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1.1 problem 3.5

1.1.1 Existence and uniqueness analysis. . . . . . . .. ... .. ...
1.1.2 Maple step by step solution . . . . ... ... ... ....... 12]

Internal problem ID [5480)]
Internal file name [OUTPUT/4728_Sunday_June_05_2022_03_04_13_PM_17619304/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136

Problem number: 3.5.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",

"second__order__integrable_as_ is", "second order series method. Ordinary
point", "second__order__change_of variable_on_y method 1", "linear_ sec-
ond_ order__ode_solved_ by _an__integrating factor", "second order series

method. Taylor series method"

Maple gives the following as the ode type

[[_2nd_order, _exact, _linear, _homogeneous]]

(z—1)(—24+2z)y"+(4z—6)y +2y =0

With initial conditions
[¥(0) = 2,4/(0) = 1]

With the expansion point for the power series method at x = 0.



1.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(x)y +q(z)y=F

Where here
(z) _ 4z — 6
P =2 3542
2
1) = 7 3512
F=0
Hence the ode is
" (4'77 - 6) yl 2y
=0
vVt e 32T 2 —3s+2

The domain of p(z) = 2% is

{—o<z<ll<z<2,2<z< 00}

And the point zy = 0 is inside this domain. The domain of ¢(z) = ﬁm is

{—o<z<ll<zr<22<z< o0}

And the point zy = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let

y'=f(z,9,9)
Assuming expansion is at o = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(z,y,%’) is analytic at 2o which must be the

case for an ordinary point. Let initial conditions be y(z) = yo and y'(zo) = y,. Using
Taylor series gives

(x — z0)3
3!

(x — w0)2

2 y///(x0)+"'

y(z) = y(z0) + (z — 20) ¥ (o) + y" (o) +

B , 172 CC3 ,

- yo + xyo + 5f|x07y07y(,) + yf |xo,yo,y6 + e
o0 mn+2 dnf

— I R

_y0+xy0+zo (n+2)! dan

n=

w09y0yy6



But

& _ofds  ofdy , of df
dv Ordr Oydx Oy dx
_g g/ ﬁ//
_8z+3yy+8y’y
_of of . of
_3z+3yy+8y’f

&¢f _d(df
de?  dx (dx)

9 (df\ 0 (df\ ,, O (df
= oz @)*a—y(a)“a—y(@f

&f_4d
dz®  dz
9



And so on. Hence if we name Fy = f(z,y,y’) then the above can be written as

F0=f(.'L',’y,yl)
_d
Fi=2
_dR
C dx
of of /+6f "
oz oy’ T oy
of  of , Of
oz " ay? oy
_OF, 0F , 0F
or + 8yy 8y’F0
d [ d
F2—%<£f>
d
—%(Fl)

d
_%(
0

. 6Fn_1 ’ a-Fn—l "
_awF”_1+( oy )y +< oy )y

0 OF, - OF,
s () ()

Ox Oy

Therefore (6) can be used from now on along with

. o0 2
) =t Z; (n 3 2)1 "eososs
n=|

(4)

(5)

(6)

(7)



To find y(z) series solution around z = 0. Hence

_2(2zy' -3y +y)

F, =
0 x? — 3z +2
dFy
F=—"
YT g
OF,  OF, , 0K,
" Oz + Oy Y+ 8y’FO
_ (1822 — 54z +42)y' + (122 — 18) y
(22 — 3z + 2)
dF,
Fp=——
7T dg
OF, OF , OF
T Oz + 3yy + 8y’F1
_ (—962° + 43222 — 672z + 360) ¥’ — 72y (a2 — 3z + )
(22 — 3z +2)°
dF;
B =4
OF, OF, , OF,
T Oz + Oy v+ 6y’F2
_ (600z* — 3600z* + 840022 — 9000z + 3720) 3y + 480y (z — §) (2 — 3z + 5
(22 — 3z +2)*
dF;
Fy=—>
YT do

_O0F  O0R , OF

- Oz Oy y oy’

_ —4320(z — 3) (¢” — 3z +3) (2® — 3z + 7) v’ — 3600y (z* — 62° + 142” — 152 + )
(22 — 3z +2)°

