-2 a_{n}(n+r)+2 a_{n-1}=0
\end{align*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}\left(n^{2}+2 n r+r^{2}-n-r-2\right)}{2\left(n^{2}+2 n r+r^{2}\right)} \tag{4}
\end{equation*}
$$

Which for the root $r=0$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}\left(n^{2}-n-2\right)}{2 n^{2}} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=0$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{-r^{2}-r+2}{2(r+1)^{2}}
$$

Which for the root $r=0$ becomes

$$
a_{1}=1
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-r^{2}-r+2}{2(r+1)^{2}}$	1

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{(r+3) r(-1+r)}{4(r+2)(r+1)^{2}}
$$

Which for the root $r=0$ becomes

$$
a_{2}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-r^{2}-r+2}{2(r+1)^{2}}$	1
a_{2}	$\frac{(r+3) r(-1+r)}{4(r+2)(r+1)^{2}}$	0

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{(-1+r) r(r+4)}{8(r+3)(r+1)(r+2)}
$$

Which for the root $r=0$ becomes

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-r^{2}-r+2}{2(r+1)^{2}}$	1
a_{2}	$\frac{(r+3) r(-1+r)}{4(r+2)(r+1)^{2}}$	0
a_{3}	$-\frac{(-1+r) r(r+4)}{8(r+3)(r+1)(r+2)}$	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{r(-1+r)(r+5)}{16(r+4)(r+1)(r+3)}
$$

Which for the root $r=0$ becomes

$$
a_{4}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-r^{2}-r+2}{2(r+1)^{2}}$	1
a_{2}	$\frac{(r+3) r(-1+r)}{4(r+2)(r+1)^{2}}$	0
a_{3}	$-\frac{(-1+r) r(r+4)}{8(r+3)(r+1)(r+2)}$	0
a_{4}	$\frac{r(-1+r)(r+5)}{16(r+4)(r+1)(r+3)}$	0

For $n=5$, using the above recursive equation gives

$$
a_{5}=-\frac{(-1+r) r(r+6)}{32(r+5)(r+1)(r+4)}
$$

Which for the root $r=0$ becomes

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-r^{2}-r+2}{2(r+1)^{2}}$	1
a_{2}	$\frac{(r+3) r(-1+r)}{4(r+2)(r+1)^{2}}$	0
a_{3}	$-\frac{(-1+r) r(r+4)}{8(r+3)(r+1)(r+2)}$	0
a_{4}	$\frac{r(-1+r)(r+5)}{16(r+4)(r+1)(r+3)}$	0
a_{5}	$-\frac{(-1+r) r(r+6)}{32(r+5)(r+1)(r+4)}$	0

For $n=6$, using the above recursive equation gives

$$
a_{6}=\frac{r(-1+r)(r+7)}{64(r+6)(r+1)(r+5)}
$$

Which for the root $r=0$ becomes

$$
a_{6}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-r^{2}-r+2}{2(r+1)^{2}}$	1
a_{2}	$\frac{(r+3) r(-1+r)}{4(r+2)(r+1)^{2}}$	0
a_{3}	$-\frac{(-1+r) r(r+4)}{8(r+3)(r+1)(r+2)}$	0
a_{4}	$\frac{r(-1+r)(r+5)}{16(r+4)(r+1)(r+3)}$	0
a_{5}	$\frac{-\frac{(-1+r) r(r+6)}{32(r+5)(r+1)(r+4)}}{}$	0
a_{6}	$\frac{r(-1+r)(r+7)}{64(r+6)(r+1)(r+5)}$	0

For $n=7$, using the above recursive equation gives

$$
a_{7}=-\frac{(-1+r) r(r+8)}{128(r+7)(r+1)(r+6)}
$$

Which for the root $r=0$ becomes

$$
a_{7}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-r^{2}-r+2}{2(r+1)^{2}}$	1
a_{2}	$\frac{(r+3) r(-1+r)}{4(r+2)(r+1)^{2}}$	0
a_{3}	$-\frac{(-1+r) r(r+4)}{8(r+3)(r+1)(r+2)}$	0
a_{4}	$\frac{r(-1+r)(r+5)}{16(r+4)(r+1)(r+3)}$	0
a_{5}	$-\frac{(-1+r) r(r+6)}{32(r+5)(r+1)(r+4)}$	0
a_{6}	$\frac{r(-1+r)(r+7)}{64(r+6)(r+1)(r+5)}$	0
a_{7}	$-\frac{(-1+r) r(r+8)}{128(r+7)(r+1)(r+6)}$	0

Using the above table, then the first solution $y_{1}(t)$ becomes

$$
\begin{aligned}
y_{1}(t) & =a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5}+a_{6} t^{6}+a_{7} t^{7}+a_{8} t^{8} \ldots \\
& =t+1+O\left(t^{8}\right)
\end{aligned}
$$

Now the second solution is found. The second solution is given by

$$
y_{2}(t)=y_{1}(t) \ln (t)+\left(\sum_{n=1}^{\infty} b_{n} t^{n+r}\right)
$$

Where b_{n} is found using

$$
b_{n}=\frac{d}{d r} a_{n, r}
$$

And the above is then evaluated at $r=0$. The above table for $a_{n, r}$ is used for this purpose. Computing the derivatives gives the following table

n	$b_{n, r}$	a_{n}	$b_{n, r}=\frac{d}{d r} a_{n, r}$	$b_{n}(r=0)$
b_{0}	1	1	N/A since b_{n} starts from 1	N/A
b_{1}	$\frac{-r^{2}-r+2}{2(r+1)^{2}}$	1	$\frac{-r-5}{2(r+1)^{3}}$	$-\frac{5}{2}$
b_{2}	$\frac{(r+3) r(-1+r)}{4(r+2)(r+1)^{2}}$	0	$\frac{r^{3}+7 r^{2}+7 r-3}{2(r+2)^{2}(r+1)^{3}}$	$-\frac{3}{8}$
b_{3}	$-\frac{(-1+r) r(r+4)}{8(r+3)(r+1)(r+2)}$	0	$\frac{3-\frac{75}{8} r^{2}-\frac{3}{8} r^{4}-\frac{15}{4} r^{3}-\frac{9}{2} r}{(r+3)^{2}(r+1)^{2}(r+2)^{2}}$	$\frac{1}{12}$
b_{4}	$\frac{r(-1+r)(r+5)}{16(r+4)(r+1)(r+3)}$	0	$\frac{r^{4}+12 r^{3}+38 r^{2}+24 r-15}{4(r+4)^{2}(r+1)^{2}(r+3)^{2}}$	$-\frac{5}{192}$
b_{5}	$-\frac{(-1+r) r(r+6)}{32(r+5)(r+1)(r+4)}$	0	$\frac{-\frac{265}{32} r^{2}+\frac{15}{4}-\frac{5}{32} r^{4}-\frac{35}{16} r^{3}-\frac{25}{4} r}{(r+5)^{2}(r+1)^{2}(r+4)^{2}}$	$\frac{3}{320}$
b_{6}	$\frac{r(-1+r)(r+7)}{64(r+6)(r+1)(r+5)}$	0	$\frac{\frac{105}{16} r^{2}-\frac{10}{32}+\frac{3}{32} r^{4}+\frac{3}{2} r^{3}+\frac{45}{8} r}{(r+6)^{2}(r+1)^{2}(r+5)^{2}}$	$-\frac{7}{1920}$
b_{7}	$-\frac{(-1+r) r(r+8)}{128(r+7)(r+1)(r+6)}$	0	$\frac{-\frac{623}{123} r^{2}-\frac{7}{128} r^{4}-\frac{63}{64} r^{3}+\frac{21}{8}-\frac{147}{32} r}{(r+7)^{2}(r+1)^{2}(r+6)^{2}}$	$\frac{1}{672}$

The above table gives all values of b_{n} needed. Hence the second solution is

$$
\begin{aligned}
y_{2}(t) & =y_{1}(t) \ln (t)+b_{0}+b_{1} t+b_{2} t^{2}+b_{3} t^{3}+b_{4} t^{4}+b_{5} t^{5}+b_{6} t^{6}+b_{7} t^{7}+b_{8} t^{8} \ldots \\
& =\left(t+1+O\left(t^{8}\right)\right) \ln (t)-\frac{5 t}{2}-\frac{3 t^{2}}{8}+\frac{t^{3}}{12}-\frac{5 t^{4}}{192}+\frac{3 t^{5}}{320}-\frac{7 t^{6}}{1920}+\frac{t^{7}}{672}+O\left(t^{8}\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(t)= & c_{1} y_{1}(t)+c_{2} y_{2}(t) \\
= & c_{1}\left(t+1+O\left(t^{8}\right)\right) \\
& +c_{2}\left(\left(t+1+O\left(t^{8}\right)\right) \ln (t)-\frac{5 t}{2}-\frac{3 t^{2}}{8}+\frac{t^{3}}{12}-\frac{5 t^{4}}{192}+\frac{3 t^{5}}{320}-\frac{7 t^{6}}{1920}+\frac{t^{7}}{672}+O\left(t^{8}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y(t)= & y_{h} \\
= & c_{1}\left(t+1+O\left(t^{8}\right)\right) \\
& +c_{2}\left(\left(t+1+O\left(t^{8}\right)\right) \ln (t)-\frac{5 t}{2}-\frac{3 t^{2}}{8}+\frac{t^{3}}{12}-\frac{5 t^{4}}{192}+\frac{3 t^{5}}{320}-\frac{7 t^{6}}{1920}+\frac{t^{7}}{672}+O\left(t^{8}\right)\right)
\end{aligned}
$$

Replacing t in the above with the original independent variable $x s u \operatorname{sing} t=x-1$ results in

$$
\begin{aligned}
y=c_{1}(x & \left.+O\left((x-1)^{8}\right)\right)+c_{2}\left(\left(x+O\left((x-1)^{8}\right)\right) \ln (x-1)-\frac{5 x}{2}+\frac{5}{2}-\frac{3(x-1)^{2}}{8}\right. \\
& \left.+\frac{(x-1)^{3}}{12}-\frac{5(x-1)^{4}}{192}+\frac{3(x-1)^{5}}{320}-\frac{7(x-1)^{6}}{1920}+\frac{(x-1)^{7}}{672}+O\left((x-1)^{8}\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
y=c_{1} & \left(x+O\left((x-1)^{8}\right)\right)+c_{2}\left(\left(x+O\left((x-1)^{8}\right)\right) \ln (x-1)-\frac{5 x}{2}+\frac{5}{2}-\frac{3(x-1)^{2}}{8}\right. \\
& \left.+\frac{(x-1)^{3}}{12}-\frac{5(x-1)^{4}}{192}+\frac{3(x-1)^{5}}{320}-\frac{7(x-1)^{6}}{1920}+\frac{(x-1)^{7}}{672}+O\left((x-1)^{8}\right)\right)^{2}
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
y=c_{1}(x & \left.+O\left((x-1)^{8}\right)\right)+c_{2}\left(\left(x+O\left((x-1)^{8}\right)\right) \ln (x-1)-\frac{5 x}{2}+\frac{5}{2}-\frac{3(x-1)^{2}}{8}\right. \\
& \left.+\frac{(x-1)^{3}}{12}-\frac{5(x-1)^{4}}{192}+\frac{3(x-1)^{5}}{320}-\frac{7(x-1)^{6}}{1920}+\frac{(x-1)^{7}}{672}+O\left((x-1)^{8}\right)\right)
\end{aligned}
$$

Verified OK.

17.5.1 Maple step by step solution

Let's solve
$\left(-x^{2}+1\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2 nd derivative

$$
y^{\prime \prime}=-\frac{2 x y^{\prime}}{x^{2}-1}+\frac{2 y}{x^{2}-1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{2 x y^{\prime}}{x^{2}-1}-\frac{2 y}{x^{2}-1}=0
$$

Check to see if x_{0} is a regular singular point

- Define functions
$\left[P_{2}(x)=\frac{2 x}{x^{2}-1}, P_{3}(x)=-\frac{2}{x^{2}-1}\right]$
- $(1+x) \cdot P_{2}(x)$ is analytic at $x=-1$
$\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=1$
- $(1+x)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$
$\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0$
- $x=-1$ is a regular singular point

Check to see if x_{0} is a regular singular point
$x_{0}=-1$

- Multiply by denominators
$\left(x^{2}-1\right) y^{\prime \prime}+2 x y^{\prime}-2 y=0$
- \quad Change variables using $x=u-1$ so that the regular singular point is at $u=0$
$\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(2 u-2)\left(\frac{d}{d u} y(u)\right)-2 y(u)=0$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$
$u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}$
- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=1 . .2$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
-2 a_{0} r^{2} u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-2 a_{k+1}(k+1+r)^{2}+a_{k}(k+r+2)(k+r-1)\right) u^{k+r}\right)=0
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$-2 r^{2}=0$
- Values of r that satisfy the indicial equation

$$
r=0
$$

- Each term in the series must be 0 , giving the recursion relation
$-2 a_{k+1}(k+1)^{2}+a_{k}(k+2)(k-1)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{a_{k}(k+2)(k-1)}{2(k+1)^{2}}$
- Recursion relation for $r=0$; series terminates at $k=1$
$a_{k+1}=\frac{a_{k}(k+2)(k-1)}{2(k+1)^{2}}$
- Apply recursion relation for $k=0$
$a_{1}=-a_{0}$
- Terminating series solution of the ODE for $r=0$. Use reduction of order to find the second li $y(u)=a_{0} \cdot(-u+1)$
- Revert the change of variables $u=1+x$
[$\left.y=-a_{0} x\right]$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```


Solution by Maple

Time used: 0.047 (sec). Leaf size: 49

```
Order:=8;
dsolve((1-x^2)*diff (y(x),x$2)-2*x*diff (y (x),x)+2*y(x)=0,y(x),type='series',x=1);
```

$$
\begin{aligned}
y(x)= & \left(-\frac{5}{2}(x-1)-\frac{3}{8}(x-1)^{2}+\frac{1}{12}(x-1)^{3}-\frac{5}{192}(x-1)^{4}+\frac{3}{320}(x-1)^{5}-\frac{7}{1920}(x-1)^{6}\right. \\
& \left.+\frac{1}{672}(x-1)^{7}+\mathrm{O}\left((x-1)^{8}\right)\right) c_{2}+\left(1+(x-1)+\mathrm{O}\left((x-1)^{8}\right)\right)\left(c_{2} \ln (x-1)+c_{1}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 86

```
AsymptoticDSolveValue[(1-x^2)*y''[x]-2*x*y'[x]+2*y[x]==0,y[x],{x,1,7}]
```

$$
\begin{array}{r}
y(x) \rightarrow c_{1} x+c_{2}\left(\frac{1}{672}(x-1)^{7}-\frac{7(x-1)^{6}}{1920}+\frac{3}{320}(x-1)^{5}-\frac{5}{192}(x-1)^{4}+\frac{1}{12}(x-1)^{3}\right. \\
\left.-\frac{3}{8}(x-1)^{2}-2(x-1)+\frac{1-x}{2}+x \log (x-1)\right)
\end{array}
$$

17.6 problem 1(f)

17.6.1 Maple step by step solution . 1412

Internal problem ID [6045]
Internal file name [OUTPUT/5293_Sunday_June_05_2022_03_29_49_PM_53281409/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 154
Problem number: 1(f).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
\left(x^{2}+x-2\right)^{2} y^{\prime \prime}+3(x+2) y^{\prime}+(x-1) y=0
$$

With the expansion point for the power series method at $x=-2$.
The ode does not have its expansion point at $x=0$, therefore to simplify the computation of power series expansion, change of variable is made on the independent variable to shift the initial conditions and the expasion point back to zero. The new ode is then solved more easily since the expansion point is now at zero. The solution converted back to the original independent variable. Let

$$
t=x+2
$$

The ode is converted to be in terms of the new independent variable t. This results in

$$
\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{2}(t-3)^{2}+3 t\left(\frac{d}{d t} y(t)\right)+(t-3) y(t)=0
$$

With its expansion point and initial conditions now at $t=0$. The transformed ODE is now solved. The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
\left(t^{4}-6 t^{3}+9 t^{2}\right)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+3 t\left(\frac{d}{d t} y(t)\right)+(t-3) y(t)=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
\frac{d^{2}}{d t^{2}} y(t)+p(t) \frac{d}{d t} y(t)+q(t) y(t)=0
$$

Where

$$
\begin{aligned}
p(t) & =\frac{3}{t(t-3)^{2}} \\
q(t) & =\frac{1}{(t-3) t^{2}}
\end{aligned}
$$

Table 215: Table $p(t), q(t)$ singularites.

$p(t)=\frac{3}{t(t-3)^{2}}$	
singularity	type
$t=0$	"regular"
$t=3$	"irregular"

$q(t)=\frac{1}{(t-3) t^{2}}$	
singularity	type
$t=0$	"regular"
$t=3$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $[0, \infty]$
Irregular singular points : [3]
Since $t=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
t^{2}\left(t^{2}-6 t+9\right)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+3 t\left(\frac{d}{d t} y(t)\right)+(t-3) y(t)=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n+r}
$$

Then

$$
\begin{aligned}
\frac{d}{d t} y(t) & =\sum_{n=0}^{\infty}(n+r) a_{n} t^{n+r-1} \\
\frac{d^{2}}{d t^{2}} y(t) & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} t^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& t^{2}\left(t^{2}-6 t+9\right)\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} t^{n+r-2}\right) \tag{1}\\
& +3 t\left(\sum_{n=0}^{\infty}(n+r) a_{n} t^{n+r-1}\right)+(t-3)\left(\sum_{n=0}^{\infty} a_{n} t^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} t^{n+r+2} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-6 t^{1+n+r} a_{n}(n+r)(n+r-1)\right) \\
& \quad+\left(\sum_{n=0}^{\infty} 9 t^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 3 t^{n+r} a_{n}(n+r)\right) \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} t^{1+n+r} a_{n}\right)+\sum_{n=0}^{\infty}\left(-3 a_{n} t^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of t be $n+r$ in each summation term. Going over each summation term above with power of t in it which is not already t^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} t^{n+r+2} a_{n}(n+r)(n+r-1) & =\sum_{n=2}^{\infty} a_{n-2}(n+r-2)(n-3+r) t^{n+r} \\
\sum_{n=0}^{\infty}\left(-6 t^{1+n+r} a_{n}(n+r)(n+r-1)\right) & =\sum_{n=1}^{\infty}\left(-6 a_{n-1}(n+r-1)(n+r-2) t^{n+r}\right) \\
\sum_{n=0}^{\infty} t^{1+n+r} a_{n} & =\sum_{n=1}^{\infty} a_{n-1} t^{n+r}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers
of t are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} a_{n-2}(n+r-2)(n-3+r) t^{n+r}\right) \\
& +\sum_{n=1}^{\infty}\left(-6 a_{n-1}(n+r-1)(n+r-2) t^{n+r}\right)+\left(\sum_{n=0}^{\infty} 9 t^{n+r} a_{n}(n+r)(n+r-1)\right) \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} 3 t^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=1}^{\infty} a_{n-1} t^{n+r}\right)+\sum_{n=0}^{\infty}\left(-3 a_{n} t^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
9 t^{n+r} a_{n}(n+r)(n+r-1)+3 t^{n+r} a_{n}(n+r)-3 a_{n} t^{n+r}=0
$$

When $n=0$ the above becomes

$$
9 t^{r} a_{0} r(-1+r)+3 t^{r} a_{0} r-3 a_{0} t^{r}=0
$$

Or

$$
\left(9 t^{r} r(-1+r)+3 t^{r} r-3 t^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(9 r^{2}-6 r-3\right) t^{r}=0
$$

Since the above is true for all t then the indicial equation becomes

$$
9 r^{2}-6 r-3=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=-\frac{1}{3}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(9 r^{2}-6 r-3\right) t^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=\frac{4}{3}$ is not an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(t)=t^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right) \\
& y_{2}(t)=t^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} t^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(t)=\sum_{n=0}^{\infty} a_{n} t^{1+n} \\
& y_{2}(t)=\sum_{n=0}^{\infty} b_{n} t^{n-\frac{1}{3}}
\end{aligned}
$$

We start by finding $y_{1}(t)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=\frac{6 r^{2}-6 r-1}{9 r^{2}+12 r}
$$

For $2 \leq n$ the recursive equation is

$$
\begin{gather*}
a_{n-2}(n+r-2)(n-3+r)-6 a_{n-1}(n+r-1)(n+r-2) \tag{3}\\
+9 a_{n}(n+r)(n+r-1)+3 a_{n}(n+r)+a_{n-1}-3 a_{n}=0
\end{gather*}
$$

Solving for a_{n} from recursive equation (4) gives
$a_{n}=-\frac{n^{2} a_{n-2}-6 n^{2} a_{n-1}+2 n r a_{n-2}-12 n r a_{n-1}+r^{2} a_{n-2}-6 r^{2} a_{n-1}-5 n a_{n-2}+18 n a_{n-1}-5 r a_{n-2}+18}{3\left(3 n^{2}+6 n r+3 r^{2}-2 n-2 r-1\right)}$
Which for the root $r=1$ becomes

$$
\begin{equation*}
a_{n}=\frac{\left(-a_{n-2}+6 a_{n-1}\right) n^{2}+\left(3 a_{n-2}-6 a_{n-1}\right) n-2 a_{n-2}-a_{n-1}}{9 n^{2}+12 n} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=1$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{6 r^{2}-6 r-1}{9 r^{2}+12 r}$	$-\frac{1}{21}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{27 r^{4}-3 r^{3}-36 r^{2}+1}{81 r^{4}+378 r^{3}+549 r^{2}+252 r}
$$

Which for the root $r=1$ becomes

$$
a_{2}=-\frac{11}{1260}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{6 r^{2}-6 r-1}{9 r^{2}+12 r}$	$-\frac{1}{21}$
a_{2}	$\frac{27 r^{4}-3 r^{3}-36 r^{2}+1}{81 r^{4}+378 r^{3}+549 r^{2}+252 r}$	$-\frac{11}{1260}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{108 r^{6}+288 r^{5}-36 r^{4}-462 r^{3}-213 r^{2}+39 r+11}{27\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)}
$$

Which for the root $r=1$ becomes

$$
a_{3}=-\frac{53}{29484}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{6 r^{2}-6 r-1}{9 r^{2}+12 r}$	$-\frac{1}{21}$
a_{2}	$\frac{27 r^{4}-3 r^{3}-36 r^{2}+1}{81 r^{4}+378 r^{3}+549 r^{2}+252 r}$	$-\frac{11}{1260}$
a_{3}	$\frac{108 r^{6}+288 r^{5}-36 r^{4}-462 r^{3}-213 r^{2}+39 r+11}{27\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)}$	$-\frac{53}{29484}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{405 r^{8}+2970 r^{7}+6759 r^{6}+2142 r^{5}-10827 r^{4}-12105 r^{3}-2121 r^{2}+1419 r+265}{81\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)\left(3 r^{2}+22 r+39\right)}
$$

Which for the root $r=1$ becomes

$$
a_{4}=-\frac{11093}{28304640}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{6 r^{2}-6 r-1}{9 r^{2}+12 r}$	$-\frac{1}{21}$
a_{2}	$\frac{27 r^{4}-3 r^{3}-36 r^{2}+1}{81 r^{4}+378 r^{3}+549 r^{2}+252 r}$	$-\frac{11}{1260}$
a_{3}	$\frac{108 r^{6}+288 r^{5}-36 r^{4}-462 r^{3}-213 r^{2}+39 r+11}{27\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)}$	$-\frac{53}{29484}$
a_{4}	$\frac{405 r^{8}+2970 r^{7}+6759 r^{6}+2142 r^{5}-10827 r^{4}-12105 r^{3}-2121 r^{2}+1419 r+265}{81\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)\left(3 r^{2}+22 r+39\right)}$	$-\frac{11093}{28304640}$

For $n=5$, using the above recursive equation gives
$a_{5}=\frac{1458 r^{10}+20250 r^{9}+108297 r^{8}+265518 r^{7}+217782 r^{6}-287388 r^{5}-709074 r^{4}-427506 r^{3}+16353}{243\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)\left(3 r^{2}+22 r+39\right)\left(3 r^{2}+28 r+64\right.}$
Which for the root $r=1$ becomes

$$
a_{5}=-\frac{709507}{8066822400}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{6 r^{2}-6 r-1}{9 r^{2}+12 r}$	$-\frac{1}{21}$
a_{2}	$\frac{27 r^{4}-3 r^{3}-36 r^{2}+1}{81 r^{4}+378 r^{3}+549 r^{2}+252 r}$	$-\frac{11}{1260}$
a_{3}	$\frac{108 r^{6}+288 r^{5}-36 r^{4}-462 r^{3}-213 r^{2}+39 r+11}{27\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)}$	$-\frac{53}{29484}$
a_{4}	$\frac{405 r^{8}+2970 r^{7}+6759 r^{6}+2142 r^{5}-10827 r^{4}-12105 r^{3}-2121 r^{2}+1419 r+265}{81\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)\left(3 r^{2}+22 r+39\right)}$	$-\frac{11093}{28304640}$
a_{5}	$\frac{1458 r^{10}+20250 r^{9}+108297 r^{8}+265518 r^{7}+217782 r^{6}-287388 r^{5}-709074 r^{4}-427506 r^{3}+16353 r^{2}+73710 r+11093}{243\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)\left(3 r^{2}+22 r+39\right)\left(3 r^{2}+28 r+64\right)}$	$-\frac{709507}{8066822400}$

For $n=6$, using the above recursive equation gives

$$
a_{6}=\frac{5103 r^{12}+113967 r^{11}+1059723 r^{10}+5248125 r^{9}+14394024 r^{8}+18690912 r^{7}-3055158 r^{6}-434760}{729\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)\left(3 r^{2}+22 r+39\right)}
$$

Which for the root $r=1$ becomes

$$
a_{6}=-\frac{5797423}{290405606400}
$$

And the table now becomes

n	$a_{n, r}$
a_{0}	1
a_{1}	$\frac{6 r^{2}-6 r-1}{9 r^{2}+12 r}$
a_{2}	$\frac{27 r^{4}-3 r^{3}-36 r^{2}+1}{81 r^{4}+378 r^{3}+549 r^{2}+252 r}$
a_{3}	$\frac{108 r^{6}+288 r^{5}-36 r^{4}-462 r^{3}-213 r^{2}+39 r+11}{27\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)}$
a_{4}	$\frac{405 r^{8}+2970 r^{7}+6759 r^{6}+2142 r^{5}-10827 r^{4}-12105 r^{3}-2121 r^{2}+1419 r+265}{81\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)\left(3 r^{2}+22 r+39\right)}$
a_{5}	$\frac{1458 r^{10}+20250 r^{9}+108297 r^{8}+265518 r^{7}+217782 r^{6}-287388 r^{5}-709074 r^{4}-427506 r^{3}+16353 r^{2}+73710 r+11093}{243\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)\left(3 r^{2}+22 r+39\right)\left(3 r^{2}+28 r+64\right)}$
a_{6}	$\frac{5103 r^{12}+113967 r^{11}+1059723 r^{10}+5248125 r^{9}+14394024 r^{8}+18690912 r^{7}-3055158 r^{6}-43476012 r^{5}-52278174 r^{4}-17968407 r^{3}+7306881 r^{2}}{729\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)\left(3 r^{2}+22 r+39\right)\left(3 r^{2}+28 r+64\right)\left(3 r^{2}+34 r+95\right)}$

For $n=7$, using the above recursive equation gives
$a_{7}=\frac{17496 r^{14}+571536 r^{13}+8096760 r^{12}+64902708 r^{11}+320544378 r^{10}+982953738 r^{9}+1709577414 r^{8}}{2187\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+2 \varepsilon\right.}$
Which for the root $r=1$ becomes

$$
a_{7}=-\frac{52991201}{11727918720000}
$$

And the table now becomes

n	$a_{n, r}$
a_{0}	1
a_{1}	$\frac{6 r^{2}-6 r-1}{9 r^{2}+12 r}$
a_{2}	$\frac{27 r^{4}-3 r^{3}-36 r^{2}+1}{81 r^{4}+378 r^{3}+549 r^{2}+252 r}$
a_{3}	$\frac{108 r^{6}+288 r^{5}-36 r^{4}-462 r^{3}-213 r^{2}+39 r+11}{27\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)}$
a_{4}	$\frac{405 r^{8}+2970 r^{7}+6759 r^{6}+2142 r^{5}-10827 r^{4}-12105 r^{3}-2121 r^{2}+1419 r+265}{81\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)\left(3 r^{2}+22 r+39\right)}$
a_{5}	$\frac{1458 r^{10}+20250 r^{9}+108297 r^{8}+265518 r^{7}+217782 r^{6}-287388 r^{5}-709074 r^{4}-427506 r^{3}+16353 r^{2}+73710 r+11093}{243\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)\left(3 r^{2}+22 r+39\right)\left(3 r^{2}+28 r+64\right)}$
a_{6}	$\frac{5103 r^{12}+113967 r^{11}+1059723 r^{10}+5248125 r^{9}+14394024 r^{8}+18690912 r^{7}-3055158 r^{6}-43476012 r^{5}-52278174 r^{4}-17968407 r^{3}+7306881 r}{729\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)\left(3 r^{2}+22 r+39\right)\left(3 r^{2}+28 r+64\right)\left(3 r^{2}+34 r+95\right)}$
a_{7}	$\frac{17496 r^{14}+571536 r^{13}+8096760 r^{12}+64902708 r^{11}+320544378 r^{10}+982953738 r^{9}+1709577414 r^{8}+897903738 r^{7}-2589159015 r^{6}-58493938}{2187\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)\left(3 r^{2}+22 r+39\right)\left(3 r^{2}+28 r+64\right)\left(3 r^{2}+34 r-\right.}$

Using the above table, then the solution $y_{1}(t)$ is

$$
\begin{aligned}
y_{1}(t) & =t\left(a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5}+a_{6} t^{6}+a_{7} t^{7}+a_{8} t^{8} \ldots\right) \\
& =t\left(1-\frac{t}{21}-\frac{11 t^{2}}{1260}-\frac{53 t^{3}}{29484}-\frac{11093 t^{4}}{28304640}-\frac{709507 t^{5}}{8066822400}-\frac{5797423 t^{6}}{290405606400}-\frac{52991201 t^{7}}{11727918720000}+O\right.
\end{aligned}
$$

Now the second solution $y_{2}(t)$ is found. $\mathrm{Eq}(2 \mathrm{~B})$ derived above is now used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
b_{1}=\frac{6 r^{2}-6 r-1}{9 r^{2}+12 r}
$$

For $2 \leq n$ the recursive equation is

$$
\begin{align*}
& b_{n-2}(n+r-2)(n-3+r)-6 b_{n-1}(n+r-1)(n+r-2) \tag{3}\\
& +9 b_{n}(n+r)(n+r-1)+3 b_{n}(n+r)+b_{n-1}-3 b_{n}=0
\end{align*}
$$

Solving for b_{n} from recursive equation (4) gives
$b_{n}=-\frac{n^{2} b_{n-2}-6 n^{2} b_{n-1}+2 n r b_{n-2}-12 n r b_{n-1}+r^{2} b_{n-2}-6 r^{2} b_{n-1}-5 n b_{n-2}+18 n b_{n-1}-5 r b_{n-2}+18 r b^{2}}{3\left(3 n^{2}+6 n r+3 r^{2}-2 n-2 r-1\right)}$
Which for the root $r=-\frac{1}{3}$ becomes

$$
\begin{equation*}
b_{n}=\frac{\left(-9 b_{n-2}+54 b_{n-1}\right) n^{2}+\left(51 b_{n-2}-198 b_{n-1}\right) n-70 b_{n-2}+159 b_{n-1}}{81 n^{2}-108 n} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-\frac{1}{3}$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{6 r^{2}-6 r-1}{9 r^{2}+12 r}$	$-\frac{5}{9}$

For $n=2$, using the above recursive equation gives

$$
b_{2}=\frac{27 r^{4}-3 r^{3}-36 r^{2}+1}{81 r^{4}+378 r^{3}+549 r^{2}+252 r}
$$

Which for the root $r=-\frac{1}{3}$ becomes

$$
b_{2}=\frac{23}{324}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{6 r^{2}-6 r-1}{9 r^{2}+12 r}$	$-\frac{5}{9}$
b_{2}	$\frac{27 r^{4}-3 r^{3}-36 r^{2}+1}{81 r^{4}+378 r^{3}+549 r^{2}+252 r}$	$\frac{23}{324}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=\frac{108 r^{6}+288 r^{5}-36 r^{4}-462 r^{3}-213 r^{2}+39 r+11}{27\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)}
$$

Which for the root $r=-\frac{1}{3}$ becomes

$$
b_{3}=\frac{271}{43740}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{6 r^{2}-6 r-1}{9 r^{2}+12 r}$	$-\frac{5}{9}$
b_{2}	$\frac{27 r^{4}-3 r^{3}-36 r^{2}+1}{81 r^{4}+378 r^{3}+549 r^{2}+252 r}$	$\frac{23}{324}$
b_{3}	$\frac{108 r^{6}+288 r^{5}-36 r^{4}-462 r^{3}-213 r^{2}+39 r+11}{27\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)}$	$\frac{271}{43740}$

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{405 r^{8}+2970 r^{7}+6759 r^{6}+2142 r^{5}-10827 r^{4}-12105 r^{3}-2121 r^{2}+1419 r+265}{81\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)\left(3 r^{2}+22 r+39\right)}
$$

Which for the root $r=-\frac{1}{3}$ becomes

$$
b_{4}=\frac{10517}{12597120}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{6 r^{2}-6 r-1}{9 r^{2}+12 r}$	$-\frac{5}{9}$
b_{2}	$\frac{27 r^{4}-3 r^{3}-36 r^{2}+1}{81 r^{4}+378 r^{3}+549 r^{2}+252 r}$	$\frac{23}{324}$
b_{3}	$\frac{108 r^{6}+288 r^{5}-36 r^{4}-462 r^{3}-213 r^{2}+39 r+11}{27\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+16+28\right)}$	$\frac{271}{43740}$
b_{4}	$\frac{405 r^{8}+2970 r^{7}+6799 r^{6}+2142 r^{5}-10827 r^{4}-12105 r^{3}-2121 r^{2}+1419 r+265}{81\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)\left(3 r^{2}+22 r+39\right)}$	$\frac{10517}{12597120}$

For $n=5$, using the above recursive equation gives
$b_{5}=\frac{1458 r^{10}+20250 r^{9}+108297 r^{8}+265518 r^{7}+217782 r^{6}-287388 r^{5}-709074 r^{4}-427506 r^{3}+16353 r}{243\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)\left(3 r^{2}+22 r+39\right)\left(3 r^{2}+28 r+64\right)}$
Which for the root $r=-\frac{1}{3}$ becomes

$$
b_{5}=\frac{778801}{6235574400}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{6 r^{2}-6 r-1}{9 r^{2}+12 r}$	$-\frac{5}{9}$
b_{2}	$\frac{27 r^{4}-3 r^{3}-36 r^{2}+1}{81 r^{4}+378 r^{3}+549 r^{2}+252 r}$	$\frac{23}{324}$
b_{3}	$\frac{108 r^{6}+288 r^{5}-36 r^{4}-462 r^{3}-213 r^{2}+39 r+11}{27\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)}$	$\frac{271}{43740}$
b_{4}	$\frac{405 r^{8}+2970 r^{7}+6759 r^{6}+2142 r^{5}-10827 r^{4}-12105 r^{3}-2121 r^{2}+1419 r+265}{81\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)\left(3 r^{2}+22 r+39\right)}$	$\frac{10517}{12597120}$
b_{5}	$\frac{1458 r^{10}+20250 r^{9}+108297 r^{8}+265518 r^{7}+217782 r^{6}-287388 r^{5}-709074 r^{4}-427506 r^{3}+16353 r^{2}+73710 r+11093}{243\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)\left(3 r^{2}+22 r+39\right)\left(3 r^{2}+28 r+64\right)}$	$\frac{778801}{6235574400}$

For $n=6$, using the above recursive equation gives
$b_{6}=\frac{5103 r^{12}+113967 r^{11}+1059723 r^{10}+5248125 r^{9}+14394024 r^{8}+18690912 r^{7}-3055158 r^{6}-434760}{729\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)\left(3 r^{2}+22 r+39\right)(}$
Which for the root $r=-\frac{1}{3}$ becomes

$$
b_{6}=\frac{16965493}{942818849280}
$$

And the table now becomes

n	$b_{n, r}$
b_{0}	1
b_{1}	$\frac{6 r^{2}-6 r-1}{9 r^{2}+12 r}$
b_{2}	$\frac{27 r^{4}-3 r^{3}-36 r^{2}+1}{81 r^{4}+378 r^{3}+549 r^{2}+252 r}$
b_{3}	$\frac{108 r^{6}+288 r^{5}-36 r^{4}-462 r^{3}-213 r^{2}+39 r+11}{27\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)}$
b_{4}	$\frac{405 r^{8}+2970 r^{7}+6759 r^{6}+2142 r^{5}-10827 r^{4}-12105 r^{3}-2121 r^{2}+1419 r+265}{81\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)\left(3 r^{2}+22 r+39\right)}$
b_{5}	$\frac{1458 r^{10}+20250 r^{9}+108297 r^{8}+265518 r^{7}+217782 r^{6}-287388 r^{5}-709074 r^{4}-427506 r^{3}+16353 r^{2}+73710 r+11093}{243\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)\left(3 r^{2}+22 r+39\right)\left(3 r^{2}+28 r+64\right)}$
b_{6}	$\frac{5103 r^{12}+113967 r^{11}+1059723 r^{10}+5248125 r^{9}+14394024 r^{8}+18690912 r^{7}-3055158 r^{6}-43476012 r^{5}-52278174 r^{4}-17968407 r^{3}+7306881 r^{2}}{729\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)\left(3 r^{2}+22 r+39\right)\left(3 r^{2}+28 r+64\right)\left(3 r^{2}+34 r+95\right)}$

For $n=7$, using the above recursive equation gives

$$
b_{7}=\frac{17496 r^{14}+571536 r^{13}+8096760 r^{12}+64902708 r^{11}+320544378 r^{10}+982953738 r^{9}+1709577414 r^{8}}{2187\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right.}
$$

Which for the root $r=-\frac{1}{3}$ becomes

$$
b_{7}=\frac{899971067}{458981357990400}
$$

And the table now becomes

n	$b_{n, r}$
b_{0}	1
b_{1}	$\frac{6 r^{2}-6 r-1}{9 r^{2}+12 r}$
b_{2}	$\frac{27 r^{4}-3 r^{3}-36 r^{2}+1}{81 r^{4}+378 r^{3}+549 r^{2}+252 r}$
b_{3}	$\frac{108 r^{6}+288 r^{5}-36 r^{4}-462 r^{3}-213 r^{2}+39 r+11}{27\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)}$
b_{4}	$\frac{405 r^{8}+2970 r^{7}+6759 r^{6}+2142 r^{5}-10827 r^{4}-12105 r^{3}-2121 r^{2}+1419 r+265}{81\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)\left(3 r^{2}+22 r+39\right)}$
b_{5}	$\frac{1458 r^{10}+20250 r^{9}+108297 r^{8}+265518 r^{7}+217782 r^{6}-287388 r^{5}-709074 r^{4}-427506 r^{3}+16353 r^{2}+73710 r+11093}{243\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)\left(3 r^{2}+22 r+39\right)\left(3 r^{2}+28 r+64\right)}$
b_{6}	$\frac{5103 r^{12}+113967 r^{11}+1059723 r^{10}+5248125 r^{9}+14394024 r^{8}+18690912 r^{7}-3055158 r^{6}-43476012 r^{5}-52278174 r^{4}-17968407 r^{3}+7306881 r^{2}}{729\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)\left(3 r^{2}+22 r+39\right)\left(3 r^{2}+28 r+64\right)\left(3 r^{2}+34 r+95\right)}$
b_{7}	$\frac{17496 r^{14}+571536 r^{13}+8096760 r^{12}+64902708 r^{11}+320544378 r^{10}+982953738 r^{9}+1709577414 r^{8}+897903738 r^{7}-2589159015 r^{6}-58493938}{2187\left(3 r^{2}+16 r+20\right) r\left(9 r^{3}+42 r^{2}+61 r+28\right)\left(3 r^{2}+22 r+39\right)\left(3 r^{2}+28 r+64\right)\left(3 r^{2}+34 r+\right.}$

Using the above table, then the solution $y_{2}(t)$ is

$$
\begin{aligned}
y_{2}(t) & =t\left(b_{0}+b_{1} t+b_{2} t^{2}+b_{3} t^{3}+b_{4} t^{4}+b_{5} t^{5}+b_{6} t^{6}+b_{7} t^{7}+b_{8} t^{8} \ldots\right) \\
& =\frac{1-\frac{5 t}{9}+\frac{23 t^{2}}{324}+\frac{271 t^{3}}{43740}+\frac{10517 t^{4}}{12597120}+\frac{778801 t^{5}}{623557400}+\frac{16965493 t^{6}}{942818849280}+\frac{899971067 t^{7}}{458981357990400}+O\left(t^{8}\right)}{t^{\frac{1}{3}}}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& y_{h}(t)= c_{1} y_{1}(t)+c_{2} y_{2}(t) \\
&= c_{1} t\left(1-\frac{t}{21}-\frac{11 t^{2}}{1260}-\frac{53 t^{3}}{29484}-\frac{11093 t^{4}}{28304640}-\frac{709507 t^{5}}{8066822400}-\frac{5797423 t^{6}}{290405606400}\right. \\
&\left.-\frac{52991201 t^{7}}{11727918720000}+O\left(t^{8}\right)\right) \\
&+\frac{c_{2}\left(1-\frac{5 t}{9}+\frac{23 t^{2}}{324}+\frac{271 t^{3}}{43740}+\frac{10517 t^{4}}{12597120}+\frac{778801 t^{5}}{6235574400}+\frac{16965493 t^{6}}{942818849280}+\frac{8999710677^{7}}{458981357990400}+O\left(t^{8}\right)\right)}{t^{\frac{1}{3}}}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y(t)= & y_{h} \\
= & c_{1} t\left(1-\frac{t}{21}-\frac{11 t^{2}}{1260}-\frac{53 t^{3}}{29484}-\frac{11093 t^{4}}{28304640}-\frac{709507 t^{5}}{8066822400}-\frac{5797423 t^{6}}{290405606400}\right. \\
& \left.-\frac{52991201 t^{7}}{11727918720000}+O\left(t^{8}\right)\right) \\
& +\frac{c_{2}\left(1-\frac{5 t}{9}+\frac{23 t^{2}}{324}+\frac{271 t^{3}}{43740}+\frac{10517 t^{4}}{12597120}+\frac{778881 t^{5}}{623557400}+\frac{16965493 t^{6}}{942818849280}+\frac{899971067 t^{7}}{458981357990400}+O\left(t^{8}\right)\right)}{t^{\frac{1}{3}}}
\end{aligned}
$$

Replacing t in the above with the original independent variable $x s$ using $t=x+2$ results in

$$
\begin{aligned}
y= & c_{1}(x+2)\left(\frac{19}{21}-\frac{x}{21}-\frac{11(x+2)^{2}}{1260}-\frac{53(x+2)^{3}}{29484}-\frac{11093(x+2)^{4}}{28304640}-\frac{709507(x+2)^{5}}{8066822400}\right. \\
& +\frac{c_{2}\left(-\frac{5797423(x+2)^{6}}{290405606400}-\frac{52991201(x+2)^{7}}{11727918720000}+O\left((x+2)^{8}\right)\right)}{(x+2)^{\frac{1}{3}}}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{aligned}
y= & c_{1}(x+2)\left(\frac{19}{21}-\frac{x}{21}-\frac{11(x+2)^{2}}{1260}-\frac{53(x+2)^{3}}{29484}-\frac{11093(x+2)^{4}}{28304640}-\frac{709507(x+2)^{5}}{8066822400}\right) \\
& +\frac{c_{2}\left(-\frac{5797423(x+2)^{6}}{290405606400}-\frac{52991201(x+2)^{7}}{11727918720000}+O\left((x+2)^{8}\right)\right)}{(x+2)^{\frac{1}{3}}}
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1}(x+2)\left(\frac{19}{21}-\frac{x}{21}-\frac{11(x+2)^{2}}{1260}-\frac{53(x+2)^{3}}{29484}-\frac{11093(x+2)^{4}}{28304640}-\frac{709507(x+2)^{5}}{8066822400}\right. \\
& \left.\quad-\frac{5797423(x+2)^{6}}{290405606400}-\frac{52991201(x+2)^{7}}{11727918720000}+O\left((x+2)^{8}\right)\right) \\
& \frac{c_{2}\left(-\frac{1}{9}-\frac{5 x}{9}+\frac{23(x+2)^{2}}{324}+\frac{271(x+2)^{3}}{43740}+\frac{10517(x+2)^{4}}{12597120}+\frac{778801(x+2)^{5}}{6235574400}+\frac{16965493(x+2)^{6}}{942818849280}+\frac{899971067(x+2)^{7}}{458981357990400}+O((x)\right.}{(x+2)^{\frac{1}{3}}}
\end{aligned}
$$

Verified OK.

17.6.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}(x+2)^{2}(x-1)^{2}+(3 x+6) y^{\prime}+(x-1) y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{3 y^{\prime}}{(x+2)(x-1)^{2}}-\frac{y}{(x-1)(x+2)^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{3 y^{\prime}}{(x+2)(x-1)^{2}}+\frac{y}{(x-1)(x+2)^{2}}=0
$$

Check to see if x_{0} is a regular singular point

- Define functions

$$
\left[P_{2}(x)=\frac{3}{(x+2)(x-1)^{2}}, P_{3}(x)=\frac{1}{(x-1)(x+2)^{2}}\right]
$$

- $(x+2) \cdot P_{2}(x)$ is analytic at $x=-2$
$\left.\left((x+2) \cdot P_{2}(x)\right)\right|_{x=-2}=\frac{1}{3}$
- $(x+2)^{2} \cdot P_{3}(x)$ is analytic at $x=-2$
$\left.\left((x+2)^{2} \cdot P_{3}(x)\right)\right|_{x=-2}=-\frac{1}{3}$
- $x=-2$ is a regular singular point

Check to see if x_{0} is a regular singular point $x_{0}=-2$

- Multiply by denominators
$y^{\prime \prime}(x+2)^{2}(x-1)^{2}+(3 x+6) y^{\prime}+(x-1) y=0$
- Change variables using $x=u-2$ so that the regular singular point is at $u=0$
$\left(u^{4}-6 u^{3}+9 u^{2}\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+3 u\left(\frac{d}{d u} y(u)\right)+(u-3) y(u)=0$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot y(u)$ to series expansion for $m=0 . .1$

$$
u^{m} \cdot y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r+m}
$$

- Shift index using $k->k-m$

$$
u^{m} \cdot y(u)=\sum_{k=m}^{\infty} a_{k-m} u^{k+r}
$$

- Convert $u \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion

$$
u \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=2 . .4$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
3 a_{0}(1+3 r)(-1+r) u^{r}+\left(3 a_{1}(4+3 r) r-a_{0}\left(6 r^{2}-6 r-1\right)\right) u^{1+r}+\left(\sum _ { k = 2 } ^ { \infty } \left(3 a_{k}(3 k+3 r+1)(k+\right.\right.
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation $3(1+3 r)(-1+r)=0$
- Values of r that satisfy the indicial equation

$$
r \in\left\{1,-\frac{1}{3}\right\}
$$

- Each term must be 0

$$
3 a_{1}(4+3 r) r-a_{0}\left(6 r^{2}-6 r-1\right)=0
$$

- \quad Solve for the dependent coefficient(s)
$a_{1}=\frac{a_{0}\left(6 r^{2}-6 r-1\right)}{3 r(4+3 r)}$
- Each term in the series must be 0 , giving the recursion relation

$$
\left(9 a_{k}+a_{k-2}-6 a_{k-1}\right) k^{2}+\left(2\left(9 a_{k}+a_{k-2}-6 a_{k-1}\right) r-6 a_{k}-5 a_{k-2}+18 a_{k-1}\right) k+\left(9 a_{k}+a_{k-2}\right.
$$

- \quad Shift index using $k->k+2$
$\left(9 a_{k+2}+a_{k}-6 a_{k+1}\right)(k+2)^{2}+\left(2\left(9 a_{k+2}+a_{k}-6 a_{k+1}\right) r-6 a_{k+2}-5 a_{k}+18 a_{k+1}\right)(k+2)+(9 a$
- Recursion relation that defines series solution to ODE
$a_{k+2}=-\frac{k^{2} a_{k}-6 k^{2} a_{k+1}+2 k r a_{k}-12 k r a_{k+1}+r^{2} a_{k}-6 r^{2} a_{k+1}-k a_{k}-6 k a_{k+1}-r a_{k}-6 r a_{k+1}+a_{k+1}}{3\left(3 k^{2}+6 k r+3 r^{2}+10 k+10 r+7\right)}$
- Recursion relation for $r=1$

$$
a_{k+2}=-\frac{k^{2} a_{k}-6 k^{2} a_{k+1}+k a_{k}-18 k a_{k+1}-11 a_{k+1}}{3\left(3 k^{2}+16 k+20\right)}
$$

- \quad Solution for $r=1$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+1}, a_{k+2}=-\frac{k^{2} a_{k}-6 k^{2} a_{k+1}+k a_{k}-18 k a_{k+1}-11 a_{k+1}}{3\left(3 k^{2}+16 k+20\right)}, a_{1}=-\frac{a_{0}}{21}\right]
$$

- \quad Revert the change of variables $u=x+2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x+2)^{k+1}, a_{k+2}=-\frac{k^{2} a_{k}-6 k^{2} a_{k+1}+k a_{k}-18 k a_{k+1}-11 a_{k+1}}{3\left(3 k^{2}+16 k+20\right)}, a_{1}=-\frac{a_{0}}{21}\right]
$$

- Recursion relation for $r=-\frac{1}{3}$
$a_{k+2}=-\frac{k^{2} a_{k}-6 k^{2} a_{k+1}-\frac{5}{3} k a_{k}-2 k a_{k+1}+\frac{4}{9} a_{k}+\frac{7}{3} a_{k+1}}{3\left(3 k^{2}+8 k+4\right)}$
- \quad Solution for $r=-\frac{1}{3}$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k-\frac{1}{3}}, a_{k+2}=-\frac{k^{2} a_{k}-6 k^{2} a_{k+1}-\frac{5}{3} k a_{k}-2 k a_{k+1}+\frac{4}{9} a_{k}+\frac{7}{3} a_{k+1}}{3\left(3 k^{2}+8 k+4\right)}, a_{1}=-\frac{5 a_{0}}{9}\right]
$$

- \quad Revert the change of variables $u=x+2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x+2)^{k-\frac{1}{3}}, a_{k+2}=-\frac{k^{2} a_{k}-6 k^{2} a_{k+1}-\frac{5}{3} k a_{k}-2 k a_{k+1}+\frac{4}{9} a_{k}+\frac{7}{3} a_{k+1}}{3\left(3 k^{2}+8 k+4\right)}, a_{1}=-\frac{5 a_{0}}{9}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(x+2)^{k+1}\right)+\left(\sum_{k=0}^{\infty} b_{k}(x+2)^{k \frac{1}{3}}\right), a_{k+2}=-\frac{k^{2} a_{k}-6 k^{2} a_{k+1}+k a_{k}-18 k a_{k+1}-11 a_{k+1}}{3\left(3 k^{2}+16 k+20\right)}, a_{1}=-\right.
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
    -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a = 0, e <> 0, c <>
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 57

```
Order:=8;
dsolve((x^2+x-2)^2*diff (y(x),x$2)+3*(x+2)*diff (y (x),x)+(x-1)*y(x)=0,y(x),type='series', x=-2)
```

$y(x)$
$=\underline{c_{1}\left(1-\frac{5}{9}(x+2)+\frac{23}{324}(x+2)^{2}+\frac{271}{43740}(x+2)^{3}+\frac{10517}{12597120}(x+2)^{4}+\frac{778801}{6235574400}(x+2)^{5}+\frac{16965493}{942818849280}(x+)\right.}$

Solution by Mathematica

Time used: 0.009 (sec). Leaf size: 148
AsymptoticDSolveValue $\left[\left(x^{\wedge} 2+x-2\right)^{\wedge} 2 * y^{\prime \prime}[x]+3 *(x+2) * y '[x]+(x-1) * y[x]==0, y[x],\{x,-2,7\}\right]$

$$
\begin{aligned}
& y(x) \rightarrow c_{1}(x+2)\left(-\frac{52991201(x+2)^{7}}{11727918720000}-\frac{5797423(x+2)^{6}}{290405606400}-\frac{709507(x+2)^{5}}{8066822400}\right. \\
& \\
& \left.\quad-\frac{11093(x+2)^{4}}{28304640}-\frac{53(x+2)^{3}}{29484}-\frac{11(x+2)^{2}}{1260}+\frac{1}{21}(-x-2)+1\right)
\end{aligned} \quad \begin{aligned}
& c_{2}\left(\frac{899971067(x+2)^{7}}{458981357990400}+\frac{16965493(x+2)^{6}}{942818849280}+\frac{778801(x+2)^{5}}{6235574400}+\frac{10517(x+2)^{4}}{12597120}+\frac{271(x+2)^{3}}{43740}+\frac{23}{324}(x+2)^{2}-\frac{5(x+2)}{9}+1\right) \\
& \sqrt[3]{x+2}
\end{aligned}
$$

17.7 problem 1(g)

Internal problem ID [6046]
Internal file name [OUTPUT/5294_Sunday_June_05_2022_03_29_54_PM_91142448/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 154
Problem number: 1(g).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Complex roots"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}+\sin (x) y^{\prime}+y \cos (x)=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+\sin (x) y^{\prime}+y \cos (x)=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{\sin (x)}{x^{2}} \\
& q(x)=\frac{\cos (x)}{x^{2}}
\end{aligned}
$$

Table 217: Table $p(x), q(x)$ singularites.

$p(x)=\frac{\sin (x)}{x^{2}}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{\cos (x)}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+\sin (x) y^{\prime}+y \cos (x)=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\sin (x)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right) \cos (x)=0
\end{align*}
$$

Expanding $\sin (x)$ as Taylor series around $x=0$ and keeping only the first 8 terms gives

$$
\begin{aligned}
\sin (x) & =x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}+\frac{1}{362880} x^{9}+\ldots \\
& =x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}+\frac{1}{362880} x^{9}
\end{aligned}
$$

Expanding $\cos (x)$ as Taylor series around $x=0$ and keeping only the first 8 terms gives

$$
\begin{aligned}
\cos (x) & =\frac{1}{40320} x^{8}+1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}+\ldots \\
& =\frac{1}{40320} x^{8}+1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}
\end{aligned}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+8} a_{n}(n+r)}{362880}\right) \\
& +\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+6} a_{n}(n+r)}{5040}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+4} a_{n}(n+r)}{120}\right) \\
& \quad+\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+2} a_{n}(n+r)}{6}\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+8} a_{n}}{40320}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+2} a_{n}}{2}\right) \\
& \quad+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+4} a_{n}}{24}\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+6} a_{n}}{720}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{x^{n+r+8} a_{n}(n+r)}{362880} & =\sum_{n=8}^{\infty} \frac{a_{n-8}(n-8+r) x^{n+r}}{362880} \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+6} a_{n}(n+r)}{5040}\right) & =\sum_{n=6}^{\infty}\left(-\frac{a_{n-6}(n-6+r) x^{n+r}}{5040}\right) \\
\sum_{n=0}^{\infty} \frac{x^{n+r+4} a_{n}(n+r)}{120} & =\sum_{n=4}^{\infty} \frac{a_{n-4}(n-4+r) x^{n+r}}{120}
\end{aligned}
$$

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+2} a_{n}(n+r)}{6}\right) & =\sum_{n=2}^{\infty}\left(-\frac{a_{n-2}(n+r-2) x^{n+r}}{6}\right) \\
\sum_{n=0}^{\infty} \frac{x^{n+r+8} a_{n}}{40320} & =\sum_{n=8}^{\infty} \frac{a_{n-8} x^{n+r}}{40320} \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+2} a_{n}}{2}\right) & =\sum_{n=2}^{\infty}\left(-\frac{a_{n-2} x^{n+r}}{2}\right) \\
\sum_{n=0}^{\infty} \frac{x^{n+r+4} a_{n}}{24} & =\sum_{n=4}^{\infty} \frac{a_{n-4} x^{n+r}}{24} \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+6} a_{n}}{720}\right) & =\sum_{n=6}^{\infty}\left(-\frac{a_{n-6} x^{n+r}}{720}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=8}^{\infty} \frac{a_{n-8}(n-8+r) x^{n+r}}{362880}\right) \\
& +\sum_{n=6}^{\infty}\left(-\frac{a_{n-6}(n-6+r) x^{n+r}}{5040}\right)+\left(\sum_{n=4}^{\infty} \frac{a_{n-4}(n-4+r) x^{n+r}}{120}\right) \\
& \quad+\sum_{n=2}^{\infty}\left(-\frac{a_{n-2}(n+r-2) x^{n+r}}{6}\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2~B}\\
& \quad+\left(\sum_{n=8}^{\infty} \frac{a_{n-8} x^{n+r}}{40320}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\sum_{n=2}^{\infty}\left(-\frac{a_{n-2} x^{n+r}}{2}\right) \\
& \quad+\left(\sum_{n=4}^{\infty} \frac{a_{n-4} x^{n+r}}{24}\right)+\sum_{n=6}^{\infty}\left(-\frac{a_{n-6} x^{n+r}}{720}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r+a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)+x^{r} r+x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}+1\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}+1=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=i \\
& r_{2}=-i
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}+1\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since the roots are complex conjugates, then two linearly independent solutions can be constructed using

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+i} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n-i}
\end{aligned}
$$

$y_{1}(x)$ is found first. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=0
$$

Substituting $n=2$ in Eq. (2B) gives

$$
a_{2}=\frac{r+3}{6 r^{2}+24 r+30}
$$

Substituting $n=3$ in Eq. (2B) gives

$$
a_{3}=0
$$

Substituting $n=4$ in Eq. (2B) gives

$$
a_{4}=\frac{-3 r^{3}-17 r^{2}+5 r+75}{360\left(r^{2}+4 r+5\right)\left(r^{2}+8 r+17\right)}
$$

Substituting $n=5$ in Eq. (2B) gives

$$
a_{5}=0
$$

Substituting $n=6$ in Eq. (2B) gives

$$
a_{6}=\frac{3 r^{5}+15 r^{4}-230 r^{3}-1818 r^{2}-3805 r-2037}{15120\left(r^{2}+4 r+5\right)\left(r^{2}+8 r+17\right)\left(r^{2}+12 r+37\right)}
$$

Substituting $n=7$ in Eq. (2B) gives

$$
a_{7}=0
$$

For $8 \leq n$ the recursive equation is

$$
\begin{align*}
& a_{n}(n+r)(n+r-1)+\frac{a_{n-8}(n-8+r)}{362880}-\frac{a_{n-6}(n-6+r)}{5040}+\frac{a_{n-4}(n-4+r)}{120} \tag{3}\\
& \quad-\frac{a_{n-2}(n+r-2)}{6}+a_{n}(n+r)+\frac{a_{n-8}}{40320}+a_{n}-\frac{a_{n-2}}{2}+\frac{a_{n-4}}{24}-\frac{a_{n-6}}{720}=0
\end{align*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{n a_{n-8}-72 n a_{n-6}+3024 n a_{n-4}-60480 n a_{n-2}+r a_{n-8}-72 r a_{n-6}+3024 r a_{n-4}-60480 r a_{n-2}+a_{n}}{362880\left(n^{2}+2 n r+r^{2}+1\right)} \tag{4}
\end{equation*}
$$

Which for the root $r=i$ becomes

$$
\begin{equation*}
a_{n}=-\frac{\left(a_{n-8}-72 a_{n-6}+3024 a_{n-4}-60480 a_{n-2}\right)(1+i+n)}{362880 n(2 i+n)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=i$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$\frac{r+3}{6 r^{2}+24 r+30}$	$\frac{1}{12}-\frac{i}{24}$
a_{3}	0	0
a_{4}	$\frac{-3 r^{3}-17 r^{2}+5 r+75}{360\left(r^{2}+4 r+5\right)\left(r^{2}+8 r+17\right)}$	$\frac{29}{28800}-\frac{67 i}{28800}$
a_{5}	0	0
a_{6}	$\frac{3 r^{5}+15 r^{4}-230 r^{3}-1818 r^{2}-3805 r-2037}{15120\left(r^{2}+4 r+5\right)\left(r^{2}+8 r+17\right)\left(r^{2}+12 r+37\right)}$	
a_{7}	0	$-\frac{893}{14515200}+\frac{17 i}{4838400}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{i}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =x^{i}\left(1+\left(\frac{1}{12}-\frac{i}{24}\right) x^{2}+\left(\frac{29}{28800}-\frac{67 i}{28800}\right) x^{4}+\left(-\frac{893}{14515200}+\frac{17 i}{4838400}\right) x^{6}+O\left(x^{8}\right)\right)
\end{aligned}
$$

The second solution $y_{2}(x)$ is found by taking the complex conjugate of $y_{1}(x)$ which gives

$$
\begin{array}{r}
y_{2}(x)=x^{-i}\left(1+\left(\frac{1}{12}+\frac{i}{24}\right) x^{2}+\left(\frac{29}{28800}+\frac{67 i}{28800}\right) x^{4}+\left(-\frac{893}{14515200}-\frac{17 i}{4838400}\right) x^{6}\right. \\
\left.+O\left(x^{8}\right)\right)
\end{array}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& y_{h}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x^{i}\left(1+\left(\frac{1}{12}-\frac{i}{24}\right) x^{2}+\left(\frac{29}{28800}-\frac{67 i}{28800}\right) x^{4}+\left(-\frac{893}{14515200}+\frac{17 i}{4838400}\right) x^{6}\right. \\
& \left.+O\left(x^{8}\right)\right)+c_{2} x^{-i}\left(1+\left(\frac{1}{12}+\frac{i}{24}\right) x^{2}+\left(\frac{29}{28800}+\frac{67 i}{28800}\right) x^{4}\right. \\
& \left.+\left(-\frac{893}{14515200}-\frac{17 i}{4838400}\right) x^{6}+O\left(x^{8}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
& y=y_{h} \\
& \begin{array}{r}
=c_{1} x^{i}\left(1+\left(\frac{1}{12}-\frac{i}{24}\right) x^{2}+\left(\frac{29}{28800}-\frac{67 i}{28800}\right) x^{4}+\left(-\frac{893}{14515200}+\frac{17 i}{4838400}\right) x^{6}\right. \\
\left.+O\left(x^{8}\right)\right)+c_{2} x^{-i}(1
\end{array}+\left(\frac{1}{12}+\frac{i}{24}\right) x^{2}+\left(\frac{29}{28800}+\frac{67 i}{28800}\right) x^{4} \\
& \\
& \left.+\left(-\frac{893}{14515200}-\frac{17 i}{4838400}\right) x^{6}+O\left(x^{8}\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{array}{r}
y=c_{1} x^{i}\left(1+\left(\frac{1}{12}-\frac{i}{24}\right) x^{2}+\left(\frac{29}{28800}-\frac{67 i}{28800}\right) x^{4}+\left(-\frac{893}{14515200}+\frac{17 i}{4838400}\right) x^{6}\right. \\
\left.+O\left(x^{8}\right)\right)+c_{2} x^{-i}\left(1+\left(\frac{1}{12}+\frac{i}{24}\right) x^{2}+\left(\frac{29}{28800}+\frac{67 i}{28800}\right)(\not x)\right. \\
\left.+\left(-\frac{893}{14515200}-\frac{17 i}{4838400}\right) x^{6}+O\left(x^{8}\right)\right)
\end{array}
$$

Verification of solutions

$$
\begin{array}{r}
y=c_{1} x^{i}\left(1+\left(\frac{1}{12}-\frac{i}{24}\right) x^{2}+\left(\frac{29}{28800}-\frac{67 i}{28800}\right) x^{4}+\left(-\frac{893}{14515200}+\frac{17 i}{4838400}\right) x^{6}\right. \\
\left.+O\left(x^{8}\right)\right)+c_{2} x^{-i}\left(1+\left(\frac{1}{12}+\frac{i}{24}\right) x^{2}+\left(\frac{29}{28800}+\frac{67 i}{28800}\right) x^{4}\right. \\
\left.+\left(-\frac{893}{14515200}-\frac{17 i}{4838400}\right) x^{6}+O\left(x^{8}\right)\right)
\end{array}
$$

Verified OK.
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x})$, dx)) * 2F1([a
\rightarrow Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F} 1$
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power © Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x})$, dx$)$) $* 2 \mathrm{~F} 1$ trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
-> trying with_periodic_functions in the coefficients
--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way $=5$
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})$) $* 2 \mathrm{~F} 1$ trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form $\mathrm{mu}(\mathrm{x}, \mathrm{y})$
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y_{1425}
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $r 0(x) * Y+r 1(x) * Y$ where $Y=\exp (i n t(r(x), d x)) * 2 F 1$
\checkmark Solution by Maple
Time used: 0.203 (sec). Leaf size: 53

```
Order:=8;
dsolve(x^2*diff (y(x),x$2)+sin(x)*diff (y(x),x)+\operatorname{cos}(x)*y(x)=0,y(x),type='series', x=0);
```

$$
\begin{aligned}
y(x)=c_{1} x^{-i} & \left(1+\left(\frac{1}{12}+\frac{i}{24}\right) x^{2}+\left(\frac{29}{28800}+\frac{67 i}{28800}\right) x^{4}\right. \\
+ & \left.\left(-\frac{893}{14515200}-\frac{17 i}{4838400}\right) x^{6}+\mathrm{O}\left(x^{8}\right)\right)+c_{2} x^{i}\left(1+\left(\frac{1}{12}-\frac{i}{24}\right) x^{2}\right. \\
& \left.+\left(\frac{29}{28800}-\frac{67 i}{28800}\right) x^{4}+\left(-\frac{893}{14515200}+\frac{17 i}{4838400}\right) x^{6}+\mathrm{O}\left(x^{8}\right)\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 112
AsymptoticDSolveValue $\left[x^{\wedge} 2 * y\right.$ ' ' $[x]+\operatorname{Sin}[x] * y$ ' $\left.[x]+\operatorname{Cos}[x] * y[x]==0, y[x],\{x, 0,7\}\right]$

$$
\begin{aligned}
& y(x) \rightarrow c_{1} x^{-i}\left(\left(-\frac{26459}{59222016000}-\frac{12449 i}{7402752000}\right) x^{8}-\left(\frac{893}{14515200}+\frac{17 i}{4838400}\right) x^{6}\right. \\
&\left.+\left(\frac{29}{28800}+\frac{67 i}{28800}\right) x^{4}+\left(\frac{1}{12}+\frac{i}{24}\right) x^{2}+1\right) \\
&+ c_{2} x^{i}\left(\left(-\frac{26459}{59222016000}+\right.\right. \\
&\left.\frac{12449 i}{7402752000}\right) x^{8}-\left(\frac{893}{14515200}-\frac{17 i}{4838400}\right) x^{6} \\
&\left.+\left(\frac{29}{28800}-\frac{67 i}{28800}\right) x^{4}+\left(\frac{1}{12}-\frac{i}{24}\right) x^{2}+1\right)
\end{aligned}
$$

17.8 problem 2(b)

17.8.1 Maple step by step solution 1438

Internal problem ID [6047]
Internal file name [OUTPUT/5295_Sunday_June_05_2022_03_31_08_PM_14870823/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 154
Problem number: 2(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{4 x^{2}-1}{4 x^{2}}
\end{aligned}
$$

Table 218: Table $p(x), q(x)$ singularites.

$p(x)=\frac{1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{4 x^{2}-1}{4 x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(x^{2}-\frac{1}{4}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2A}\\
& +\left(\sum_{n=0}^{\infty} x^{n+r+2} a_{n}\right)+\sum_{n=0}^{\infty}\left(-\frac{a_{n} x^{n+r}}{4}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} x^{n+r+2} a_{n}=\sum_{n=2}^{\infty} a_{n-2} x^{n+r}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2B}\\
& +\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-\frac{a_{n} x^{n+r}}{4}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)-\frac{a_{n} x^{n+r}}{4}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r-\frac{a_{0} x^{r}}{4}=0
$$

Or

$$
\left(x^{r} r(-1+r)+x^{r} r-\frac{x^{r}}{4}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\frac{\left(4 r^{2}-1\right) x^{r}}{4}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-\frac{1}{4}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=-\frac{1}{2}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\frac{\left(4 r^{2}-1\right) x^{r}}{4}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=1$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sqrt{x}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{\sqrt{x}}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n}(n+r)+a_{n-2}-\frac{a_{n}}{4}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{4 a_{n-2}}{4 n^{2}+8 n r+4 r^{2}-1} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n(n+1)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{1}{2}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=-\frac{4}{4 r^{2}+16 r+15}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{2}=-\frac{1}{6}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{4}{4 r^{2}+16 r+15}$	$-\frac{1}{6}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{4}{4 r^{2}+16 r+15}$	$-\frac{1}{6}$
a_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{4}=\frac{1}{120}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{4}{4 r^{2}+16 r+15}$	$-\frac{1}{6}$
a_{3}	0	0
a_{4}	$\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}$	$\frac{1}{120}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{4}{4 r^{2}+16 r+15}$	$-\frac{1}{6}$
a_{3}	0	0
a_{4}	$\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}$	$\frac{1}{120}$
a_{5}	0	0

For $n=6$, using the above recursive equation gives

$$
a_{6}=-\frac{64}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)\left(4 r^{2}+48 r+143\right)}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{6}=-\frac{1}{5040}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{4}{4 r^{2}+16 r+15}$	$-\frac{1}{6}$
a_{3}	0	0
a_{4}	$\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}$	$\frac{1}{120}$
a_{5}	0	0
a_{6}	$-\frac{1}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)\left(4 r^{2}+48 r+143\right)}$	$-\frac{1}{5040}$

For $n=7$, using the above recursive equation gives

$$
a_{7}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{4}{4 r^{2}+16 r+15}$	$-\frac{1}{6}$
a_{3}	0	0
a_{4}	$\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}$	$\frac{1}{120}$
a_{5}	0	0
a_{6}	$-\frac{64}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)\left(4 r^{2}+48 r+143\right)}$	$-\frac{1}{5040}$
a_{7}	0	0

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =\sqrt{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =\sqrt{x}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}-\frac{x^{6}}{5040}+O\left(x^{8}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=1$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{1}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{1} \\
& =0
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} 0 & =\lim _{r \rightarrow-\frac{1}{2}} 0 \\
& =0
\end{aligned}
$$

The limit is 0 . Since the limit exists then the log term is not needed and we can set $C=0$. Therefore the second solution has the form

$$
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}}
\end{aligned}
$$

Eq (3) derived above is used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. Substituting $n=1$ in $\mathrm{Eq}(3)$ gives

$$
b_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
b_{n}(n+r)(n+r-1)+b_{n}(n+r)+b_{n-2}-\frac{b_{n}}{4}=0 \tag{4}
\end{equation*}
$$

Which for for the root $r=-\frac{1}{2}$ becomes

$$
\begin{equation*}
b_{n}\left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right)+b_{n}\left(n-\frac{1}{2}\right)+b_{n-2}-\frac{b_{n}}{4}=0 \tag{4~A}
\end{equation*}
$$

Solving for b_{n} from the recursive equation (4) gives

$$
\begin{equation*}
b_{n}=-\frac{4 b_{n-2}}{4 n^{2}+8 n r+4 r^{2}-1} \tag{5}
\end{equation*}
$$

Which for the root $r=-\frac{1}{2}$ becomes

$$
\begin{equation*}
b_{n}=-\frac{4 b_{n-2}}{4 n^{2}-4 n} \tag{6}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-\frac{1}{2}$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
b_{2}=-\frac{4}{4 r^{2}+16 r+15}
$$

Which for the root $r=-\frac{1}{2}$ becomes

$$
b_{2}=-\frac{1}{2}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{4}{4 r^{2}+16 r+15}$	$-\frac{1}{2}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{4}{4 r^{2}+16 r+15}$	$-\frac{1}{2}$
b_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}
$$

Which for the root $r=-\frac{1}{2}$ becomes

$$
b_{4}=\frac{1}{24}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{4}{4 r^{2}+16 r+15}$	$-\frac{1}{2}$
b_{3}	0	0
b_{4}	$\frac{1}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}$	$\frac{1}{24}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{4}{4 r^{2}+16 r+15}$	$-\frac{1}{2}$
b_{3}	0	0
b_{4}	$\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}$	$\frac{1}{24}$
b_{5}	0	0

For $n=6$, using the above recursive equation gives

$$
b_{6}=-\frac{64}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)\left(4 r^{2}+48 r+143\right)}
$$

Which for the root $r=-\frac{1}{2}$ becomes

$$
b_{6}=-\frac{1}{720}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{4}{4 r^{2}+16 r+15}$	$-\frac{1}{2}$
b_{3}	0	0
b_{4}	$\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}$	$\frac{1}{24}$
b_{5}	0	0
b_{6}	$-\frac{\left.14 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)\left(4 r^{2}+48 r+143\right)}{\left(4 r^{2}\right.}$	$-\frac{1}{720}$

For $n=7$, using the above recursive equation gives

$$
b_{7}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{4}{4 r^{2}+16 r+15}$	$-\frac{1}{2}$
b_{3}	0	0
b_{4}	$\frac{1}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}$	$\frac{1}{24}$
b_{5}	0	0
b_{6}	$-\frac{64}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)\left(4 r^{2}+48 r+143\right)}$	$-\frac{1}{720}$
b_{7}	0	0

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =\sqrt{x}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots\right) \\
& =\frac{1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}+O\left(x^{8}\right)}{\sqrt{x}}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} \sqrt{x}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}-\frac{x^{6}}{5040}+O\left(x^{8}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}+O\left(x^{8}\right)\right)}{\sqrt{x}}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y & =y_{h} \\
& =c_{1} \sqrt{x}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}-\frac{x^{6}}{5040}+O\left(x^{8}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}+O\left(x^{8}\right)\right)}{\sqrt{x}}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \sqrt{x}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}-\frac{x^{6}}{5040}+O\left(x^{8}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}+O\left(x^{8}\right)\right)}{\sqrt{x}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \sqrt{x}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}-\frac{x^{6}}{5040}+O\left(x^{8}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}+O\left(x^{8}\right)\right)}{\sqrt{x}}
$$

Verified OK.

17.8.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0
$$

- Highest derivative means the order of the ODE is 2 $y^{\prime \prime}$
- Isolate 2 nd derivative
$y^{\prime \prime}=-\frac{\left(4 x^{2}-1\right) y}{4 x^{2}}-\frac{y^{\prime}}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
$y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{\left(4 x^{2}-1\right) y}{4 x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=\frac{4 x^{2}-1}{4 x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-\frac{1}{4}$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators
$4 x^{2} y^{\prime \prime}+4 x y^{\prime}+\left(4 x^{2}-1\right) y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
$\square \quad$ Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$
$x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}$
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions

$$
a_{0}(1+2 r)(-1+2 r) x^{r}+a_{1}(3+2 r)(1+2 r) x^{1+r}+\left(\sum _ { k = 2 } ^ { \infty } \left(a_{k}(2 k+2 r+1)(2 k+2 r-1)+4 a_{k}-\right.\right.
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(1+2 r)(-1+2 r)=0$
- Values of r that satisfy the indicial equation

$$
r \in\left\{-\frac{1}{2}, \frac{1}{2}\right\}
$$

- \quad Each term must be 0
$a_{1}(3+2 r)(1+2 r)=0$
- \quad Solve for the dependent coefficient(s)
$a_{1}=0$
- Each term in the series must be 0 , giving the recursion relation
$a_{k}\left(4 k^{2}+8 k r+4 r^{2}-1\right)+4 a_{k-2}=0$
- \quad Shift index using $k->k+2$
$a_{k+2}\left(4(k+2)^{2}+8(k+2) r+4 r^{2}-1\right)+4 a_{k}=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+8 k r+4 r^{2}+16 k+16 r+15}
$$

- Recursion relation for $r=-\frac{1}{2}$

$$
a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}
$$

- \quad Solution for $r=-\frac{1}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}, a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}, a_{1}=0\right]
$$

- \quad Recursion relation for $r=\frac{1}{2}$

$$
a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+20 k+24}
$$

- \quad Solution for $r=\frac{1}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}}, a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+20 k+24}, a_{1}=0\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{2}}\right), a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}, a_{1}=0, b_{k+2}=-\frac{4 b_{k}}{4 k^{2}+20 k+24}, b_{1}=0\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 39

```
Order:=8;
dsolve( }\mp@subsup{x}{~}{~}2*\operatorname{diff}(y(x),x$2)+x*diff(y(x),x)+(x^2-1/4)*y(x)=0,y(x),type='series', x=0)
```

$$
y(x)=\frac{c_{1} x\left(1-\frac{1}{6} x^{2}+\frac{1}{120} x^{4}-\frac{1}{5040} x^{6}+\mathrm{O}\left(x^{8}\right)\right)+c_{2}\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}+\mathrm{O}\left(x^{8}\right)\right)}{\sqrt{x}}
$$

\checkmark Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 76
AsymptoticDSolveValue $\left[x^{\wedge} 2 * y^{\prime}{ }^{\prime}[\mathrm{x}]+\mathrm{x} * \mathrm{y}\right.$ ' $\left.[\mathrm{x}]+\left(\mathrm{x}^{\wedge} 2-1 / 4\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}\right]$

$$
y(x) \rightarrow c_{1}\left(-\frac{x^{11 / 2}}{720}+\frac{x^{7 / 2}}{24}-\frac{x^{3 / 2}}{2}+\frac{1}{\sqrt{x}}\right)+c_{2}\left(-\frac{x^{13 / 2}}{5040}+\frac{x^{9 / 2}}{120}-\frac{x^{5 / 2}}{6}+\sqrt{x}\right)
$$

17.9 problem 2(c)

17.9.1 Maple step by step solution 1453

Internal problem ID [6048]
Internal file name [OUTPUT/5296_Sunday_June_05_2022_03_31_10_PM_61777425/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 154
Problem number: 2(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
4 x^{2} y^{\prime \prime}+\left(4 x^{4}-5 x\right) y^{\prime}+y\left(x^{2}+2\right)=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
4 x^{2} y^{\prime \prime}+\left(4 x^{4}-5 x\right) y^{\prime}+y\left(x^{2}+2\right)=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{4 x^{3}-5}{4 x} \\
& q(x)=\frac{x^{2}+2}{4 x^{2}}
\end{aligned}
$$

Table 220: Table $p(x), q(x)$ singularites.