F3

And so on. Evaluating all the above at initial conditions z = 0 and y(0) = 2 and
y'(0) =1 gives

Fr,=1
pe
F,=3
.
-



Substituting all the above in (7) and simplifying gives the solution as

2 .’133 $4 5 .136

T
y—x+2+5+z+§+ﬁ+3—2+0( %)

2 .’L‘3 .’L‘4 x5 1.6

T
y = x+2+5+z+§+ﬁ+3—2+0( %)

Since the expansion point z = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

y' (2 —324+2)+ 4z —6)y +2y=0

Let the solution be represented as power series of the form

(o]
Y= g apx"
n=0

Then

Substituting the above back into the ode gives
(Z n(n —1) anx"_2> (2" — 3z +2) + (4z — (Z na,x" 1) +2 <Z anx"> =0
n=2 n=0
(1)

Which simplifies to



The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already z™ and adjusting the
power and the corresponding index gives

I
NE

Z —3nz" 'a,(n — 1))

(=3(n+1)a,1nx™)

n =2 n=1
Z 2n(n — 1) a,2™ 2 = Z 2(n+2) apio(n+1)z"
n =2 n=0

I
NE

(=6(n + 1) ann12")

i (—6nanx”_1)
n =1

3
Il
=}

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

o0

(Zm apn(n —1 ) + :1( 3(n+1)apnaz™) )
+ (Z 2(n+2) apsa(n+1) x”) + (Z 4nanx”>
—I—Z 6(n+1)ap12"™) + <i2anx"> =0

n = n=0

n = 0 gives
4as — 6a; + 2a9 =0

n =1 gives
—18&2 + 12&3 + 6&1 =0

Which after substituting earlier equations, simplifies to

3(10 7a1
ag = ——— —

4 4



For 2 < n, the recurrence equation is

na,(n—1)—3(n+1) apt1n+2(n+2) apy2(n+1) +4na, —6(n+1) apy1 +2a, =0 (4)

Solving for a,,,2, gives
Qnp, 3am+1

2 2
(5) Qp, 341

For n = 2 the recurrence equation gives

12a, — 36a3 + 24a4, =0

Which after substituting the earlier terms found becomes

7 15
a4=—ﬂ+ =

8 8
For n = 3 the recurrence equation gives

200,3 — 6004 + 40&5 =0

Which after substituting the earlier terms found becomes

1500 310,1

%=""16 16

For n = 4 the recurrence equation gives

30&4 — 90(15 + 60&6 =0

Which after substituting the earlier terms found becomes

_ 31a0 63&1

%=""3 T3

For n = 5 the recurrence equation gives

42a5 — 126a¢ + 84a7; =0

10



Which after substituting the earlier terms found becomes

_63ap 1270y
64 ' 64

ay =

And so on. Therefore the solution is

o0
y:E anx"
n=0
_ 3 2
=a3x” +axr” +a1x+ap+ ...

Substituting the values for a,, found above, the solution becomes

_ _G0 3w o (3% Ta1) s
y—a0+a1x+(2+2>x+( 4+4 x

7&0 15&1 4 15&0 31a1 5
—|—< 8+ 8)x+( 16+16)w+"'

Collecting terms, the solution becomes

1 1
= <1——x ——z’—=z ——x5) a0+(x+;m2+£$3+§5x4+?—6x5> a1+0(z°% (3)

1 1 1 1
Y= <1 -~z - §z3 — Zz4 — —5x5> c+ (z + gz2 + £x3 + gz‘l + ?—6355) co+ O(xs)

2 $3 $4 5

—op T T LT T 6
y=2+5++3 +16+x+0(a:)
Summary
The solution(s) found are the following

2 3 ozt x5 28
= 2 —_— —_— - - Ny 6 1
y=1+ +2+4+8+16+32+0(x) (1)
2 3 ozt 2P
y=2+—-+="+=+=-+z+0(z° (2)

2 4 8 16

11



Verification of solutions

2 .’E3 IE4 3,'5 $6

_ z ., r. r T T 6
y—m+2+2+4+8+16+32—|—0(z)

Verified OK.

Verified OK.