$p(x)=\frac{4 x^{3}-5}{4 x}$	
singularity	type
$x=0$	"regular"
$x=\infty$	"regular"
$x=-\infty$	"regular"

$q(x)=\frac{x^{2}+2}{4 x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $[0, \infty,-\infty]$
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
4 x^{2} y^{\prime \prime}+\left(4 x^{4}-5 x\right) y^{\prime}+y\left(x^{2}+2\right)=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& 4 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(4 x^{4}-5 x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)\left(x^{2}+2\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 4 x^{n+r+3} a_{n}(n+r)\right) \tag{2~A}\\
& +\sum_{n=0}^{\infty}\left(-5 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} x^{n+r+2} a_{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} 4 x^{n+r+3} a_{n}(n+r) & =\sum_{n=3}^{\infty} 4 a_{n-3}(n-3+r) x^{n+r} \\
\sum_{n=0}^{\infty} x^{n+r+2} a_{n} & =\sum_{n=2}^{\infty} a_{n-2} x^{n+r}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=3}^{\infty} 4 a_{n-3}(n-3+r) x^{n+r}\right) \tag{2B}\\
& +\sum_{n=0}^{\infty}\left(-5 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
4 x^{n+r} a_{n}(n+r)(n+r-1)-5 x^{n+r} a_{n}(n+r)+2 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
4 x^{r} a_{0} r(-1+r)-5 x^{r} a_{0} r+2 a_{0} x^{r}=0
$$

Or

$$
\left(4 x^{r} r(-1+r)-5 x^{r} r+2 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(4 r^{2}-9 r+2\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
4 r^{2}-9 r+2=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=\frac{1}{4}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(4 r^{2}-9 r+2\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=\frac{7}{4}$ is not an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+2} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{4}}
\end{aligned}
$$

We start by finding $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=0
$$

Substituting $n=2$ in Eq. (2B) gives

$$
a_{2}=-\frac{1}{r(4 r+7)}
$$

For $3 \leq n$ the recursive equation is

$$
\begin{equation*}
4 a_{n}(n+r)(n+r-1)+4 a_{n-3}(n-3+r)-5 a_{n}(n+r)+a_{n-2}+2 a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{4 n a_{n-3}+4 r a_{n-3}-12 a_{n-3}+a_{n-2}}{4 n^{2}+8 n r+4 r^{2}-9 n-9 r+2} \tag{4}
\end{equation*}
$$

Which for the root $r=2$ becomes

$$
\begin{equation*}
a_{n}=\frac{-4 n a_{n-3}+4 a_{n-3}-a_{n-2}}{n(4 n+7)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=2$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{r(4 r+7)}$	$-\frac{1}{30}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{4 r}{4 r^{2}+15 r+11}
$$

Which for the root $r=2$ becomes

$$
a_{3}=-\frac{8}{57}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{r(4 r+7)}$	$-\frac{1}{30}$
a_{3}	$-\frac{4 r}{4 r^{2}+15 r+11}$	$-\frac{8}{57}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{1}{16 r^{4}+120 r^{3}+281 r^{2}+210 r}
$$

Which for the root $r=2$ becomes

$$
a_{4}=\frac{1}{2760}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{r(4 r+7)}$	$-\frac{1}{30}$
a_{3}	$-\frac{4 r}{4 r^{2}+15 r+11}$	$-\frac{8}{57}$
a_{4}	$\frac{1}{16 r^{4}+120 r^{3}+281 r^{2}+210 r}$	$\frac{1}{2760}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{32 r^{3}+120 r^{2}+164 r+88}{(4 r+7) r\left(4 r^{2}+15 r+11\right)\left(4 r^{2}+31 r+57\right)}
$$

Which for the root $r=2$ becomes

$$
a_{5}=\frac{64}{12825}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{r(4 r+7)}$	$-\frac{1}{30}$
a_{3}	$-\frac{4 r}{4 r^{2}+15 r+11}$	$-\frac{8}{57}$
a_{4}	$\frac{1}{16 r^{4}+120 r^{3}+281 r^{2}+210 r}$	$\frac{1}{2760}$
a_{5}	$\frac{32 r^{3}+120 r^{2}+164 r+88}{(4 r+7) r\left(4 r^{2}+15 r+11\right)\left(4 r^{2}+31 r+57\right)}$	$\frac{64}{12825}$

For $n=6$, using the above recursive equation gives

$$
a_{6}=\frac{256 r^{6}+2688 r^{5}+10256 r^{4}+16848 r^{3}+10076 r^{2}-15 r-11}{\left(4 r^{2}+15 r+11\right) r\left(16 r^{3}+120 r^{2}+281 r+210\right)\left(4 r^{2}+39 r+92\right)}
$$

Which for the root $r=2$ becomes

$$
a_{6}=\frac{147181}{9753840}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{r(4 r+7)}$	$-\frac{1}{30}$
a_{3}	$-\frac{4 r}{4 r^{2}+15 r+11}$	$-\frac{8}{57}$
a_{4}	$\frac{1}{16 r^{4}+120 r^{3}+281 r^{2}+210 r}$	$\frac{1}{2760}$
a_{5}	$\frac{32 r^{3}+120 r^{2}+164 r+88}{(4 r+7) r\left(4 r^{2}+15 r+11\right)\left(4 r^{2}+31 r+57\right)}$	$\frac{64}{12825}$
a_{6}	$\frac{256 r^{6}+2688 r^{5}+10256 r^{4}+16848 r^{3}+10076 r^{2}-15 r-11}{\left(4 r^{2}+15 r+11\right) r\left(16 r^{3}+120 r^{2}+281 r+210\right)\left(4 r^{2}+39 r+92\right)}$	$\frac{147181}{9753840}$

For $n=7$, using the above recursive equation gives

$$
a_{7}=-\frac{4\left(48 r^{5}+552 r^{4}+2567 r^{3}+6075 r^{2}+7147 r+3168\right)}{(4 r+7)\left(4 r^{2}+23 r+30\right) r\left(4 r^{2}+15 r+11\right)\left(4 r^{2}+31 r+57\right)\left(4 r^{2}+47 r+135\right)}
$$

Which for the root $r=2$ becomes

$$
a_{7}=-\frac{4037}{72268875}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{r(4 r+7)}$	$-\frac{1}{30}$
a_{3}	$-\frac{4 r}{4 r^{2}+15 r+11}$	$-\frac{8}{57}$
a_{4}	$\frac{1}{16 r^{4}+120 r^{3}+281 r^{2}+210 r}$	$\frac{1}{2760}$
a_{5}	$\frac{32 r^{3}+120 r^{2}+164 r+88}{(4 r+7) r\left(4 r^{2}+15 r+11\right)\left(4 r^{2}+31 r+57\right)}$	$\frac{64}{12825}$
a_{6}	$\frac{256 r^{6}+2688 r^{5}+10256 r^{4}+16848 r^{3}+10076 r^{2}-15 r-11}{\left(4 r^{2}+15 r+11\right) r\left(16 r^{3}+120 r^{2}+281 r+210\right)\left(4 r^{2}+39 r+92\right)}$	$\frac{147181}{9753840}$
a_{7}	$-\frac{4\left(48 r^{5}+552 r^{4}+2567 r^{3}+6075 r^{2}+7147 r+3168\right)}{(4 r+7)\left(4 r^{2}+23 r+30\right) r\left(4 r^{2}+15 r+11\right)\left(4 r^{2}+31 r+57\right)\left(4 r^{2}+47 r+135\right)}$	$-\frac{4037}{72268875}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =x^{2}\left(1-\frac{x^{2}}{30}-\frac{8 x^{3}}{57}+\frac{x^{4}}{2760}+\frac{64 x^{5}}{12825}+\frac{147181 x^{6}}{9753840}-\frac{4037 x^{7}}{72268875}+O\left(x^{8}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Eq (2B) derived above is now used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
b_{1}=0
$$

Substituting $n=2$ in Eq. (2B) gives

$$
b_{2}=-\frac{1}{r(4 r+7)}
$$

For $3 \leq n$ the recursive equation is

$$
\begin{equation*}
4 b_{n}(n+r)(n+r-1)+4 b_{n-3}(n-3+r)-5 b_{n}(n+r)+b_{n-2}+2 b_{n}=0 \tag{3}
\end{equation*}
$$

Solving for b_{n} from recursive equation (4) gives

$$
\begin{equation*}
b_{n}=-\frac{4 n b_{n-3}+4 r b_{n-3}-12 b_{n-3}+b_{n-2}}{4 n^{2}+8 n r+4 r^{2}-9 n-9 r+2} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{1}{4}$ becomes

$$
\begin{equation*}
b_{n}=\frac{-4 n b_{n-3}+11 b_{n-3}-b_{n-2}}{n(4 n-7)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=\frac{1}{4}$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{1}{r(4 r+7)}$	$-\frac{1}{2}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=-\frac{4 r}{4 r^{2}+15 r+11}
$$

Which for the root $r=\frac{1}{4}$ becomes

$$
b_{3}=-\frac{1}{15}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{1}{r(4 r+7)}$	$-\frac{1}{2}$
b_{3}	$-\frac{4 r}{4 r^{2}+15 r+11}$	$-\frac{1}{15}$

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{1}{16 r^{4}+120 r^{3}+281 r^{2}+210 r}
$$

Which for the root $r=\frac{1}{4}$ becomes

$$
b_{4}=\frac{1}{72}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{1}{r(4 r+7)}$	$-\frac{1}{2}$
b_{3}	$-\frac{4 r}{4 r^{2}+15 r+11}$	$-\frac{1}{15}$
b_{4}	$\frac{1}{16 r^{4}+120 r^{3}+281 r^{2}+210 r}$	$\frac{1}{72}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=\frac{32 r^{3}+120 r^{2}+164 r+88}{(4 r+7) r\left(4 r^{2}+15 r+11\right)\left(4 r^{2}+31 r+57\right)}
$$

Which for the root $r=\frac{1}{4}$ becomes

$$
b_{5}=\frac{137}{1950}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{1}{r(4 r+7)}$	$-\frac{1}{2}$
b_{3}	$-\frac{4 r}{4 r^{2}+15 r+11}$	$-\frac{1}{15}$
b_{4}	$\frac{1}{16 r^{4}+120 r^{3}+281 r^{2}+210 r}$	$\frac{1}{72}$
b_{5}	$\frac{32 r^{3}+120 r^{2}+164 r+88}{(4 r+7) r\left(4 r^{2}+15 r+11\right)\left(4 r^{2}+31 r+57\right)}$	$\frac{137}{1950}$

For $n=6$, using the above recursive equation gives

$$
b_{6}=\frac{256 r^{6}+2688 r^{5}+10256 r^{4}+16848 r^{3}+10076 r^{2}-15 r-11}{\left(4 r^{2}+15 r+11\right) r\left(16 r^{3}+120 r^{2}+281 r+210\right)\left(4 r^{2}+39 r+92\right)}
$$

Which for the root $r=\frac{1}{4}$ becomes

$$
b_{6}=\frac{307}{36720}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{1}{r(4 r+7)}$	$-\frac{1}{2}$
b_{3}	$-\frac{4 r}{4 r^{2}+15 r+11}$	$-\frac{1}{15}$
b_{4}	$\frac{1}{16 r^{4}+120 r^{3}+281 r^{2}+210 r}$	$\frac{1}{72}$
b_{5}	$\frac{32 r^{3}+120 r^{2}+164 r+88}{(4 r+7) r\left(4 r^{2}+15 r+11\right)\left(4 r^{2}+31 r+57\right)}$	$\frac{137}{1950}$
b_{6}	$\frac{256 r^{6}+2688 r^{5}+10256 r^{4}+16848 r^{3}+10076 r^{2}-15 r-11}{\left(4 r^{2}+15 r+11\right) r\left(16 r^{3}+120 r^{2}+281 r+210\right)\left(4 r^{2}+39 r+92\right)}$	$\frac{307}{36720}$

For $n=7$, using the above recursive equation gives

$$
b_{7}=-\frac{4\left(48 r^{5}+552 r^{4}+2567 r^{3}+6075 r^{2}+7147 r+3168\right)}{(4 r+7)\left(4 r^{2}+23 r+30\right) r\left(4 r^{2}+15 r+11\right)\left(4 r^{2}+31 r+57\right)\left(4 r^{2}+47 r+135\right)}
$$

Which for the root $r=\frac{1}{4}$ becomes

$$
b_{7}=-\frac{7169}{3439800}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	$-\frac{1}{r(4 r+7)}$	$-\frac{1}{2}$
b_{3}	$-\frac{4 r}{4 r^{2}+15 r+11}$	$-\frac{1}{15}$
b_{4}	$\frac{1}{16 r^{4}+120 r^{3}+281 r^{2}+210 r}$	$\frac{1}{72}$
b_{5}	$\frac{32 r^{3}+120 r^{2}+164 r+88}{(4 r+7) r\left(4 r^{2}+15 r+11\right)\left(4 r^{2}+31 r+57\right)}$	$\frac{137}{1950}$
b_{6}	$\frac{256 r^{6}+2688 r^{5}+10256 r^{4}+16848 r^{3}+10076 r^{2}-15 r-11}{\left(4 r^{2}+15 r+11\right) r\left(16 r^{3}+120 r^{2}+281 r+210\right)\left(4 r^{2}+39 r+92\right)}$	$\frac{307}{36720}$
b_{7}	$-\frac{4\left(48 r^{5}+552 r^{4}+2567 r^{3}+6075 r^{2}+7147 r+3168\right)}{(4 r+7)\left(4 r^{2}+23 r+30\right) r\left(4 r^{2}+15 r+11\right)\left(4 r^{2}+31 r+57\right)\left(4 r^{2}+47 r+135\right)}$	$-\frac{7169}{3439800}$

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =x^{2}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots\right) \\
& =x^{\frac{1}{4}}\left(1-\frac{x^{2}}{2}-\frac{x^{3}}{15}+\frac{x^{4}}{72}+\frac{137 x^{5}}{1950}+\frac{307 x^{6}}{36720}-\frac{7169 x^{7}}{3439800}+O\left(x^{8}\right)\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{2}\left(1-\frac{x^{2}}{30}-\frac{8 x^{3}}{57}+\frac{x^{4}}{2760}+\frac{64 x^{5}}{12825}+\frac{147181 x^{6}}{9753840}-\frac{4037 x^{7}}{72268875}+O\left(x^{8}\right)\right) \\
& +c_{2} x^{\frac{1}{4}}\left(1-\frac{x^{2}}{2}-\frac{x^{3}}{15}+\frac{x^{4}}{72}+\frac{137 x^{5}}{1950}+\frac{307 x^{6}}{36720}-\frac{7169 x^{7}}{3439800}+O\left(x^{8}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{2}\left(1-\frac{x^{2}}{30}-\frac{8 x^{3}}{57}+\frac{x^{4}}{2760}+\frac{64 x^{5}}{12825}+\frac{147181 x^{6}}{9753840}-\frac{4037 x^{7}}{72268875}+O\left(x^{8}\right)\right) \\
& +c_{2} x^{\frac{1}{4}}\left(1-\frac{x^{2}}{2}-\frac{x^{3}}{15}+\frac{x^{4}}{72}+\frac{137 x^{5}}{1950}+\frac{307 x^{6}}{36720}-\frac{7169 x^{7}}{3439800}+O\left(x^{8}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x^{2}\left(1-\frac{x^{2}}{30}-\frac{8 x^{3}}{57}+\frac{x^{4}}{2760}+\frac{64 x^{5}}{12825}+\frac{147181 x^{6}}{9753840}-\frac{4037 x^{7}}{72268875}+O\left(x^{8}\right)\right) \tag{1}\\
& +c_{2} x^{\frac{1}{4}}\left(1-\frac{x^{2}}{2}-\frac{x^{3}}{15}+\frac{x^{4}}{72}+\frac{137 x^{5}}{1950}+\frac{307 x^{6}}{36720}-\frac{7169 x^{7}}{3439800}+O\left(x^{8}\right)\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x^{2}\left(1-\frac{x^{2}}{30}-\frac{8 x^{3}}{57}+\frac{x^{4}}{2760}+\frac{64 x^{5}}{12825}+\frac{147181 x^{6}}{9753840}-\frac{4037 x^{7}}{72268875}+O\left(x^{8}\right)\right) \\
& +c_{2} x^{\frac{1}{4}}\left(1-\frac{x^{2}}{2}-\frac{x^{3}}{15}+\frac{x^{4}}{72}+\frac{137 x^{5}}{1950}+\frac{307 x^{6}}{36720}-\frac{7169 x^{7}}{3439800}+O\left(x^{8}\right)\right)
\end{aligned}
$$

Verified OK.

17.9.1 Maple step by step solution

Let's solve

$$
4 x^{2} y^{\prime \prime}+\left(4 x^{4}-5 x\right) y^{\prime}+y\left(x^{2}+2\right)=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{\left(x^{2}+2\right) y}{4 x^{2}}-\frac{\left(4 x^{3}-5\right) y^{\prime}}{4 x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{\left(4 x^{3}-5\right) y^{\prime}}{4 x}+\frac{\left(x^{2}+2\right) y}{4 x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions

$$
\left[P_{2}(x)=\frac{4 x^{3}-5}{4 x}, P_{3}(x)=\frac{x^{2}+2}{4 x^{2}}\right]
$$

- $x \cdot P_{2}(x)$ is analytic at $x=0$

$$
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-\frac{5}{4}
$$

- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$

$$
\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=\frac{1}{2}
$$

- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators
$4 x^{2} y^{\prime \prime}+x\left(4 x^{3}-5\right) y^{\prime}+y\left(x^{2}+2\right)=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$

$$
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=1 . .4$

$$
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions

$$
a_{0}(-1+4 r)(-2+r) x^{r}+a_{1}(3+4 r)(-1+r) x^{1+r}+\left(a_{2}(7+4 r) r+a_{0}\right) x^{2+r}+\left(\sum _ { k = 3 } ^ { \infty } \left(a_{k}(4 k+4\right.\right.
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(-1+4 r)(-2+r)=0$
- Values of r that satisfy the indicial equation

$$
r \in\left\{2, \frac{1}{4}\right\}
$$

- The coefficients of each power of x must be 0

$$
\left[a_{1}(3+4 r)(-1+r)=0, a_{2}(7+4 r) r+a_{0}=0\right]
$$

- \quad Solve for the dependent coefficient(s)

$$
\left\{a_{1}=0, a_{2}=-\frac{a_{0}}{r(7+4 r)}\right\}
$$

- \quad Each term in the series must be 0 , giving the recursion relation
$a_{k}(4 k+4 r-1)(k+r-2)+a_{k-2}+4 a_{k-3}(k-3+r)=0$
- \quad Shift index using $k->k+3$
$a_{k+3}(4 k+11+4 r)(k+1+r)+a_{k+1}+4 a_{k}(k+r)=0$
- Recursion relation that defines series solution to ODE
$a_{k+3}=-\frac{4 k a_{k}+4 r a_{k}+a_{k+1}}{(4 k+11+4 r)(k+1+r)}$
- Recursion relation for $r=2$
$a_{k+3}=-\frac{4 k a_{k}+8 a_{k}+a_{k+1}}{(4 k+19)(k+3)}$
- \quad Solution for $r=2$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+3}=-\frac{4 k a_{k}+8 a_{k}+a_{k+1}}{(4 k+19)(k+3)}, a_{1}=0, a_{2}=-\frac{a_{0}}{30}\right]$
- Recursion relation for $r=\frac{1}{4}$
$a_{k+3}=-\frac{4 k a_{k}+a_{k}+a_{k+1}}{(4 k+12)\left(k+\frac{5}{4}\right)}$
- \quad Solution for $r=\frac{1}{4}$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{4}}, a_{k+3}=-\frac{4 k a_{k}+a_{k}+a_{k+1}}{(4 k+12)\left(k+\frac{5}{4}\right)}, a_{1}=0, a_{2}=-\frac{a_{0}}{2}\right]$
- \quad Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k+2}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{4}}\right), a_{k+3}=-\frac{4 k a_{k}+8 a_{k}+a_{k+1}}{(4 k+19)(k+3)}, a_{1}=0, a_{2}=-\frac{a_{0}}{30}, b_{k+3}=-\frac{4 k b_{k}+b_{k}+}{(4 k+12)(k}\right.
$$

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Whittaker
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
```

 -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
 trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F}$ ([a
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and $\mathrm{y}(\mathrm{x})$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear $9 D E 6^{\text {with }}$ constant coefficients
trying to convert to an ODE of Bessel type
trying to convert to an ODE of Bessel type
\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 51

```
Order:=8;
dsolve(4*x^2*diff(y(x),x$2)+(4*x^4-5*x)*diff (y(x),x)+(x^2+2)*y(x)=0,y(x),typ=='series', x=0);
```

$y(x)=c_{1} x^{\frac{1}{4}}\left(1-\frac{1}{2} x^{2}-\frac{1}{15} x^{3}+\frac{1}{72} x^{4}+\frac{137}{1950} x^{5}+\frac{307}{36720} x^{6}-\frac{7169}{3439800} x^{7}+\mathrm{O}\left(x^{8}\right)\right)+c_{2} x^{2}(1$

$$
\left.-\frac{1}{30} x^{2}-\frac{8}{57} x^{3}+\frac{1}{2760} x^{4}+\frac{64}{12825} x^{5}+\frac{147181}{9753840} x^{6}-\frac{4037}{72268875} x^{7}+\mathrm{O}\left(x^{8}\right)\right)
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 106
AsymptoticDSolveValue [4*x^2*y' ' $\left.[\mathrm{x}]+\left(4 * x^{\wedge} 4-5 * x\right) * y \cdot[x]+\left(x^{\wedge} 2+2\right) * y[x]==0, y[x],\{x, 0,7\}\right]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(-\frac{4037 x^{7}}{72268875}+\frac{147181 x^{6}}{9753840}+\frac{64 x^{5}}{12825}+\frac{x^{4}}{2760}-\frac{8 x^{3}}{57}-\frac{x^{2}}{30}+1\right) x^{2} \\
& +c_{2}\left(-\frac{7169 x^{7}}{3439800}+\frac{307 x^{6}}{36720}+\frac{137 x^{5}}{1950}+\frac{x^{4}}{72}-\frac{x^{3}}{15}-\frac{x^{2}}{2}+1\right) \sqrt[4]{x}
\end{aligned}
$$

17.10 problem 2(d)

Internal problem ID [6049]
Internal file name [OUTPUT/5297_Sunday_June_05_2022_03_31_14_PM_49103670/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 154
Problem number: 2(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Complex roots"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}+\left(-3 x^{2}+x\right) y^{\prime}+\mathrm{e}^{x} y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+\left(-3 x^{2}+x\right) y^{\prime}+\mathrm{e}^{x} y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{3 x-1}{x} \\
& q(x)=\frac{\mathrm{e}^{x}}{x^{2}}
\end{aligned}
$$

Table 222: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{3 x-1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{\mathrm{e}^{x}}{x^{2}}$	
singularity	type
$x=0$	"regular"
$x=\infty$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $[0, \infty]$
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+\left(-3 x^{2}+x\right) y^{\prime}+\mathrm{e}^{x} y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(-3 x^{2}+x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\mathrm{e}^{x}\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Expanding e^{x} as Taylor series around $x=0$ and keeping only the first 8 terms gives

$$
\begin{aligned}
\mathrm{e}^{x} & =1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}+\frac{1}{40320} x^{8}+\ldots \\
& =1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}+\frac{1}{40320} x^{8}
\end{aligned}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-3 x^{1+n+r} a_{n}(n+r)\right) \\
& \quad+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right) \\
& \quad+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+2} a_{n}}{2}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+3} a_{n}}{6}\right) \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+4} a_{n}}{24}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+5} a_{n}}{120}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+6} a_{n}}{720}\right) \\
& \quad+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+7} a_{n}}{5040}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+8} a_{n}}{40320}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(-3 x^{1+n+r} a_{n}(n+r)\right) & =\sum_{n=1}^{\infty}\left(-3 a_{n-1}(n+r-1) x^{n+r}\right) \\
\sum_{n=0}^{\infty} x^{1+n+r} a_{n} & =\sum_{n=1}^{\infty} a_{n-1} x^{n+r} \\
\sum_{n=0}^{\infty} \frac{x^{n+r+2} a_{n}}{2} & =\sum_{n=2}^{\infty} \frac{a_{n-2} x^{n+r}}{2} \\
\sum_{n=0}^{\infty} \frac{x^{n+r+3} a_{n}}{6} & =\sum_{n=3}^{\infty} \frac{a_{n-3} x^{n+r}}{6} \\
\sum_{n=0}^{\infty} \frac{x^{n+r+4} a_{n}}{24} & =\sum_{n=4}^{\infty} \frac{a_{n-4} x^{n+r}}{24}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{x^{n+r+5} a_{n}}{120}=\sum_{n=5}^{\infty} \frac{a_{n-5} x^{n+r}}{120} \\
& \sum_{n=0}^{\infty} \frac{x^{n+r+6} a_{n}}{720}=\sum_{n=6}^{\infty} \frac{a_{n-6} x^{n+r}}{720} \\
& \sum_{n=0}^{\infty} \frac{x^{n+r+7} a_{n}}{5040}=\sum_{n=7}^{\infty} \frac{a_{n-7} x^{n+r}}{5040} \\
& \sum_{n=0}^{\infty} \frac{x^{n+r+8} a_{n}}{40320}=\sum_{n=8}^{\infty} \frac{a_{n-8} x^{n+r}}{40320}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-3 a_{n-1}(n+r-1) x^{n+r}\right) \\
& \quad+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right) \\
& \quad+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n+r}\right)+\left(\sum_{n=2}^{\infty} \frac{a_{n-2} x^{n+r}}{2}\right)+\left(\sum_{n=3}^{\infty} \frac{a_{n-3} x^{n+r}}{6}\right) \tag{2B}\\
& \quad+\left(\sum_{n=4}^{\infty} \frac{a_{n-4} x^{n+r}}{24}\right)+\left(\sum_{n=5}^{\infty} \frac{a_{n-5} x^{n+r}}{120}\right)+\left(\sum_{n=6}^{\infty} \frac{a_{n-6} x^{n+r}}{720}\right) \\
& \quad+\left(\sum_{n=7}^{\infty} \frac{a_{n-7} x^{n+r}}{5040}\right)+\left(\sum_{n=8}^{\infty} \frac{a_{n-8} x^{n+r}}{40320}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r+a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)+x^{r} r+x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}+1\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}+1=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
r_{1} & =i \\
r_{2} & =-i
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}+1\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since the roots are complex conjugates, then two linearly independent solutions can be constructed using

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+i} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n-i}
\end{aligned}
$$

$y_{1}(x)$ is found first. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=\frac{3 r-1}{r^{2}+2 r+2}
$$

Substituting $n=2$ in Eq. (2B) gives

$$
a_{2}=\frac{17 r^{2}+4 r-6}{2\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}
$$

Substituting $n=3$ in Eq. (2B) gives

$$
a_{3}=\frac{-r^{4}+138 r^{3}+243 r^{2}-45 r-85}{6\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)}
$$

Substituting $n=4$ in Eq. (2B) gives

$$
a_{4}=\frac{-r^{6}-36 r^{5}+1345 r^{4}+6100 r^{3}+5156 r^{2}-3044 r-2260}{24\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)}
$$

Substituting $n=5$ in Eq. (2B) gives
$a_{5}=\frac{-r^{8}-50 r^{7}-1194 r^{6}+11665 r^{5}+128676 r^{4}+315715 r^{3}+145319 r^{2}-192430 r-97100}{120\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)}$
Substituting $n=6$ in Eq. (2B) gives

$$
a_{6}=\frac{-r^{10}-66 r^{9}-2102 r^{8}-42690 r^{7}-76157 r^{6}+2029806 r^{5}+11717702 r^{4}+20421330 r^{3}+3645968 r^{2}-}{720\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)\left(r^{2}+12\right.}
$$

Substituting $n=7$ in Eq. (2B) gives

$$
a_{7}=\frac{-r^{12}-84 r^{11}-3401 r^{10}-89145 r^{9}-1687260 r^{8}-12804498 r^{7}-15286821 r^{6}+243174141 r^{5}+1126}{5040\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+1\right.}
$$

For $8 \leq n$ the recursive equation is

$$
\begin{align*}
& a_{n}(n+r)(n+r-1)-3 a_{n-1}(n+r-1)+a_{n}(n+r)+a_{n}+a_{n-1} \tag{3}\\
& \quad+\frac{a_{n-2}}{2}+\frac{a_{n-3}}{6}+\frac{a_{n-4}}{24}+\frac{a_{n-5}}{120}+\frac{a_{n-6}}{720}+\frac{a_{n-7}}{5040}+\frac{a_{n-8}}{40320}=0
\end{align*}
$$

Solving for a_{n} from recursive equation (4) gives
$a_{n}=\frac{120960 n a_{n-1}+120960 r a_{n-1}-a_{n-8}-8 a_{n-7}-56 a_{n-6}-336 a_{n-5}-1680 a_{n-4}-6720 a_{n-3}-20160 a}{40320 n^{2}+80640 n r+40320 r^{2}+40320}$
Which for the root $r=i$ becomes

$$
\begin{equation*}
a_{n}=-\frac{40320(4-3 i-3 n) a_{n-1}+a_{n-8}+8 a_{n-7}+56 a_{n-6}+336 a_{n-5}+1680 a_{n-4}+6720 a_{n-3}+20160 a_{n-}}{40320 n(2 i+n)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=i$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$
a_{0}	1
a_{1}	$\frac{3 r-1}{r^{2}+2 r+2}$
a_{2}	$\frac{17 r^{2}+4 r-6}{2\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}$
a_{3}	$\frac{-r^{4}+138 r^{3}+243 r^{2}-45 r-85}{6\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)}$
a_{4}	$\frac{-r^{6}-36 r^{5}+1345 r^{4}+6100 r^{3}+5156 r^{2}-3044 r-2260}{24\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)}$
a_{5}	$\frac{-r^{8}-50 r^{7}-1194 r^{6}+11665 r^{5}+128676 r^{4}+315715 r^{3}+145319 r^{2}-192430 r-97100}{120\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)}$
a_{6}	$\frac{-r^{10}-66 r^{9}-2102 r^{8}-42690 r^{7}-76157 r^{6}+2029806 r^{5}+11717702 r^{4}+20421330 r^{3}+3645968 r^{2}-15274320 r-6037400}{720\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)\left(r^{2}+12 r+37\right)}$
a_{7}	$\frac{-r^{12}-84 r^{11}-3401 r^{10}-89145 r^{9}-1687260 r^{8}-12804498 r^{7}-15286821 r^{6}+243174141 r^{5}+1126587431 r^{4}+1540608062 r^{3}-207286888 r^{2}-15}{5040\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)\left(r^{2}+12 r+37\right)\left(r^{2}+14 r+50\right)}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{array}{r}
y_{1}(x)=x^{i}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
=x^{i}\left(1+(1+i) x+\left(\frac{7}{16}+\frac{13 i}{16}\right) x^{2}+\left(\frac{7}{39}+\frac{395 i}{936}\right) x^{3}+\left(\frac{2117}{29952}+\frac{5197 i}{29952}\right) x^{4}\right. \\
+\left(\frac{5521}{217152}+\frac{642043 i}{10857600}\right) x^{5}+\left(\frac{782461}{97718400}+\frac{8813057 i}{521164800}\right) x^{6} \\
\left.+\left(\frac{1238071931}{580056422400}+\frac{3271304833 i}{812078991360}\right) x^{7}+O\left(x^{8}\right)\right)
\end{array}
$$

The second solution $y_{2}(x)$ is found by taking the complex conjugate of $y_{1}(x)$ which gives

$$
\begin{aligned}
y_{2}(x)=x^{-i}(1+(1-i) x & +\left(\frac{7}{16}-\frac{13 i}{16}\right) x^{2}+\left(\frac{7}{39}-\frac{395 i}{936}\right) x^{3}+\left(\frac{2117}{29952}-\frac{5197 i}{29952}\right) x^{4} \\
+ & \left(\frac{5521}{217152}-\frac{642043 i}{10857600}\right) x^{5}+\left(\frac{782461}{97718400}-\frac{8813057 i}{521164800}\right) x^{6} \\
& \left.+\left(\frac{1238071931}{580056422400}-\frac{3271304833 i}{812078991360}\right) x^{7}+O\left(x^{8}\right)\right)
\end{aligned}
$$

Therefore the homogeneous solution is
$y_{h}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)$

$$
\begin{array}{r}
=c_{1} x^{i}\left(1+(1+i) x+\left(\frac{7}{16}+\frac{13 i}{16}\right) x^{2}+\left(\frac{7}{39}+\frac{395 i}{936}\right) x^{3}+\left(\frac{2117}{29952}+\frac{5197 i}{29952}\right) x^{4}\right. \\
+\left(\frac{5521}{217152}+\frac{642043 i}{10857600}\right) x^{5}+\left(\frac{782461}{97718400}+\frac{8813057 i}{521164800}\right) x^{6} \\
\left.+\left(\frac{1238071931}{580056422400}+\frac{3271304833 i}{812078991360}\right) x^{7}+O\left(x^{8}\right)\right) \\
+c_{2} x^{-i}\left(1+(1-i) x+\left(\frac{7}{16}-\frac{13 i}{16}\right) x^{2}+\left(\frac{7}{39}-\frac{395 i}{936}\right) x^{3}+\left(\frac{2117}{29952}-\frac{5197 i}{29952}\right) x^{4}\right. \\
+\left(\frac{5521}{217152}-\frac{642043 i}{10857600}\right) x^{5}+\left(\frac{782461}{97718400}-\frac{8813057 i}{521164800}\right) x^{6} \\
\left.+\left(\frac{1238071931}{580056422400}-\frac{3271304833 i}{812078991360}\right) x^{7}+O\left(x^{8}\right)\right)
\end{array}
$$

Hence the final solution is

$$
\left.\left.\begin{array}{l}
y=y_{h} \\
=c_{1} x^{i}\left(1+(1+i) x+\left(\frac{7}{16}+\frac{13 i}{16}\right) x^{2}+\left(\frac{7}{39}+\frac{395 i}{936}\right) x^{3}+\left(\frac{2117}{29952}+\frac{5197 i}{29952}\right) x^{4}\right. \\
\\
+\left(\frac{5521}{217152}+\frac{642043 i}{10857600}\right) x^{5}+\left(\frac{782461}{97718400}+\frac{8813057 i}{521164800}\right) x^{6} \\
\\
\left.+\left(\frac{1238071931}{580056422400}+\frac{3271304833 i}{812078991360}\right) x^{7}+O\left(x^{8}\right)\right) \\
+c_{2} x^{-i}(1+(1-i) x
\end{array}\right)\left(\frac{7}{16}-\frac{13 i}{16}\right) x^{2}+\left(\frac{7}{39}-\frac{395 i}{936}\right) x^{3}+\left(\frac{2117}{29952}-\frac{5197 i}{29952}\right) x^{4}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y=c_{1} x^{i}(1+(1+i) x+ & \left(\frac{7}{16}+\frac{13 i}{16}\right) x^{2}+\left(\frac{7}{39}+\frac{395 i}{936}\right) x^{3}+\left(\frac{2117}{29952}+\frac{5197 i}{29952}\right) x^{4} \\
& +\left(\frac{5521}{217152}+\frac{642043 i}{10857600}\right) x^{5}+\left(\frac{782461}{97718400}+\frac{8813057 i}{521164800}\right) x^{6} \\
& \left.+\left(\frac{1238071931}{580056422400}+\frac{3271304833 i}{812078991360}\right) x^{7}+O\left(x^{8}\right)\right) \\
+c_{2} x^{-i}(1+(1-i) x & +\left(\frac{7}{16}-\frac{13 i}{16}\right) x^{2}+\left(\frac{7}{39}-\frac{395 i}{936}\right) x^{3}+\left(\frac{2117}{29952}-\frac{5197 i}{29952}\right) x^{4} \\
& +\left(\frac{5521}{217152}-\frac{642043 i}{10857600}\right) x^{5}+\left(\frac{782461}{97718400}-\frac{8813057 i}{521164800}\right) x^{6} \\
& \left.+\left(\frac{1238071931}{580056422400}-\frac{3271304833 i}{812078991360}\right) x^{7}+O\left(x^{8}\right)\right) \tag{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y=c_{1} x^{i}(1+(1+i) x+ & \left(\frac{7}{16}+\frac{13 i}{16}\right) x^{2}+\left(\frac{7}{39}+\frac{395 i}{936}\right) x^{3}+\left(\frac{2117}{29952}+\frac{5197 i}{29952}\right) x^{4} \\
& +\left(\frac{5521}{217152}+\frac{642043 i}{10857600}\right) x^{5}+\left(\frac{782461}{97718400}+\frac{8813057 i}{521164800}\right) x^{6} \\
& \left.+\left(\frac{1238071931}{580056422400}+\frac{3271304833 i}{812078991360}\right) x^{7}+O\left(x^{8}\right)\right) \\
+c_{2} x^{-i}(1+(1-i) x & +\left(\frac{7}{16}-\frac{13 i}{16}\right) x^{2}+\left(\frac{7}{39}-\frac{395 i}{936}\right) x^{3}+\left(\frac{2117}{29952}-\frac{5197 i}{29952}\right) x^{4} \\
& +\left(\frac{5521}{217152}-\frac{642043 i}{10857600}\right) x^{5}+\left(\frac{782461}{97718400}-\frac{8813057 i}{521164800}\right) x^{6} \\
& \left.+\left(\frac{1238071931}{580056422400}-\frac{3271304833 i}{812078991360}\right) x^{7}+O\left(x^{8}\right)\right)
\end{aligned}
$$

Verified OK.
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x})$ * Y where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x})$, dx$)$) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F} 1$
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and $\mathrm{y}(\mathrm{x})$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})$) $* 2 \mathrm{~F} 1$
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
\rightarrow trying a solution of the form $r 0(x) * Y+r 1(x) * Y$ where $Y=\exp (\operatorname{int}(r(x), d x)) *$ trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying to convert to an ODE of Bessel type
-> trying reduction of order to Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
-> trying a symmetry pattern of the form $[\mathrm{F}(\mathrm{x}) * \mathrm{G}(\mathrm{y}), 0]$
-> trying a symmetry pattern 146 the form $[0, F(x) * G(y)]$
-> trying a symmetry pattern of the form $[F(x), G(x) * y+H(x)]$
Trying Lie symmetry methods, 2nd order ---
\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 85

```
Order:=8;
dsolve(x^2*diff(y(x),x$2)+(x-3*x^2)*diff(y(x),x)+exp(x)*y(x)=0,y(x),type='series',x=0);
```

$$
\left.\left.\begin{array}{r}
y(x)=c_{1} x^{-i}(1+(1-i) x
\end{array}+\left(\frac{7}{16}-\frac{13 i}{16}\right) x^{2}+\left(\frac{7}{39}-\frac{395 i}{936}\right) x^{3}+\left(\frac{2117}{29952}-\frac{5197 i}{29952}\right) x^{4} .\left(\frac{5521}{217152}-\frac{642043 i}{10857600}\right) x^{5}+\left(\frac{782461}{97718400}-\frac{8813057 i}{521164800}\right) x^{6}\right) ~+\left(\frac{1238071931}{580056422400}-\frac{3271304833 i}{812078991360}\right) x^{7}+\mathrm{O}\left(x^{8}\right)\right) .
$$

\checkmark Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 122
AsymptoticDSolveValue[x^2*y' ' $[\mathrm{x}]+\left(\mathrm{x}-3 * \mathrm{x}^{\wedge} 2\right) * \mathrm{y}$ ' $\left.[\mathrm{x}]+\operatorname{Exp}[\mathrm{x}] * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}\right]$

$$
\begin{array}{r}
y(x) \rightarrow\left(\frac{1}{97718400}+\frac{11 i}{1563494400}\right) c_{1} x^{i}\left((1302761+756800 i) x^{6}\right. \\
+(4384656+2763936 i) x^{5}+(12605400+8289000 i) x^{4} \\
+(31161600+19814400 i) x^{3}+(66096000+33955200 i) x^{2} \\
+(111974400+20736000 i) x+(66355200-45619200 i))
\end{array} \quad \begin{array}{r}
-\left(\frac{11}{1563494400}+\frac{i}{97718400}\right) c_{2} x^{-i}\left((756800+1302761 i) x^{6}\right. \\
+(2763936+4384656 i) x^{5}+(8289000+12605400 i) x^{4} \\
+(19814400+31161600 i) x^{3}+(33955200+66096000 i) x^{2} \\
+ \\
+(20736000+111974400 i) x-(45619200-66355200 i))
\end{array}
$$

18 Chapter 4. Linear equations with Regular Singular Points. Page 159

18.1 problem 1(a) . 1470
18.2 problem 1(b) . 1486
18.3 problem 2 . 1498

18.1 problem 1(a)

18.1.1 Maple step by step solution 1482

Internal problem ID [6050]
Internal file name [OUTPUT/5298_Sunday_June_05_2022_03_32_46_PM_42206577/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 159
Problem number: 1(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
3 x^{2} y^{\prime \prime}+5 x y^{\prime}+3 x y=0
$$

With the expansion point for the power series method at $x=0$.
The ODE is

$$
3 x^{2} y^{\prime \prime}+5 x y^{\prime}+3 x y=0
$$

Or

$$
x\left(3 y^{\prime \prime} x+3 y+5 y^{\prime}\right)=0
$$

For $x \neq 0$ the above simplifies to

$$
3 y^{\prime \prime} x+3 y+5 y^{\prime}=0
$$

The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
3 x^{2} y^{\prime \prime}+5 x y^{\prime}+3 x y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =\frac{5}{3 x} \\
q(x) & =\frac{1}{x}
\end{aligned}
$$

Table 223: Table $p(x), q(x)$ singularites.

$p(x)=\frac{5}{3 x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{1}{x}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
3 x^{2} y^{\prime \prime}+5 x y^{\prime}+3 x y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& 3 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +5 x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+3 x\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 5 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 3 x^{1+n+r} a_{n}\right)=0 \tag{2~A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} 3 x^{1+n+r} a_{n}=\sum_{n=1}^{\infty} 3 a_{n-1} x^{n+r}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 5 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=1}^{\infty} 3 a_{n-1} x^{n+r}\right)=0 \tag{2~B}
\end{equation*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
3 x^{n+r} a_{n}(n+r)(n+r-1)+5 x^{n+r} a_{n}(n+r)=0
$$

When $n=0$ the above becomes

$$
3 x^{r} a_{0} r(-1+r)+5 x^{r} a_{0} r=0
$$

Or

$$
\left(3 x^{r} r(-1+r)+5 x^{r} r\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
x^{r} r(2+3 r)=0
$$

Since the above is true for all x then the indicial equation becomes

$$
3 r^{2}+2 r=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=0 \\
& r_{2}=-\frac{2}{3}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
x^{r} r(2+3 r)=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=\frac{2}{3}$ is not an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n-\frac{2}{3}}
\end{aligned}
$$

We start by finding $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
3 a_{n}(n+r)(n+r-1)+5 a_{n}(n+r)+3 a_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{3 a_{n-1}}{3 n^{2}+6 n r+3 r^{2}+2 n+2 r} \tag{4}
\end{equation*}
$$

Which for the root $r=0$ becomes

$$
\begin{equation*}
a_{n}=-\frac{3 a_{n-1}}{n(3 n+2)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=0$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=-\frac{3}{3 r^{2}+8 r+5}
$$

Which for the root $r=0$ becomes

$$
a_{1}=-\frac{3}{5}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{3}{3 r^{2}+8 r+5}$	$-\frac{3}{5}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{9}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)}
$$

Which for the root $r=0$ becomes

$$
a_{2}=\frac{9}{80}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{3}{3 r^{2}+8 r+5}$	$-\frac{3}{5}$
a_{2}	$\frac{9}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)}$	$\frac{9}{80}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{27}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)}
$$

Which for the root $r=0$ becomes

$$
a_{3}=-\frac{9}{880}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{3}{3 r^{2}+8 r+5}$	$-\frac{3}{5}$
a_{2}	$\frac{9}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)}$	$\frac{9}{80}$
a_{3}	$-\frac{27}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)}$	$-\frac{9}{880}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{81}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)\left(3 r^{2}+26 r+56\right)}
$$

Which for the root $r=0$ becomes

$$
a_{4}=\frac{27}{49280}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{3}{3 r^{2}+8 r+5}$	$-\frac{3}{5}$
a_{2}	$\frac{9}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)}$	$\frac{9}{80}$
a_{3}	$-\frac{27}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)}$	$-\frac{9}{880}$
a_{4}	$\frac{81}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)\left(3 r^{2}+26 r+56\right)}$	$\frac{27}{49280}$

For $n=5$, using the above recursive equation gives
$a_{5}=-\frac{243}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)\left(3 r^{2}+26 r+56\right)\left(3 r^{2}+32 r+85\right)}$
Which for the root $r=0$ becomes

$$
a_{5}=-\frac{81}{4188800}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{3}{3 r^{2}+8 r+5}$	$-\frac{3}{5}$
a_{2}	$\frac{9}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)}$	$\frac{9}{80}$
a_{3}	$-\frac{27}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)}$	$-\frac{9}{880}$
a_{4}	$\frac{81}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)\left(3 r^{2}+26 r+56\right)}$	$\frac{27}{49280}$
a_{5}	$-\frac{243}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)\left(3 r^{2}+26 r+56\right)\left(3 r^{2}+32 r+85\right)}$	$-\frac{81}{4188800}$

For $n=6$, using the above recursive equation gives
$a_{6}=\frac{729}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)\left(3 r^{2}+26 r+56\right)\left(3 r^{2}+32 r+85\right)\left(3 r^{2}+38 r+120\right.}$
Which for the root $r=0$ becomes

$$
a_{6}=\frac{81}{167552000}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	$-\frac{1}{5}$
a_{1}	$-\frac{3}{3 r^{2}+8 r+5}$	$\frac{9}{80}$
a_{2}	$\frac{9}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)}$	$-\frac{9}{880}$
a_{3}	$-\frac{27}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)}$	$\frac{27}{49280}$
a_{4}	$\frac{81}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)\left(3 r^{2}+26 r+56\right)}$	$-\frac{81}{4188800}$
a_{5}	$-\frac{243}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)\left(3 r^{2}+26 r+56\right)\left(3 r^{2}+32 r+85\right)}$	$\frac{81}{167552000}$
a_{6}	$\frac{729}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)\left(3 r^{2}+26 r+56\right)\left(3 r^{2}+32 r+85\right)\left(3 r^{2}+38 r+120\right)}$	

For $n=7$, using the above recursive equation gives
2187
$a_{7}=-\overline{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)\left(3 r^{2}+26 r+56\right)\left(3 r^{2}+32 r+85\right)\left(3 r^{2}+38 r+1\right.}$
Which for the root $r=0$ becomes

$$
a_{7}=-\frac{243}{26975872000}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	$\frac{1}{4}$
a_{1}	$-\frac{3}{3 r^{2}+8 r+5}$	$-\frac{3}{5}$
a_{2}	$\frac{9}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)}$	$\frac{9}{80}$
a_{3}	$-\frac{27}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)}$	$-\frac{9}{880}$
a_{4}	$\frac{81}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)\left(3 r^{2}+26 r+56\right)}$	$\frac{27}{49280}$
a_{5}	$-\frac{243}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)\left(3 r^{2}+26 r+56\right)\left(3 r^{2}+32 r+85\right)}$	$-\frac{81}{4188800}$
a_{6}	$\frac{729}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)\left(3 r^{2}+26 r+56\right)\left(3 r^{2}+32 r+85\right)\left(3 r^{2}+38 r+120\right)}$	$\frac{81}{167552000}$
a_{7}	$-\frac{2187}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)\left(3 r^{2}+26 r+56\right)\left(3 r^{2}+32 r+85\right)\left(3 r^{2}+38 r+120\right)\left(3 r^{2}+44 r+161\right)}$	$-\frac{243}{26975872000}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots \\
& =1-\frac{3 x}{5}+\frac{9 x^{2}}{80}-\frac{9 x^{3}}{880}+\frac{27 x^{4}}{49280}-\frac{81 x^{5}}{4188800}+\frac{81 x^{6}}{167552000}-\frac{243 x^{7}}{26975872000}+O\left(x^{8}\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. $\mathrm{Eq}(2 \mathrm{~B})$ derived above is now used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
3 b_{n}(n+r)(n+r-1)+5 b_{n}(n+r)+3 b_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for b_{n} from recursive equation (4) gives

$$
\begin{equation*}
b_{n}=-\frac{3 b_{n-1}}{3 n^{2}+6 n r+3 r^{2}+2 n+2 r} \tag{4}
\end{equation*}
$$

Which for the root $r=-\frac{2}{3}$ becomes

$$
\begin{equation*}
b_{n}=-\frac{3 b_{n-1}}{n(3 n-2)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-\frac{2}{3}$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
b_{1}=-\frac{3}{3 r^{2}+8 r+5}
$$

Which for the root $r=-\frac{2}{3}$ becomes

$$
b_{1}=-3
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{3}{3 r^{2}+8 r+5}$	-3

For $n=2$, using the above recursive equation gives

$$
b_{2}=\frac{9}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)}
$$

Which for the root $r=-\frac{2}{3}$ becomes

$$
b_{2}=\frac{9}{8}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{3}{3 r^{2}+8 r+5}$	-3
b_{2}	$\frac{9}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)}$	$\frac{9}{8}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=-\frac{27}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)}
$$

Which for the root $r=-\frac{2}{3}$ becomes

$$
b_{3}=-\frac{9}{56}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{3}{3 r^{2}+8 r+5}$	-3
b_{2}	$\frac{9}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)}$	$\frac{9}{8}$
b_{3}	$-\frac{27}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)}$	$-\frac{9}{56}$

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{81}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)\left(3 r^{2}+26 r+56\right)}
$$

Which for the root $r=-\frac{2}{3}$ becomes

$$
b_{4}=\frac{27}{2240}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{3}{3 r^{2}+8 r+5}$	-3
b_{2}	$\frac{9}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)}$	$\frac{9}{8}$
b_{3}	$-\frac{27}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)}$	$-\frac{9}{56}$
b_{4}	$\frac{81}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)\left(3 r^{2}+26 r+56\right)}$	$\frac{27}{2240}$

For $n=5$, using the above recursive equation gives
$b_{5}=-\frac{243}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)\left(3 r^{2}+26 r+56\right)\left(3 r^{2}+32 r+85\right)}$
Which for the root $r=-\frac{2}{3}$ becomes

$$
b_{5}=-\frac{81}{145600}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{3}{3 r^{2}+8 r+5}$	-3
b_{2}	$\frac{9}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)}$	$\frac{9}{8}$
b_{3}	$-\frac{27}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)}$	$-\frac{9}{56}$
b_{4}	$\frac{81}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)\left(3 r^{2}+26 r+56\right)}$	$\frac{27}{2240}$
b_{5}	$-\frac{243}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)\left(3 r^{2}+26 r+56\right)\left(3 r^{2}+32 r+85\right)}$	$-\frac{81}{145600}$

For $n=6$, using the above recursive equation gives
$b_{6}=\frac{729}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)\left(3 r^{2}+26 r+56\right)\left(3 r^{2}+32 r+85\right)\left(3 r^{2}+38 r+120\right.}$
Which for the root $r=-\frac{2}{3}$ becomes

$$
b_{6}=\frac{81}{4659200}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{3}{3 r^{2}+8 r+5}$	-3
b_{2}	$\frac{9}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)}$	$\frac{9}{8}$
b_{3}	$-\frac{27}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)}$	$-\frac{9}{56}$
b_{4}	$\frac{81}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)\left(3 r^{2}+26 r+56\right)}$	$\frac{27}{2240}$
b_{5}	$-\frac{243}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)\left(3 r^{2}+26 r+56\right)\left(3 r^{2}+32 r+85\right)}$	$-\frac{81}{145600}$
b_{6}	$\frac{729}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)\left(3 r^{2}+26 r+56\right)\left(3 r^{2}+32 r+85\right)\left(3 r^{2}+38 r+120\right)}$	$\frac{81}{4659200}$

For $n=7$, using the above recursive equation gives
$b_{7}=-\frac{2187}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)\left(3 r^{2}+26 r+56\right)\left(3 r^{2}+32 r+85\right)\left(3 r^{2}+38 r+1\right.}$
Which for the root $r=-\frac{2}{3}$ becomes

$$
b_{7}=-\frac{243}{619673600}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{3}{3 r^{2}+8 r+5}$	-3
b_{2}	$\frac{9}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)}$	$\frac{9}{8}$
b_{3}	$-\frac{27}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)}$	$-\frac{9}{56}$
b_{4}	$\frac{81}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)\left(3 r^{2}+26 r+56\right)}$	$\frac{27}{2240}$
b_{5}	$-\frac{243}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)\left(3 r^{2}+26 r+56\right)\left(3 r^{2}+32 r+85\right)}$	$-\frac{81}{145600}$
b_{6}	$\frac{729}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)\left(3 r^{2}+26 r+56\right)\left(3 r^{2}+32 r+85\right)\left(3 r^{2}+38 r+120\right)}$	$\frac{81}{4659200}$
b_{7}	$-\frac{2187}{\left(3 r^{2}+8 r+5\right)\left(3 r^{2}+14 r+16\right)\left(3 r^{2}+20 r+33\right)\left(3 r^{2}+26 r+56\right)\left(3 r^{2}+32 r+85\right)\left(3 r^{2}+38 r+120\right)\left(3 r^{2}+44 r+161\right)}$	$-\frac{243}{619673600}$

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =1\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots\right) \\
& =\frac{1-3 x+\frac{9 x^{2}}{8}-\frac{9 x^{3}}{56}+\frac{27 x^{4}}{2240}-\frac{81 x^{5}}{145600}+\frac{81 x^{6}}{4659200}-\frac{243 x^{7}}{619673600}+O\left(x^{8}\right)}{x^{\frac{2}{3}}}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1}\left(1-\frac{3 x}{5}+\frac{9 x^{2}}{80}-\frac{9 x^{3}}{880}+\frac{27 x^{4}}{49280}-\frac{81 x^{5}}{4188800}+\frac{81 x^{6}}{167552000}-\frac{243 x^{7}}{26975872000}+O\left(x^{8}\right)\right) \\
& +\frac{c_{2}\left(1-3 x+\frac{9 x^{2}}{8}-\frac{9 x^{3}}{56}+\frac{27 x^{4}}{2240}-\frac{81 x^{5}}{145600}+\frac{81 x^{6}}{4659200}-\frac{243 x^{7}}{619673600}+O\left(x^{8}\right)\right)}{x^{\frac{2}{3}}}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1}\left(1-\frac{3 x}{5}+\frac{9 x^{2}}{80}-\frac{9 x^{3}}{880}+\frac{27 x^{4}}{49280}-\frac{81 x^{5}}{4188800}+\frac{81 x^{6}}{167552000}-\frac{243 x^{7}}{26975872000}+O\left(x^{8}\right)\right) \\
& +\frac{c_{2}\left(1-3 x+\frac{9 x^{2}}{8}-\frac{9 x^{3}}{56}+\frac{27 x^{4}}{2240}-\frac{81 x^{5}}{145600}+\frac{81 x^{6}}{4659200}-\frac{243 x^{7}}{619673600}+O\left(x^{8}\right)\right)}{x^{\frac{2}{3}}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1}\left(1-\frac{3 x}{5}+\frac{9 x^{2}}{80}-\frac{9 x^{3}}{880}+\frac{27 x^{4}}{49280}-\frac{81 x^{5}}{4188800}+\frac{81 x^{6}}{167552000}-\frac{243 x^{7}}{26975872000}+O\left(x^{8}\right)\right) \\
& +\frac{c_{2}\left(1-3 x+\frac{9 x^{2}}{8}-\frac{9 x^{3}}{56}+\frac{27 x^{4}}{2240}-\frac{81 x^{5}}{145600}+\frac{81 x^{6}}{4659200}-\frac{243 x^{7}}{619673600}+O\left(x^{8}\right)\right)}{x^{\frac{2}{3}}} \tag{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1}\left(1-\frac{3 x}{5}+\frac{9 x^{2}}{80}-\frac{9 x^{3}}{880}+\frac{27 x^{4}}{49280}-\frac{81 x^{5}}{4188800}+\frac{81 x^{6}}{167552000}-\frac{243 x^{7}}{26975872000}+O\left(x^{8}\right)\right) \\
& +\frac{c_{2}\left(1-3 x+\frac{9 x^{2}}{8}-\frac{9 x^{3}}{56}+\frac{27 x^{4}}{2240}-\frac{81 x^{5}}{15600}+\frac{81 x^{6}}{4659200}-\frac{243 x^{7}}{619673600}+O\left(x^{8}\right)\right)}{x^{\frac{2}{3}}}
\end{aligned}
$$

Verified OK.

18.1.1 Maple step by step solution

Let's solve
$3 x^{2} y^{\prime \prime}+5 x y^{\prime}+3 x y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{5 y^{\prime}}{3 x}-\frac{y}{x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{5 y^{\prime}}{3 x}+\frac{y}{x}=0$
$\square \quad$ Check to see if $x_{0}=0$ is a regular singular point
- Define functions

$$
\left[P_{2}(x)=\frac{5}{3 x}, P_{3}(x)=\frac{1}{x}\right]
$$

- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\frac{5}{3}$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$

$$
\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0
$$

- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators
$3 y^{\prime \prime} x+3 y+5 y^{\prime}=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert y^{\prime} to series expansion
$y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}$
- Shift index using $k->k+1$
$y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r) x^{k+r}$
- Convert $x \cdot y^{\prime \prime}$ to series expansion
$x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}$
- Shift index using $k->k+1$
$x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}$
Rewrite ODE with series expansions
$a_{0} r(2+3 r) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(3 k+5+3 r)+3 a_{k}\right) x^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$r(2+3 r)=0$
- Values of r that satisfy the indicial equation
$r \in\left\{0,-\frac{2}{3}\right\}$
- Each term in the series must be 0, giving the recursion relation
$3(k+1+r)\left(k+\frac{5}{3}+r\right) a_{k+1}+3 a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=-\frac{3 a_{k}}{(k+1+r)(3 k+5+3 r)}$
- \quad Recursion relation for $r=0$

$$
a_{k+1}=-\frac{3 a_{k}}{(k+1)(3 k+5)}
$$

- \quad Solution for $r=0$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=-\frac{3 a_{k}}{(k+1)(3 k+5)}\right]
$$

- Recursion relation for $r=-\frac{2}{3}$

$$
a_{k+1}=-\frac{3 a_{k}}{\left(k+\frac{1}{3}\right)(3 k+3)}
$$

- \quad Solution for $r=-\frac{2}{3}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{2}{3}}, a_{k+1}=-\frac{3 a_{k}}{\left(k+\frac{1}{3}\right)(3 k+3)}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k-\frac{2}{3}}\right), a_{k+1}=-\frac{3 a_{k}}{(k+1)(3 k+5)}, b_{k+1}=-\frac{3 b_{k}}{\left(k+\frac{1}{3}\right)(3 k+3)}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 52

```
Order:=8;
dsolve(3*x^2*diff(y(x),x$2)+5*x*diff(y(x),x)+3*x*y(x)=0,y(x),type='series',x=0);
```

$$
\begin{aligned}
& y(x)= \frac{c_{1}\left(1-3 x+\frac{9}{8} x^{2}-\frac{9}{56} x^{3}+\frac{27}{2240} x^{4}-\frac{81}{145600} x^{5}+\frac{81}{4659200} x^{6}-\frac{243}{619673600} x^{7}+\mathrm{O}\left(x^{8}\right)\right)}{x^{\frac{2}{3}}} \\
&+c_{2}\left(1-\frac{3}{5} x+\frac{9}{80} x^{2}-\frac{9}{880} x^{3}+\frac{27}{49280} x^{4}-\frac{81}{4188800} x^{5}+\frac{81}{167552000} x^{6}\right. \\
&\left.-\frac{243}{26975872000} x^{7}+\mathrm{O}\left(x^{8}\right)\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 111
AsymptoticDSolveValue[3*x^2*y' $\quad[\mathrm{x}]+5 * x * y$ ' $[\mathrm{x}]+3 * x * y[x]==0, y[x],\{x, 0,7\}]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(-\frac{243 x^{7}}{26975872000}+\frac{81 x^{6}}{167552000}-\frac{81 x^{5}}{4188800}+\frac{27 x^{4}}{49280}-\frac{9 x^{3}}{880}+\frac{9 x^{2}}{80}-\frac{3 x}{5}+1\right) \\
& +\frac{c_{2}\left(-\frac{243 x^{7}}{619673600}+\frac{81 x^{6}}{4659200}-\frac{81 x^{5}}{145600}+\frac{27 x^{4}}{2240}-\frac{9 x^{3}}{56}+\frac{9 x^{2}}{8}-3 x+1\right)}{x^{2 / 3}}
\end{aligned}
$$

18.2 problem 1(b)

18.2.1 Maple step by step solution

Internal problem ID [6051]
Internal file name [OUTPUT/5299_Sunday_June_05_2022_03_32_48_PM_71658375/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 159
Problem number: 1(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type
[_Lienard]

$$
x^{2} y^{\prime \prime}+x y^{\prime}+y x^{2}=0
$$

With the expansion point for the power series method at $x=0$.
The ODE is

$$
x^{2} y^{\prime \prime}+x y^{\prime}+y x^{2}=0
$$

Or

$$
x\left(y^{\prime \prime} x+y^{\prime}+x y\right)=0
$$

For $x \neq 0$ the above simplifies to

$$
y^{\prime \prime} x+y^{\prime}+x y=0
$$

The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+x y^{\prime}+y x^{2}=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =1
\end{aligned}
$$

Table 225: Table $p(x), q(x)$ singularites.

$p(x)=\frac{1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=1$	
singularity	type

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+x y^{\prime}+y x^{2}=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives
$x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)+x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right) x^{2}=0$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} x^{2+n+r} a_{n}\right)=0 \tag{2~A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} x^{2+n+r} a_{n}=\sum_{n=2}^{\infty} a_{n-2} x^{n+r}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r}\right)=0 \tag{2B}
\end{equation*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r=0
$$

Or

$$
\left(x^{r} r(-1+r)+x^{r} r\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
x^{r} r^{2}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=0 \\
& r_{2}=0
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
x^{r} r^{2}=0
$$

Solving for r gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form

$$
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1A}
\end{equation*}
$$

Now the second solution y_{2} is found using

$$
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
$$

Then the general solution will be

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

In $\mathrm{Eq}(1 \mathrm{~B})$ the sum starts from 1 and not zero. In $\mathrm{Eq}(1 \mathrm{~A}), a_{0}$ is never zero, and is arbitrary and is typically taken as $a_{0}=1$, and $\left\{c_{1}, c_{2}\right\}$ are two arbitray constants of integration which can be found from initial conditions. We start by finding the first solution $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n}(n+r)+a_{n-2}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n^{2}+2 n r+r^{2}} \tag{4}
\end{equation*}
$$

Which for the root $r=0$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n^{2}} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=0$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=-\frac{1}{(r+2)^{2}}
$$

Which for the root $r=0$ becomes

$$
a_{2}=-\frac{1}{4}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{(r+2)^{2}}$	$-\frac{1}{4}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{(r+2)^{2}}$	$-\frac{1}{4}$
a_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{1}{(r+2)^{2}(4+r)^{2}}
$$

Which for the root $r=0$ becomes

$$
a_{4}=\frac{1}{64}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{(r+2)^{2}}$	$-\frac{1}{4}$
a_{3}	0	0
a_{4}	$\frac{1}{(r+2)^{2}(4+r)^{2}}$	$\frac{1}{64}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{(r+2)^{2}}$	$-\frac{1}{4}$
a_{3}	0	0
a_{4}	$\frac{1}{(r+2)^{2}(4+r)^{2}}$	$\frac{1}{64}$
a_{5}	0	0

For $n=6$, using the above recursive equation gives

$$
a_{6}=-\frac{1}{(r+2)^{2}(4+r)^{2}(r+6)^{2}}
$$

Which for the root $r=0$ becomes

$$
a_{6}=-\frac{1}{2304}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{(r+2)^{2}}$	$-\frac{1}{4}$
a_{3}	0	0
a_{4}	$\frac{1}{(r+2)^{2}(4+r)^{2}}$	$\frac{1}{64}$
a_{5}	0	0
a_{6}	$-\frac{1}{(r+2)^{2}(4+r)^{2}(r+6)^{2}}$	$-\frac{1}{2304}$

For $n=7$, using the above recursive equation gives

$$
a_{7}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{(r+2)^{2}}$	$-\frac{1}{4}$
a_{3}	0	0
a_{4}	$\frac{1}{(r+2)^{2}(4+r)^{2}}$	$\frac{1}{64}$
a_{5}	0	0
a_{6}	$-\frac{1}{(r+2)^{2}(4+r)^{2}(r+6)^{2}}$	$-\frac{1}{2304}$
a_{7}	0	0

Using the above table, then the first solution $y_{1}(x)$ becomes

$$
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots \\
& =1-\frac{x^{2}}{4}+\frac{x^{4}}{64}-\frac{x^{6}}{2304}+O\left(x^{8}\right)
\end{aligned}
$$

Now the second solution is found. The second solution is given by

$$
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
$$

Where b_{n} is found using

$$
b_{n}=\frac{d}{d r} a_{n, r}
$$

And the above is then evaluated at $r=0$. The above table for $a_{n, r}$ is used for this purpose. Computing the derivatives gives the following table

n	$b_{n, r}$	a_{n}	$b_{n, r}=\frac{d}{d r} a_{n, r}$	$b_{n}(r=0)$
b_{0}	1	1	N/A since b_{n} starts from 1	N/A
b_{1}	0	0	0	0
b_{2}	$-\frac{1}{(r+2)^{2}}$	$-\frac{1}{4}$	$\frac{2}{(r+2)^{3}}$	$\frac{1}{4}$
b_{3}	0	0	0	0
b_{4}	$\frac{1}{(r+2)^{2}(4+r)^{2}}$	$\frac{1}{64}$	$\frac{-12-4 r}{(r+2)^{3}(4+r)^{3}}$	$-\frac{3}{128}$
b_{5}	0	0	0	0
b_{6}	$-\frac{1}{(r+2)^{2}(4+r)^{2}(r+6)^{2}}$	$-\frac{1}{2304}$	$\frac{6 r^{2}+48 r+88}{(r+2)^{3}(4+r)^{3}(r+6)^{3}}$	$\frac{11}{13824}$
b_{7}	0	0	0	0

The above table gives all values of b_{n} needed. Hence the second solution is

$$
\begin{aligned}
y_{2}(x) & =y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots \\
& =\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}-\frac{x^{6}}{2304}+O\left(x^{8}\right)\right) \ln (x)+\frac{x^{2}}{4}-\frac{3 x^{4}}{128}+\frac{11 x^{6}}{13824}+O\left(x^{8}\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1}\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}-\frac{x^{6}}{2304}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}-\frac{x^{6}}{2304}+O\left(x^{8}\right)\right) \ln (x)+\frac{x^{2}}{4}-\frac{3 x^{4}}{128}+\frac{11 x^{6}}{13824}+O\left(x^{8}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1}\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}-\frac{x^{6}}{2304}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}-\frac{x^{6}}{2304}+O\left(x^{8}\right)\right) \ln (x)+\frac{x^{2}}{4}-\frac{3 x^{4}}{128}+\frac{11 x^{6}}{13824}+O\left(x^{8}\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1}\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}-\frac{x^{6}}{2304}+O\left(x^{8}\right)\right) \tag{1}\\
& +c_{2}\left(\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}-\frac{x^{6}}{2304}+O\left(x^{8}\right)\right) \ln (x)+\frac{x^{2}}{4}-\frac{3 x^{4}}{128}+\frac{11 x^{6}}{13824}+O\left(x^{8}\right)\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1}\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}-\frac{x^{6}}{2304}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}-\frac{x^{6}}{2304}+O\left(x^{8}\right)\right) \ln (x)+\frac{x^{2}}{4}-\frac{3 x^{4}}{128}+\frac{11 x^{6}}{13824}+O\left(x^{8}\right)\right)
\end{aligned}
$$

Verified OK.

18.2.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+x y^{\prime}+y x^{2}=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y^{\prime}}{x}-y
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{x}+y=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions

$$
\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=1\right]
$$

- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$y^{\prime \prime} x+y^{\prime}+x y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x \cdot y$ to series expansion
$x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+1}$
- Shift index using $k->k-1$
$x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k+r}$
- Convert y^{\prime} to series expansion
$y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}$
- Shift index using $k->k+1$
$y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+r+1) x^{k+r}$
- Convert $x \cdot y^{\prime \prime}$ to series expansion
$x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}$
- Shift index using $k->k+1$
$x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+r+1)(k+r) x^{k+r}$
Rewrite ODE with series expansions
$a_{0} r^{2} x^{-1+r}+a_{1}(1+r)^{2} x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k+1}(k+r+1)^{2}+a_{k-1}\right) x^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation

$$
r^{2}=0
$$

- Values of r that satisfy the indicial equation $r=0$
- \quad Each term must be 0
$a_{1}(1+r)^{2}=0$
- Each term in the series must be 0, giving the recursion relation
$a_{k+1}(k+1)^{2}+a_{k-1}=0$
- \quad Shift index using $k->k+1$
$a_{k+2}(k+2)^{2}+a_{k}=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+2}=-\frac{a_{k}}{(k+2)^{2}}
$$

- \quad Recursion relation for $r=0$

$$
a_{k+2}=-\frac{a_{k}}{(k+2)^{2}}
$$

- \quad Solution for $r=0$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a_{k}}{(k+2)^{2}}, a_{1}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 47

```
Order:=8;
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+x^2*y(x)=0,y(x),type='series',x=0);
```

$$
\begin{aligned}
y(x)= & \left(c_{2} \ln (x)+c_{1}\right)\left(1-\frac{1}{4} x^{2}+\frac{1}{64} x^{4}-\frac{1}{2304} x^{6}+\mathrm{O}\left(x^{8}\right)\right) \\
& +\left(\frac{1}{4} x^{2}-\frac{3}{128} x^{4}+\frac{11}{13824} x^{6}+\mathrm{O}\left(x^{8}\right)\right) c_{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 81
AsymptoticDSolveValue $\left[x^{\wedge} 2 * y\right.$ ' ' $[x]+x * y$ ' $\left.[x]+x^{\wedge} 2 * y[x]==0, y[x],\{x, 0,7\}\right]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(-\frac{x^{6}}{2304}+\frac{x^{4}}{64}-\frac{x^{2}}{4}+1\right) \\
& +c_{2}\left(\frac{11 x^{6}}{13824}-\frac{3 x^{4}}{128}+\frac{x^{2}}{4}+\left(-\frac{x^{6}}{2304}+\frac{x^{4}}{64}-\frac{x^{2}}{4}+1\right) \log (x)\right)
\end{aligned}
$$

18.3 problem 2

Internal problem ID [6052]
Internal file name [OUTPUT/5300_Sunday_June_05_2022_03_32_50_PM_52482633/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 159
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Complex roots"

Maple gives the following as the ode type

```
[[_Emden, _Fowler]]
```

$$
x^{2} y^{\prime \prime}+y^{\prime} \mathrm{e}^{x} x+y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+y^{\prime} \mathrm{e}^{x} x+y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{\mathrm{e}^{x}}{x} \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
$$

Table 227: Table $p(x), q(x)$ singularites.

$p(x)=\frac{\mathrm{e}^{x}}{x}$	
singularity	type
$x=0$	"regular"
$x=\infty$	"regular"

$q(x)=\frac{1}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $[0, \infty]$
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+y^{\prime} \mathrm{e}^{x} x+y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right) \mathrm{e}^{x} x+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{equation*}
$$

Expanding $x \mathrm{e}^{x}$ as Taylor series around $x=0$ and keeping only the first 8 terms gives

$$
\begin{aligned}
x \mathrm{e}^{x} & =x+x^{2}+\frac{1}{2} x^{3}+\frac{1}{6} x^{4}+\frac{1}{24} x^{5}+\frac{1}{120} x^{6}+\frac{1}{720} x^{7}+\frac{1}{5040} x^{8}+\ldots \\
& =x+x^{2}+\frac{1}{2} x^{3}+\frac{1}{6} x^{4}+\frac{1}{24} x^{5}+\frac{1}{120} x^{6}+\frac{1}{720} x^{7}+\frac{1}{5040} x^{8}
\end{aligned}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+7} a_{n}(n+r)}{5040}\right) \\
& +\left(\sum_{n=0}^{\infty} \frac{x^{n+r+6} a_{n}(n+r)}{720}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+5} a_{n}(n+r)}{120}\right) \\
& +\left(\sum_{n=0}^{\infty} \frac{x^{n+r+4} a_{n}(n+r)}{24}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+3} a_{n}(n+r)}{6}\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} \frac{x^{n+r+2} a_{n}(n+r)}{2}\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)\right) \\
& +\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{x^{n+r+7} a_{n}(n+r)}{5040}=\sum_{n=7}^{\infty} \frac{a_{n-7}(n-7+r) x^{n+r}}{5040} \\
& \sum_{n=0}^{\infty} \frac{x^{n+r+6} a_{n}(n+r)}{720}=\sum_{n=6}^{\infty} \frac{a_{n-6}(n-6+r) x^{n+r}}{720} \\
& \sum_{n=0}^{\infty} \frac{x^{n+r+5} a_{n}(n+r)}{120}=\sum_{n=5}^{\infty} \frac{a_{n-5}(n-5+r) x^{n+r}}{120} \\
& \sum_{n=0}^{\infty} \frac{x^{n+r+4} a_{n}(n+r)}{24}=\sum_{n=4}^{\infty} \frac{a_{n-4}(n-4+r) x^{n+r}}{24} \\
& \sum_{n=0}^{\infty} \frac{x^{n+r+3} a_{n}(n+r)}{6}=\sum_{n=3}^{\infty} \frac{a_{n-3}(n-3+r) x^{n+r}}{6} \\
& \sum_{n=0}^{\infty} \frac{x^{n+r+2} a_{n}(n+r)}{2}=\sum_{n=2}^{\infty} \frac{a_{n-2}(n+r-2) x^{n+r}}{2} \\
& \sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)=\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=7}^{\infty} \frac{a_{n-7}(n-7+r) x^{n+r}}{5040}\right) \\
& +\left(\sum_{n=6}^{\infty} \frac{a_{n-6}(n-6+r) x^{n+r}}{720}\right)+\left(\sum_{n=5}^{\infty} \frac{a_{n-5}(n-5+r) x^{n+r}}{120}\right) \\
& +\left(\sum_{n=4}^{\infty} \frac{a_{n-4}(n-4+r) x^{n+r}}{24}\right)+\left(\sum_{n=3}^{\infty} \frac{a_{n-3}(n-3+r) x^{n+r}}{6}\right) \tag{2~B}\\
& +\left(\sum_{n=2}^{\infty} \frac{a_{n-2}(n+r-2) x^{n+r}}{2}\right)+\left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r}\right) \\
& +\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r+a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)+x^{r} r+x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}+1\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}+1=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=i \\
& r_{2}=-i
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}+1\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since the roots are complex conjugates, then two linearly independent solutions can be constructed using

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+i} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n-i}
\end{aligned}
$$

$y_{1}(x)$ is found first. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=-\frac{r}{r^{2}+2 r+2}
$$

Substituting $n=2$ in Eq. (2B) gives

$$
a_{2}=-\frac{r^{3}}{2\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}
$$

Substituting $n=3$ in Eq. (2B) gives

$$
a_{3}=-\frac{r\left(r^{4}-6 r^{2}-9 r-5\right)}{6\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)}
$$

Substituting $n=4$ in Eq. (2B) gives

$$
a_{4}=-\frac{r\left(r^{6}-2 r^{5}-43 r^{4}-136 r^{3}-180 r^{2}-112 r-40\right)}{24\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)}
$$

Substituting $n=5$ in Eq. (2B) gives

$$
a_{5}=-\frac{r\left(r^{8}-10 r^{7}-201 r^{6}-1035 r^{5}-2331 r^{4}-2105 r^{3}+321 r^{2}+1760 r+800\right)}{120\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)}
$$

Substituting $n=6$ in Eq. (2B) gives

$$
a_{6}=-\frac{r(2+r)\left(r^{9}-34 r^{8}-666 r^{7}-3942 r^{6}-7855 r^{5}+11152 r^{4}+77700 r^{3}+138084 r^{2}+111970 r+413\right.}{720\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)\left(r^{2}+12 r+37\right)}
$$

For $7 \leq n$ the recursive equation is

$$
\begin{align*}
& a_{n}(n+r)(n+r-1)+\frac{a_{n-7}(n-7+r)}{5040}+\frac{a_{n-6}(n-6+r)}{720} \\
& +\frac{a_{n-5}(n-5+r)}{120}+\frac{a_{n-4}(n-4+r)}{24}+\frac{a_{n-3}(n-3+r)}{6} \tag{3}\\
& +\frac{a_{n-2}(n+r-2)}{2}+a_{n-1}(n+r-1)+a_{n}(n+r)+a_{n}=0
\end{align*}
$$

Solving for a_{n} from recursive equation (4) gives
$a_{n}=-\underline{n a_{n-7}+7 n a_{n-6}+42 n a_{n-5}+210 n a_{n-4}+840 n a_{n-3}+2520 n a_{n-2}+5040 n a_{n-1}+r a_{n-7}+7 r a_{n-6}}$

Which for the root $r=i$ becomes $a_{n}=\underline{\left(-a_{n-7}-7 a_{n-6}-42 a_{n-5}-210 a_{n-4}-840 a_{n-3}-2520 a_{n-2}-5040 a_{n-1}\right) n+(7-i) a_{n-7}+(42-7}$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=i$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{r}{r^{2}+2 r+2}$	$-\frac{2}{5}-\frac{i}{5}$
a_{2}	$-\frac{r^{3}}{2\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}$	$\frac{3}{80}-\frac{i}{80}$
a_{3}	$-\frac{r\left(r^{4}-6 r^{2}-9 r-5\right)}{6\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)}$	$\frac{67}{9360}+\frac{9 i}{1040}$
a_{4}	$-\frac{r\left(r^{6}-2 r^{5}-43 r^{4}-136 r^{3}-180 r^{2}-112 r-40\right)}{24\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)}$	$-\frac{103}{149760}+\frac{229 i}{149760}$
a_{5}	$-\frac{r\left(r^{8}-10 r^{7}-201 r^{6}-1035 r^{5}-2331 r^{4}-2105 r^{3}+321 r^{2}+1760 r+800\right)}{120\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)}$	$-\frac{2831}{7238400}-\frac{607 i}{4343040}$
a_{6}	$-\frac{r(2+r)\left(r^{9}-34 r^{8}-666 r^{7}-3942 r^{6}-7855 r^{5}+11152 r^{4}+77700 r^{3}+138084 r^{2}+111970 r+41300\right)}{720\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)\left(r^{2}+12 r+37\right)}$	$-\frac{59077}{1563494400}-\frac{26063 i}{260582400}$

For $n=7$, using the above recursive equation gives

$$
a_{7}=-\frac{r\left(r^{12}-84 r^{11}-2248 r^{10}-19677 r^{9}-49342 r^{8}+352058 r^{7}+3397664 r^{6}+13171067 r^{5}+29036801 r\right.}{5040\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right.}
$$

Which for the root $r=i$ becomes

$$
a_{7}=\frac{22952047}{2030197478400}-\frac{8634893 i}{580056422400}
$$

And the table now becomes

n	$a_{n, r}$
a_{0}	1
a_{1}	$-\frac{r}{r^{2}+2 r+2}$
a_{2}	$-\frac{r^{3}}{2\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}$
a_{3}	$-\frac{r\left(r^{4}-6 r^{2}-9 r-5\right)}{6\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)}$
a_{4}	$-\frac{r\left(r^{6}-2 r^{5}-43 r^{4}-136 r^{3}-180 r^{2}-112 r-40\right)}{24\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)}$
a_{5}	$-\frac{r\left(r^{8}-10 r^{7}-201 r^{6}-1035 r^{5}-2331 r^{4}-2105 r^{3}+321 r^{2}+1760 r+800\right)}{120\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)}$
a_{6}	$-\frac{r(2+r)\left(r^{9}-34 r^{8}-666 r^{7}-3942 r^{6}-7855 r^{5}+11152 r^{4}+77700 r^{3}+138084 r^{2}+111970 r+41300\right)}{720\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)\left(r^{2}+12 r+37\right)}$
a_{7}	$-\frac{r\left(r^{12}-84 r^{11}-2248 r^{10}-19677 r^{9}-49342 r^{8}+352058 r^{7}+3397664 r^{6}+13171067 r^{5}+29036801 r^{4}+38565016 r^{3}+30552414 r^{2}+13873510 r+\right.}{5040\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)\left(r^{2}+12 r+37\right)\left(r^{2}+14 r+50\right)}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\left.\begin{array}{rl}
y_{1}(x)= & x^{i}\left(a_{0}+a_{1} x+a_{2} x^{2}\right.
\end{array}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) .
$$

The second solution $y_{2}(x)$ is found by taking the complex conjugate of $y_{1}(x)$ which gives

$$
\begin{aligned}
& y_{2}(x)= x^{-i}\left(1+\left(-\frac{2}{5}+\frac{i}{5}\right) x+\left(\frac{3}{80}+\frac{i}{80}\right) x^{2}+\left(\frac{67}{9360}-\frac{9 i}{1040}\right) x^{3}\right. \\
&+\left(-\frac{103}{149760}-\frac{229 i}{149760}\right) x^{4}+\left(-\frac{2831}{7238400}+\frac{607 i}{4343040}\right) x^{5} \\
&+\left(-\frac{59077}{1563494400}+\frac{26063 i}{260582400}\right) x^{6}+\left(\frac{22952047}{2030197478400}+\frac{8634893 i}{580056422400}\right) x^{7} \\
&\left.+O\left(x^{8}\right)\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& y_{h}(x)= c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
&= c_{1} x^{i}\left(1+\left(-\frac{2}{5}-\frac{i}{5}\right) x+\left(\frac{3}{80}-\frac{i}{80}\right) x^{2}+\left(\frac{67}{9360}+\frac{9 i}{1040}\right) x^{3}\right. \\
&+\left(-\frac{103}{149760}+\frac{229 i}{149760}\right) x^{4}+\left(-\frac{2831}{7238400}-\frac{607 i}{4343040}\right) x^{5} \\
&+\left(-\frac{59077}{1563494400}-\frac{26063 i}{260582400}\right) x^{6}+\left(\frac{22952047}{2030197478400}-\frac{8634893 i}{580056422400}\right) x^{7} \\
&\left.+O\left(x^{8}\right)\right)+c_{2} x^{-i}\left(1+\left(-\frac{2}{5}+\frac{i}{5}\right) x+\left(\frac{3}{80}+\frac{i}{80}\right) x^{2}+\left(\frac{67}{9360}-\frac{9 i}{1040}\right) x^{3}\right. \\
&+\left(-\frac{103}{149760}-\frac{229 i}{149760}\right) x^{4}+\left(-\frac{2831}{7238400}+\frac{607 i}{4343040}\right) x^{5} \\
&+\left(-\frac{59077}{1563494400}+\frac{26063 i}{260582400}\right) x^{6}+\left(\frac{22952047}{2030197478400}+\frac{8634893 i}{580056422400}\right) x^{7} \\
&\left.+O\left(x^{8}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
& y=y_{h} \\
& \begin{aligned}
&=c_{1} x^{i}\left(1+\left(-\frac{2}{5}-\frac{i}{5}\right) x\right.+\left(\frac{3}{80}-\frac{i}{80}\right) x^{2}+\left(\frac{67}{9360}+\frac{9 i}{1040}\right) x^{3} \\
&+\left(-\frac{103}{149760}+\frac{229 i}{149760}\right) x^{4}+\left(-\frac{2831}{7238400}-\frac{607 i}{4343040}\right) x^{5} \\
&+\left(-\frac{59077}{1563494400}-\frac{26063 i}{260582400}\right) x^{6}+\left(\frac{22952047}{2030197478400}-\frac{8634893 i}{580056422400}\right) x^{7} \\
&\left.+O\left(x^{8}\right)\right)+c_{2} x^{-i}\left(1+\left(-\frac{2}{5}+\frac{i}{5}\right) x+\left(\frac{3}{80}+\frac{i}{80}\right) x^{2}+\left(\frac{67}{9360}-\frac{9 i}{1040}\right) x^{3}\right. \\
&+\left(-\frac{103}{149760}-\frac{229 i}{149760}\right) x^{4}+\left(-\frac{2831}{7238400}+\frac{607 i}{4343040}\right) x^{5} \\
&+\left(-\frac{59077}{1563494400}+\frac{26063 i}{260582400}\right) x^{6}+\left(\frac{22952047}{2030197478400}+\frac{8634893 i}{580056422400}\right) x^{7} \\
&\left.+O\left(x^{8}\right)\right)
\end{aligned}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\left.\begin{array}{rl}
y=c_{1} & x^{i}\left(1+\left(-\frac{2}{5}-\frac{i}{5}\right)\right.
\end{array}\right) x+\left(\frac{3}{80}-\frac{i}{80}\right) x^{2}+\left(\frac{67}{9360}+\frac{9 i}{1040}\right) x^{3} .
$$

Verification of solutions

$$
\begin{aligned}
& y=c_{1} x^{i}\left(1+\left(-\frac{2}{5}-\frac{i}{5}\right)\right. x+\left(\frac{3}{80}-\frac{i}{80}\right) x^{2}+\left(\frac{67}{9360}+\frac{9 i}{1040}\right) x^{3} \\
&+\left(-\frac{103}{149760}+\frac{229 i}{149760}\right) x^{4}+\left(-\frac{2831}{7238400}-\frac{607 i}{4343040}\right) x^{5} \\
&+\left(-\frac{59077}{1563494400}-\frac{26063 i}{260582400}\right) x^{6}+\left(\frac{22952047}{2030197478400}-\frac{8634893 i}{580056422400}\right) x^{7} \\
&\left.+O\left(x^{8}\right)\right)+c_{2} x^{-i}\left(1+\left(-\frac{2}{5}+\frac{i}{5}\right) x+\left(\frac{3}{80}+\frac{i}{80}\right) x^{2}+\left(\frac{67}{9360}-\frac{9 i}{1040}\right) x^{3}\right. \\
&+\left(-\frac{103}{149760}-\frac{229 i}{149760}\right) x^{4}+\left(-\frac{2831}{7238400}+\frac{607 i}{4343040}\right) x^{5} \\
&++\left(-\frac{59077}{1563494400}+\frac{26063 i}{260582400}\right) x^{6}+\left(\frac{22952047}{2030197478400}+\frac{8634893 i}{580056422400}\right) x^{7} \\
&\left.+O\left(x^{8}\right)\right)
\end{aligned}
$$

Verified OK.
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x})$ * Y where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x})$, dx$)$) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F} 1$
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and $\mathrm{y}(\mathrm{x})$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})$) $* 2 \mathrm{~F} 1$
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
\rightarrow trying a solution of the form $r 0(x) * Y+r 1(x) * Y$ where $Y=\exp (\operatorname{int}(r(x), d x)) *$ trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying to convert to an ODE of Bessel type
-> trying reduction of order to Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
-> trying a symmetry pattern of the form $[\mathrm{F}(\mathrm{x}) * \mathrm{G}(\mathrm{y}), 0]$
-> trying a symmetry pattern ${ }_{50 f}$ the form $[0, F(x) * G(y)]$
-> trying a symmetry pattern of the form $[F(x), G(x) * y+H(x)]$
Trying Lie symmetry methods, 2nd order ---

Time used: 0.047 (sec). Leaf size: 85