1.1.2 Maple step by step solution

Let’s solve

Y@t -3 +2)+ (2 -6y +2y=040) =2y| = 11

. Highest derivative means the order of the ODE is 2

7

Y

° Isolate 2nd derivative

n__ 2y _ 2(2z-3)y’
¥y = r2—-3x+2 r2—32+2

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

n oy 2(2z-3)y’ 2y _
y + z2—32+2 + 2—-3z+2 0

OJ Check to see if xg is a regular singular point

o Define functions

Pala) = 225255 Pa(a) =

2
z2—32+2) 2 —32+2

o (z—1)- Py(z)is analytic at = = 1
((z —1) - Py(z))
o (z—1)% Ps(z)is analytic at z = 1
((z—1)*- Py(2))

o z = lis a regular singular point

=2

=

=0
1

Check to see if xg is a regular singular point
To = 1

° Multiply by denominators

12



Y (2 -3z +2)+(4r—6)y +2y =0

Change variables using = u + 1 so that the regular singular point is at u = 0
(w? — ) (Esy(u)) + (4u - 2) (Ey(w) +2y(u) = 0

Assume series solution for y(u)
y(u) = 3 aput*
k=0

Rewrite ODE with series expansions

Convert u™ - (Ly(u)) to series expansion for m = 0..1

u™ - (%y(u)) — kzoak(k_'_r) uk+r—1+m

Shift index using k— >k +1—m

um - (%y(u)) = Z ak+1—m(k +1—m+ ’I‘) uk—i—r
k=—14+m

Convert u™ - (j—uzzy(u)) to series expansion for m = 1..2
um - (ay@) = 3 aelk+1) (k47 — 1)uktr=2om
k=0

Shift index using k— >k +2—m
um - (dd—;y(u)) = Y apromk+2-—m+r)(k+1—m+r)urtr
k=—2+m

Rewrite ODE with series expansions

—aor(l +r)u™*" + (Z (—arpr(k+r+1) (k+r+2)+ap(k+r+2) (k+r+ 1))u’“+’“> =0
k=0

apcannot be 0 by assumption, giving the indicial equation
—r(l+r)=0

Values of r that satisfy the indicial equation

re {-1,0}

Each term in the series must be 0, giving the recursion relation
(k+r+2)(k+r+1)(—ags1+ax) =0

Recursion relation that defines series solution to ODE

Ap+1 = Ak

Recursion relation for r = —1

13



Qg1 = Gk

° Solution forr = —1

oo
y(u) = > aru 1 agp = ak}
L k=0

° Revert the change of variablesu =z — 1
y=> ar(x—1)"" ap = ak]
L k=0
° Recursion relation for r =0
Ak+1 = Ok
° Solution for r =0
i 00
y(u) = 3 apu, apy = ak]
L k=0
° Revert the change of variablesu =z — 1
_ - )
y=> a(z—1)",akn1 = a'k::|
L k=0
° Combine solutions and rename parameters
(= k-1 = k _ _
y=|> ar(z—1) + | 2 be(z —1)" |, ap1 = ag, bpy1 = by
L k=0 k=0

Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful"

14



v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

‘0rder:=6; ‘
‘dsolve([(x—i)*(x—2)*diff(y(x),x$2)+(4*x—6)*diff(y(x),x)+2*y(x)=0,y(0) =2, D(y)(O) = 1],y(x)

1 1 1 1
y(z):2+x+§w2+1x3+§x4+1—6w5+0(x6)

v/ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 34

LAsymptoticDSolveValue[{(x-l)*(x—Z)*y"[x]+(4*x—6)*y'[x]+2*y[x]==0,{y[O]==2,yif0]==1}},y[X],{

5 $4 1173 2

y(x)—)clc—6+§+z+%+x+2

15



1.2 problem 3.6 (a)

1.2.1 Existence and uniqueness analysis. . . . . . .. ... ... ... 161

Internal problem ID [5481]
Internal file name [OUTPUT/4729_Sunday_June_05_2022_03_04_14_PM_5913645/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136

Problem number: 3.6 (a).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

y' —2xy +8y=0

With initial conditions
[y(0) = 4,4'(0) = 0]
With the expansion point for the power series method at = 0.

1.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as
y' +p(x)y +q(z)y=F
Where here

—2x

<3
—_~
b & &
1
S o



Hence the ode is
y' —2xy +8y=0

The domain of p(z) = —2z is
{—00 <z < o0}

And the point zg = 0 is inside this domain. The domain of g(z) = 8 is

{—o0 <z < o0}

And the point xzq = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let

y' = f(z,9,9)
Assuming expansion is at o = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x,y,y’) is analytic at xo which must be the

case for an ordinary point. Let initial conditions be y(zo) = yo and y'(zo) = yg. Using
Taylor series gives

(x — z0)3
3!

(x — w0)2
2
x? x3
=Y + xy6 + _f|z0,y0,y(’) + 5fl|wo,y0,y6 +--

2
oo wn+2 dnf

. !

=Wt D g de

y(.’E) = y(xo) + (Z’ — wo) y/(-%'o) + y”(.’I}o) —+ y'"(wo) P

£0,Y0,Y(

17



But

& _ofds  ofdy , of df
dv Ordr Oydx Oy dx
_g g/ ﬁ//
_8z+3yy+8y’y
_of of . of
_3z+3yy+8y’f

&¢f _d(df
de?  dx (dx)

9 (df\ 0 (df\ ,, O (df
= oz @)*a—y(a)“a—y(@f

&f_4d
dz®  dz
9

18



And so on. Hence if we name Fy = f(z,y,y’) then the above can be written as

F0=f(.'L',’y,yl)
_d
Fi=2
_dR
C dx
of of /+6f "
oz oy’ T oy
of  of , Of
oz " ay? oy
_OF, 0F , 0F
or + 8yy 8y’F0
d [ d
F2—%<£f>
d
—%(Fl)

d
_%(
0

. 6Fn_1 ’ a-Fn—l "
_awF”_1+( oy )y +< oy )y

0 OF, - OF,
s () ()

Ox Oy

Therefore (6) can be used from now on along with

. o0 2
) =t Z; (n 3 2)1 "eososs
n=|

19

(4)

(5)

(6)

(7)



To find y(z) series solution around z = 0. Hence

Fy =2xy — 8y
dFy
=20
YT dx

oFy, OF, , OFy
ox Oy oy’
= 42%y — 16zy — 6/

Fy

dF;
F,=—
7 dx
8F1 8F1 ’ aFl
= F:
ox + Oy v+ oy’ '
= 8y'z® — 32yx? — 20y’ + 32y
dF;
F;=—=
87 dx
6F2 3F2 / 8F2
= E:
Oox + oy v+ ay ?
= (16z* — 482” + 12) y/ + (—642> + 967) y
dF3
Fy=—
YT dr

__OF3  OF; , OF;3
Oz + 8yy + oy’

3
= 32x((x4 — 32% + Z) y' + (—42° + 62) y)

And so on. Evaluating all the above at initial conditions z = 0 and y(0) = 4 and
y'(0) = 0 gives

F3

Fy=-32
Fr=0
F, =128
F;=0
Fy=0

Substituting all the above in (7) and simplifying gives the solution as

4
y=—16m2+4+163x +0(z°)
9 16z* 6
y=—160"+4+ — + O(z°)

20



Since the expansion point £ = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

(e}

Y= Z anx"

n=0

Then

Substituting the above back into the ode gives

Z n(n—1)a,z" % =2z (Z nana:"_1> -8 (Z anw") (1)

n=2

Which simplifies to

(i n(n —1)a,z" 2) f: —2nz"ay,) (i 8anx"> =0 (2)

n=2

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already z™ and adjusting the
power and the corresponding index gives

Z nn—1)az" % = Z (n+2)ap2(n+1)z"
n =2

n=0

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

<i (n+2)ap2(n+1)x > Z —2nz"a,) + (i 8ana:”> =0 (3)

n=0

8

n = 0 gives
2(12 + 8&0 =0

ag = —4(10

21



For 1 < n, the recurrence equation is

(n+2)api2(n+1) — 2na, + 8a, =0

Solving for a,2, gives

oo — 2a,(n —4)
T (n+2) (n+1)
For n =1 the recurrence equation gives
60,3 + 6(11 =0