```
Order:=8;
dsolve( }\mp@subsup{x}{}{~}2*\operatorname{diff}(y(x),x$2)+x*exp(x)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0)
```

$$
\begin{aligned}
& y(x)= c_{1} x^{-i}\left(1+\left(-\frac{2}{5}+\frac{i}{5}\right) x+\left(\frac{3}{80}+\frac{i}{80}\right) x^{2}+\left(\frac{67}{9360}-\frac{9 i}{1040}\right) x^{3}\right. \\
&+\left(-\frac{103}{149760}-\frac{229 i}{149760}\right) x^{4}+\left(-\frac{2831}{7238400}+\frac{607 i}{4343040}\right) x^{5} \\
&+\left(-\frac{59077}{1563494400}+\frac{26063 i}{260582400}\right) x^{6}+\left(\frac{22952047}{2030197478400}+\frac{8634893 i}{580056422400}\right) x^{7} \\
&+\left.\mathrm{O}\left(x^{8}\right)\right)+c_{2} x^{i}\left(1+\left(-\frac{2}{5}-\frac{i}{5}\right) x+\left(\frac{3}{80}-\frac{i}{80}\right) x^{2}+\left(\frac{67}{9360}+\frac{9 i}{1040}\right) x^{3}\right. \\
&+\left(-\frac{103}{149760}+\frac{229 i}{149760}\right) x^{4}+\left(-\frac{2831}{7238400}-\frac{607 i}{4343040}\right) x^{5} \\
&+\left(-\frac{59077}{1563494400}-\frac{26063 i}{260582400}\right) x^{6}+\left(\frac{22952047}{2030197478400}-\frac{8634893 i}{580056422400}\right) x^{7} \\
&\left.+\mathrm{O}\left(x^{8}\right)\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 122

AsymptoticDSolveValue $\left[\mathrm{x}^{\wedge} 2 * \mathrm{y}^{\prime}\right.$ ' $\left.[\mathrm{x}]+\mathrm{x} * \operatorname{Exp}[\mathrm{x}] * \mathrm{y}{ }^{\prime}[\mathrm{x}]+\mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}\right]$

$$
\begin{aligned}
& y(x) \rightarrow\left(\frac{11}{1563494400}+\frac{i}{97718400}\right) c_{2} x^{-i}\left((4913+7070 i) x^{6}-(8568-32328 i) x^{5}\right. \\
&-(132840+24120 i) x^{4}-(247680+869760 i) x^{3}+(2540160-1918080 i) x^{2} \\
&-\left(\frac{-(4976640-35665920 i) x+(45619200-66355200 i))}{97718400}+\frac{11 i}{1563494400}\right) c_{1} x^{i}\left((7070+4913 i) x^{6}+(32328-8568 i) x^{5}\right. \\
&-(24120+132840 i) x^{4}-(869760+247680 i) x^{3}-(1918080-2540160 i) x^{2} \\
&+(35665920-4976640 i) x-(66355200-45619200 i))
\end{aligned}
$$

19 Chapter 4. Linear equations with Regular Singular Points. Page 166

19.1 problem 1(i) . 1510
19.2 problem 1(ii) . 1527
19.3 problem 1(iii) . 1548
19.4 problem 3(a) . 1561
19.5 problem 3(b) . 1574
19.6 problem 3(c) . 1591
19.7 problem 3(d) . 1606
19.8 problem 3(e) . 1623
19.9 problem 3(f) . 1640

19.1 problem 1(i)

19.1.1 Maple step by step solution 1522

Internal problem ID [6053]
Internal file name [OUTPUT/5301_Sunday_June_05_2022_03_33_12_PM_94404250/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 166
Problem number: 1(i).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
2 x^{2} y^{\prime \prime}+\left(x^{2}+5 x\right) y^{\prime}+\left(x^{2}-2\right) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
2 x^{2} y^{\prime \prime}+\left(x^{2}+5 x\right) y^{\prime}+\left(x^{2}-2\right) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{5+x}{2 x} \\
& q(x)=\frac{x^{2}-2}{2 x^{2}}
\end{aligned}
$$

Table 228: Table $p(x), q(x)$ singularites.

$p(x)=\frac{5+x}{2 x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{x^{2}-2}{2 x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
2 x^{2} y^{\prime \prime}+\left(x^{2}+5 x\right) y^{\prime}+\left(x^{2}-2\right) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& 2 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(x^{2}+5 x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(x^{2}-2\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} 5 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} x^{n+r+2} a_{n}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r) & =\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r} \\
\sum_{n=0}^{\infty} x^{n+r+2} a_{n} & =\sum_{n=2}^{\infty} a_{n-2} x^{n+r}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r}\right) \tag{2B}\\
& +\left(\sum_{n=0}^{\infty} 5 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
2 x^{n+r} a_{n}(n+r)(n+r-1)+5 x^{n+r} a_{n}(n+r)-2 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
2 x^{r} a_{0} r(-1+r)+5 x^{r} a_{0} r-2 a_{0} x^{r}=0
$$

Or

$$
\left(2 x^{r} r(-1+r)+5 x^{r} r-2 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(2 r^{2}+3 r-2\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
2 r^{2}+3 r-2=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=-2
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(2 r^{2}+3 r-2\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=\frac{5}{2}$ is not an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n-2}
\end{aligned}
$$

We start by finding $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=-\frac{r}{2 r^{2}+7 r+3}
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
2 a_{n}(n+r)(n+r-1)+a_{n-1}(n+r-1)+5 a_{n}(n+r)+a_{n-2}-2 a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{n a_{n-1}+r a_{n-1}+a_{n-2}-a_{n-1}}{2 n^{2}+4 n r+2 r^{2}+3 n+3 r-2} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
\begin{equation*}
a_{n}=\frac{-2 n a_{n-1}-2 a_{n-2}+a_{n-1}}{4 n^{2}+10 n} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{1}{2}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{r}{2 r^{2}+7 r+3}$	$-\frac{1}{14}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{-r^{2}-6 r-3}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{2}=-\frac{25}{504}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{r}{2 r^{2}+7 r+3}$	$-\frac{1}{14}$
a_{2}	$\frac{-r^{2}-6 r-3}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)}$	$-\frac{25}{504}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{3 r^{3}+19 r^{2}+27 r+6}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{3}=\frac{197}{33264}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{r}{2 r^{2}+7 r+3}$	$-\frac{1}{14}$
a_{2}	$\frac{-r^{2}-6 r-3}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)}$	$-\frac{25}{504}$
a_{3}	$\frac{3 r^{3}+19 r^{2}+27 r+6}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)}$	$\frac{197}{33264}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{-r^{4}-r^{3}+37 r^{2}+108 r+57}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)\left(2 r^{2}+19 r+42\right)}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{4}=\frac{1921}{3459456}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{r}{2 r^{2}+7 r+3}$	$-\frac{1}{14}$
a_{2}	$\frac{-r^{2}-6 r-3}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)}$	$-\frac{25}{504}$
a_{3}	$\frac{3 r^{3}+19 r^{2}+27 r+6}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)}$	$\frac{197}{33264}$
a_{4}	$\frac{-r^{4}-r^{3}+37 r^{2}+108 r+57}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)\left(2 r^{2}+19 r+42\right)}$	$\frac{1921}{3459456}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{-5 r^{5}-90 r^{4}-574 r^{3}-1579 r^{2}-1737 r-480}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)\left(2 r^{2}+19 r+42\right)\left(2 r^{2}+23 r+63\right)}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{5}=-\frac{11653}{103783680}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{r}{2 r^{2}+7 r+3}$	$-\frac{1}{14}$
a_{2}	$\frac{-r^{2}-6 r-3}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)}$	$-\frac{25}{504}$
a_{3}	$\frac{3 r^{3}+19 r^{2}+27 r+6}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)}$	$\frac{197}{33264}$
a_{4}	$\frac{-r^{4}-r^{3}+37 r^{2}+108 r+57}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)\left(2 r^{2}+19 r+42\right)}$	$\frac{1921}{3459456}$
a_{5}	$\frac{-5 r^{5}-90 r^{4}-574 r^{3}-1579 r^{2}-1737 r-480}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)\left(2 r^{2}+19 r+42\right)\left(2 r^{2}+23 r+63\right)}$	$-\frac{11653}{103783680}$

For $n=6$, using the above recursive equation gives

$$
a_{6}=\frac{7 r^{6}+140 r^{5}+1036 r^{4}+3445 r^{3}+4703 r^{2}+1050 r-1191}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)\left(2 r^{2}+19 r+42\right)\left(2 r^{2}+23 r+63\right)\left(2 r^{2}+27 r+88\right)}
$$

Which for the root $r=\frac{1}{2}$ becomes

$$
a_{6}=\frac{12923}{21171870720}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{r}{2 r^{2}+7 r+3}$	$-\frac{1}{14}$
a_{2}	$\frac{-r^{2}-6 r-3}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)}$	$-\frac{25}{504}$
a_{3}	$\frac{3 r^{3}+19 r^{2}+27 r+6}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)}$	$\frac{197}{33264}$
a_{4}	$\frac{-r^{4}-r^{3}+37 r^{2}+108 r+57}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)\left(2 r^{2}+19 r+42\right)}$	$\frac{1921}{3459456}$
a_{5}	$\frac{-5 r^{5}-90 r^{4}-574 r^{3}-1579 r^{2}-1737 r-480}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)\left(2 r^{2}+19 r+42\right)\left(2 r^{2}+23 r+63\right)}$	$-\frac{11653}{103783680}$
a_{6}	$\frac{7 r^{6}+140 r^{5}+1036 r^{4}+3445 r^{3}+4703 r^{2}+1050 r-1191}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)\left(2 r^{2}+19 r+42\right)\left(2 r^{2}+23 r+63\right)\left(2 r^{2}+27 r+88\right)}$	$\frac{12923}{21171870720}$

For $n=7$, using the above recursive equation gives
$a_{7}=\frac{3 r^{7}+133 r^{6}+2142 r^{5}+16915 r^{4}+71246 r^{3}+157543 r^{2}+160707 r+49386}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)\left(2 r^{2}+19 r+42\right)\left(2 r^{2}+23 r+63\right)\left(2 r^{2}+27 r+88\right)}$
Which for the root $r=\frac{1}{2}$ becomes

$$
a_{7}=\frac{917285}{1126343522304}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{r}{2 r^{2}+7 r+3}$	$-\frac{1}{14}$
a_{2}	$\frac{-r^{2}-6 r-3}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)}$	$-\frac{25}{504}$
a_{3}	$\frac{3 r^{3}+19 r^{2}+27 r+6}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)}$	$\frac{197}{33264}$
a_{4}	$\frac{-r^{4}-r^{3}+37 r^{2}+108 r+57}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)\left(2 r^{2}+19 r+42\right)}$	$\frac{1921}{3459456}$
a_{5}	$\frac{-5 r^{5}-90 r^{4}-574 r^{3}-1579 r^{2}-1737 r-480}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)\left(2 r^{2}+19 r+42\right)\left(2 r^{2}+23 r+63\right)}$	$-\frac{11653}{103783680}$
a_{6}	$\frac{7 r^{6}+140 r^{5}+1036 r^{4}+3445 r^{3}+4703 r^{2}+1050 r-1191}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)\left(2 r^{2}+19 r+42\right)\left(2 r^{2}+23 r+63\right)\left(2 r^{2}+27 r+88\right)}$	$\frac{12923}{21171870720}$
a_{7}	$\frac{3 r^{7}+133 r^{6}+2142 r^{5}+16915 r^{4}+71246 r^{3}+157543 r^{2}+160707 r+49386}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)\left(2 r^{2}+19 r+42\right)\left(2 r^{2}+23 r+63\right)\left(2 r^{2}+27 r+88\right)\left(2 r^{2}+31 r+117\right)}$	$\frac{917285}{1126343522304}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =\sqrt{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =\sqrt{x}\left(1-\frac{x}{14}-\frac{25 x^{2}}{504}+\frac{197 x^{3}}{33264}+\frac{1921 x^{4}}{3459456}-\frac{11653 x^{5}}{103783680}+\frac{12923 x^{6}}{21171870720}+\frac{917285 x^{7}}{1126343522304}+O(x\right.
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Eq (2B) derived above is now used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
b_{1}=-\frac{r}{2 r^{2}+7 r+3}
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
2 b_{n}(n+r)(n+r-1)+b_{n-1}(n+r-1)+5 b_{n}(n+r)+b_{n-2}-2 b_{n}=0 \tag{3}
\end{equation*}
$$

Solving for b_{n} from recursive equation (4) gives

$$
\begin{equation*}
b_{n}=-\frac{n b_{n-1}+r b_{n-1}+b_{n-2}-b_{n-1}}{2 n^{2}+4 n r+2 r^{2}+3 n+3 r-2} \tag{4}
\end{equation*}
$$

Which for the root $r=-2$ becomes

$$
\begin{equation*}
b_{n}=\frac{-n b_{n-1}-b_{n-2}+3 b_{n-1}}{n(2 n-5)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-2$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{r}{2 r^{2}+7 r+3}$	$-\frac{2}{3}$

For $n=2$, using the above recursive equation gives

$$
b_{2}=\frac{-r^{2}-6 r-3}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)}
$$

Which for the root $r=-2$ becomes

$$
b_{2}=\frac{5}{6}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{r}{2 r^{2}+7 r+3}$	$-\frac{2}{3}$
b_{2}	$\frac{-r^{2}-6 r-3}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)}$	$\frac{5}{6}$

For $n=3$, using the above recursive equation gives

$$
b_{3}=\frac{3 r^{3}+19 r^{2}+27 r+6}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)}
$$

Which for the root $r=-2$ becomes

$$
b_{3}=\frac{2}{9}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{r}{2 r^{2}+7 r+3}$	$-\frac{2}{3}$
b_{2}	$\frac{-r^{2}-6 r-3}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)}$	$\frac{5}{6}$
b_{3}	$\frac{3 r^{3}+19 r^{2}+27 r+6}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)}$	$\frac{2}{9}$

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{-r^{4}-r^{3}+37 r^{2}+108 r+57}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)\left(2 r^{2}+19 r+42\right)}
$$

Which for the root $r=-2$ becomes

$$
b_{4}=-\frac{19}{216}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{r}{2 r^{2}+7 r+3}$	$-\frac{2}{3}$
b_{2}	$\frac{-r^{2}-6 r-3}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)}$	$\frac{5}{6}$
b_{3}	$\frac{3 r^{3}+19 r^{2}+27 r+6}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)}$	$\frac{2}{9}$
b_{4}	$\frac{-r^{4}-r^{3}+37 r^{2}+108 r+57}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)\left(2 r^{2}+19 r+42\right)}$	$-\frac{19}{216}$

For $n=5$, using the above recursive equation gives
$b_{5}=\frac{-5 r^{5}-90 r^{4}-574 r^{3}-1579 r^{2}-1737 r-480}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)\left(2 r^{2}+19 r+42\right)\left(2 r^{2}+23 r+63\right)}$
Which for the root $r=-2$ becomes

$$
b_{5}=-\frac{1}{540}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{r}{2 r^{2}+7 r+3}$	$-\frac{2}{3}$
b_{2}	$\frac{-r^{2}-6 r-3}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)}$	$\frac{5}{6}$
b_{3}	$\frac{3 r^{3}+19 r^{2}+27 r+6}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)}$	$\frac{2}{9}$
b_{4}	$\frac{-r^{4}-r^{3}+37 r^{2}+108 r+57}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)\left(2 r^{2}+19 r+42\right)}$	
b_{5}	$\frac{-5 r^{5}-90 r^{4}-574 r^{3}-1579 r^{2}-1737 r-480}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)\left(2 r^{2}+19 r+42\right)\left(2 r^{2}+23 r+63\right)}$	$-\frac{1}{540}$

For $n=6$, using the above recursive equation gives

$$
b_{6}=\frac{7 r^{6}+140 r^{5}+1036 r^{4}+3445 r^{3}+4703 r^{2}+1050 r-1191}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)\left(2 r^{2}+19 r+42\right)\left(2 r^{2}+23 r+63\right)\left(2 r^{2}+27 r+88\right)}
$$

Which for the root $r=-2$ becomes

$$
b_{6}=\frac{101}{45360}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{r}{2 r^{2}+7 r+3}$	$-\frac{2}{3}$
b_{2}	$\frac{-r^{2}-6 r-3}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)}$	$\frac{5}{6}$
b_{3}	$\frac{3 r^{3}+19 r^{2}+27 r+6}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)}$	$\frac{2}{9}$
b_{4}	$\frac{-r^{4}-r^{3}+3 r^{2}+108+57}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)\left(2 r^{2}+19 r+42\right)}$	$-\frac{19}{216}$
b_{5}	$\frac{-5 r^{5}-90 r^{4}-574 r^{3}-1579 r^{2}-1737 r-480}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)\left(2 r^{2}+19 r+42\right)\left(2 r^{2}+23 r+63\right)}$	$-\frac{1}{540}$
b_{6}	$\frac{7 r^{6}+140 r^{5}+1036 r^{4}+3445 r^{3}+4703 r^{2}+1050 r-1191}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)\left(2 r^{2}+19 r+42\right)\left(2 r^{2}+23 r+63\right)\left(2 r^{2}+27 r+88\right)}$	$\frac{101}{45360}$

For $n=7$, using the above recursive equation gives
$b_{7}=\frac{3 r^{7}+133 r^{6}+2142 r^{5}+16915 r^{4}+71246 r^{3}+157543 r^{2}+160707 r+49386}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)\left(2 r^{2}+19 r+42\right)\left(2 r^{2}+23 r+63\right)\left(2 r^{2}+27 r+88\right)}$
Which for the root $r=-2$ becomes

$$
b_{7}=-\frac{4}{35721}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{r}{2 r^{2}+7 r+3}$	$-\frac{2}{3}$
b_{2}	$\frac{-r^{2}-6 r-3}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)}$	$\frac{5}{6}$
b_{3}	$\frac{3 r^{3}+19 r^{2}+27 r+6}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)}$	$\frac{2}{9}$
b_{4}	$\frac{-r^{4}-r^{3}+37 r^{2}+108 r+57}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)\left(2 r^{2}+19 r+42\right)}$	
b_{5}	$\frac{-5 r^{5}-90 r^{4}-574 r^{3}-1579 r^{2}-1737 r-480}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)\left(2 r^{2}+19 r+42\right)\left(2 r^{2}+23 r+63\right)}$	$-\frac{19}{216}$
b_{6}	$\frac{7 r^{6}+140 r^{5}+1036 r^{4}+3445 r^{3}+4703 r^{2}+1050 r-1191}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)\left(2 r^{2}+19 r+42\right)\left(2 r^{2}+23 r+63\right)\left(2 r^{2}+27 r+88\right)}$	$-\frac{1}{540}$
b_{7}	$\frac{3 r^{7}+133 r^{6}+2142 r^{5}+16915 r^{4}+71246 r^{3}+157543 r^{2}+160707 r+49386}{\left(2 r^{2}+7 r+3\right)\left(2 r^{2}+11 r+12\right)\left(2 r^{2}+15 r+25\right)\left(2 r^{2}+19 r+42\right)\left(2 r^{2}+23 r+63\right)\left(2 r^{2}+27 r+88\right)\left(2 r^{2}+31 r+117\right)}$	$-\frac{4}{35721}$

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =\sqrt{x}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots\right) \\
& =\frac{1-\frac{2 x}{3}+\frac{5 x^{2}}{6}+\frac{2 x^{3}}{9}-\frac{19 x^{4}}{216}-\frac{x^{5}}{540}+\frac{101 x^{6}}{45360}-\frac{4 x^{7}}{35721}+O\left(x^{8}\right)}{x^{2}}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\left.\begin{array}{rl}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} \sqrt{x}\left(1-\frac{x}{14}-\frac{25 x^{2}}{504}+\frac{197 x^{3}}{33264}+\frac{1921 x^{4}}{3459456}-\frac{11653 x^{5}}{103783680}+\frac{12923 x^{6}}{21171870720}\right. \\
\left.\quad+\frac{917285 x^{7}}{1126343522304}+O\left(x^{8}\right)\right)
\end{array} x^{2}\right) . \begin{gathered}
c_{2}\left(1-\frac{2 x}{3}+\frac{5 x^{2}}{6}+\frac{2 x^{3}}{9}-\frac{19 x^{4}}{216}-\frac{x^{5}}{540}+\frac{101 x^{6}}{45360}-\frac{4 x^{7}}{35721}+O\left(x^{8}\right)\right)
\end{gathered}
$$

Hence the final solution is

$$
\begin{aligned}
& y=y_{h} \\
& \begin{aligned}
= & c_{1} \sqrt{x}\left(1-\frac{x}{14}-\frac{25 x^{2}}{504}+\frac{197 x^{3}}{33264}+\frac{1921 x^{4}}{3459456}-\frac{11653 x^{5}}{103783680}+\frac{12923 x^{6}}{21171870720}\right. \\
& \left.+\frac{917285 x^{7}}{1126343522304}+O\left(x^{8}\right)\right) \\
& +\frac{c_{2}\left(1-\frac{2 x}{3}+\frac{5 x^{2}}{6}+\frac{2 x^{3}}{9}-\frac{19 x^{4}}{216}-\frac{x^{5}}{540}+\frac{101 x^{6}}{45360}-\frac{4 x^{7}}{35721}+O\left(x^{8}\right)\right)}{x^{2}}
\end{aligned}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
y= & c_{1} \sqrt{x}\left(1-\frac{x}{14}-\frac{25 x^{2}}{504}+\frac{197 x^{3}}{33264}+\frac{1921 x^{4}}{3459456}-\frac{11653 x^{5}}{103783680}+\frac{12923 x^{6}}{21171870720}\right. \\
& \left.+\frac{917285 x^{7}}{1126343522304}+O\left(x^{8}\right) 1\right)
\end{aligned}+\frac{c_{2}\left(1-\frac{2 x}{3}+\frac{5 x^{2}}{6}+\frac{2 x^{3}}{9}-\frac{19 x^{4}}{216}-\frac{x^{5}}{540}+\frac{101 x^{6}}{45360}-\frac{4 x^{7}}{35721}+O\left(x^{8}\right)\right)}{x^{2}} .
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} \sqrt{x}\left(1-\frac{x}{14}-\frac{25 x^{2}}{504}+\frac{197 x^{3}}{33264}+\frac{1921 x^{4}}{3459456}-\frac{11653 x^{5}}{103783680}+\frac{12923 x^{6}}{21171870720}\right. \\
& \left.+\frac{917285 x^{7}}{1126343522304}+O\left(x^{8}\right)\right)
\end{aligned}+\frac{c_{2}\left(1-\frac{2 x}{3}+\frac{5 x^{2}}{6}+\frac{2 x^{3}}{9}-\frac{19 x^{4}}{216}-\frac{x^{5}}{540}+\frac{101 x^{6}}{45360}-\frac{4 x^{7}}{35721}+O\left(x^{8}\right)\right)}{x^{2}} . \begin{aligned}
&
\end{aligned}
$$

Verified OK.

19.1.1 Maple step by step solution

Let's solve

$$
2 x^{2} y^{\prime \prime}+\left(x^{2}+5 x\right) y^{\prime}+\left(x^{2}-2\right) y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{\left(x^{2}-2\right) y}{2 x^{2}}-\frac{(5+x) y^{\prime}}{2 x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{(5+x) y^{\prime}}{2 x}+\frac{\left(x^{2}-2\right) y}{2 x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions

$$
\left[P_{2}(x)=\frac{5+x}{2 x}, P_{3}(x)=\frac{x^{2}-2}{2 x^{2}}\right]
$$

- $x \cdot P_{2}(x)$ is analytic at $x=0$

$$
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\frac{5}{2}
$$

- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$

$$
\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-1
$$

- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point

$$
x_{0}=0
$$

- Multiply by denominators

$$
2 x^{2} y^{\prime \prime}+x(5+x) y^{\prime}+\left(x^{2}-2\right) y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$

$$
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=1$.. 2

$$
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions

$$
a_{0}(2+r)(-1+2 r) x^{r}+\left(a_{1}(3+r)(1+2 r)+a_{0} r\right) x^{1+r}+\left(\sum _ { k = 2 } ^ { \infty } \left(a_{k}(k+r+2)(2 k+2 r-1)+a\right.\right.
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation

$$
(2+r)(-1+2 r)=0
$$

- Values of r that satisfy the indicial equation

$$
r \in\left\{-2, \frac{1}{2}\right\}
$$

- \quad Each term must be 0

$$
a_{1}(3+r)(1+2 r)+a_{0} r=0
$$

- \quad Solve for the dependent coefficient(s)
$a_{1}=-\frac{a_{0} r}{2 r^{2}+7 r+3}$
- Each term in the series must be 0 , giving the recursion relation
$2\left(k+r-\frac{1}{2}\right)(k+r+2) a_{k}+a_{k-1} k+a_{k-1} r+a_{k-2}-a_{k-1}=0$
- \quad Shift index using $k->k+2$
$2\left(k+\frac{3}{2}+r\right)(k+4+r) a_{k+2}+a_{k+1}(k+2)+a_{k+1} r+a_{k}-a_{k+1}=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+2}=-\frac{k a_{k+1}+a_{k+1} r+a_{k}+a_{k+1}}{(2 k+3+2 r)(k+4+r)}
$$

- Recursion relation for $r=-2$

$$
a_{k+2}=-\frac{k a_{k+1}+a_{k}-a_{k+1}}{(2 k-1)(k+2)}
$$

- \quad Solution for $r=-2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-2}, a_{k+2}=-\frac{k a_{k+1}+a_{k}-a_{k+1}}{(2 k-1)(k+2)}, a_{1}=-\frac{2 a_{0}}{3}\right]
$$

- Recursion relation for $r=\frac{1}{2}$
$a_{k+2}=-\frac{k a_{k+1}+a_{k}+\frac{3}{2} a_{k+1}}{(2 k+4)\left(k+\frac{9}{2}\right)}$
- \quad Solution for $r=\frac{1}{2}$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}}, a_{k+2}=-\frac{k a_{k+1}+a_{k}+\frac{3}{2} a_{k+1}}{(2 k+4)\left(k+\frac{9}{2}\right)}, a_{1}=-\frac{a_{0}}{14}\right]$
- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-2}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{2}}\right), a_{k+2}=-\frac{k a_{k+1}+a_{k}-a_{k+1}}{(2 k-1)(k+2)}, a_{1}=-\frac{2 a_{0}}{3}, b_{k+2}=-\frac{k b_{k+1}+b_{k}+\frac{3}{2} b_{k+1}}{(2 k+4)\left(k+\frac{9}{2}\right)},\right.
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Whittaker
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
    <- Whittaker successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 55

```
Order:=8;
dsolve(2*x^2*diff (y (x),x$2)+(5*x+x^2)*diff (y(x),x)+(x^2-2)*y (x)=0,y(x),type='series', x=0);
```

$y(x)$
$=\frac{c_{2} x^{\frac{5}{2}}\left(1-\frac{1}{14} x-\frac{25}{504} x^{2}+\frac{197}{33264} x^{3}+\frac{1921}{3459456} x^{4}-\frac{11653}{103783680} x^{5}+\frac{12923}{21171870720} x^{6}+\frac{917285}{1126343522304} x^{7}+\mathrm{O}\left(x^{8}\right)\right)+c_{1}}{x^{2}}$
\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 116
AsymptoticDSolveValue[2*x^2*y' ' $\left.[x]+\left(5 * x+x^{\wedge} 2\right) * y '[x]+\left(x^{\wedge} 2-2\right) * y[x]==0, y[x],\{x, 0,7\}\right]$

$$
\begin{array}{r}
y(x) \rightarrow c_{1} \sqrt{x}\left(\frac{917285 x^{7}}{1126343522304}+\frac{12923 x^{6}}{21171870720}-\frac{11653 x^{5}}{103783680}+\frac{1921 x^{4}}{3459456}+\frac{197 x^{3}}{33264}-\frac{25 x^{2}}{504}\right. \\
\left.-\frac{x}{14}+1\right)+\frac{c_{2}\left(-\frac{4 x^{7}}{35721}+\frac{101 x^{6}}{45360}-\frac{x^{5}}{540}-\frac{19 x^{4}}{216}+\frac{2 x^{3}}{9}+\frac{5 x^{2}}{6}-\frac{2 x}{3}+1\right)}{x^{2}}
\end{array}
$$

19.2 problem 1(ii)

Internal problem ID [6054]
Internal file name [OUTPUT/5302_Sunday_June_05_2022_03_33_16_PM_20004479/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 166
Problem number: 1(ii).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
4 x^{2} y^{\prime \prime}-4 y^{\prime} \mathrm{e}^{x} x+3 y \cos (x)=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
4 x^{2} y^{\prime \prime}-4 y^{\prime} \mathrm{e}^{x} x+3 y \cos (x)=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =-\frac{\mathrm{e}^{x}}{x} \\
q(x) & =\frac{3 \cos (x)}{4 x^{2}}
\end{aligned}
$$

Table 230: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{\mathrm{e}^{x}}{x}$	
singularity	type
$x=0$	"regular"
$x=\infty$	"regular"

$q(x)=\frac{3 \cos (x)}{4 x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $[0, \infty]$
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
4 x^{2} y^{\prime \prime}-4 y^{\prime} \mathrm{e}^{x} x+3 y \cos (x)=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& 4 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& -4\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right) \mathrm{e}^{x} x+3\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right) \cos (x)=0
\end{align*}
$$

Expanding $-4 x \mathrm{e}^{x}$ as Taylor series around $x=0$ and keeping only the first 8 terms gives

$$
\begin{aligned}
-4 x \mathrm{e}^{x} & =-4 x-4 x^{2}-2 x^{3}-\frac{2}{3} x^{4}-\frac{1}{6} x^{5}-\frac{1}{30} x^{6}-\frac{1}{180} x^{7}-\frac{1}{1260} x^{8}+\ldots \\
& =-4 x-4 x^{2}-2 x^{3}-\frac{2}{3} x^{4}-\frac{1}{6} x^{5}-\frac{1}{30} x^{6}-\frac{1}{180} x^{7}-\frac{1}{1260} x^{8}
\end{aligned}
$$

Expanding $3 \cos (x)$ as Taylor series around $x=0$ and keeping only the first 8 terms gives

$$
\begin{aligned}
3 \cos (x) & =3-\frac{3}{2} x^{2}+\frac{1}{8} x^{4}-\frac{1}{240} x^{6}+\frac{1}{13440} x^{8}+\ldots \\
& =3-\frac{3}{2} x^{2}+\frac{1}{8} x^{4}-\frac{1}{240} x^{6}+\frac{1}{13440} x^{8}
\end{aligned}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+7} a_{n}(n+r)}{1260}\right) \\
& \quad+\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+6} a_{n}(n+r)}{180}\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+5} a_{n}(n+r)}{30}\right) \\
& \quad+\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+4} a_{n}(n+r)}{6}\right)+\sum_{n=0}^{\infty}\left(-\frac{2 x^{n+r+3} a_{n}(n+r)}{3}\right) \tag{2~A}\\
& \quad+\sum_{n=0}^{\infty}\left(-2 x^{n+r+2} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-4 x^{1+n+r} a_{n}(n+r)\right) \\
& \quad+\sum_{n=0}^{\infty}\left(-4 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 3 a_{n} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-\frac{3 x^{n+r+2} a_{n}}{2}\right) \\
& \quad+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+4} a_{n}}{8}\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+6} a_{n}}{240}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+8} a_{n}}{13440}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left(-\frac{x^{n+r+7} a_{n}(n+r)}{1260}\right)=\sum_{n=7}^{\infty}\left(-\frac{a_{n-7}(n-7+r) x^{n+r}}{1260}\right) \\
& \sum_{n=0}^{\infty}\left(-\frac{x^{n+r+6} a_{n}(n+r)}{180}\right)=\sum_{n=6}^{\infty}\left(-\frac{a_{n-6}(n-6+r) x^{n+r}}{180}\right)
\end{aligned}
$$

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+5} a_{n}(n+r)}{30}\right) & =\sum_{n=5}^{\infty}\left(-\frac{a_{n-5}(n-5+r) x^{n+r}}{30}\right) \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+4} a_{n}(n+r)}{6}\right) & =\sum_{n=4}^{\infty}\left(-\frac{a_{n-4}(n-4+r) x^{n+r}}{6}\right) \\
\sum_{n=0}^{\infty}\left(-\frac{2 x^{n+r+3} a_{n}(n+r)}{3}\right) & =\sum_{n=3}^{\infty}\left(-\frac{2 a_{n-3}(n-3+r) x^{n+r}}{3}\right) \\
\sum_{n=0}^{\infty}\left(-2 x^{n+r+2} a_{n}(n+r)\right) & =\sum_{n=2}^{\infty}\left(-2 a_{n-2}(n+r-2) x^{n+r}\right) \\
\sum_{n=0}^{\infty}\left(-4 x^{1+n+r} a_{n}(n+r)\right) & =\sum_{n=1}^{\infty}\left(-4 a_{n-1}(n+r-1) x^{n+r}\right) \\
\sum_{n=0}^{\infty}\left(-\frac{3 x^{n+r+2} a_{n}}{2}\right) & =\sum_{n=2}^{\infty}\left(-\frac{3 a_{n-2} x^{n+r}}{2}\right) \\
\sum_{n=0}^{\infty} \frac{x^{n+r+4} a_{n}}{8} & =\sum_{n=4}^{\infty} \frac{a_{n-4} x^{n+r}}{8} \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+6} a_{n}}{240}\right) & =\sum_{n=6}^{\infty}\left(-\frac{a_{n-6} x^{n+r}}{240}\right) \\
\sum_{n=0}^{\infty} \frac{x^{n+r+8} a_{n}}{13440} & =\sum_{n=8}^{\infty} \frac{a_{n-8} x^{n+r}}{13440}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers
of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=7}^{\infty}\left(-\frac{a_{n-7}(n-7+r) x^{n+r}}{1260}\right) \\
& \quad+\sum_{n=6}^{\infty}\left(-\frac{a_{n-6}(n-6+r) x^{n+r}}{180}\right)+\sum_{n=5}^{\infty}\left(-\frac{a_{n-5}(n-5+r) x^{n+r}}{30}\right) \\
& \quad+\sum_{n=4}^{\infty}\left(-\frac{a_{n-4}(n-4+r) x^{n+r}}{6}\right)+\sum_{n=3}^{\infty}\left(-\frac{2 a_{n-3}(n-3+r) x^{n+r}}{3}\right) \tag{2B}\\
& \quad+\sum_{n=2}^{\infty}\left(-2 a_{n-2}(n+r-2) x^{n+r}\right)+\sum_{n=1}^{\infty}\left(-4 a_{n-1}(n+r-1) x^{n+r}\right) \\
& \quad+\sum_{n=0}^{\infty}\left(-4 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 3 a_{n} x^{n+r}\right)+\sum_{n=2}^{\infty}\left(-\frac{3 a_{n-2} x^{n+r}}{2}\right) \\
& \quad+\left(\sum_{n=4}^{\infty} \frac{a_{n-4} x^{n+r}}{8}\right)+\sum_{n=6}^{\infty}\left(-\frac{a_{n-6} x^{n+r}}{240}\right)+\left(\sum_{n=8}^{\infty} \frac{a_{n-8} x^{n+r}}{13440}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
4 x^{n+r} a_{n}(n+r)(n+r-1)-4 x^{n+r} a_{n}(n+r)+3 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
4 x^{r} a_{0} r(-1+r)-4 x^{r} a_{0} r+3 a_{0} x^{r}=0
$$

Or

$$
\left(4 x^{r} r(-1+r)-4 x^{r} r+3 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(4 r^{2}-8 r+3\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
4 r^{2}-8 r+3=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{3}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(4 r^{2}-8 r+3\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=1$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x^{\frac{3}{2}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\sqrt{x}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{3}{2}} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{2}}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=\frac{4 r}{4 r^{2}-1}
$$

Substituting $n=2$ in Eq. (2B) gives

$$
a_{2}=\frac{8 r^{2}+10 r-1}{16 r^{3}+8 r^{2}-4 r-2}
$$

Substituting $n=3$ in Eq. (2B) gives

$$
a_{3}=\frac{16 r^{4}+104 r^{3}+260 r^{2}+154 r-12}{96 r^{5}+432 r^{4}+528 r^{3}+72 r^{2}-138 r-45}
$$

Substituting $n=4$ in Eq. (2B) gives

$$
a_{4}=\frac{128 r^{6}+2272 r^{5}+14096 r^{4}+40832 r^{3}+54968 r^{2}+23922 r-2097}{3072\left(r+\frac{1}{2}\right)^{2}\left(r+\frac{3}{2}\right)\left(r+\frac{7}{2}\right)\left(r-\frac{1}{2}\right)\left(r+\frac{5}{2}\right)^{2}}
$$

Substituting $n=5$ in Eq. (2B) gives

$$
a_{5}=\frac{128 r^{8}+5184 r^{7}+63840 r^{6}+386800 r^{5}+1320392 r^{4}+2573796 r^{3}+2595110 r^{2}+925655 r-83940}{30(2 r+1)^{2}(3+2 r)(2 r+7)(2 r-1)(2 r+5)^{2}\left(4 r^{2}+32 r+63\right)}
$$

Substituting $n=6$ in Eq. (2B) gives

$$
a_{6}=\frac{2048 r^{10}+166400 r^{9}+3645184 r^{8}+39318272 r^{7}+248963968 r^{6}+989572160 r^{5}+2499293216 r^{4}+38}{1474560\left(r+\frac{9}{2}\right)^{2}\left(r+\frac{1}{2}\right)^{2}\left(r+\frac{3}{2}\right)\left(r+\frac{7}{2}\right)^{2}\left(r-\frac{1}{2}\right)(r+}
$$

Substituting $n=7$ in Eq. (2B) gives

$$
a_{7}=\frac{2048 r^{12}+316416 r^{11}+11362816 r^{10}+198127872 r^{9}+2053881088 r^{8}+13811070336 r^{7}+6266304147}{1260(2 r+9)^{2}(2 r+1)^{2}(3+2 r)(2 r}
$$

For $8 \leq n$ the recursive equation is

$$
\begin{align*}
& 4 a_{n}(n+r)(n+r-1)-\frac{a_{n-7}(n-7+r)}{1260}-\frac{a_{n-6}(n-6+r)}{180} \\
& -\frac{a_{n-5}(n-5+r)}{30}-\frac{a_{n-4}(n-4+r)}{6}-\frac{2 a_{n-3}(n-3+r)}{3}-2 a_{n-2}(n+r-2) \tag{3}\\
& -4 a_{n-1}(n+r-1)-4 a_{n}(n+r)+3 a_{n}-\frac{3 a_{n-2}}{2}+\frac{a_{n-4}}{8}-\frac{a_{n-6}}{240}+\frac{a_{n-8}}{13440}=0
\end{align*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\underline{32 n a_{n-7}+224 n a_{n-6}+1344 n a_{n-5}+6720 n a_{n-4}+26880 n a_{n-3}+80640 n a_{n-2}+161280 n a_{n-1}+32 r} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{3}{2}$ becomes

$$
\begin{equation*}
a_{n}=\frac{32\left(a_{n-7}+7 a_{n-6}+42 a_{n-5}+210 a_{n-4}+840 a_{n-3}+2520 a_{n-2}+5040 a_{n-1}\right) n-3 a_{n-8}-176 a_{n-7}-84}{161280 n(1+n)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{3}{2}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$
a_{0}	1
a_{1}	$\frac{4 r}{4 r^{2}-1}$
a_{2}	$\frac{8 r^{2}+10 r-1}{16 r^{3}+8 r^{2}-4 r-2}$
a_{3}	$\frac{16 r^{4}+104 r^{3}+260 r^{2}+154 r-12}{96 r^{5}+432 r^{4}+528 r^{3}+72 r^{2}-138 r-45}$
a_{4}	$\frac{128 r^{6}+2272 r^{5}+14096 r^{4}+40832 r^{3}+54968 r^{2}+23922 r-2097}{3072\left(r+\frac{1}{2}\right)^{2}\left(r+\frac{3}{2}\right)\left(r+\frac{7}{2}\right)\left(r-\frac{1}{2}\right)\left(r+\frac{5}{2}\right)^{2}}$
a_{5}	$\frac{128 r^{8}+5184 r^{7}+63840 r^{6}+386800 r^{5}+1320392 r^{4}+2573796 r^{3}+2595110 r^{2}+925655 r-83940}{30(2 r+1)^{2}(3+2 r)(2 r+7)(2 r-1)(2 r+5)^{2}\left(4 r^{2}+32 r+63\right)}$
a_{6}	$\frac{2048 r^{10}+166400 r^{9}+3645184 r^{8}+39318272 r^{7}+248963968 r^{6}+989572160 r^{5}+2499293216 r^{4}+3862419888 r^{3}+3238012464 r^{2}+1002158970 r-}{1474560\left(r+\frac{9}{2}\right)^{2}\left(r+\frac{1}{2}\right)^{2}\left(r+\frac{3}{2}\right)\left(r+\frac{7}{2}\right)^{2}\left(r-\frac{1}{2}\right)\left(r+\frac{5}{2}\right)^{2}\left(r+\frac{11}{2}\right)}$
a_{7}	$\frac{2048 r^{12}+316416 r^{11}+11362816 r^{10}+198127872 r^{9}+2053881088 r^{8}+13811070336 r^{7}+62663041472 r^{6}+193775095008 r^{5}+401584712904 r^{4}+}{1260(2 r+9)^{2}(2 r+1)^{2}(3+2 r)(2 r+7)^{2}(2 r-1)(2 r+5)^{2}(2 r+11)\left(4 r^{2}+48 r+1\right.}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{\frac{3}{2}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =x^{\frac{3}{2}}\left(1+\frac{3 x}{4}+\frac{x^{2}}{2}+\frac{103 x^{3}}{384}+\frac{669 x^{4}}{5120}+\frac{54731 x^{5}}{921600}+\frac{123443 x^{6}}{4838400}+\frac{30273113 x^{7}}{2890137600}+O\left(x^{8}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=1$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{1}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{1} \\
& =\frac{4 r}{4 r^{2}-1}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{4 r}{4 r^{2}-1} & =\lim _{r \rightarrow \frac{1}{2}} \frac{4 r}{4 r^{2}-1} \\
& =\text { undefined }
\end{aligned}
$$

Since the limit does not exist then the log term is needed. Therefore the second solution has the form

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Therefore

$$
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
$$

Substituting these back into the given ode $4 x^{2} y^{\prime \prime}-4 y^{\prime} \mathrm{e}^{x} x+3 y \cos (x)=0$ gives

$$
\begin{aligned}
& 4 x^{2}\left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \\
& -4\left(C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)\right) \mathrm{e}^{x} x \\
& +3\left(C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)\right) \cos (x)=0
\end{aligned}
$$

Which can be written as

$$
\begin{align*}
& \left(\left(-4 \mathrm{e}^{x} y_{1}^{\prime}(x) x+4 y_{1}^{\prime \prime}(x) x^{2}+3 \cos (x) y_{1}(x)\right) \ln (x)\right. \\
& \left.+4 x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)-4 y_{1}(x) \mathrm{e}^{x}\right) C-4\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \mathrm{e}^{x} x \tag{7}\\
& +4 x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \\
& +3\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right) \cos (x)=0
\end{align*}
$$

But since $y_{1}(x)$ is a solution to the ode, then

$$
-4 \mathrm{e}^{x} y_{1}^{\prime}(x) x+4 y_{1}^{\prime \prime}(x) x^{2}+3 \cos (x) y_{1}(x)=0
$$

Eq (7) simplifes to

$$
\begin{align*}
& \left(4 x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)-4 y_{1}(x) \mathrm{e}^{x}\right) C-4\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \mathrm{e}^{x} x \\
& +4 x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{8}\\
& +3\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right) \cos (x)=0
\end{align*}
$$

Substituting $y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}$ into the above gives

$$
\begin{align*}
& \left(8\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) x-4\left(\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\right)\left(1+\mathrm{e}^{x}\right)\right) C \\
& -4\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \mathrm{e}^{x} x \tag{9}\\
& +4\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right) x^{2}+3\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right) \cos (x)=0
\end{align*}
$$

Since $r_{1}=\frac{3}{2}$ and $r_{2}=\frac{1}{2}$ then the above becomes

$$
\begin{align*}
& \left(8\left(\sum_{n=0}^{\infty} x^{n+\frac{1}{2}} a_{n}\left(n+\frac{3}{2}\right)\right) x-4\left(\sum_{n=0}^{\infty} a_{n} x^{n+\frac{3}{2}}\right)\left(1+\mathrm{e}^{x}\right)\right) C \\
& -4\left(\sum_{n=0}^{\infty} x^{-\frac{1}{2}+n} b_{n}\left(n+\frac{1}{2}\right)\right) \mathrm{e}^{x} x \tag{10}\\
& +4\left(\sum_{n=0}^{\infty} x^{-\frac{3}{2}+n} b_{n}\left(n+\frac{1}{2}\right)\left(-\frac{1}{2}+n\right)\right) x^{2}+3\left(\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{2}}\right) \cos (x)=0
\end{align*}
$$

Expanding $-4 C x^{\frac{3}{2}}$ as Taylor series around $x=0$ and keeping only the first 8 terms gives

$$
\begin{aligned}
-4 C x^{\frac{3}{2}} & =-4 C x^{\frac{3}{2}}+\ldots \\
& =-4 C x^{\frac{3}{2}}
\end{aligned}
$$

Expanding $-4 C x^{\frac{3}{2}} \mathrm{e}^{x}$ as Taylor series around $x=0$ and keeping only the first 8 terms gives

$$
\begin{aligned}
-4 C x^{\frac{3}{2}} \mathrm{e}^{x} & =-4 C x^{\frac{3}{2}}-4 C x^{\frac{5}{2}}-2 C x^{\frac{7}{2}}-\frac{2 C x^{\frac{9}{2}}}{3}-\frac{C x^{\frac{11}{2}}}{6}-\frac{C x^{\frac{13}{2}}}{30}-\frac{C x^{\frac{15}{2}}}{180}-\frac{C x^{\frac{17}{2}}}{1260}+\ldots \\
& =-4 C x^{\frac{3}{2}}-4 C x^{\frac{5}{2}}-2 C x^{\frac{7}{2}}-\frac{2 C x^{\frac{9}{2}}}{3}-\frac{C x^{\frac{11}{2}}}{6}-\frac{C x^{\frac{13}{2}}}{30}-\frac{C x^{\frac{15}{2}}}{180}-\frac{C x^{\frac{17}{2}}}{1260}
\end{aligned}
$$

Expanding $-2 \sqrt{x} \mathrm{e}^{x}$ as Taylor series around $x=0$ and keeping only the first 8 terms gives

$$
\begin{aligned}
-2 \sqrt{x} \mathrm{e}^{x} & =-2 \sqrt{x}-2 x^{\frac{3}{2}}-x^{\frac{5}{2}}-\frac{x^{\frac{7}{2}}}{3}-\frac{x^{\frac{9}{2}}}{12}-\frac{x^{\frac{11}{2}}}{60}-\frac{x^{\frac{13}{2}}}{360}-\frac{x^{\frac{15}{2}}}{2520}+\ldots \\
& =-2 \sqrt{x}-2 x^{\frac{3}{2}}-x^{\frac{5}{2}}-\frac{x^{\frac{7}{2}}}{3}-\frac{x^{\frac{9}{2}}}{12}-\frac{x^{\frac{11}{2}}}{60}-\frac{x^{\frac{13}{2}}}{360}-\frac{x^{\frac{15}{2}}}{2520}
\end{aligned}
$$

Expanding $3 \cos (x)$ as Taylor series around $x=0$ and keeping only the first 8 terms gives

$$
\begin{aligned}
3 \cos (x) & =3-\frac{3}{2} x^{2}+\frac{1}{8} x^{4}-\frac{1}{240} x^{6}+\frac{1}{13440} x^{8}+\ldots \\
& =3-\frac{3}{2} x^{2}+\frac{1}{8} x^{4}-\frac{1}{240} x^{6}+\frac{1}{13440} x^{8}
\end{aligned}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty}(8 n+12) C a_{n} x^{n+\frac{3}{2}}\right)+2\left(\sum_{n=0}^{\infty}\left(-4 C x^{n+\frac{3}{2}} a_{n}\right)\right) \\
& +\sum_{n=0}^{\infty}\left(-4 C x^{n+\frac{5}{2}} a_{n}\right)+\sum_{n=0}^{\infty}\left(-2 C x^{n+\frac{7}{2}} a_{n}\right)+\sum_{n=0}^{\infty}\left(-\frac{2 C x^{n+\frac{9}{2}} a_{n}}{3}\right) \\
& \quad+\sum_{n=0}^{\infty}\left(-\frac{C x^{n+\frac{11}{2}} a_{n}}{6}\right)+\sum_{n=0}^{\infty}\left(-\frac{C x^{n+\frac{13}{2}} a_{n}}{30}\right) \\
& \quad+\sum_{n=0}^{\infty}\left(-\frac{C x^{n+\frac{15}{2}} a_{n}}{180}\right)+\sum_{n=0}^{\infty}\left(-\frac{C x^{n+\frac{17}{2}} a_{n}}{1260}\right) \\
& \quad+\sum_{n=0}^{\infty}\left(-\frac{x^{n+\frac{15}{2}} b_{n}(2 n+1)}{2520}\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+\frac{13}{2}} b_{n}(2 n+1)}{360}\right) \tag{2~A}\\
& \quad+\sum_{n=0}^{\infty}\left(-\frac{x^{n+\frac{11}{2}} b_{n}(2 n+1)}{60}\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+\frac{9}{2}} b_{n}(2 n+1)}{12}\right) \\
& \quad+\sum_{n=0}^{\infty}\left(-\frac{x^{n+\frac{7}{2}} b_{n}(2 n+1)}{3}\right)+\left(\sum_{n=0}^{\infty} x^{n+\frac{5}{2}} b_{n}(-2 n-1)\right) \\
& \quad+\left(\sum_{n=0}^{\infty}(-4 n-2) b_{n} x^{n+\frac{3}{2}}\right)+\left(\sum_{n=0}^{\infty}(-4 n-2) b_{n} x^{n+\frac{1}{2}}\right) \\
& \\
& \quad+\left(\sum_{n=0}^{\infty} x^{n+\frac{1}{2}} b_{n}\left(4 n^{2}-1\right)\right)+\left(\sum_{n=0}^{\infty} 3 b_{n} x^{n+\frac{1}{2}}\right)+\sum_{n=0}^{\infty}\left(-\frac{3 x^{n+\frac{5}{2}} b_{n}}{2}\right) \\
& \quad+\left(\sum_{n=0}^{\infty} \frac{x^{n+\frac{9}{2}} b_{n}}{8}\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+\frac{13}{2}} b_{n}}{240}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+\frac{17}{2}} b_{n}}{13440}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+\frac{1}{2}$ in each summation term. Going over each summation term above with power of x in it which is not already $x^{n+\frac{1}{2}}$ and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty}(8 n+12) C a_{n} x^{n+\frac{3}{2}} & =\sum_{n=1}^{\infty} C a_{n-1}(8 n+4) x^{n+\frac{1}{2}} \\
\sum_{n=0}^{\infty}\left(-4 C x^{n+\frac{3}{2}} a_{n}\right) & =\sum_{n=1}^{\infty}\left(-4 C a_{n-1} x^{n+\frac{1}{2}}\right) \\
\sum_{n=0}^{\infty}\left(-4 C x^{n+\frac{3}{2}} a_{n}\right) & =\sum_{n=1}^{\infty}\left(-4 C a_{n-1} x^{n+\frac{1}{2}}\right)
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\sum_{n=0}^{\infty}\left(-4 C x^{n+\frac{5}{2}} a_{n}\right) & =\sum_{n=2}^{\infty}\left(-4 C a_{n-2} x^{n+\frac{1}{2}}\right) \\
\sum_{n=0}^{\infty}\left(-2 C x^{n+\frac{7}{2}} a_{n}\right) & =\sum_{n=3}^{\infty}\left(-2 C a_{n-3} x^{n+\frac{1}{2}}\right) \\
\sum_{n=0}^{\infty}\left(-\frac{2 C x^{n+\frac{9}{2}} a_{n}}{3}\right) & =\sum_{n=4}^{\infty}\left(-\frac{2 C a_{n-4} x^{n+\frac{1}{2}}}{3}\right) \\
\sum_{n=0}^{\infty}\left(-\frac{C x^{n+\frac{11}{2}} a_{n}}{6}\right) & =\sum_{n=5}^{\infty}\left(-\frac{C a_{n-5} x^{n+\frac{1}{2}}}{6}\right) \\
\sum_{n=0}^{\infty}\left(-\frac{C x^{n+\frac{13}{2}} a_{n}}{30}\right) & =\sum_{n=6}^{\infty}\left(-\frac{C a_{n-6} x^{n+\frac{1}{2}}}{30}\right) \\
\sum_{n=0}^{\infty}\left(-\frac{C x^{n+\frac{15}{2}} a_{n}}{180}\right) & =\sum_{n=7}^{\infty}\left(-\frac{C a_{n-7} x^{n+\frac{1}{2}}}{180}\right) \\
\sum_{n=0}^{\infty}\left(-\frac{C x^{n+\frac{17}{2}} a_{n}}{1260}\right) & =\sum_{n=8}^{\infty}\left(-\frac{C a_{n-8} x^{n+\frac{1}{2}}}{1260}\right) \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+\frac{15}{2}} b_{n}(2 n+1)}{2520}\right) & =\sum_{n=7}^{\infty}\left(-\frac{b_{n-7}(2 n-13) x^{n+\frac{1}{2}}}{2520}\right) \\
\sum_{n=0}^{\infty} x^{n+\frac{5}{2}} b_{n}(-2 n-1) & =\sum_{n=2}^{\infty} b_{n-2}(-2 n+3) x^{n+\frac{1}{2}} \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+\frac{13}{2}} b_{n}(2 n+1)}{360}\right) & =\sum_{n=6}^{\infty}\left(-\frac{b_{n-6}(2 n-11) x^{n+\frac{1}{2}}}{360}\right) \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+\frac{9}{2}} b_{n}(2 n+1)}{12}\right) & =\sum_{n=4}^{\infty}\left(-\frac{b_{n-4}(2 n-7) x^{n+\frac{1}{2}}}{12}\right) \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+\frac{11}{2}} b_{n}(2 n+1)}{60} b_{n}(2 n+1)\right. \\
\left.\sum_{n=0}^{\infty}\right) & =\sum_{n=3}^{\infty}\left(-\frac{b_{n-3}(2 n-5) x^{n+\frac{1}{2}}}{3}\right) \\
\left(-\frac{b_{n-5}(2 n-9) x^{n+\frac{1}{2}}}{60}\right) \\
\left(-\left(-\frac{x^{n}}{\infty}(-2\right.\right.
\end{array}\right)
$$

$$
\begin{aligned}
\sum_{n=0}^{\infty}(-4 n-2) b_{n} x^{n+\frac{3}{2}} & =\sum_{n=1}^{\infty} b_{n-1}(-4 n+2) x^{n+\frac{1}{2}} \\
\sum_{n=0}^{\infty}\left(-\frac{3 x^{n+\frac{5}{2}} b_{n}}{2}\right) & =\sum_{n=2}^{\infty}\left(-\frac{3 b_{n-2} x^{n+\frac{1}{2}}}{2}\right) \\
\sum_{n=0}^{\infty} \frac{x^{n+\frac{9}{2}} b_{n}}{8} & =\sum_{n=4}^{\infty} \frac{b_{n-4} x^{n+\frac{1}{2}}}{8} \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+\frac{13}{2}} b_{n}}{240}\right) & =\sum_{n=6}^{\infty}\left(-\frac{b_{n-6} x^{n+\frac{1}{2}}}{240}\right) \\
\sum_{n=0}^{\infty} \frac{x^{n+\frac{17}{2}} b_{n}}{13440} & =\sum_{n=8}^{\infty} \frac{b_{n-8} x^{n+\frac{1}{2}}}{13440}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers
of x are the same and equal to $n+\frac{1}{2}$.

$$
\begin{align*}
& \left(\sum_{n=1}^{\infty} C a_{n-1}(8 n+4) x^{n+\frac{1}{2}}\right)+2\left(\sum_{n=1}^{\infty}\left(-4 C a_{n-1} x^{n+\frac{1}{2}}\right)\right) \\
& +\sum_{n=2}^{\infty}\left(-4 C a_{n-2} x^{n+\frac{1}{2}}\right)+\sum_{n=3}^{\infty}\left(-2 C a_{n-3} x^{n+\frac{1}{2}}\right) \\
& \quad+\sum_{n=4}^{\infty}\left(-\frac{2 C a_{n-4} x^{n+\frac{1}{2}}}{3}\right)+\sum_{n=5}^{\infty}\left(-\frac{C a_{n-5} x^{n+\frac{1}{2}}}{6}\right) \\
& \quad+\sum_{n=6}^{\infty}\left(-\frac{C a_{n-6} x^{n+\frac{1}{2}}}{30}\right)+\sum_{n=7}^{\infty}\left(-\frac{C a_{n-7} x^{n+\frac{1}{2}}}{180}\right) \\
& \quad+\sum_{n=8}^{\infty}\left(-\frac{C a_{n-8} x^{n+\frac{1}{2}}}{1260}\right)+\sum_{n=7}^{\infty}\left(-\frac{b_{n-7}(2 n-13) x^{n+\frac{1}{2}}}{2520}\right) \\
& \quad+\sum_{n=6}^{\infty}\left(-\frac{b_{n-6}(2 n-11) x^{n+\frac{1}{2}}}{360}\right)+\sum_{n=5}^{\infty}\left(-\frac{b_{n-5}(2 n-9) x^{n+\frac{1}{2}}}{60}\right) \tag{2B}\\
& \quad+\sum_{n=4}^{\infty}\left(-\frac{b_{n-4}(2 n-7) x^{n+\frac{1}{2}}}{12}\right)+\sum_{n=3}^{\infty}\left(-\frac{b_{n-3}(2 n-5) x^{n+\frac{1}{2}}}{3}\right) \\
& \quad+\left(\sum_{n=2}^{\infty} b_{n-2}(-2 n+3) x^{n+\frac{1}{2}}\right)+\left(\sum_{n=1}^{\infty} b_{n-1}(-4 n+2) x^{n+\frac{1}{2}}\right) \\
& \quad+\left(\sum_{n=0}^{\infty}(-4 n-2) b_{n} x^{n+\frac{1}{2}}\right)+\left(\sum_{n=0}^{\infty} x^{n+\frac{1}{2}} b_{n}\left(4 n^{2}-1\right)\right) \\
& \quad+\left(\sum_{n=0}^{\infty} 3 b_{n} x^{n+\frac{1}{2}}\right)+\sum_{n=2}^{\infty}\left(-\frac{3 b_{n-2} x^{n+\frac{1}{2}}}{2}\right)+\left(\sum_{n=4}^{\infty} \frac{b_{n-4} x^{n+\frac{1}{2}}}{8}\right) \\
& \quad+\sum_{n=6}^{\infty}\left(-\frac{b_{n-6} x^{n+\frac{1}{2}}}{240}\right)+\left(\sum_{n=8}^{\infty} \frac{b_{n-8} x^{n+\frac{1}{2}}}{13440}\right)=0
\end{align*}
$$

For $n=0$ in Eq. (2B), we choose arbitray value for b_{0} as $b_{0}=1$. For $n=N$, where $N=1$ which is the difference between the two roots, we are free to choose $b_{1}=0$. Hence for $n=1$, Eq (2B) gives

$$
4 C-2=0
$$

Which is solved for C. Solving for C gives

$$
C=\frac{1}{2}
$$

For $n=2, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
4\left(-a_{0}+3 a_{1}\right) C-\frac{5 b_{0}}{2}-6 b_{1}+8 b_{2}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
8 b_{2}=0
$$

Solving the above for b_{2} gives

$$
b_{2}=0
$$

For $n=3, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
2\left(-a_{0}-2 a_{1}+10 a_{2}\right) C-\frac{b_{0}}{3}-\frac{9 b_{1}}{2}-10 b_{2}+24 b_{3}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
\frac{13}{6}+24 b_{3}=0
$$

Solving the above for b_{3} gives

$$
b_{3}=-\frac{13}{144}
$$

For $n=4, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\frac{2\left(-a_{0}-3 a_{1}-6 a_{2}+42 a_{3}\right) C}{3}+48 b_{4}+\frac{b_{0}}{24}-b_{1}-\frac{13 b_{2}}{2}-14 b_{3}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
\frac{1715}{576}+48 b_{4}=0
$$

Solving the above for b_{4} gives

$$
b_{4}=-\frac{1715}{27648}
$$

For $n=5, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\frac{\left(-a_{0}-4 a_{1}-12 a_{2}-24 a_{3}+216 a_{4}\right) C}{6}-\frac{17 b_{3}}{2}-18 b_{4}+80 b_{5}-\frac{b_{0}}{60}-\frac{b_{1}}{8}-\frac{5 b_{2}}{3}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
\frac{6565}{2304}+80 b_{5}=0
$$

Solving the above for b_{5} gives

$$
b_{5}=-\frac{1313}{36864}
$$

For $n=6, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\frac{\left(-a_{0}-5 a_{1}-20 a_{2}-60 a_{3}-120 a_{4}+1320 a_{5}\right) C}{30}-\frac{7 b_{2}}{24}-\frac{7 b_{3}}{3}-\frac{21 b_{4}}{2}-22 b_{5}+120 b_{6}-\frac{b_{0}}{144}-\frac{b_{1}}{20}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
\frac{2999423}{1382400}+120 b_{6}=0
$$

Solving the above for b_{6} gives

$$
b_{6}=-\frac{2999423}{165888000}
$$

For $n=7, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\frac{\left(-a_{0}-6 a_{1}-30 a_{2}-120 a_{3}-360 a_{4}-720 a_{5}+9360 a_{6}\right) C}{180}-\frac{b_{1}}{80}-\frac{b_{2}}{12}-\frac{11 b_{3}}{24}-3 b_{4}-\frac{25 b_{5}}{2}-26 b_{6}+168 b_{7}-\frac{b_{0}}{2520}
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
\frac{204656267}{145152000}+168 b_{7}=0
$$

Solving the above for b_{7} gives

$$
b_{7}=-\frac{204656267}{24385536000}
$$

Now that we found all b_{n} and C, we can calculate the second solution from

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Using the above value found for $C=\frac{1}{2}$ and all b_{n}, then the second solution becomes

$$
\begin{aligned}
& y_{2}(x)= \frac{1}{2}\left(x ^ { \frac { 3 } { 2 } } \left(1+\frac{3 x}{4}+\frac{x^{2}}{2}+\frac{103 x^{3}}{384}+\frac{669 x^{4}}{5120}+\frac{54731 x^{5}}{921600}+\frac{123443 x^{6}}{4838400}+\frac{30273113 x^{7}}{2890137600}\right.\right. \\
&\left.\left.+O\left(x^{8}\right)\right)\right) \ln (x) \\
&+\sqrt{x}\left(1-\frac{13 x^{3}}{144}-\frac{1715 x^{4}}{27648}-\frac{1313 x^{5}}{36864}-\frac{2999423 x^{6}}{165888000}-\frac{204656267 x^{7}}{24385536000}+O\left(x^{8}\right)\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{\frac{3}{2}}\left(1+\frac{3 x}{4}+\frac{x^{2}}{2}+\frac{103 x^{3}}{384}+\frac{669 x^{4}}{5120}+\frac{54731 x^{5}}{921600}+\frac{123443 x^{6}}{4838400}+\frac{30273113 x^{7}}{2890137600}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(\frac{1}{2}\left(x^{\frac{3}{2}}\left(1+\frac{3 x}{4}+\frac{x^{2}}{2}+\frac{103 x^{3}}{384}+\frac{669 x^{4}}{5120}+\frac{54731 x^{5}}{921600}+\frac{123443 x^{6}}{4838400}+\frac{30273113 x^{7}}{2890137600}+O\left(x^{8}\right)\right)\right) \ln (x)\right. \\
& \left.+\sqrt{x}\left(1-\frac{13 x^{3}}{144}-\frac{1715 x^{4}}{27648}-\frac{1313 x^{5}}{36864}-\frac{2999423 x^{6}}{165888000}-\frac{204656267 x^{7}}{24385536000}+O\left(x^{8}\right)\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{\frac{3}{2}}\left(1+\frac{3 x}{4}+\frac{x^{2}}{2}+\frac{103 x^{3}}{384}+\frac{669 x^{4}}{5120}+\frac{54731 x^{5}}{921600}+\frac{123443 x^{6}}{4838400}+\frac{30273113 x^{7}}{2890137600}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(\frac{x^{\frac{3}{2}}\left(1+\frac{3 x}{4}+\frac{x^{2}}{2}+\frac{103 x^{3}}{384}+\frac{669 x^{4}}{5120}+\frac{54731 x^{5}}{921600}+\frac{123443 x^{6}}{4838400}+\frac{30273113 x^{7}}{2890137600}+O\left(x^{8}\right)\right) \ln (x)}{2}\right. \\
& \left.+\sqrt{x}\left(1-\frac{13 x^{3}}{144}-\frac{1715 x^{4}}{27648}-\frac{1313 x^{5}}{36864}-\frac{2999423 x^{6}}{165888000}-\frac{204656267 x^{7}}{24385536000}+O\left(x^{8}\right)\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x^{\frac{3}{2}}\left(1+\frac{3 x}{4}+\frac{x^{2}}{2}+\frac{103 x^{3}}{384}+\frac{669 x^{4}}{5120}+\frac{54731 x^{5}}{921600}+\frac{123443 x^{6}}{4838400}+\frac{30273113 x^{7}}{2890137600}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(\frac{x^{\frac{3}{2}}\left(1+\frac{3 x}{4}+\frac{x^{2}}{2}+\frac{103 x^{3}}{384}+\frac{669 x^{4}}{5120}+\frac{54731 x^{5}}{921600}+\frac{123443 x^{6}}{4838400}+\frac{30273113 x^{7}}{2890137600}+O\left(x^{8}\right)\right) \ln (x)}{2}\right. \\
& \left.+\sqrt{x}\left(1-\frac{13 x^{3}}{144}-\frac{1715 x^{4}}{27648}-\frac{1313 x^{5}}{36864}-\frac{2999423 x^{6}}{165888000}-\frac{204656267 x^{7}}{24385536000}+O\left(x^{8}\right)\right)\right) \tag{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x^{\frac{3}{2}}\left(1+\frac{3 x}{4}+\frac{x^{2}}{2}+\frac{103 x^{3}}{384}+\frac{669 x^{4}}{5120}+\frac{54731 x^{5}}{921600}+\frac{123443 x^{6}}{4838400}+\frac{30273113 x^{7}}{2890137600}+O\left(x^{8}\right)\right) \\
+ & c_{2}\left(\frac{x^{\frac{3}{2}}\left(1+\frac{3 x}{4}+\frac{x^{2}}{2}+\frac{103 x^{3}}{384}+\frac{669 x^{4}}{5120}+\frac{54731 x^{5}}{921600}+\frac{123443 x^{6}}{4838400}+\frac{30273113 x^{7}}{2890137600}+O\left(x^{8}\right)\right) \ln (x)}{2}\right. \\
& \left.+\sqrt{x}\left(1-\frac{13 x^{3}}{144}-\frac{1715 x^{4}}{27648}-\frac{1313 x^{5}}{36864}-\frac{2999423 x^{6}}{165888000}-\frac{204656267 x^{7}}{24385536000}+O\left(x^{8}\right)\right)\right)
\end{aligned}
$$

Verified OK.
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x})$, dx)) * 2F1([a
\rightarrow Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F} 1$
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
-> trying with_periodic_functions in the coefficients
--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way $=5$
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power © Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})$) $* 2 \mathrm{~F} 1$
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
-> trying with_periodic_functions in the coefficients
--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way $=5$
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F} 1$
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing 546
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu
-> trying a solution of the form $r 0(x) * Y+r 1(x) * Y$ where $Y=\exp (i n t(r(x), d x)) *$
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 81

```
Order:=8;
dsolve(4*x^2*diff (y(x),x$2)-4*x*exp(x)*diff (y(x),x)+3*\operatorname{cos}(x)*y(x)=0,y(x),type='series', x=0);
```

$y(x)=\left(x\left(1+\frac{3}{4} x+\frac{1}{2} x^{2}+\frac{103}{384} x^{3}+\frac{669}{5120} x^{4}+\frac{54731}{921600} x^{5}+\frac{123443}{4838400} x^{6}+\frac{30273113}{2890137600} x^{7}\right.\right.$

$$
\left.+\mathrm{O}\left(x^{8}\right)\right) c_{1}
$$

$$
+c_{2}\left(\ln (x)\left(\frac{1}{2} x+\frac{3}{8} x^{2}+\frac{1}{4} x^{3}+\frac{103}{768} x^{4}+\frac{669}{10240} x^{5}+\frac{54731}{1843200} x^{6}+\frac{123443}{9676800} x^{7}+\mathrm{O}\left(x^{8}\right)\right)\right.
$$

$$
\left.\left.+\left(1+x+\frac{3}{4} x^{2}+\frac{59}{144} x^{3}+\frac{5701}{27648} x^{4}+\frac{17519}{184320} x^{5}+\frac{6852157}{165888000} x^{6}+\frac{417496453}{24385536000} x^{7}+\mathrm{O}\left(x^{8}\right)\right)\right)\right) \sqrt{x}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.146 (sec). Leaf size: 146
AsymptoticDSolveValue[4*x^2*y' ' $[\mathrm{x}]-4 * \mathrm{x} * \operatorname{Exp}[\mathrm{x}] * \mathrm{y}$ ' $[\mathrm{x}]+3 * \operatorname{Cos}[\mathrm{x}] * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}]$

$$
\begin{aligned}
& y(x) \rightarrow c_{2}\left(\frac{123443 x^{15 / 2}}{4838400}+\frac{54731 x^{13 / 2}}{921600}+\frac{669 x^{11 / 2}}{5120}+\frac{103 x^{9 / 2}}{384}+\frac{x^{7 / 2}}{2}+\frac{3 x^{5 / 2}}{4}\right. \\
& \left.\quad+x^{3 / 2}\right)+c_{1}\left(\frac{\left(54731 x^{5}+120420 x^{4}+247200 x^{3}+460800 x^{2}+691200 x+921600\right) x^{3 / 2} \log (x)}{1843200}+\frac{(192636}{}\right.
\end{aligned}
$$

19.3 problem 1(iii)

Internal problem ID [6055]
Internal file name [OUTPUT/5303_Sunday_June_05_2022_03_33_28_PM_47241310/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 166
Problem number: 1(iii).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
\left(-x^{2}+1\right) x^{2} y^{\prime \prime}+3\left(x^{2}+x\right) y^{\prime}+y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
\left(-x^{4}+x^{2}\right) y^{\prime \prime}+\left(3 x^{2}+3 x\right) y^{\prime}+y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =-\frac{3}{x(x-1)} \\
q(x) & =-\frac{1}{x^{2}\left(x^{2}-1\right)}
\end{aligned}
$$

Table 231: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{3}{x(x-1)}$	
singularity	type
$x=0$	"regular"
$x=1$	"regular"

$q(x)=-\frac{1}{x^{2}\left(x^{2}-1\right)}$	
singularity	type
$x=-1$	"regular"
$x=0$	"regular"
$x=1$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $[0,1,-1, \infty]$
Irregular singular points : []
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
-y^{\prime \prime} x^{2}\left(x^{2}-1\right)+\left(3 x^{2}+3 x\right) y^{\prime}+y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& -\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x^{2}\left(x^{2}-1\right) \tag{1}\\
& +\left(3 x^{2}+3 x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
\sum_{n=0}^{\infty} & \left(-x^{n+r+2} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right) \tag{2A}\\
& +\left(\sum_{n=0}^{\infty} 3 x^{1+n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(-x^{n+r+2} a_{n}(n+r)(n+r-1)\right) & =\sum_{n=2}^{\infty}\left(-a_{n-2}(n+r-2)(n-3+r) x^{n+r}\right) \\
\sum_{n=0}^{\infty} 3 x^{1+n+r} a_{n}(n+r) & =\sum_{n=1}^{\infty} 3 a_{n-1}(n+r-1) x^{n+r}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{array}{r}
\sum_{n=2}^{\infty}\left(-a_{n-2}(n+r-2)(n-3+r) x^{n+r}\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r\right. \tag{2B}\\
-1))+\left(\sum_{n=1}^{\infty} 3 a_{n-1}(n+r-1) x^{n+r}\right)+\left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n\right. \\
+r))+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{array}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+3 x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+3 x^{r} a_{0} r+a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)+3 x^{r} r+x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
(r+1)^{2} x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
(r+1)^{2}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=-1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
(r+1)^{2} x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form

$$
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1~A}
\end{equation*}
$$

Now the second solution y_{2} is found using

$$
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
$$

Then the general solution will be

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

In $\mathrm{Eq}(1 \mathrm{~B})$ the sum starts from 1 and not zero. In $\mathrm{Eq}(1 \mathrm{~A}), a_{0}$ is never zero, and is arbitrary and is typically taken as $a_{0}=1$, and $\left\{c_{1}, c_{2}\right\}$ are two arbitray constants of integration which can be found from initial conditions. Using the value of the indicial root found earlier, $r=-1$, Eqs (1A, 1B) become

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n-1} \\
& y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n-1}\right)
\end{aligned}
$$

We start by finding the first solution $y_{1}(x)$. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=-\frac{3 r}{(r+2)^{2}}
$$

For $2 \leq n$ the recursive equation is

$$
\begin{align*}
& -a_{n-2}(n+r-2)(n-3+r)+a_{n}(n+r)(n+r-1) \tag{3}\\
& +3 a_{n-1}(n+r-1)+3 a_{n}(n+r)+a_{n}=0
\end{align*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{n^{2} a_{n-2}+2 n r a_{n-2}+r^{2} a_{n-2}-5 n a_{n-2}-3 n a_{n-1}-5 r a_{n-2}-3 r a_{n-1}+6 a_{n-2}+3 a_{n-1}}{n^{2}+2 n r+r^{2}+2 n+2 r+1} \tag{4}
\end{equation*}
$$

Which for the root $r=-1$ becomes

$$
\begin{equation*}
a_{n}=\frac{n^{2} a_{n-2}+\left(-7 a_{n-2}-3 a_{n-1}\right) n+12 a_{n-2}+6 a_{n-1}}{n^{2}} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=-1$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{3 r}{(r+2)^{2}}$	3

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{r\left(r^{3}+3 r^{2}+9 r+5\right)}{(r+2)^{2}(r+3)^{2}}
$$

Which for the root $r=-1$ becomes

$$
a_{2}=\frac{1}{2}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{3 r}{(r+2)^{2}}$	3
a_{2}	$\frac{r\left(r^{3}+3 r^{2}+9 r+5\right)}{(r+2)^{2}(r+3)^{2}}$	$\frac{1}{2}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{6 r\left(r^{4}+6 r^{3}+15 r^{2}+16 r+5\right)}{(r+2)^{2}(r+3)^{2}(r+4)^{2}}
$$

Which for the root $r=-1$ becomes

$$
a_{3}=-\frac{1}{6}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{3 r}{(r+2)^{2}}$	3
a_{2}	$\frac{r\left(r^{3}+3 r^{2}+9 r+5\right)}{(r+2)^{2}(r+3)^{2}}$	$\frac{1}{2}$
a_{3}	$-\frac{6 r\left(r^{4}+6 r^{3}+15 r^{2}+16 r+5\right)}{(r+2)^{2}(r+3)^{2}(r+4)^{2}}$	$-\frac{1}{6}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{r\left(r^{7}+14 r^{6}+102 r^{5}+456 r^{4}+1251 r^{3}+1980 r^{2}+1562 r+430\right)}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}}
$$

Which for the root $r=-1$ becomes

$$
a_{4}=\frac{1}{16}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{3 r}{(r+2)^{2}}$	3
a_{2}	$\frac{r\left(r^{3}+3 r^{2}+9 r+5\right)}{(r+2)^{2}(r+3)^{2}}$	$\frac{1}{2}$
a_{3}	$-\frac{6 r\left(r^{4}+6 r^{3}+15 r^{2}+16 r+5\right)}{(r+2)^{2}(r+3)^{2}(r+4)^{2}}$	$-\frac{1}{6}$
a_{4}	$\frac{r\left(r^{7}+14 r^{6}+102 r^{5}+456 r^{4}+1251 r^{3}+1980 r^{2}+1562 r+430\right)}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}}$	$\frac{1}{16}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{-9 r^{9}-180 r^{8}-1590 r^{7}-8064 r^{6}-25545 r^{5}-51228 r^{4}-62136 r^{3}-39984 r^{2}-9660 r}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}(r+6)^{2}}
$$

Which for the root $r=-1$ becomes

$$
a_{5}=-\frac{43}{1200}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{3 r}{(r+2)^{2}}$	3
a_{2}	$\frac{r\left(r^{3}+3 r^{2}+9 r+5\right)}{(r+2)^{2}(r+3)^{2}}$	$\frac{1}{2}$
a_{3}	$-\frac{6 r\left(r^{4}+6 r^{3}+15 r^{2}+16 r+5\right)}{(r+2)^{2}(r+3)^{2}(r+4)^{2}}$	$-\frac{1}{6}$
a_{4}	$\frac{r\left(r^{7}+14 r^{6}+102 r^{5}+456 r^{4}+1251 r^{3}+1980 r^{2}+1562 r+430\right)}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}}$	$\frac{1}{16}$
a_{5}	$\frac{-9 r^{9}-180 r^{8}-1590 r^{7}-8064 r^{6}-25545 r^{5}-51228 r^{4}-62136 r^{3}-39984 r^{2}-9660 r}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}(r+6)^{2}}$	$-\frac{43}{1200}$

For $n=6$, using the above recursive equation gives

$$
a_{6}=\frac{r\left(r^{11}+33 r^{10}+527 r^{9}+5313 r^{8}+36825 r^{7}+180423 r^{6}+626549 r^{5}+1520715 r^{4}+2493694 r^{3}+2582\right.}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}(r+6)^{2}(r+7)^{2}}
$$

Which for the root $r=-1$ becomes

$$
a_{6}=\frac{161}{7200}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{3 r}{(r+2)^{2}}$	3
a_{2}	$\frac{r\left(r^{3}+3 r^{2}+9 r+5\right)}{(r+2)^{2}(r+3)^{2}}$	$\frac{1}{2}$
a_{3}	$-\frac{6 r\left(r^{4}+6 r^{3}+15 r^{2}+16 r+5\right)}{(r+2)^{2}(r+3)^{2}(r+4)^{2}}$	$-\frac{1}{6}$
a_{4}	$\frac{r\left(r^{7}+14 r^{6}+102 r^{5}+456 r^{4}+1251 r^{3}+1980 r^{2}+1562 r+430\right)}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}}$	$\frac{1}{16}$
a_{5}	$\frac{-9 r^{9}-180 r^{8}-1590 r^{7}-8064 r^{6}-25545 r^{5}-51228 r^{4}-62136 r^{3}-39984 r^{2}-9660 r}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}(r+6)^{2}}$	$-\frac{43}{1200}$
a_{6}	$\frac{r\left(r^{11}+33 r^{10}+527 r^{9}+5313 r^{8}+36825 r^{7}+180423 r^{6}+626549 r^{5}+1520715 r^{4}+2493694 r^{3}+2582664 r^{2}+1473804 r+330660\right)}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}(r+6)^{2}(r+7)^{2}}$	$\frac{161}{7200}$

For $n=7$, using the above recursive equation gives
$a_{7}=-\frac{12 r\left(r^{12}+42 r^{11}+805 r^{10}+9304 r^{9}+72148 r^{8}+394846 r^{7}+1560105 r^{6}+4468272 r^{5}+9155771 r^{4}-\right.}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}(r+6)^{2}(r+7)^{2}(r}$
Which for the root $r=-1$ becomes

$$
a_{7}=-\frac{1837}{117600}
$$

And the table now becomes

n	$a_{n, r}$
a_{0}	1
a_{1}	$-\frac{3 r}{(r+2)^{2}}$
a_{2}	$\frac{r\left(r^{3}+3 r^{2}+9 r+5\right)}{(r+2)^{2}(r+3)^{2}}$
a_{3}	$-\frac{6 r\left(r^{4}+6 r^{3}+15 r^{2}+16 r+5\right)}{(r+2)^{2}(r+3)^{2}(r+4)^{2}}$
a_{4}	$\frac{r\left(r^{7}+14 r^{6}+102 r^{5}+456 r^{4}+1251 r^{3}+1980 r^{2}+1562 r+430\right)}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}}$
a_{5}	$\frac{-9 r^{9}-180 r^{8}-1590 r^{7}-8064 r^{6}-25545 r^{5}-51228 r^{4}-62136 r^{3}-39984 r^{2}-9660 r}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}(r+6)^{2}}$
a_{6}	$\frac{r\left(r^{11}+33 r^{10}+527 r^{9}+5313 r^{8}+36825 r^{7}+180423 r^{6}+626549 r^{5}+1520715 r^{4}+2493694 r^{3}+2582664 r^{2}+1473804 r+330660\right)}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}(r+6)^{2}(r+7)^{2}}$
a_{7}	$-\frac{12 r\left(r^{12}+42 r^{11}+805 r^{10}+9304 r^{9}+72148 r^{8}+394846 r^{7}+1560105 r^{6}+4468272 r^{5}+9155771 r^{4}+12971420 r^{3}+11876234 r^{2}+6139136 r+128\right.}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}(r+6)^{2}(r+7)^{2}(r+8)^{2}}$

Using the above table, then the first solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =\frac{1}{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =\frac{3 x+1+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{16}-\frac{43 x^{5}}{1200}+\frac{161 x^{6}}{7200}-\frac{1837 x^{7}}{117600}+O\left(x^{8}\right)}{x}
\end{aligned}
$$

Now the second solution is found. The second solution is given by

$$
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
$$

Where b_{n} is found using

$$
b_{n}=\frac{d}{d r} a_{n, r}
$$

And the above is then evaluated at $r=-1$. The above table for $a_{n, r}$ is used for this purpose. Computing the derivatives gives the following table

n	$b_{n, r}$
b_{0}	1
b_{1}	$-\frac{3 r}{(r+2)^{2}}$
b_{2}	$\frac{r\left(r^{3}+3 r^{2}+9 r+5\right)}{(r+2)^{2}(r+3)^{2}}$
b_{3}	$-\frac{6 r\left(r^{4}+6 r^{3}+15 r^{2}+16 r+5\right)}{(r+2)^{2}(r+3)^{2}(r+4)^{2}}$
b_{4}	$\frac{r\left(r^{7}+14 r^{6}+102 r^{5}+456 r^{4}+1251 r^{3}+1980 r^{2}+1562 r+430\right)}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}}$
b_{5}	$\frac{-9 r^{9}-180 r^{8}-1590 r^{7}-8064 r^{6}-25545 r r^{5}-51228 r^{4}-62136 r^{3}-39984 r^{2}-9660 r}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}(r+6)^{2}}$
b_{6}	$\frac{r\left(r^{11}+33 r^{10}+527 r^{9}+5313 r^{8}+36825 r^{7}+180423 r^{6}+626549 r^{5}+1520715 r^{4}+2493694 r^{3}+2582664 r^{2}+1473804 r+330660\right)}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}(r+6)^{2}(r+7)^{2}}$
b_{7}	$-\frac{12 r\left(r^{12}+42 r^{11}+805 r^{10}+9304 r^{9}+72148 r^{8}+394846 r^{7}+1560105 r^{6}+4468272 r^{5}+9155771 r^{4}+12971420 r^{3}+11876234 r^{2}+6139136 r+128\right.}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}(r+6)^{2}(r+7)^{2}(r+8)^{2}}$

The above table gives all values of b_{n} needed. Hence the second solution is

$$
\begin{aligned}
y_{2}(x)= & y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots \\
= & \frac{\left(3 x+1+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{16}-\frac{43 x^{5}}{1200}+\frac{161 x^{6}}{7200}-\frac{1837 x^{7}}{117600}+O\left(x^{8}\right)\right) \ln (x)}{x} \\
& +\frac{-9 x-\frac{7 x^{2}}{2}+\frac{7 x^{3}}{9}-\frac{25 x^{4}}{96}+\frac{5141 x^{5}}{36000}-\frac{2083 x^{6}}{24000}+\frac{489941 x^{7}}{8232000}+O\left(x^{8}\right)}{x}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\left.\begin{array}{rl}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & \frac{c_{1}\left(3 x+1+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{16}-\frac{43 x^{5}}{1200}+\frac{161 x^{6}}{7200}-\frac{1837 x^{7}}{117600}+O\left(x^{8}\right)\right)}{x} \\
& +c_{2}\left(\frac{\left(3 x+1+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{16}-\frac{43 x^{5}}{1200}+\frac{161 x^{6}}{7200}-\frac{1837 x^{7}}{117600}+O\left(x^{8}\right)\right) \ln (x)}{x}\right.
\end{array}\right)
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & \frac{c_{1}\left(3 x+1+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{16}-\frac{43 x^{5}}{1200}+\frac{161 x^{6}}{7200}-\frac{1837 x^{7}}{117600}+O\left(x^{8}\right)\right)}{x} \\
& +c_{2}\left(\frac{\left(3 x+1+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{16}-\frac{43 x^{5}}{1200}+\frac{161 x^{6}}{7200}-\frac{1837 x^{7}}{117600}+O\left(x^{8}\right)\right) \ln (x)}{x}\right. \\
& \left.\quad+\frac{-9 x-\frac{7 x^{2}}{2}+\frac{7 x^{3}}{9}-\frac{25 x^{4}}{96}+\frac{5141 x^{5}}{36000}-\frac{2083 x^{6}}{24000}+\frac{489941 x^{7}}{8232000}+O\left(x^{8}\right)}{x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & \frac{c_{1}\left(3 x+1+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{16}-\frac{43 x^{5}}{1200}+\frac{161 x^{6}}{7200}-\frac{1837 x^{7}}{117600}+O\left(x^{8}\right)\right)}{x} \\
& +c_{2}\left(\frac{\left(3 x+1+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{16}-\frac{43 x^{5}}{1200}+\frac{161 x^{6}}{7200}-\frac{1837 x^{7}}{117600}+O\left(x^{8}\right)\right) \ln (x)}{x}\right. \tag{1}\\
& \left.+\frac{-9 x-\frac{7 x^{2}}{2}+\frac{7 x^{3}}{9}-\frac{25 x^{4}}{96}+\frac{5141 x^{5}}{36000}-\frac{2083 x^{6}}{24000}+\frac{489941 x^{7}}{8232000}+O\left(x^{8}\right)}{x}\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
& y= \frac{c_{1}\left(3 x+1+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{16}-\frac{43 x^{5}}{1200}+\frac{161 x^{6}}{7200}-\frac{1837 x^{7}}{117600}+O\left(x^{8}\right)\right)}{x} \\
&+c_{2}\left(\frac{\left(3 x+1+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{16}-\frac{43 x^{5}}{1200}+\frac{161 x^{6}}{7200}-\frac{1837 x^{7}}{117600}+O\left(x^{8}\right)\right) \ln (x)}{x}\right. \\
&\left.\quad+\frac{-9 x-\frac{7 x^{2}}{2}+\frac{7 x^{3}}{9}-\frac{25 x^{4}}{96}+\frac{5141 x^{5}}{36000}-\frac{2083 x^{6}}{24000}+\frac{489941 x^{7}}{8232000}+O\left(x^{8}\right)}{x}\right)
\end{aligned}
$$

Verified OK.

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Whittaker
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
```

 -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
 trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\rightarrow trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F}$ ([a
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ${ }^{2}{ }^{D} F_{5} 9^{\text {with }}$ constant coefficients
trying to convert to an ODE of Bessel type
trying to convert to an ODE of Bessel type
\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 81

```
Order:=8;
dsolve((1-x^2)*x^2*diff(y(x),x$2)+3*(x+x^2)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);
\(y(x)\)
\(=\frac{\left(c_{2} \ln (x)+c_{1}\right)\left(1+3 x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{16} x^{4}-\frac{43}{1200} x^{5}+\frac{161}{7200} x^{6}-\frac{1837}{117600} x^{7}+\mathrm{O}\left(x^{8}\right)\right)+\left((-9) x-\frac{7}{2} x^{2}+\frac{?}{c}\right.}{x}\)
```

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 84
AsymptoticDSolveValue[(1-x^2)*y' ' $\left.[x]+3 *\left(x+x^{\wedge} 2\right) * y '[x]+y[x]==0, y[x],\{x, 0,7\}\right]$
$y(x) \rightarrow c_{2}\left(\frac{53 x^{7}}{630}+\frac{5 x^{6}}{24}+\frac{2 x^{5}}{15}-\frac{x^{4}}{4}-\frac{2 x^{3}}{3}+x\right)+c_{1}\left(-\frac{19 x^{7}}{420}-\frac{x^{6}}{144}+\frac{3 x^{5}}{20}+\frac{5 x^{4}}{24}-\frac{x^{2}}{2}+1\right)$

19.4 problem 3(a)

19.4.1 Maple step by step solution . 1571

Internal problem ID [6056]
Internal file name [OUTPUT/5304_Sunday_June_05_2022_03_33_32_PM_62803089/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 166
Problem number: 3(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}+3 x y^{\prime}+(1+x) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+3 x y^{\prime}+(1+x) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =\frac{3}{x} \\
q(x) & =\frac{1+x}{x^{2}}
\end{aligned}
$$

Table 232: Table $p(x), q(x)$ singularites.

$p(x)=\frac{3}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{1+x}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+3 x y^{\prime}+(1+x) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +3 x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+(1+x)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}=\sum_{n=1}^{\infty} a_{n-1} x^{n+r}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)\right) \tag{2B}\\
& +\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+3 x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+3 x^{r} a_{0} r+a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)+3 x^{r} r+x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
(r+1)^{2} x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
(r+1)^{2}=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=-1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
(r+1)^{2} x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form

$$
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1~A}
\end{equation*}
$$

Now the second solution y_{2} is found using

$$
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
$$

Then the general solution will be

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

In $\mathrm{Eq}(1 \mathrm{~B})$ the sum starts from 1 and not zero. In $\mathrm{Eq}(1 \mathrm{~A}), a_{0}$ is never zero, and is arbitrary and is typically taken as $a_{0}=1$, and $\left\{c_{1}, c_{2}\right\}$ are two arbitray constants of integration which can be found from initial conditions. Using the value of the indicial root found earlier, $r=-1$, Eqs $(1 \mathrm{~A}, 1 \mathrm{~B})$ become

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n-1} \\
& y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n-1}\right)
\end{aligned}
$$

We start by finding the first solution $y_{1}(x) . \mathrm{Eq}(2 \mathrm{~B})$ derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+3 a_{n}(n+r)+a_{n}+a_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{n^{2}+2 n r+r^{2}+2 n+2 r+1} \tag{4}
\end{equation*}
$$

Which for the root $r=-1$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{n^{2}} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=-1$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=-\frac{1}{(r+2)^{2}}
$$

Which for the root $r=-1$ becomes

$$
a_{1}=-1
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{(r+2)^{2}}$	-1

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{1}{(r+2)^{2}(r+3)^{2}}
$$

Which for the root $r=-1$ becomes

$$
a_{2}=\frac{1}{4}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{(r+2)^{2}}$	-1
a_{2}	$\frac{1}{(r+2)^{2}(r+3)^{2}}$	$\frac{1}{4}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{1}{(r+2)^{2}(r+3)^{2}(r+4)^{2}}
$$

Which for the root $r=-1$ becomes

$$
a_{3}=-\frac{1}{36}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{(r+2)^{2}}$	-1
a_{2}	$\frac{1}{(r+2)^{2}(r+3)^{2}}$	$\frac{1}{4}$
a_{3}	$-\frac{1}{(r+2)^{2}(r+3)^{2}(r+4)^{2}}$	$-\frac{1}{36}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{1}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}}
$$

Which for the root $r=-1$ becomes

$$
a_{4}=\frac{1}{576}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{(r+2)^{2}}$	-1
a_{2}	$\frac{1}{(r+2)^{2}(r+3)^{2}}$	$\frac{1}{4}$
a_{3}	$-\frac{1}{(r+2)^{2}(r+3)^{2}(r+4)^{2}}$	$-\frac{1}{36}$
a_{4}	$\frac{1}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}}$	$\frac{1}{576}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=-\frac{1}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}(r+6)^{2}}
$$

Which for the root $r=-1$ becomes

$$
a_{5}=-\frac{1}{14400}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{(r+2)^{2}}$	-1
a_{2}	$\frac{1}{(r+2)^{2}(r+3)^{2}}$	$\frac{1}{4}$
a_{3}	$-\frac{1}{(r+2)^{2}(r+3)^{2}(r+4)^{2}}$	$-\frac{1}{36}$
a_{4}	$\frac{1}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}}$	$\frac{1}{576}$
a_{5}	$-\frac{1}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}(r+6)^{2}}$	$-\frac{1}{14400}$

For $n=6$, using the above recursive equation gives

$$
a_{6}=\frac{1}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}(r+6)^{2}(r+7)^{2}}
$$

Which for the root $r=-1$ becomes

$$
a_{6}=\frac{1}{518400}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{(r+2)^{2}}$	-1
a_{2}	$\frac{1}{(r+2)^{2}(r+3)^{2}}$	$\frac{1}{4}$
a_{3}	$-\frac{1}{(r+2)^{2}(r+3)^{2}(r+4)^{2}}$	$-\frac{1}{36}$
a_{4}	$\frac{1}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}}$	$\frac{1}{576}$
a_{5}	$-\frac{1}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}(r+6)^{2}}$	$-\frac{1}{14400}$
a_{6}	$\frac{1}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}(r+6)^{2}(r+7)^{2}}$	$\frac{1}{518400}$

For $n=7$, using the above recursive equation gives

$$
a_{7}=-\frac{1}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}(r+6)^{2}(r+7)^{2}(r+8)^{2}}
$$

Which for the root $r=-1$ becomes

$$
a_{7}=-\frac{1}{25401600}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{1}{(r+2)^{2}}$	-1
a_{2}	$\frac{1}{(r+2)^{2}(r+3)^{2}}$	$\frac{1}{4}$
a_{3}	$-\frac{1}{(r+2)^{2}(r+3)^{2}(r+4)^{2}}$	$-\frac{1}{36}$
a_{4}	$\frac{1}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}}$	$\frac{1}{576}$
a_{5}	$-\frac{1}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}(r+6)^{2}}$	$-\frac{1}{14400}$
a_{6}	$\frac{1}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}(r+6)^{2}(r+7)^{2}}$	$\frac{1}{518400}$
a_{7}	$-\frac{1}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}(r+6)^{2}(r+7)^{2}(r+8)^{2}}$	$-\frac{1}{25401600}$

Using the above table, then the first solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =\frac{1}{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =\frac{1-x+\frac{x^{2}}{4}-\frac{x^{3}}{36}+\frac{x^{4}}{576}-\frac{x^{5}}{14400}+\frac{x^{6}}{518400}-\frac{x^{7}}{25401600}+O\left(x^{8}\right)}{x}
\end{aligned}
$$

Now the second solution is found. The second solution is given by

$$
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
$$

Where b_{n} is found using

$$
b_{n}=\frac{d}{d r} a_{n, r}
$$

And the above is then evaluated at $r=-1$. The above table for $a_{n, r}$ is used for this purpose. Computing the derivatives gives the following table

n	$b_{n, r}$	a_{n}	$b_{n, r}=\frac{d}{d r} a_{n, r}$
b_{0}	1	1	$\mathrm{~N} / \mathrm{A}$ since b_{n} starts from 1
b_{1}	$-\frac{1}{(r+2)^{2}}$	-1	$\frac{2}{(r+2)^{3}}$
b_{2}	$\frac{1}{(r+2)^{2}(r+3)^{2}}$	$\frac{1}{4}$	$\frac{-4 r-10}{(r+2)^{3}(r+3)^{3}}$
b_{3}	$-\frac{1}{(r+2)^{2}(r+3)^{2}(r+4)^{2}}$	$-\frac{1}{36}$	$\frac{6 r^{2}+36 r+52}{(r+2)^{3}(r+3)^{3}(r+4)^{3}}$
b_{4}	$\frac{1}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}}$	$\frac{1}{576}$	$\frac{-8 r^{3}-84 r^{2}-284 r-308}{(r+2)^{3}(r+3)^{3}(r+4)^{3}(5+r)^{3}}$
b_{5}	$-\frac{1}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}(r+6)^{2}}$	$-\frac{1}{14400}$	$\frac{10 r^{4}+160 r^{3}+930 r^{2}+2320 r+2088}{(r+2)^{3}(r+3)^{3}(r+4)^{3}(5+r)^{3}(r+6)^{3}}$
b_{6}	$\frac{1}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}(r+6)^{2}(r+7)^{2}}$	$\frac{1}{518400}$	$\frac{-12 r^{5}-270 r^{4}-2360 r^{3}-9990 r^{2}-20416 r-16056}{(r+2)^{3}(r+3)^{3}(r+4)^{3}(5+r)^{3}(r+6)^{3}(r+7)^{3}}$
b_{7}	$-\frac{1}{(r+2)^{2}(r+3)^{2}(r+4)^{2}(5+r)^{2}(r+6)^{2}(r+7)^{2}(r+8)^{2}}$	$-\frac{1}{25401600}$	$\frac{14 r^{6}+420 r^{5}+5110 r^{4}+32200 r^{3}+110544 r^{2}+195440 r+138528}{(r+2)^{3}(r+3)^{3}(r+4)^{3}(5+r)^{3}(r+6)^{3}(r+7)^{3}(r+8)^{3}}$

The above table gives all values of b_{n} needed. Hence the second solution is

$$
\begin{aligned}
y_{2}(x)= & y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots \\
= & \frac{\left(1-x+\frac{x^{2}}{4}-\frac{x^{3}}{36}+\frac{x^{4}}{576}-\frac{x^{5}}{14400}+\frac{x^{6}}{518400}-\frac{x^{7}}{25401600}+O\left(x^{8}\right)\right) \ln (x)}{x} \\
& +\frac{2 x-\frac{3 x^{2}}{4}+\frac{11 x^{3}}{108}-\frac{25 x^{4}}{3456}+\frac{137 x^{5}}{432000}-\frac{49 x^{6}}{5184000}+\frac{121 x^{7}}{592704000}+O\left(x^{8}\right)}{x}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & \frac{c_{1}\left(1-x+\frac{x^{2}}{4}-\frac{x^{3}}{36}+\frac{x^{4}}{576}-\frac{x^{5}}{14400}+\frac{x^{6}}{518400}-\frac{x^{7}}{25401600}+O\left(x^{8}\right)\right)}{x} \\
& +c_{2}\left(\frac{\left(1-x+\frac{x^{2}}{4}-\frac{x^{3}}{36}+\frac{x^{4}}{576}-\frac{x^{5}}{14400}+\frac{x^{6}}{518400}-\frac{x^{7}}{25401600}+O\left(x^{8}\right)\right) \ln (x)}{x}\right.
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & \frac{c_{1}\left(1-x+\frac{x^{2}}{4}-\frac{x^{3}}{36}+\frac{x^{4}}{576}-\frac{x^{5}}{14400}+\frac{x^{6}}{518400}-\frac{x^{7}}{25401600}+O\left(x^{8}\right)\right)}{x} \\
& +c_{2}\left(\frac{\left(1-x+\frac{x^{2}}{4}-\frac{x^{3}}{36}+\frac{x^{4}}{576}-\frac{x^{5}}{14400}+\frac{x^{6}}{518400}-\frac{x^{7}}{25401600}+O\left(x^{8}\right)\right) \ln (x)}{x}\right. \\
& \left.+\frac{2 x-\frac{3 x^{2}}{4}+\frac{11 x^{3}}{108}-\frac{25 x^{4}}{3456}+\frac{137 x^{5}}{432000}-\frac{49 x^{6}}{5184000}+\frac{121 x^{7}}{592704000}+O\left(x^{8}\right)}{x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & \frac{c_{1}\left(1-x+\frac{x^{2}}{4}-\frac{x^{3}}{36}+\frac{x^{4}}{576}-\frac{x^{5}}{14400}+\frac{x^{6}}{518400}-\frac{x^{7}}{25401600}+O\left(x^{8}\right)\right)}{x} \\
& +c_{2}\left(\frac{\left(1-x+\frac{x^{2}}{4}-\frac{x^{3}}{36}+\frac{x^{4}}{576}-\frac{x^{5}}{14400}+\frac{x^{6}}{518400}-\frac{x^{7}}{25401600}+O\left(x^{8}\right)\right) \ln (x)}{x}\right. \tag{1}\\
& \left.\quad+\frac{2 x-\frac{3 x^{2}}{4}+\frac{11 x^{3}}{108}-\frac{25 x^{4}}{3456}+\frac{137 x^{5}}{432000}-\frac{49 x^{6}}{5184000}+\frac{121 x^{7}}{592704000}+O\left(x^{8}\right)}{x}\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \frac{c_{1}\left(1-x+\frac{x^{2}}{4}-\frac{x^{3}}{36}+\frac{x^{4}}{576}-\frac{x^{5}}{14400}+\frac{x^{6}}{518400}-\frac{x^{7}}{25401600}+O\left(x^{8}\right)\right)}{x} \\
& +c_{2}\left(\frac{\left(1-x+\frac{x^{2}}{4}-\frac{x^{3}}{36}+\frac{x^{4}}{576}-\frac{x^{5}}{14400}+\frac{x^{6}}{518400}-\frac{x^{7}}{25401600}+O\left(x^{8}\right)\right) \ln (x)}{x}\right. \\
& \left.+\frac{2 x-\frac{3 x^{2}}{4}+\frac{11 x^{3}}{108}-\frac{25 x^{4}}{3556}+\frac{137 x^{5}}{432000}-\frac{49 x^{6}}{5184000}+\frac{121 x^{7}}{592704000}+O\left(x^{8}\right)}{x}\right)
\end{aligned}
$$

Verified OK.

19.4.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+3 x y^{\prime}+(1+x) y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{3 y^{\prime}}{x}-\frac{(1+x) y}{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
$y^{\prime \prime}+\frac{3 y^{\prime}}{x}+\frac{(1+x) y}{x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{3}{x}, P_{3}(x)=\frac{1+x}{x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=3$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=1$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$x^{2} y^{\prime \prime}+3 x y^{\prime}+(1+x) y=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$
$x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}$
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}(1+r)^{2} x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(k+r+1)^{2}+a_{k-1}\right) x^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(1+r)^{2}=0$
- Values of r that satisfy the indicial equation

$$
r=-1
$$

- Each term in the series must be 0 , giving the recursion relation
$a_{k}(k+r+1)^{2}+a_{k-1}=0$
- \quad Shift index using $k->k+1$
$a_{k+1}(k+2+r)^{2}+a_{k}=0$
- Recursion relation that defines series solution to ODE $a_{k+1}=-\frac{a_{k}}{(k+2+r)^{2}}$
- \quad Recursion relation for $r=-1$
$a_{k+1}=-\frac{a_{k}}{(k+1)^{2}}$
- \quad Solution for $r=-1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-1}, a_{k+1}=-\frac{a_{k}}{(k+1)^{2}}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```


Solution by Maple

Time used: 0.016 (sec). Leaf size: 81

```
Order:=8;
dsolve(x^2*diff(y(x),x$2)+3*x*diff (y (x),x)+(1+x)*y(x)=0,y(x),type='series',x=0);
```

$y(x)$
$=\frac{\left(c_{2} \ln (x)+c_{1}\right)\left(1-x+\frac{1}{4} x^{2}-\frac{1}{36} x^{3}+\frac{1}{576} x^{4}-\frac{1}{14400} x^{5}+\frac{1}{518400} x^{6}-\frac{1}{25401600} x^{7}+\mathrm{O}\left(x^{8}\right)\right)+\left(2 x-\frac{3}{4} x^{2}+\right.}{x}$
\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 164
AsymptoticDSolveValue[x^2*y' $[\mathrm{x}]+3 * x * y$ ' $[\mathrm{x}]+(1+\mathrm{x}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}]$

$$
\begin{aligned}
y(x) \rightarrow & \frac{c_{1}\left(-\frac{x^{7}}{25401600}+\frac{x^{6}}{518400}-\frac{x^{5}}{14400}+\frac{x^{4}}{576}-\frac{x^{3}}{36}+\frac{x^{2}}{4}-x+1\right)}{x} \\
& +c_{2}\left(\frac{\frac{121 x^{7}}{592704000}-\frac{49 x^{6}}{5184000}+\frac{137 x^{5}}{432000}-\frac{25 x^{4}}{3456}+\frac{11 x^{3}}{108}-\frac{3 x^{2}}{4}+2 x}{x}\right. \\
& \left.+\frac{\left(-\frac{x^{7}}{25401600}+\frac{x^{6}}{518400}-\frac{x^{5}}{14400}+\frac{x^{4}}{576}-\frac{x^{3}}{36}+\frac{x^{2}}{4}-x+1\right) \log (x)}{x}\right)
\end{aligned}
$$

19.5 problem 3(b)

19.5.1 Maple step by step solution 1587

Internal problem ID [6057]
Internal file name [OUTPUT/5305_Sunday_June_05_2022_03_33_35_PM_55245292/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 166
Problem number: 3(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}+2 x^{2} y^{\prime}-2 y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+2 x^{2} y^{\prime}-2 y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
p(x) & =2 \\
q(x) & =-\frac{2}{x^{2}}
\end{aligned}
$$

Table 234: Table $p(x), q(x)$ singularites.

\[

\]

$q(x)=-\frac{2}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+2 x^{2} y^{\prime}-2 y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)+2 x^{2}\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-2\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 2 x^{1+n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)=0 \tag{2~A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} 2 x^{1+n+r} a_{n}(n+r)=\sum_{n=1}^{\infty} 2 a_{n-1}(n+r-1) x^{n+r}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} 2 a_{n-1}(n+r-1) x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)=0 \tag{2B}
\end{equation*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)-2 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)-2 a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)-2 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}-r-2\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-r-2=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=-1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}-r-2\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=3$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x^{2}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+2} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+2 a_{n-1}(n+r-1)-2 a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{2 a_{n-1}(n+r-1)}{n^{2}+2 n r+r^{2}-n-r-2} \tag{4}
\end{equation*}
$$

Which for the root $r=2$ becomes

$$
\begin{equation*}
a_{n}=-\frac{2 a_{n-1}(1+n)}{n(n+3)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=2$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=-\frac{2 r}{r^{2}+r-2}
$$

Which for the root $r=2$ becomes

$$
a_{1}=-1
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2 r}{r^{2}+r-2}$	-1

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{4+4 r}{r^{3}+4 r^{2}+r-6}
$$

Which for the root $r=2$ becomes

$$
a_{2}=\frac{3}{5}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2 r}{r^{2}+r-2}$	-1
a_{2}	$\frac{4+4 r}{r^{3}+4 r^{2}+r-6}$	$\frac{3}{5}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{8}{r^{3}+6 r^{2}+5 r-12}
$$

Which for the root $r=2$ becomes

$$
a_{3}=-\frac{4}{15}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2 r}{r^{2}+r-2}$	-1
a_{2}	$\frac{4+4 r}{r^{3}+4 r^{2}+r-6}$	$\frac{3}{5}$
a_{3}	$-\frac{8}{r^{3}+6 r^{2}+5 r-12}$	$-\frac{4}{15}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{16}{r^{4}+10 r^{3}+27 r^{2}+2 r-40}
$$

Which for the root $r=2$ becomes

$$
a_{4}=\frac{2}{21}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2 r}{r^{2}+r-2}$	-1
a_{2}	$\frac{4+4 r}{r^{3}+4 r^{2}+r-6}$	$\frac{3}{5}$
a_{3}	$-\frac{8}{r^{3}+6 r^{2}+5 r-12}$	$-\frac{4}{15}$
a_{4}	$\frac{16}{r^{4}+10 r^{3}+27 r^{2}+2 r-40}$	$\frac{2}{21}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=-\frac{32}{\left(r^{2}+9 r+18\right)\left(r^{3}+6 r^{2}+3 r-10\right)}
$$

Which for the root $r=2$ becomes

$$
a_{5}=-\frac{1}{35}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2 r}{r^{2}+r-2}$	-1
a_{2}	$\frac{4+4 r}{r^{3}+4 r^{2}+r-6}$	$\frac{3}{5}$
a_{3}	$-\frac{8}{r^{3}+6 r^{2}+5 r-12}$	$-\frac{4}{15}$
a_{4}	$\frac{16}{r^{4}+10 r^{3}+27 r^{2}+2 r-40}$	$\frac{2}{21}$
a_{5}	$-\frac{32}{\left(r^{2}+9 r+18\right)\left(r^{3}+6 r^{2}+3 r-10\right)}$	$-\frac{1}{35}$

For $n=6$, using the above recursive equation gives

$$
a_{6}=\frac{64}{\left(r^{2}+11 r+28\right)\left(r^{2}+r-2\right)\left(r^{2}+9 r+18\right)}
$$

Which for the root $r=2$ becomes

$$
a_{6}=\frac{1}{135}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2 r}{r^{2}+r-2}$	-1
a_{2}	$\frac{4+4 r}{r^{3}+4 r^{2}+r-6}$	$\frac{3}{5}$
a_{3}	$-\frac{8}{r^{3}+6 r^{2}+5 r-12}$	$-\frac{4}{15}$
a_{4}	$\frac{16}{r^{4}+10 r^{3}+27 r^{2}+2 r-40}$	$\frac{2}{21}$
a_{5}	$-\frac{32}{\left(r^{2}+9 r+18\right)\left(r^{3}+6 r^{2}+3 r-10\right)}$	$-\frac{1}{35}$
a_{6}	$\frac{64}{\left(r^{2}+11 r+28\right)\left(r^{2}+r-2\right)\left(r^{2}+9 r+18\right)}$	$\frac{1}{135}$

For $n=7$, using the above recursive equation gives

$$
a_{7}=-\frac{128}{(r+8)(5+r)(r+3)(2+r)(-1+r)(r+7)(r+4)}
$$

Which for the root $r=2$ becomes

$$
a_{7}=-\frac{8}{4725}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{2 r}{r^{2}+r-2}$	-1
a_{2}	$\frac{4+4 r}{r^{3}+4 r^{2}+r-6}$	$\frac{3}{5}$
a_{3}	$-\frac{8}{r^{3}+6 r^{2}+5 r-12}$	$-\frac{4}{15}$
a_{4}	$\frac{16}{r^{4}+10 r^{3}+27 r^{2}+2 r-40}$	$\frac{2}{21}$
a_{5}	$-\frac{32}{\left(r^{2}+9 r+18\right)\left(r^{3}+6 r^{2}+3 r-10\right)}$	$-\frac{1}{35}$
a_{6}	$\frac{64}{\left(r^{2}+11 r+28\right)\left(r^{2}+r-2\right)\left(r^{2}+9 r+18\right)}$	$\frac{1}{135}$
a_{7}	$-\frac{128}{(r+8)(5+r)(r+3)(2+r)(-1+r)(r+7)(r+4)}$	$-\frac{8}{4725}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =x^{2}\left(1-x+\frac{3 x^{2}}{5}-\frac{4 x^{3}}{15}+\frac{2 x^{4}}{21}-\frac{x^{5}}{35}+\frac{x^{6}}{135}-\frac{8 x^{7}}{4725}+O\left(x^{8}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=3$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{3}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{3} \\
& =-\frac{8}{r^{3}+6 r^{2}+5 r-12}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}}-\frac{8}{r^{3}+6 r^{2}+5 r-12} & =\lim _{r \rightarrow-1}-\frac{8}{r^{3}+6 r^{2}+5 r-12} \\
& =\frac{2}{3}
\end{aligned}
$$

The limit is $\frac{2}{3}$. Since the limit exists then the log term is not needed and we can set $C=0$. Therefore the second solution has the form

$$
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-1}
\end{aligned}
$$

Eq (3) derived above is used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
b_{n}(n+r)(n+r-1)+2 b_{n-1}(n+r-1)-2 b_{n}=0 \tag{4}
\end{equation*}
$$

Which for for the root $r=-1$ becomes

$$
\begin{equation*}
b_{n}(n-1)(n-2)+2 b_{n-1}(n-2)-2 b_{n}=0 \tag{4~A}
\end{equation*}
$$

Solving for b_{n} from the recursive equation (4) gives

$$
\begin{equation*}
b_{n}=-\frac{2 b_{n-1}(n+r-1)}{n^{2}+2 n r+r^{2}-n-r-2} \tag{5}
\end{equation*}
$$

Which for the root $r=-1$ becomes

$$
\begin{equation*}
b_{n}=-\frac{2 b_{n-1}(n-2)}{n^{2}-3 n} \tag{6}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-1$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
b_{1}=-\frac{2 r}{r^{2}+r-2}
$$

Which for the root $r=-1$ becomes

$$
b_{1}=-1
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{2 r}{r^{2}+r-2}$	-1

For $n=2$, using the above recursive equation gives

$$
b_{2}=\frac{4+4 r}{\left(r^{2}+r-2\right)(r+3)}
$$

Which for the root $r=-1$ becomes

$$
b_{2}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{2 r}{r^{2}+r-2}$	-1
b_{2}	$\frac{4+4 r}{r^{3}+4 r^{2}+r-6}$	0

For $n=3$, using the above recursive equation gives

$$
b_{3}=-\frac{8}{(r+4)(r+3)(-1+r)}
$$

Which for the root $r=-1$ becomes

$$
b_{3}=\frac{2}{3}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{2 r}{r^{2}+r-2}$	-1
b_{2}	$\frac{4+4 r}{r^{3}+4 r^{2}+r-6}$	0
b_{3}	$-\frac{8}{(r+4)(r+3)(-1+r)}$	$\frac{2}{3}$

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{16}{(r+4)(-1+r)\left(r^{2}+7 r+10\right)}
$$

Which for the root $r=-1$ becomes

$$
b_{4}=-\frac{2}{3}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{2 r}{r^{2}+r-2}$	-1
b_{2}	$\frac{4+4 r}{r^{3}+4 r^{2}+r-6}$	0
b_{3}	$-\frac{8}{(r+4)(r+3)(-1+r)}$	$\frac{2}{3}$
b_{4}	$\frac{16}{(5+r)(2+r)(r+4)(-1+r)}$	$-\frac{2}{3}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=-\frac{32}{(-1+r)\left(r^{2}+7 r+10\right)\left(r^{2}+9 r+18\right)}
$$

Which for the root $r=-1$ becomes

$$
b_{5}=\frac{2}{5}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{2 r}{r^{2}+r-2}$	-1
b_{2}	$\frac{4+4 r}{r^{3}+4 r^{2}+r-6}$	0
b_{3}	$-\frac{8}{(r+4)(r+3)(-1+r)}$	$\frac{2}{3}$
b_{4}	$\frac{16}{(5+r)(2+r)(r+4)(-1+r)}$	$-\frac{2}{3}$
b_{5}	$-\frac{32}{(6+r)(r+3)(5+r)(-1+r)(2+r)}$	$\frac{2}{5}$

For $n=6$, using the above recursive equation gives

$$
b_{6}=\frac{64}{\left(r^{2}+9 r+18\right)(2+r)(-1+r)\left(r^{2}+11 r+28\right)}
$$

Which for the root $r=-1$ becomes

$$
b_{6}=-\frac{8}{45}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{2 r}{r^{2}+r-2}$	-1
b_{2}	$\frac{4+4 r}{r^{3}+4 r^{2}+r-6}$	0
b_{3}	$-\frac{8}{(r+4)(r+3)(-1+r)}$	$\frac{2}{3}$
b_{4}	$\frac{16}{(5+r)(2+r)(r+4)(-1+r)}$	$-\frac{2}{3}$
b_{5}	$-\frac{32}{(6+r)(r+3)(5+r)(-1+r)(2+r)}$	$\frac{2}{5}$
b_{6}	$\frac{64}{(r+7)(r+4)(2+r)(-1+r)(6+r)(r+3)}$	$-\frac{8}{45}$

For $n=7$, using the above recursive equation gives

$$
b_{7}=-\frac{128}{\left(r^{2}+11 r+28\right)(-1+r)(2+r)(r+3)\left(r^{2}+13 r+40\right)}
$$

Which for the root $r=-1$ becomes

$$
b_{7}=\frac{4}{63}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$-\frac{2 r}{r^{2}+r-2}$	-1
b_{2}	$\frac{4+4 r}{r^{3}+4 r^{2}+r-6}$	0
b_{3}	$-\frac{8}{(r+4)(r+3)(-1+r)}$	$\frac{2}{3}$
b_{4}	$\frac{16}{(5+r)(2+r)(r+4)(-1+r)}$	$-\frac{2}{3}$
b_{5}	$-\frac{32}{(6+r)(r+3)(5+r)(-1+r)(2+r)}$	$\frac{2}{5}$
b_{6}	$\frac{64}{(r+7)(r+4)(2+r)(-1+r)(6+r)(r+3)}$	$-\frac{8}{45}$
b_{7}	$-\frac{128}{(r+8)(5+r)(r+3)(2+r)(-1+r)(r+7)(r+4)}$	$\frac{4}{63}$

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =x^{2}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots\right) \\
& =\frac{1-x+\frac{2 x^{3}}{3}-\frac{2 x^{4}}{3}+\frac{2 x^{5}}{5}-\frac{8 x^{6}}{45}+\frac{4 x^{7}}{63}+O\left(x^{8}\right)}{x}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{2}\left(1-x+\frac{3 x^{2}}{5}-\frac{4 x^{3}}{15}+\frac{2 x^{4}}{21}-\frac{x^{5}}{35}+\frac{x^{6}}{135}-\frac{8 x^{7}}{4725}+O\left(x^{8}\right)\right) \\
& +\frac{c_{2}\left(1-x+\frac{2 x^{3}}{3}-\frac{2 x^{4}}{3}+\frac{2 x^{5}}{5}-\frac{8 x^{6}}{45}+\frac{4 x^{7}}{63}+O\left(x^{8}\right)\right)}{x}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{2}\left(1-x+\frac{3 x^{2}}{5}-\frac{4 x^{3}}{15}+\frac{2 x^{4}}{21}-\frac{x^{5}}{35}+\frac{x^{6}}{135}-\frac{8 x^{7}}{4725}+O\left(x^{8}\right)\right) \\
& +\frac{c_{2}\left(1-x+\frac{2 x^{3}}{3}-\frac{2 x^{4}}{3}+\frac{2 x^{5}}{5}-\frac{8 x^{6}}{45}+\frac{4 x^{7}}{63}+O\left(x^{8}\right)\right)}{x}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x^{2}\left(1-x+\frac{3 x^{2}}{5}-\frac{4 x^{3}}{15}+\frac{2 x^{4}}{21}-\frac{x^{5}}{35}+\frac{x^{6}}{135}-\frac{8 x^{7}}{4725}+O\left(x^{8}\right)\right) \tag{1}\\
& +\frac{c_{2}\left(1-x+\frac{2 x^{3}}{3}-\frac{2 x^{4}}{3}+\frac{2 x^{5}}{5}-\frac{8 x^{6}}{45}+\frac{4 x^{7}}{63}+O\left(x^{8}\right)\right)}{x}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x^{2}\left(1-x+\frac{3 x^{2}}{5}-\frac{4 x^{3}}{15}+\frac{2 x^{4}}{21}-\frac{x^{5}}{35}+\frac{x^{6}}{135}-\frac{8 x^{7}}{4725}+O\left(x^{8}\right)\right) \\
& +\frac{c_{2}\left(1-x+\frac{2 x^{3}}{3}-\frac{2 x^{4}}{3}+\frac{2 x^{5}}{5}-\frac{8 x^{6}}{45}+\frac{4 x^{7}}{63}+O\left(x^{8}\right)\right)}{x}
\end{aligned}
$$

Verified OK.

19.5.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+2 x^{2} y^{\prime}-2 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-2 y^{\prime}+\frac{2 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+2 y^{\prime}-\frac{2 y}{x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=2, P_{3}(x)=-\frac{2}{x^{2}}\right]$
- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-2$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators
$x^{2} y^{\prime \prime}+2 x^{2} y^{\prime}-2 y=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{2} \cdot y^{\prime}$ to series expansion

$$
x^{2} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r+1}
$$

- Shift index using $k->k-1$
$x^{2} \cdot y^{\prime}=\sum_{k=1}^{\infty} a_{k-1}(k-1+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k-1+r) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}(1+r)(-2+r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(k+r+1)(k+r-2)+2 a_{k-1}(k-1+r)\right) x^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(1+r)(-2+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{-1,2\}$
- \quad Each term in the series must be 0 , giving the recursion relation
$a_{k}(k+r+1)(k+r-2)+2 a_{k-1}(k-1+r)=0$
- \quad Shift index using $k->k+1$
$a_{k+1}(k+2+r)(k-1+r)+2 a_{k}(k+r)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=-\frac{2 a_{k}(k+r)}{(k+2+r)(k-1+r)}$
- Recursion relation for $r=-1$; series terminates at $k=1$

$$
a_{k+1}=-\frac{2 a_{k}(k-1)}{(k+1)(k-2)}
$$

- Apply recursion relation for $k=0$

$$
a_{1}=-a_{0}
$$

- Terminating series solution of the ODE for $r=-1$. Use reduction of order to find the second

$$
y=a_{0} \cdot(1-x)
$$

- Recursion relation for $r=2$

$$
a_{k+1}=-\frac{2 a_{k}(k+2)}{(k+4)(k+1)}
$$

- \quad Solution for $r=2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+1}=-\frac{2 a_{k}(k+2)}{(k+4)(k+1)}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=a_{0} \cdot(1-x)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+2}\right), b_{k+1}=-\frac{2 b_{k}(k+2)}{(k+4)(k+1)}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Reducible group (found another exponential solution)
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 53

```
Order:=8;
dsolve(x^2*diff(y(x),x$2)+2*x^2*diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);
```

$$
\begin{aligned}
y(x)= & c_{1} x^{2}\left(1-x+\frac{3}{5} x^{2}-\frac{4}{15} x^{3}+\frac{2}{21} x^{4}-\frac{1}{35} x^{5}+\frac{1}{135} x^{6}-\frac{8}{4725} x^{7}+\mathrm{O}\left(x^{8}\right)\right) \\
& +\frac{c_{2}\left(12-12 x+8 x^{3}-8 x^{4}+\frac{24}{5} x^{5}-\frac{32}{15} x^{6}+\frac{16}{21} x^{7}+\mathrm{O}\left(x^{8}\right)\right)}{x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 87
AsymptoticDSolveValue $\left[x^{\wedge} 2 * y\right.$ ' ' $[x]+2 * x^{\wedge} 2 * y$ ' $\left.[x]-2 * y[x]==0, y[x],\{x, 0,7\}\right]$
$y(x) \rightarrow c_{1}\left(-\frac{8 x^{5}}{45}+\frac{2 x^{4}}{5}-\frac{2 x^{3}}{3}+\frac{2 x^{2}}{3}+\frac{1}{x}-1\right)+c_{2}\left(\frac{x^{8}}{135}-\frac{x^{7}}{35}+\frac{2 x^{6}}{21}-\frac{4 x^{5}}{15}+\frac{3 x^{4}}{5}-x^{3}+x^{2}\right)$

19.6 problem 3(c)

19.6.1 Maple step by step solution

1602
Internal problem ID [6058]
Internal file name [OUTPUT/5306_Sunday_June_05_2022_03_33_37_PM_1513034/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 166
Problem number: 3(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}+5 x y^{\prime}+\left(-x^{3}+3\right) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+5 x y^{\prime}+\left(-x^{3}+3\right) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{5}{x} \\
& q(x)=-\frac{x^{3}-3}{x^{2}}
\end{aligned}
$$

Table 236: Table $p(x), q(x)$ singularites.

$p(x)=\frac{5}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=-\frac{x^{3}-3}{x^{2}}$	
singularity	type
$x=0$	"regular"
$x=\infty$	"regular"
$x=-\infty$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : $[0, \infty,-\infty]$
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+5 x y^{\prime}+\left(-x^{3}+3\right) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +5 x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(-x^{3}+3\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 5 x^{n+r} a_{n}(n+r)\right) \tag{2~A}\\
& +\sum_{n=0}^{\infty}\left(-x^{n+r+3} a_{n}\right)+\left(\sum_{n=0}^{\infty} 3 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty}\left(-x^{n+r+3} a_{n}\right)=\sum_{n=3}^{\infty}\left(-a_{n-3} x^{n+r}\right)
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 5 x^{n+r} a_{n}(n+r)\right) \tag{2B}\\
& +\sum_{n=3}^{\infty}\left(-a_{n-3} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} 3 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+5 x^{n+r} a_{n}(n+r)+3 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+5 x^{r} a_{0} r+3 a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)+5 x^{r} r+3 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}+4 r+3\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}+4 r+3=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=-3
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}+4 r+3\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=2$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\frac{\sum_{n=0}^{\infty} a_{n} x^{n}}{x} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x^{3}}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n-1} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-3}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=0
$$

Substituting $n=2$ in Eq. (2B) gives

$$
a_{2}=0
$$

For $3 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+5 a_{n}(n+r)-a_{n-3}+3 a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{a_{n-3}}{n^{2}+2 n r+r^{2}+4 n+4 r+3} \tag{4}
\end{equation*}
$$

Which for the root $r=-1$ becomes

$$
\begin{equation*}
a_{n}=\frac{a_{n-3}}{n(n+2)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=-1$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	0	0

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{1}{r^{2}+10 r+24}
$$

Which for the root $r=-1$ becomes

$$
a_{3}=\frac{1}{15}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	0	0
a_{3}	$\frac{1}{r^{2}+10 r+24}$	$\frac{1}{15}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	0	0
a_{3}	$\frac{1}{r^{2}+10 r+24}$	$\frac{1}{15}$
a_{4}	0	0

For $n=5$, using the above recursive equation gives

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	0	0
a_{3}	$\frac{1}{r^{2}+10 r+24}$	$\frac{1}{15}$
a_{4}	0	0
a_{5}	0	0

For $n=6$, using the above recursive equation gives

$$
a_{6}=\frac{1}{(r+6)(r+4)(r+9)(r+7)}
$$

Which for the root $r=-1$ becomes

$$
a_{6}=\frac{1}{720}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	0	0
a_{3}	$\frac{1}{r^{2}+10 r+24}$	$\frac{1}{15}$
a_{4}	0	0
a_{5}	0	0
a_{6}	$\frac{1}{(r+6)(r+4)(r+9)(r+7)}$	$\frac{1}{720}$

For $n=7$, using the above recursive equation gives

$$
a_{7}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	0	0
a_{3}	$\frac{1}{r^{2}+10 r+24}$	$\frac{1}{15}$
a_{4}	0	0
a_{5}	0	0
a_{6}	$\frac{1}{(r+6)(r+4)(r+9)(r+7)}$	$\frac{1}{720}$
a_{7}	0	0

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =\frac{1}{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =\frac{1+\frac{x^{3}}{15}+\frac{x^{6}}{720}+O\left(x^{8}\right)}{x}
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=2$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{2}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{2} \\
& =0
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} 0 & =\lim _{r \rightarrow-3} 0 \\
& =0
\end{aligned}
$$

The limit is 0 . Since the limit exists then the log term is not needed and we can set $C=0$. Therefore the second solution has the form

$$
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-3}
\end{aligned}
$$

Eq (3) derived above is used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. Substituting $n=1$ in $\mathrm{Eq}(3)$ gives

$$
b_{1}=0
$$

Substituting $n=2$ in $\mathrm{Eq}(3)$ gives

$$
b_{2}=0
$$

For $3 \leq n$ the recursive equation is

$$
\begin{equation*}
b_{n}(n+r)(n+r-1)+5 b_{n}(n+r)-b_{n-3}+3 b_{n}=0 \tag{4}
\end{equation*}
$$

Which for for the root $r=-3$ becomes

$$
\begin{equation*}
b_{n}(n-3)(n-4)+5 b_{n}(n-3)-b_{n-3}+3 b_{n}=0 \tag{4~A}
\end{equation*}
$$

Solving for b_{n} from the recursive equation (4) gives

$$
\begin{equation*}
b_{n}=\frac{b_{n-3}}{n^{2}+2 n r+r^{2}+4 n+4 r+3} \tag{5}
\end{equation*}
$$

Which for the root $r=-3$ becomes

$$
\begin{equation*}
b_{n}=\frac{b_{n-3}}{n^{2}-2 n} \tag{6}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=-3$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	0	0

For $n=3$, using the above recursive equation gives

$$
b_{3}=\frac{1}{r^{2}+10 r+24}
$$

Which for the root $r=-3$ becomes

$$
b_{3}=\frac{1}{3}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	0	0
b_{3}	$\frac{1}{r^{2}+10 r+24}$	$\frac{1}{3}$

For $n=4$, using the above recursive equation gives

$$
b_{4}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	0	0
b_{3}	$\frac{1}{r^{2}+10 r+24}$	$\frac{1}{3}$
b_{4}	0	0

For $n=5$, using the above recursive equation gives

$$
b_{5}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	0	0
b_{3}	$\frac{1}{r^{2}+10 r+24}$	$\frac{1}{3}$
b_{4}	0	0
b_{5}	0	0

For $n=6$, using the above recursive equation gives

$$
b_{6}=\frac{1}{\left(r^{2}+10 r+24\right)\left(r^{2}+16 r+63\right)}
$$

Which for the root $r=-3$ becomes

$$
b_{6}=\frac{1}{72}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	0	0
b_{3}	$\frac{1}{r^{2}+10 r+24}$	$\frac{1}{3}$
b_{4}	0	0
b_{5}	0	0
b_{6}	$\frac{1}{(r+6)(r+4)(r+9)(r+7)}$	$\frac{1}{72}$

For $n=7$, using the above recursive equation gives

$$
b_{7}=0
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	0	0
b_{2}	0	0
b_{3}	$\frac{1}{r^{2}+10 r+24}$	$\frac{1}{3}$
b_{4}	0	0
b_{5}	0	0
b_{6}	$\frac{1}{(r+6)(r+4)(r+9)(r+7)}$	$\frac{1}{72}$
b_{7}	0	0

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =\frac{1}{x}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots\right) \\
& =\frac{1+\frac{x^{3}}{3}+\frac{x^{6}}{72}+O\left(x^{8}\right)}{x^{3}}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =\frac{c_{1}\left(1+\frac{x^{3}}{15}+\frac{x^{6}}{720}+O\left(x^{8}\right)\right)}{x}+\frac{c_{2}\left(1+\frac{x^{3}}{3}+\frac{x^{6}}{72}+O\left(x^{8}\right)\right)}{x^{3}}
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
& y=y_{h} \\
& =\frac{c_{1}\left(1+\frac{x^{3}}{15}+\frac{x^{6}}{720}+O\left(x^{8}\right)\right)}{x}+\frac{c_{2}\left(1+\frac{x^{3}}{3}+\frac{x^{6}}{72}+O\left(x^{8}\right)\right)}{x^{3}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}\left(1+\frac{x^{3}}{15}+\frac{x^{6}}{720}+O\left(x^{8}\right)\right)}{x}+\frac{c_{2}\left(1+\frac{x^{3}}{3}+\frac{x^{6}}{72}+O\left(x^{8}\right)\right)}{x^{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}\left(1+\frac{x^{3}}{15}+\frac{x^{6}}{720}+O\left(x^{8}\right)\right)}{x}+\frac{c_{2}\left(1+\frac{x^{3}}{3}+\frac{x^{6}}{72}+O\left(x^{8}\right)\right)}{x^{3}}
$$

Verified OK.

19.6.1 Maple step by step solution

Let's solve
$x^{2} y^{\prime \prime}+5 x y^{\prime}+\left(-x^{3}+3\right) y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=-\frac{5 y^{\prime}}{x}+\frac{\left(x^{3}-3\right) y}{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{5 y^{\prime}}{x}-\frac{\left(x^{3}-3\right) y}{x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{5}{x}, P_{3}(x)=-\frac{x^{3}-3}{x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=5$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=3$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators

$$
x^{2} y^{\prime \prime}+5 x y^{\prime}+\left(-x^{3}+3\right) y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .3$

$$
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x \cdot y^{\prime}$ to series expansion

$$
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}(3+r)(1+r) x^{r}+a_{1}(4+r)(2+r) x^{1+r}+a_{2}(5+r)(3+r) x^{2+r}+\left(\sum_{k=3}^{\infty}\left(a_{k}(k+r+3)(k+\imath\right.\right.$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(3+r)(1+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{-3,-1\}$
- The coefficients of each power of x must be 0

$$
\left[a_{1}(4+r)(2+r)=0, a_{2}(5+r)(3+r)=0\right]
$$

- \quad Solve for the dependent coefficient(s)
$\left\{a_{1}=0, a_{2}=0\right\}$
- \quad Each term in the series must be 0 , giving the recursion relation
$a_{k}(k+r+3)(k+r+1)-a_{k-3}=0$
- \quad Shift index using $k->k+3$
$a_{k+3}(k+6+r)(k+4+r)-a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+3}=\frac{a_{k}}{(k+6+r)(k+4+r)}$
- Recursion relation for $r=-3$

$$
a_{k+3}=\frac{a_{k}}{(k+3)(k+1)}
$$

- \quad Solution for $r=-3$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-3}, a_{k+3}=\frac{a_{k}}{(k+3)(k+1)}, a_{1}=0, a_{2}=0\right]
$$

- \quad Recursion relation for $r=-1$

$$
a_{k+3}=\frac{a_{k}}{(k+5)(k+3)}
$$

- \quad Solution for $r=-1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-1}, a_{k+3}=\frac{a_{k}}{(k+5)(k+3)}, a_{1}=0, a_{2}=0\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-3}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k-1}\right), a_{k+3}=\frac{a_{k}}{(k+3)(k+1)}, a_{1}=0, a_{2}=0, b_{k+3}=\frac{b_{k}}{(k+5)(k+3)}, b_{1}=0, b\right.
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 35

$$
\begin{aligned}
& \text { Order:=8; } \\
& \text { dsolve(} \left.x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+5 * x * \operatorname{diff}(y(x), x)+\left(3-x^{\wedge} 3\right) * y(x)=0, y(x) \text {,type='series' }, x=0\right) \text {; } \\
& y(x)=\frac{c_{1}\left(1+\frac{1}{15} x^{3}+\frac{1}{720} x^{6}+\mathrm{O}\left(x^{8}\right)\right)}{x}+\frac{c_{2}\left(-2-\frac{2}{3} x^{3}-\frac{1}{36} x^{6}+\mathrm{O}\left(x^{8}\right)\right)}{x^{3}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 40
AsymptoticDSolveValue $\left[x^{\wedge} 2 * y^{\prime}{ }^{\prime}[\mathrm{x}]+5 * \mathrm{x} * \mathrm{y}\right.$ ' $\left.[\mathrm{x}]+\left(3-3 * \mathrm{x}^{\wedge} 3\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}\right]$

$$
y(x) \rightarrow c_{1}\left(\frac{x^{3}}{8}+\frac{1}{x^{3}}+1\right)+c_{2}\left(\frac{x^{5}}{80}+\frac{x^{2}}{5}+\frac{1}{x}\right)
$$

19.7 problem 3(d)

19.7.1 Maple step by step solution

1619
Internal problem ID [6059]
Internal file name [OUTPUT/5307_Sunday_June_05_2022_03_33_40_PM_38231263/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 166
Problem number: 3(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}-2 x(1+x) y^{\prime}+2(1+x) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+\left(-2 x^{2}-2 x\right) y^{\prime}+(2+2 x) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=-\frac{2(1+x)}{x} \\
& q(x)=\frac{2+2 x}{x^{2}}
\end{aligned}
$$

Table 238: Table $p(x), q(x)$ singularites.

$p(x)=-\frac{2(1+x)}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{2+2 x}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+\left(-2 x^{2}-2 x\right) y^{\prime}+(2+2 x) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(-2 x^{2}-2 x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+(2+2 x)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-2 x^{1+n+r} a_{n}(n+r)\right) \tag{2A}\\
& \quad+\sum_{n=0}^{\infty}\left(-2 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} 2 x^{1+n+r} a_{n}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(-2 x^{1+n+r} a_{n}(n+r)\right) & =\sum_{n=1}^{\infty}\left(-2 a_{n-1}(n+r-1) x^{n+r}\right) \\
\sum_{n=0}^{\infty} 2 x^{1+n+r} a_{n} & =\sum_{n=1}^{\infty} 2 a_{n-1} x^{n+r}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-2 a_{n-1}(n+r-1) x^{n+r}\right) \tag{2B}\\
& \quad+\sum_{n=0}^{\infty}\left(-2 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}\right)+\left(\sum_{n=1}^{\infty} 2 a_{n-1} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From $\mathrm{Eq}(2 \mathrm{~B})$ this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)-2 x^{n+r} a_{n}(n+r)+2 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)-2 x^{r} a_{0} r+2 a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)-2 x^{r} r+2 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}-3 r+2\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-3 r+2=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=2 \\
& r_{2}=1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}-3 r+2\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=1$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x^{2}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+2} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{1+n}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)-2 a_{n-1}(n+r-1)-2 a_{n}(n+r)+2 a_{n}+2 a_{n-1}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{2 a_{n-1}}{n+r-1} \tag{4}
\end{equation*}
$$

Which for the root $r=2$ becomes

$$
\begin{equation*}
a_{n}=\frac{2 a_{n-1}}{1+n} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=2$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{2}{r}
$$

Which for the root $r=2$ becomes

$$
a_{1}=1
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2}{r}$	1

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{4}{r(1+r)}
$$

Which for the root $r=2$ becomes

$$
a_{2}=\frac{2}{3}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2}{r}$	1
a_{2}	$\frac{4}{r(1+r)}$	$\frac{2}{3}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{8}{r(1+r)(2+r)}
$$

Which for the root $r=2$ becomes

$$
a_{3}=\frac{1}{3}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2}{r}$	1
a_{2}	$\frac{4}{r(1+r)}$	$\frac{2}{3}$
a_{3}	$\frac{8}{r(1+r)(2+r)}$	$\frac{1}{3}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{16}{r(1+r)(3+r)(2+r)}
$$

Which for the root $r=2$ becomes

$$
a_{4}=\frac{2}{15}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2}{r}$	1
a_{2}	$\frac{4}{r(1+r)}$	$\frac{2}{3}$
a_{3}	$\frac{8}{r(1+r)(2+r)}$	$\frac{1}{3}$
a_{4}	$\frac{16}{r(1+r)(3+r)(2+r)}$	$\frac{2}{15}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{32}{r(1+r)(2+r)(3+r)(4+r)}
$$

Which for the root $r=2$ becomes

$$
a_{5}=\frac{2}{45}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2}{r}$	1
a_{2}	$\frac{4}{r(1+r)}$	$\frac{2}{3}$
a_{3}	$\frac{8}{r(1+r)(2+r)}$	$\frac{1}{3}$
a_{4}	$\frac{16}{r(1+r)(3+r)(2+r)}$	$\frac{2}{15}$
a_{5}	$\frac{32}{r(1+r)(2+r)(3+r)(4+r)}$	$\frac{2}{45}$

For $n=6$, using the above recursive equation gives

$$
a_{6}=\frac{64}{r(1+r)(3+r)(2+r)(4+r)(5+r)}
$$

Which for the root $r=2$ becomes

$$
a_{6}=\frac{4}{315}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2}{r}$	1
a_{2}	$\frac{4}{r(1+r)}$	$\frac{2}{3}$
a_{3}	$\frac{8}{r(1+r)(2+r)}$	$\frac{1}{3}$
a_{4}	$\frac{16}{r(1+r)(3+r)(2+r)}$	$\frac{2}{15}$
a_{5}	$\frac{32}{r(1+r)(2+r)(3+r)(4+r)}$	$\frac{2}{45}$
a_{6}	$\frac{64}{r(1+r)(3+r)(2+r)(4+r)(5+r)}$	$\frac{4}{315}$

For $n=7$, using the above recursive equation gives

$$
a_{7}=\frac{128}{r(1+r)(2+r)(3+r)(4+r)(5+r)(6+r)}
$$

Which for the root $r=2$ becomes

$$
a_{7}=\frac{1}{315}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{2}{r}$	1
a_{2}	$\frac{4}{r(1+r)}$	$\frac{2}{3}$
a_{3}	$\frac{8}{r(1+r)(2+r)}$	$\frac{1}{3}$
a_{4}	$\frac{16}{r(1+r)(3+r)(2+r)}$	$\frac{2}{15}$
a_{5}	$\frac{32}{r(1+r)(2+r)(3+r)(4+r)}$	$\frac{2}{45}$
a_{6}	$\frac{64}{r(1+r)(3+r)(2+r)(4+r)(5+r)}$	$\frac{4}{315}$
a_{7}	$\frac{128}{r(1+r)(2+r)(3+r)(4+r)(5+r)(6+r)}$	$\frac{1}{315}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =x^{2}\left(1+x+\frac{2 x^{2}}{3}+\frac{x^{3}}{3}+\frac{2 x^{4}}{15}+\frac{2 x^{5}}{45}+\frac{4 x^{6}}{315}+\frac{x^{7}}{315}+O\left(x^{8}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=1$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{1}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{1} \\
& =\frac{2}{r}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{2}{r} & =\lim _{r \rightarrow 1} \frac{2}{r} \\
& =2
\end{aligned}
$$

The limit is 2 . Since the limit exists then the log term is not needed and we can set $C=0$. Therefore the second solution has the form

$$
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{1+n}
\end{aligned}
$$

Eq (3) derived above is used to find all b_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. b_{0} is arbitrary and taken as $b_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
b_{n}(n+r)(n+r-1)-2 b_{n-1}(n+r-1)-2 b_{n}(n+r)+2 b_{n}+2 b_{n-1}=0 \tag{4}
\end{equation*}
$$

Which for for the root $r=1$ becomes

$$
\begin{equation*}
b_{n}(1+n) n-2 b_{n-1} n-2 b_{n}(1+n)+2 b_{n}+2 b_{n-1}=0 \tag{4~A}
\end{equation*}
$$

Solving for b_{n} from the recursive equation (4) gives

$$
\begin{equation*}
b_{n}=\frac{2 b_{n-1}}{n+r-1} \tag{5}
\end{equation*}
$$

Which for the root $r=1$ becomes

$$
\begin{equation*}
b_{n}=\frac{2 b_{n-1}}{n} \tag{6}
\end{equation*}
$$

At this point, it is a good idea to keep track of b_{n} in a table both before substituting $r=1$ and after as more terms are found using the above recursive equation.

n	$b_{n, r}$	b_{n}
b_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
b_{1}=\frac{2}{r}
$$

Which for the root $r=1$ becomes

$$
b_{1}=2
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{2}{r}$	2

For $n=2$, using the above recursive equation gives

$$
b_{2}=\frac{4}{r(1+r)}
$$

Which for the root $r=1$ becomes

$$
b_{2}=2
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{2}{r}$	2
b_{2}	$\frac{4}{r(1+r)}$	2

For $n=3$, using the above recursive equation gives

$$
b_{3}=\frac{8}{r(1+r)(2+r)}
$$

Which for the root $r=1$ becomes

$$
b_{3}=\frac{4}{3}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{2}{r}$	2
b_{2}	$\frac{4}{r(1+r)}$	2
b_{3}	$\frac{8}{r(1+r)(2+r)}$	$\frac{4}{3}$

For $n=4$, using the above recursive equation gives

$$
b_{4}=\frac{16}{r(1+r)(3+r)(2+r)}
$$

Which for the root $r=1$ becomes

$$
b_{4}=\frac{2}{3}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{2}{r}$	2
b_{2}	$\frac{4}{r(1+r)}$	2
b_{3}	$\frac{8}{r(1+r)(2+r)}$	$\frac{4}{3}$
b_{4}	$\frac{16}{r(1+r)(3+r)(2+r)}$	$\frac{2}{3}$

For $n=5$, using the above recursive equation gives

$$
b_{5}=\frac{32}{r(1+r)(2+r)(3+r)(4+r)}
$$

Which for the root $r=1$ becomes

$$
b_{5}=\frac{4}{15}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{2}{r}$	2
b_{2}	$\frac{4}{r(1+r)}$	2
b_{3}	$\frac{8}{r(1+r)(2+r)}$	$\frac{4}{3}$
b_{4}	$\frac{16}{r(1+r)(3+r)(2+r)}$	$\frac{2}{3}$
b_{5}	$\frac{32}{r(1+r)(2+r)(3+r)(4+r)}$	$\frac{4}{15}$

For $n=6$, using the above recursive equation gives

$$
b_{6}=\frac{64}{r(1+r)(3+r)(2+r)(4+r)(5+r)}
$$

Which for the root $r=1$ becomes

$$
b_{6}=\frac{4}{45}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{2}{r}$	2
b_{2}	$\frac{4}{r(1+r)}$	2
b_{3}	$\frac{8}{r(1+r)(2+r)}$	$\frac{4}{3}$
b_{4}	$\frac{16}{r(1+r)(3+r)(2+r)}$	$\frac{2}{3}$
b_{5}	$\frac{32}{r(1+r)(2+r)(3+r)(4+r)}$	$\frac{4}{15}$
b_{6}	$\frac{64}{r(1+r)(3+r)(2+r)(4+r)(5+r)}$	$\frac{4}{45}$

For $n=7$, using the above recursive equation gives

$$
b_{7}=\frac{128}{r(1+r)(2+r)(3+r)(4+r)(5+r)(6+r)}
$$

Which for the root $r=1$ becomes

$$
b_{7}=\frac{8}{315}
$$

And the table now becomes

n	$b_{n, r}$	b_{n}
b_{0}	1	1
b_{1}	$\frac{2}{r}$	2
b_{2}	$\frac{4}{r(1+r)}$	2
b_{3}	$\frac{8}{r(1+r)(2+r)}$	$\frac{4}{3}$
b_{4}	$\frac{16}{r(1+r)(3+r)(2+r)}$	$\frac{2}{3}$
b_{5}	$\frac{32}{r(1+r)(2+r)(3+r)(4+r)}$	$\frac{4}{15}$
b_{6}	$\frac{64}{r(1+r)(3+r)(2+r)(4+r)(5+r)}$	$\frac{4}{45}$
b_{7}	$\frac{128}{r(1+r)(2+r)(3+r)(4+r)(5+r)(6+r)}$	$\frac{8}{315}$

Using the above table, then the solution $y_{2}(x)$ is

$$
\begin{aligned}
y_{2}(x) & =x^{2}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots\right) \\
& =x\left(1+2 x+2 x^{2}+\frac{4 x^{3}}{3}+\frac{2 x^{4}}{3}+\frac{4 x^{5}}{15}+\frac{4 x^{6}}{45}+\frac{8 x^{7}}{315}+O\left(x^{8}\right)\right)
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{2}\left(1+x+\frac{2 x^{2}}{3}+\frac{x^{3}}{3}+\frac{2 x^{4}}{15}+\frac{2 x^{5}}{45}+\frac{4 x^{6}}{315}+\frac{x^{7}}{315}+O\left(x^{8}\right)\right) \\
& +c_{2} x\left(1+2 x+2 x^{2}+\frac{4 x^{3}}{3}+\frac{2 x^{4}}{3}+\frac{4 x^{5}}{15}+\frac{4 x^{6}}{45}+\frac{8 x^{7}}{315}+O\left(x^{8}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{2}\left(1+x+\frac{2 x^{2}}{3}+\frac{x^{3}}{3}+\frac{2 x^{4}}{15}+\frac{2 x^{5}}{45}+\frac{4 x^{6}}{315}+\frac{x^{7}}{315}+O\left(x^{8}\right)\right) \\
& +c_{2} x\left(1+2 x+2 x^{2}+\frac{4 x^{3}}{3}+\frac{2 x^{4}}{3}+\frac{4 x^{5}}{15}+\frac{4 x^{6}}{45}+\frac{8 x^{7}}{315}+O\left(x^{8}\right)\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x^{2}\left(1+x+\frac{2 x^{2}}{3}+\frac{x^{3}}{3}+\frac{2 x^{4}}{15}+\frac{2 x^{5}}{45}+\frac{4 x^{6}}{315}+\frac{x^{7}}{315}+O\left(x^{8}\right)\right) \tag{1}\\
& +c_{2} x\left(1+2 x+2 x^{2}+\frac{4 x^{3}}{3}+\frac{2 x^{4}}{3}+\frac{4 x^{5}}{15}+\frac{4 x^{6}}{45}+\frac{8 x^{7}}{315}+O\left(x^{8}\right)\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x^{2}\left(1+x+\frac{2 x^{2}}{3}+\frac{x^{3}}{3}+\frac{2 x^{4}}{15}+\frac{2 x^{5}}{45}+\frac{4 x^{6}}{315}+\frac{x^{7}}{315}+O\left(x^{8}\right)\right) \\
& +c_{2} x\left(1+2 x+2 x^{2}+\frac{4 x^{3}}{3}+\frac{2 x^{4}}{3}+\frac{4 x^{5}}{15}+\frac{4 x^{6}}{45}+\frac{8 x^{7}}{315}+O\left(x^{8}\right)\right)
\end{aligned}
$$

Verified OK.

19.7.1 Maple step by step solution

Let's solve
$x^{2} y^{\prime \prime}+\left(-2 x^{2}-2 x\right) y^{\prime}+(2+2 x) y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2 nd derivative
$y^{\prime \prime}=-\frac{2(1+x) y}{x^{2}}+\frac{2(1+x) y^{\prime}}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
$y^{\prime \prime}-\frac{2(1+x) y^{\prime}}{x}+\frac{2(1+x) y}{x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=-\frac{2(1+x)}{x}, P_{3}(x)=\frac{2(1+x)}{x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-2$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=2$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point
$x_{0}=0$

- Multiply by denominators
$x^{2} y^{\prime \prime}-2 x(1+x) y^{\prime}+(2+2 x) y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$

$$
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
$$

- Shift index using $k->k-m$
$x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}$
- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=1 . .2$
$x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}$
- Shift index using $k->k+1-m$
$x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion
$x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}$
Rewrite ODE with series expansions
$a_{0}(-1+r)(-2+r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(k+r-1)(k+r-2)-2 a_{k-1}(k+r-2)\right) x^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(-1+r)(-2+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{1,2\}$
- Each term in the series must be 0, giving the recursion relation
$(k+r-2)\left(a_{k}(k+r-1)-2 a_{k-1}\right)=0$
- \quad Shift index using $k->k+1$
$(k+r-1)\left(a_{k+1}(k+r)-2 a_{k}\right)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{2 a_{k}}{k+r}$
- Recursion relation for $r=1$
$a_{k+1}=\frac{2 a_{k}}{k+1}$
- \quad Solution for $r=1$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1}, a_{k+1}=\frac{2 a_{k}}{k+1}\right]$
- Recursion relation for $r=2$
$a_{k+1}=\frac{2 a_{k}}{k+2}$
- \quad Solution for $r=2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+1}=\frac{2 a_{k}}{k+2}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k+1}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+2}\right), a_{k+1}=\frac{2 a_{k}}{k+1}, b_{k+1}=\frac{2 b_{k}}{k+2}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Reducible group (found another exponential solution)
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 53

```
Order:=8;
dsolve( }\mp@subsup{x}{}{~}2*\operatorname{diff}(y(x),x$2)-2*x*(x+1)*\operatorname{diff}(y(x),x)+2*(x+1)*y(x)=0,y(x),type='series',x=0)
```

$$
\begin{aligned}
y(x)= & c_{1} x^{2}\left(1+x+\frac{2}{3} x^{2}+\frac{1}{3} x^{3}+\frac{2}{15} x^{4}+\frac{2}{45} x^{5}+\frac{4}{315} x^{6}+\frac{1}{315} x^{7}+\mathrm{O}\left(x^{8}\right)\right) \\
& +c_{2} x\left(1+2 x+2 x^{2}+\frac{4}{3} x^{3}+\frac{2}{3} x^{4}+\frac{4}{15} x^{5}+\frac{4}{45} x^{6}+\frac{8}{315} x^{7}+\mathrm{O}\left(x^{8}\right)\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.086 (sec). Leaf size: 92
AsymptoticDSolveValue[x^2*y' ' $[\mathrm{x}]-2 * \mathrm{x} *(\mathrm{x}+1) * \mathrm{y}$ ' $[\mathrm{x}]+2 *(1+\mathrm{x}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}]$

$$
\begin{aligned}
y(x) \rightarrow & c_{1}\left(\frac{4 x^{7}}{45}+\frac{4 x^{6}}{15}+\frac{2 x^{5}}{3}+\frac{4 x^{4}}{3}+2 x^{3}+2 x^{2}+x\right) \\
& +c_{2}\left(\frac{4 x^{8}}{315}+\frac{2 x^{7}}{45}+\frac{2 x^{6}}{15}+\frac{x^{5}}{3}+\frac{2 x^{4}}{3}+x^{3}+x^{2}\right)
\end{aligned}
$$

19.8 problem 3(e)

19.8.1 Maple step by step solution

1636
Internal problem ID [6060]
Internal file name [OUTPUT/5308_Sunday_June_05_2022_03_33_42_PM_72107480/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 166
Problem number: 3(e).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[_Bessel]

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1\right) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1\right) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{x^{2}-1}{x^{2}}
\end{aligned}
$$

Table 240: Table $p(x), q(x)$ singularites.

$p(x)=\frac{1}{x}$	
singularity	type
$x=0$	"regular"

$q(x)=\frac{x^{2}-1}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1\right) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(x^{2}-1\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} x^{n+r+2} a_{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} x^{n+r+2} a_{n}=\sum_{n=2}^{\infty} a_{n-2} x^{n+r}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2~B}\\
& +\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)-a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r-a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)+x^{r} r-x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}-1\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-1=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=1 \\
& r_{2}=-1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}-1\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=2$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. Substituting $n=1$ in Eq. (2B) gives

$$
a_{1}=0
$$

For $2 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n}(n+r)+a_{n-2}-a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n^{2}+2 n r+r^{2}-1} \tag{4}
\end{equation*}
$$

Which for the root $r=1$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n(n+2)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=1$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=-\frac{1}{r^{2}+4 r+3}
$$

Which for the root $r=1$ becomes

$$
a_{2}=-\frac{1}{8}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{r^{2}+4 r+3}$	$-\frac{1}{8}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{r^{2}+4 r+3}$	$-\frac{1}{8}$
a_{3}	0	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{1}{(r+3)^{2}(1+r)(5+r)}
$$

Which for the root $r=1$ becomes

$$
a_{4}=\frac{1}{192}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{r^{2}+4 r+3}$	$-\frac{1}{8}$
a_{3}	0	0
a_{4}	$\frac{1}{(r+3)^{2}(1+r)(5+r)}$	$\frac{1}{192}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{r^{2}+4 r+3}$	$-\frac{1}{8}$
a_{3}	0	0
a_{4}	$\frac{1}{(r+3)^{2}(1+r)(5+r)}$	$\frac{1}{192}$
a_{5}	0	0

For $n=6$, using the above recursive equation gives

$$
a_{6}=-\frac{1}{(r+3)^{2}(1+r)(5+r)^{2}(r+7)}
$$

Which for the root $r=1$ becomes

$$
a_{6}=-\frac{1}{9216}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{r^{2}+4 r+3}$	$-\frac{1}{8}$
a_{3}	0	0
a_{4}	$\frac{1}{(r+3)^{2}(1+r)(5+r)}$	$\frac{1}{192}$
a_{5}	0	0
a_{6}	$-\frac{1}{(r+3)^{2}(1+r)(5+r)^{2}(r+7)}$	$-\frac{1}{9216}$

For $n=7$, using the above recursive equation gives

$$
a_{7}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	0	0
a_{2}	$-\frac{1}{r^{2}+4 r+3}$	$-\frac{1}{8}$
a_{3}	0	0
a_{4}	$\frac{1}{(r+3)^{2}(1+r)(5+r)}$	$\frac{1}{192}$
a_{5}	0	0
a_{6}	$-\frac{1}{(r+3)^{2}(1+r)(5+r)^{2}(r+7)}$	$-\frac{1}{9216}$
a_{7}	0	0

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =x\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}-\frac{x^{6}}{9216}+O\left(x^{8}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=2$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{2}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{2} \\
& =-\frac{1}{r^{2}+4 r+3}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}}-\frac{1}{r^{2}+4 r+3} & =\lim _{r \rightarrow-1}-\frac{1}{r^{2}+4 r+3} \\
& =\text { undefined }
\end{aligned}
$$

Since the limit does not exist then the log term is needed. Therefore the second solution has the form

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Therefore

$$
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
$$

Substituting these back into the given ode $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1\right) y=0$ gives

$$
\begin{aligned}
& x^{2}\left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \\
& +x\left(C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)\right) \\
& +\left(x^{2}-1\right)\left(C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)\right)=0
\end{aligned}
$$

Which can be written as

$$
\begin{align*}
& \left(\left(x^{2} y_{1}^{\prime \prime}(x)+y_{1}^{\prime}(x) x+\left(x^{2}-1\right) y_{1}(x)\right) \ln (x)+x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)+y_{1}(x)\right) C \\
& +x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{7}\\
& +x\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+\left(x^{2}-1\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

But since $y_{1}(x)$ is a solution to the ode, then

$$
x^{2} y_{1}^{\prime \prime}(x)+y_{1}^{\prime}(x) x+\left(x^{2}-1\right) y_{1}(x)=0
$$

Eq (7) simplifes to

$$
\begin{align*}
& \left(x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)+y_{1}(x)\right) C \\
& +x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{8}\\
& +x\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+\left(x^{2}-1\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Substituting $y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}$ into the above gives

$$
\begin{align*}
& 2 x\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) C+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right) x^{2} \tag{9}\\
& +\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right) x^{2}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) x-\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Since $r_{1}=1$ and $r_{2}=-1$ then the above becomes

$$
\begin{align*}
& 2 x\left(\sum_{n=0}^{\infty} x^{n} a_{n}(n+1)\right) C+\left(\sum_{n=0}^{\infty} x^{-3+n} b_{n}(n-1)(n-2)\right) x^{2} \tag{10}\\
& +\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right) x^{2}+\left(\sum_{n=0}^{\infty} x^{n-2} b_{n}(n-1)\right) x-\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 C x^{n+1} a_{n}(n+1)\right)+\left(\sum_{n=0}^{\infty} x^{n-1} b_{n}\left(n^{2}-3 n+2\right)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} x^{n+1} b_{n}\right)+\left(\sum_{n=0}^{\infty} x^{n-1} b_{n}(n-1)\right)+\sum_{n=0}^{\infty}\left(-b_{n} x^{n-1}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n-1} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} 2 C x^{n+1} a_{n}(n+1) & =\sum_{n=2}^{\infty} 2 C a_{n-2}(n-1) x^{n-1} \\
\sum_{n=0}^{\infty} x^{n+1} b_{n} & =\sum_{n=2}^{\infty} b_{n-2} x^{n-1}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers
of x are the same and equal to $n-1$.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} 2 C a_{n-2}(n-1) x^{n-1}\right)+\left(\sum_{n=0}^{\infty} x^{n-1} b_{n}\left(n^{2}-3 n+2\right)\right) \tag{2~B}\\
& +\left(\sum_{n=2}^{\infty} b_{n-2} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} x^{n-1} b_{n}(n-1)\right)+\sum_{n=0}^{\infty}\left(-b_{n} x^{n-1}\right)=0
\end{align*}
$$

For $n=0$ in Eq. (2B), we choose arbitray value for b_{0} as $b_{0}=1$. For $n=1$, Eq (2B) gives

$$
-b_{1}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
-b_{1}=0
$$

Solving the above for b_{1} gives

$$
b_{1}=0
$$

For $n=N$, where $N=2$ which is the difference between the two roots, we are free to choose $b_{2}=0$. Hence for $n=2$, Eq (2B) gives

$$
2 C+1=0
$$

Which is solved for C. Solving for C gives

$$
C=-\frac{1}{2}
$$

For $n=3, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
4 C a_{1}+b_{1}+3 b_{3}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
3 b_{3}=0
$$

Solving the above for b_{3} gives

$$
b_{3}=0
$$

For $n=4, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
6 C a_{2}+b_{2}+8 b_{4}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
8 b_{4}+\frac{3}{8}=0
$$

Solving the above for b_{4} gives

$$
b_{4}=-\frac{3}{64}
$$

For $n=5, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
8 C a_{3}+b_{3}+15 b_{5}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
15 b_{5}=0
$$

Solving the above for b_{5} gives

$$
b_{5}=0
$$

For $n=6, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
10 C a_{4}+b_{4}+24 b_{6}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
24 b_{6}-\frac{7}{96}=0
$$

Solving the above for b_{6} gives

$$
b_{6}=\frac{7}{2304}
$$

For $n=7, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
12 C a_{5}+b_{5}+35 b_{7}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
35 b_{7}=0
$$

Solving the above for b_{7} gives

$$
b_{7}=0
$$

Now that we found all b_{n} and C, we can calculate the second solution from

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Using the above value found for $C=-\frac{1}{2}$ and all b_{n}, then the second solution becomes

$$
y_{2}(x)=-\frac{1}{2}\left(x\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}-\frac{x^{6}}{9216}+O\left(x^{8}\right)\right)\right) \ln (x)+\frac{1-\frac{3 x^{4}}{64}+\frac{7 x^{6}}{2304}+O\left(x^{8}\right)}{x}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}-\frac{x^{6}}{9216}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(-\frac{1}{2}\left(x\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}-\frac{x^{6}}{9216}+O\left(x^{8}\right)\right)\right) \ln (x)+\frac{1-\frac{3 x^{4}}{64}+\frac{7 x^{6}}{2304}+O\left(x^{8}\right)}{x}\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}-\frac{x^{6}}{9216}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(-\frac{x\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}-\frac{x^{6}}{9216}+O\left(x^{8}\right)\right) \ln (x)}{2}+\frac{1-\frac{3 x^{4}}{64}+\frac{7 x^{6}}{2304}+O\left(x^{8}\right)}{x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y= & c_{1} x\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}-\frac{x^{6}}{9216}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(-\frac{x\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}-\frac{x^{6}}{9216}+O\left(x^{8}\right)\right) \ln (x)}{2}+\frac{1-\frac{3 x^{4}}{64}+\frac{7 x^{6}}{2304}+O\left(x^{8}\right)}{x}\right) \tag{1}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}-\frac{x^{6}}{9216}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(-\frac{x\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}-\frac{x^{6}}{9216}+O\left(x^{8}\right)\right) \ln (x)}{2}+\frac{1-\frac{3 x^{4}}{64}+\frac{7 x^{6}}{2304}+O\left(x^{8}\right)}{x}\right)
\end{aligned}
$$

Verified OK.