Which after substituting the earlier terms found becomes

as = —ag

For n = 2 the recurrence equation gives

12(14 + 4&2 =0

Which after substituting the earlier terms found becomes

oy — 40,0
T3
For n = 3 the recurrence equation gives
20(15 + 2(13 =0

Which after substituting the earlier terms found becomes

3]
ay = —
°T 10
For n = 4 the recurrence equation gives
30ag =0

Which after substituting the earlier terms found becomes

(16=0

22



For n = 5 the recurrence equation gives

42@7 - 2(1,5 =0

Which after substituting the earlier terms found becomes

a1

“ =210

And so on. Therefore the solution is

o0
y:E anz"
n=0
_ 3 2
=a3x” +axr”" +a1x+ap+ ...

Substituting the values for a,, found above, the solution becomes

4 1
Y = ag+ a1z — dapzr® — a12® + §a0x4 + 1—0a1x5 +...

Collecting terms, the solution becomes

4 1
Y= (1 —4z% + §x4> ap + (m — 3+ 1—0x5> a; —I—O(z6)

At z = 0 the solution above becomes

4 1
y = (1 — 4% + §x4) ¢+ (z — 3+ 1—0565) e+ 0(z%)

164
y=—162"+4+ 336 +0(=°)
Summary
The solution(s) found are the following
16z
y=—162>+4+ 3x + O(xG)
164
y=—162"+4+ 336 +0(z°)

23

(3)

1)
2)



Verification of solutions

162

y=—162>+4+

Verified OK.

16z*
3

y=—162>+4+

Verified OK.
Maple trace Kovacic algorithm successful

+ O(m6)

+ O(wG)

-

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y

-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

Solution has integrals. Trying a special function solution free of integra
-> Trying a solution in terms of special functioms:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning specia

<- Kovacics algorithm successful”

24
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

‘0rder:=6; ‘
‘dsolve([diff(y(x),x$2)—2*x*diff(y(x),x)+8*y(x)=0,y(0) = 4, D(y)(0) = O],y(x),#ype='series',x

1
y(z) = 4 — 1627 + 36904 + 0 (2%

v/ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 17

LAsymptoticDSolveValue[{y"[X]-2*x*y'[X]+8*y[X]==0,{y[0]==4,y'[0]==0}},Y[X],{X 0,5}]

1 4
02" _ 1622 1 4

y(z) —

25



1.3 problem 3.6 (b)

1.3.1 Existence and uniqueness analysis. . . . . ... ... .. .... 261

Internal problem ID [5482]
Internal file name [OUTPUT/4730_Sunday_June_05_2022_03_04_16_PM_25200396/index. tex|

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136

Problem number: 3.6 (b).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

y' —2xy +8y=0

With initial conditions
[y(0) = 0,4'(0) = 4]
With the expansion point for the power series method at = 0.

1.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as
y' +p(x)y +q(z)y=F
Where here

—2x

<3
—_~
b & &
1
S o



Hence the ode is
y' —2xy +8y=0

The domain of p(z) = —2z is
{—00 <z < o0}

And the point zg = 0 is inside this domain. The domain of g(z) = 8 is

{—o0 <z < o0}

And the point xzq = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let

y' = f(z,9,9)
Assuming expansion is at o = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x,y,y’) is analytic at xo which must be the

case for an ordinary point. Let initial conditions be y(zo) = yo and y'(zo) = yg. Using
Taylor series gives

(x — z0)3
3!

(x — w0)2
2
x? x3
=Y + xy6 + _f|z0,y0,y(’) + 5fl|wo,y0,y6 +--

2
oo wn+2 dnf

. !

=Wt D g de

y(.’E) = y(xo) + (Z’ — wo) y/(-%'o) + y”(.’I}o) —+ y'"(wo) P

£0,Y0,Y(
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But

& _ofds  ofdy , of df
dv Ordr Oydx Oy dx
_g g/ ﬁ//
_8z+3yy+8y’y
_of of . of
_3z+3yy+8y’f

&¢f _d(df
de?  dx (dx)

9 (df\ 0 (df\ ,, O (df
= oz @)*a—y(a)“a—y(@f

&f_4d
dz®  dz
9
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And so on. Hence if we name Fy = f(z,y,y’) then the above can be written as