19.8.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1\right) y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2 nd derivative
$y^{\prime \prime}=-\frac{\left(x^{2}-1\right) y}{x^{2}}-\frac{y^{\prime}}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{\left(x^{2}-1\right) y}{x^{2}}=0$

Check to see if $x_{0}=0$ is a regular singular point

- Define functions
$\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=\frac{x^{2}-1}{x^{2}}\right]$
- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-1$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1\right) y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$Rewrite ODE with series expansions
- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$
$x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}$
- Shift index using $k->k-m$
$x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}$
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions
$a_{0}(1+r)(-1+r) x^{r}+a_{1}(2+r) r x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(k+r+1)(k+r-1)+a_{k-2}\right) x^{k+r}\right)=0$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(1+r)(-1+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{-1,1\}$
- Each term must be 0
$a_{1}(2+r) r=0$
- \quad Solve for the dependent coefficient(s)
$a_{1}=0$
- Each term in the series must be 0, giving the recursion relation
$a_{k}(k+r+1)(k+r-1)+a_{k-2}=0$
- \quad Shift index using $k->k+2$
$a_{k+2}(k+3+r)(k+r+1)+a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+2}=-\frac{a_{k}}{(k+3+r)(k+r+1)}$
- \quad Recursion relation for $r=-1$
$a_{k+2}=-\frac{a_{k}}{(k+2) k}$
- \quad Solution for $r=-1$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-1}, a_{k+2}=-\frac{a_{k}}{(k+2) k}, a_{1}=0\right]$
- \quad Recursion relation for $r=1$

$$
a_{k+2}=-\frac{a_{k}}{(k+4)(k+2)}
$$

- \quad Solution for $r=1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1}, a_{k+2}=-\frac{a_{k}}{(k+4)(k+2)}, a_{1}=0\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-1}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+1}\right), a_{k+2}=-\frac{a_{k}}{(k+2) k}, a_{1}=0, b_{k+2}=-\frac{b_{k}}{(k+4)(k+2)}, b_{1}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

 Solution by Maple
 Time used: 0.032 (sec). Leaf size: 53

```
Order:=8;
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(x^2-1)*y(x)=0,y(x),type='series',x=0);
```

$y(x)$
$=\frac{c_{1} x^{2}\left(1-\frac{1}{8} x^{2}+\frac{1}{192} x^{4}-\frac{1}{9216} x^{6}+\mathrm{O}\left(x^{8}\right)\right)+c_{2}\left(\ln (x)\left(x^{2}-\frac{1}{8} x^{4}+\frac{1}{192} x^{6}+\mathrm{O}\left(x^{8}\right)\right)+\left(-2+\frac{3}{32} x^{4}-\frac{7}{1152} x\right.\right.}{x}$
\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 75
AsymptoticDSolveValue $\left[x^{\wedge} 2 * y\right.$ ' $\quad[x]+x * y$ ' $\left.[x]+\left(x^{\wedge} 2-1\right) * y[x]==0, y[x],\{x, 0,7\}\right]$

$$
\begin{aligned}
y(x) \rightarrow & c_{2}\left(-\frac{x^{7}}{9216}+\frac{x^{5}}{192}-\frac{x^{3}}{8}+x\right) \\
& +c_{1}\left(\frac{5 x^{6}-90 x^{4}+288 x^{2}+1152}{1152 x}-\frac{1}{384} x\left(x^{4}-24 x^{2}+192\right) \log (x)\right)
\end{aligned}
$$

19.9 problem 3(f)

19.9.1 Maple step by step solution

1653
Internal problem ID [6061]
Internal file name [OUTPUT/5309_Sunday_June_05_2022_03_33_46_PM_14042674/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 166
Problem number: 3(f).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, '
    _with_symmetry_[0,F(x)]`]]
```

$$
x^{2} y^{\prime \prime}-2 x^{2} y^{\prime}+(4 x-2) y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}-2 x^{2} y^{\prime}+(4 x-2) y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=-2 \\
& q(x)=\frac{4 x-2}{x^{2}}
\end{aligned}
$$

Table 242: Table $p(x), q(x)$ singularites.

\[

\]

$q(x)=\frac{4 x-2}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}-2 x^{2} y^{\prime}+(4 x-2) y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& \quad-2 x^{2}\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+(4 x-2)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-2 x^{1+n+r} a_{n}(n+r)\right) \tag{2A}\\
& \quad+\left(\sum_{n=0}^{\infty} 4 x^{1+n+r} a_{n}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(-2 x^{1+n+r} a_{n}(n+r)\right) & =\sum_{n=1}^{\infty}\left(-2 a_{n-1}(n+r-1) x^{n+r}\right) \\
\sum_{n=0}^{\infty} 4 x^{1+n+r} a_{n} & =\sum_{n=1}^{\infty} 4 a_{n-1} x^{n+r}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-2 a_{n-1}(n+r-1) x^{n+r}\right) \tag{2B}\\
& \quad+\left(\sum_{n=1}^{\infty} 4 a_{n-1} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)=0
\end{align*}
$$

The indicial equation is obtained from $n=0$. From $\mathrm{Eq}(2 \mathrm{~B})$ this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)-2 a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)-2 a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)-2 x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}-r-2\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-r-2=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
r_{1} & =2 \\
r_{2} & =-1
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}-r-2\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since $r_{1}-r_{2}=3$ is an integer, then we can construct two linearly independent solutions

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=x^{2}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x}
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+2} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)
\end{aligned}
$$

Where C above can be zero. We start by finding y_{1}. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)-2 a_{n-1}(n+r-1)+4 a_{n-1}-2 a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=\frac{2 a_{n-1}(n+r-3)}{n^{2}+2 n r+r^{2}-n-r-2} \tag{4}
\end{equation*}
$$

Which for the root $r=2$ becomes

$$
\begin{equation*}
a_{n}=\frac{2 a_{n-1}(n-1)}{n(n+3)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=2$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=\frac{-4+2 r}{r^{2}+r-2}
$$

Which for the root $r=2$ becomes

$$
a_{1}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-4+2 r}{r^{2}+r-2}$	0

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{-8+4 r}{(r+3) r(r+2)}
$$

Which for the root $r=2$ becomes

$$
a_{2}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-4+2 r}{r^{2}+r-2}$	0
a_{2}	$\frac{-8+4 r}{(r+3) r(r+2)}$	0

For $n=3$, using the above recursive equation gives

$$
a_{3}=\frac{-16+8 r}{(r+3)(r+2)(r+4)(r+1)}
$$

Which for the root $r=2$ becomes

$$
a_{3}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-4+2 r}{r^{2}+r-2}$	0
a_{2}	$\frac{-8+4 r}{(r+3) r(r+2)}$	0
a_{3}	$\frac{-16+8 r}{(r+3)(r+2)(r+4)(r+1)}$	0

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{-32+16 r}{(r+3)(r+2)^{2}(r+4)(5+r)}
$$

Which for the root $r=2$ becomes

$$
a_{4}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-4+2 r}{r^{2}+r-2}$	0
a_{2}	$\frac{-8+4 r}{(r+3) r(r+2)}$	0
a_{3}	$\frac{-16+8 r}{(r+3)(r+2)(r+4)(r+1)}$	0
a_{4}	$\frac{-32+16 r}{(r+3)(r+2)^{2}(r+4)(5+r)}$	0

For $n=5$, using the above recursive equation gives

$$
a_{5}=\frac{-64+32 r}{(r+3)^{2}(r+2)(r+4)(5+r)(r+6)}
$$

Which for the root $r=2$ becomes

$$
a_{5}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-4+2 r}{r^{2}+r-2}$	0
a_{2}	$\frac{-8+4 r}{(r+3) r(r+2)}$	0
a_{3}	$\frac{-16+8 r}{(r+3)(r+2)(r+4)(r+1)}$	0
a_{4}	$\frac{-32+16 r}{(r+3)(r+2)^{2}(r+4)(5+r)}$	0
a_{5}	$\frac{-64+32 r}{(r+3)^{2}(r+2)(r+4)(5+r)(r+6)}$	0

For $n=6$, using the above recursive equation gives

$$
a_{6}=\frac{-128+64 r}{(r+3)(r+2)(r+4)^{2}(5+r)(r+6)(r+7)}
$$

Which for the root $r=2$ becomes

$$
a_{6}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-4+2 r}{r^{2}+r-2}$	0
a_{2}	$\frac{-8+4 r}{(r+3) r(r+2)}$	0
a_{3}	$\frac{-16+8 r}{(r+3)(r+2)(r+4)(r+1)}$	0
a_{4}	$\frac{-32+16 r}{(r+3)(r+2)^{2}(r+4)(5+r)}$	0
a_{5}	$\frac{-64+32 r}{(r+3)^{2}(r+2)(r+4)(5+r)(r+6)}$	0
a_{6}	$\frac{-128+64 r}{(r+3)(r+2)(r+4)^{2}(5+r)(r+6)(r+7)}$	0

For $n=7$, using the above recursive equation gives

$$
a_{7}=\frac{-256+128 r}{(r+3)(r+2)(r+4)(5+r)^{2}(r+6)(r+7)(r+8)}
$$

Which for the root $r=2$ becomes

$$
a_{7}=0
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$\frac{-4+2 r}{r^{2}+r-2}$	0
a_{2}	$\frac{-8+4 r}{(r+3) r(r+2)}$	0
a_{3}	$\frac{-16+8 r}{(r+3)(r+2)(r+4)(r+1)}$	0
a_{4}	$\frac{-32+16 r}{(r+3)(r+2)^{2}(r+4)(5+r)}$	0
a_{5}	$\frac{-64+32 r}{(r+3)^{2}(r+2)(r+4)(5+r)(r+6)}$	0
a_{6}	$\frac{-128+64 r}{(r+3)(r+2)(r+4)^{2}(5+r)(r+6)(r+7)}$	0
a_{7}	$\frac{-256+128 r}{(r+3)(r+2)(r+4)(5+r)^{2}(r+6)(r+7)(r+8)}$	0

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{aligned}
y_{1}(x) & =x^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =x^{2}\left(1+O\left(x^{8}\right)\right)
\end{aligned}
$$

Now the second solution $y_{2}(x)$ is found. Let

$$
r_{1}-r_{2}=N
$$

Where N is positive integer which is the difference between the two roots. r_{1} is taken as the larger root. Hence for this problem we have $N=3$. Now we need to determine if C is zero or not. This is done by finding $\lim _{r \rightarrow r_{2}} a_{3}(r)$. If this limit exists, then $C=0$, else we need to keep the \log term and $C \neq 0$. The above table shows that

$$
\begin{aligned}
a_{N} & =a_{3} \\
& =\frac{-16+8 r}{(r+3)(r+2)(r+4)(r+1)}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{-16+8 r}{(r+3)(r+2)(r+4)(r+1)} & =\lim _{r \rightarrow-1} \frac{-16+8 r}{(r+3)(r+2)(r+4)(r+1)} \\
& =\text { undefined }
\end{aligned}
$$

Since the limit does not exist then the log term is needed. Therefore the second solution has the form

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Therefore

$$
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
$$

Substituting these back into the given ode $x^{2} y^{\prime \prime}-2 x^{2} y^{\prime}+(4 x-2) y=0$ gives

$$
\begin{aligned}
& x^{2}\left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \\
& -2 x^{2}\left(C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)\right) \\
& +(4 x-2)\left(C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)\right)=0
\end{aligned}
$$

Which can be written as

$$
\begin{align*}
& \left(\left(x^{2} y_{1}^{\prime \prime}(x)-2 x^{2} y_{1}^{\prime}(x)+(4 x-2) y_{1}(x)\right) \ln (x)+x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)\right. \\
& \left.-2 x y_{1}(x)\right) C+x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{7}\\
& -2 x^{2}\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+(4 x-2)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

But since $y_{1}(x)$ is a solution to the ode, then

$$
x^{2} y_{1}^{\prime \prime}(x)-2 x^{2} y_{1}^{\prime}(x)+(4 x-2) y_{1}(x)=0
$$

Eq (7) simplifes to

$$
\begin{align*}
& \left(x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)-2 x y_{1}(x)\right) C \\
& +x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{8}\\
& -2 x^{2}\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+(4 x-2)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Substituting $y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}$ into the above gives

$$
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) x+(-1-2 x)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\right)\right) C \\
& +\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right) x^{2} \tag{9}\\
& -2 x^{2}\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right)+2(2 x-1)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
$$

Since $r_{1}=2$ and $r_{2}=-1$ then the above becomes

$$
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{1+n} a_{n}(n+2)\right) x+(-1-2 x)\left(\sum_{n=0}^{\infty} a_{n} x^{n+2}\right)\right) C \\
& +\left(\sum_{n=0}^{\infty} x^{-3+n} b_{n}(n-1)(-2+n)\right) x^{2} \tag{10}\\
& -2 x^{2}\left(\sum_{n=0}^{\infty} x^{-2+n} b_{n}(n-1)\right)+2(2 x-1)\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)=0
\end{align*}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 C x^{n+2} a_{n}(n+2)\right)+\sum_{n=0}^{\infty}\left(-C x^{n+2} a_{n}\right) \\
& \quad+\sum_{n=0}^{\infty}\left(-2 C x^{n+3} a_{n}\right)+\left(\sum_{n=0}^{\infty} x^{n-1} b_{n}\left(n^{2}-3 n+2\right)\right) \tag{2~A}\\
& \quad+\sum_{n=0}^{\infty}\left(-2 x^{n} b_{n}(n-1)\right)+\left(\sum_{n=0}^{\infty} 4 b_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-2 b_{n} x^{n-1}\right)=0
\end{align*}
$$

The next step is to make all powers of x be $n-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n-1} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} 2 C x^{n+2} a_{n}(n+2) & =\sum_{n=3}^{\infty} 2 C a_{-3+n}(n-1) x^{n-1} \\
\sum_{n=0}^{\infty}\left(-C x^{n+2} a_{n}\right) & =\sum_{n=3}^{\infty}\left(-C a_{-3+n} x^{n-1}\right) \\
\sum_{n=0}^{\infty}\left(-2 C x^{n+3} a_{n}\right) & =\sum_{n=4}^{\infty}\left(-2 C a_{n-4} x^{n-1}\right) \\
\sum_{n=0}^{\infty}\left(-2 x^{n} b_{n}(n-1)\right) & =\sum_{n=1}^{\infty}\left(-2 b_{n-1}(-2+n) x^{n-1}\right) \\
\sum_{n=0}^{\infty} 4 b_{n} x^{n} & =\sum_{n=1}^{\infty} 4 b_{n-1} x^{n-1}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n-1$.

$$
\begin{align*}
& \left(\sum_{n=3}^{\infty} 2 C a_{-3+n}(n-1) x^{n-1}\right)+\sum_{n=3}^{\infty}\left(-C a_{-3+n} x^{n-1}\right)+\sum_{n=4}^{\infty}\left(-2 C a_{n-4} x^{n-1}\right) \\
& \quad+\left(\sum_{n=0}^{\infty} x^{n-1} b_{n}\left(n^{2}-3 n+2\right)\right)+\sum_{n=1}^{\infty}\left(-2 b_{n-1}(-2+n) x^{n-1}\right) \tag{2~B}\\
& \quad+\left(\sum_{n=1}^{\infty} 4 b_{n-1} x^{n-1}\right)+\sum_{n=0}^{\infty}\left(-2 b_{n} x^{n-1}\right)=0
\end{align*}
$$

For $n=0$ in Eq. (2B), we choose arbitray value for b_{0} as $b_{0}=1$. For $n=1$, Eq (2B) gives

$$
6 b_{0}-2 b_{1}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
6-2 b_{1}=0
$$

Solving the above for b_{1} gives

$$
b_{1}=3
$$

For $n=2, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
4 b_{1}-2 b_{2}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
12-2 b_{2}=0
$$

Solving the above for b_{2} gives

$$
b_{2}=6
$$

For $n=N$, where $N=3$ which is the difference between the two roots, we are free to choose $b_{3}=0$. Hence for $n=3$, Eq (2B) gives

$$
3 C+12=0
$$

Which is solved for C. Solving for C gives

$$
C=-4
$$

For $n=4, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(-2 a_{0}+5 a_{1}\right) C+4 b_{4}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
8+4 b_{4}=0
$$

Solving the above for b_{4} gives

$$
b_{4}=-2
$$

For $n=5, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(-2 a_{1}+7 a_{2}\right) C-2 b_{4}+10 b_{5}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
4+10 b_{5}=0
$$

Solving the above for b_{5} gives

$$
b_{5}=-\frac{2}{5}
$$

For $n=6, \mathrm{Eq}(2 \mathrm{~B})$ gives

$$
\left(-2 a_{2}+9 a_{3}\right) C-4 b_{5}+18 b_{6}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
\frac{8}{5}+18 b_{6}=0
$$

Solving the above for b_{6} gives

$$
b_{6}=-\frac{4}{45}
$$

For $n=7$, Eq (2B) gives

$$
\left(-2 a_{3}+11 a_{4}\right) C-6 b_{6}+28 b_{7}=0
$$

Which when replacing the above values found already for b_{n} and the values found earlier for a_{n} and for C, gives

$$
\frac{8}{15}+28 b_{7}=0
$$

Solving the above for b_{7} gives

$$
b_{7}=-\frac{2}{105}
$$

Now that we found all b_{n} and C, we can calculate the second solution from

$$
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
$$

Using the above value found for $C=-4$ and all b_{n}, then the second solution becomes

$$
y_{2}(x)=(-4)\left(x^{2}\left(1+O\left(x^{8}\right)\right)\right) \ln (x)+\frac{1+3 x+6 x^{2}-2 x^{4}-\frac{2 x^{5}}{5}-\frac{4 x^{6}}{45}-\frac{2 x^{7}}{105}+O\left(x^{8}\right)}{x}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& y_{h}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
&=c_{1} x^{2}\left(1+O\left(x^{8}\right)\right)+c_{2}((-4)\left(x^{2}\left(1+O\left(x^{8}\right)\right)\right) \ln (x) \\
&\left.+\frac{1+3 x+6 x^{2}-2 x^{4}-\frac{2 x^{5}}{5}-\frac{4 x^{6}}{45}-\frac{2 x^{7}}{105}+O\left(x^{8}\right)}{x}\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{2}\left(1+O\left(x^{8}\right)\right) \\
& +c_{2}\left(-4 x^{2}\left(1+O\left(x^{8}\right)\right) \ln (x)+\frac{1+3 x+6 x^{2}-2 x^{4}-\frac{2 x^{5}}{5}-\frac{4 x^{6}}{45}-\frac{2 x^{7}}{105}+O\left(x^{8}\right)}{x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
y=c_{1} x^{2}\left(1+O\left(x^{8}\right)\right) & +c_{2}\left(-4 x^{2}\left(1+O\left(x^{8}\right)\right) \ln (x)\right. \\
& \left.+\frac{1+3 x+6 x^{2}-2 x^{4}-\frac{2 x^{5}}{5}-\frac{4 x^{6}}{45}-\frac{2 x^{7}}{105}+O\left(x^{8}\right)}{x}\right)^{(1)}
\end{aligned}
$$

Verification of solutions

$$
\begin{aligned}
y= & c_{1} x^{2}\left(1+O\left(x^{8}\right)\right) \\
& +c_{2}\left(-4 x^{2}\left(1+O\left(x^{8}\right)\right) \ln (x)+\frac{1+3 x+6 x^{2}-2 x^{4}-\frac{2 x^{5}}{5}-\frac{4 x^{6}}{45}-\frac{2 x^{7}}{105}+O\left(x^{8}\right)}{x}\right)
\end{aligned}
$$

Verified OK.

19.9.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}-2 x^{2} y^{\prime}+(4 x-2) y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{2(2 x-1) y}{x^{2}}+2 y^{\prime}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-2 y^{\prime}+\frac{2(2 x-1) y}{x^{2}}=0$
$\square \quad$ Check to see if $x_{0}=0$ is a regular singular point
- Define functions

$$
\left[P_{2}(x)=-2, P_{3}(x)=\frac{2(2 x-1)}{x^{2}}\right]
$$

- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$

$$
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0
$$

- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-2$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point

$$
x_{0}=0
$$

- Multiply by denominators

$$
x^{2} y^{\prime \prime}-2 x^{2} y^{\prime}+(4 x-2) y=0
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
$$

Rewrite ODE with series expansions

- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$

$$
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime}$ to series expansion

$$
x^{2} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r+1}
$$

- Shift index using $k->k-1$

$$
x^{2} \cdot y^{\prime}=\sum_{k=1}^{\infty} a_{k-1}(k-1+r) x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k-1+r) x^{k+r}
$$

Rewrite ODE with series expansions

$$
a_{0}(1+r)(-2+r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(k+r+1)(k+r-2)-2 a_{k-1}(k-3+r)\right) x^{k+r}\right)=0
$$

- a_{0} cannot be 0 by assumption, giving the indicial equation

$$
(1+r)(-2+r)=0
$$

- Values of r that satisfy the indicial equation

$$
r \in\{-1,2\}
$$

- Each term in the series must be 0, giving the recursion relation

$$
a_{k}(k+r+1)(k+r-2)-2 a_{k-1}(k-3+r)=0
$$

- \quad Shift index using $k->k+1$

$$
a_{k+1}(k+2+r)(k-1+r)-2 a_{k}(k+r-2)=0
$$

- Recursion relation that defines series solution to ODE

$$
a_{k+1}=\frac{2 a_{k}(k+r-2)}{(k+2+r)(k-1+r)}
$$

- Recursion relation for $r=-1$; series terminates at $k=3$

$$
a_{k+1}=\frac{2 a_{k}(k-3)}{(k+1)(k-2)}
$$

- Series not valid for $r=-1$, division by 0 in the recursion relation at $k=2$

$$
a_{k+1}=\frac{2 a_{k}(k-3)}{(k+1)(k-2)}
$$

- Recursion relation for $r=2$

$$
a_{k+1}=\frac{2 a_{k} k}{(k+4)(k+1)}
$$

- \quad Solution for $r=2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+1}=\frac{2 a_{k} k}{(k+4)(k+1)}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 55

```
Order:=8;
dsolve(x^2*diff (y(x),x$2)-2*x^2*diff(y (x),x)+(4*x-2)*y(x)=0,y(x),type='series', x=0);
```

$$
\begin{aligned}
& y(x)=c_{1} x^{2}\left(1+\mathrm{O}\left(x^{8}\right)\right) \\
& +\frac{c_{2}\left(\ln (x)\left((-48) x^{3}+\mathrm{O}\left(x^{8}\right)\right)+\left(12+36 x+72 x^{2}+88 x^{3}-24 x^{4}-\frac{24}{5} x^{5}-\frac{16}{15} x^{6}-\frac{8}{35} x^{7}+\mathrm{O}\left(x^{8}\right)\right)\right)}{x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.1 (sec). Leaf size: 58

AsymptoticDSolveValue $\left[\mathrm{x}^{\wedge} 2 * \mathrm{y}^{\prime \prime}[\mathrm{x}]-2 * \mathrm{x}^{\wedge} 2 * \mathrm{y}^{\prime}[\mathrm{x}]+(4 * \mathrm{x}-2) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}\right]$

$$
y(x) \rightarrow c_{2} x^{2}+c_{1}\left(-4 x^{2} \log (x)-\frac{4 x^{6}+18 x^{5}+90 x^{4}-390 x^{3}-270 x^{2}-135 x-45}{45 x}\right)
$$

20 Chapter 4. Linear equations with Regular Singular Points. Page 182

20.1 problem 4 . 1658

20.1 problem 4

20.1.1 Maple step by step solution

Internal problem ID [6062]
Internal file name [OUTPUT/5310_Sunday_June_05_2022_03_33_49_PM_29452965/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 4. Linear equations with Regular Singular Points. Page 182
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second_order_change_of_cvariable_on_y_method_2", "second order series method. Taylor series method", "second_order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type

```
[_Gegenbauer]
```

$$
\left(-x^{2}+1\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using

Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{332}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{333}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
& F_{0}=-\frac{2\left(-y+x y^{\prime}\right)}{x^{2}-1} \\
& F_{1}=\frac{d F_{0}}{d x} \\
&=\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
&=\frac{8\left(-y+x y^{\prime}\right) x}{\left(x^{2}-1\right)^{2}} \\
& F_{2}=\frac{d F_{1}}{d x} \\
&=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
&=-\frac{8\left(-y+x y^{\prime}\right)\left(5 x^{2}+1\right)}{\left(x^{2}-1\right)^{3}} \\
& F_{3}=\frac{d F_{2}}{d x} \\
&=\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
&=\frac{240\left(x^{2}+\frac{3}{5}\right)\left(-y+x y^{\prime}\right) x}{\left(x^{2}-1\right)^{4}} \\
& F_{4}=\frac{d F_{3}}{d x} \\
&=\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
&=-\frac{48\left(-y+x y^{\prime}\right)\left(35 x^{4}+42 x^{2}+3\right)}{\left(x^{2}-1\right)^{5}} \\
&=-\frac{5760\left(-y+x y^{\prime}\right)\left(21 x^{6}+63 x^{4}+27 x^{2}+1\right)}{\left(x^{2}-1\right)^{7}} \\
& F_{5}=\frac{d F_{4}}{d x} \\
&=\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} y^{\prime}+\frac{\partial F_{4}}{\partial y^{\prime}} F_{4} \\
&=\frac{13440\left(-y+x y^{\prime}\right) x\left(x^{4}+2 x^{2}+\frac{3}{7}\right)}{\left(x^{2}-1\right)^{6}} \\
& F_{6} \\
& \hline
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-2 y(0) \\
& F_{1}=0 \\
& F_{2}=-8 y(0) \\
& F_{3}=0 \\
& F_{4}=-144 y(0) \\
& F_{5}=0 \\
& F_{6}=-5760 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1-x^{2}-\frac{1}{3} x^{4}-\frac{1}{5} x^{6}-\frac{1}{7} x^{8}\right) y(0)+x y^{\prime}(0)+O\left(x^{8}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(-x^{2}+1\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(-x^{2}+1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)-2 x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+2\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(-x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-2 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{gather*}
\sum_{n=2}^{\infty}\left(-x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
+\sum_{n=1}^{\infty}\left(-2 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n}\right)=0
\end{gather*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}+2 a_{0}=0 \\
a_{2}=-a_{0}
\end{gathered}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
-n a_{n}(n-1)+(n+2) a_{n+2}(n+1)-2 n a_{n}+2 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{(n-1) a_{n}}{n+1} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
-4 a_{2}+12 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{a_{0}}{3}
$$

For $n=3$ the recurrence equation gives

$$
-10 a_{3}+20 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=0
$$

For $n=4$ the recurrence equation gives

$$
-18 a_{4}+30 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{a_{0}}{5}
$$

For $n=5$ the recurrence equation gives

$$
-28 a_{5}+42 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=0
$$

For $n=6$ the recurrence equation gives

$$
-40 a_{6}+56 a_{8}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{8}=-\frac{a_{0}}{7}
$$

For $n=7$ the recurrence equation gives

$$
-54 a_{7}+72 a_{9}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{9}=0
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-a_{0} x^{2}-\frac{1}{3} a_{0} x^{4}-\frac{1}{5} a_{0} x^{6}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-x^{2}-\frac{1}{3} x^{4}-\frac{1}{5} x^{6}\right) a_{0}+a_{1} x+O\left(x^{8}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-x^{2}-\frac{1}{3} x^{4}-\frac{1}{5} x^{6}\right) c_{1}+c_{2} x+O\left(x^{8}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-x^{2}-\frac{1}{3} x^{4}-\frac{1}{5} x^{6}-\frac{1}{7} x^{8}\right) y(0)+x y^{\prime}(0)+O\left(x^{8}\right) \tag{1}\\
& y=\left(1-x^{2}-\frac{1}{3} x^{4}-\frac{1}{5} x^{6}\right) c_{1}+c_{2} x+O\left(x^{8}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1-x^{2}-\frac{1}{3} x^{4}-\frac{1}{5} x^{6}-\frac{1}{7} x^{8}\right) y(0)+x y^{\prime}(0)+O\left(x^{8}\right)
$$

Verified OK.

$$
y=\left(1-x^{2}-\frac{1}{3} x^{4}-\frac{1}{5} x^{6}\right) c_{1}+c_{2} x+O\left(x^{8}\right)
$$

Verified OK.

20.1.1 Maple step by step solution

Let's solve
$\left(-x^{2}+1\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{2 x y^{\prime}}{x^{2}-1}+\frac{2 y}{x^{2}-1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{2 x y^{\prime}}{x^{2}-1}-\frac{2 y}{x^{2}-1}=0$
Check to see if x_{0} is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{2 x}{x^{2}-1}, P_{3}(x)=-\frac{2}{x^{2}-1}\right]$
- $(1+x) \cdot P_{2}(x)$ is analytic at $x=-1$
$\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=1$
- $(1+x)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$
$\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0$
- $x=-1$ is a regular singular point

Check to see if x_{0} is a regular singular point
$x_{0}=-1$

- Multiply by denominators
$\left(x^{2}-1\right) y^{\prime \prime}+2 x y^{\prime}-2 y=0$
- \quad Change variables using $x=u-1$ so that the regular singular point is at $u=0$
$\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(2 u-2)\left(\frac{d}{d u} y(u)\right)-2 y(u)=0$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$
$u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}$
- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=1 . .2$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
-2 a_{0} r^{2} u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-2 a_{k+1}(k+1+r)^{2}+a_{k}(k+r+2)(k+r-1)\right) u^{k+r}\right)=0
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$-2 r^{2}=0$
- Values of r that satisfy the indicial equation

$$
r=0
$$

- Each term in the series must be 0 , giving the recursion relation
$-2 a_{k+1}(k+1)^{2}+a_{k}(k+2)(k-1)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{a_{k}(k+2)(k-1)}{2(k+1)^{2}}$
- Recursion relation for $r=0$; series terminates at $k=1$
$a_{k+1}=\frac{a_{k}(k+2)(k-1)}{2(k+1)^{2}}$
- Apply recursion relation for $k=0$
$a_{1}=-a_{0}$
- Terminating series solution of the ODE for $r=0$. Use reduction of order to find the second li $y(u)=a_{0} \cdot(-u+1)$
- Revert the change of variables $u=1+x$
[$\left.y=-a_{0} x\right]$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 29

```
Order:=8;
dsolve((1-x^2)*diff (y (x), x$2)-2*x*diff ( }\textrm{y}(\textrm{x}),\textrm{x})+2*y(x)=0,y(x),type='series',x=0)
\[
y(x)=\left(1-x^{2}-\frac{1}{3} x^{4}-\frac{1}{5} x^{6}\right) y(0)+D(y)(0) x+O\left(x^{8}\right)
\]
```

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 32

```
AsymptoticDSolveValue[(1-x^2)*y''[x]-2*x*y'[x]+2*y[x]==0,y[x],{x,0,7}]
```

$$
y(x) \rightarrow c_{1}\left(-\frac{x^{6}}{5}-\frac{x^{4}}{3}-x^{2}+1\right)+c_{2} x
$$

21 Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190
21.1 problem 1(a) 1670
21.2 problem 1(b) 1685
21.3 problem 1(c) 1700
21.4 problem 1(d) 1720
21.5 problem 1(e) 1733
21.6 problem 2(a) 1748
21.7 problem 3(a) 1752
21.8 problem 3(b) 1756
21.9 problem 4(a) 1760
21.10problem 4(b) 1764
21.11problem 4(c) 1768
21.12problem 4(d) 1772
21.13problem 5(a) 1776
21.14problem 5(b) 1782
21.15problem 5(c) 1788
21.16problem 6(b) 1792

21.1 problem 1(a)

21.1.1 Solving as separable ode . 1670
21.1.2 Solving as linear ode . 1672
21.1.3 Solving as homogeneousTypeD2 ode 1673
21.1.4 Solving as first order ode lie symmetry lookup ode 1675
21.1.5 Solving as exact ode . 1679
21.1.6 Maple step by step solution . 1683

Internal problem ID [6063]
Internal file name [OUTPUT/5311_Sunday_June_05_2022_03_33_51_PM_79278784/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190 Problem number: 1(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-y x^{2}=0
$$

21.1.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =y x^{2}
\end{aligned}
$$

Where $f(x)=x^{2}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =x^{2} d x \\
\int \frac{1}{y} d y & =\int x^{2} d x \\
\ln (y) & =\frac{x^{3}}{3}+c_{1} \\
y & =\mathrm{e}^{\frac{x^{3}}{3}+c_{1}} \\
& =c_{1} \mathrm{e}^{\frac{x^{3}}{3}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x^{3}}{3}} \tag{1}
\end{equation*}
$$

Figure 177: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{x^{3}}{3}}
$$

Verified OK.

21.1.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-x^{2} \\
q(x) & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-y x^{2}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-x^{2} d x} \\
& =\mathrm{e}^{-\frac{x^{3}}{3}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\mathrm{e}^{-\frac{x^{3}}{3}} y\right) & =0
\end{aligned}
$$

Integrating gives

$$
\mathrm{e}^{-\frac{x^{3}}{3}} y=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-\frac{x^{3}}{3}}$ results in

$$
y=c_{1} \mathrm{e}^{\frac{x^{3}}{3}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x^{3}}{3}} \tag{1}
\end{equation*}
$$

Figure 178: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{x^{3}}{3}}
$$

Verified OK.

21.1.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-u(x) x^{3}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u\left(x^{3}-1\right)}{x}
\end{aligned}
$$

Where $f(x)=\frac{x^{3}-1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{x^{3}-1}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{x^{3}-1}{x} d x \\
\ln (u) & =\frac{x^{3}}{3}-\ln (x)+c_{2} \\
u & =\mathrm{e}^{\frac{x^{3}}{3}-\ln (x)+c_{2}} \\
& =c_{2} \mathrm{e}^{\frac{x^{3}}{3}-\ln (x)}
\end{aligned}
$$

Which simplifies to

$$
u(x)=\frac{c_{2} \mathrm{e}^{\frac{x^{3}}{3}}}{x}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =c_{2} \mathrm{e}^{\frac{x^{3}}{3}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} \mathrm{e}^{\frac{x^{3}}{3}} \tag{1}
\end{equation*}
$$

Figure 179: Slope field plot
Verification of solutions

$$
y=c_{2} \mathrm{e}^{\frac{x^{3}}{3}}
$$

Verified OK.

21.1.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=y x^{2} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 245: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{\frac{x^{3}}{3}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\frac{x^{3}}{3}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-\frac{x^{3}}{3}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=y x^{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-x^{2} \mathrm{e}^{-\frac{x^{3}}{3}} y \\
& S_{y}=\mathrm{e}^{-\frac{x^{3}}{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{-\frac{x^{3}}{3}} y=c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-\frac{x^{3}}{3}} y=c_{1}
$$

Which gives

$$
y=c_{1} \mathrm{e}^{\frac{x^{3}}{3}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=y x^{2}$		$\frac{d S}{d R}=0$
		$\rightarrow \rightarrow$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+29 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
	$R=x$	
为 ${ }^{\text {a }}$	$S=\mathrm{e}^{-\frac{x^{3}}{3}} y$	
$\rightarrow 1$.		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-2]{ }$
䞨		$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$
		\cdots

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x^{3}}{3}} \tag{1}
\end{equation*}
$$

Figure 180: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{x^{3}}{3}}
$$

Verified OK.

21.1.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =\left(x^{2}\right) \mathrm{d} x \\
\left(-x^{2}\right) \mathrm{d} x+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x^{2} \\
N(x, y) & =\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x^{2} \mathrm{~d} x \\
\phi & =-\frac{x^{3}}{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{3}}{3}+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{3}}{3}+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{\frac{x^{3}}{3}+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{x^{3}}{3}+c_{1}} \tag{1}
\end{equation*}
$$

Figure 181: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{x^{3}}{3}+c_{1}}
$$

Verified OK.

21.1.6 Maple step by step solution

Let's solve
$y^{\prime}-y x^{2}=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{y}=x^{2}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int x^{2} d x+c_{1}
$$

- Evaluate integral
$\ln (y)=\frac{x^{3}}{3}+c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{\frac{x^{3}}{3}+c_{1}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(diff(y(x),x)=x^2*y(x),y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{\frac{x^{3}}{3}}
$$

\checkmark Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 22
DSolve [y' $[\mathrm{x}]==\mathrm{x}^{\wedge} 2 * \mathrm{y}[\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} e^{\frac{x^{3}}{3}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

21.2 problem 1(b)

21.2.1 Solving as separable ode . 1685
21.2.2 Solving as homogeneousTypeD2 ode 1687
21.2.3 Solving as differentialType ode 1689
21.2.4 Solving as first order ode lie symmetry lookup ode 1690
21.2.5 Solving as exact ode . 1694
21.2.6 Maple step by step solution . 1698

Internal problem ID [6064]
Internal file name [OUTPUT/5312_Sunday_June_05_2022_03_33_52_PM_12902458/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190 Problem number: 1(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime} y=x
$$

21.2.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x}{y}
\end{aligned}
$$

Where $f(x)=x$ and $g(y)=\frac{1}{y}$. Integrating both sides gives

$$
\frac{1}{\frac{1}{y}} d y=x d x
$$

$$
\begin{aligned}
\int \frac{1}{\frac{1}{y}} d y & =\int x d x \\
\frac{y^{2}}{2} & =\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\sqrt{x^{2}+2 c_{1}} \\
& y=-\sqrt{x^{2}+2 c_{1}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{x^{2}+2 c_{1}} \tag{1}\\
& y=-\sqrt{x^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Figure 182: Slope field plot

Verification of solutions

$$
y=\sqrt{x^{2}+2 c_{1}}
$$

Verified OK.

$$
y=-\sqrt{x^{2}+2 c_{1}}
$$

Verified OK.

21.2.2 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
\left(u^{\prime}(x) x+u(x)\right) u(x) x=x
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}-1}{u x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{2}-1}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}-1}{u}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{2}-1}{u}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln (u-1)}{2}+\frac{\ln (u+1)}{2} & =-\ln (x)+c_{2}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{2}\right)(\ln (u-1)+\ln (u+1)) & =-\ln (x)+2 c_{2} \\
\ln (u-1)+\ln (u+1) & =(2)\left(-\ln (x)+2 c_{2}\right) \\
& =-2 \ln (x)+4 c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (u-1)+\ln (u+1)}=\mathrm{e}^{-2 \ln (x)+2 c_{2}}
$$

Which simplifies to

$$
\begin{aligned}
u^{2}-1 & =\frac{2 c_{2}}{x^{2}} \\
& =\frac{c_{3}}{x^{2}}
\end{aligned}
$$

The solution is

$$
u(x)^{2}-1=\frac{c_{3}}{x^{2}}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \frac{y^{2}}{x^{2}}-1=\frac{c_{3}}{x^{2}} \\
& \frac{y^{2}}{x^{2}}-1=\frac{c_{3}}{x^{2}}
\end{aligned}
$$

Which simplifies to

$$
-(x-y)(x+y)=c_{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-(x-y)(x+y)=c_{3} \tag{1}
\end{equation*}
$$

Figure 183: Slope field plot

Verification of solutions

$$
-(x-y)(x+y)=c_{3}
$$

Verified OK.

21.2.3 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{x}{y} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
(y) d y=(x) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(x) d x=d\left(\frac{x^{2}}{2}\right)
$$

Hence (2) becomes

$$
(y) d y=d\left(\frac{x^{2}}{2}\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\sqrt{x^{2}+2 c_{1}}+c_{1} \\
& y=-\sqrt{x^{2}+2 c_{1}}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{x^{2}+2 c_{1}}+c_{1} \tag{1}\\
& y=-\sqrt{x^{2}+2 c_{1}}+c_{1} \tag{2}
\end{align*}
$$

Figure 184: Slope field plot
Verification of solutions

$$
y=\sqrt{x^{2}+2 c_{1}}+c_{1}
$$

Verified OK.

$$
y=-\sqrt{x^{2}+2 c_{1}}+c_{1}
$$

Verified OK.

21.2.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{x}{y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 248: Lie symmetry infinitesimal lookup table for known first order ODE's
$\left.\begin{array}{|l|l|l|l|}\hline \text { ODE class } & \text { Form } & \xi & \eta \\ \hline \hline \text { linear ode } & y^{\prime}=f(x) y(x)+g(x) & 0 & e^{\int f d x} \\ \hline \text { separable ode } & y^{\prime}=f(x) g(y) & \frac{1}{f} & 0 \\ \hline \text { quadrature ode } & y^{\prime}=f(x) & 0 & 1 \\ \hline \text { quadrature ode } & y^{\prime}=g(y) & 1 & 0 \\ \hline \begin{array}{l}\text { homogeneous ODEs of } \\ \text { Class A }\end{array} & y^{\prime}=f\left(\frac{y}{x}\right) & x & y \\ \hline \begin{array}{l}\text { homogeneous ODEs of } \\ \text { Class C }\end{array} & y^{\prime}=(a+b x+c y)^{\frac{n}{m}} & 1 & -\frac{b}{c} \\ \hline \text { homogeneous class D } & y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right) & x^{2} & x y \\ \hline \begin{array}{l}\text { First order } \\ \text { form ID } 1\end{array} & \text { special } & y^{\prime}=g(x) e^{h(x)+b y}+f(x) & \frac{e^{-\int b f(x) d x-h(x)}}{g(x)}\end{array}\right] \frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$,

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{x}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{x^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x}{y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{x^{2}}{2}=\frac{y^{2}}{2}+c_{1}
$$

Which simplifies to

$$
\frac{x^{2}}{2}=\frac{y^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x}{y}$		$\frac{d S}{d R}=R$
-		
	$R=y$	
	x^{2}	
	$S=\frac{x^{2}}{0}$	

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{x^{2}}{2}=\frac{y^{2}}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 185: Slope field plot

Verification of solutions

$$
\frac{x^{2}}{2}=\frac{y^{2}}{2}+c_{1}
$$

Verified OK.

21.2.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(y) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+(y) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x \\
N(x, y) & =y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(y) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y$. Therefore equation (4) becomes

$$
\begin{equation*}
y=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(y) \mathrm{d} y \\
f(y) & =\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}+\frac{y^{2}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}+\frac{y^{2}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{2}}{2}+\frac{y^{2}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 186: Slope field plot

Verification of solutions

$$
-\frac{x^{2}}{2}+\frac{y^{2}}{2}=c_{1}
$$

Verified OK.

21.2.6 Maple step by step solution

Let's solve

$$
y^{\prime} y=x
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x

$$
\int y^{\prime} y d x=\int x d x+c_{1}
$$

- Evaluate integral

$$
\frac{y^{2}}{2}=\frac{x^{2}}{2}+c_{1}
$$

- \quad Solve for y

$$
\left\{y=\sqrt{x^{2}+2 c_{1}}, y=-\sqrt{x^{2}+2 c_{1}}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(y(x)*diff(y(x),x)=x,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\sqrt{x^{2}+c_{1}} \\
& y(x)=-\sqrt{x^{2}+c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.081 (sec). Leaf size: 35
DSolve $[y[x] * y '[x]==x, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{x^{2}+2 c_{1}} \\
& y(x) \rightarrow \sqrt{x^{2}+2 c_{1}}
\end{aligned}
$$

21.3 problem 1(c)

21.3.1 Solving as separable ode . 1700
21.3.2 Solving as differentialType ode 1705
21.3.3 Solving as first order ode lie symmetry lookup ode 1709
21.3.4 Solving as exact ode . 1713
21.3.5 Maple step by step solution . 1717

Internal problem ID [6065]
Internal file name [OUTPUT/5313_Sunday_June_05_2022_03_33_53_PM_69528311/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190
Problem number: 1(c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{x^{2}+x}{y-y^{2}}=0
$$

21.3.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{x(1+x)}{y(y-1)}
\end{aligned}
$$

Where $f(x)=-x(1+x)$ and $g(y)=\frac{1}{y(y-1)}$. Integrating both sides gives

$$
\frac{1}{\frac{1}{y(y-1)}} d y=-x(1+x) d x
$$

$$
\begin{aligned}
\int \frac{1}{\frac{1}{y(y-1)}} d y & =\int-x(1+x) d x \\
\frac{1}{3} y^{3}-\frac{1}{2} y^{2} & =-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y \\
& \begin{aligned}
= & \frac{\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}}{2} \\
& +\frac{1}{2\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}}
\end{aligned} \\
& +\frac{1}{2} \\
& y= \\
& -\underline{\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}} \\
& 1 \\
& -\overline{4\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}} \\
& +\frac{1}{2} \\
& +\frac{i \sqrt{3}\left(\frac{\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}}{2}-\frac{}{2\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-2}\right.}\right.}{2} \\
& y= \\
& \left.-\frac{\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}}{4}\right) \\
& +\frac{1}{2} \\
& -\frac{i \sqrt{3}\left(\frac{\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}}{2}-\frac{}{2\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-2}\right.}\right.}{2}
\end{aligned}
$$

Summary

The solution(s) found are the following
y
(1)

$$
\begin{align*}
= & \frac{\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}}{2} \\
& +\frac{1}{2\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}} \\
& +\frac{1}{2} \tag{2}\\
y & =
\end{align*}
$$

$$
\begin{aligned}
- & \frac{\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}}{4} \\
- & \frac{1}{4\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}} \\
+ & \frac{1}{2} \\
& i \sqrt{3}\left(\frac{\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}}{2}-\frac{}{2\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-2}\right.}\right. \\
y= & 2
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}}{4} \\
& -\frac{1}{4\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}} \\
& +\frac{1}{2} \\
& -\frac{i \sqrt{3}\left(\frac{\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}}{2}-\frac{}{2\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-2}\right.}\right.}{2}
\end{aligned}
$$

Figure 187: Slope field plot

Verification of solutions

$$
\begin{aligned}
y & \frac{\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}}{2} \\
& +\frac{1}{2\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}} \\
& +\frac{1}{2}
\end{aligned}
$$

Verified OK.
$y=$

$$
\begin{aligned}
& -\frac{\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}}{4} \\
& -\frac{1}{4\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}} \\
& +\frac{1}{2} \\
& +\frac{i \sqrt{3}\left(\frac{\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}}{2}-\frac{\sqrt{2\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-2}\right.}}{2}\right.}{2}
\end{aligned}
$$

Verified OK.

$y=$

$$
\begin{aligned}
& -\frac{\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}}{4} \\
& -\frac{1}{4\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}} \\
& +\frac{1}{2} \\
& i \sqrt{3}\left(\frac{\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}}{2}-\frac{}{2\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-2}\right.}\right. \\
& -\frac{2}{2}
\end{aligned}
$$

Verified OK.

21.3.2 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{x^{2}+x}{y-y^{2}} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
\left(y^{2}-y\right) d y=(-x(1+x)) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-x(1+x)) d x=d\left(-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right)
$$

Hence (2) becomes

$$
\left(y^{2}-y\right) d y=d\left(-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right)
$$

Integrating both sides gives gives these solutions

$$
\begin{aligned}
& y=\frac{\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}}{2}+\frac{}{2} \\
& y=-\frac{\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}}{4}-\frac{4}{4} \\
& y=-\frac{\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}}{4}--
\end{aligned}
$$

Summary

The solution(s) found are the following
y
(1)

$$
\begin{align*}
= & \frac{\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}}{2} \\
& +\frac{1}{2\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}} \\
& +\frac{1}{2}+c_{1} \tag{2}\\
y & =
\end{align*}
$$

$$
\begin{align*}
& -\frac{\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}}{4} \\
& -\frac{1}{4\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}} \\
& +\frac{1}{2} \\
& +\frac{i \sqrt{3}\left(\frac{\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}}{2}-\frac{2\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-2}\right.}{2}\right.}{4} \tag{3}\\
& +c_{1} \\
& -\frac{\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}}{4} \\
& -\frac{4\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}}{2} \\
+ & \frac{1}{2} \\
& i \sqrt{3}\left(\frac{\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}}{2}-\frac{(3)}{2\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-2}\right.}\right. \\
& -\frac{c_{1}}{2}
\end{align*}
$$

Figure 188: Slope field plot

Verification of solutions

$$
\begin{aligned}
y & \frac{\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}}{2} \\
& +\frac{1}{2\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}} \\
& +\frac{1}{2}+c_{1}
\end{aligned}
$$

Verified OK.
$y=$

$$
\begin{aligned}
& -\frac{\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}}{4} \\
& -\frac{1}{4\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}} \\
& +\frac{1}{2} \\
& i \sqrt{3}\left(\frac{\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}}{2}-\frac{\sqrt{2\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-2}\right.}}{2}\right. \\
& +\frac{c_{1}}{2}
\end{aligned}
$$

Verified OK.
$y=$

$$
\begin{aligned}
& -\frac{\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}}{4} \\
& -\frac{1}{4\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}} \\
& +\frac{1}{2} \\
& i \sqrt{3}\left(\frac{\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-24 c_{1} x^{3}+9 x^{4}-36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}+6 c_{1}}\right)^{\frac{1}{3}}}{2}-\frac{}{2\left(1-4 x^{3}-6 x^{2}+12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}-2}\right.}\right. \\
& +\frac{c_{1}}{2}
\end{aligned}
$$

Verified OK.

21.3.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{x(1+x)}{y(y-1)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 251: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{1}{x(1+x)} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{1}{x(1+x)}} d x
\end{aligned}
$$

Which results in

$$
S=-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x(1+x)}{y(y-1)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-x^{2}-x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y(y-1) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R(R-1)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{1}{3} R^{3}-\frac{1}{2} R^{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}=\frac{y^{3}}{3}-\frac{y^{2}}{2}+c_{1}
$$

Which simplifies to

$$
-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}=\frac{y^{3}}{3}-\frac{y^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{x(1+x)}{y(y-1)}$		$\frac{d S}{d R}=R(R-1)$
$\xrightarrow{\text { d }}$		
1.		$1+{ }_{\text {¢ }}$
	$R=y$	
	$S=-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}$	
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$		

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}=\frac{y^{3}}{3}-\frac{y^{2}}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 189: Slope field plot

Verification of solutions

$$
-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}=\frac{y^{3}}{3}-\frac{y^{2}}{2}+c_{1}
$$

Verified OK.

21.3.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(-y(y-1)) \mathrm{d} y & =(x(1+x)) \mathrm{d} x \\
(-x(1+x)) \mathrm{d} x+(-y(y-1)) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x(1+x) \\
N(x, y) & =-y(y-1)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x(1+x)) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(-y(y-1)) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x(1+x) \mathrm{d} x \\
\phi & =-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-y(y-1)$. Therefore equation (4) becomes

$$
\begin{equation*}
-y(y-1)=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-y(y-1)
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-y(y-1)) \mathrm{d} y \\
f(y) & =-\frac{1}{3} y^{3}+\frac{1}{2} y^{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}-\frac{1}{3} y^{3}+\frac{1}{2} y^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}-\frac{1}{3} y^{3}+\frac{1}{2} y^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{3}}{3}-\frac{y^{3}}{3}-\frac{x^{2}}{2}+\frac{y^{2}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 190: Slope field plot

Verification of solutions

$$
-\frac{x^{3}}{3}-\frac{y^{3}}{3}-\frac{x^{2}}{2}+\frac{y^{2}}{2}=c_{1}
$$

Verified OK.

21.3.5 Maple step by step solution

Let's solve
$y^{\prime}-\frac{x^{2}+x}{y-y^{2}}=0$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\left(y-y^{2}\right) y^{\prime}=x^{2}+x
$$

- Integrate both sides with respect to x
$\int\left(y-y^{2}\right) y^{\prime} d x=\int\left(x^{2}+x\right) d x+c_{1}$
- Evaluate integral

$$
-\frac{y^{3}}{3}+\frac{y^{2}}{2}=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\left(1-4 x^{3}-6 x^{2}-12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}+24 c_{1} x^{3}+9 x^{4}+36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}-6 c_{1}}\right)^{\frac{1}{3}}}{2}+\frac{}{2\left(1-4 x^{3}-6 x^{2}-12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}+2}\right.}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 498

```
dsolve(diff(y(x),x)=(x+x^2)/(y(x)-y(x)^2),y(x), singsol=all)
```

$y(x)$

$$
\begin{aligned}
&= \frac{\left(1-4 x^{3}-6 x^{2}-12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}+24 c_{1} x^{3}+9 x^{4}+36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}-6 c_{1}}\right)^{\frac{1}{3}}}{2} \\
&+\frac{1}{2\left(1-4 x^{3}-6 x^{2}-12 c_{1}+2 \sqrt{4 x^{6}+12 x^{5}+24 c_{1} x^{3}+9 x^{4}+36 c_{1} x^{2}-2 x^{3}+36 c_{1}^{2}-3 x^{2}-6 c_{1}}\right)^{\frac{1}{3}}} \\
&+\frac{1}{2} \\
& y(x)=
\end{aligned}
$$

$$
-\frac{(1+i \sqrt{3})\left(-4 x^{3}-6 x^{2}+2 \sqrt{\left(2 x^{3}+3 x^{2}+6 c_{1}\right)\left(2 x^{3}+3 x^{2}+6 c_{1}-1\right)}-12 c_{1}+1\right)^{\frac{2}{3}}-i \sqrt{3}-2(-4 x}{4\left(-4 x^{3}-6 x^{2}+2 \sqrt{\left(2 x^{3}+3 x^{2}+6 c_{1}\right)\left(2 x^{3}+3 x^{2}+\right.}\right.}
$$

$$
y(x)
$$

$$
=\frac{(i \sqrt{3}-1)\left(-4 x^{3}-6 x^{2}+2 \sqrt{\left(2 x^{3}+3 x^{2}+6 c_{1}\right)\left(2 x^{3}+3 x^{2}+6 c_{1}-1\right)}-12 c_{1}+1\right)^{\frac{2}{3}}-i \sqrt{3}+2\left(-4 x^{3}\right.}{4\left(-4 x^{3}-6 x^{2}+2 \sqrt{\left(2 x^{3}+3 x^{2}+6 c_{1}\right)\left(2 x^{3}+3 x^{2}+6\right.}\right.}
$$

\checkmark Solution by Mathematica
Time used: 4.147 (sec). Leaf size: 346

```
DSolve[y'[x]==(x+x^2)/(y[x]-y[x]^2),y[x],x,IncludeSingularSolutions -> True]
```

$y(x) \rightarrow \frac{1}{2}\left(\sqrt[3]{-4 x^{3}-6 x^{2}+\sqrt{-1+\left(-4 x^{3}-6 x^{2}+1+12 c_{1}\right)^{2}}+1+12 c_{1}}\right.$

$$
\begin{array}{r}
\left.+\frac{1}{\sqrt[3]{-4 x^{3}-6 x^{2}+\sqrt{-1+\left(-4 x^{3}-6 x^{2}+1+12 c_{1}\right)^{2}}+1+12 c_{1}}}+1\right) \\
y(x) \rightarrow \frac{1}{8}\left(2 i(\sqrt{3}+i) \sqrt[3]{-4 x^{3}-6 x^{2}+\sqrt{-1+\left(-4 x^{3}-6 x^{2}+1+12 c_{1}\right)^{2}}+1+12 c_{1}}\right. \\
\left.+\frac{-2-2 i \sqrt{3}}{\sqrt[3]{-4 x^{3}-6 x^{2}+\sqrt{-1+\left(-4 x^{3}-6 x^{2}+1+12 c_{1}\right)^{2}}+1+12 c_{1}}}+4\right) \\
y(x) \rightarrow \frac{1}{8}\left(-2(1+i \sqrt{3}) \sqrt[3]{-4 x^{3}-6 x^{2}+\sqrt{-1+\left(-4 x^{3}-6 x^{2}+1+12 c_{1}\right)^{2}}+1+12 c_{1}}\right. \\
\left.+\frac{2 i(\sqrt{3}+i)}{\sqrt[3]{-4 x^{3}-6 x^{2}+\sqrt{-1+\left(-4 x^{3}-6 x^{2}+1+12 c_{1}\right)^{2}}+1+12 c_{1}}}+4\right)
\end{array}
$$

21.4 problem 1(d)

21.4.1 Solving as separable ode . 1720
21.4.2 Solving as first order special form ID 1 ode 1722
21.4.3 Solving as first order ode lie symmetry lookup ode 1723
21.4.4 Solving as exact ode . 1727
21.4.5 Maple step by step solution . 1731

Internal problem ID [6066]
Internal file name [OUTPUT/5314_Sunday_June_05_2022_03_33_55_PM_6954108/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190 Problem number: 1(d).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first order special form ID 1", "first_order_ode_lie__symmetry__lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-\frac{\mathrm{e}^{x-y}}{1+\mathrm{e}^{x}}=0
$$

21.4.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{\mathrm{e}^{x} \mathrm{e}^{-y}}{1+\mathrm{e}^{x}}
\end{aligned}
$$

Where $f(x)=\frac{\mathrm{e}^{x}}{1+\mathrm{e}^{x}}$ and $g(y)=\mathrm{e}^{-y}$. Integrating both sides gives

$$
\frac{1}{\mathrm{e}^{-y}} d y=\frac{\mathrm{e}^{x}}{1+\mathrm{e}^{x}} d x
$$

$$
\begin{aligned}
\int \frac{1}{\mathrm{e}^{-y}} d y & =\int \frac{\mathrm{e}^{x}}{1+\mathrm{e}^{x}} d x \\
\mathrm{e}^{y} & =\ln \left(1+\mathrm{e}^{x}\right)+c_{1}
\end{aligned}
$$

Which results in

$$
y=\ln \left(\ln \left(1+\mathrm{e}^{x}\right)+c_{1}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\ln \left(\ln \left(1+\mathrm{e}^{x}\right)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 191: Slope field plot

Verification of solutions

$$
y=\ln \left(\ln \left(1+\mathrm{e}^{x}\right)+c_{1}\right)
$$

Verified OK.

21.4.2 Solving as first order special form ID 1 ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{\mathrm{e}^{x-y}}{1+\mathrm{e}^{x}} \tag{1}
\end{equation*}
$$

And using the substitution $u=\mathrm{e}^{y}$ then

$$
u^{\prime}=y^{\prime} \mathrm{e}^{y}
$$

The above shows that

$$
\begin{aligned}
y^{\prime} & =u^{\prime}(x) \mathrm{e}^{-y} \\
& =\frac{u^{\prime}(x)}{u}
\end{aligned}
$$

Substituting this in (1) gives

$$
\frac{u^{\prime}(x)}{u}=\frac{\mathrm{e}^{x}}{\left(1+\mathrm{e}^{x}\right) u}
$$

The above simplifies to

$$
\begin{equation*}
u^{\prime}(x)=\frac{\mathrm{e}^{x}}{1+\mathrm{e}^{x}} \tag{2}
\end{equation*}
$$

Now ode (2) is solved for $u(x)$ Integrating both sides gives

$$
\begin{aligned}
u(x) & =\int \frac{\mathrm{e}^{x}}{1+\mathrm{e}^{x}} \mathrm{~d} x \\
& =\ln \left(1+\mathrm{e}^{x}\right)+c_{1}
\end{aligned}
$$

Substituting the solution found for $u(x)$ in $u=\mathrm{e}^{y}$ gives

$$
\begin{aligned}
y & =\ln (u(x)) \\
& =\ln \left(\ln \left(1+\mathrm{e}^{x}\right)+c_{1}\right) \\
& =\ln \left(\ln \left(1+\mathrm{e}^{x}\right)+c_{1}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln \left(\ln \left(1+\mathrm{e}^{x}\right)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 192: Slope field plot

Verification of solutions

$$
y=\ln \left(\ln \left(1+\mathrm{e}^{x}\right)+c_{1}\right)
$$

Verified OK.

21.4.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{\mathrm{e}^{x-y}}{1+\mathrm{e}^{x}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 254: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\left(1+\mathrm{e}^{x}\right) \mathrm{e}^{-x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\left(1+\mathrm{e}^{x}\right) \mathrm{e}^{-x}} d x
\end{aligned}
$$

Which results in

$$
S=\ln \left(1+\mathrm{e}^{x}\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\mathrm{e}^{x-y}}{1+\mathrm{e}^{x}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{\mathrm{e}^{x}}{1+\mathrm{e}^{x}} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{y} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\mathrm{e}^{R}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\ln \left(1+\mathrm{e}^{x}\right)=\mathrm{e}^{y}+c_{1}
$$

Which simplifies to

$$
\ln \left(1+\mathrm{e}^{x}\right)=\mathrm{e}^{y}+c_{1}
$$

Which gives

$$
y=\ln \left(\ln \left(1+\mathrm{e}^{x}\right)-c_{1}\right)
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{\mathrm{e}^{x-y}}{1+\mathrm{e}^{x}}$		$\frac{d S}{d R}=\mathrm{e}^{R}$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-]{ }$		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow}$		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }$
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$		$\rightarrow \rightarrow \rightarrow \rightarrow$
	$R=y$	$\rightarrow \rightarrow \rightarrow$
	$S=\ln \left(1+e^{x}\right)$	
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
		$\rightarrow \rightarrow \rightarrow$ -
		\% ${ }_{4}$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln \left(\ln \left(1+\mathrm{e}^{x}\right)-c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 193: Slope field plot

Verification of solutions

$$
y=\ln \left(\ln \left(1+\mathrm{e}^{x}\right)-c_{1}\right)
$$

Verified OK.

21.4.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\mathrm{e}^{y}\right) \mathrm{d} y & =\left(\frac{\mathrm{e}^{x}}{1+\mathrm{e}^{x}}\right) \mathrm{d} x \\
\left(-\frac{\mathrm{e}^{x}}{1+\mathrm{e}^{x}}\right) \mathrm{d} x+\left(\mathrm{e}^{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{\mathrm{e}^{x}}{1+\mathrm{e}^{x}} \\
& N(x, y)=\mathrm{e}^{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{\mathrm{e}^{x}}{1+\mathrm{e}^{x}}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\mathrm{e}^{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{\mathrm{e}^{x}}{1+\mathrm{e}^{x}} \mathrm{~d} x \\
\phi & =-\ln \left(1+\mathrm{e}^{x}\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\mathrm{e}^{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\mathrm{e}^{y}\right) \mathrm{d} y \\
f(y) & =\mathrm{e}^{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln \left(1+\mathrm{e}^{x}\right)+\mathrm{e}^{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln \left(1+\mathrm{e}^{x}\right)+\mathrm{e}^{y}
$$

The solution becomes

$$
y=\ln \left(\ln \left(1+\mathrm{e}^{x}\right)+c_{1}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\ln \left(\ln \left(1+\mathrm{e}^{x}\right)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 194: Slope field plot
Verification of solutions

$$
y=\ln \left(\ln \left(1+\mathrm{e}^{x}\right)+c_{1}\right)
$$

Verified OK.

21.4.5 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{\mathrm{e}^{x-y}}{1+\mathrm{e}^{x}}=0
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- Separate variables

$$
y^{\prime} \mathrm{e}^{y}=\frac{\mathrm{e}^{x}}{1+\mathrm{e}^{x}}
$$

- Integrate both sides with respect to x

$$
\int y^{\prime} \mathrm{e}^{y} d x=\int \frac{\mathrm{e}^{x}}{1+\mathrm{e}^{x}} d x+c_{1}
$$

- Evaluate integral

$$
\mathrm{e}^{y}=\ln \left(1+\mathrm{e}^{x}\right)+c_{1}
$$

- \quad Solve for y

$$
y=\ln \left(\ln \left(1+\mathrm{e}^{x}\right)+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 12

```
dsolve(diff(y(x),x)=exp(x-y(x))/(1+exp(x)),y(x), singsol=all)
```

$$
y(x)=\ln \left(\ln \left(\mathrm{e}^{x}+1\right)+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.465 (sec). Leaf size: 15
DSolve $[y$ ' $[x]==\operatorname{Exp}[x-y[x]] /(1+\operatorname{Exp}[x]), y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \log \left(\log \left(e^{x}+1\right)+c_{1}\right)
$$

21.5 problem 1(e)

21.5.1 Solving as separable ode . 1733
21.5.2 Solving as first order ode lie symmetry lookup ode 1735
21.5.3 Solving as exact ode . 1739
21.5.4 Solving as riccati ode . 1743
21.5.5 Maple step by step solution . 1746

Internal problem ID [6067]
Internal file name [OUTPUT/5315_Sunday_June_05_2022_03_33_56_PM_35202324/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190
Problem number: 1(e).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-y^{2} x^{2}=-4 x^{2}
$$

21.5.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =x^{2}\left(y^{2}-4\right)
\end{aligned}
$$

Where $f(x)=x^{2}$ and $g(y)=y^{2}-4$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{2}-4} d y & =x^{2} d x \\
\int \frac{1}{y^{2}-4} d y & =\int x^{2} d x
\end{aligned}
$$

$$
-\frac{\ln (y+2)}{4}+\frac{\ln (y-2)}{4}=\frac{x^{3}}{3}+c_{1}
$$

The above can be written as

$$
\begin{aligned}
\left(-\frac{1}{4}\right)(\ln (y+2)-\ln (y-2)) & =\frac{x^{3}}{3}+2 c_{1} \\
\ln (y+2)-\ln (y-2) & =(-4)\left(\frac{x^{3}}{3}+2 c_{1}\right) \\
& =-\frac{4 x^{3}}{3}-8 c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (y+2)-\ln (y-2)}=\mathrm{e}^{-\frac{4 x^{3}}{3}-4 c_{1}}
$$

Which simplifies to

$$
\begin{aligned}
\frac{y+2}{y-2} & =-4 c_{1} \mathrm{e}^{-\frac{4 x^{3}}{3}} \\
& =c_{2} \mathrm{e}^{-\frac{4 x^{3}}{3}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 c_{2} \mathrm{e}^{-\frac{4 x^{3}}{3}}+2}{-1+c_{2} \mathrm{e}^{-\frac{4 x^{3}}{3}}} \tag{1}
\end{equation*}
$$

Figure 195: Slope field plot

Verification of solutions

$$
y=\frac{2 c_{2} \mathrm{e}^{-\frac{4 x^{3}}{3}}+2}{-1+c_{2} \mathrm{e}^{-\frac{4 x^{3}}{3}}}
$$

Verified OK.

21.5.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =y^{2} x^{2}-4 x^{2} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 257: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	y	$-\frac{b}{c}$
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$x y$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
First form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{x^{2}} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{x^{2}}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{x^{3}}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=y^{2} x^{2}-4 x^{2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =x^{2} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{2}-4} \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{2}-4}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{\ln (R+2)}{4}+\frac{\ln (R-2)}{4}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\frac{x^{3}}{3}=-\frac{\ln (2+y)}{4}+\frac{\ln (y-2)}{4}+c_{1}
$$

Which simplifies to

$$
\frac{x^{3}}{3}=-\frac{\ln (2+y)}{4}+\frac{\ln (y-2)}{4}+c_{1}
$$

Which gives

$$
y=\frac{2+2 \mathrm{e}^{-\frac{4 x^{3}}{3}+4 c_{1}}}{\mathrm{e}^{-\frac{4 x^{3}}{3}+4 c_{1}}-1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=y^{2} x^{2}-4 x^{2}$		$\frac{d S}{d R}=\frac{1}{R^{2}-4}$
个 ¢ ¢ ¢ 小才 \uparrow		$\rightarrow \rightarrow \infty$ 为
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
（tatat		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 0]{ }$
		\rightarrow
	$R=y$	，
	$S=\frac{x^{\prime}}{3}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
$1{ }^{\text {a }}$		$\rightarrow \rightarrow+\infty$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow 0]{ }$
¢ ¢		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$

Summary

The solution（s）found are the following

$$
\begin{equation*}
y=\frac{2+2 \mathrm{e}^{-\frac{4 x^{3}}{3}+4 c_{1}}}{\mathrm{e}^{-\frac{4 x^{3}}{3}+4 c_{1}}-1} \tag{1}
\end{equation*}
$$

Figure 196: Slope field plot

Verification of solutions

$$
y=\frac{2+2 \mathrm{e}^{-\frac{4 x^{3}}{3}+4 c_{1}}}{\mathrm{e}^{-\frac{4 x^{3}}{3}+4 c_{1}}-1}
$$

Verified OK.

21.5.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y^{2}-4}\right) \mathrm{d} y & =\left(x^{2}\right) \mathrm{d} x \\
\left(-x^{2}\right) \mathrm{d} x+\left(\frac{1}{y^{2}-4}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x^{2} \\
N(x, y) & =\frac{1}{y^{2}-4}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y^{2}-4}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x^{2} \mathrm{~d} x \\
\phi & =-\frac{x^{3}}{3}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y^{2}-4}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y^{2}-4}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y^{2}-4}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y^{2}-4}\right) \mathrm{d} y \\
f(y) & =-\frac{\ln (y+2)}{4}+\frac{\ln (y-2)}{4}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{3}}{3}-\frac{\ln (y+2)}{4}+\frac{\ln (y-2)}{4}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{3}}{3}-\frac{\ln (y+2)}{4}+\frac{\ln (y-2)}{4}
$$

The solution becomes

$$
y=-\frac{2\left(\mathrm{e}^{\frac{4 x^{3}}{3}+4 c_{1}}+1\right)}{-1+\mathrm{e}^{\frac{4 x^{3}}{3}+4 c_{1}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{2\left(\mathrm{e}^{\frac{4 x^{3}}{3}+4 c_{1}}+1\right)}{-1+\mathrm{e}^{\frac{4 x^{3}}{3}+4 c_{1}}} \tag{1}
\end{equation*}
$$

Figure 197: Slope field plot

Verification of solutions

$$
y=-\frac{2\left(\mathrm{e}^{\frac{4 x^{3}}{3}+4 c_{1}}+1\right)}{-1+\mathrm{e}^{\frac{4 x^{3}}{3}+4 c_{1}}}
$$

Verified OK.

21.5.4 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{2} x^{2}-4 x^{2}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2} x^{2}-4 x^{2}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-4 x^{2}, f_{1}(x)=0$ and $f_{2}(x)=x^{2}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{x^{2} u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =2 x \\
f_{1} f_{2} & =0 \\
f_{2}^{2} f_{0} & =-4 x^{6}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
x^{2} u^{\prime \prime}(x)-2 x u^{\prime}(x)-4 x^{6} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \sinh \left(\frac{2 x^{3}}{3}\right)+c_{2} \cosh \left(\frac{2 x^{3}}{3}\right)
$$

The above shows that

$$
u^{\prime}(x)=2 x^{2}\left(c_{1} \cosh \left(\frac{2 x^{3}}{3}\right)+c_{2} \sinh \left(\frac{2 x^{3}}{3}\right)\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{2\left(c_{1} \cosh \left(\frac{2 x^{3}}{3}\right)+c_{2} \sinh \left(\frac{2 x^{3}}{3}\right)\right)}{c_{1} \sinh \left(\frac{2 x^{3}}{3}\right)+c_{2} \cosh \left(\frac{2 x^{3}}{3}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{-2 c_{3} \cosh \left(\frac{2 x^{3}}{3}\right)-2 \sinh \left(\frac{2 x^{3}}{3}\right)}{c_{3} \sinh \left(\frac{2 x^{3}}{3}\right)+\cosh \left(\frac{2 x^{3}}{3}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-2 c_{3} \cosh \left(\frac{2 x^{3}}{3}\right)-2 \sinh \left(\frac{2 x^{3}}{3}\right)}{c_{3} \sinh \left(\frac{2 x^{3}}{3}\right)+\cosh \left(\frac{2 x^{3}}{3}\right)} \tag{1}
\end{equation*}
$$

Figure 198: Slope field plot

Verification of solutions

$$
y=\frac{-2 c_{3} \cosh \left(\frac{2 x^{3}}{3}\right)-2 \sinh \left(\frac{2 x^{3}}{3}\right)}{c_{3} \sinh \left(\frac{2 x^{3}}{3}\right)+\cosh \left(\frac{2 x^{3}}{3}\right)}
$$

Verified OK.

21.5.5 Maple step by step solution

Let's solve

$$
y^{\prime}-y^{2} x^{2}=-4 x^{2}
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{(y-2)(2+y)}=x^{2}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{(y-2)(2+y)} d x=\int x^{2} d x+c_{1}
$$

- Evaluate integral

$$
-\frac{\ln (2+y)}{4}+\frac{\ln (y-2)}{4}=\frac{x^{3}}{3}+c_{1}
$$

- \quad Solve for y

$$
y=-\frac{2\left(\mathrm{e}^{\frac{4 x^{3}}{3}+4 c_{1}}+1\right)}{-1+\mathrm{e}^{\frac{4 x^{3}}{3}+4 c_{1}}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 28

```
dsolve(diff(y(x),x)=x^2*y(x)^2-4*x^2,y(x), singsol=all)
```

$$
y(x)=\frac{-2-2 \mathrm{e}^{\frac{4 x^{3}}{3}} c_{1}}{\mathrm{e}^{\frac{4 x^{3}}{3}} c_{1}-1}
$$

\checkmark Solution by Mathematica
Time used: 0.258 (sec). Leaf size: 52
DSolve $\left[y^{\prime}[x]==x^{\wedge} 2 * y[x] \wedge 2-4 * x^{\wedge} 2, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{2-2 e^{\frac{4 x^{3}}{3}+4 c_{1}}}{1+e^{\frac{4 x^{3}}{3}+4 c_{1}}} \\
& y(x) \rightarrow-2 \\
& y(x) \rightarrow 2
\end{aligned}
$$

21.6 problem 2(a)

21.6.1 Existence and uniqueness analysis 1748
21.6.2 Solving as quadrature ode . 1749
21.6.3 Maple step by step solution . 1750

Internal problem ID [6068]
Internal file name [OUTPUT/5316_Sunday_June_05_2022_03_33_58_PM_44743446/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190
Problem number: 2(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y^{2}=0
$$

With initial conditions

$$
\left[y\left(x_{0}\right)=y_{0}\right]
$$

21.6.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =y^{2}
\end{aligned}
$$

The y domain of $f(x, y)$ when $x=x_{0}$ is

$$
\{-\infty<y<\infty\}
$$

But the point $y_{0}=y_{0}$ is not inside this domain. Hence existence and uniqueness theorem does not apply. There could be infinite number of solutions, or one solution or no solution at all.

21.6.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{2}} d y & =x+c_{1} \\
-\frac{1}{y} & =x+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=-\frac{1}{x+c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=x_{0}$ and $y=y_{0}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& y_{0}=-\frac{1}{x_{0}+c_{1}} \\
& c_{1}=-\frac{y_{0} x_{0}+1}{y_{0}}
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{1}{x-\frac{y_{0} x_{0}+1}{y_{0}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{x-\frac{y_{0} x_{0}+1}{y_{0}}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{1}{x-\frac{y_{0} x_{0}+1}{y_{0}}}
$$

Verified OK.

21.6.3 Maple step by step solution

Let's solve
$\left[y^{\prime}-y^{2}=0, y\left(x_{0}\right)=y_{0}\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y^{2}}=1$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y^{2}} d x=\int 1 d x+c_{1}$
- Evaluate integral
$-\frac{1}{y}=x+c_{1}$
- \quad Solve for y

$$
y=-\frac{1}{x+c_{1}}
$$

- Use initial condition $y\left(x_{0}\right)=y_{0}$

$$
y_{0}=-\frac{1}{x_{0}+c_{1}}
$$

- \quad Solve for c_{1}
$c_{1}=-\frac{y_{0} x_{0}+1}{y_{0}}$
- Substitute $c_{1}=-\frac{y_{0} x_{0}+1}{y_{0}}$ into general solution and simplify $y=-\frac{y_{0}}{-1+\left(x-x_{0}\right) y_{0}}$
- Solution to the IVP
$y=-\frac{y_{0}}{-1+\left(x-x_{0}\right) y_{0}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 18
dsolve([diff $\left.(y(x), x)=y(x) \wedge 2, y\left(x_{-} 0\right)=y_{-} 0\right], y(x)$, singsol=all)

$$
y(x)=-\frac{y_{0}}{-1+\left(x-x_{0}\right) y_{0}}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 16
DSolve[\{y' $[x]==x 2 * y[x],\{y[x 0]==y 0\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \mathrm{y} 0 e^{\mathrm{x} 2(x-\mathrm{x} 0)}
$$

21.7 problem 3(a)

21.7.1 Existence and uniqueness analysis 1752
21.7.2 Solving as quadrature ode . 1753
21.7.3 Maple step by step solution . 1753

Internal problem ID [6069]
Internal file name [OUTPUT/5317_Sunday_June_05_2022_03_33_59_PM_16751227/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190
Problem number: 3(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-2 \sqrt{y}=0
$$

With initial conditions

$$
\left[y\left(x_{0}\right)=y_{0}\right]
$$

21.7.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =2 \sqrt{y}
\end{aligned}
$$

The y domain of $f(x, y)$ when $x=x_{0}$ is

$$
\{0 \leq y\}
$$

But the point $y_{0}=y_{0}$ is not inside this domain. Hence existence and uniqueness theorem does not apply. There could be infinite number of solutions, or one solution or no solution at all.

21.7.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{2 \sqrt{y}} d y & =\int d x \\
\sqrt{y} & =x+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=x_{0}$ and $y=y_{0}$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
\sqrt{y_{0}}=x_{0}+c_{1} \\
c_{1}=-x_{0}+\sqrt{y_{0}}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\sqrt{y}=x-x_{0}+\sqrt{y_{0}}
$$

Solving for y from the above gives

$$
y=\left(2 x-2 x_{0}\right) \sqrt{y_{0}}+x^{2}-2 x x_{0}+x_{0}^{2}+y_{0}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(2 x-2 x_{0}\right) \sqrt{y_{0}}+x^{2}-2 x x_{0}+x_{0}^{2}+y_{0} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(2 x-2 x_{0}\right) \sqrt{y_{0}}+x^{2}-2 x x_{0}+x_{0}^{2}+y_{0}
$$

Verified OK.

21.7.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-2 \sqrt{y}=0, y\left(x_{0}\right)=y_{0}\right]
$$

- Highest derivative means the order of the ODE is 1

```
y
```

- Separate variables

$$
\frac{y^{\prime}}{\sqrt{y}}=2
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\sqrt{y}} d x=\int 2 d x+c_{1}$
- Evaluate integral
$2 \sqrt{y}=c_{1}+2 x$
- \quad Solve for y
$y=\frac{1}{4} c_{1}^{2}+c_{1} x+x^{2}$
- Use initial condition $y\left(x_{0}\right)=y_{0}$

$$
y_{0}=\frac{1}{4} c_{1}^{2}+c_{1} x_{0}+x_{0}^{2}
$$

- \quad Solve for c_{1}

$$
c_{1}=\left(2 \sqrt{y_{0}}-2 x_{0},-2 x_{0}-2 \sqrt{y_{0}}\right)
$$

- \quad Substitute $c_{1}=\left(2 \sqrt{y_{0}}-2 x_{0},-2 x_{0}-2 \sqrt{y_{0}}\right)$ into general solution and simplify

$$
y=\left(2 x-2 x_{0}\right) \sqrt{y_{0}}+x^{2}-2 x x_{0}+x_{0}^{2}+y_{0}
$$

- \quad Solution to the IVP
$y=\left(2 x-2 x_{0}\right) \sqrt{y_{0}}+x^{2}-2 x x_{0}+x_{0}^{2}+y_{0}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

Solution by Maple
Time used: 0.156 (sec). Leaf size: 28

```
dsolve([diff(y(x),x)=2*sqrt(y(x)),y(x__0) = y__0],y(x), singsol=all)
```

$$
y(x)=\left(2 x-2 x_{0}\right) \sqrt{y_{0}}+x^{2}-2 x x_{0}+x_{0}^{2}+y_{0}
$$

\checkmark Solution by Mathematica
Time used: 0.108 (sec). Leaf size: 33
DSolve $\left[\left\{y^{\prime}[x]==2 * \operatorname{Sqrt}[y[x]],\{y[x 0]==y 0\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow(x-\mathrm{x} 0+\sqrt{\mathrm{y} 0})^{2} \\
& y(x) \rightarrow(-x+\mathrm{x} 0+\sqrt{\mathrm{y} 0})^{2}
\end{aligned}
$$

21.8 problem 3(b)

21.8.1 Existence and uniqueness analysis 1756
21.8.2 Solving as quadrature ode . 1757
21.8.3 Maple step by step solution . 1758

Internal problem ID [6070]
Internal file name [OUTPUT/5318_Sunday_June_05_2022_03_34_01_PM_54625177/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190
Problem number: 3(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
y^{\prime}-2 \sqrt{y}=0
$$

With initial conditions

$$
\left[y\left(x_{0}\right)=0\right]
$$

21.8.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =2 \sqrt{y}
\end{aligned}
$$

The y domain of $f(x, y)$ when $x=x_{0}$ is

$$
\{0 \leq y\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}(2 \sqrt{y}) \\
& =\frac{1}{\sqrt{y}}
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $x=x_{0}$ is

$$
\{0<y\}
$$

But the point $y_{0}=0$ is not inside this domain. Hence existence and uniqueness theorem does not apply. Solution exists but no guarantee that unique solution exists.

21.8.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{2 \sqrt{y}} d y & =\int d x \\
\sqrt{y} & =x+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=x_{0}$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=x_{0}+c_{1} \\
c_{1}=-x_{0}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
\sqrt{y}=x-x_{0}
$$

Solving for y from the above gives

$$
y=\left(x-x_{0}\right)^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(x-x_{0}\right)^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(x-x_{0}\right)^{2}
$$

Verified OK.

21.8.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-2 \sqrt{y}=0, y\left(x_{0}\right)=0\right]
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- Separate variables

$$
\frac{y^{\prime}}{\sqrt{y}}=2
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{\sqrt{y}} d x=\int 2 d x+c_{1}$
- Evaluate integral

$$
2 \sqrt{y}=c_{1}+2 x
$$

- \quad Solve for y

$$
y=\frac{1}{4} c_{1}^{2}+c_{1} x+x^{2}
$$

- Use initial condition $y\left(x_{0}\right)=0$

$$
0=\frac{1}{4} c_{1}^{2}+c_{1} x_{0}+x_{0}^{2}
$$

- \quad Solve for c_{1}

$$
c_{1}=\left(-2 x_{0},-2 x_{0}\right)
$$

- \quad Substitute $c_{1}=\left(-2 x_{0},-2 x_{0}\right)$ into general solution and simplify

$$
y=\left(x-x_{0}\right)^{2}
$$

- \quad Solution to the IVP

$$
y=\left(x-x_{0}\right)^{2}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 5
dsolve([diff $\left.(y(x), x)=2 * \operatorname{sqrt}(y(x)), y\left(x_{-} 0\right)=0\right], y(x)$, singsol=all)

$$
y(x)=0
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 6
DSolve $\left[\left\{y^{\prime}[x]==2 * S q r t[y[x]],\{y[x 0]==0\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow 0
$$

21.9 problem 4(a)

21.9.1 Solving as homogeneous ode . 1760

Internal problem ID [6071]
Internal file name [OUTPUT/5319_Sunday_June_05_2022_03_34_04_PM_26636281/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190
Problem number: 4(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, ` class A`]]

$$
y^{\prime}-\frac{x+y}{x-y}=0
$$

21.9.1 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =-\frac{x+y}{-x+y} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=x+y$ and $N=x-y$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =\frac{-u-1}{u-1} \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{\frac{-u(x)-1}{u(x)-1}-u(x)}{x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{\frac{-u(x)-1}{u(x)-1}-u(x)}{x}=0
$$

Or

$$
u^{\prime}(x) x u(x)-u^{\prime}(x) x+u(x)^{2}+1=0
$$

Or

$$
x(u(x)-1) u^{\prime}(x)+u(x)^{2}+1=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}+1}{x(u-1)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{2}+1}{u-1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+1}{u-1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{2}+1}{u-1}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln \left(u^{2}+1\right)}{2}-\arctan (u) & =-\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\frac{\ln \left(u(x)^{2}+1\right)}{2}-\arctan (u(x))+\ln (x)-c_{2}=0
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
\frac{\ln \left(\frac{y^{2}}{x^{2}}+1\right)}{2}-\arctan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(\frac{y^{2}}{x^{2}}+1\right)}{2}-\arctan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 199: Slope field plot

Verification of solutions

$$
\frac{\ln \left(\frac{y^{2}}{x^{2}}+1\right)}{2}-\arctan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 24

```
dsolve(diff(y(x),x)=(x+y(x))/(x-y(x)),y(x), singsol=all)
```

$$
y(x)=\tan \left(\text { RootOf }\left(-2 _Z+\ln \left(\sec \left(_Z\right)^{2}\right)+2 \ln (x)+2 c_{1}\right)\right) x
$$

Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 36
DSolve[y' $[x]==(x+y[x]) /(x-y[x]), y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\text { Solve }\left[\frac{1}{2} \log \left(\frac{y(x)^{2}}{x^{2}}+1\right)-\arctan \left(\frac{y(x)}{x}\right)=-\log (x)+c_{1}, y(x)\right]
$$

21.10 problem 4(b)

21.10.1 Solving as homogeneous ode

Internal problem ID [6072]
Internal file name [OUTPUT/5320_Sunday_June_05_2022_03_34_05_PM_25195445/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190
Problem number: 4(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, ` class B`]]

$$
y^{\prime}-\frac{y^{2}}{x y+x^{2}}=0
$$

21.10.1 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =\frac{y^{2}}{x(x+y)} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=y^{2}$ and $N=x(x+y)$ are both homogeneous and of the same order $n=2$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =\frac{u^{2}}{u+1} \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{\frac{u(x)^{2}}{u(x)+1}-u(x)}{x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{\frac{u(x)^{2}}{u(x)+1}-u(x)}{x}=0
$$

Or

$$
u^{\prime}(x) x u(x)+u^{\prime}(x) x+u(x)=0
$$

Or

$$
(u(x)+1) x u^{\prime}(x)+u(x)=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u}{(u+1) x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u}{u+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u}{u+1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u}{u+1}} d u & =\int-\frac{1}{x} d x \\
u+\ln (u) & =-\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
u(x)+\ln (u(x))+\ln (x)-c_{2}=0
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
\frac{y}{x}+\ln \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{y}{x}+\ln \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 200: Slope field plot
Verification of solutions

$$
\frac{y}{x}+\ln \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 15

```
dsolve(diff(y(x),x)=y(x)^2/(x*y(x)+x^2),y(x), singsol=all)
```

$$
y(x)=x \operatorname{LambertW}\left(\frac{\mathrm{e}^{-c_{1}}}{x}\right)
$$

\checkmark Solution by Mathematica
Time used: 2.317 (sec). Leaf size: 21

```
DSolve[y'[x]==y[x]~2/(x*y[x]+x^2),y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow x W\left(\frac{e^{c_{1}}}{x}\right) \\
& y(x) \rightarrow 0
\end{aligned}
$$

21.11 problem 4(c)

21.11.1 Solving as homogeneous ode

1768
Internal problem ID [6073]
Internal file name [OUTPUT/5321_Sunday_June_05_2022_03_34_07_PM_83140634/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190
Problem number: 4(c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _Riccati]

$$
y^{\prime}-\frac{x^{2}+x y+y^{2}}{x^{2}}=0
$$

21.11.1 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =\frac{x^{2}+x y+y^{2}}{x^{2}} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=x^{2}+x y+y^{2}$ and $N=x^{2}$ are both homogeneous and of the same order $n=2$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =u^{2}+u+1 \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{u(x)^{2}+1}{x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{u(x)^{2}+1}{x}=0
$$

Or

$$
u^{\prime}(x) x-u(x)^{2}-1=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u^{2}+1}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=u^{2}+1$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u^{2}+1} d u & =\frac{1}{x} d x \\
\int \frac{1}{u^{2}+1} d u & =\int \frac{1}{x} d x \\
\arctan (u) & =\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\arctan (u(x))-\ln (x)-c_{2}=0
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
\arctan \left(\frac{y}{x}\right)-\ln (x)-c_{2}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\arctan \left(\frac{y}{x}\right)-\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 201: Slope field plot

Verification of solutions

$$
\arctan \left(\frac{y}{x}\right)-\ln (x)-c_{2}=0
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 11
dsolve(diff $(y(x), x)=\left(x^{\wedge} 2+x * y(x)+y(x) \wedge 2\right) / x^{\wedge} 2, y(x), \quad$ singsol=all $)$

$$
y(x)=\tan \left(\ln (x)+c_{1}\right) x
$$

\checkmark Solution by Mathematica
Time used: 0.188 (sec). Leaf size: 13
DSolve $\left[y^{\prime}[x]==\left(x^{\wedge} 2+x * y[x]+y[x] \sim 2\right) / x^{\wedge} 2, y[x], x\right.$, IncludeSingularSolutions $->$ True $]$

$$
y(x) \rightarrow x \tan \left(\log (x)+c_{1}\right)
$$

21.12 problem 4(d)

21.12.1 Solving as homogeneous ode

Internal problem ID [6074]
Internal file name [OUTPUT/5322_Sunday_June_05_2022_03_34_09_PM_77661497/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190
Problem number: 4(d).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_homogeneous, `class A`], _dAlembert]

$$
y^{\prime}-\frac{y+x \mathrm{e}^{-\frac{2 y}{x}}}{x}=0
$$

21.12.1 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =\frac{y+x \mathrm{e}^{-\frac{2 y}{x}}}{x} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=y+x \mathrm{e}^{-\frac{2 y}{x}}$ and $N=x$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =u+\mathrm{e}^{-2 u} \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{\mathrm{e}^{-2 u(x)}}{x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{\mathrm{e}^{-2 u(x)}}{x}=0
$$

Or

$$
u^{\prime}(x) \mathrm{e}^{2 u(x)} x-1=0
$$

Or

$$
u^{\prime}(x) \mathrm{e}^{2 u(x)} x-1=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{\mathrm{e}^{-2 u}}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=\mathrm{e}^{-2 u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\mathrm{e}^{-2 u}} d u & =\frac{1}{x} d x \\
\int \frac{1}{\mathrm{e}^{-2 u}} d u & =\int \frac{1}{x} d x \\
\frac{\mathrm{e}^{2 u}}{2} & =\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\frac{\mathrm{e}^{2 u(x)}}{2}-\ln (x)-c_{2}=0
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
\frac{\mathrm{e}^{\frac{2 y}{x}}}{2}-\ln (x)-c_{2}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\mathrm{e}^{\frac{2 y}{x}}}{2}-\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 202: Slope field plot

Verification of solutions

$$
\frac{\mathrm{e}^{\frac{2 y}{x}}}{2}-\ln (x)-c_{2}=0
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

```
dsolve(diff(y(x),x)=(y(x)+x*exp(-2*y(x)/x))/x,y(x), singsol=all)
```

$$
y(x)=\frac{\left(\ln (2)+\ln \left(\ln (x)+c_{1}\right)\right) x}{2}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.412 (sec). Leaf size: 18
DSolve[y'[x] ==($\mathrm{y}[\mathrm{x}]+\mathrm{x} * \operatorname{Exp}[-2 * y[\mathrm{x}] / \mathrm{x}]) / \mathrm{x}, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{2} x \log \left(2\left(\log (x)+c_{1}\right)\right)
$$

21.13 problem 5(a)

21.13.1 Solving as polynomial ode 1776

Internal problem ID [6075]
Internal file name [OUTPUT/5323_Sunday_June_05_2022_03_34_10_PM_89530852/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190
Problem number: 5(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type

```
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `
``` class A`]]
\[
y^{\prime}-\frac{x-y+2}{-1+y+x}=0
\]

\subsection*{21.13.1 Solving as polynomial ode}

This is ODE of type polynomial. Where the RHS of the ode is ratio of equations of two lines. Writing the ODE in the form
\[
y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{3}}
\]

Where \(a_{1}=1, b_{1}=-1, c_{1}=2, a_{2}=1, b_{2}=1, c_{2}=-1\). There are now two possible solution methods. The first case is when the two lines \(a_{1} x+b_{1} y+c_{1}, a_{2} x+b_{2} y+c_{3}\) are not parallel and the second case is if they are parallel. If they are not parallel, then the transformation \(X=x-x_{0}, Y=y-y_{0}\) converts the ODE to a homogeneous ODE. The values \(x_{0}, y_{0}\) have to be determined. If they are parallel then a transformation \(U(x)=a_{1} x+b_{1} y\) converts the given ODE in \(y\) to a separable ODE in \(U(x)\). The first case is when \(\frac{a_{1}}{b_{1}} \neq \frac{a_{2}}{b_{2}}\) and the second case when \(\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}\). From the above we see that \(\frac{a_{1}}{b_{1}} \neq \frac{a_{2}}{b_{2}}\). Hence this is case one where lines are not parallel. Using the transformation
\[
\begin{aligned}
X & =x-x_{0} \\
Y & =y-y_{0}
\end{aligned}
\]

Where the constants \(x_{0}, y_{0}\) are obtained by solving the following two linear algebraic equations
\[
\begin{aligned}
& a_{1} x_{0}+b_{1} y_{0}+c_{1}=0 \\
& a_{2} x_{0}+b_{2} y_{0}+c_{2}=0
\end{aligned}
\]

Substituting the values for \(a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}\) gives
\[
\begin{aligned}
& x_{0}-y_{0}+2=0 \\
& x_{0}+y_{0}-1=0
\end{aligned}
\]

Solving for \(x_{0}, y_{0}\) from the above gives
\[
\begin{aligned}
x_{0} & =-\frac{1}{2} \\
y_{0} & =\frac{3}{2}
\end{aligned}
\]

Therefore the transformation becomes
\[
\begin{aligned}
X & =x+\frac{1}{2} \\
Y & =y-\frac{3}{2}
\end{aligned}
\]

Using this transformation in \(y^{\prime}-\frac{x-y+2}{-1+y+x}=0\) result in
\[
\frac{d Y}{d X}=\frac{X-Y}{Y+X}
\]

This is now a homogeneous ODE which will now be solved for \(Y(X)\). In canonical form, the ODE is
\[
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =-\frac{-X+Y}{Y+X} \tag{1}
\end{align*}
\]

An ode of the form \(Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}\) is called homogeneous if the functions \(M(X, Y)\) and \(N(X, Y)\) are both homogeneous functions and of the same order. Recall that a function \(f(X, Y)\) is homogeneous of order \(n\) if
\[
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
\]

In this case, it can be seen that both \(M=X-Y\) and \(N=Y+X\) are both homogeneous and of the same order \(n=1\). Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution \(u=\frac{Y}{X}\), or \(Y=u X\). Hence
\[
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
\]

Applying the transformation \(Y=u X\) to the above ODE in (1) gives
\[
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =\frac{-u+1}{u+1} \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{\frac{-u(X)+1}{u(X)+1}-u(X)}{X}
\end{aligned}
\]

Or
\[
\frac{d}{d X} u(X)-\frac{\frac{-u(X)+1}{u(X)+1}-u(X)}{X}=0
\]

Or
\[
\left(\frac{d}{d X} u(X)\right) X u(X)+\left(\frac{d}{d X} u(X)\right) X+u(X)^{2}+2 u(X)-1=0
\]

Or
\[
(u(X)+1) X\left(\frac{d}{d X} u(X)\right)+u(X)^{2}+2 u(X)-1=0
\]

Which is now solved as separable in \(u(X)\). Which is now solved in \(u(X)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =-\frac{u^{2}+2 u-1}{(u+1) X}
\end{aligned}
\]

Where \(f(X)=-\frac{1}{X}\) and \(g(u)=\frac{u^{2}+2 u-1}{u+1}\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{\frac{u^{2}+2 u-1}{u+1}} d u & =-\frac{1}{X} d X \\
\int \frac{1}{\frac{u^{2}+2 u-1}{u+1}} d u & =\int-\frac{1}{X} d X \\
\frac{\ln \left(u^{2}+2 u-1\right)}{2} & =-\ln (X)+c_{3}
\end{aligned}
\]

Raising both side to exponential gives
\[
\sqrt{u^{2}+2 u-1}=\mathrm{e}^{-\ln (X)+c_{3}}
\]

Which simplifies to
\[
\sqrt{u^{2}+2 u-1}=\frac{c_{4}}{X}
\]

Which simplifies to
\[
\sqrt{u(X)^{2}+2 u(X)-1}=\frac{c_{4} \mathrm{e}^{c_{3}}}{X}
\]

The solution is
\[
\sqrt{u(X)^{2}+2 u(X)-1}=\frac{c_{4} \mathrm{e}^{c_{3}}}{X}
\]

Now \(u\) in the above solution is replaced back by \(Y\) using \(u=\frac{Y}{X}\) which results in the solution
\[
\sqrt{\frac{Y(X)^{2}}{X^{2}}+\frac{2 Y(X)}{X}-1}=\frac{c_{4} \mathrm{e}^{c_{3}}}{X}
\]

The solution is implicit \(\sqrt{\frac{Y(X)^{2}+2 Y(X) X-X^{2}}{X^{2}}}=\frac{c_{4} \mathrm{e}^{c_{3}}}{X}\). Replacing \(Y=y-y_{0}, X=x-x_{0}\) gives
\[
\sqrt{\frac{-\left(\frac{1}{2}+x\right)^{2}+2\left(y-\frac{3}{2}\right)\left(\frac{1}{2}+x\right)+\left(y-\frac{3}{2}\right)^{2}}{\left(\frac{1}{2}+x\right)^{2}}}=\frac{c_{4} \mathrm{e}^{c_{3}}}{\frac{1}{2}+x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
\sqrt{\frac{-\left(\frac{1}{2}+x\right)^{2}+2\left(y-\frac{3}{2}\right)\left(\frac{1}{2}+x\right)+\left(y-\frac{3}{2}\right)^{2}}{\left(\frac{1}{2}+x\right)^{2}}}=\frac{c_{4} \mathrm{e}^{c_{3}}}{\frac{1}{2}+x} \tag{1}
\end{equation*}
\]

Figure 203: Slope field plot

\section*{Verification of solutions}
\[
\sqrt{\frac{-\left(\frac{1}{2}+x\right)^{2}+2\left(y-\frac{3}{2}\right)\left(\frac{1}{2}+x\right)+\left(y-\frac{3}{2}\right)^{2}}{\left(\frac{1}{2}+x\right)^{2}}}=\frac{c_{4} \mathrm{e}^{c_{3}}}{\frac{1}{2}+x}
\]

Verified OK.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying homogeneous C trying homogeneous types: trying homogeneous D <- homogeneous successful <- homogeneous successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.391 (sec). Leaf size: 33
```

dsolve(diff(y(x),x)=(x-y(x)+2)/(x+y(x)-1),y(x), singsol=all)

```
\[
y(x)=\frac{-\sqrt{1+8\left(x+\frac{1}{2}\right)^{2} c_{1}^{2}}+(-2 x+2) c_{1}}{2 c_{1}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.154 (sec). Leaf size: 53
DSolve \(\left[y{ }^{\prime}[x]==(x-y[x]+2) /(x+y[x]-1), y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& y(x) \rightarrow-\sqrt{2 x^{2}+2 x+1+c_{1}}-x+1 \\
& y(x) \rightarrow \sqrt{2 x^{2}+2 x+1+c_{1}}-x+1
\end{aligned}
\]

\subsection*{21.14 problem 5(b)}
21.14.1 Solving as polynomial ode
. 1782
Internal problem ID [6076]
Internal file name [OUTPUT/5324_Sunday_June_05_2022_03_34_13_PM_13344468/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190
Problem number: 5(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
```

[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, ` ``` class A`]]

$$
y^{\prime}-\frac{2 x+3 y+1}{x-2 y-1}=0
$$

### 21.14.1 Solving as polynomial ode

This is ODE of type polynomial. Where the RHS of the ode is ratio of equations of two lines. Writing the ODE in the form

$$
y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{3}}
$$

Where $a_{1}=2, b_{1}=3, c_{1}=1, a_{2}=1, b_{2}=-2, c_{2}=-1$. There are now two possible solution methods. The first case is when the two lines $a_{1} x+b_{1} y+c_{1}, a_{2} x+b_{2} y+c_{3}$ are not parallel and the second case is if they are parallel. If they are not parallel, then the transformation $X=x-x_{0}, Y=y-y_{0}$ converts the ODE to a homogeneous ODE. The values $x_{0}, y_{0}$ have to be determined. If they are parallel then a transformation $U(x)=a_{1} x+b_{1} y$ converts the given ODE in $y$ to a separable ODE in $U(x)$. The first case is when $\frac{a_{1}}{b_{1}} \neq \frac{a_{2}}{b_{2}}$ and the second case when $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}$. From the above we see that $\frac{a_{1}}{b_{1}} \neq \frac{a_{2}}{b_{2}}$. Hence this is case one where lines are not parallel. Using the transformation

$$
\begin{aligned}
X & =x-x_{0} \\
Y & =y-y_{0}
\end{aligned}
$$

Where the constants $x_{0}, y_{0}$ are obtained by solving the following two linear algebraic equations

$$
\begin{aligned}
& a_{1} x_{0}+b_{1} y_{0}+c_{1}=0 \\
& a_{2} x_{0}+b_{2} y_{0}+c_{2}=0
\end{aligned}
$$

Substituting the values for $a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}$ gives

$$
\begin{aligned}
2 x_{0}+3 y_{0}+1 & =0 \\
x_{0}-2 y_{0}-1 & =0
\end{aligned}
$$

Solving for $x_{0}, y_{0}$ from the above gives

$$
\begin{aligned}
x_{0} & =\frac{1}{7} \\
y_{0} & =-\frac{3}{7}
\end{aligned}
$$

Therefore the transformation becomes

$$
\begin{aligned}
X & =x-\frac{1}{7} \\
Y & =y+\frac{3}{7}
\end{aligned}
$$

Using this transformation in $y^{\prime}-\frac{2 x+3 y+1}{x-2 y-1}=0$ result in

$$
\frac{d Y}{d X}=\frac{2 X+3 Y}{X-2 Y}
$$

This is now a homogeneous ODE which will now be solved for $Y(X)$. In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =-\frac{2 X+3 Y}{-X+2 Y} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order $n$ if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=2 X+3 Y$ and $N=X-2 Y$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =\frac{-3 u-2}{2 u-1} \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{\frac{-3 u(X)-2}{2 u(X)-1}-u(X)}{X}
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)-\frac{\frac{-3 u(X)-2}{2 u(X)-1}-u(X)}{X}=0
$$

Or

$$
2\left(\frac{d}{d X} u(X)\right) X u(X)-\left(\frac{d}{d X} u(X)\right) X+2 u(X)^{2}+2 u(X)+2=0
$$

Or

$$
2+X(2 u(X)-1)\left(\frac{d}{d X} u(X)\right)+2 u(X)^{2}+2 u(X)=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =-\frac{2\left(u^{2}+u+1\right)}{X(2 u-1)}
\end{aligned}
$$

Where $f(X)=-\frac{2}{X}$ and $g(u)=\frac{u^{2}+u+1}{2 u-1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+u+1}{2 u-1}} d u & =-\frac{2}{X} d X \\
\int \frac{1}{\frac{u^{2}+u+1}{2 u-1}} d u & =\int-\frac{2}{X} d X \\
\ln \left(u^{2}+u+1\right)-\frac{4 \sqrt{3} \arctan \left(\frac{(2 u+1) \sqrt{3}}{3}\right)}{3} & =-2 \ln (X)+c_{3}
\end{aligned}
$$

The solution is

$$
\ln \left(u(X)^{2}+u(X)+1\right)-\frac{4 \sqrt{3} \arctan \left(\frac{(2 u(X)+1) \sqrt{3}}{3}\right)}{3}+2 \ln (X)-c_{3}=0
$$

Now $u$ in the above solution is replaced back by $Y$ using $u=\frac{Y}{X}$ which results in the solution

$$
\ln \left(\frac{Y(X)^{2}}{X^{2}}+\frac{Y(X)}{X}+1\right)-\frac{4 \sqrt{3} \arctan \left(\frac{\left(\frac{2 Y(X)}{X}+1\right) \sqrt{3}}{3}\right)}{3}+2 \ln (X)-c_{3}=0
$$

The solution is implicit $\ln \left(\frac{Y(X)^{2}}{X^{2}}+\frac{Y(X)}{X}+1\right)-\frac{4 \sqrt{3} \arctan \left(\frac{(2 Y(X)+X) \sqrt{3}}{3 X}\right)}{3}+2 \ln (X)-c_{3}=0$. Replacing $Y=y-y_{0}, X=x-x_{0}$ gives

$$
\ln \left(\frac{\left(y+\frac{3}{7}\right)^{2}}{\left(x-\frac{1}{7}\right)^{2}}+\frac{y+\frac{3}{7}}{x-\frac{1}{7}}+1\right)-\frac{4 \sqrt{3} \arctan \left(\frac{\left(2 y+\frac{5}{7}+x\right) \sqrt{3}}{3 x-\frac{3}{7}}\right)}{3}+2 \ln \left(x-\frac{1}{7}\right)-c_{3}=0
$$

Summary
The solution(s) found are the following

$$
\left.\ln \left(\frac{\left(y+\frac{3}{7}\right)^{2}}{\left(x-\frac{1}{7}\right)^{2}}+\frac{y+\frac{3}{7}}{x-\frac{1}{7}}+1\right)-\frac{4 \sqrt{3} \arctan \left(\frac{\left(2 y+\frac{5}{7}+x\right) \sqrt{3}}{3 x-\frac{3}{7}}\right)}{3}+2 \ln \left(x-\frac{1}{7}\right)-c_{3}=q 1\right)
$$



Figure 204: Slope field plot

Verification of solutions

$$
\ln \left(\frac{\left(y+\frac{3}{7}\right)^{2}}{\left(x-\frac{1}{7}\right)^{2}}+\frac{y+\frac{3}{7}}{x-\frac{1}{7}}+1\right)-\frac{4 \sqrt{3} \arctan \left(\frac{\left(2 y+\frac{5}{7}+x\right) \sqrt{3}}{3 x-\frac{3}{7}}\right)}{3}+2 \ln \left(x-\frac{1}{7}\right)-c_{3}=0
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`
```

$\checkmark$ Solution by Maple
Time used: 0.312 (sec). Leaf size: 61

```
dsolve(diff (y (x),x)=(2*x+3*y(x)+1)/(x-2*y(x)-1),y(x), singsol=all)
```

$y(x)=-\frac{5}{14}-\frac{x}{2}$
$+\frac{\sqrt{3}(7 x-1) \tan \left(\operatorname{RootOf}\left(-2 \sqrt{3} \ln (2)+\sqrt{3} \ln \left(\sec \left(\_Z\right)^{2}(7 x-1)^{2}\right)+\sqrt{3} \ln (3)+2 \sqrt{3} c_{1}-4 \_Z\right)\right)}{14}$
$\checkmark$ Solution by Mathematica
Time used: 0.12 (sec). Leaf size: 85
DSolve $[y$ ' $[x]==(2 * x+3 * y[x]+1) /(x-2 * y[x]-1), y[x], x$, IncludeSingularSolutions $\rightarrow$ True]

Solve $\left[32 \sqrt{3} \arctan \left(\frac{4 y(x)+5 x+1}{\sqrt{3}(-2 y(x)+x-1)}\right)=3\left(8 \log \left(\frac{4\left(7 x^{2}+7 y(x)^{2}+(7 x+5) y(x)+x+1\right)}{(1-7 x)^{2}}\right)\right.\right.$
$\left.\left.+16 \log (7 x-1)+7 c_{1}\right), y(x)\right]$

### 21.15 problem 5(c)

21.15.1 Solving as polynomial ode

1788
Internal problem ID [6077]
Internal file name [OUTPUT/5325_Sunday_June_05_2022_03_34_16_PM_75701382/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190
Problem number: 5(c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, ` class A`]]

$$
y^{\prime}-\frac{y+x+1}{2 x+2 y-1}=0
$$

### 21.15.1 Solving as polynomial ode

This is ODE of type polynomial. Where the RHS of the ode is ratio of equations of two lines. Writing the ODE in the form

$$
y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{3}}
$$

Where $a_{1}=1, b_{1}=1, c_{1}=1, a_{2}=2, b_{2}=2, c_{2}=-1$. There are now two possible solution methods. The first case is when the two lines $a_{1} x+b_{1} y+c_{1}, a_{2} x+b_{2} y+c_{3}$ are not parallel and the second case is if they are parallel. If they are not parallel, then the transformation $X=x-x_{0}, Y=y-y_{0}$ converts the ODE to a homogeneous ODE. The values $x_{0}, y_{0}$ have to be determined. If they are parallel then a transformation $U(x)=a_{1} x+b_{1} y$ converts the given ODE in $y$ to a separable ODE in $U(x)$. The first case is when $\frac{a_{1}}{b_{1}} \neq \frac{a_{2}}{b_{2}}$ and the second case when $\frac{a_{1}}{b_{1}}=\frac{a_{2}}{b_{2}}$. From the above we see that $\frac{a_{1}}{b_{1}}=\frac{1}{1}=1$ and $\frac{a_{2}}{b_{2}}=\frac{2}{2}=1$. Hence this is case two, where the lines are parallel. Let $U(x)=x+y$. Solving for $y$ gives

$$
y=-x+U(x)
$$

Taking derivative w.r.t $x$ gives

$$
y^{\prime}=-1+U^{\prime}(x)
$$

Substituting the above into the ODE results in the ODE

$$
-1+U^{\prime}(x)-\frac{U(x)+1}{2 U(x)-1}=0
$$

Or

$$
-1+U^{\prime}(x)+\frac{-U(x)-1}{2 U(x)-1}=0
$$

Or

$$
U^{\prime}(x)=\frac{3 U(x)}{2 U(x)-1}
$$

Which is now solved as separable in $U(x)$. In canonical form the ODE is

$$
\begin{aligned}
U^{\prime} & =F(x, U) \\
& =f(x) g(U) \\
& =\frac{3 U}{2 U-1}
\end{aligned}
$$

Where $f(x)=1$ and $g(U)=\frac{3 U}{2 U-1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{3 U}{2 U-1}} d U & =1 d x \\
\int \frac{1}{\frac{3 U}{2 U-1}} d U & =\int 1 d x \\
\frac{2 U}{3}-\frac{\ln (U)}{3} & =c_{2}+x
\end{aligned}
$$

The solution is

$$
\frac{2 U(x)}{3}-\frac{\ln (U(x))}{3}-c_{2}-x=0
$$

The solution $\frac{2 U(x)}{3}-\frac{\ln (U(x))}{3}-c_{2}-x=0$ is converted to $y$ using $U(x)=x+y$. Which gives

$$
-\frac{x}{3}+\frac{2 y}{3}-\frac{\ln (x+y)}{3}-c_{2}=0
$$

## Summary

The solution(s) found are the following


Figure 205: Slope field plot

Verification of solutions

$$
-\frac{x}{3}+\frac{2 y}{3}-\frac{\ln (x+y)}{3}-c_{2}=0
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

$\checkmark$ Solution by Maple
Time used: 0.032 (sec). Leaf size: 21

```
dsolve(diff(y(x),x)=(x+y(x)+1)/(2*x+2*y(x)-1),y(x), singsol=all)
```

$$
y(x)=-\frac{\text { LambertW }\left(-2 \mathrm{e}^{-3 x+3 c_{1}}\right)}{2}-x
$$

$\checkmark$ Solution by Mathematica
Time used: 4.2 (sec). Leaf size: 32
DSolve[y'[x]==(x+y[x]+1)/(2*x+2*y[x]-1),y[x],x,IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
& y(x) \rightarrow-x-\frac{1}{2} W\left(-e^{-3 x-1+c_{1}}\right) \\
& y(x) \rightarrow-x
\end{aligned}
$$

### 21.16 problem 6(b)

21.16.1 Solving as homogeneousTypeMapleC ode . . . . . . . . . . . . . 1792
21.16.2 Solving as first order ode lie symmetry calculated ode . . . . . . 1795
21.16.3 Solving as riccati ode . . . . . . . . . . . . . . . . . . . . . . . . 1802

Internal problem ID [6078]
Internal file name [OUTPUT/5326_Sunday_June_05_2022_03_34_18_PM_75214191/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 190
Problem number: 6(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "homogeneousTypeMapleC", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type
[[_homogeneous, `class C`], _rational, _Riccati]

$$
y^{\prime}-\frac{(-1+y+x)^{2}}{2(x+2)^{2}}=0
$$

### 21.16.1 Solving as homogeneousTypeMapleC ode

Let $Y=y+y_{0}$ and $X=x+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=\frac{\left(-1+Y(X)+y_{0}+X+x_{0}\right)^{2}}{2\left(X+x_{0}+2\right)^{2}}
$$

Solving for possible values of $x_{0}$ and $y_{0}$ which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
x_{0} & =-2 \\
y_{0} & =3
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=\frac{X^{2}+2 Y(X) X+Y(X)^{2}}{2 X^{2}}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =\frac{X^{2}+2 Y X+Y^{2}}{2 X^{2}} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order $n$ if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=X^{2}+2 Y X+Y^{2}$ and $N=2 X^{2}$ are both homogeneous and of the same order $n=2$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =\frac{1}{2}+u+\frac{1}{2} u^{2} \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{\frac{1}{2}+\frac{u(X)^{2}}{2}}{X}
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)-\frac{\frac{1}{2}+\frac{u(X)^{2}}{2}}{X}=0
$$

Or

$$
2\left(\frac{d}{d X} u(X)\right) X-u(X)^{2}-1=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =\frac{\frac{u^{2}}{2}+\frac{1}{2}}{X}
\end{aligned}
$$

Where $f(X)=\frac{1}{X}$ and $g(u)=\frac{u^{2}}{2}+\frac{1}{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}}{2}+\frac{1}{2}} d u & =\frac{1}{X} d X \\
\int \frac{1}{\frac{u^{2}}{2}+\frac{1}{2}} d u & =\int \frac{1}{X} d X \\
2 \arctan (u) & =\ln (X)+c_{2}
\end{aligned}
$$

The solution is

$$
2 \arctan (u(X))-\ln (X)-c_{2}=0
$$

Now $u$ in the above solution is replaced back by $Y$ using $u=\frac{Y}{X}$ which results in the solution

$$
2 \arctan \left(\frac{Y(X)}{X}\right)-\ln (X)-c_{2}=0
$$

Using the solution for $Y(X)$

$$
2 \arctan \left(\frac{Y(X)}{X}\right)-\ln (X)-c_{2}=0
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
& Y=y+y_{0} \\
& X=x+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
& Y=3+y \\
& X=-2+x
\end{aligned}
$$

Then the solution in $y$ becomes

$$
2 \arctan \left(\frac{y-3}{x+2}\right)-\ln (x+2)-c_{2}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
2 \arctan \left(\frac{y-3}{x+2}\right)-\ln (x+2)-c_{2}=0 \tag{1}
\end{equation*}
$$



Figure 206: Slope field plot
Verification of solutions

$$
2 \arctan \left(\frac{y-3}{x+2}\right)-\ln (x+2)-c_{2}=0
$$

Verified OK.

### 21.16.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{(-1+y+x)^{2}}{2(x+2)^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine $\xi, \eta$ then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1}  \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and $\omega$ into (A) gives

$$
\begin{align*}
b_{2} & +\frac{(-1+y+x)^{2}\left(b_{3}-a_{2}\right)}{2(x+2)^{2}}-\frac{(-1+y+x)^{4} a_{3}}{4(x+2)^{4}} \\
& -\left(\frac{-1+y+x}{(x+2)^{2}}-\frac{(-1+y+x)^{2}}{(x+2)^{3}}\right)\left(x a_{2}+y a_{3}+a_{1}\right)  \tag{5E}\\
& -\frac{(-1+y+x)\left(x b_{2}+y b_{3}+b_{1}\right)}{(x+2)^{2}}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{2 x^{4} a_{2}+x^{4} a_{3}-2 x^{4} b_{3}+4 x^{3} y a_{3}+4 x^{3} y b_{2}-2 x^{2} y^{2} a_{2}+2 x^{2} y^{2} a_{3}+2 x^{2} y^{2} b_{3}+y^{4} a_{3}+16 x^{3} a_{2}-4 x^{3} a_{3}+4 x}{=0} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -2 x^{4} a_{2}-x^{4} a_{3}+2 x^{4} b_{3}-4 x^{3} y a_{3}-4 x^{3} y b_{2}+2 x^{2} y^{2} a_{2}-2 x^{2} y^{2} a_{3} \\
& -2 x^{2} y^{2} b_{3}-y^{4} a_{3}-16 x^{3} a_{2}+4 x^{3} a_{3}-4 x^{3} b_{1}+20 x^{3} b_{2}+4 x^{3} b_{3} \\
& +4 x^{2} y a_{1}-20 x^{2} y a_{2}-4 x^{2} y b_{1}-16 x^{2} y b_{2}+4 x y^{2} a_{1}+4 x y^{2} a_{3}-8 x y^{2} b_{3}  \tag{6E}\\
& +12 y^{3} a_{3}-12 x^{2} a_{1}-6 x^{2} a_{2}-6 x^{2} a_{3}-12 x^{2} b_{1}+96 x^{2} b_{2}-6 x^{2} b_{3} \\
& -8 x y a_{1}-32 x y a_{2}-24 x y a_{3}-16 x y b_{1}-16 x y b_{2}+8 y^{2} a_{1}-8 y^{2} a_{2} \\
& -38 y^{2} a_{3}-8 y^{2} b_{3}-12 x a_{1}+32 x a_{2}+4 x a_{3}+144 x b_{2}-8 x b_{3}-32 y a_{1} \\
& +16 y a_{2}+28 y a_{3}-16 y b_{1}+24 a_{1}-8 a_{2}-a_{3}+16 b_{1}+64 b_{2}+8 b_{3}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -2 a_{2} v_{1}^{4}+2 a_{2} v_{1}^{2} v_{2}^{2}-a_{3} v_{1}^{4}-4 a_{3} v_{1}^{3} v_{2}-2 a_{3} v_{1}^{2} v_{2}^{2}-a_{3} v_{2}^{4}-4 b_{2} v_{1}^{3} v_{2} \\
& +2 b_{3} v_{1}^{4}-2 b_{3} v_{1}^{2} v_{2}^{2}+4 a_{1} v_{1}^{2} v_{2}+4 a_{1} v_{1} v_{2}^{2}-16 a_{2} v_{1}^{3}-20 a_{2} v_{1}^{2} v_{2}+4 a_{3} v_{1}^{3} \\
& +4 a_{3} v_{1} v_{2}^{2}+12 a_{3} v_{2}^{3}-4 b_{1} v_{1}^{3}-4 b_{1} v_{1}^{2} v_{2}+20 b_{2} v_{1}^{3}-16 b_{2} v_{1} v_{2}+4 b_{3} v_{1}^{3}  \tag{7E}\\
& -8 b_{3} v_{1} v_{2}^{2}-12 a_{1} v_{1}^{2}-8 a_{1} v_{1} v_{2}+8 a_{1} v_{2}^{2}-6 a_{2} v_{1}^{2}-32 a_{2} v_{1} v_{2}-8 a_{2} v_{2}^{2} \\
& -6 a_{3} v_{1}^{2}-24 a_{3} v_{1} v_{2}-38 a_{3} v_{2}^{2}-12 b_{1} v_{1}^{2}-16 b_{1} v_{1} v_{2}+96 b_{2} v_{1}^{2}-16 b_{2} v_{1} v_{2} \\
& -6 b_{3} v_{1}^{2}-8 b_{3} v_{2}^{2}-12 a_{1} v_{1}-32 a_{1} v_{2}+32 a_{2} v_{1}+16 a_{2} v_{2}+4 a_{3} v_{1}+28 a_{3} v_{2} \\
& -16 b_{1} v_{2}+144 b_{2} v_{1}-8 b_{3} v_{1}+24 a_{1}-8 a_{2}-a_{3}+16 b_{1}+64 b_{2}+8 b_{3}=0
\end{align*}
$$

Collecting the above on the terms $v_{i}$ introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-2 a_{2}-a_{3}+2 b_{3}\right) v_{1}^{4}+\left(-4 a_{3}-4 b_{2}\right) v_{1}^{3} v_{2} \\
& +\left(-16 a_{2}+4 a_{3}-4 b_{1}+20 b_{2}+4 b_{3}\right) v_{1}^{3}+\left(2 a_{2}-2 a_{3}-2 b_{3}\right) v_{1}^{2} v_{2}^{2} \\
& \quad+\left(4 a_{1}-20 a_{2}-4 b_{1}-16 b_{2}\right) v_{1}^{2} v_{2}+\left(-12 a_{1}-6 a_{2}-6 a_{3}-12 b_{1}+96 b_{2}-6 b_{3}\right) v_{1}^{2}  \tag{8E}\\
& \quad+\left(4 a_{1}+4 a_{3}-8 b_{3}\right) v_{1} v_{2}^{2}+\left(-8 a_{1}-32 a_{2}-24 a_{3}-16 b_{1}-16 b_{2}\right) v_{1} v_{2} \\
& \quad+\left(-12 a_{1}+32 a_{2}+4 a_{3}+144 b_{2}-8 b_{3}\right) v_{1}-a_{3} v_{2}^{4}+12 a_{3} v_{2}^{3} \\
& +\left(8 a_{1}-8 a_{2}-38 a_{3}-8 b_{3}\right) v_{2}^{2}+\left(-32 a_{1}+16 a_{2}+28 a_{3}-16 b_{1}\right) v_{2} \\
& +24 a_{1}-8 a_{2}-a_{3}+16 b_{1}+64 b_{2}+8 b_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-a_{3} & =0 \\
12 a_{3} & =0 \\
-4 a_{3}-4 b_{2} & =0 \\
4 a_{1}+4 a_{3}-8 b_{3} & =0 \\
-2 a_{2}-a_{3}+2 b_{3} & =0 \\
2 a_{2}-2 a_{3}-2 b_{3} & =0 \\
-32 a_{1}+16 a_{2}+28 a_{3}-16 b_{1} & =0 \\
4 a_{1}-20 a_{2}-4 b_{1}-16 b_{2} & =0 \\
8 a_{1}-8 a_{2}-38 a_{3}-8 b_{3} & =0 \\
-12 a_{1}+32 a_{2}+4 a_{3}+144 b_{2}-8 b_{3} & =0 \\
-8 a_{1}-32 a_{2}-24 a_{3}-16 b_{1}-16 b_{2} & =0 \\
-16 a_{2}+4 a_{3}-4 b_{1}+20 b_{2}+4 b_{3} & =0 \\
-12 a_{1}-6 a_{2}-6 a_{3}-12 b_{1}+96 b_{2}-6 b_{3} & =0 \\
24 a_{1}-8 a_{2}-a_{3}+16 b_{1}+64 b_{2}+8 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =2 b_{3} \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =-3 b_{3} \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x+2 \\
\eta & =-3+y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =-3+y-\left(\frac{(-1+y+x)^{2}}{2(x+2)^{2}}\right)(x+2) \\
& =\frac{-x^{2}-y^{2}-4 x+6 y-13}{2 x+4} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates $R, S$. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where $(R, S)$ are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable $R$ in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

$S$ is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-x^{2}-y^{2}-4 x+6 y-13}{2 x+4}} d y
\end{aligned}
$$

Which results in

$$
S=-2 \arctan \left(\frac{2 y-6}{2 x+4}\right)
$$

Now that $R, S$ are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{(-1+y+x)^{2}}{2(x+2)^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{2 y-6}{x^{2}+y^{2}+4 x-6 y+13} \\
S_{y} & =\frac{-2 x-4}{x^{2}+y^{2}+4 x-6 y+13}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{x+2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of $R$ only. This is done by solving for $x, y$ in terms of $R, S$ from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{1}{R+2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates $R, S$. Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (R+2)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to $x, y$ coordinates. This results in

$$
-2 \arctan \left(\frac{y-3}{x+2}\right)=-\ln (x+2)+c_{1}
$$

Which simplifies to

$$
-2 \arctan \left(\frac{y-3}{x+2}\right)=-\ln (x+2)+c_{1}
$$

Which gives

$$
y=-\tan \left(-\frac{\ln (x+2)}{2}+\frac{c_{1}}{2}\right) x-2 \tan \left(-\frac{\ln (x+2)}{2}+\frac{c_{1}}{2}\right)+3
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in $x, y$ coordinates	Canonical coordinates transformation	ODE in canonical coordinates $(R, S)$
$\frac{d y}{d x}=\frac{(-1+y+x)^{2}}{2(x+2)^{2}}$		$\frac{d S}{d R}=-\frac{1}{R+2}$
		－ップ
		$\rightarrow \rightarrow 0 \rightarrow$ S $(R)$
吚 $\uparrow \uparrow \uparrow \xrightarrow{\text { P }}$	$R=x$	$\rightarrow \pm \pm$   0
$\xrightarrow{+}+4+1+4 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty$		$\rightarrow \rightarrow$ 为 $\rightarrow$ 为
	$S=-2 \arctan \left(\frac{-3}{x}\right.$	
＋种＋＋＋＋＋		1
		$\rightarrow \pm$－

## Summary

The solution（s）found are the following

$$
\begin{equation*}
y=-\tan \left(-\frac{\ln (x+2)}{2}+\frac{c_{1}}{2}\right) x-2 \tan \left(-\frac{\ln (x+2)}{2}+\frac{c_{1}}{2}\right)+3 \tag{1}
\end{equation*}
$$



Figure 207: Slope field plot

Verification of solutions

$$
y=-\tan \left(-\frac{\ln (x+2)}{2}+\frac{c_{1}}{2}\right) x-2 \tan \left(-\frac{\ln (x+2)}{2}+\frac{c_{1}}{2}\right)+3
$$

## Verified OK.

### 21.16.3 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{(-1+y+x)^{2}}{2(x+2)^{2}}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=\frac{x^{2}}{2(x+2)^{2}}+\frac{x y}{(x+2)^{2}}+\frac{y^{2}}{2(x+2)^{2}}-\frac{x}{(x+2)^{2}}-\frac{y}{(x+2)^{2}}+\frac{1}{2(x+2)^{2}}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{(x-1)^{2}}{2(x+2)^{2}}, f_{1}(x)=\frac{2 x-2}{2(x+2)^{2}}$ and $f_{2}(x)=\frac{1}{2(x+2)^{2}}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{u}{2(x+2)^{2}}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{1}{(x+2)^{3}} \\
f_{1} f_{2} & =\frac{2 x-2}{4(x+2)^{4}} \\
f_{2}^{2} f_{0} & =\frac{(x-1)^{2}}{8(x+2)^{6}}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{u^{\prime \prime}(x)}{2(x+2)^{2}}-\left(-\frac{1}{(x+2)^{3}}+\frac{2 x-2}{4(x+2)^{4}}\right) u^{\prime}(x)+\frac{(x-1)^{2} u(x)}{8(x+2)^{6}}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\mathrm{e}^{\frac{3}{2 x+4}}\left((x+2)^{\frac{i}{2}} c_{1}+(x+2)^{-\frac{i}{2}} c_{2}\right)
$$

The above shows that

$$
u^{\prime}(x)=\frac{\left(-c_{2}(i x+2 i+3)(x+2)^{-\frac{i}{2}}+(i x+2 i-3) c_{1}(x+2)^{\frac{i}{2}}\right) \mathrm{e}^{\frac{3}{2 x+4}}}{2(x+2)^{2}}
$$

Using the above in (1) gives the solution

$$
y=-\frac{-c_{2}(i x+2 i+3)(x+2)^{-\frac{i}{2}}+(i x+2 i-3) c_{1}(x+2)^{\frac{i}{2}}}{(x+2)^{\frac{i}{2}} c_{1}+(x+2)^{-\frac{i}{2}} c_{2}}
$$

Dividing both numerator and denominator by $c_{1}$ gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{(i x+2 i+3)(x+2)^{-\frac{i}{2}}-(i x+2 i-3) c_{3}(x+2)^{\frac{i}{2}}}{(x+2)^{\frac{i}{2}} c_{3}+(x+2)^{-\frac{i}{2}}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{(i x+2 i+3)(x+2)^{-\frac{i}{2}}-(i x+2 i-3) c_{3}(x+2)^{\frac{i}{2}}}{(x+2)^{\frac{i}{2}} c_{3}+(x+2)^{-\frac{i}{2}}} \tag{1}
\end{equation*}
$$



Figure 208: Slope field plot

## Verification of solutions

$$
y=\frac{(i x+2 i+3)(x+2)^{-\frac{i}{2}}-(i x+2 i-3) c_{3}(x+2)^{\frac{i}{2}}}{(x+2)^{\frac{i}{2}} c_{3}+(x+2)^{-\frac{i}{2}}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`
```

$\checkmark$ Solution by Maple
Time used: 0.031 (sec). Leaf size: 21

```
dsolve(diff(y(x),x)=1/2*((x+y(x)-1)/(x+2))^2,y(x), singsol=all)
```

$$
y(x)=3+\tan \left(\frac{\ln (x+2)}{2}+\frac{c_{1}}{2}\right)(x+2)
$$

$\checkmark$ Solution by Mathematica
Time used: 0.411 (sec). Leaf size: 99
DSolve $\left[y^{\prime}[x]==1 / 2 *((x+y[x]-1) /(x+2))^{\wedge} 2, y[x], x\right.$, IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{2^{i}(x+2)^{i} x+(2+3 i) 2^{i}(x+2)^{i}-2 i c_{1} x-(6+4 i) c_{1}}{i 2^{i}(x+2)^{i}-2 c_{1}} \\
& y(x) \rightarrow i x+(3+2 i) \\
& y(x) \rightarrow i x+(3+2 i)
\end{aligned}
$$

## 22 Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198

22.1 problem 1(a) ..... 1807
22.2 problem 1(b) ..... 1814
22.3 problem 1(c) ..... 1820
22.4 problem 1(d) ..... 1825
22.5 problem 1(e) ..... 1831
22.6 problem 1(f) ..... 1837
22.7 problem 1(g) ..... 1844
22.8 problem 1(h) ..... 1850
22.9 problem 2(a) ..... 1856
22.10problem 2(b) ..... 1862
22.11problem 2(c) ..... 1868
22.12problem 2(d) ..... 1876

## 22.1 problem 1(a)

22.1.1 Solving as exact ode
22.1.2 Maple step by step solution 1810

Internal problem ID [6079]
Internal file name [OUTPUT/5327_Sunday_June_05_2022_03_34_19_PM_1317435/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198
Problem number: 1(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _exact, _rational, _dAlembert]
```

$$
2 x y+\left(x^{2}+3 y^{2}\right) y^{\prime}=0
$$

### 22.1.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where $c$ is constant, that satisfies the ode. Taking derivative of $\phi$ w.r.t. $x$ gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing ( $\mathrm{A}, \mathrm{B}$ ) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}+3 y^{2}\right) \mathrm{d} y & =(-2 x y) \mathrm{d} x \\
(2 x y) \mathrm{d} x+\left(x^{2}+3 y^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 x y \\
N(x, y) & =x^{2}+3 y^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(2 x y) \\
& =2 x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}+3 y^{2}\right) \\
& =2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M  \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. $x$ gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2 x y \mathrm{~d} x \\
\phi & =y x^{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since $\phi$ is a function of both $x$ and $y$. Taking derivative of equation (3) w.r.t $y$ gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x^{2}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x^{2}+3 y^{2}$. Therefore equation (4) becomes

$$
\begin{equation*}
x^{2}+3 y^{2}=x^{2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=3 y^{2}
$$

Integrating the above w.r.t $y$ gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(3 y^{2}\right) \mathrm{d} y \\
f(y) & =y^{3}+c_{1}
\end{aligned}
$$

Where $c_{1}$ is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives $\phi$

$$
\phi=y x^{2}+y^{3}+c_{1}
$$

But since $\phi$ itself is a constant function, then let $\phi=c_{2}$ where $c_{2}$ is new constant and combining $c_{1}$ and $c_{2}$ constants into new constant $c_{1}$ gives the solution as

$$
c_{1}=y x^{2}+y^{3}
$$

## Summary

The solution(s) found are the following

$$
\begin{equation*}
y^{3}+y x^{2}=c_{1} \tag{1}
\end{equation*}
$$



Figure 209: Slope field plot

Verification of solutions

$$
y^{3}+y x^{2}=c_{1}
$$

Verified OK.

### 22.1.2 Maple step by step solution

Let's solve

$$
2 x y+\left(x^{2}+3 y^{2}\right) y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

$\square \quad$ Check if ODE is exact

- ODE is exact if the lhs is the total derivative of a $C^{2}$ function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives
$2 x=2 x$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form
$\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]$
- $\quad$ Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to $x$

$$
F(x, y)=\int 2 x y d x+f_{1}(y)
$$

- Evaluate integral
$F(x, y)=y x^{2}+f_{1}(y)$
- $\quad$ Take derivative of $F(x, y)$ with respect to $y$
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative
$x^{2}+3 y^{2}=x^{2}+\frac{d}{d y} f_{1}(y)$
- $\quad$ Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=3 y^{2}
$$

- $\quad$ Solve for $f_{1}(y)$
$f_{1}(y)=y^{3}$
- $\quad$ Substitute $f_{1}(y)$ into equation for $F(x, y)$
$F(x, y)=y x^{2}+y^{3}$
- $\quad$ Substitute $F(x, y)$ into the solution of the ODE
$y x^{2}+y^{3}=c_{1}$
- $\quad$ Solve for $y$

$$
\left\{y=\frac{\left(108 c_{1}+12 \sqrt{12 x^{6}+81 c_{1}^{2}}\right)^{\frac{1}{3}}}{6}-\frac{2 x^{2}}{\left(108 c_{1}+12 \sqrt{12 x^{6}+81 c_{1}^{2}}\right)^{\frac{1}{3}}}, y=-\frac{\left(108 c_{1}+12 \sqrt{12 x^{6}+81 c_{1}^{2}}\right)^{\frac{1}{3}}}{12}+\frac{x^{2}}{\left(108 c_{1}+12 \sqrt{12 x}\right.}\right.
$$

## Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

$\checkmark$ Solution by Maple
Time used: 0.063 (sec). Leaf size: 189

```
dsolve(2*x*y(x)+(x^2+3*y(x)^2)*diff(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{-12 c_{1} x^{2}+\left(108+12 \sqrt{12 c_{1}^{3} x^{6}+81}\right)^{\frac{2}{3}}}{6\left(108+12 \sqrt{12 c_{1}^{3} x^{6}+81}\right)^{\frac{1}{3}} \sqrt{c_{1}}} \\
& y(x)=-\frac{(1+i \sqrt{3})\left(108+12 \sqrt{12 c_{1}^{3} x^{6}+81}\right)^{\frac{1}{3}}}{12 \sqrt{c_{1}}}-\frac{x^{2}(i \sqrt{3}-1) \sqrt{c_{1}}}{\left(108+12 \sqrt{12 c_{1}^{3} x^{6}+81}\right)^{\frac{1}{3}}} \\
& y(x)=\frac{(i \sqrt{3}-1)\left(108+12 \sqrt{12 c_{1}^{3} x^{6}+81}\right)^{\frac{1}{3}}}{12 \sqrt{c_{1}}}+\frac{(1+i \sqrt{3}) x^{2} \sqrt{c_{1}}}{\left(108+12 \sqrt{12 c_{1}^{3} x^{6}+81}\right)^{\frac{1}{3}}}
\end{aligned}
$$

## Solution by Mathematica

Time used: 27.686 (sec). Leaf size: 442
DSolve[2*x*y[x]+(x~2+3*y[x]~2)*y'[x]==0,y[x],x,IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{-2 \sqrt[3]{3} x^{2}+\sqrt[3]{2}\left(\sqrt{12 x^{6}+81 e^{2 c_{1}}}+9 e^{c_{1}}\right)^{2 / 3}}{62 / 3 \sqrt[3]{\sqrt{12 x^{6}+81 e^{2 c_{1}}}+9 e^{c_{1}}}} \\
& y(x) \rightarrow \frac{i 2^{2 / 3} \sqrt[3]{3}(\sqrt{3}+i)\left(\sqrt{12 x^{6}+81 e^{2 c_{1}}}+9 e^{c_{1}}\right)^{2 / 3}+2 \sqrt[3]{2} \sqrt[6]{3}(\sqrt{3}+3 i) x^{2}}{12 \sqrt[3]{\sqrt{12 x^{6}+81 e^{2 c_{1}}}+9 e^{c_{1}}}} \\
& y(x) \rightarrow \frac{2^{2 / 3} \sqrt[3]{3}(-1-i \sqrt{3})\left(\sqrt{12 x^{6}+81 e^{2 c_{1}}}+9 e^{c_{1}}\right)^{2 / 3}+2 \sqrt[3]{2} \sqrt[6]{3}(\sqrt{3}-3 i) x^{2}}{12 \sqrt[3]{\sqrt{12 x^{6}+81 e^{2 c_{1}}}+9 e^{c_{1}}}} \\
& y(x) \rightarrow 0 \\
& y(x) \rightarrow \frac{\sqrt[3]{x^{6}}-x^{2}}{\sqrt{3} \sqrt[6]{x^{6}}} \\
& y(x) \rightarrow \frac{(\sqrt{3}-3 i) x^{2}-(\sqrt{3}+3 i) \sqrt[3]{x^{6}}}{6 \sqrt[6]{x^{6}}} \\
& y(x) \rightarrow \frac{(\sqrt{3}+3 i) x^{2}-(\sqrt{3}-3 i) \sqrt[3]{x^{6}}}{6 \sqrt[6]{x^{6}}}
\end{aligned}
$$

## 22.2 problem 1(b)

22.2.1 Solving as exact ode
22.2.2 Maple step by step solution 1818

Internal problem ID [6080]
Internal file name [OUTPUT/5328_Sunday_June_05_2022_03_34_21_PM_20496951/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198 Problem number: 1(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type

```
[_quadrature]
```

$$
x y+(x+y) y^{\prime}=-x^{2}
$$

### 22.2.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where $c$ is constant, that satisfies the ode. Taking derivative of $\phi$ w.r.t. $x$ gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing ( $\mathrm{A}, \mathrm{B}$ ) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(-x) \mathrm{d} x \\
(x) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =x \\
N(x, y) & =1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M  \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. $x$ gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int x \mathrm{~d} x \\
\phi & =\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since $\phi$ is a function of both $x$ and $y$. Taking derivative of equation (3) w.r.t $y$ gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=1$. Therefore equation (4) becomes

$$
\begin{equation*}
1=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=1
$$

Integrating the above w.r.t $y$ gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(1) \mathrm{d} y \\
f(y) & =y+c_{1}
\end{aligned}
$$

Where $c_{1}$ is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives $\phi$

$$
\phi=\frac{x^{2}}{2}+y+c_{1}
$$

But since $\phi$ itself is a constant function, then let $\phi=c_{2}$ where $c_{2}$ is new constant and combining $c_{1}$ and $c_{2}$ constants into new constant $c_{1}$ gives the solution as

$$
c_{1}=\frac{x^{2}}{2}+y
$$

The solution becomes

$$
y=-\frac{x^{2}}{2}+c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x^{2}}{2}+c_{1} \tag{1}
\end{equation*}
$$



Figure 210: Slope field plot

Verification of solutions

$$
y=-\frac{x^{2}}{2}+c_{1}
$$

Verified OK.

### 22.2.2 Maple step by step solution

Let's solve

$$
x y+(x+y) y^{\prime}=-x^{2}
$$

- Highest derivative means the order of the ODE is 1 $y^{\prime}$
- Separate variables

$$
y^{\prime}=-x
$$

- Integrate both sides with respect to $x$

$$
\int y^{\prime} d x=\int-x d x+c_{1}
$$

- Evaluate integral

$$
y=-\frac{x^{2}}{2}+c_{1}
$$

- $\quad$ Solve for $y$

$$
y=-\frac{x^{2}}{2}+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve((x^2+x*y(x))+(x+y(x))*diff (y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-x \\
& y(x)=-\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.132 (sec). Leaf size: 53
DSolve $\left[\left(x^{\wedge} 2+y[x]\right)+(x+y[x]) * y '[x]==0, y[x], x\right.$, IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
& y(x) \rightarrow-x-\sqrt{-\frac{2 x^{3}}{3}+x^{2}+c_{1}} \\
& y(x) \rightarrow-x+\sqrt{-\frac{2 x^{3}}{3}+x^{2}+c_{1}}
\end{aligned}
$$

## 22.3 problem 1(c)

22.3.1 Solving as exact ode
22.3.2 Maple step by step solution 1824

Internal problem ID [6081]
Internal file name [OUTPUT/5329_Sunday_June_05_2022_03_34_22_PM_6110514/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198
Problem number: 1(c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type

```
[_separable]
```

$$
\mathrm{e}^{y}(1+y) y^{\prime}=-\mathrm{e}^{x}
$$

### 22.3.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where $c$ is constant, that satisfies the ode. Taking derivative of $\phi$ w.r.t. $x$ gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing ( $\mathrm{A}, \mathrm{B}$ ) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\mathrm{e}^{y}(1+y)\right) \mathrm{d} y & =\left(\mathrm{e}^{x}\right) \mathrm{d} x \\
\left(-\mathrm{e}^{x}\right) \mathrm{d} x+\left(-\mathrm{e}^{y}(1+y)\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\mathrm{e}^{x} \\
N(x, y) & =-\mathrm{e}^{y}(1+y)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\mathrm{e}^{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\mathrm{e}^{y}(1+y)\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M  \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. $x$ gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\mathrm{e}^{x} \mathrm{~d} x \\
\phi & =-\mathrm{e}^{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since $\phi$ is a function of both $x$ and $y$. Taking derivative of equation (3) w.r.t $y$ gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\mathrm{e}^{y}(1+y)$. Therefore equation (4) becomes

$$
\begin{equation*}
-\mathrm{e}^{y}(1+y)=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\mathrm{e}^{y}(1+y)
$$

Integrating the above w.r.t $y$ gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\mathrm{e}^{y}(1+y)\right) \mathrm{d} y \\
f(y) & =-\mathrm{e}^{y} y+c_{1}
\end{aligned}
$$

Where $c_{1}$ is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives $\phi$

$$
\phi=-\mathrm{e}^{x}-\mathrm{e}^{y} y+c_{1}
$$

But since $\phi$ itself is a constant function, then let $\phi=c_{2}$ where $c_{2}$ is new constant and combining $c_{1}$ and $c_{2}$ constants into new constant $c_{1}$ gives the solution as

$$
c_{1}=-\mathrm{e}^{x}-\mathrm{e}^{y} y
$$

The solution becomes

$$
y=\operatorname{LambertW}\left(-\mathrm{e}^{x}-c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\operatorname{LambertW}\left(-\mathrm{e}^{x}-c_{1}\right) \tag{1}
\end{equation*}
$$



Figure 211: Slope field plot

Verification of solutions

$$
y=\operatorname{LambertW}\left(-\mathrm{e}^{x}-c_{1}\right)
$$

Verified OK.

### 22.3.2 Maple step by step solution

Let's solve

$$
\mathrm{e}^{y}(1+y) y^{\prime}=-\mathrm{e}^{x}
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Integrate both sides with respect to $x$

$$
\int \mathrm{e}^{y}(1+y) y^{\prime} d x=\int-\mathrm{e}^{x} d x+c_{1}
$$

- Evaluate integral

$$
\mathrm{e}^{y} y=-\mathrm{e}^{x}+c_{1}
$$

- $\quad$ Solve for $y$
$y=\operatorname{Lambert} W\left(-\mathrm{e}^{x}+c_{1}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

$\checkmark$ Solution by Maple
Time used: 0.031 (sec). Leaf size: 13

```
dsolve(exp(x)+(exp(y(x))*(y(x)+1))*diff (y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=\text { LambertW }\left(-c_{1}-\mathrm{e}^{x}\right)
$$

$\checkmark$ Solution by Mathematica
Time used: 60.161 (sec). Leaf size: 14
DSolve $\left[\operatorname{Exp}[x]+(\operatorname{Exp}[y[x]] *(y[x]+1)) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions $\rightarrow$ True]

$$
y(x) \rightarrow W\left(-e^{x}+c_{1}\right)
$$

## 22.4 problem 1(d)

22.4.1 Solving as exact ode
22.4.2 Maple step by step solution 1829

Internal problem ID [6082]
Internal file name [OUTPUT/5330_Sunday_June_05_2022_03_34_24_PM_67663664/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198 Problem number: 1(d).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type

```
[_separable]
```

$$
\cos (x) \cos (y)^{2}-\sin (x) \sin (2 y) y^{\prime}=0
$$

### 22.4.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where $c$ is constant, that satisfies the ode. Taking derivative of $\phi$ w.r.t. $x$ gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing ( $\mathrm{A}, \mathrm{B}$ ) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{\sin (2 y)}{\cos (y)^{2}}\right) \mathrm{d} y & =\left(\frac{\cos (x)}{\sin (x)}\right) \mathrm{d} x \\
\left(-\frac{\cos (x)}{\sin (x)}\right) \mathrm{d} x+\left(\frac{\sin (2 y)}{\cos (y)^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{\cos (x)}{\sin (x)} \\
& N(x, y)=\frac{\sin (2 y)}{\cos (y)^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{\cos (x)}{\sin (x)}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{\sin (2 y)}{\cos (y)^{2}}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M  \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. $x$ gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{\cos (x)}{\sin (x)} \mathrm{d} x \\
\phi & =-\ln (\sin (x))+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since $\phi$ is a function of both $x$ and $y$. Taking derivative of equation (3) w.r.t $y$ gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{\sin (2 y)}{\cos (y)^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{\sin (2 y)}{\cos (y)^{2}}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
\begin{aligned}
f^{\prime}(y) & =\frac{\sin (2 y)}{\cos (y)^{2}} \\
& =2 \tan (y)
\end{aligned}
$$

Integrating the above w.r.t $y$ results in

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(2 \tan (y)) \mathrm{d} y \\
f(y) & =-2 \ln (\cos (y))+c_{1}
\end{aligned}
$$

Where $c_{1}$ is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives $\phi$

$$
\phi=-\ln (\sin (x))-2 \ln (\cos (y))+c_{1}
$$

But since $\phi$ itself is a constant function, then let $\phi=c_{2}$ where $c_{2}$ is new constant and combining $c_{1}$ and $c_{2}$ constants into new constant $c_{1}$ gives the solution as

$$
c_{1}=-\ln (\sin (x))-2 \ln (\cos (y))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\ln (\sin (x))-2 \ln (\cos (y))=c_{1} \tag{1}
\end{equation*}
$$



Figure 212: Slope field plot

Verification of solutions

$$
-\ln (\sin (x))-2 \ln (\cos (y))=c_{1}
$$

Verified OK.

### 22.4.2 Maple step by step solution

Let's solve

$$
\cos (x) \cos (y)^{2}-\sin (x) \sin (2 y) y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Integrate both sides with respect to $x$ $\int\left(\cos (x) \cos (y)^{2}-\sin (x) \sin (2 y) y^{\prime}\right) d x=\int 0 d x+c_{1}$
- Evaluate integral

$$
\frac{\sin (x-2 y)}{4}+\frac{\sin (2 y+x)}{4}+\frac{\sin (x)}{2}=c_{1}
$$

- $\quad$ Solve for $y$
$y=\frac{\arccos \left(\frac{2 c_{1}-\sin (x)}{\sin (x)}\right)}{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

Solution by Maple
Time used: 0.219 (sec). Leaf size: 25

```
dsolve(\operatorname{cos}(x)*\operatorname{cos}(y(x))^2-sin}(x)*\operatorname{sin}(2*y(x))*\operatorname{diff}(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\arccos \left(\frac{1}{\sqrt{c_{1} \sin (x)}}\right) \\
& y(x)=\frac{\pi}{2}+\arcsin \left(\frac{1}{\sqrt{c_{1} \sin (x)}}\right)
\end{aligned}
$$

$\checkmark$ Solution by Mathematica
Time used: 6.536 (sec). Leaf size: 73
DSolve $\left[\operatorname{Cos}[x] * \operatorname{Cos}[y[x]]^{\wedge} 2-\operatorname{Sin}[x] * \operatorname{Sin}[2 * y[x]] * y '[x]==0, y[x], x\right.$, IncludeSingularSolutions $\rightarrow$ Tru

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\pi}{2} \\
& y(x) \rightarrow \frac{\pi}{2} \\
& y(x) \rightarrow-\arccos \left(-\frac{c_{1}}{4 \sqrt{\sin (x)}}\right) \\
& y(x) \rightarrow \arccos \left(-\frac{c_{1}}{4 \sqrt{\sin (x)}}\right) \\
& y(x) \rightarrow-\frac{\pi}{2} \\
& y(x) \rightarrow \frac{\pi}{2}
\end{aligned}
$$

## 22.5 problem 1(e)

22.5.1 Solving as exact ode
22.5.2 Maple step by step solution 1835

Internal problem ID [6083]
Internal file name [OUTPUT/5331_Sunday_June_05_2022_03_34_26_PM_63382602/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198
Problem number: 1(e).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type

```
[_separable]
```

$$
y^{3} x^{2}-x^{3} y^{2} y^{\prime}=0
$$

### 22.5.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where $c$ is constant, that satisfies the ode. Taking derivative of $\phi$ w.r.t. $x$ gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing ( $\mathrm{A}, \mathrm{B}$ ) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M  \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. $x$ gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since $\phi$ is a function of both $x$ and $y$. Taking derivative of equation (3) w.r.t $y$ gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t $y$ gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where $c_{1}$ is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives $\phi$

$$
\phi=-\ln (x)+\ln (y)+c_{1}
$$

But since $\phi$ itself is a constant function, then let $\phi=c_{2}$ where $c_{2}$ is new constant and combining $c_{1}$ and $c_{2}$ constants into new constant $c_{1}$ gives the solution as

$$
c_{1}=-\ln (x)+\ln (y)
$$

The solution becomes

$$
y=x \mathrm{e}^{c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \mathrm{e}^{c_{1}} \tag{1}
\end{equation*}
$$



Figure 213: Slope field plot

Verification of solutions

$$
y=x \mathrm{e}^{c_{1}}
$$

Verified OK.

### 22.5.2 Maple step by step solution

Let's solve

$$
y^{3} x^{2}-x^{3} y^{2} y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1 $y^{\prime}$
- Separate variables

$$
\frac{y^{\prime}}{y}=\frac{1}{x}
$$

- Integrate both sides with respect to $x$

$$
\int \frac{y^{\prime}}{y} d x=\int \frac{1}{x} d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=\ln (x)+c_{1}
$$

- $\quad$ Solve for $y$

$$
y=x \mathrm{e}^{c_{1}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

$\sqrt{ }$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

```
dsolve(x^2*y(x)^3-x^3*y(x)^2*diff(y(x), x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=0 \\
& y(x)=c_{1} x
\end{aligned}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 19
DSolve $\left[x^{\wedge} \sim 2 * y[x] \sim 3-x^{\wedge} 3 * y[x] \sim 2 * y\right.$ ' $[x]==0, y[x], x$, IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
& y(x) \rightarrow 0 \\
& y(x) \rightarrow c_{1} x \\
& y(x) \rightarrow 0
\end{aligned}
$$

## 22.6 problem 1(f)

22.6.1 Solving as exact ode
22.6.2 Maple step by step solution 1841

Internal problem ID [6084]
Internal file name [OUTPUT/5332_Sunday_June_05_2022_03_34_28_PM_60115467/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198 Problem number: 1(f).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _exact, _rational, [_Abel, `2nd
 type`, `class A`]]
```

$$
y+(x-y) y^{\prime}=-x
$$

### 22.6.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where $c$ is constant, that satisfies the ode. Taking derivative of $\phi$ w.r.t. $x$ gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing ( $\mathrm{A}, \mathrm{B}$ ) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x-y) \mathrm{d} y & =(-y-x) \mathrm{d} x \\
(x+y) \mathrm{d} x+(x-y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =x+y \\
N(x, y) & =x-y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(x+y) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x-y) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M  \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. $x$ gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int x+y \mathrm{~d} x \\
\phi & =\frac{x(2 y+x)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since $\phi$ is a function of both $x$ and $y$. Taking derivative of equation (3) w.r.t $y$ gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x-y$. Therefore equation (4) becomes

$$
\begin{equation*}
x-y=x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-y
$$

Integrating the above w.r.t $y$ gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-y) \mathrm{d} y \\
f(y) & =-\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

Where $c_{1}$ is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives $\phi$

$$
\phi=\frac{x(2 y+x)}{2}-\frac{y^{2}}{2}+c_{1}
$$

But since $\phi$ itself is a constant function, then let $\phi=c_{2}$ where $c_{2}$ is new constant and combining $c_{1}$ and $c_{2}$ constants into new constant $c_{1}$ gives the solution as

$$
c_{1}=\frac{x(2 y+x)}{2}-\frac{y^{2}}{2}
$$

## Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{x(2 y+x)}{2}-\frac{y^{2}}{2}=c_{1} \tag{1}
\end{equation*}
$$



Figure 214: Slope field plot

Verification of solutions

$$
\frac{x(2 y+x)}{2}-\frac{y^{2}}{2}=c_{1}
$$

Verified OK.

### 22.6.2 Maple step by step solution

Let's solve
$y+(x-y) y^{\prime}=-x$

- Highest derivative means the order of the ODE is 1
$y^{\prime}$
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a $C^{2}$ function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives
$1=1$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- $\quad$ Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to $x$ $F(x, y)=\int(x+y) d x+f_{1}(y)$
- Evaluate integral

$$
F(x, y)=\frac{x^{2}}{2}+x y+f_{1}(y)
$$

- $\quad$ Take derivative of $F(x, y)$ with respect to $y$
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative
$x-y=x+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=-y$
- $\quad$ Solve for $f_{1}(y)$
$f_{1}(y)=-\frac{y^{2}}{2}$
- $\quad$ Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=\frac{1}{2} x^{2}+x y-\frac{1}{2} y^{2}
$$

- $\quad$ Substitute $F(x, y)$ into the solution of the ODE
$\frac{1}{2} x^{2}+x y-\frac{1}{2} y^{2}=c_{1}$
- $\quad$ Solve for $y$

$$
\left\{y=x-\sqrt{2 x^{2}-2 c_{1}}, y=x+\sqrt{2 x^{2}-2 c_{1}}\right\}
$$

Maple trace

```
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

$\checkmark$ Solution by Maple
Time used: 0.047 (sec). Leaf size: 49

```
dsolve((x+y(x))+(x-y(x))*diff(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{c_{1} x-\sqrt{2 x^{2} c_{1}^{2}+1}}{c_{1}} \\
& y(x)=\frac{c_{1} x+\sqrt{2 x^{2} c_{1}^{2}+1}}{c_{1}}
\end{aligned}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.449 (sec). Leaf size: 86
DSolve $[(x+y[x])+(x-y[x]) * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions $->$ True $]$

$$
\begin{aligned}
& y(x) \rightarrow x-\sqrt{2 x^{2}+e^{2 c_{1}}} \\
& y(x) \rightarrow x+\sqrt{2 x^{2}+e^{2 c_{1}}} \\
& y(x) \rightarrow x-\sqrt{2} \sqrt{x^{2}} \\
& y(x) \rightarrow \sqrt{2} \sqrt{x^{2}}+x
\end{aligned}
$$

## 22.7 problem 1(g)

22.7.1 Solving as exact ode
22.7.2 Maple step by step solution 1847

Internal problem ID [6085]
Internal file name [OUTPUT/5333_Sunday_June_05_2022_03_34_29_PM_40997286/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198 Problem number: 1(g).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type

```
[_exact]
```

$$
2 \mathrm{e}^{2 x} y+2 \cos (y) x+\left(\mathrm{e}^{2 x}-x^{2} \sin (y)\right) y^{\prime}=0
$$

### 22.7.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where $c$ is constant, that satisfies the ode. Taking derivative of $\phi$ w.r.t. $x$ gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing ( $\mathrm{A}, \mathrm{B}$ ) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\mathrm{e}^{2 x}-x^{2} \sin (y)\right) \mathrm{d} y & =\left(-2 \mathrm{e}^{2 x} y-2 \cos (y) x\right) \mathrm{d} x \\
\left(2 \mathrm{e}^{2 x} y+2 \cos (y) x\right) \mathrm{d} x+\left(\mathrm{e}^{2 x}-x^{2} \sin (y)\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 \mathrm{e}^{2 x} y+2 \cos (y) x \\
N(x, y) & =\mathrm{e}^{2 x}-x^{2} \sin (y)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 \mathrm{e}^{2 x} y+2 \cos (y) x\right) \\
& =2 \mathrm{e}^{2 x}-2 \sin (y) x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\mathrm{e}^{2 x}-x^{2} \sin (y)\right) \\
& =2 \mathrm{e}^{2 x}-2 \sin (y) x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M  \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. $x$ gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2 \mathrm{e}^{2 x} y+2 \cos (y) x \mathrm{~d} x \\
\phi & =\cos (y) x^{2}+\mathrm{e}^{2 x} y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since $\phi$ is a function of both $x$ and $y$. Taking derivative of equation (3) w.r.t $y$ gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{2 x}-x^{2} \sin (y)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{2 x}-x^{2} \sin (y)$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{2 x}-x^{2} \sin (y)=\mathrm{e}^{2 x}-x^{2} \sin (y)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where $c_{1}$ is constant of integration. Substituting this result for $f(y)$ into equation (3) gives $\phi$

$$
\phi=\cos (y) x^{2}+\mathrm{e}^{2 x} y+c_{1}
$$

But since $\phi$ itself is a constant function, then let $\phi=c_{2}$ where $c_{2}$ is new constant and combining $c_{1}$ and $c_{2}$ constants into new constant $c_{1}$ gives the solution as

$$
c_{1}=\cos (y) x^{2}+\mathrm{e}^{2 x} y
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\cos (y) x^{2}+\mathrm{e}^{2 x} y=c_{1} \tag{1}
\end{equation*}
$$



Figure 215: Slope field plot
Verification of solutions

$$
\cos (y) x^{2}+\mathrm{e}^{2 x} y=c_{1}
$$

Verified OK.

### 22.7.2 Maple step by step solution

Let's solve

$$
2 \mathrm{e}^{2 x} y+2 \cos (y) x+\left(\mathrm{e}^{2 x}-x^{2} \sin (y)\right) y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1
$y^{\prime}$
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a $C^{2}$ function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
2 \mathrm{e}^{2 x}-2 \sin (y) x=2 \mathrm{e}^{2 x}-2 \sin (y) x
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- $\quad$ Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to $x$

$$
F(x, y)=\int\left(2 \mathrm{e}^{2 x} y+2 \cos (y) x\right) d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=\cos (y) x^{2}+\mathrm{e}^{2 x} y+f_{1}(y)
$$

- $\quad$ Take derivative of $F(x, y)$ with respect to $y$

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
\mathrm{e}^{2 x}-x^{2} \sin (y)=-x^{2} \sin (y)+\mathrm{e}^{2 x}+\frac{d}{d y} f_{1}(y)
$$

- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=0
$$

- $\quad$ Solve for $f_{1}(y)$
$f_{1}(y)=0$
- $\quad$ Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=\cos (y) x^{2}+\mathrm{e}^{2 x} y
$$

- $\quad$ Substitute $F(x, y)$ into the solution of the ODE

$$
\cos (y) x^{2}+\mathrm{e}^{2 x} y=c_{1}
$$

- $\quad$ Solve for $y$

$$
y=\operatorname{Root} O f\left(-\cos \left(\_Z\right) x^{2}-\_Z \mathrm{e}^{2 x}+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

$\checkmark$ Solution by Maple
Time used: 0.015 (sec). Leaf size: 19
dsolve $\left((2 * y(x) * \exp (2 * x)+2 * x * \cos (y(x)))+\left(\exp (2 * x)-x^{\wedge} 2 * \sin (y(x))\right) * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol

$$
\cos (y(x)) x^{2}+y(x) \mathrm{e}^{2 x}+c_{1}=0
$$

$\checkmark$ Solution by Mathematica
Time used: 0.414 (sec). Leaf size: 30
DSolve $\left[(2 * y[x] * \operatorname{Exp}[2 * x]+2 * x * \operatorname{Cos}[y[x]])+\left(\operatorname{Exp}[2 * x]-x^{\wedge} 2 * \operatorname{Sin}[y[x]]\right) * y '[x]==0, y[x], x\right.$, IncludeSingu

Solve $\left[2\left(\frac{1}{2} x^{2} \cos (y(x))+\frac{1}{2} e^{2 x} y(x)\right)=c_{1}, y(x)\right]$

## 22.8 problem 1(h)

22.8.1 Solving as exact ode
22.8.2 Maple step by step solution 1853

Internal problem ID [6086]
Internal file name [OUTPUT/5334_Sunday_June_05_2022_03_34_33_PM_95864308/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198 Problem number: 1(h).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_linear]

$$
x y^{\prime}+y=-3 \ln (x) x^{2}-x^{2}
$$

### 22.8.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where $c$ is constant, that satisfies the ode. Taking derivative of $\phi$ w.r.t. $x$ gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing ( $\mathrm{A}, \mathrm{B}$ ) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =\left(-3 \ln (x) x^{2}-x^{2}-y\right) \mathrm{d} x \\
\left(3 \ln (x) x^{2}+x^{2}+y\right) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =3 \ln (x) x^{2}+x^{2}+y \\
N(x, y) & =x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(3 \ln (x) x^{2}+x^{2}+y\right) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M  \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. $x$ gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 3 \ln (x) x^{2}+x^{2}+y \mathrm{~d} x \\
\phi & =x\left(\ln (x) x^{2}+y\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since $\phi$ is a function of both $x$ and $y$. Taking derivative of equation (3) w.r.t $y$ gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x$. Therefore equation (4) becomes

$$
\begin{equation*}
x=x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where $c_{1}$ is constant of integration. Substituting this result for $f(y)$ into equation (3) gives $\phi$

$$
\phi=x\left(\ln (x) x^{2}+y\right)+c_{1}
$$

But since $\phi$ itself is a constant function, then let $\phi=c_{2}$ where $c_{2}$ is new constant and combining $c_{1}$ and $c_{2}$ constants into new constant $c_{1}$ gives the solution as

$$
c_{1}=x\left(\ln (x) x^{2}+y\right)
$$

The solution becomes

$$
y=-\frac{x^{3} \ln (x)-c_{1}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x^{3} \ln (x)-c_{1}}{x} \tag{1}
\end{equation*}
$$



Figure 216: Slope field plot
$\underline{\text { Verification of solutions }}$

$$
y=-\frac{x^{3} \ln (x)-c_{1}}{x}
$$

Verified OK.

### 22.8.2 Maple step by step solution

Let's solve
$x y^{\prime}+y=-3 \ln (x) x^{2}-x^{2}$

- Highest derivative means the order of the ODE is 1 $y^{\prime}$
- Isolate the derivative
$y^{\prime}=-\frac{y}{x}-x(3 \ln (x)+1)$
- Group terms with $y$ on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+\frac{y}{x}=-x(3 \ln (x)+1)$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{y}{x}\right)=-\mu(x) x(3 \ln (x)+1)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)}{x}$
- $\quad$ Solve to find the integrating factor
$\mu(x)=x$
- Integrate both sides with respect to $x$
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int-\mu(x) x(3 \ln (x)+1) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int-\mu(x) x(3 \ln (x)+1) d x+c_{1}$
- $\quad$ Solve for $y$
$y=\frac{\int-\mu(x) x(3 \ln (x)+1) d x+c_{1}}{\mu(x)}$
- $\quad$ Substitute $\mu(x)=x$
$y=\frac{\int-x^{2}(3 \ln (x)+1) d x+c_{1}}{x}$
- Evaluate the integrals on the rhs
$y=\frac{-x^{3} \ln (x)+c_{1}}{x}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve $\left(\left(3 * x^{\wedge} 2 * \ln (x)+x^{\wedge} 2+y(x)\right)+x * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol=all)

$$
y(x)=\frac{-x^{3} \ln (x)+c_{1}}{x}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 19
DSolve[(3*x^2*Log $\left.[x]+x^{\wedge} 2+y[x]\right)+x * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions $\rightarrow$ True]

$$
y(x) \rightarrow \frac{-x^{3} \log (x)+c_{1}}{x}
$$

## 22.9 problem 2(a)

22.9.1 Solving as exact ode
22.9.2 Maple step by step solution 1860

Internal problem ID [6087]
Internal file name [OUTPUT/5335_Sunday_June_05_2022_03_34_34_PM_695312/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198 Problem number: 2(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type