F0=f(.'L',’y,yl)
_d
Fi=2
_dR
C dx
of of /+6f "
oz oy’ T oy
of  of , Of
oz " ay? oy
_OF, 0F , 0F
or + 8yy 8y’F0
d [ d
F2—%<£f>
d
—%(Fl)

d
_%(
0

. 6Fn_1 ’ a-Fn—l "
_awF”_1+( oy )y +< oy )y

0 OF, - OF,
s () ()

Ox Oy

Therefore (6) can be used from now on along with

. o0 2
) =t Z; (n 3 2)1 "eososs
n=|
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To find y(z) series solution around z = 0. Hence

Fy =2xy — 8y
dFy
=20
YT dx

oFy, OF, , OFy
ox Oy oy’
= 42%y — 16zy — 6/

Fy

dF;
F,=—
7 dx
8F1 8F1 ’ aFl
= F:
ox + Oy v+ oy’ '
= 8y'z® — 32yx? — 20y’ + 32y
dF;
F;=—=
87 dx
6F2 3F2 / 8F2
= E:
Oox + oy v+ ay ?
= (16z* — 482” + 12) y/ + (—642> + 967) y
dF3
Fy=—
YT dr

__OF3  OF; , OF;3
Oz + 8yy + oy’

3
= 32x((x4 — 32% + Z) y' + (—42° + 62) y)

And so on. Evaluating all the above at initial conditions z = 0 and y(0) = 0 and
y'(0) = 4 gives

F3

Fy=0
F,=-24
F,=0
F; =48
Fy=0

Substituting all the above in (7) and simplifying gives the solution as

5
y = —4z3 + 4z + 2% +O(:v6)

5

y=—42® + 4z + 2% +O(:c6)
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Since the expansion point £ = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

(e}

Y= Z anx"

n=0

Then

Substituting the above back into the ode gives

Z n(n—1)a,z" % =2z (Z nana:"_1> -8 (Z anw") (1)

n=2

Which simplifies to

(i n(n —1)a,z" 2) f: —2nz"ay,) (i 8anx"> =0 (2)

n=2

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already z™ and adjusting the
power and the corresponding index gives

Z nn—1)az" % = Z (n+2)ap2(n+1)z"
n =2

n=0

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

<i (n+2)ap2(n+1)x > Z —2nz"a,) + (i 8ana:”> =0 (3)

n=0

8

n = 0 gives
2(12 + 8&0 =0

ag = —4(10
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For 1 < n, the recurrence equation is

(n+2)api2(n+1) — 2na, + 8a, =0

Solving for a,2, gives

oo — 2a,(n —4)
T (n+2) (n+1)
For n =1 the recurrence equation gives
60,3 + 6(11 =0

Which after substituting the earlier terms found becomes

as = —ag

For n = 2 the recurrence equation gives

12(14 + 4&2 =0

Which after substituting the earlier terms found becomes

oy — 40,0
T3
For n = 3 the recurrence equation gives
20(15 + 2(13 =0

Which after substituting the earlier terms found becomes

3]
ay = —
°T 10
For n = 4 the recurrence equation gives
30ag =0

Which after substituting the earlier terms found becomes

(16=0
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For n = 5 the recurrence equation gives

42@7 - 2(1,5 =0

Which after substituting the earlier terms found becomes

a1

“ =210

And so on. Therefore the solution is

o0
y:E anz"
n=0
_ 3 2
=a3x” +axr”" +a1x+ap+ ...

Substituting the values for a,, found above, the solution becomes

4 1
Y = ag+ a1z — dapzr® — a12® + §a0x4 + 1—0a1x5 +...

Collecting terms, the solution becomes

4 1
Y= (1 —4z% + §x4> ap + (m — 3+ 1—0x5> a; —I—O(z6)

At z = 0 the solution above becomes

4 1
y = (1 — 4% + §x4) ¢+ (z — 3+ 1—0565) e+ 0(z%)

5
y = —4z3 + 4z + 2% +O(:c6)

Summary
The solution(s) found are the following

5

y = —42° + 4z + 2% + O(z°)
5

y = —4z3 + 4z + 2% +O(:c6)
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Verification of solutions

5

y=—4z° + 4z + 2% + O(z°)

Verified OK.