```
[_separable]
```

$$
2 y^{3}+3 x y^{2} y^{\prime}=-2
$$

### 22.9.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where $c$ is constant, that satisfies the ode. Taking derivative of $\phi$ w.r.t. $x$ gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing ( $\mathrm{A}, \mathrm{B}$ ) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{3 y^{2}}{2\left(y^{3}+1\right)}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(-\frac{3 y^{2}}{2\left(y^{3}+1\right)}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=-\frac{3 y^{2}}{2\left(y^{3}+1\right)}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{3 y^{2}}{2\left(y^{3}+1\right)}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M  \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. $x$ gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since $\phi$ is a function of both $x$ and $y$. Taking derivative of equation (3) w.r.t $y$ gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{3 y^{2}}{2\left(y^{3}+1\right)}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{3 y^{2}}{2\left(y^{3}+1\right)}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{3 y^{2}}{2\left(y^{3}+1\right)}
$$

Integrating the above w.r.t $y$ gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{3 y^{2}}{2 y^{3}+2}\right) \mathrm{d} y \\
f(y) & =-\frac{\ln \left(y^{3}+1\right)}{2}+c_{1}
\end{aligned}
$$

Where $c_{1}$ is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives $\phi$

$$
\phi=-\ln (x)-\frac{\ln \left(y^{3}+1\right)}{2}+c_{1}
$$

But since $\phi$ itself is a constant function, then let $\phi=c_{2}$ where $c_{2}$ is new constant and combining $c_{1}$ and $c_{2}$ constants into new constant $c_{1}$ gives the solution as

$$
c_{1}=-\ln (x)-\frac{\ln \left(y^{3}+1\right)}{2}
$$

## Summary

The solution(s) found are the following

$$
\begin{equation*}
-\ln (x)-\frac{\ln \left(y^{3}+1\right)}{2}=c_{1} \tag{1}
\end{equation*}
$$



Figure 217: Slope field plot

Verification of solutions

$$
-\ln (x)-\frac{\ln \left(y^{3}+1\right)}{2}=c_{1}
$$

Verified OK.

### 22.9.2 Maple step by step solution

Let's solve
$2 y^{3}+3 x y^{2} y^{\prime}=-2$

- Highest derivative means the order of the ODE is 1 $y^{\prime}$
- Separate variables

$$
\frac{y^{\prime} y^{2}}{-2 y^{3}-2}=\frac{1}{3 x}
$$

- Integrate both sides with respect to $x$

$$
\int \frac{y^{\prime} y^{2}}{-2 y^{3}-2} d x=\int \frac{1}{3 x} d x+c_{1}
$$

- Evaluate integral

$$
-\frac{\ln \left(y^{3}+1\right)}{6}=\frac{\ln (x)}{3}+c_{1}
$$

- $\quad$ Solve for $y$

$$
y=\frac{\left(-x \mathrm{e}^{3 c_{1}}\left(x^{2}\left(e^{3 c_{1}}\right)^{2}-1\right)\right)^{\frac{1}{3}}}{x \mathrm{e}^{3 c_{1}}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

$\checkmark$ Solution by Maple
Time used: 0.016 (sec). Leaf size: 73
dsolve $\left(\left(2 * y(x)^{\wedge} 3+2\right)+\left(3 * x * y(x)^{\wedge} 2\right) * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{\left(\left(-x^{2}+c_{1}\right) x\right)^{\frac{1}{3}}}{x} \\
& y(x)=-\frac{\left(\left(-x^{2}+c_{1}\right) x\right)^{\frac{1}{3}}(1+i \sqrt{3})}{2 x} \\
& y(x)=\frac{\left(\left(-x^{2}+c_{1}\right) x\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{2 x}
\end{aligned}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.281 (sec). Leaf size: 215
DSolve $[(3 * y[x] \sim 3+2)+(3 * x * y[x] \sim 2) * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions $\rightarrow$ True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\sqrt[3]{-\frac{1}{3}} \sqrt[3]{-2 x^{3}+e^{9 c_{1}}}}{x} \\
& y(x) \rightarrow \frac{\sqrt[3]{-2 x^{3}+e^{9 c_{1}}}}{\sqrt[3]{3} x} \\
& y(x) \rightarrow \frac{(-1)^{2 / 3} \sqrt[3]{-2 x^{3}+e^{9 c_{1}}}}{\sqrt[3]{3} x} \\
& y(x) \rightarrow \sqrt[3]{-\frac{2}{3}} \\
& y(x) \rightarrow-\sqrt[3]{\frac{2}{3}} \\
& y(x) \rightarrow-(-1)^{2 / 3} \sqrt[3]{\frac{2}{3}} \\
& y(x) \rightarrow \frac{\sqrt[3]{-\frac{2}{3}} x^{2}}{\left(-x^{3}\right)^{2 / 3}} \\
& y(x) \rightarrow \frac{\sqrt[3]{\frac{2}{3}} \sqrt[3]{-x^{3}}}{x} \\
& y(x) \rightarrow \frac{(-1)^{2 / 3} \sqrt[3]{\frac{2}{3}} \sqrt[3]{-x^{3}}}{x}
\end{aligned}
$$

### 22.10 problem 2(b)

22.10.1 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 1862
22.10.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1866

Internal problem ID [6088]
Internal file name [OUTPUT/5336_Sunday_June_05_2022_03_34_36_PM_19452203/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198 Problem number: 2(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type

```
[_separable]
```

$$
-2 y^{\prime} \sin (y) \sin (x)+\cos (x) \cos (y)=0
$$

### 22.10.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where $c$ is constant, that satisfies the ode. Taking derivative of $\phi$ w.r.t. $x$ gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing ( $\mathrm{A}, \mathrm{B}$ ) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{2 \sin (y)}{\cos (y)}\right) \mathrm{d} y & =\left(\frac{\cos (x)}{\sin (x)}\right) \mathrm{d} x \\
\left(-\frac{\cos (x)}{\sin (x)}\right) \mathrm{d} x+\left(\frac{2 \sin (y)}{\cos (y)}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{\cos (x)}{\sin (x)} \\
& N(x, y)=\frac{2 \sin (y)}{\cos (y)}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{\cos (x)}{\sin (x)}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{2 \sin (y)}{\cos (y)}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M  \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. $x$ gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{\cos (x)}{\sin (x)} \mathrm{d} x \\
\phi & =-\ln (\sin (x))+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since $\phi$ is a function of both $x$ and $y$. Taking derivative of equation (3) w.r.t $y$ gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{2 \sin (y)}{\cos (y)}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{2 \sin (y)}{\cos (y)}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
\begin{aligned}
f^{\prime}(y) & =\frac{2 \sin (y)}{\cos (y)} \\
& =2 \tan (y)
\end{aligned}
$$

Integrating the above w.r.t $y$ results in

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(2 \tan (y)) \mathrm{d} y \\
f(y) & =-2 \ln (\cos (y))+c_{1}
\end{aligned}
$$

Where $c_{1}$ is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives $\phi$

$$
\phi=-\ln (\sin (x))-2 \ln (\cos (y))+c_{1}
$$

But since $\phi$ itself is a constant function, then let $\phi=c_{2}$ where $c_{2}$ is new constant and combining $c_{1}$ and $c_{2}$ constants into new constant $c_{1}$ gives the solution as

$$
c_{1}=-\ln (\sin (x))-2 \ln (\cos (y))
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\ln (\sin (x))-2 \ln (\cos (y))=c_{1} \tag{1}
\end{equation*}
$$



Figure 218: Slope field plot

Verification of solutions

$$
-\ln (\sin (x))-2 \ln (\cos (y))=c_{1}
$$

Verified OK.

### 22.10.2 Maple step by step solution

Let's solve
$-2 y^{\prime} \sin (y) \sin (x)+\cos (x) \cos (y)=0$

- Highest derivative means the order of the ODE is 1
$y^{\prime}$
- $\quad$ Separate variables

$$
\frac{y^{\prime} \sin (y)}{\cos (y)}=\frac{\cos (x)}{2 \sin (x)}
$$

- Integrate both sides with respect to $x$
$\int \frac{y^{\prime} \sin (y)}{\cos (y)} d x=\int \frac{\cos (x)}{2 \sin (x)} d x+c_{1}$
- Evaluate integral
$-\ln (\cos (y))=\frac{\ln (\sin (x))}{2}+c_{1}$
- $\quad$ Solve for $y$
$\left\{y=\pi-\arccos \left(\frac{\sqrt{\sin (x) \mathrm{e}^{-2 c_{1}}}}{\sin (x)}\right), y=\arccos \left(\frac{\sqrt{\sin (x) \mathrm{e}^{-2 c_{1}}}}{\sin (x)}\right)\right\}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

$\checkmark$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 25

```
dsolve(cos(x)*\operatorname{cos}(y(x))-2*\operatorname{sin}(x)*\operatorname{sin}(y(x))*\operatorname{diff}(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\arccos \left(\frac{1}{\sqrt{c_{1} \sin (x)}}\right) \\
& y(x)=\frac{\pi}{2}+\arcsin \left(\frac{1}{\sqrt{c_{1} \sin (x)}}\right)
\end{aligned}
$$

$\checkmark$ Solution by Mathematica
Time used: 0.491 (sec). Leaf size: 43
DSolve $[\operatorname{Cos}[x] * \cos [y[x]]-(2 * \operatorname{Sin}[x] * \operatorname{Sin}[y[x]]) * y '[x]==0, y[x], x$, IncludeSingularSolutions $\rightarrow$ Tru

$$
\begin{aligned}
& y(x) \rightarrow \text { InverseFunction }\left[\int_{1}^{\# 1} \frac{\sin (K[1])}{\cos (K[1])} d K[1] \&\right]\left[\frac{1}{2} \log (\sin (x))+c_{1}\right] \\
& y(x) \rightarrow \cos ^{(-1)}(0)
\end{aligned}
$$

### 22.11 problem 2(c)

22.11.1 Solving as exact ode

Internal problem ID [6089]
Internal file name [OUTPUT/5337_Sunday_June_05_2022_03_34_38_PM_97437203/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198
Problem number: 2(c).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `
``` class B`]
\[
5 x^{3} y^{2}+2 y+\left(3 y x^{4}+2 x\right) y^{\prime}=0
\]

\subsection*{22.11.1 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing ( \(\mathrm{A}, \mathrm{B}\) ) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\left(3 y x^{4}+2 x\right) \mathrm{d} y & =\left(-5 y^{2} x^{3}-2 y\right) \mathrm{d} x \\
\left(5 y^{2} x^{3}+2 y\right) \mathrm{d} x+\left(3 y x^{4}+2 x\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
& M(x, y)=5 y^{2} x^{3}+2 y \\
& N(x, y)=3 y x^{4}+2 x
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(5 y^{2} x^{3}+2 y\right) \\
& =10 y x^{3}+2
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(3 y x^{4}+2 x\right) \\
& =12 y x^{3}+2
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}\), then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let
\[
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{3 y x^{4}+2 x}\left(\left(10 y x^{3}+2\right)-\left(12 y x^{3}+2\right)\right) \\
& =-\frac{2 y x^{2}}{3 y x^{3}+2}
\end{aligned}
\]

Since \(A\) depends on \(y\), it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let
\[
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{5 y^{2} x^{3}+2 y}\left(\left(12 y x^{3}+2\right)-\left(10 y x^{3}+2\right)\right) \\
& =\frac{2 x^{3}}{5 y x^{3}+2}
\end{aligned}
\]

Since \(B\) depends on \(x\), it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let
\[
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
\]
\(R\) is now checked to see if it is a function of only \(t=x y\). Therefore
\[
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{\left(12 y x^{3}+2\right)-\left(10 y x^{3}+2\right)}{x\left(5 y^{2} x^{3}+2 y\right)-y\left(3 y x^{4}+2 x\right)} \\
& =\frac{1}{y x}
\end{aligned}
\]

Replacing all powers of terms \(x y\) by \(t\) gives
\[
R=\frac{1}{t}
\]

Since \(R\) depends on \(t\) only, then it can be used to find an integrating factor. Let the integrating factor be \(\mu\) then
\[
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int\left(\frac{1}{t}\right) \mathrm{d} t}
\end{aligned}
\]

The result of integrating gives
\[
\begin{aligned}
\mu & =e^{\ln (t)} \\
& =t
\end{aligned}
\]

Now \(t\) is replaced back with \(x y\) giving
\[
\mu=x y
\]

Multiplying \(M\) and \(N\) by this integrating factor gives new \(M\) and new \(N\) which are called \(\bar{M}\) and \(\bar{N}\) so not to confuse them with the original \(M\) and \(N\)
\[
\begin{aligned}
\bar{M} & =\mu M \\
& =x y\left(5 y^{2} x^{3}+2 y\right) \\
& =5 y^{3} x^{4}+2 y^{2} x
\end{aligned}
\]

And
\[
\begin{aligned}
\bar{N} & =\mu N \\
& =x y\left(3 y x^{4}+2 x\right) \\
& =3 x^{5} y^{2}+2 y x^{2}
\end{aligned}
\]

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is
\[
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(5 y^{3} x^{4}+2 y^{2} x\right)+\left(3 x^{5} y^{2}+2 y x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
\]

The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M}  \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 5 y^{3} x^{4}+2 y^{2} x \mathrm{~d} x \\
\phi & =y^{2} x^{2}\left(y x^{3}+1\right)+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{align*}
\frac{\partial \phi}{\partial y} & =2 y x^{2}\left(y x^{3}+1\right)+x^{5} y^{2}+f^{\prime}(y)  \tag{4}\\
& =3 x^{5} y^{2}+2 y x^{2}+f^{\prime}(y)
\end{align*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=3 x^{5} y^{2}+2 y x^{2}\). Therefore equation (4) becomes
\[
\begin{equation*}
3 x^{5} y^{2}+2 y x^{2}=3 x^{5} y^{2}+2 y x^{2}+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=0
\]

Therefore
\[
f(y)=c_{1}
\]

Where \(c_{1}\) is constant of integration. Substituting this result for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=y^{2} x^{2}\left(y x^{3}+1\right)+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=y^{2} x^{2}\left(y x^{3}+1\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y^{2} x^{2}\left(y x^{3}+1\right)=c_{1} \tag{1}
\end{equation*}
\]


Figure 219: Slope field plot
Verification of solutions
\[
y^{2} x^{2}\left(y x^{3}+1\right)=c_{1}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying homogeneous G <- homogeneous successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.515 (sec). Leaf size: 350
```

dsolve((5*x^3*y(x)^2+2*y(x))+(3*x^4*y(x)+2*x)*diff(y(x),x)=0,y(x), singsol=all)

```
\[
\begin{aligned}
& x^{3} \\
& y(x)=\frac{\frac{12^{\frac{2}{3}}\left(12^{\frac{1}{3}} c_{1}^{2}+\left(\left(9 x^{2}+\sqrt{-12 c_{1}^{4}+81 x^{4}}\right) c_{1}\right)^{\frac{2}{3}}\right)^{2}}{36 c_{1}^{2}\left(\left(9 x^{2}+\sqrt{-12 c_{1}^{4}+81 x^{4}}\right) c_{1}\right)^{\frac{2}{3}}}-1}{x^{3}} \\
& =\frac{\left.-\frac{c_{1}\left(\left(9 x^{2}+\sqrt{-12 c_{1}^{4}+81 x^{4}}\right) c_{1}\right)^{\frac{2}{3}}}{3}+\frac{32^{\frac{1}{3}}\left(x^{2}+\frac{\sqrt{-12 c_{1}^{4}+81 x^{4}}}{9}\right)\left(i 3^{\frac{1}{6}}-\frac{3^{\frac{2}{3}}}{3}\right.}{4}\right)\left(\left(9 x^{2}+\sqrt{-12 c_{1}^{4}+81 x^{4}}\right) c_{1}\right)^{\frac{1}{3}}}{4}-\frac{\left(i 3^{\frac{5}{6}}+3^{\frac{1}{3}}\right) 2^{\frac{2}{3}} c_{1}^{3}}{6} \\
& c_{1}\left(\left(9 x^{2}+\sqrt{-12 c_{1}^{4}+81 x^{4}}\right) c_{1}\right)^{\frac{2}{3}} x^{3} \\
& y(x)= \\
& \\
& \left.\left.-\frac{4\left(\left(\frac{4 c_{1}\left(\left(9 x^{2}+\sqrt{-12 c_{1}^{4}+81 x^{4}}\right) c_{1}\right)^{\frac{2}{3}}}{9}+2^{\frac{1}{3}}\left(x^{2}+\frac{\sqrt{-12 c_{1}^{4}+81 x^{4}}}{9}\right)\left(i 3^{\frac{1}{6}}+\frac{3^{\frac{2}{3}}}{3}\right)\left(\left(9 x^{2}+\sqrt{-12 c_{1}^{4}+81 x^{4}}\right) c_{1}\right)^{\frac{2}{3}} x^{3} c_{1}\right.\right.}{41 x^{4}}\right) c_{1}\right)^{\frac{1}{3}}-
\end{aligned}
\]

\section*{Solution by Mathematica}

Time used: 49.208 (sec). Leaf size: 400
DSolve \(\left[\left(5 * x^{\wedge} 3 * y[x] \sim 2+2 * y[x]\right)+\left(3 * x^{\wedge} 4 * y[x]+2 * x\right) * y{ }^{\prime}[x]==0, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow T r\)
\(y(x)\)
\[
\rightarrow \frac{-2 x^{2}+\frac{2 x^{4}}{\sqrt[3]{\frac{27 c_{1} x^{10}}{2}-x^{6}+\frac{3}{2} \sqrt{3} \sqrt{c_{1} x^{16}\left(-4+27 c_{1} x^{4}\right)}}}+2^{2 / 3} \sqrt[3]{27 c_{1} x^{10}-2 x^{6}+3 \sqrt{3} \sqrt{c_{1} x^{16}(-4+27 c}}}{6 x^{5}}
\]
\[
y(x)
\]
\[
\rightarrow \frac{-4 x^{2}-\frac{2(1+i \sqrt{3}) x^{4}}{\sqrt[3]{\frac{27 c_{1} x^{10}}{2}-x^{6}+\frac{3}{2} \sqrt{3} \sqrt{c_{1} x^{16}\left(-4+27 c_{1} x^{4}\right)}}}+i 2^{2 / 3}(\sqrt{3}+i) \sqrt[3]{27 c_{1} x^{10}-2 x^{6}+3 \sqrt{3} \sqrt{c_{1} x^{16}}}}{12 x^{5}}
\]
\[
y(x) \rightarrow
\]
\[
-\frac{4 x^{2}-\frac{2 i(\sqrt{3}+i) x^{4}}{\sqrt[3]{\frac{27 c_{1} x^{10}}{2}-x^{6}+\frac{3}{2} \sqrt{3} \sqrt{c_{1} x^{16}\left(-4+27 c_{1} x^{4}\right)}}}+2^{2 / 3}(1+i \sqrt{3}) \sqrt[3]{27 c_{1} x^{10}-2 x^{6}+3 \sqrt{3} \sqrt{c_{1} x^{16}}}}{12 x^{5}}
\]

\subsection*{22.12 problem 2(d)}
22.12.1 Solving as exact ode
22.12.2 Maple step by step solution 1880

Internal problem ID [6090]
Internal file name [OUTPUT/5338_Sunday_June_05_2022_03_34_41_PM_88081771/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 5. Existence and uniqueness of solutions to first order equations. Page 198 Problem number: 2(d).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
```

[_quadrature]

```
\[
\mathrm{e}^{y}+x \mathrm{e}^{y}+x \mathrm{e}^{y} y^{\prime}=0
\]

\subsection*{22.12.1 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing ( \(\mathrm{A}, \mathrm{B}\) ) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\left(x \mathrm{e}^{y}\right) \mathrm{d} y & =\left(-\mathrm{e}^{y}-x \mathrm{e}^{y}\right) \mathrm{d} x \\
\left(\mathrm{e}^{y}+x \mathrm{e}^{y}\right) \mathrm{d} x+\left(x \mathrm{e}^{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
M(x, y) & =\mathrm{e}^{y}+x \mathrm{e}^{y} \\
N(x, y) & =x \mathrm{e}^{y}
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\mathrm{e}^{y}+x \mathrm{e}^{y}\right) \\
& =\mathrm{e}^{y}(1+x)
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x \mathrm{e}^{y}\right) \\
& =\mathrm{e}^{y}
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}\), then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let
\[
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{\mathrm{e}^{-y}}{x}\left(\left(\mathrm{e}^{y}+x \mathrm{e}^{y}\right)-\left(\mathrm{e}^{y}\right)\right) \\
& =1
\end{aligned}
\]

Since \(A\) does not depend on \(y\), then it can be used to find an integrating factor. The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 1 \mathrm{~d} x}
\end{aligned}
\]

The result of integrating gives
\[
\begin{aligned}
\mu & =e^{x} \\
& =\mathrm{e}^{x}
\end{aligned}
\]
\(M\) and \(N\) are multiplied by this integrating factor, giving new \(M\) and new \(N\) which are called \(\bar{M}\) and \(\bar{N}\) for now so not to confuse them with the original \(M\) and \(N\).
\[
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{x}\left(\mathrm{e}^{y}+x \mathrm{e}^{y}\right) \\
& =(1+x) \mathrm{e}^{x+y}
\end{aligned}
\]

And
\[
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{x}\left(x \mathrm{e}^{y}\right) \\
& =x \mathrm{e}^{x+y}
\end{aligned}
\]

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is
\[
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left((1+x) \mathrm{e}^{x+y}\right)+\left(x \mathrm{e}^{x+y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
\]

The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M}  \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int(1+x) \mathrm{e}^{x+y} \mathrm{~d} x \\
\phi & =x \mathrm{e}^{x+y}+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=x \mathrm{e}^{x+y}+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=x \mathrm{e}^{x+y}\). Therefore equation (4) becomes
\[
\begin{equation*}
x \mathrm{e}^{x+y}=x \mathrm{e}^{x+y}+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=0
\]

Therefore
\[
f(y)=c_{1}
\]

Where \(c_{1}\) is constant of integration. Substituting this result for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=x \mathrm{e}^{x+y}+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=x \mathrm{e}^{x+y}
\]

The solution becomes
\[
y=-x+\ln \left(\frac{c_{1}}{x}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-x+\ln \left(\frac{c_{1}}{x}\right) \tag{1}
\end{equation*}
\]


Figure 220: Slope field plot

Verification of solutions
\[
y=-x+\ln \left(\frac{c_{1}}{x}\right)
\]

Verified OK.
22.12.2 Maple step by step solution

Let's solve
\[
\mathrm{e}^{y}+x \mathrm{e}^{y}+x \mathrm{e}^{y} y^{\prime}=0
\]
- Highest derivative means the order of the ODE is 1
```

y

```
- \(\quad\) Separate variables
\[
y^{\prime}=-\frac{1+x}{x}
\]
- Integrate both sides with respect to \(x\)
\[
\int y^{\prime} d x=\int-\frac{1+x}{x} d x+c_{1}
\]
- Evaluate integral
\[
y=-x-\ln (x)+c_{1}
\]
- \(\quad\) Solve for \(y\)
\[
y=-x-\ln (x)+c_{1}
\]

Maple trace
- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 13
```

dsolve((exp(y(x))+x*exp(y(x)))+(x*exp(y(x)))*diff(y(x),x)=0,y(x), singsol=all)

```
\[
y(x)=-x-\ln (x)+c_{1}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 15
DSolve \([(\operatorname{Exp}[y[x]]+x * \operatorname{Exp}[y[x]])+(x * \operatorname{Exp}[y[x]]) * y '[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) Tru
\[
y(x) \rightarrow-x-\log (x)+c_{1}
\]
23 Chapter 6. Existence and uniqueness of solutions to systems and nth order equations. Page 238
23.1 problem 1(a) ..... 1883
23.2 problem 1(b) ..... 1902
23.3 problem 1(c) ..... 1906
23.4 problem 1(d) ..... 1912
23.5 problem 1(e) ..... 1920
23.6 problem 1(f) ..... 1928
23.7 problem 2 ..... 1950
23.8 problem 3 ..... 1957
23.9 problem 5(b) ..... 1972
23.10problem 5(c) ..... 1980

\section*{23.1 problem 1(a)}
23.1.1 Solving as second order linear constant coeff ode . . . . . . . . 1883
23.1.2 Solving as second order integrable as is ode . . . . . . . . . . . 1887
23.1.3 Solving as second order ode missing y ode . . . . . . . . . . . . 1889
23.1.4 Solving as type second_order_integrable_as_is (not using ABC
version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1890
23.1.5 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 1892
23.1.6 Solving as exact linear second order ode ode . . . . . . . . . . . 1897
23.1.7 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1899

Internal problem ID [6091]
Internal file name [OUTPUT/5339_Sunday_June_05_2022_03_34_42_PM_3155877/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equations. Page 238
Problem number: 1(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second__order_linear__constant__coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]
\[
y^{\prime \prime}+y^{\prime}=1
\]

\subsection*{23.1.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=1, C=0, f(x)=1\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y^{\prime}=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=1, C=0\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\mathrm{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+\lambda=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=1, C=0\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)(0)} \\
& =-\frac{1}{2} \pm \frac{1}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{1}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{1}{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
\lambda_{1} & =0 \\
\lambda_{2} & =-1
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(0) x}+c_{2} e^{(-1) x}
\end{aligned}
\]

Or
\[
y=c_{1}+c_{2} \mathrm{e}^{-x}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1}+c_{2} \mathrm{e}^{-x}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
1
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
[\{1\}]
While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{1, \mathrm{e}^{-x}\right\}
\]

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
[\{x\}]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} x
\]

The unknowns \(\left\{A_{1}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
A_{1}=1
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=1\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=x
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1}+c_{2} \mathrm{e}^{-x}\right)+(x)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1}+c_{2} \mathrm{e}^{-x}+x \tag{1}
\end{equation*}
\]


Figure 221: Slope field plot

Verification of solutions
\[
y=c_{1}+c_{2} \mathrm{e}^{-x}+x
\]

Verified OK.

\subsection*{23.1.2 Solving as second order integrable as is ode}

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{aligned}
& \int\left(y^{\prime \prime}+y^{\prime}\right) d x=\int 1 d x \\
& y+y^{\prime}=x+c_{1}
\end{aligned}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =1 \\
q(x) & =x+c_{1}
\end{aligned}
\]

Hence the ode is
\[
y+y^{\prime}=x+c_{1}
\]

The integrating factor \(\mu\) is
\[
\begin{gathered}
\mu=\mathrm{e}^{\int 1 d x} \\
=\mathrm{e}^{x}
\end{gathered}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(x+c_{1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y \mathrm{e}^{x}\right) & =\left(\mathrm{e}^{x}\right)\left(x+c_{1}\right) \\
\mathrm{d}\left(y \mathrm{e}^{x}\right) & =\left(\mathrm{e}^{x}\left(x+c_{1}\right)\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& y \mathrm{e}^{x}=\int \mathrm{e}^{x}\left(x+c_{1}\right) \mathrm{d} x \\
& y \mathrm{e}^{x}=\left(-1+x+c_{1}\right) \mathrm{e}^{x}+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{x}\) results in
\[
y=\mathrm{e}^{-x}\left(-1+x+c_{1}\right) \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}
\]
which simplifies to
\[
y=-1+x+c_{1}+c_{2} \mathrm{e}^{-x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-1+x+c_{1}+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
\]


Figure 222: Slope field plot

Verification of solutions
\[
y=-1+x+c_{1}+c_{2} \mathrm{e}^{-x}
\]

Verified OK.

\subsection*{23.1.3 Solving as second order ode missing y ode}

This is second order ode with missing dependent variable \(y\). Let
\[
p(x)=y^{\prime}
\]

Then
\[
p^{\prime}(x)=y^{\prime \prime}
\]

Hence the ode becomes
\[
p(x)+p^{\prime}(x)-1=0
\]

Which is now solve for \(p(x)\) as first order ode. Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{-p+1} d p & =\int d x \\
-\ln (-p+1) & =x+c_{1}
\end{aligned}
\]

Raising both side to exponential gives
\[
\frac{1}{-p+1}=\mathrm{e}^{x+c_{1}}
\]

Which simplifies to
\[
\frac{1}{-p+1}=c_{2} \mathrm{e}^{x}
\]

Since \(p=y^{\prime}\) then the new first order ode to solve is
\[
y^{\prime}=-\frac{\mathrm{e}^{-x}}{c_{2}}+1
\]

Integrating both sides gives
\[
\begin{aligned}
y & =\int \frac{\left(-1+c_{2} \mathrm{e}^{x}\right) \mathrm{e}^{-x}}{c_{2}} \mathrm{~d} x \\
& =\ln \left(\mathrm{e}^{x}\right)+\frac{\mathrm{e}^{-x}}{c_{2}}+c_{3}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\ln \left(\mathrm{e}^{x}\right)+\frac{\mathrm{e}^{-x}}{c_{2}}+c_{3} \tag{1}
\end{equation*}
\]


Figure 223: Slope field plot

\section*{Verification of solutions}
\[
y=\ln \left(\mathrm{e}^{x}\right)+\frac{\mathrm{e}^{-x}}{c_{2}}+c_{3}
\]

Verified OK.

\subsection*{23.1.4 Solving as type second_order_integrable_as_is (not using ABC version)}

Writing the ode as
\[
y^{\prime \prime}+y^{\prime}=1
\]

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{aligned}
& \int\left(y^{\prime \prime}+y^{\prime}\right) d x=\int 1 d x \\
& y+y^{\prime}=x+c_{1}
\end{aligned}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =1 \\
q(x) & =x+c_{1}
\end{aligned}
\]

Hence the ode is
\[
y+y^{\prime}=x+c_{1}
\]

The integrating factor \(\mu\) is
\[
\begin{gathered}
\mu=\mathrm{e}^{\int 1 d x} \\
=\mathrm{e}^{x}
\end{gathered}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(x+c_{1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y \mathrm{e}^{x}\right) & =\left(\mathrm{e}^{x}\right)\left(x+c_{1}\right) \\
\mathrm{d}\left(y \mathrm{e}^{x}\right) & =\left(\mathrm{e}^{x}\left(x+c_{1}\right)\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& y \mathrm{e}^{x}=\int \mathrm{e}^{x}\left(x+c_{1}\right) \mathrm{d} x \\
& y \mathrm{e}^{x}=\left(-1+x+c_{1}\right) \mathrm{e}^{x}+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{x}\) results in
\[
y=\mathrm{e}^{-x}\left(-1+x+c_{1}\right) \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}
\]
which simplifies to
\[
y=-1+x+c_{1}+c_{2} \mathrm{e}^{-x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-1+x+c_{1}+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
\]


Figure 224: Slope field plot

\section*{Verification of solutions}
\[
y=-1+x+c_{1}+c_{2} \mathrm{e}^{-x}
\]

Verified OK.

\subsection*{23.1.5 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+y^{\prime} & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =1 \\
B & =1  \tag{3}\\
C & =0
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l} 
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 274: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=\frac{1}{4}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y^{\prime}=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{-x}+c_{2}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
1
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{1, \mathrm{e}^{-x}\right\}
\]

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC__set becomes
\[
[\{x\}]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} x
\]

The unknowns \(\left\{A_{1}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
A_{1}=1
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=1\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=x
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2}\right)+(x)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2}+x \tag{1}
\end{equation*}
\]


Figure 225: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{-x}+c_{2}+x
\]

Verified OK.

\subsection*{23.1.6 Solving as exact linear second order ode ode}

An ode of the form
\[
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
\]
is exact if
\[
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
\]

For the given ode we have
\[
\begin{aligned}
p(x) & =1 \\
q(x) & =1 \\
r(x) & =0 \\
s(x) & =1
\end{aligned}
\]

Hence
\[
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
\]

Therefore (1) becomes
\[
0-(0)+(0)=0
\]

Hence the ode is exact. Since we now know the ode is exact, it can be written as
\[
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
\]

Integrating gives
\[
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
\]

Substituting the above values for \(p, q, r, s\) gives
\[
y+y^{\prime}=\int 1 d x
\]

We now have a first order ode to solve which is
\[
y+y^{\prime}=x+c_{1}
\]

Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =1 \\
q(x) & =x+c_{1}
\end{aligned}
\]

Hence the ode is
\[
y+y^{\prime}=x+c_{1}
\]

The integrating factor \(\mu\) is
\[
\begin{gathered}
\mu=\mathrm{e}^{\int 1 d x} \\
=\mathrm{e}^{x}
\end{gathered}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(x+c_{1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y \mathrm{e}^{x}\right) & =\left(\mathrm{e}^{x}\right)\left(x+c_{1}\right) \\
\mathrm{d}\left(y \mathrm{e}^{x}\right) & =\left(\mathrm{e}^{x}\left(x+c_{1}\right)\right) \mathrm{d} x
\end{aligned}
\]

\section*{Integrating gives}
\[
\begin{aligned}
& y \mathrm{e}^{x}=\int \mathrm{e}^{x}\left(x+c_{1}\right) \mathrm{d} x \\
& y \mathrm{e}^{x}=\left(-1+x+c_{1}\right) \mathrm{e}^{x}+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{x}\) results in
\[
y=\mathrm{e}^{-x}\left(-1+x+c_{1}\right) \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}
\]
which simplifies to
\[
y=-1+x+c_{1}+c_{2} \mathrm{e}^{-x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-1+x+c_{1}+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
\]


Figure 226: Slope field plot

\section*{Verification of solutions}
\[
y=-1+x+c_{1}+c_{2} \mathrm{e}^{-x}
\]

Verified OK.

\subsection*{23.1.7 Maple step by step solution}

Let's solve
\(y^{\prime}+y^{\prime \prime}=1\)
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+r=0
\]
- Factor the characteristic polynomial
\(r(r+1)=0\)
- Roots of the characteristic polynomial
\(r=(-1,0)\)
- \(\quad 1\) st solution of the homogeneous ODE
\(y_{1}(x)=\mathrm{e}^{-x}\)
- \(\quad 2 n d\) solution of the homogeneous ODE
\(y_{2}(x)=1\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\(y=c_{1} \mathrm{e}^{-x}+c_{2}+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function \(\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=1\right]\)
- Wronskian of solutions of the homogeneous equation
\(W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-x} & 1 \\ -\mathrm{e}^{-x} & 0\end{array}\right]\)
- Compute Wronskian
\(W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-x}\)
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\mathrm{e}^{-x}\left(\int \mathrm{e}^{x} d x\right)+\int 1 d x
\]
- Compute integrals
\[
y_{p}(x)=x-1
\]
- Substitute particular solution into general solution to ODE
\(y=c_{1} \mathrm{e}^{-x}+c_{2}+x-1\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable -> Calling odsolve with the ODE`, diff(_b(_a), _a) = __b(_a)+1, _b(_a)` Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful <- high order exact linear fully integrable successful`

```
Sublevel 2

Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
```

dsolve(diff(y(x),x\$2)+diff(y(x),x)=1,y(x), singsol=all)

```
\[
y(x)=-c_{1} \mathrm{e}^{-x}+x+c_{2}
\]

Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 18
DSolve[y'' \([x]+y\) ' \([x]==1, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow x-c_{1} e^{-x}+c_{2}
\]

\section*{23.2 problem 1(b)}
23.2.1 Solving as second order ode missing y ode . . . . . . . . . . . . 1902
23.2.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1904

Internal problem ID [6092]
Internal file name [OUTPUT/5340_Sunday_June_05_2022_03_34_43_PM_40990985/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equations. Page 238
Problem number: 1(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_ode_missing_y" Maple gives the following as the ode type
[[_2nd_order, _missing_y]]
\[
y^{\prime \prime}+y^{\prime} \mathrm{e}^{x}=\mathrm{e}^{x}
\]

\subsection*{23.2.1 Solving as second order ode missing y ode}

This is second order ode with missing dependent variable \(y\). Let
\[
p(x)=y^{\prime}
\]

Then
\[
p^{\prime}(x)=y^{\prime \prime}
\]

Hence the ode becomes
\[
p^{\prime}(x)+\mathrm{e}^{x} p(x)-\mathrm{e}^{x}=0
\]

Which is now solve for \(p(x)\) as first order ode. In canonical form the ODE is
\[
\begin{aligned}
p^{\prime} & =F(x, p) \\
& =f(x) g(p) \\
& =\mathrm{e}^{x}(-p+1)
\end{aligned}
\]

Where \(f(x)=\mathrm{e}^{x}\) and \(g(p)=-p+1\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{-p+1} d p & =\mathrm{e}^{x} d x \\
\int \frac{1}{-p+1} d p & =\int \mathrm{e}^{x} d x \\
-\ln (p-1) & =\mathrm{e}^{x}+c_{1}
\end{aligned}
\]

Raising both side to exponential gives
\[
\frac{1}{p-1}=\mathrm{e}^{\mathrm{e}^{x}+c_{1}}
\]

Which simplifies to
\[
\frac{1}{p-1}=c_{2} \mathrm{e}^{\mathrm{e}^{x}}
\]

Since \(p=y^{\prime}\) then the new first order ode to solve is
\[
y^{\prime}=\frac{\left(c_{2} \mathrm{e}^{\mathrm{e}^{x}+c_{1}}+1\right) \mathrm{e}^{-\mathrm{e}^{x}-c_{1}}}{c_{2}}
\]

Integrating both sides gives
\[
\begin{aligned}
& y=\int \frac{\left(c_{2} \mathrm{e}^{\mathrm{e}^{x}+c_{1}}+1\right) \mathrm{e}^{-\mathrm{e}^{x}-c_{1}}}{c_{2}} \mathrm{~d} x \\
&=\ln \left(\mathrm{e}^{x}\right)-\frac{\mathrm{e}^{-c_{1}} \operatorname{expIntegral}}{1}\left(\mathrm{e}^{x}\right) \\
& c_{2}
\end{aligned} c_{3}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\ln \left(\mathrm{e}^{x}\right)-\frac{\mathrm{e}^{-c_{1}} \operatorname{expIntegral}}{1}\left(\mathrm{e}^{x}\right), c_{3} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\ln \left(\mathrm{e}^{x}\right)-\frac{\mathrm{e}^{-c_{1}} \operatorname{expIntegral}}{1}\left(\mathrm{e}^{x}\right), c_{3}
\]

Verified OK.

\subsection*{23.2.2 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+y^{\prime} \mathrm{e}^{x}=\mathrm{e}^{x}
\]
- Highest derivative means the order of the ODE is 2 \(y^{\prime \prime}\)
- Make substitution \(u=y^{\prime}\) to reduce order of ODE
\(u^{\prime}(x)+u(x) \mathrm{e}^{x}=\mathrm{e}^{x}\)
- Separate variables
\(\frac{u^{\prime}(x)}{u(x)-1}=-\mathrm{e}^{x}\)
- Integrate both sides with respect to \(x\)
\(\int \frac{u^{\prime}(x)}{u(x)-1} d x=\int-\mathrm{e}^{x} d x+c_{1}\)
- Evaluate integral
\(\ln (u(x)-1)=-\mathrm{e}^{x}+c_{1}\)
- \(\quad\) Solve for \(u(x)\)
\(u(x)=\mathrm{e}^{-\mathrm{e}^{x}+c_{1}}+1\)
- \(\quad\) Solve 1st ODE for \(u(x)\)
\(u(x)=\mathrm{e}^{-\mathrm{e}^{x}+c_{1}}+1\)
- Make substitution \(u=y^{\prime}\)
\(y^{\prime}=\mathrm{e}^{-\mathrm{e}^{x}+c_{1}}+1\)
- Integrate both sides to solve for \(y\)
\(\int y^{\prime} d x=\int\left(\mathrm{e}^{-\mathrm{e}^{x}+c_{1}}+1\right) d x+c_{2}\)
- Compute integrals
\(y=x-\mathrm{e}^{c_{1}} \mathrm{Ei}_{1}\left(\mathrm{e}^{x}\right)+c_{2}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable -> Calling odsolve with the ODE`, diff(_b(_a), _a) = -exp(_a)*_b(_a)+exp(_a), _b(_a)` Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful <- high order exact linear fully integrable successful`

```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
```

dsolve(diff(y(x),x\$2)+exp(x)*diff (y(x),x)=exp(x),y(x), singsol=all)

```
\[
y(x)=-c_{1} \exp \text { Integral }_{1}\left(\mathrm{e}^{x}\right)+x+c_{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.081 (sec). Leaf size: 18
```

DSolve[y''[x]+Exp[x]*y'[x]==Exp[x],y[x],x,IncludeSingularSolutions -> True]

```
\[
y(x) \rightarrow c_{1} \operatorname{Exp} \operatorname{IntegralEi}\left(-e^{x}\right)+x+c_{2}
\]

\section*{23.3 problem 1(c)}
23.3.1 Solving as second order ode missing \(x\) ode . . . . . . . . . . . . 1906
23.3.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1909

Internal problem ID [6093]
Internal file name [OUTPUT/5341_Sunday_June_05_2022_03_34_45_PM_92580117/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equations. Page 238
Problem number: 1(c).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second__order_ode_missing_x" Maple gives the following as the ode type
```

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible,
_mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

```
\[
y y^{\prime \prime}+4 y^{\prime 2}=0
\]

\subsection*{23.3.1 Solving as second order ode missing \(x\) ode}

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable \(y\) an independent variable. Using
\[
y^{\prime}=p(y)
\]

Then
\[
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
\]

Hence the ode becomes
\[
y p(y)\left(\frac{d}{d y} p(y)\right)+4 p(y)^{2}=0
\]

Which is now solved as first order ode for \(p(y)\). In canonical form the ODE is
\[
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =-\frac{4 p}{y}
\end{aligned}
\]

Where \(f(y)=-\frac{4}{y}\) and \(g(p)=p\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{p} d p & =-\frac{4}{y} d y \\
\int \frac{1}{p} d p & =\int-\frac{4}{y} d y \\
\ln (p) & =-4 \ln (y)+c_{1} \\
p & =\mathrm{e}^{-4 \ln (y)+c_{1}} \\
& =\frac{c_{1}}{y^{4}}
\end{aligned}
\]

For solution (1) found earlier, since \(p=y^{\prime}\) then we now have a new first order ode to solve which is
\[
y^{\prime}=\frac{c_{1}}{y^{4}}
\]

Integrating both sides gives
\[
\begin{aligned}
\int \frac{y^{4}}{c_{1}} d y & =c_{2}+x \\
\frac{y^{5}}{5 c_{1}} & =c_{2}+x
\end{aligned}
\]

Solving for \(y\) gives these solutions
\[
\begin{aligned}
& y_{1}=\left(5 c_{1} c_{2}+5 c_{1} x\right)^{\frac{1}{5}} \\
& y_{2}=\left(-\frac{\sqrt{5}}{4}-\frac{1}{4}-\frac{i \sqrt{2} \sqrt{5-\sqrt{5}}}{4}\right)\left(5 c_{1} c_{2}+5 c_{1} x\right)^{\frac{1}{5}} \\
& y_{3}=\left(-\frac{\sqrt{5}}{4}-\frac{1}{4}+\frac{i \sqrt{2} \sqrt{5-\sqrt{5}}}{4}\right)\left(5 c_{1} c_{2}+5 c_{1} x\right)^{\frac{1}{5}} \\
& y_{4}=\left(\frac{\sqrt{5}}{4}-\frac{1}{4}-\frac{i \sqrt{2} \sqrt{5+\sqrt{5}}}{4}\right)\left(5 c_{1} c_{2}+5 c_{1} x\right)^{\frac{1}{5}} \\
& y_{5}=\left(\frac{\sqrt{5}}{4}-\frac{1}{4}+\frac{i \sqrt{2} \sqrt{5+\sqrt{5}}}{4}\right)\left(5 c_{1} c_{2}+5 c_{1} x\right)^{\frac{1}{5}}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
& y=\left(5 c_{1} c_{2}+5 c_{1} x\right)^{\frac{1}{5}}  \tag{1}\\
& y=\left(-\frac{\sqrt{5}}{4}-\frac{1}{4}-\frac{i \sqrt{2} \sqrt{5-\sqrt{5}}}{4}\right)\left(5 c_{1} c_{2}+5 c_{1} x\right)^{\frac{1}{5}}  \tag{2}\\
& y=\left(-\frac{\sqrt{5}}{4}-\frac{1}{4}+\frac{i \sqrt{2} \sqrt{5-\sqrt{5}}}{4}\right)\left(5 c_{1} c_{2}+5 c_{1} x\right)^{\frac{1}{5}}  \tag{3}\\
& y=\left(\frac{\sqrt{5}}{4}-\frac{1}{4}-\frac{i \sqrt{2} \sqrt{5+\sqrt{5}}}{4}\right)\left(5 c_{1} c_{2}+5 c_{1} x\right)^{\frac{1}{5}}  \tag{4}\\
& y=\left(\frac{\sqrt{5}}{4}-\frac{1}{4}+\frac{i \sqrt{2} \sqrt{5+\sqrt{5}}}{4}\right)\left(5 c_{1} c_{2}+5 c_{1} x\right)^{\frac{1}{5}} \tag{5}
\end{align*}
\]

Verification of solutions
\[
y=\left(5 c_{1} c_{2}+5 c_{1} x\right)^{\frac{1}{5}}
\]

Verified OK.
\[
y=\left(-\frac{\sqrt{5}}{4}-\frac{1}{4}-\frac{i \sqrt{2} \sqrt{5-\sqrt{5}}}{4}\right)\left(5 c_{1} c_{2}+5 c_{1} x\right)^{\frac{1}{5}}
\]

Verified OK.
\[
y=\left(-\frac{\sqrt{5}}{4}-\frac{1}{4}+\frac{i \sqrt{2} \sqrt{5-\sqrt{5}}}{4}\right)\left(5 c_{1} c_{2}+5 c_{1} x\right)^{\frac{1}{5}}
\]

Verified OK.
\[
y=\left(\frac{\sqrt{5}}{4}-\frac{1}{4}-\frac{i \sqrt{2} \sqrt{5+\sqrt{5}}}{4}\right)\left(5 c_{1} c_{2}+5 c_{1} x\right)^{\frac{1}{5}}
\]

Verified OK.
\[
y=\left(\frac{\sqrt{5}}{4}-\frac{1}{4}+\frac{i \sqrt{2} \sqrt{5+\sqrt{5}}}{4}\right)\left(5 c_{1} c_{2}+5 c_{1} x\right)^{\frac{1}{5}}
\]

Verified OK.

\subsection*{23.3.2 Maple step by step solution}

Let's solve
\(y y^{\prime \prime}+4 y^{\prime 2}=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Define new dependent variable \(u\)
\(u(x)=y^{\prime}\)
- Compute \(y^{\prime \prime}\)
\(u^{\prime}(x)=y^{\prime \prime}\)
- Use chain rule on the lhs
\(y^{\prime}\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}\)
- Substitute in the definition of \(u\)
\(u(y)\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}\)
- Make substitutions \(y^{\prime}=u(y), y^{\prime \prime}=u(y)\left(\frac{d}{d y} u(y)\right)\) to reduce order of ODE \(y u(y)\left(\frac{d}{d y} u(y)\right)+4 u(y)^{2}=0\)
- Separate variables
\(\frac{\frac{d}{d y} u(y)}{u(y)}=-\frac{4}{y}\)
- Integrate both sides with respect to \(y\)
\(\int \frac{\frac{d}{d y} u(y)}{u(y)} d y=\int-\frac{4}{y} d y+c_{1}\)
- Evaluate integral
\(\ln (u(y))=-4 \ln (y)+c_{1}\)
- \(\quad\) Solve for \(u(y)\)
\(u(y)=\frac{\mathrm{e}^{c_{1}}}{y^{4}}\)
- \(\quad\) Solve 1st ODE for \(u(y)\)
\(u(y)=\frac{\mathrm{e}^{c_{1}}}{y^{4}}\)
- Revert to original variables with substitution \(u(y)=y^{\prime}, y=y\)
\(y^{\prime}=\frac{\mathrm{e}^{c_{1}}}{y^{4}}\)
- \(\quad\) Separate variables
\(y^{\prime} y^{4}=\mathrm{e}^{c_{1}}\)
- Integrate both sides with respect to \(x\)
\(\int y^{\prime} y^{4} d x=\int \mathrm{e}^{c_{1}} d x+c_{2}\)
- Evaluate integral
\[
\frac{y^{5}}{5}=x \mathrm{e}^{c_{1}}+c_{2}
\]
- \(\quad\) Solve for \(y\)
\(y=\left(5 x \mathrm{e}^{c_{1}}+5 c_{2}\right)^{\frac{1}{5}}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying 2nd order Liouville <- 2nd_order Liouville successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.047 (sec). Leaf size: 158
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x \$ 2)+4 * \operatorname{diff}(y(x), x)^{\wedge} 2=0, y(x)\right.\), singsol=all)
\[
\begin{aligned}
& y(x)=0 \\
& y(x)=\left(5 c_{1} x+5 c_{2}\right)^{\frac{1}{5}} \\
& y(x)=-\frac{(i \sqrt{2} \sqrt{5-\sqrt{5}}+\sqrt{5}+1)\left(5 c_{1} x+5 c_{2}\right)^{\frac{1}{5}}}{4} \\
& y(x)=\frac{(i \sqrt{2} \sqrt{5-\sqrt{5}}-\sqrt{5}-1)\left(5 c_{1} x+5 c_{2}\right)^{\frac{1}{5}}}{4} \\
& y(x)=-\frac{(i \sqrt{2} \sqrt{5+\sqrt{5}}-\sqrt{5}+1)\left(5 c_{1} x+5 c_{2}\right)^{\frac{1}{5}}}{4} \\
& y(x)=\frac{(i \sqrt{2} \sqrt{5+\sqrt{5}}+\sqrt{5}-1)\left(5 c_{1} x+5 c_{2}\right)^{\frac{1}{5}}}{4}
\end{aligned}
\]

Solution by Mathematica
Time used: 0.178 (sec). Leaf size: 20
DSolve \([y[x] * y\) '' \([x]+4 *(y '[x]) \sim 2==0, y[x], x\), IncludeSingularSolutions -> True]
\[
y(x) \rightarrow c_{2} \sqrt[5]{5 x-c_{1}}
\]

\section*{23.4 problem 1(d)}
23.4.1 Solving as second order linear constant coeff ode . . . . . . . . 1912
23.4.2 Solving as second order ode can be made integrable ode . . . . 1914
23.4.3 Solving using Kovacic algorithm . . . . . . . . . . . . . . . . . . 1915
23.4.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1918

Internal problem ID [6094]
Internal file name [OUTPUT/5342_Sunday_June_05_2022_03_34_47_PM_31515423/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equations. Page 238
Problem number: 1(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "second_order_ode_can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]
\[
y^{\prime \prime}+k^{2} y=0
\]

\subsection*{23.4.1 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=k^{2}\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+k^{2} \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
k^{2}+\lambda^{2}=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=k^{2}\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)\left(k^{2}\right)} \\
& = \pm \sqrt{-k^{2}}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+\sqrt{-k^{2}} \\
& \lambda_{2}=-\sqrt{-k^{2}}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=\sqrt{-k^{2}} \\
& \lambda_{2}=-\sqrt{-k^{2}}
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(\sqrt{-k^{2}}\right) x}+c_{2} e^{\left(-\sqrt{-k^{2}}\right) x}
\end{aligned}
\]

Or
\[
y=c_{1} \mathrm{e}^{\sqrt{-k^{2}} x}+c_{2} \mathrm{e}^{-\sqrt{-k^{2}} x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{\sqrt{-k^{2}} x}+c_{2} \mathrm{e}^{-\sqrt{-k^{2}} x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{\sqrt{-k^{2}} x}+c_{2} \mathrm{e}^{-\sqrt{-k^{2}} x}
\]

Verified OK.

\subsection*{23.4.2 Solving as second order ode can be made integrable ode}

Multiplying the ode by \(y^{\prime}\) gives
\[
y^{\prime} y^{\prime \prime}+y^{\prime} k^{2} y=0
\]

Integrating the above w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+y^{\prime} k^{2} y\right) d x=0 \\
\frac{y^{\prime 2}}{2}+\frac{y^{2} k^{2}}{2}=c_{2}
\end{gathered}
\]

Which is now solved for \(y\). Solving the given ode for \(y^{\prime}\) results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are
\[
\begin{align*}
& y^{\prime}=\sqrt{-y^{2} k^{2}+2 c_{1}}  \tag{1}\\
& y^{\prime}=-\sqrt{-y^{2} k^{2}+2 c_{1}} \tag{2}
\end{align*}
\]

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{\sqrt{-y^{2} k^{2}+2 c_{1}}} d y & =\int d x \\
\frac{\arctan \left(\frac{\sqrt{k^{2}} y}{\sqrt{-y^{2} k^{2}+2 c_{1}}}\right)}{\sqrt{k^{2}}} & =c_{2}+x
\end{aligned}
\]

Solving equation (2)
Integrating both sides gives
\[
\begin{aligned}
\int-\frac{1}{\sqrt{-y^{2} k^{2}+2 c_{1}}} d y & =\int d x \\
-\frac{\arctan \left(\frac{\sqrt{k^{2}} y}{\sqrt{-y^{2} k^{2}+2 c_{1}}}\right)}{\sqrt{k^{2}}} & =x+c_{3}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
\frac{\arctan \left(\frac{\sqrt{k^{2}} y}{\sqrt{-y^{2} k^{2}+2 c_{1}}}\right)}{\sqrt{k^{2}}} & =c_{2}+x  \tag{1}\\
-\frac{\arctan \left(\frac{\sqrt{k^{2}} y}{\sqrt{-y^{2} k^{2}+2 c_{1}}}\right)}{\sqrt{k^{2}}} & =x+c_{3} \tag{2}
\end{align*}
\]

Verification of solutions
\[
\frac{\arctan \left(\frac{\sqrt{k^{2}} y}{\sqrt{-y^{2} k^{2}+2 c_{1}}}\right)}{\sqrt{k^{2}}}=c_{2}+x
\]

Verified OK.
\[
-\frac{\arctan \left(\frac{\sqrt{k^{2}} y}{\sqrt{-y^{2} k^{2}+2 c_{1}}}\right)}{\sqrt{k^{2}}}=x+c_{3}
\]

Verified OK.

\subsection*{23.4.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+k^{2} y & =0  \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=0  \tag{3}\\
& C=k^{2}
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-k^{2}}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-k^{2} \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(-k^{2}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l} 
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 278: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-k^{2}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{\sqrt{-k^{2}} x}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{\sqrt{-k^{2}} x}
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{\sqrt{-k^{2}} x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{\sqrt{-k^{2}} x} \int \frac{1}{\mathrm{e}^{2 \sqrt{-k^{2}} x} d x} \\
& =\mathrm{e}^{\sqrt{-k^{2}} x}\left(\frac{\sqrt{-k^{2}} \mathrm{e}^{-2 \sqrt{-k^{2}} x}}{2 k^{2}}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\sqrt{-k^{2}} x}\right)+c_{2}\left(\mathrm{e}^{\sqrt{-k^{2}} x}\left(\frac{\sqrt{-k^{2}} \mathrm{e}^{-2 \sqrt{-k^{2}} x}}{2 k^{2}}\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{\sqrt{-k^{2}} x}+\frac{c_{2} \sqrt{-k^{2}} \mathrm{e}^{-\sqrt{-k^{2}} x}}{2 k^{2}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{\sqrt{-k^{2}} x}+\frac{c_{2} \sqrt{-k^{2}} \mathrm{e}^{-\sqrt{-k^{2}} x}}{2 k^{2}}
\]

Verified OK.

\subsection*{23.4.4 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+k^{2} y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of ODE
\[
k^{2}+r^{2}=0
\]
- Use quadratic formula to solve for \(r\)
\[
r=\frac{0 \pm\left(\sqrt{-4 k^{2}}\right)}{2}
\]
- Roots of the characteristic polynomial
\[
r=\left(\sqrt{-k^{2}},-\sqrt{-k^{2}}\right)
\]
- \(\quad 1\) st solution of the ODE
\(y_{1}(x)=\mathrm{e}^{\sqrt{-k^{2}} x}\)
- \(\quad 2 n d\) solution of the ODE
\(y_{2}(x)=\mathrm{e}^{-\sqrt{-k^{2}} x}\)
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]
- Substitute in solutions
\[
y=c_{1} \mathrm{e}^{\sqrt{-k^{2}} x}+c_{2} \mathrm{e}^{-\sqrt{-k^{2}} x}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 17
```

dsolve(diff(y(x),x\$2)+k^2*y(x)=0,y(x), singsol=all)

```
\[
y(x)=c_{1} \sin (k x)+c_{2} \cos (k x)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 20
DSolve[y''[x]+k^2*y[x]==0,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow c_{1} \cos (k x)+c_{2} \sin (k x)
\]

\section*{23.5 problem 1(e)}
23.5.1 Solving as second order integrable as is ode . . . . . . . . . . . 1920
23.5.2 Solving as second order ode missing x ode . . . . . . . . . . . . 1921

23.5.4 Solving as exact nonlinear second order ode ode . . . . . . . . . 1924
23.5.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1925

Internal problem ID [6095]
Internal file name [OUTPUT/5343_Sunday_June_05_2022_03_34_48_PM_47713477/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equations. Page 238
Problem number: 1(e).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_integrable_as_is", "second__order_ode_missing_x", "exact nonlinear second order ode"

Maple gives the following as the ode type
```

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear],
_Lagerstrom, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order,
_reducible, _mu_xy]]

```
\[
y^{\prime \prime}-y^{\prime} y=0
\]

\subsection*{23.5.1 Solving as second order integrable as is ode}

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{aligned}
& \int\left(y^{\prime \prime}-y^{\prime} y\right) d x=0 \\
& -\frac{y^{2}}{2}+y^{\prime}=c_{1}
\end{aligned}
\]

Which is now solved for \(y\). Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{\frac{y^{2}}{2}+c_{1}} d y & =c_{2}+x \\
\frac{\sqrt{2} \arctan \left(\frac{y \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{\sqrt{c_{1}}} & =c_{2}+x
\end{aligned}
\]

Solving for \(y\) gives these solutions
\[
y_{1}=\tan \left(\frac{\sqrt{c_{1}}\left(c_{2}+x\right) \sqrt{2}}{2}\right) \sqrt{c_{1}} \sqrt{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\tan \left(\frac{\sqrt{c_{1}}\left(c_{2}+x\right) \sqrt{2}}{2}\right) \sqrt{c_{1}} \sqrt{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\tan \left(\frac{\sqrt{c_{1}}\left(c_{2}+x\right) \sqrt{2}}{2}\right) \sqrt{c_{1}} \sqrt{2}
\]

Verified OK.

\subsection*{23.5.2 Solving as second order ode missing \(x\) ode}

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable \(y\) an independent variable. Using
\[
y^{\prime}=p(y)
\]

Then
\[
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
\]

Hence the ode becomes
\[
p(y)\left(\frac{d}{d y} p(y)\right)-p(y) y=0
\]

Which is now solved as first order ode for \(p(y)\). Integrating both sides gives
\[
\begin{aligned}
p(y) & =\int y \mathrm{~d} y \\
& =\frac{y^{2}}{2}+c_{1}
\end{aligned}
\]

For solution (1) found earlier, since \(p=y^{\prime}\) then we now have a new first order ode to solve which is
\[
y^{\prime}=\frac{y^{2}}{2}+c_{1}
\]

Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{\frac{y^{2}}{2}+c_{1}} d y & =c_{2}+x \\
\frac{\sqrt{2} \arctan \left(\frac{y \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{\sqrt{c_{1}}} & =c_{2}+x
\end{aligned}
\]

Solving for \(y\) gives these solutions
\[
y_{1}=\tan \left(\frac{\sqrt{c_{1}}\left(c_{2}+x\right) \sqrt{2}}{2}\right) \sqrt{c_{1}} \sqrt{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\tan \left(\frac{\sqrt{c_{1}}\left(c_{2}+x\right) \sqrt{2}}{2}\right) \sqrt{c_{1}} \sqrt{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\tan \left(\frac{\sqrt{c_{1}}\left(c_{2}+x\right) \sqrt{2}}{2}\right) \sqrt{c_{1}} \sqrt{2}
\]

Verified OK.

\subsection*{23.5.3 Solving as type second_order_integrable_as_is (not using ABC version)}

Writing the ode as
\[
y^{\prime \prime}-y^{\prime} y=0
\]

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{aligned}
& \int\left(y^{\prime \prime}-y^{\prime} y\right) d x=0 \\
& -\frac{y^{2}}{2}+y^{\prime}=c_{1}
\end{aligned}
\]

Which is now solved for \(y\). Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{\frac{y^{2}}{2}+c_{1}} d y & =c_{2}+x \\
\frac{\sqrt{2} \arctan \left(\frac{y \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{\sqrt{c_{1}}} & =c_{2}+x
\end{aligned}
\]

Solving for \(y\) gives these solutions
\[
y_{1}=\tan \left(\frac{\sqrt{c_{1}}\left(c_{2}+x\right) \sqrt{2}}{2}\right) \sqrt{c_{1}} \sqrt{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\tan \left(\frac{\sqrt{c_{1}}\left(c_{2}+x\right) \sqrt{2}}{2}\right) \sqrt{c_{1}} \sqrt{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\tan \left(\frac{\sqrt{c_{1}}\left(c_{2}+x\right) \sqrt{2}}{2}\right) \sqrt{c_{1}} \sqrt{2}
\]

Verified OK.

\subsection*{23.5.4 Solving as exact nonlinear second order ode ode}

An exact non-linear second order ode has the form
\[
a_{2}\left(x, y, y^{\prime}\right) y^{\prime \prime}+a_{1}\left(x, y, y^{\prime}\right) y^{\prime}+a_{0}\left(x, y, y^{\prime}\right)=0
\]

Where the following conditions are satisfied
\[
\begin{aligned}
& \frac{\partial a_{2}}{\partial y}=\frac{\partial a_{1}}{\partial y^{\prime}} \\
& \frac{\partial a_{2}}{\partial x}=\frac{\partial a_{0}}{\partial y^{\prime}} \\
& \frac{\partial a_{1}}{\partial x}=\frac{\partial a_{0}}{\partial y}
\end{aligned}
\]

Looking at the the ode given we see that
\[
\begin{aligned}
a_{2} & =1 \\
a_{1} & =-y \\
a_{0} & =0
\end{aligned}
\]

Applying the conditions to the above shows this is a nonlinear exact second order ode. Therefore it can be reduced to first order ode given by
\[
\begin{aligned}
& \int a_{2} d y^{\prime}+\int a_{1} d y+\int a_{0} d x=c_{1} \\
& \int 1 d y^{\prime}+\int-y d y+\int 0 d x=c_{1}
\end{aligned}
\]

Which results in
\[
-\frac{y^{2}}{2}+y^{\prime}=c_{1}
\]

Which is now solved Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{\frac{y^{2}}{2}+c_{1}} d y & =c_{2}+x \\
\frac{\sqrt{2} \arctan \left(\frac{y \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{\sqrt{c_{1}}} & =c_{2}+x
\end{aligned}
\]

Solving for \(y\) gives these solutions
\[
y_{1}=\tan \left(\frac{\sqrt{c_{1}}\left(c_{2}+x\right) \sqrt{2}}{2}\right) \sqrt{c_{1}} \sqrt{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\tan \left(\frac{\sqrt{c_{1}}\left(c_{2}+x\right) \sqrt{2}}{2}\right) \sqrt{c_{1}} \sqrt{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\tan \left(\frac{\sqrt{c_{1}}\left(c_{2}+x\right) \sqrt{2}}{2}\right) \sqrt{c_{1}} \sqrt{2}
\]

Verified OK.

\subsection*{23.5.5 Maple step by step solution}

Let's solve
\(y^{\prime \prime}-y^{\prime} y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Define new dependent variable \(u\)
\(u(x)=y^{\prime}\)
- Compute \(y^{\prime \prime}\)
\(u^{\prime}(x)=y^{\prime \prime}\)
- Use chain rule on the lhs
\(y^{\prime}\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}\)
- \(\quad\) Substitute in the definition of \(u\)
\(u(y)\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}\)
- Make substitutions \(y^{\prime}=u(y), y^{\prime \prime}=u(y)\left(\frac{d}{d y} u(y)\right)\) to reduce order of ODE \(u(y)\left(\frac{d}{d y} u(y)\right)-u(y) y=0\)
- \(\quad\) Separate variables
\(\frac{d}{d y} u(y)=y\)
- Integrate both sides with respect to \(y\)
\(\int\left(\frac{d}{d y} u(y)\right) d y=\int y d y+c_{1}\)
- Evaluate integral
\(u(y)=\frac{y^{2}}{2}+c_{1}\)
- \(\quad\) Solve for \(u(y)\)
\(u(y)=\frac{y^{2}}{2}+c_{1}\)
- \(\quad\) Solve 1st ODE for \(u(y)\)
\(u(y)=\frac{y^{2}}{2}+c_{1}\)
- Revert to original variables with substitution \(u(y)=y^{\prime}, y=y\) \(y^{\prime}=\frac{y^{2}}{2}+c_{1}\)
- Separate variables
\(\frac{y^{\prime}}{\frac{y^{2}}{2}+c_{1}}=1\)
- Integrate both sides with respect to \(x\)
\(\int \frac{y^{\prime}}{\frac{y^{2}}{2}+c_{1}} d x=\int 1 d x+c_{2}\)
- Evaluate integral
\(\frac{\sqrt{2} \arctan \left(\frac{y \sqrt{2}}{2 \sqrt{c_{1}}}\right)}{\sqrt{c_{1}}}=c_{2}+x\)
- \(\quad\) Solve for \(y\)
\(y=\tan \left(\frac{\sqrt{c_{1}}\left(c_{2}+x\right) \sqrt{2}}{2}\right) \sqrt{c_{1}} \sqrt{2}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying 2nd order Liouville trying 2nd order WeierstrassP trying 2nd order JacobiSN differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation trying 2nd order, 2 integrating factors of the form mu(x,y) trying differential order: 2; missing variables `, `-> Computing symmetries using: way = 3 -> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)-_b(_a)*_a = 0, _b(_a), HINT = [[
symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[_a, 2*_b]

```
\(\checkmark\) Solution by Maple
Time used: 0.078 (sec). Leaf size: 23
dsolve(diff \((y(x), x \$ 2)=y(x) * \operatorname{diff}(y(x), x), y(x)\), singsol=all)
\[
y(x)=\frac{\tan \left(\frac{\left(x+c_{2}\right) \sqrt{2}}{2 c_{1}}\right) \sqrt{2}}{c_{1}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 16.739 (sec). Leaf size: 34
DSolve[y''[x]==y[x]*y'[x],y[x],x,IncludeSingularSolutions -> True]
\[
y(x) \rightarrow \sqrt{2} \sqrt{c_{1}} \tan \left(\frac{\sqrt{c_{1}}\left(x+c_{2}\right)}{\sqrt{2}}\right)
\]

\section*{23.6 problem 1(f)}
23.6.1 Solving as second order integrable as is ode ..... 1929
23.6.2 Solving as second order ode missing y ode ..... 1930
23.6.3 Solving as second order ode non constant coeff transformation on B ode ..... 1932
23.6.4 Solving as type second_order_integrable_as_is (not using ABC version) ..... 1936
23.6.5 Solving using Kovacic algorithm ..... 1938
23.6.6 Solving as exact linear second order ode ode ..... 1945
23.6.7 Maple step by step solution ..... 1947

Internal problem ID [6096]
Internal file name [OUTPUT/5344_Sunday_June_05_2022_03_34_50_PM_22943806/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equations. Page 238
Problem number: 1(f).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second__order_integrable_as_is", "second_order_ode_missing_y", "second__order_ode__non_constant__coeff_transformation__on_B"

Maple gives the following as the ode type
[[_2nd_order, _missing_y]]
\[
x y^{\prime \prime}-2 y^{\prime}=x^{3}
\]

\subsection*{23.6.1 Solving as second order integrable as is ode}

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{aligned}
& \quad \int\left(x y^{\prime \prime}-2 y^{\prime}\right) d x=\int x^{3} d x \\
& x y^{\prime}-3 y=\frac{x^{4}}{4}+c_{1}
\end{aligned}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =-\frac{3}{x} \\
q(x) & =\frac{x^{4}+4 c_{1}}{4 x}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{3 y}{x}=\frac{x^{4}+4 c_{1}}{4 x}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{x} d x} \\
& =\frac{1}{x^{3}}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{x^{4}+4 c_{1}}{4 x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x^{3}}\right) & =\left(\frac{1}{x^{3}}\right)\left(\frac{x^{4}+4 c_{1}}{4 x}\right) \\
\mathrm{d}\left(\frac{y}{x^{3}}\right) & =\left(\frac{x^{4}+4 c_{1}}{4 x^{4}}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \frac{y}{x^{3}}=\int \frac{x^{4}+4 c_{1}}{4 x^{4}} \mathrm{~d} x \\
& \frac{y}{x^{3}}=\frac{x}{4}-\frac{c_{1}}{3 x^{3}}+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\frac{1}{x^{3}}\) results in
\[
y=x^{3}\left(\frac{x}{4}-\frac{c_{1}}{3 x^{3}}\right)+c_{2} x^{3}
\]
which simplifies to
\[
y=\frac{1}{4} x^{4}-\frac{1}{3} c_{1}+c_{2} x^{3}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{1}{4} x^{4}-\frac{1}{3} c_{1}+c_{2} x^{3} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{1}{4} x^{4}-\frac{1}{3} c_{1}+c_{2} x^{3}
\]

Verified OK.

\subsection*{23.6.2 Solving as second order ode missing y ode}

This is second order ode with missing dependent variable \(y\). Let
\[
p(x)=y^{\prime}
\]

Then
\[
p^{\prime}(x)=y^{\prime \prime}
\]

Hence the ode becomes
\[
p^{\prime}(x) x-2 p(x)-x^{3}=0
\]

Which is now solve for \(p(x)\) as first order ode.
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
p^{\prime}(x)+p(x) p(x)=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=x^{2}
\end{aligned}
\]

Hence the ode is
\[
p^{\prime}(x)-\frac{2 p(x)}{x}=x^{2}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu p) & =(\mu)\left(x^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{p}{x^{2}}\right) & =\left(\frac{1}{x^{2}}\right)\left(x^{2}\right) \\
\mathrm{d}\left(\frac{p}{x^{2}}\right) & =\mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
\frac{p}{x^{2}} & =\int \mathrm{d} x \\
\frac{p}{x^{2}} & =x+c_{1}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\frac{1}{x^{2}}\) results in
\[
p(x)=c_{1} x^{2}+x^{3}
\]
which simplifies to
\[
p(x)=x^{2}\left(x+c_{1}\right)
\]

Since \(p=y^{\prime}\) then the new first order ode to solve is
\[
y^{\prime}=x^{2}\left(x+c_{1}\right)
\]

Integrating both sides gives
\[
\begin{aligned}
y & =\int x^{2}\left(x+c_{1}\right) \mathrm{d} x \\
& =\frac{1}{4} x^{4}+\frac{1}{3} c_{1} x^{3}+c_{2}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{1}{4} x^{4}+\frac{1}{3} c_{1} x^{3}+c_{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{1}{4} x^{4}+\frac{1}{3} c_{1} x^{3}+c_{2}
\]

Verified OK.

\subsection*{23.6.3 Solving as second order ode non constant coeff transformation on B ode}

Given an ode of the form
\[
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
\]

This method reduces the order ode the ODE by one by applying the transformation
\[
y=B v
\]

This results in
\[
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
\]

And now the original ode becomes
\[
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
\]

If the term \(A B^{\prime \prime}+B B^{\prime}+C B\) is zero, then this method works and can be used to solve
\[
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
\]

By Using \(u=v^{\prime}\) which reduces the order of the above ode to one. The new ode is
\[
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
\]

The above ode is first order ode which is solved for \(u\). Now a new ode \(v^{\prime}=u\) is solved for \(v\) as first order ode. Then the final solution is obtain from \(y=B v\).

This method works only if the term \(A B^{\prime \prime}+B B^{\prime}+C B\) is zero. The given ODE shows that
\[
\begin{aligned}
& A=x \\
& B=-2 \\
& C=0 \\
& F=x^{3}
\end{aligned}
\]

The above shows that for this ode
\[
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =(x)(0)+(-2)(0)+(0)(-2) \\
& =0
\end{aligned}
\]

Hence the ode in \(v\) given in (1) now simplifies to
\[
-2 x v^{\prime \prime}+(4) v^{\prime}=0
\]

Now by applying \(v^{\prime}=u\) the above becomes
\[
-2 x u^{\prime}(x)+4 u(x)=0
\]

Which is now solved for \(u\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{2 u}{x}
\end{aligned}
\]

Where \(f(x)=\frac{2}{x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =\frac{2}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{2}{x} d x \\
\ln (u) & =2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{2 \ln (x)+c_{1}} \\
& =c_{1} x^{2}
\end{aligned}
\]

The ode for \(v\) now becomes
\[
\begin{aligned}
v^{\prime} & =u \\
& =c_{1} x^{2}
\end{aligned}
\]

Which is now solved for \(v\). Integrating both sides gives
\[
\begin{aligned}
v(x) & =\int c_{1} x^{2} \mathrm{~d} x \\
& =\frac{c_{1} x^{3}}{3}+c_{2}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =B v \\
& =(-2)\left(\frac{c_{1} x^{3}}{3}+c_{2}\right) \\
& =-\frac{2 c_{1} x^{3}}{3}-2 c_{2}
\end{aligned}
\]

And now the particular solution \(y_{p}(x)\) will be found. The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=-2 \\
& y_{2}=x^{3}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
-2 & x^{3} \\
\frac{d}{d x}(-2) & \frac{d}{d x}\left(x^{3}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
-2 & x^{3} \\
0 & 3 x^{2}
\end{array}\right|
\]

Therefore
\[
W=(-2)\left(3 x^{2}\right)-\left(x^{3}\right)(0)
\]

Which simplifies to
\[
W=-6 x^{2}
\]

Which simplifies to
\[
W=-6 x^{2}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{x^{6}}{-6 x^{3}} d x
\]

Which simplifies to
\[
u_{1}=-\int-\frac{x^{3}}{6} d x
\]

Hence
\[
u_{1}=\frac{x^{4}}{24}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{-2 x^{3}}{-6 x^{3}} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{1}{3} d x
\]

Hence
\[
u_{2}=\frac{x}{3}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=\frac{x^{4}}{4}
\]

Hence the complete solution is
\[
\begin{aligned}
y(x) & =y_{h}+y_{p} \\
& =\left(-\frac{2 c_{1} x^{3}}{3}-2 c_{2}\right)+\left(\frac{x^{4}}{4}\right) \\
& =-\frac{2}{3} c_{1} x^{3}-2 c_{2}+\frac{1}{4} x^{4}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{2}{3} c_{1} x^{3}-2 c_{2}+\frac{1}{4} x^{4} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-\frac{2}{3} c_{1} x^{3}-2 c_{2}+\frac{1}{4} x^{4}
\]

Verified OK.

\subsection*{23.6.4 Solving as type second_order_integrable_as_is (not using ABC version)}

Writing the ode as
\[
x y^{\prime \prime}-2 y^{\prime}=x^{3}
\]

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{aligned}
& \int\left(x y^{\prime \prime}-2 y^{\prime}\right) d x=\int x^{3} d x \\
& x y^{\prime}-3 y=\frac{x^{4}}{4}+c_{1}
\end{aligned}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{x^{4}+4 c_{1}}{4 x}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{3 y}{x}=\frac{x^{4}+4 c_{1}}{4 x}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{x} d x} \\
& =\frac{1}{x^{3}}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{x^{4}+4 c_{1}}{4 x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x^{3}}\right) & =\left(\frac{1}{x^{3}}\right)\left(\frac{x^{4}+4 c_{1}}{4 x}\right) \\
\mathrm{d}\left(\frac{y}{x^{3}}\right) & =\left(\frac{x^{4}+4 c_{1}}{4 x^{4}}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \frac{y}{x^{3}}=\int_{x} \frac{x^{4}+4 c_{1}}{4 x^{4}} \mathrm{~d} x \\
& \frac{y}{x^{3}}=\frac{x}{4}-\frac{c_{1}}{3 x^{3}}+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\frac{1}{x^{3}}\) results in
\[
y=x^{3}\left(\frac{x}{4}-\frac{c_{1}}{3 x^{3}}\right)+c_{2} x^{3}
\]
which simplifies to
\[
y=\frac{1}{4} x^{4}-\frac{1}{3} c_{1}+c_{2} x^{3}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{1}{4} x^{4}-\frac{1}{3} c_{1}+c_{2} x^{3} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{1}{4} x^{4}-\frac{1}{3} c_{1}+c_{2} x^{3}
\]

Verified OK.

\subsection*{23.6.5 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
x y^{\prime \prime}-2 y^{\prime}=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x \\
& B=-2  \tag{3}\\
& C=0
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t}  \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{2}{x^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=2 \\
& t=x^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{2}{x^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l} 
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 281: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=x^{2}\). There is a pole at \(x=0\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]

Attempting to find a solution using case \(n=1\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=\frac{2}{x^{2}}
\]

For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=2\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=2 \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-1
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is 2 then \([\sqrt{r}]_{\infty}=0\). Let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty\). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
\[
r=\frac{s}{t}=\frac{2}{x^{2}}
\]

Since the \(\operatorname{gcd}(s, t)=1\). This gives \(b=2\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=2 \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-1
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{2}{x^{2}}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline pole \(c\) location & pole order & {\([\sqrt{r}]_{c}\)} & \(\alpha_{c}^{+}\) & \(\alpha_{c}^{-}\) \\
\hline 0 & 2 & 0 & 2 & -1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline 2 & 0 & 2 & -1 \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\).

Trying \(\alpha_{\infty}^{-}=-1\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-1-(-1) \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{x}+(-)(0) \\
& =-\frac{1}{x} \\
& =-\frac{1}{x}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(-\frac{1}{x}\right)(0)+\left(\left(\frac{1}{x^{2}}\right)+\left(-\frac{1}{x}\right)^{2}-\left(\frac{2}{x^{2}}\right)\right)=0 \\
0=0
\end{array}
\]

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2}{x} d x} \\
& =z_{1} e^{\ln (x)} \\
& =z_{1}(x)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=1
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{3}}{3}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}\left(1\left(\frac{x^{3}}{3}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
x y^{\prime \prime}-2 y^{\prime}=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1}+\frac{c_{2} x^{3}}{3}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\frac{x^{3}}{3}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)}  \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
1 & \frac{x^{3}}{3} \\
\frac{d}{d x}(1) & \frac{d}{d x}\left(\frac{x^{3}}{3}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
1 & \frac{x^{3}}{3} \\
0 & x^{2}
\end{array}\right|
\]

Therefore
\[
W=(1)\left(x^{2}\right)-\left(\frac{x^{3}}{3}\right)(0)
\]

Which simplifies to
\[
W=x^{2}
\]

Which simplifies to
\[
W=x^{2}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\frac{x^{6}}{3}}{x^{3}} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{x^{3}}{3} d x
\]

Hence
\[
u_{1}=-\frac{x^{4}}{12}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{x^{3}}{x^{3}} d x
\]

Which simplifies to
\[
u_{2}=\int 1 d x
\]

Hence
\[
u_{2}=x
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=\frac{x^{4}}{4}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1}+\frac{c_{2} x^{3}}{3}\right)+\left(\frac{x^{4}}{4}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1}+\frac{1}{3} c_{2} x^{3}+\frac{1}{4} x^{4} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1}+\frac{1}{3} c_{2} x^{3}+\frac{1}{4} x^{4}
\]

Verified OK.

\subsection*{23.6.6 Solving as exact linear second order ode ode}

An ode of the form
\[
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
\]
is exact if
\[
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
\]

For the given ode we have
\[
\begin{aligned}
& p(x)=x \\
& q(x)=-2 \\
& r(x)=0 \\
& s(x)=x^{3}
\end{aligned}
\]

Hence
\[
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
\]

Therefore (1) becomes
\[
0-(0)+(0)=0
\]

Hence the ode is exact. Since we now know the ode is exact, it can be written as
\[
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
\]

Integrating gives
\[
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
\]

Substituting the above values for \(p, q, r, s\) gives
\[
x y^{\prime}-3 y=\int x^{3} d x
\]

We now have a first order ode to solve which is
\[
x y^{\prime}-3 y=\frac{x^{4}}{4}+c_{1}
\]

Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{x^{4}+4 c_{1}}{4 x}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{3 y}{x}=\frac{x^{4}+4 c_{1}}{4 x}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{x} d x} \\
& =\frac{1}{x^{3}}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{x^{4}+4 c_{1}}{4 x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x^{3}}\right) & =\left(\frac{1}{x^{3}}\right)\left(\frac{x^{4}+4 c_{1}}{4 x}\right) \\
\mathrm{d}\left(\frac{y}{x^{3}}\right) & =\left(\frac{x^{4}+4 c_{1}}{4 x^{4}}\right) \mathrm{d} x
\end{aligned}
\]

\section*{Integrating gives}
\[
\begin{aligned}
& \frac{y}{x^{3}}=\int \frac{x^{4}+4 c_{1}}{4 x^{4}} \mathrm{~d} x \\
& \frac{y}{x^{3}}=\frac{x}{4}-\frac{c_{1}}{3 x^{3}}+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\frac{1}{x^{3}}\) results in
\[
y=x^{3}\left(\frac{x}{4}-\frac{c_{1}}{3 x^{3}}\right)+c_{2} x^{3}
\]
which simplifies to
\[
y=\frac{1}{4} x^{4}-\frac{1}{3} c_{1}+c_{2} x^{3}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{1}{4} x^{4}-\frac{1}{3} c_{1}+c_{2} x^{3} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{1}{4} x^{4}-\frac{1}{3} c_{1}+c_{2} x^{3}
\]

Verified OK.

\subsection*{23.6.7 Maple step by step solution}

Let's solve
\(y^{\prime \prime} x-2 y^{\prime}=x^{3}\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Make substitution \(u=y^{\prime}\) to reduce order of ODE
\(u^{\prime}(x) x-2 u(x)=x^{3}\)
- Isolate the derivative
\(u^{\prime}(x)=\frac{2 u(x)}{x}+x^{2}\)
- Group terms with \(u(x)\) on the lhs of the ODE and the rest on the rhs of the ODE
\(u^{\prime}(x)-\frac{2 u(x)}{x}=x^{2}\)
- The ODE is linear; multiply by an integrating factor \(\mu(x)\)
\(\mu(x)\left(u^{\prime}(x)-\frac{2 u(x)}{x}\right)=\mu(x) x^{2}\)
- Assume the lhs of the ODE is the total derivative \(\frac{d}{d x}(\mu(x) u(x))\)
\(\mu(x)\left(u^{\prime}(x)-\frac{2 u(x)}{x}\right)=\mu^{\prime}(x) u(x)+\mu(x) u^{\prime}(x)\)
- Isolate \(\mu^{\prime}(x)\)
\(\mu^{\prime}(x)=-\frac{2 \mu(x)}{x}\)
- Solve to find the integrating factor
\(\mu(x)=\frac{1}{x^{2}}\)
- Integrate both sides with respect to \(x\)
\(\int\left(\frac{d}{d x}(\mu(x) u(x))\right) d x=\int \mu(x) x^{2} d x+c_{1}\)
- Evaluate the integral on the lhs
\(\mu(x) u(x)=\int \mu(x) x^{2} d x+c_{1}\)
- \(\quad\) Solve for \(u(x)\)
\(u(x)=\frac{\int \mu(x) x^{2} d x+c_{1}}{\mu(x)}\)
- \(\quad\) Substitute \(\mu(x)=\frac{1}{x^{2}}\)
\(u(x)=x^{2}\left(\int 1 d x+c_{1}\right)\)
- Evaluate the integrals on the rhs
\(u(x)=x^{2}\left(x+c_{1}\right)\)
- \(\quad\) Solve 1st ODE for \(u(x)\)
\(u(x)=x^{2}\left(x+c_{1}\right)\)
- Make substitution \(u=y^{\prime}\)
\(y^{\prime}=x^{2}\left(x+c_{1}\right)\)
- Integrate both sides to solve for \(y\)
\(\int y^{\prime} d x=\int x^{2}\left(x+c_{1}\right) d x+c_{2}\)
- Compute integrals
\(y=\frac{1}{4} x^{4}+\frac{1}{3} c_{1} x^{3}+c_{2}\)

Maple trace
- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
\(\rightarrow\) Calling odsolve with the ODE`, \(\operatorname{diff}\left(\_b\left(\_a\right), \quad a\right)=\left(\_a^{\wedge} 3+2 * \_b\left(\_a\right)\right) / \_a, \quad\) b (_a) - *** Suble
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- high order exact linear fully integrable successful`

Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
```

dsolve(x*diff(y(x),x\$2)-2*diff(y(x),x)=x^3,y(x), singsol=all)

```
\[
y(x)=\frac{1}{4} x^{4}+\frac{1}{3} c_{1} x^{3}+c_{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 24
DSolve[x*y''[x]-2*y'[x]==x^3,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{x^{4}}{4}+\frac{c_{1} x^{3}}{3}+c_{2}
\]

\section*{23.7 problem 2}
23.7.1 Solving as second order ode missing y ode . . . . . . . . . . . . 1950
23.7.2 Solving as second order ode missing x ode . . . . . . . . . . . . 1952
23.7.3 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1954

Internal problem ID [6097]
Internal file name [OUTPUT/5345_Sunday_June_05_2022_03_34_51_PM_97008130/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equations. Page 238
Problem number: 2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_ode_missing_x", "second_oorder_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]
\[
y^{\prime \prime}-y^{\prime 2}=1
\]

With initial conditions
\[
\left[y(0)=0, y^{\prime}(0)=0\right]
\]

\subsection*{23.7.1 Solving as second order ode missing y ode}

This is second order ode with missing dependent variable \(y\). Let
\[
p(x)=y^{\prime}
\]

Then
\[
p^{\prime}(x)=y^{\prime \prime}
\]

Hence the ode becomes
\[
p^{\prime}(x)-1-p(x)^{2}=0
\]

Which is now solve for \(p(x)\) as first order ode. Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{p^{2}+1} d p & =x+c_{1} \\
\arctan (p) & =x+c_{1}
\end{aligned}
\]

Solving for \(p\) gives these solutions
\[
p_{1}=\tan \left(x+c_{1}\right)
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=0\) and \(p=0\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{gathered}
0=\tan \left(c_{1}\right) \\
c_{1}=0
\end{gathered}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
p(x)=\tan (x)
\]

Since \(p=y^{\prime}\) then the new first order ode to solve is
\[
y^{\prime}=\tan (x)
\]

Integrating both sides gives
\[
\begin{aligned}
y & =\int \tan (x) \mathrm{d} x \\
& =-\ln (\cos (x))+c_{2}
\end{aligned}
\]

Initial conditions are used to solve for \(c_{2}\). Substituting \(x=0\) and \(y=0\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{aligned}
& 0=c_{2} \\
& c_{2}=0
\end{aligned}
\]

Substituting \(c_{2}\) found above in the general solution gives
\[
y=-\ln (\cos (x))
\]

Initial conditions are used to solve for the constants of integration.

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-\ln (\cos (x)) \tag{1}
\end{equation*}
\]


Figure 227: Solution plot

Verification of solutions
\[
y=-\ln (\cos (x))
\]

Verified OK.

\subsection*{23.7.2 Solving as second order ode missing \(x\) ode}

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable \(y\) an independent variable. Using
\[
y^{\prime}=p(y)
\]

Then
\[
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
\]

Hence the ode becomes
\[
p(y)\left(\frac{d}{d y} p(y)\right)-p(y)^{2}=1
\]

Which is now solved as first order ode for \(p(y)\). Integrating both sides gives
\[
\begin{aligned}
\int \frac{p}{p^{2}+1} d p & =\int d y \\
\frac{\ln \left(p^{2}+1\right)}{2} & =y+c_{1}
\end{aligned}
\]

Raising both side to exponential gives
\[
\sqrt{p^{2}+1}=\mathrm{e}^{y+c_{1}}
\]

Which simplifies to
\[
\sqrt{p^{2}+1}=c_{2} \mathrm{e}^{y}
\]

Unable to solve for constant of integration due to RootOf in solution.
For solution (1) found earlier, since \(p=y^{\prime}\) then we now have a new first order ode to solve which is
\[
y^{\prime}=\operatorname{RootOf}\left(\_Z^{2}-c_{2}^{2} \mathrm{e}^{2 y}+1\right)
\]

Integrating both sides gives
\[
\begin{aligned}
& \int \frac{1}{\operatorname{RootOf}\left(\_Z^{2}-c_{2}^{2} \mathrm{e}^{2 y}+1\right)} d y=\int d x \\
&\left.\int^{y} \frac{1}{\operatorname{RootOf}\left(\_Z^{2}-c_{2}^{2} \mathrm{e}^{2}-a\right.}+1\right) \\
& d \_a=x+c_{3}
\end{aligned}
\]

Unable to solve for constant of integration due to RootOf in solution.
Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
\int^{y} \frac{1}{\operatorname{RootOf}\left(\_Z^{2}-c_{2}^{2} \mathrm{e}^{2}-a+1\right)} d \_a=x+c_{3} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
\int^{0} \frac{1}{\operatorname{RootOf}\left(\_Z^{2}-c_{2}^{2} \mathrm{e}^{2} \_^{a}+1\right)} d \_a=c_{3} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=\operatorname{RootOf}\left(-Z^{2}-c_{2}^{2} \mathrm{e}^{2 \operatorname{RootOf}\left(-\left(\int^{Z} \frac{1}{\operatorname{RootOf}\left(Z^{2}-c_{2}^{2} \mathrm{e}^{2}-a+1\right)} d \_a\right)+x+c_{3}\right)}+1\right)
\]
substituting \(y^{\prime}=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=\lim _{x \rightarrow 0} \operatorname{RootOf}\left(-Z^{2}-c_{2}^{2} \mathrm{e}^{2 \operatorname{RootOf}\left(-\left(\int^{Z} \frac{1}{\operatorname{RootOf}\left(-Z^{2}-c_{2}^{2} \mathrm{e}^{2}-a+1\right)} d \_a\right)+x+c_{3}\right)}+1\right) \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{2}, c_{3}\right\}\). There is no solution for the constants of integrations. This solution is removed.

Verification of solutions N/A

\subsection*{23.7.3 Maple step by step solution}

Let's solve
\(\left[y^{\prime \prime}-{y^{\prime}}^{2}=1, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=0\right]\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Make substitution \(u=y^{\prime}\) to reduce order of ODE
\(u^{\prime}(x)-u(x)^{2}=1\)
- \(\quad\) Separate variables
\(\frac{u^{\prime}(x)}{u(x)^{2}+1}=1\)
- Integrate both sides with respect to \(x\)
\(\int \frac{u^{\prime}(x)}{u(x)^{2}+1} d x=\int 1 d x+c_{1}\)
- \(\quad\) Evaluate integral
\(\arctan (u(x))=x+c_{1}\)
- \(\quad\) Solve for \(u(x)\)
\[
u(x)=\tan \left(x+c_{1}\right)
\]
- \(\quad\) Solve 1 st ODE for \(u(x)\)
\[
u(x)=\tan \left(x+c_{1}\right)
\]
- \(\quad\) Make substitution \(u=y^{\prime}\)
\[
y^{\prime}=\tan \left(x+c_{1}\right)
\]
- Integrate both sides to solve for \(y\)
\(\int y^{\prime} d x=\int \tan \left(x+c_{1}\right) d x+c_{2}\)
- Compute integrals
\[
y=\frac{\ln \left(1+\tan \left(x+c_{1}\right)^{2}\right)}{2}+c_{2}
\]

Check validity of solution \(y=\frac{\ln \left(1+\tan \left(x+c_{1}\right)^{2}\right)}{2}+c_{2}\)
- Use initial condition \(y(0)=0\)
\[
0=\frac{\ln \left(1+\tan \left(c_{1}\right)^{2}\right)}{2}+c_{2}
\]
- Compute derivative of the solution
\[
y^{\prime}=\tan \left(x+c_{1}\right)
\]
- Use the initial condition \(\left.y^{\prime}\right|_{\{x=0\}}=0\)
\[
0=\tan \left(c_{1}\right)
\]
- Solve for \(c_{1}\) and \(c_{2}\)
\[
\left\{c_{1}=0, c_{2}=0\right\}
\]
- Substitute constant values into general solution and simplify
\[
y=\frac{\ln \left(\sec (x)^{2}\right)}{2}
\]
- \(\quad\) Solution to the IVP
\[
y=\frac{\ln \left(\sec (x)^{2}\right)}{2}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying 2nd order Liouville trying 2nd order WeierstrassP trying 2nd order JacobiSN differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation trying 2nd order, 2 integrating factors of the form mu(x,y) trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful <- 2nd order, 2 integrating factors of the form mu(x,y) successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.062 (sec). Leaf size: 7
```

dsolve([diff(y(x),x\$2)=1+diff(y(x),x)~2,y(0) = 0, D(y)(0) = 0],y(x), singsol=all)

```
\[
y(x)=\ln (\sec (x))
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 2.581 (sec). Leaf size: 27
DSolve[\{y'' \(\left.[x]==1+\left(y y^{\prime}[x]\right) \sim 2,\left\{y[0]==0, y^{\prime}[0]==0\right\}\right\}, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& y(x) \rightarrow-\log (-\cos (x))+i \pi \\
& y(x) \rightarrow-\log (\cos (x))
\end{aligned}
\]

\section*{23.8 problem 3}
23.8.1 Solving as second order integrable as is ode . . . . . . . . . . . 1958
23.8.2 Solving as second order ode missing y ode . . . . . . . . . . . . 1961
23.8.3 Solving as second order ode missing \(x\) ode . . . . . . . . . . . . 1963
23.8.4 Solving as exact nonlinear second order ode ode . . . . . . . . . 1966
23.8.5 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 1969

Internal problem ID [6098]
Internal file name [OUTPUT/5346_Sunday_June_05_2022_03_34_53_PM_64136479/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equations. Page 238
Problem number: 3 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_integrable_cas_is", "second_order_ode_missing_x", "second_order_ode_missing_y", "exact nonlinear second order ode"

Maple gives the following as the ode type
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_poly_yn ]]
\[
y^{\prime \prime}+\frac{1}{2 y^{\prime 2}}=0
\]

With initial conditions
\[
\left[y(0)=1, y^{\prime}(0)=-1\right]
\]

\subsection*{23.8.1 Solving as second order integrable as is ode}

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{aligned}
& \quad \int 2 y^{\prime \prime} y^{\prime 2} d x=\int(-1) d x \\
& \frac{2 y^{\prime 3}}{3}=-x+c_{1}
\end{aligned}
\]

Which is now solved for \(y\). Solving the given ode for \(y^{\prime}\) results in 3 differential equations to solve. Each one of these will generate a solution. The equations generated are
\[
\begin{align*}
& y^{\prime}=\frac{\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{2}  \tag{1}\\
& y^{\prime}=-\frac{\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{4}+\frac{i \sqrt{3}\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{4}  \tag{2}\\
& y^{\prime}=-\frac{\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{4}-\frac{i \sqrt{3}\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{4} \tag{3}
\end{align*}
\]

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives
\[
\begin{aligned}
y & =\int \frac{\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{2} \mathrm{~d} x \\
& =\frac{3\left(-c_{1}+x\right)\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{8}+c_{2}
\end{aligned}
\]

Solving equation (2)
Integrating both sides gives
\[
\begin{aligned}
y & =\int-\frac{\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{4}+\frac{i \sqrt{3}\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{4} \mathrm{~d} x \\
& =\frac{3\left(-c_{1}+x\right)\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{16}+c_{3}
\end{aligned}
\]

Solving equation (3)
Integrating both sides gives
\[
\begin{aligned}
y & =\int-\frac{\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{4}-\frac{i \sqrt{3}\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{4} \mathrm{~d} x \\
& =-\frac{3\left(-c_{1}+x\right)\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{16}+c_{4}
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the First solution
\[
\begin{equation*}
y=\frac{3\left(-c_{1}+x\right)\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{8}+c_{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=1\) and \(x=0\) in the above gives
\[
\begin{equation*}
1=-\frac{3 c_{1}^{\frac{4}{3}} 12^{\frac{1}{3}}}{8}+c_{2} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=\frac{3\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{8}-\frac{3\left(-c_{1}+x\right)}{2\left(-12 x+12 c_{1}\right)^{\frac{2}{3}}}
\]
substituting \(y^{\prime}=-1\) and \(x=0\) in the above gives
\[
\begin{equation*}
-1=\frac{c_{1}^{\frac{1}{3}} 12^{\frac{1}{3}}}{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). There is no solution for the constants of integrations. This solution is removed.

Looking at the Second solution
\[
\begin{equation*}
y=\frac{3\left(-c_{1}+x\right)\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{16}+c_{3} \tag{2}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=1\) and \(x=0\) in the above gives
\[
\begin{equation*}
1=-\frac{32^{\frac{2}{3}}\left(i 3^{\frac{5}{6}}-3^{\frac{1}{3}}\right) c_{1}^{\frac{4}{3}}}{16}+c_{3} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=\frac{3\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{16}-\frac{3\left(-c_{1}+x\right)(i \sqrt{3}-1)}{4\left(-12 x+12 c_{1}\right)^{\frac{2}{3}}}
\]
substituting \(y^{\prime}=-1\) and \(x=0\) in the above gives
\[
\begin{equation*}
-1=\frac{2^{\frac{2}{3}} c_{1}^{\frac{1}{3}}\left(i 3^{\frac{5}{6}}-3^{\frac{1}{3}}\right)}{4} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{3}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=-\frac{2}{3} \\
& c_{3}=\frac{3}{2}
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=\frac{i(-12 x-8)^{\frac{1}{3}} \sqrt{3}}{8}-\frac{(-12 x-8)^{\frac{1}{3}}}{8}+\frac{3 i(-12 x-8)^{\frac{1}{3}} \sqrt{3} x}{16}-\frac{3(-12 x-8)^{\frac{1}{3}} x}{16}+\frac{3}{2}
\]

Looking at the Third solution
\[
\begin{equation*}
y=-\frac{3\left(-c_{1}+x\right)\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{16}+c_{4} \tag{3}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=1\) and \(x=0\) in the above gives
\[
\begin{equation*}
1=\frac{3\left(i 3^{\frac{5}{6}}+3^{\frac{1}{3}}\right) 2^{\frac{2}{3}} c_{1}^{\frac{4}{3}}}{16}+c_{4} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-\frac{3\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{16}+\frac{3\left(-c_{1}+x\right)(1+i \sqrt{3})}{4\left(-12 x+12 c_{1}\right)^{\frac{2}{3}}}
\]
substituting \(y^{\prime}=-1\) and \(x=0\) in the above gives
\[
\begin{equation*}
-1=-\frac{2^{\frac{2}{3}} c_{1}^{\frac{1}{3}}\left(i 3^{\frac{5}{6}}+3^{\frac{1}{3}}\right)}{4} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{4}\right\}\). There is no solution for the constants of integrations. This solution is removed.
Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{3}{2}+\frac{3(i \sqrt{3}-1)\left(\frac{2}{3}+x\right)(-12 x-8)^{\frac{1}{3}}}{16} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\frac{3}{2}+\frac{3(i \sqrt{3}-1)\left(\frac{2}{3}+x\right)(-12 x-8)^{\frac{1}{3}}}{16}
\]

Verified OK.

\subsection*{23.8.2 Solving as second order ode missing y ode}

This is second order ode with missing dependent variable \(y\). Let
\[
p(x)=y^{\prime}
\]

Then
\[
p^{\prime}(x)=y^{\prime \prime}
\]

Hence the ode becomes
\[
2 p^{\prime}(x) p(x)^{2}+1=0
\]

Which is now solve for \(p(x)\) as first order ode. Integrating both sides gives
\[
\begin{aligned}
\int-2 p^{2} d p & =x+c_{1} \\
-\frac{2 p^{3}}{3} & =x+c_{1}
\end{aligned}
\]

Solving for \(p\) gives these solutions
\[
\begin{aligned}
& p_{1}=\frac{\left(-12 x-12 c_{1}\right)^{\frac{1}{3}}}{2} \\
& p_{2}=-\frac{\left(-12 x-12 c_{1}\right)^{\frac{1}{3}}}{4}-\frac{i \sqrt{3}\left(-12 x-12 c_{1}\right)^{\frac{1}{3}}}{4} \\
& p_{3}=-\frac{\left(-12 x-12 c_{1}\right)^{\frac{1}{3}}}{4}+\frac{i \sqrt{3}\left(-12 x-12 c_{1}\right)^{\frac{1}{3}}}{4}
\end{aligned}
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=0\) and \(p=-1\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{gathered}
-1=\frac{i\left(-12 c_{1}\right)^{\frac{1}{3}} \sqrt{3}}{4}-\frac{\left(-12 c_{1}\right)^{\frac{1}{3}}}{4} \\
c_{1}=\frac{2}{3}
\end{gathered}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
p(x)=\frac{i(-12 x-8)^{\frac{1}{3}} \sqrt{3}}{4}-\frac{(-12 x-8)^{\frac{1}{3}}}{4}
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=0\) and \(p=-1\) in the above solution gives an equation to solve for the constant of integration.
\[
-1=-\frac{i\left(-12 c_{1}\right)^{\frac{1}{3}} \sqrt{3}}{4}-\frac{\left(-12 c_{1}\right)^{\frac{1}{3}}}{4}
\]

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for \(c_{1}\). Substituting \(x=0\) and \(p=-1\) in the above solution gives an equation to solve for the constant of integration.
\[
-1=\frac{\left(-12 c_{1}\right)^{\frac{1}{3}}}{2}
\]

Warning: Unable to solve for constant of integration. Since \(p=y^{\prime}\) then the new first order ode to solve is
\[
y^{\prime}=\frac{i(-12 x-8)^{\frac{1}{3}} \sqrt{3}}{4}-\frac{(-12 x-8)^{\frac{1}{3}}}{4}
\]

Integrating both sides gives
\[
\begin{aligned}
y & =\int \frac{i(-12 x-8)^{\frac{1}{3}} \sqrt{3}}{4}-\frac{(-12 x-8)^{\frac{1}{3}}}{4} \mathrm{~d} x \\
& =\frac{(2+3 x)(-12 x-8)^{\frac{1}{3}}(i \sqrt{3}-1)}{16}+c_{2}
\end{aligned}
\]

Initial conditions are used to solve for \(c_{2}\). Substituting \(x=0\) and \(y=1\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{gathered}
1=-\frac{1}{2}+c_{2} \\
c_{2}=\frac{3}{2}
\end{gathered}
\]

Substituting \(c_{2}\) found above in the general solution gives
\[
y=\frac{i(-12 x-8)^{\frac{1}{3}} \sqrt{3}}{8}-\frac{(-12 x-8)^{\frac{1}{3}}}{8}+\frac{3 i(-12 x-8)^{\frac{1}{3}} \sqrt{3} x}{16}-\frac{3(-12 x-8)^{\frac{1}{3}} x}{16}+\frac{3}{2}
\]

Initial conditions are used to solve for the constants of integration.

\section*{Summary}

The solution(s) found are the following
\[
y=\frac{i(-12 x-8)^{\frac{1}{3}} \sqrt{3}}{8}-\frac{(-12 x-8)^{\frac{1}{3}}}{8}+\frac{3 i(-12 x-8)^{\frac{1}{3}} \sqrt{3} x}{16}-\frac{3(-12 x-8)^{\frac{1}{3}} x}{16}+\left(\frac{3}{2}\right)
\]

\section*{Verification of solutions}
\[
y=\frac{i(-12 x-8)^{\frac{1}{3}} \sqrt{3}}{8}-\frac{(-12 x-8)^{\frac{1}{3}}}{8}+\frac{3 i(-12 x-8)^{\frac{1}{3}} \sqrt{3} x}{16}-\frac{3(-12 x-8)^{\frac{1}{3}} x}{16}+\frac{3}{2}
\]

Verified OK.

\subsection*{23.8.3 Solving as second order ode missing \(x\) ode}

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable \(y\) an independent variable. Using
\[
y^{\prime}=p(y)
\]

Then
\[
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
\]

Hence the ode becomes
\[
2 p(y)^{3}\left(\frac{d}{d y} p(y)\right)=-1
\]

Which is now solved as first order ode for \(p(y)\). Integrating both sides gives
\[
\begin{aligned}
\int-2 p^{3} d p & =y+c_{1} \\
-\frac{p^{4}}{2} & =y+c_{1}
\end{aligned}
\]

Solving for \(p\) gives these solutions
\[
\begin{aligned}
& p_{1}=\left(-2 c_{1}-2 y\right)^{\frac{1}{4}} \\
& p_{2}=-i\left(-2 c_{1}-2 y\right)^{\frac{1}{4}} \\
& p_{3}=i\left(-2 c_{1}-2 y\right)^{\frac{1}{4}} \\
& p_{4}=-\left(-2 c_{1}-2 y\right)^{\frac{1}{4}}
\end{aligned}
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(y=1\) and \(p=-1\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{gathered}
-1=-\left(-2 c_{1}-2\right)^{\frac{1}{4}} \\
c_{1}=-\frac{3}{2}
\end{gathered}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
p(y)=-(3-2 y)^{\frac{1}{4}}
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(y=1\) and \(p=-1\) in the above solution gives an equation to solve for the constant of integration.
\[
-1=i\left(-2 c_{1}-2\right)^{\frac{1}{4}}
\]

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for \(c_{1}\). Substituting \(y=1\) and \(p=-1\) in the above solution gives an equation to solve for the constant of integration.
\[
-1=-i\left(-2 c_{1}-2\right)^{\frac{1}{4}}
\]

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for \(c_{1}\). Substituting \(y=1\) and \(p=-1\) in the above solution gives an equation to solve for the constant of integration.
\[
-1=\left(-2 c_{1}-2\right)^{\frac{1}{4}}
\]

Warning: Unable to solve for constant of integration. For solution (1) found earlier, since \(p=y^{\prime}\) then we now have a new first order ode to solve which is
\[
y^{\prime}=-(3-2 y)^{\frac{1}{4}}
\]

Integrating both sides gives
\[
\begin{aligned}
\int-\frac{1}{(3-2 y)^{\frac{1}{4}}} d y & =\int d x \\
\frac{2(3-2 y)^{\frac{3}{4}}}{3} & =c_{2}+x
\end{aligned}
\]

Initial conditions are used to solve for \(c_{2}\). Substituting \(x=0\) and \(y=1\) in the above solution gives an equation to solve for the constant of integration.
\[
\frac{2}{3}=c_{2}
\]
\[
c_{2}=\frac{2}{3}
\]

Substituting \(c_{2}\) found above in the general solution gives
\[
\frac{2(3-2 y)^{\frac{3}{4}}}{3}=\frac{2}{3}+x
\]

Solving for \(y\) from the above gives
\[
y=\frac{3}{2}+\frac{(-3 x-2)\left(\frac{3 x}{2}+1\right)^{\frac{1}{3}}}{4}
\]

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{3}{2}+\frac{(-3 x-2)\left(\frac{3 x}{2}+1\right)^{\frac{1}{3}}}{4} \tag{1}
\end{equation*}
\]


Figure 228: Solution plot

Verification of solutions
\[
y=\frac{3}{2}+\frac{(-3 x-2)\left(\frac{3 x}{2}+1\right)^{\frac{1}{3}}}{4}
\]

Verified OK.

\subsection*{23.8.4 Solving as exact nonlinear second order ode ode}

An exact non-linear second order ode has the form
\[
a_{2}\left(x, y, y^{\prime}\right) y^{\prime \prime}+a_{1}\left(x, y, y^{\prime}\right) y^{\prime}+a_{0}\left(x, y, y^{\prime}\right)=0
\]

Where the following conditions are satisfied
\[
\begin{aligned}
\frac{\partial a_{2}}{\partial y} & =\frac{\partial a_{1}}{\partial y^{\prime}} \\
\frac{\partial a_{2}}{\partial x} & =\frac{\partial a_{0}}{\partial y^{\prime}} \\
\frac{\partial a_{1}}{\partial x} & =\frac{\partial a_{0}}{\partial y}
\end{aligned}
\]

Looking at the the ode given we see that
\[
\begin{aligned}
& a_{2}=2 y^{\prime 2} \\
& a_{1}=0 \\
& a_{0}=1
\end{aligned}
\]

Applying the conditions to the above shows this is a nonlinear exact second order ode. Therefore it can be reduced to first order ode given by
\[
\begin{aligned}
& \int a_{2} d y^{\prime}+\int a_{1} d y+\int a_{0} d x=c_{1} \\
& \int 2 y^{\prime 2} d y^{\prime}+\int 0 d y+\int 1 d x=c_{1}
\end{aligned}
\]

Which results in
\[
\frac{2 y^{\prime 3}}{3}+x=c_{1}
\]

Which is now solved Solving the given ode for \(y^{\prime}\) results in 3 differential equations to solve. Each one of these will generate a solution. The equations generated are
\[
\begin{align*}
y^{\prime} & =\frac{\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{2}  \tag{1}\\
y^{\prime} & =-\frac{\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{4}+\frac{i \sqrt{3}\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{4}  \tag{2}\\
y^{\prime} & =-\frac{\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{4}-\frac{i \sqrt{3}\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{4} \tag{3}
\end{align*}
\]

Now each one of the above ODE is solved.

Solving equation (1)
Integrating both sides gives
\[
\begin{aligned}
y & =\int \frac{\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{2} \mathrm{~d} x \\
& =\frac{3\left(-c_{1}+x\right)\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{8}+c_{2}
\end{aligned}
\]

Solving equation (2)
Integrating both sides gives
\[
\begin{aligned}
y & =\int-\frac{\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{4}+\frac{i \sqrt{3}\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{4} \mathrm{~d} x \\
& =\frac{3\left(-c_{1}+x\right)\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{16}+c_{3}
\end{aligned}
\]

Solving equation (3)
Integrating both sides gives
\[
\begin{aligned}
y & =\int-\frac{\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{4}-\frac{i \sqrt{3}\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{4} \mathrm{~d} x \\
& =-\frac{3\left(-c_{1}+x\right)\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{16}+c_{4}
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the First solution
\[
\begin{equation*}
y=\frac{3\left(-c_{1}+x\right)\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{8}+c_{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=1\) and \(x=0\) in the above gives
\[
\begin{equation*}
1=-\frac{3 c_{1}^{\frac{4}{3}} 12^{\frac{1}{3}}}{8}+c_{2} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=\frac{3\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{8}-\frac{3\left(-c_{1}+x\right)}{2\left(-12 x+12 c_{1}\right)^{\frac{2}{3}}}
\]
substituting \(y^{\prime}=-1\) and \(x=0\) in the above gives
\[
\begin{equation*}
-1=\frac{c_{1}^{\frac{1}{3}} 12^{\frac{1}{3}}}{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). There is no solution for the constants of integrations. This solution is removed.

Looking at the Second solution
\[
\begin{equation*}
y=\frac{3\left(-c_{1}+x\right)\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{16}+c_{3} \tag{2}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=1\) and \(x=0\) in the above gives
\[
\begin{equation*}
1=-\frac{32^{\frac{2}{3}}\left(i 3^{\frac{5}{6}}-3^{\frac{1}{3}}\right) c_{1}^{\frac{4}{3}}}{16}+c_{3} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=\frac{3\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{16}-\frac{3\left(-c_{1}+x\right)(i \sqrt{3}-1)}{4\left(-12 x+12 c_{1}\right)^{\frac{2}{3}}}
\]
substituting \(y^{\prime}=-1\) and \(x=0\) in the above gives
\[
\begin{equation*}
-1=\frac{2^{\frac{2}{3}} c_{1}^{\frac{1}{3}}\left(i 3^{\frac{5}{6}}-3^{\frac{1}{3}}\right)}{4} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{3}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=-\frac{2}{3} \\
& c_{3}=\frac{3}{2}
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=\frac{i(-12 x-8)^{\frac{1}{3}} \sqrt{3}}{8}-\frac{(-12 x-8)^{\frac{1}{3}}}{8}+\frac{3 i(-12 x-8)^{\frac{1}{3}} \sqrt{3} x}{16}-\frac{3(-12 x-8)^{\frac{1}{3}} x}{16}+\frac{3}{2}
\]

Looking at the Third solution
\[
\begin{equation*}
y=-\frac{3\left(-c_{1}+x\right)\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{16}+c_{4} \tag{3}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=1\) and \(x=0\) in the above gives
\[
\begin{equation*}
1=\frac{3\left(i 3^{\frac{5}{6}}+3^{\frac{1}{3}}\right) 2^{\frac{2}{3}} c_{1}^{\frac{4}{3}}}{16}+c_{4} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-\frac{3\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{16}+\frac{3\left(-c_{1}+x\right)(1+i \sqrt{3})}{4\left(-12 x+12 c_{1}\right)^{\frac{2}{3}}}
\]
substituting \(y^{\prime}=-1\) and \(x=0\) in the above gives
\[
\begin{equation*}
-1=-\frac{2^{\frac{2}{3}} c_{1}^{\frac{1}{3}}\left(i 3^{\frac{5}{6}}+3^{\frac{1}{3}}\right)}{4} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{4}\right\}\). There is no solution for the constants of integrations. This solution is removed.
Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{3}{2}+\frac{3(i \sqrt{3}-1)\left(\frac{2}{3}+x\right)(-12 x-8)^{\frac{1}{3}}}{16} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{3}{2}+\frac{3(i \sqrt{3}-1)\left(\frac{2}{3}+x\right)(-12 x-8)^{\frac{1}{3}}}{16}
\]

Verified OK.

\subsection*{23.8.5 Maple step by step solution}

Let's solve
\[
\left[2 y^{\prime \prime} y^{\prime 2}=-1, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=-1\right]
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- \(\quad\) Make substitution \(u=y^{\prime}\) to reduce order of ODE
\[
2 u^{\prime}(x) u(x)^{2}=-1
\]
- Integrate both sides with respect to \(x\)
\(\int 2 u^{\prime}(x) u(x)^{2} d x=\int(-1) d x+c_{1}\)
- Evaluate integral
\(\frac{2 u(x)^{3}}{3}=-x+c_{1}\)
- \(\quad\) Solve for \(u(x)\)
\(u(x)=\frac{\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{2}\)
- \(\quad\) Solve 1st ODE for \(u(x)\)
\(u(x)=\frac{\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{2}\)
- \(\quad\) Make substitution \(u=y^{\prime}\)
\(y^{\prime}=\frac{\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{2}\)
- Integrate both sides to solve for \(y\)
\(\int y^{\prime} d x=\int \frac{\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{2} d x+c_{2}\)
- Compute integrals
\(y=\frac{3\left(-c_{1}+x\right)\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{8}+c_{2}\)
Check validity of solution \(y=\frac{3\left(-c_{1}+x\right)\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{8}+c_{2}\)
- Use initial condition \(y(0)=1\)
\(1=-\frac{3 c_{1}^{\frac{4}{3} 12^{\frac{1}{3}}}}{8}+c_{2}\)
- Compute derivative of the solution
\[
y^{\prime}=\frac{3\left(-12 x+12 c_{1}\right)^{\frac{1}{3}}}{8}-\frac{3\left(-c_{1}+x\right)}{2\left(-12 x+12 c_{1}\right)^{\frac{2}{3}}}
\]
- Use the initial condition \(\left.y^{\prime}\right|_{\{x=0\}}=-1\) \(-1=\frac{c_{1}^{\frac{1}{3}} 12^{\frac{1}{3}}}{2}\)
- Solve for \(c_{1}\) and \(c_{2}\)
- The solution does not satisfy the initial conditions

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying 2nd order Liouville trying 2nd order WeierstrassP trying 2nd order JacobiSN differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation trying 2nd order, 2 integrating factors of the form mu(x,y) trying differential order: 2; missing variables `, `-> Computing symmetries using: way = 3 -> Calling odsolve with the ODE`, diff(_b(_a), _a) = -(1/2)/_b(_a)^2, _b(_a), HINT = [[1, 0]
symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:` [1, 0], [_a, 1/3*_b]

```
\(\checkmark\) Solution by Maple
Time used: 0.469 (sec). Leaf size: 26
```

dsolve([diff (y(x),x\$2)=-1/(2*\operatorname{diff}(y(x),x)~2),y(0)=1, D(y)(0) = -1],y(x), singsol=all)

```
\[
y(x)=\frac{3\left(x+\frac{2}{3}\right)(-12 x-8)^{\frac{1}{3}}(i \sqrt{3}-1)}{16}+\frac{3}{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 27
DSolve \(\left[\left\{y^{\prime}{ }^{\prime}[x]==-1 /\left(2 *\left(y y^{\prime}[x]\right)^{\wedge} 2\right),\left\{y[0]==1, y^{\prime}[0]==-1\right\}\right\}, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) Tru
\[
y(x) \rightarrow \frac{1}{8}\left(12-(-2)^{2 / 3}(-3 x-2)^{4 / 3}\right)
\]

\section*{23.9 problem 5(b)}
23.9.1 Solving as second order ode can be made integrable ode . . . . 1972
23.9.2 Solving as second order ode missing x ode . . . . . . . . . . . . 1974

Internal problem ID [6099]
Internal file name [OUTPUT/5347_Sunday_June_05_2022_03_34_57_PM_92223807/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equations. Page 238
Problem number: 5(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_ode_missing_x", "second_order_ode_can__be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]
\[
y^{\prime \prime}+\sin (y)=0
\]

With initial conditions
\[
\left[y(0)=0, y^{\prime}(0)=\beta\right]
\]

\subsection*{23.9.1 Solving as second order ode can be made integrable ode}

Multiplying the ode by \(y^{\prime}\) gives
\[
y^{\prime} y^{\prime \prime}+y^{\prime} \sin (y)=0
\]

Integrating the above w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+y^{\prime} \sin (y)\right) d x=0 \\
\frac{y^{\prime 2}}{2}-\cos (y)=c_{2}
\end{gathered}
\]

Which is now solved for \(y\). Solving the given ode for \(y^{\prime}\) results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are
\[
\begin{align*}
& y^{\prime}=\sqrt{2 \cos (y)+2 c_{1}}  \tag{1}\\
& y^{\prime}=-\sqrt{2 \cos (y)+2 c_{1}} \tag{2}
\end{align*}
\]

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{\sqrt{2 \cos (y)+2 c_{1}}} d y & =\int d x \\
\frac{2 \sqrt{\frac{\cos (y)+c_{1}}{c_{1}+1}} \text { InverseJacobiAM }\left(\frac{y}{2}, \frac{2}{\sqrt{2+2 c_{1}}}\right)}{\sqrt{2 \cos (y)+2 c_{1}}} & =c_{2}+x
\end{aligned}
\]

Solving equation (2)
Integrating both sides gives
\[
\begin{aligned}
\int-\frac{1}{\sqrt{2 \cos (y)+2 c_{1}}} d y & =\int d x \\
-\frac{2 \sqrt{\frac{\cos (y)+c_{1}}{c_{1}+1}} \text { InverseJacobiAM }\left(\frac{y}{2}, \frac{2}{\sqrt{2+2 c_{1}}}\right)}{\sqrt{2 \cos (y)+2 c_{1}}} & =x+c_{3}
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the First solution
\[
\begin{equation*}
\frac{2 \sqrt{\frac{\cos (y)+c_{1}}{c_{1}+1}} \text { InverseJacobiAM }\left(\frac{y}{2}, \frac{2}{\sqrt{2+2 c_{1}}}\right)}{\sqrt{2 \cos (y)+2 c_{1}}}=c_{2}+x \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=c_{2} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
Expression too large to display
substituting \(y^{\prime}=\beta\) and \(x=0\) in the above gives
Expression too large to display

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Warning, unable to solve for constants of integrations.

Looking at the Second solution
\[
\begin{equation*}
-\frac{2 \sqrt{\frac{\cos (y)+c_{1}}{c_{1}+1}} \text { InverseJacobiAM }\left(\frac{y}{2}, \frac{2}{\sqrt{2+2 c_{1}}}\right)}{\sqrt{2 \cos (y)+2 c_{1}}}=x+c_{3} \tag{2}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=c_{3} \tag{1A}
\end{equation*}
\]

Taking derivative of the solution gives

> Expression too large to display
substituting \(y^{\prime}=\beta\) and \(x=0\) in the above gives
Expression too large to display

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{3}\right\}\). Warning, unable to solve for constants of integrations.

\section*{Verification of solutions N/A}

\subsection*{23.9.2 Solving as second order ode missing \(x\) ode}

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable \(y\) an independent variable. Using
\[
y^{\prime}=p(y)
\]

Then
\[
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
\]

Hence the ode becomes
\[
p(y)\left(\frac{d}{d y} p(y)\right)=-\sin (y)
\]

Which is now solved as first order ode for \(p(y)\). In canonical form the ODE is
\[
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =-\frac{\sin (y)}{p}
\end{aligned}
\]

Where \(f(y)=-\sin (y)\) and \(g(p)=\frac{1}{p}\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{\frac{1}{p}} d p & =-\sin (y) d y \\
\int \frac{1}{\frac{1}{p}} d p & =\int-\sin (y) d y \\
\frac{p^{2}}{2} & =\cos (y)+c_{1}
\end{aligned}
\]

The solution is
\[
\frac{p(y)^{2}}{2}-\cos (y)-c_{1}=0
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(y=0\) and \(p=\beta\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{gathered}
\frac{\beta^{2}}{2}-1-c_{1}=0 \\
c_{1}=-1+\frac{\beta^{2}}{2}
\end{gathered}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
\frac{p^{2}}{2}-\cos (y)+1-\frac{\beta^{2}}{2}=0
\]

For solution (1) found earlier, since \(p=y^{\prime}\) then we now have a new first order ode to solve which is
\[
\frac{y^{\prime 2}}{2}-\cos (y)+1-\frac{\beta^{2}}{2}=0
\]

Solving the given ode for \(y^{\prime}\) results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are
\[
\begin{align*}
& y^{\prime}=\sqrt{\beta^{2}+2 \cos (y)-2}  \tag{1}\\
& y^{\prime}=-\sqrt{\beta^{2}+2 \cos (y)-2} \tag{2}
\end{align*}
\]

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{\sqrt{\beta^{2}+2 \cos (y)-2}} d y & =\int d x \\
\frac{2 \sqrt{\frac{\beta^{2}+2 \cos (y)-2}{\beta^{2}}} \text { InverseJacobiAM }\left(\frac{y}{2}, \frac{2}{\beta}\right)}{\operatorname{csgn}(\beta)^{2} \sqrt{\beta^{2}+2 \cos (y)-2}} & =c_{2}+x
\end{aligned}
\]

Simplifying the solution \(\frac{2 \sqrt{\frac{\beta^{2}+2 \cos (y)-2}{\beta^{2}}} \operatorname{Inverse\operatorname {JacobiAM}(\frac {y}{2},\frac {2}{\beta })}}{\operatorname{csgn}(\beta)^{2} \sqrt{\beta^{2}+2 \cos (y)-2}}=c_{2}+x\) to \(\frac{2 \sqrt{\frac{\beta^{2}+2 \cos (y)-2}{\beta^{2}}} \operatorname{InverseJacobiAM}\left(\frac{y}{2}, \frac{2}{\beta}\right)}{\sqrt{\beta^{2}+2 \cos (y)-2}}=\) \(c_{2}+x\) Initial conditions are used to solve for \(c_{2}\). Substituting \(x=0\) and \(y=0\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{aligned}
& 0=c_{2} \\
& c_{2}=0
\end{aligned}
\]

Substituting \(c_{2}\) found above in the general solution gives
\[
\frac{2 \sqrt{\frac{\beta^{2}+2 \cos (y)-2}{\beta^{2}}} \text { InverseJacobiAM }\left(\frac{y}{2}, \frac{2}{\beta}\right)}{\sqrt{\beta^{2}+2 \cos (y)-2}}=x
\]

The above simplifies to
\[
-x \sqrt{\beta^{2}+2 \cos (y)-2}+2 \sqrt{\frac{\beta^{2}+2 \cos (y)-2}{\beta^{2}}} \text { InverseJacobiAM }\left(\frac{y}{2}, \frac{2}{\beta}\right)=0
\]

Solving equation (2)
Integrating both sides gives
\[
\begin{aligned}
\int-\frac{1}{\sqrt{\beta^{2}+2 \cos (y)-2}} d y & =\int d x \\
-\frac{2 \sqrt{\frac{\beta^{2}+2 \cos (y)-2}{\beta^{2}}} \text { InverseJacobiAM }\left(\frac{y}{2}, \frac{2}{\beta}\right)}{\operatorname{csgn}(\beta)^{2} \sqrt{\beta^{2}+2 \cos (y)-2}} & =x+c_{3}
\end{aligned}
\]

Simplifying the solution \(-\frac{2 \sqrt{\frac{\beta^{2}+2 \cos (y)-2}{\beta^{2}}} \operatorname{InverseJacobiAM~}\left(\frac{y}{2}, \frac{2}{\beta}\right)}{\operatorname{csgn}(\beta)^{2} \sqrt{\beta^{2}+2 \cos (y)-2}}=x+c_{3}\) to \(-\frac{2 \sqrt{\frac{\beta^{2}+2 \cos (y)-2}{\beta^{2}}} \operatorname{InverseJacobiAM~}\left(\frac{y}{2}, \frac{2}{\beta}\right)}{\sqrt{\beta^{2}+2 \cos (y)-2}}=\) \(x+c_{3}\) Initial conditions are used to solve for \(c_{3}\). Substituting \(x=0\) and \(y=0\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{aligned}
& 0=c_{3} \\
& c_{3}=0
\end{aligned}
\]

Substituting \(c_{3}\) found above in the general solution gives
\[
-\frac{2 \sqrt{\frac{\beta^{2}+2 \cos (y)-2}{\beta^{2}}} \text { InverseJacobiAM }\left(\frac{y}{2}, \frac{2}{\beta}\right)}{\sqrt{\beta^{2}+2 \cos (y)-2}}=x
\]

The above simplifies to
\[
-x \sqrt{\beta^{2}+2 \cos (y)-2}-2 \sqrt{\frac{\beta^{2}+2 \cos (y)-2}{\beta^{2}}} \text { InverseJacobiAM }\left(\frac{y}{2}, \frac{2}{\beta}\right)=0
\]

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following
\[
\begin{align*}
& -x \sqrt{\beta^{2}+2 \cos (y)-2}+2 \sqrt{\frac{\beta^{2}+2 \cos (y)-2}{\beta^{2}}} \text { InverseJacobiAM }\left(\frac{y}{2}, \frac{2}{\beta}\right)=0  \tag{1}\\
& -x \sqrt{\beta^{2}+2 \cos (y)-2}-2 \sqrt{\frac{\beta^{2}+2 \cos (y)-2}{\beta^{2}}} \text { InverseJacobiAM }\left(\frac{y}{2}, \frac{2}{\beta}\right)=0 \tag{2}
\end{align*}
\]

Verification of solutions
\[
-x \sqrt{\beta^{2}+2 \cos (y)-2}+2 \sqrt{\frac{\beta^{2}+2 \cos (y)-2}{\beta^{2}}} \text { InverseJacobiAM }\left(\frac{y}{2}, \frac{2}{\beta}\right)=0
\]

Verified OK.
\[
-x \sqrt{\beta^{2}+2 \cos (y)-2}-2 \sqrt{\frac{\beta^{2}+2 \cos (y)-2}{\beta^{2}}} \text { InverseJacobiAM }\left(\frac{y}{2}, \frac{2}{\beta}\right)=0
\]

Verified OK.

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying 2nd order Liouville trying 2nd order WeierstrassP trying 2nd order JacobiSN differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation trying 2nd order, 2 integrating factors of the form mu(x,y) trying differential order: 2; missing variables `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = exp_sym -> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)+sin(_a) = 0, _b(_a)` *** Suble Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli <- Bernoulli successful <- differential order: 2; canonical coordinates successful <- differential order 2; missing variables successful`

```
\(\checkmark\) Solution by Maple
Time used: 1.062 (sec). Leaf size: 53
```

dsolve([diff(y(x),x\$2)+\operatorname{sin}(y(x))=0,y(0) = 0, D(y)(0) = beta],y(x), singsol=all)

```
\[
\begin{aligned}
& y(x)=\operatorname{RootOf}\left(-\left(\int_{0}^{-Z} \frac{1}{\sqrt{2 \cos \left(\_a\right)+\beta^{2}-2}} d \_a\right)+x\right) \\
& y(x)=\operatorname{RootOf}\left(\int_{0}^{-Z} \frac{1}{\sqrt{2 \cos \left(\_a\right)+\beta^{2}-2}} d \_a+x\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.621 (sec). Leaf size: 19
DSolve \(\left[\left\{y^{\prime}{ }^{\prime}[x]+\operatorname{Sin}[y[x]]==0,\left\{y[0]==0, y^{\prime}[0]==\backslash[\right.\right.\right.\) Beta \(\left.\left.]\right\}\right\}, y[x], x\), IncludeSingularSolutions \(\rightarrow\) Tru
\[
y(x) \rightarrow 2 \text { JacobiAmplitude }\left(\frac{x \beta}{2}, \frac{4}{\beta^{2}}\right)
\]

\subsection*{23.10 problem 5(c)}
23.10.1 Solving as second order ode can be made integrable ode
23.10.2 Solving as second order ode missing x ode . . . . . . . . . . . . 1982

Internal problem ID [6100]
Internal file name [OUTPUT/5348_Sunday_June_05_2022_03_35_01_PM_69825552/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equations. Page 238
Problem number: 5(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_ode_missing_x", "second_order_ode_can__be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]
\[
y^{\prime \prime}+\sin (y)=0
\]

With initial conditions
\[
\left[y(0)=0, y^{\prime}(0)=2\right]
\]

\subsection*{23.10.1 Solving as second order ode can be made integrable ode}

Multiplying the ode by \(y^{\prime}\) gives
\[
y^{\prime} y^{\prime \prime}+y^{\prime} \sin (y)=0
\]

Integrating the above w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+y^{\prime} \sin (y)\right) d x=0 \\
\frac{y^{\prime 2}}{2}-\cos (y)=c_{2}
\end{gathered}
\]

Which is now solved for \(y\). Solving the given ode for \(y^{\prime}\) results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are
\[
\begin{align*}
& y^{\prime}=\sqrt{2 \cos (y)+2 c_{1}}  \tag{1}\\
& y^{\prime}=-\sqrt{2 \cos (y)+2 c_{1}} \tag{2}
\end{align*}
\]

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{\sqrt{2 \cos (y)+2 c_{1}}} d y & =\int d x \\
\frac{2 \sqrt{\frac{\cos (y)+c_{1}}{c_{1}+1}} \text { InverseJacobiAM }\left(\frac{y}{2}, \frac{2}{\sqrt{2+2 c_{1}}}\right)}{\sqrt{2 \cos (y)+2 c_{1}}} & =c_{2}+x
\end{aligned}
\]

Solving equation (2)
Integrating both sides gives
\[
\begin{aligned}
\int-\frac{1}{\sqrt{2 \cos (y)+2 c_{1}}} d y & =\int d x \\
-\frac{2 \sqrt{\frac{\cos (y)+c_{1}}{c_{1}+1}} \text { InverseJacobiAM }\left(\frac{y}{2}, \frac{2}{\sqrt{2+2 c_{1}}}\right)}{\sqrt{2 \cos (y)+2 c_{1}}} & =x+c_{3}
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the First solution
\[
\begin{equation*}
\frac{2 \sqrt{\frac{\cos (y)+c_{1}}{c_{1}+1}} \text { InverseJacobiAM }\left(\frac{y}{2}, \frac{2}{\sqrt{2+2 c_{1}}}\right)}{\sqrt{2 \cos (y)+2 c_{1}}}=c_{2}+x \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=c_{2} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
Expression too large to display
substituting \(y^{\prime}=2\) and \(x=0\) in the above gives
Expression too large to display

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). There is no solution for the constants of integrations. This solution is removed.

Looking at the Second solution
\[
\begin{equation*}
-\frac{2 \sqrt{\frac{\cos (y)+c_{1}}{c_{1}+1}} \text { InverseJacobiAM }\left(\frac{y}{2}, \frac{2}{\sqrt{2+2 c_{1}}}\right)}{\sqrt{2 \cos (y)+2 c_{1}}}=x+c_{3} \tag{2}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=c_{3} \tag{1A}
\end{equation*}
\]

Taking derivative of the solution gives

> Expression too large to display
substituting \(y^{\prime}=2\) and \(x=0\) in the above gives
Expression too large to display

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{3}\right\}\). There is no solution for the constants of integrations. This solution is removed.

Verification of solutions N/A

\subsection*{23.10.2 Solving as second order ode missing \(x\) ode}

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable \(y\) an independent variable. Using
\[
y^{\prime}=p(y)
\]

Then
\[
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
\]

Hence the ode becomes
\[
p(y)\left(\frac{d}{d y} p(y)\right)=-\sin (y)
\]

Which is now solved as first order ode for \(p(y)\). In canonical form the ODE is
\[
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =-\frac{\sin (y)}{p}
\end{aligned}
\]

Where \(f(y)=-\sin (y)\) and \(g(p)=\frac{1}{p}\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{\frac{1}{p}} d p & =-\sin (y) d y \\
\int \frac{1}{\frac{1}{p}} d p & =\int-\sin (y) d y \\
\frac{p^{2}}{2} & =\cos (y)+c_{1}
\end{aligned}
\]

The solution is
\[
\frac{p(y)^{2}}{2}-\cos (y)-c_{1}=0
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(y=0\) and \(p=2\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{gathered}
1-c_{1}=0 \\
c_{1}=1
\end{gathered}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
\frac{p^{2}}{2}-\cos (y)-1=0
\]

Solving for \(p(y)\) from the above gives
\[
p(y)=\sqrt{2} \sqrt{\cos (y)+1}
\]

For solution (1) found earlier, since \(p=y^{\prime}\) then we now have a new first order ode to solve which is
\[
y^{\prime}=\sqrt{2} \sqrt{\cos (y)+1}
\]

Integrating both sides gives
\[
\begin{aligned}
\int \frac{\sqrt{2}}{2 \sqrt{\cos (y)+1}} d y & =\int d x \\
\int^{y} \frac{\sqrt{2}}{2 \sqrt{\cos \left(\_a\right)+1}} d \_a & =c_{2}+x
\end{aligned}
\]

Initial conditions are used to solve for \(c_{2}\). Substituting \(x=0\) and \(y=0\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{gathered}
\int^{0} \frac{\sqrt{2}}{2 \sqrt{\cos \left(\_a\right)+1}} d \_a=c_{2} \\
c_{2}=\frac{\left(\int^{0} \sec \left(-\frac{a}{2}\right) d \_a\right)}{2}
\end{gathered}
\]

Substituting \(c_{2}\) found above in the general solution gives
\[
\int^{y} \frac{\sqrt{2}}{2 \sqrt{\cos \left(\_a\right)+1}} d \_a=\frac{\left(\int^{0} \sec \left(\frac{-a}{2}\right) d \_a\right)}{2}+x
\]

Simplifying the solution \(\frac{\left(\int^{y} \operatorname{cssn}\left(\cos \left(\frac{-}{2}^{a}\right)\right) \sec \left(\overline{-}_{2}^{a}\right) d \_a\right)}{2}=\frac{\left(\int^{0} \sec \left(\overline{-}_{2}^{a}\right) d \_a\right)}{2}+x\) to \(\frac{\left(\int^{y} \sec \left(\overline{-}_{2}^{a}\right) d \_a\right)}{2}=\) \(\frac{\left(\int^{0} \sec \left(\frac{-}{-} a\right) d \_a\right)}{2}+x\) Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following
\[
\begin{equation*}
\frac{\left(\int^{y} \sec \left(\frac{-a}{2}\right) d \_a\right)}{2}=\frac{\left(\int^{0} \sec \left(\frac{-a}{2}\right) d \_a\right)}{2}+x \tag{1}
\end{equation*}
\]

Verification of solutions
\[
\frac{\left(\int^{y} \sec \left(\frac{-a}{2}\right) d \_a\right)}{2}=\frac{\left(\int^{0} \sec \left(\frac{-a}{2}\right) d \_a\right)}{2}+x
\]

Verified OK.

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying 2nd order Liouville trying 2nd order WeierstrassP trying 2nd order JacobiSN differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation trying 2nd order, 2 integrating factors of the form mu(x,y) trying differential order: 2; missing variables `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = exp_sym -> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)+sin(_a) = 0, _b(_a)` *** Suble Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli <- Bernoulli successful <- differential order: 2; canonical coordinates successful <- differential order 2; missing variables successful`

```
\(\checkmark\) Solution by Maple
Time used: 1.296 ( sec ). Leaf size: 23
```

dsolve([diff(y(x),x\$2)+\operatorname{sin}(y(x))=0,y(0) = 0, D(y)(0) = 2],y(x), singsol=all)

```
\[
y(x)=\operatorname{RootOf}\left(-\left(\int_{0}^{-^{Z}} \sec \left(\frac{-a}{2}\right) \operatorname{csgn}\left(\cos \left(\frac{-a}{2}\right)\right) d \_a\right)+2 x\right)
\]
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[\{y''[x]+Sin[y[x]]==0,\{y[0]==0,y'[0]==2\}\},y[x],x,IncludeSingularSolutions \(->\) True]
\{\}

\section*{24 Chapter 6. Existence and uniqueness of solutions to systems and nth order equations. Page 250}
24.1 problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1987
24.2 problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1995
24.3 problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2004

\section*{24.1 problem 3}
24.1.1 Solution using Matrix exponential method . . . . . . . . . . . . 1987
24.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1988

Internal problem ID [6101]
Internal file name [OUTPUT/5349_Sunday_June_05_2022_03_35_04_PM_96258689/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equations. Page 250
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve
\[
\begin{aligned}
y_{1}^{\prime}(x) & =y_{1}(x) \\
y_{2}^{\prime}(x) & =y_{1}(x)+y_{2}(x)
\end{aligned}
\]

With initial conditions
\[
\left[y_{1}(0)=1, y_{2}(0)=2\right]
\]

\subsection*{24.1.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(x)=A \vec{x}(x)
\]

Or
\[
\left[\begin{array}{l}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]
\]

For the above matrix \(A\), the matrix exponential can be found to be
\[
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{x} & 0 \\
x \mathrm{e}^{x} & \mathrm{e}^{x}
\end{array}\right]
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
\vec{x}_{h}(x) & =e^{A x} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{x} & 0 \\
x \mathrm{e}^{x} & \mathrm{e}^{x}
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{x} \\
x \mathrm{e}^{x}+2 \mathrm{e}^{x}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{x} \\
\mathrm{e}^{x}(x+2)
\end{array}\right]
\end{aligned}
\]

Since no forcing function is given, then the final solution is \(\vec{x}_{h}(x)\) above.

\subsection*{24.1.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(x)=A \vec{x}(x)
\]

Or
\[
\left[\begin{array}{l}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]
\]

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

Expanding gives
\[
\operatorname{det}\left(\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 0 \\
1 & 1-\lambda
\end{array}\right]\right)=0
\]

Since the matrix \(A\) is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes
\[
(1-\lambda)(1-\lambda)=0
\]

The roots of the above are the eigenvalues.
\[
\lambda_{1}=1
\]

This table summarises the above result
\begin{tabular}{|l|l|l|}
\hline eigenvalue & algebraic multiplicity & type of eigenvalue \\
\hline 1 & 1 & real eigenvalue \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=1\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
\left(\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\left[\begin{array}{ll|l}
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
\]

Since the current pivot \(A(1,1)\) is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives
\[
\left[\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=0\right\}\)

Hence the solution is
\[
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\]

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\) ) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ eigenvalue } & \multicolumn{2}{|c|}{ multiplicity } & & \\
\cline { 2 - 3 } & algebraic \(m\) & geometric \(k\) & defective? & eigenvectors \\
\hline 1 & 2 & 1 & Yes & {\(\left[\begin{array}{l}0 \\
1\end{array}\right]\)} \\
\hline
\end{tabular}

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 1 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram


Figure 229: Possible case for repeated \(\lambda\) of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \(\vec{v}_{2}\) by solving
\[
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
\]

Where \(\vec{v}_{1}\) is the normal (rank 1) eigenvector found above. Hence we need to solve
\[
\begin{aligned}
&\left(\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& {\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] }
\end{aligned}
\]

Solving for \(\vec{v}_{2}\) gives
\[
\vec{v}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\]

We have found two generalized eigenvectors for eigenvalue 1. Therefore the two basis solution associated with this eigenvalue are
\[
\begin{aligned}
\vec{x}_{1}(x) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
0 \\
1
\end{array}\right] \mathrm{e}^{x} \\
& =\left[\begin{array}{c}
0 \\
\mathrm{e}^{x}
\end{array}\right]
\end{aligned}
\]

And
\[
\begin{aligned}
\vec{x}_{2}(x) & =\left(\vec{v}_{1} x+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right] t+\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right) \mathrm{e}^{x} \\
& =\left[\begin{array}{c}
\mathrm{e}^{x} \\
\mathrm{e}^{x}(1+x)
\end{array}\right]
\end{aligned}
\]

Therefore the final solution is
\[
\vec{x}_{h}(x)=c_{1} \vec{x}_{1}(x)+c_{2} \vec{x}_{2}(x)
\]

Which is written as
\[
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
\mathrm{e}^{x}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{x} \\
\mathrm{e}^{x}(1+x)
\end{array}\right]
\]

Which becomes
\[
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=\left[\begin{array}{c}
c_{2} \mathrm{e}^{x} \\
\mathrm{e}^{x}\left(c_{2} x+c_{1}+c_{2}\right)
\end{array}\right]
\]

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions
\[
\left[\begin{array}{l}
y_{1}(0)=1  \tag{1}\\
y_{2}(0)=2
\end{array}\right]
\]

Substituting initial conditions into the above solution at \(x=0\) gives
\[
\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
c_{2} \\
c_{1}+c_{2}
\end{array}\right]
\]

Solving for the constants of integrations gives
\[
\left[\begin{array}{l}
c_{1}=1 \\
c_{2}=1
\end{array}\right]
\]

Substituting these constants back in original solution in Eq. (1) gives
\[
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{x} \\
\mathrm{e}^{x}(x+2)
\end{array}\right]
\]

The following is the phase plot of the system.


Figure 230: Phase plot

The following are plots of each solution.

\(\checkmark\) Solution by Maple
Time used: 0.032 (sec). Leaf size: 16
```

dsolve([diff(y__1(x),x) = y__1(x), diff(y__2(x),x) = y__ 1(x)+y__ 2(x), y__1(0) = 1, y__ 2(0) =

```
\[
\begin{aligned}
& y_{1}(x)=\mathrm{e}^{x} \\
& y_{2}(x)=(x+2) \mathrm{e}^{x}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 18
DSolve \(\left[\left\{y 11^{\prime}[x]==y 1[x], y 2{ }^{\prime}[x]==y 1[x]+y 2[x]\right\},\{y 1[0]==1, y 2[0]==2\},\{y 1[x], y 2[x]\}, x\right.\), IncludeSingul
\[
\begin{aligned}
& \mathrm{y} 1(x) \rightarrow e^{x} \\
& \mathrm{y} 2(x) \rightarrow e^{x}(x+2)
\end{aligned}
\]

\section*{24.2 problem 4}
24.2.1 Solution using Matrix exponential method . . . . . . . . . . . . 1995
24.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1996

Internal problem ID [6102]
Internal file name [OUTPUT/5350_Sunday_June_05_2022_03_35_05_PM_35774872/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equations. Page 250
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs" Solve
\[
\begin{aligned}
& y_{1}^{\prime}(x)=y_{2}(x) \\
& y_{2}^{\prime}(x)=6 y_{1}(x)+y_{2}(x)
\end{aligned}
\]

With initial conditions
\[
\left[y_{1}(0)=1, y_{2}(0)=-1\right]
\]

\subsection*{24.2.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(x)=A \vec{x}(x)
\]

Or
\[
\left[\begin{array}{l}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
6 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]
\]

For the above matrix \(A\), the matrix exponential can be found to be
\[
e^{A t}=\left[\begin{array}{cc}
\frac{\left(2 \mathrm{e}^{5 x}+3\right) \mathrm{e}^{-2 x}}{5} & \frac{\left(\mathrm{e}^{5 x}-1\right) \mathrm{e}^{-2 x}}{5} \\
\frac{6\left(\mathrm{e}^{5 x}-1\right) \mathrm{e}^{-2 x}}{5} & \frac{\left(3 \mathrm{e}^{5 x}+2\right) \mathrm{e}^{-2 x}}{5}
\end{array}\right]
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
\vec{x}_{h}(x) & =e^{A x} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\frac{\left(2 \mathrm{e}^{5 x}+3\right) \mathrm{e}^{-2 x}}{5} & \frac{\left(\mathrm{e}^{5 x}-1\right) \mathrm{e}^{-2 x}}{5} \\
\frac{6\left(\mathrm{e}^{5 x}-1\right) \mathrm{e}^{-2 x}}{5} & \frac{\left(3 \mathrm{e}^{5 x}+2\right) \mathrm{e}^{-2 x}}{5}
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(2 \mathrm{e}^{5 x}+3\right) \mathrm{e}^{-2 x}}{5}-\frac{\left(\mathrm{e}^{5 x}-1\right) \mathrm{e}^{-2 x}}{5} \\
\frac{6\left(\mathrm{e}^{5 x}-1\right) \mathrm{e}^{-2 x}}{5}-\frac{\left(3 \mathrm{e}^{5 x}+2\right) \mathrm{e}^{-2 x}}{5}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(\mathrm{e}^{5 x}+4\right) \mathrm{e}^{-2 x}}{5} \\
\frac{\left(3 \mathrm{e}^{5 x}-8\right) \mathrm{e}^{-2 x}}{5}
\end{array}\right]
\end{aligned}
\]

Since no forcing function is given, then the final solution is \(\vec{x}_{h}(x)\) above.

\subsection*{24.2.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(x)=A \vec{x}(x)
\]

Or
\[
\left[\begin{array}{l}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
6 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]
\]

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

Expanding gives
\[
\operatorname{det}\left(\left[\begin{array}{ll}
0 & 1 \\
6 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{cc}
-\lambda & 1 \\
6 & 1-\lambda
\end{array}\right]\right)=0
\]

Which gives the characteristic equation
\[
\lambda^{2}-\lambda-6=0
\]

The roots of the above are the eigenvalues.
\[
\begin{aligned}
& \lambda_{1}=-2 \\
& \lambda_{2}=3
\end{aligned}
\]

This table summarises the above result
\begin{tabular}{|l|l|l|}
\hline eigenvalue & algebraic multiplicity & type of eigenvalue \\
\hline-2 & 1 & real eigenvalue \\
\hline 3 & 1 & real eigenvalue \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=-2\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{ll}
0 & 1 \\
6 & 1
\end{array}\right]-(-2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
2 & 1 \\
6 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{ll|l}
2 & 1 & 0 \\
6 & 3 & 0
\end{array}\right]} \\
R_{2}=R_{2}-3 R_{1} \Longrightarrow\left[\begin{array}{ll|l}
2 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=-\frac{t}{2}\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
\]

Which is normalized to
\[
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
\]

Considering the eigenvalue \(\lambda_{2}=3\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
\left(\left[\begin{array}{ll}
0 & 1 \\
6 & 1
\end{array}\right]-(3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-3 & 1 \\
6 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{cc|c}
-3 & 1 & 0 \\
6 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}+2 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-3 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
-3 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=\frac{t}{3}\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right]
\]

Which is normalized to
\[
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
\]

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\) ) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ eigenvalue } & \multicolumn{2}{|c|}{ multiplicity } & & \\
\cline { 2 - 3 } & algebraic \(m\) & geometric \(k\) & defective? & eigenvectors \\
\hline-2 & 1 & 1 & No & {\(\left[\begin{array}{c}-\frac{1}{2} \\
1\end{array}\right]\)} \\
\hline 3 & 1 & 1 & No & {\(\left[\begin{array}{c}\frac{1}{3} \\
1\end{array}\right]\)} \\
\hline
\end{tabular}

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -2 is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{1}(x) & =\vec{v}_{1} e^{-2 x} \\
& =\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right] e^{-2 x}
\end{aligned}
\]

Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{2}(x) & =\vec{v}_{2} e^{3 x} \\
& =\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right] e^{3 x}
\end{aligned}
\]

Therefore the final solution is
\[
\vec{x}_{h}(x)=c_{1} \vec{x}_{1}(x)+c_{2} \vec{x}_{2}(x)
\]

Which is written as
\[
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{\mathrm{e}^{-2 x}}{2} \\
\mathrm{e}^{-2 x}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{\mathrm{e}^{3 x}}{3} \\
\mathrm{e}^{3 x}
\end{array}\right]
\]

Which becomes
\[
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(2 c_{2} \mathrm{e}^{5 x}-3 c_{1}\right) \mathrm{e}^{-2 x}}{6} \\
\left(c_{2} \mathrm{e}^{5 x}+c_{1}\right) \mathrm{e}^{-2 x}
\end{array}\right]
\]

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions
\[
\left[\begin{array}{c}
y_{1}(0)=1  \tag{1}\\
y_{2}(0)=-1
\end{array}\right]
\]

Substituting initial conditions into the above solution at \(x=0\) gives
\[
\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{2}}{3}-\frac{c_{1}}{2} \\
c_{2}+c_{1}
\end{array}\right]
\]

Solving for the constants of integrations gives
\[
\left[\begin{array}{c}
c_{1}=-\frac{8}{5} \\
c_{2}=\frac{3}{5}
\end{array}\right]
\]

Substituting these constants back in original solution in Eq. (1) gives
\[
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(\frac{6 \mathrm{e}^{5 x}}{5}+\frac{24}{5}\right) \mathrm{e}^{-2 x}}{6} \\
\left(\frac{3 \mathrm{e}^{5 x}}{5}-\frac{8}{5}\right) \mathrm{e}^{-2 x}
\end{array}\right]
\]

The following is the phase plot of the system.


Figure 231: Phase plot

The following are plots of each solution.

\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 34
dsolve ([diff \(\left(y_{\neq-} 1(x), x\right)=y_{\neq-} 2(x), \operatorname{diff}\left(y_{\neq} 2(x), x\right)=6 * y_{-} 1(x)+y_{\neq} 2(x), y_{\neq-} 1(0)=1, y_{-} 2(0)\)
\[
\begin{aligned}
& y_{1}(x)=\frac{4 \mathrm{e}^{-2 x}}{5}+\frac{\mathrm{e}^{3 x}}{5} \\
& y_{2}(x)=-\frac{8 \mathrm{e}^{-2 x}}{5}+\frac{3 \mathrm{e}^{3 x}}{5}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 42
DSolve \(\left[\left\{y 11^{\prime}[x]==y 2[x], y 2{ }^{\prime}[x]==6 * y 1[x]+y 2[x]\right\},\{y 1[0]==1, y 2[0]==-1\},\{y 1[x], y 2[x]\}, x\right.\), IncludeSin
\[
\begin{aligned}
& \mathrm{y} 1(x) \rightarrow \frac{1}{5} e^{-2 x}\left(e^{5 x}+4\right) \\
& \mathrm{y} 2(x) \rightarrow \frac{1}{5} e^{-2 x}\left(3 e^{5 x}-8\right)
\end{aligned}
\]

\section*{24.3 problem 5}
24.3.1 Solution using Matrix exponential method . . . . . . . . . . . . 2004
24.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 2006

Internal problem ID [6103]
Internal file name [OUTPUT/5351_Sunday_June_05_2022_03_35_06_PM_78469615/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equations. Page 250
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve
\[
\begin{aligned}
& y_{1}^{\prime}(x)=y_{1}(x)+y_{2}(x) \\
& y_{2}^{\prime}(x)=y_{1}(x)+y_{2}(x)+\mathrm{e}^{3 x}
\end{aligned}
\]

With initial conditions
\[
\left[y_{1}(0)=0, y_{2}(0)=0\right]
\]

\subsection*{24.3.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(x)=A \vec{x}(x)+\vec{G}(x)
\]

Or
\[
\left[\begin{array}{l}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]+\left[\begin{array}{c}
0 \\
\mathrm{e}^{3 x}
\end{array}\right]
\]

Since the system is nonhomogeneous, then the solution is given by
\[
\vec{x}(x)=\vec{x}_{h}(x)+\vec{x}_{p}(x)
\]

Where \(\vec{x}_{h}(x)\) is the homogeneous solution to \(\vec{x}^{\prime}(x)=A \vec{x}(x)\) and \(\vec{x}_{p}(x)\) is a particular solution to \(\vec{x}^{\prime}(x)=A \vec{x}(x)+\vec{G}(x)\). The particular solution will be found using variation of parameters method applied to the fundamental matrix. For the above matrix \(A\), the matrix exponential can be found to be
\[
e^{A t}=\left[\begin{array}{cc}
\frac{1}{2}+\frac{\mathrm{e}^{2 x}}{2} & \frac{\mathrm{e}^{2 x}}{2}-\frac{1}{2} \\
\frac{\mathrm{e}^{2 x}}{2}-\frac{1}{2} & \frac{1}{2}+\frac{\mathrm{e}^{2 x}}{2}
\end{array}\right]
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
\vec{x}_{h}(x) & =e^{A x} \vec{x}_{0} \\
& =\left[\begin{array}{ll}
\frac{1}{2}+\frac{\mathrm{e}^{2 x}}{2} & \frac{\mathrm{e}^{2 x}}{2}-\frac{1}{2} \\
\frac{\mathrm{e}^{2 x}}{2}-\frac{1}{2} & \frac{1}{2}+\frac{\mathrm{e}^{2 x}}{2}
\end{array}\right]\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
\]

The particular solution given by
\[
\vec{x}_{p}(x)=e^{A x} \int e^{-A x} \vec{G}(x) d x
\]

But
\[
\begin{aligned}
e^{-A x} & =\left(e^{A x}\right)^{-1} \\
& =\left[\begin{array}{cc}
\frac{1}{2}+\frac{\mathrm{e}^{-2 x}}{2} & -\frac{1}{2}+\frac{\mathrm{e}^{-2 x}}{2} \\
-\frac{1}{2}+\frac{\mathrm{e}^{-2 x}}{2} & \frac{1}{2}+\frac{\mathrm{e}^{-2 x}}{2}
\end{array}\right]
\end{aligned}
\]

Hence
\[
\begin{aligned}
\vec{x}_{p}(x) & =\left[\begin{array}{ll}
\frac{1}{2}+\frac{\mathrm{e}^{2 x}}{2} & \frac{\mathrm{e}^{2 x}}{2}-\frac{1}{2} \\
\frac{\mathrm{e}^{2 x}}{2}-\frac{1}{2} & \frac{1}{2}+\frac{\mathrm{e}^{2 x}}{2}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{1}{2}+\frac{\mathrm{e}^{-2 x}}{2} & -\frac{1}{2}+\frac{\mathrm{e}^{-2 x}}{2} \\
-\frac{1}{2}+\frac{\mathrm{e}^{-2 x}}{2} & \frac{1}{2}+\frac{\mathrm{e}^{-2 x}}{2}
\end{array}\right]\left[\begin{array}{c}
0 \\
\mathrm{e}^{3 x}
\end{array}\right] d x \\
& =\left[\begin{array}{ll}
\frac{1}{2}+\frac{\mathrm{e}^{2 x}}{2} & \frac{\mathrm{e}^{2 x}}{2}-\frac{1}{2} \\
\frac{\mathrm{e}^{2 x}}{2}-\frac{1}{2} & \frac{1}{2}+\frac{\mathrm{e}^{2 x}}{2}
\end{array}\right]\left[\begin{array}{c}
-\frac{\mathrm{e}^{3 x}}{6}+\frac{\mathrm{e}^{x}}{2} \\
\frac{\mathrm{e}^{3 x}}{6}+\frac{\mathrm{e}^{x}}{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{3 x}}{3} \\
\frac{2 \mathrm{e}^{3 x}}{3}
\end{array}\right]
\end{aligned}
\]

Hence the complete solution is
\[
\begin{aligned}
\vec{x}(x) & =\vec{x}_{h}(x)+\vec{x}_{p}(x) \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{3 x}}{3} \\
\frac{2 \mathrm{e}^{3 x}}{3}
\end{array}\right]
\end{aligned}
\]

\subsection*{24.3.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(x)=A \vec{x}(x)+\vec{G}(x)
\]

Or
\[
\left[\begin{array}{c}
y_{1}^{\prime}(x) \\
y_{2}^{\prime}(x)
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]+\left[\begin{array}{c}
0 \\
\mathrm{e}^{3 x}
\end{array}\right]
\]

Since the system is nonhomogeneous, then the solution is given by
\[
\vec{x}(x)=\vec{x}_{h}(x)+\vec{x}_{p}(x)
\]

Where \(\vec{x}_{h}(x)\) is the homogeneous solution to \(\vec{x}^{\prime}(x)=A \vec{x}(x)\) and \(\vec{x}_{p}(x)\) is a particular solution to \(\vec{x}^{\prime}(x)=A \vec{x}(x)+\vec{G}(x)\). The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

Expanding gives
\[
\operatorname{det}\left(\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right]\right)=0
\]

Which gives the characteristic equation
\[
\lambda^{2}-2 \lambda=0
\]

The roots of the above are the eigenvalues.
\[
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=2
\end{aligned}
\]

This table summarises the above result
\begin{tabular}{|l|l|l|}
\hline eigenvalue & algebraic multiplicity & type of eigenvalue \\
\hline 0 & 1 & real eigenvalue \\
\hline 2 & 1 & real eigenvalue \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=0\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]-(0)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{ll|l}
1 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{ll|l}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=-t\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\]

Considering the eigenvalue \(\lambda_{2}=2\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]-(2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{cc|c}
-1 & 1 & 0 \\
1 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=t\right\}\)

Hence the solution is
\[
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\]

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\) ) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ eigenvalue } & \multicolumn{2}{|c|}{ multiplicity } & & \\
\cline { 2 - 3 } & algebraic \(m\) & geometric \(k\) & defective? & eigenvectors \\
\hline 0 & 1 & 1 & No & {\(\left[\begin{array}{c}-1 \\
1\end{array}\right]\)} \\
\hline 2 & 1 & 1 & No & {\(\left[\begin{array}{c}1 \\
1\end{array}\right]\)} \\
\hline
\end{tabular}

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 0 is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{1}(x) & =\vec{v}_{1} e^{0} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{0}
\end{aligned}
\]

Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{2}(x) & =\vec{v}_{2} e^{2 x} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{2 x}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\vec{x}_{h}(x)=c_{1} \vec{x}_{1}(x)+c_{2} \vec{x}_{2}(x)
\]

Which is written as
\[
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{2 x} \\
\mathrm{e}^{2 x}
\end{array}\right]
\]

Now that we found homogeneous solution above, we need to find a particular solution \(\vec{x}_{p}(x)\). We will use Variation of parameters. The fundamental matrix is
\[
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
\]

Where \(\vec{x}_{i}\) are the solution basis found above. Therefore the fundamental matrix is
\[
\Phi(x)=\left[\begin{array}{cc}
-1 & \mathrm{e}^{2 x} \\
1 & \mathrm{e}^{2 x}
\end{array}\right]
\]

The particular solution is then given by
\[
\vec{x}_{p}(x)=\Phi \int \Phi^{-1} \vec{G}(x) d x
\]

But
\[
\Phi^{-1}=\left[\begin{array}{cc}
-\frac{1}{2} & \frac{1}{2} \\
\frac{\mathrm{e}^{-2 x}}{2} & \frac{\mathrm{e}^{-2 x}}{2}
\end{array}\right]
\]

Hence
\[
\begin{aligned}
\vec{x}_{p}(x) & =\left[\begin{array}{cc}
-1 & \mathrm{e}^{2 x} \\
1 & \mathrm{e}^{2 x}
\end{array}\right] \int\left[\begin{array}{cc}
-\frac{1}{2} & \frac{1}{2} \\
\frac{\mathrm{e}^{-2 x}}{2} & \frac{\mathrm{e}^{-2 x}}{2}
\end{array}\right]\left[\begin{array}{c}
0 \\
\mathrm{e}^{3 x}
\end{array}\right] d x \\
& =\left[\begin{array}{cc}
-1 & \mathrm{e}^{2 x} \\
1 & \mathrm{e}^{2 x}
\end{array}\right] \int\left[\begin{array}{c}
\frac{\mathrm{e}^{3 x}}{2} \\
\frac{\mathrm{e}^{x}}{2}
\end{array}\right] d x \\
& =\left[\begin{array}{cc}
-1 & \mathrm{e}^{2 x} \\
1 & \mathrm{e}^{2 x}
\end{array}\right]\left[\begin{array}{c}
\frac{\mathrm{e}^{3 x}}{6} \\
\frac{\mathrm{e}^{x}}{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{3 x}}{3} \\
\frac{2 \mathrm{e}^{3 x}}{3}
\end{array}\right]
\end{aligned}
\]

Now that we found particular solution, the final solution is
\[
\begin{aligned}
\vec{x}(x) & =\vec{x}_{h}(x)+\vec{x}_{p}(x) \\
{\left[\begin{array}{c}
y_{1}(x) \\
y_{2}(x)
\end{array}\right] } & =\left[\begin{array}{c}
-c_{1} \\
c_{1}
\end{array}\right]+\left[\begin{array}{c}
c_{2} \mathrm{e}^{2 x} \\
c_{2} \mathrm{e}^{2 x}
\end{array}\right]+\left[\begin{array}{c}
\frac{\mathrm{e}^{3 x}}{3} \\
\frac{2 \mathrm{e}^{3 x}}{3}
\end{array}\right]
\end{aligned}
\]

Which becomes
\[
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=\left[\begin{array}{c}
-c_{1}+c_{2} \mathrm{e}^{2 x}+\frac{\mathrm{e}^{3 x}}{3} \\
c_{1}+c_{2} \mathrm{e}^{2 x}+\frac{2 \mathrm{e}^{3 x}}{3}
\end{array}\right]
\]

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions
\[
\left[\begin{array}{l}
y_{1}(0)=0  \tag{1}\\
y_{2}(0)=0
\end{array}\right]
\]

Substituting initial conditions into the above solution at \(x=0\) gives
\[
\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-c_{1}+c_{2}+\frac{1}{3} \\
c_{1}+c_{2}+\frac{2}{3}
\end{array}\right]
\]

Solving for the constants of integrations gives
\[
\left[\begin{array}{l}
c_{1}=-\frac{1}{6} \\
c_{2}=-\frac{1}{2}
\end{array}\right]
\]

Substituting these constants back in original solution in Eq. (1) gives
\[
\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x)
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{6}-\frac{\mathrm{e}^{2 x}}{2}+\frac{\mathrm{e}^{3 x}}{3} \\
-\frac{1}{6}-\frac{\mathrm{e}^{2 x}}{2}+\frac{2 \mathrm{e}^{3 x}}{3}
\end{array}\right]
\]


The following are plots of each solution.


\(\checkmark\) Solution by Maple
Time used: 0.047 (sec). Leaf size: 36
dsolve([diff \(\left(y_{-} 1(x), x\right)=y_{-} 1(x)+y_{-} 2(x), \operatorname{diff}\left(y_{-} 2(x), x\right)=y_{-} 1(x)+y_{-} 2(x)+\exp (3 * x), y_{-} 1(\)
\[
\begin{aligned}
& y_{1}(x)=-\frac{\mathrm{e}^{2 x}}{2}+\frac{\mathrm{e}^{3 x}}{3}+\frac{1}{6} \\
& y_{2}(x)=-\frac{\mathrm{e}^{2 x}}{2}+\frac{2 \mathrm{e}^{3 x}}{3}-\frac{1}{6}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 46
DSolve \(\left[\left\{y 11^{\prime}[x]==y 1[x]+y 2[x], y 2{ }^{\prime}[x]==y 1[x]+y 2[x]+\operatorname{Exp}[3 * x]\right\},\{y 1[0]==0, y 2[0]==0\},\{y 1[x], y 2[x]\}\right.\),
\[
\begin{aligned}
& \mathrm{y} 1(x) \rightarrow \frac{1}{6}\left(e^{x}-1\right)^{2}\left(2 e^{x}+1\right) \\
& \mathrm{y} 2(x) \rightarrow \frac{1}{6}\left(-3 e^{2 x}+4 e^{3 x}-1\right)
\end{aligned}
\]

\section*{25 Chapter 6. Existence and uniqueness of solutions to systems and nth order equations. Page 254}
25.1 problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2015

\section*{25.1 problem 2}

Internal problem ID [6104]
Internal file name [OUTPUT/5352_Sunday_June_05_2022_03_35_08_PM_97644046/index.tex]
Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 6. Existence and uniqueness of solutions to systems and nth order equations. Page 254
Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs" Unable to solve or complete t Solve
\[
\begin{aligned}
y_{1}^{\prime}(x) & =3 y_{1}(x)+x y_{3}(x) \\
y_{2}^{\prime}(x) & =y_{2}(x)+x^{3} y_{3}(x) \\
y_{3}^{\prime}(x) & =2 x y_{2}(x)-y_{2}(x)+\mathrm{e}^{x} y_{3}(x)
\end{aligned}
\]

Does not currently support non autonomous system of first order linear differential equations. The following is the phase plot
X Solution by Maple


No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\left\{y 11^{\prime}[x]==3 * y 1[x]+x * y 3[x], y 2{ }^{\prime}[x]==y 2[x]+x^{\wedge} 3 * y 3[x], y 3 '[x]==2 * x * y 1[x]-y 2[x]+E x p[x] * y 3[x]\right.\right.\)

Not solved```