5

y = —42° + 4z + 2 + O(z°)

5

Verified OK.
Maple trace Kovacic algorithm successful

-

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y

-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists

Reducible group (found an exponential solution)

Group is reducible, not completely reducible

Solution has integrals. Trying a special function solution free of integra
-> Trying a solution in terms of special functioms:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful
<- special function solution successful

-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning specia

<- Kovacics algorithm successful”
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

‘0rder:=6; ‘
‘dsolve([diff(y(x),x$2)—2*x*diff(y(x),x)+8*y(x)=0,y(0) = 0, D(y(0) = 4],y(x),#ype='series',x

2
y(z) = 4z — 423 + gz5 + O (2%

v/ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 19

LAsymptoticDSolveValue[{y"[X]-2*x*y'[X]+8*y[X]==0,{y[0]==0,y'[0]==4}},Y[X],{X 0,5}]

2 5
y(z) — %—4x3+4x
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1.4 problem 3.6 (c)

1.4.1 Existence and uniqueness analysis. . . . . . ... ... .. ... 361
1.4.2 Maple step by step solution . . . . ... ... ... ....... 44

Internal problem ID [5483]
Internal file name [OUTPUT/4731_Sunday_June_05_2022_03_04_17_PM_33109312/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136

Problem number: 3.6 (c).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

[_Gegenbauer]

(—z*+1)y" —2zy' + 12y =0

With initial conditions

[y(0) = 0,4/(0) = 3]

With the expansion point for the power series method at x = 0.

1.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y' +p()y +q(z)y=F

Where here
2z
12
12)=—5 7
F =
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Hence the ode is

2xy’ 12y
" _
YT e + —z2+1

The domain of p(z) = ——2 is

{—o<z<-1,-1<z< 1<z <0}

12
—972-‘,-1

And the point zy = 0 is inside this domain. The domain of g(z) = is

{—o<z<-1,-1<z<],l<z< 0}

And the point zy = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let

y' = f(2,9,9)
Assuming expansion is at o = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(z,y,y’) is analytic at 2o which must be the

case for an ordinary point. Let initial conditions be y(z) = yo and y'(zo) = y;. Using
Taylor series gives

y(a) = y(z0) + (2~ 20)y/ (z0) + @y%mo) B )

2
i
/
=% + ZYy + = f|x0,yo,y0 f |$0 yano
n+2 dnf

_yo+xyo+Z—n+2)|dxn

x07y07y6
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But

a _
dz

df

dz?

&f _
dz3

0f s 0fdy , 01 dy
Oxdr Oydxr Oy dr
of  of . 9f .

Oz + 3yy + 8y’y

of of , 0Of

ac TayY Tay

df
)
df o (df\ , 0 [df
@)*a—y(a)“a—y(@f
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And so on. Hence if we name Fy = f(z,y,y’) then the above can be written as

F0=f(.'L',’y,yl)
_d
Fi=2
_dR
C dx
of of /+6f "
oz oy’ T oy
of  of , Of
oz " ay? oy
_OF, 0F , 0F
or + 8yy 8y’F0
d [ d
F2—%<£f>
d
—%(Fl)

d
_%(
0

. 6Fn_1 ’ a-Fn—l "
_awF”_1+( oy )y +< oy )y

0 OF, - OF,
s () ()

Ox Oy

Therefore (6) can be used from now on along with

. o0 2
) =t Z; (n 3 2)1 "eososs
n=|
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To find y(z) series solution around z = 0. Hence

2(zy’ — 6y)
Fo=—"pr"7"
dFy
R =20
T dr
_OR  0F , OF,
Oz Oy y oy’ 0
_ 182%y" — 48zy — 10y
(22 — 1)
dF,
F,=—
T dx
o 8F1 6F1 ’ aFlF
© Oz dy y oy !
_ —120y'z® + 360yz? + T2y’ — 72y
(22 - 1)°
dF,
Jo—
7 dx
8F2 6F2 / 6F2
= F:
Oox + Oy v+ oy’ ?
_ 192(5y'z® — 15ya® — 3zy’ + 3y) ©
(22 —1)*
dF3
F=
YT dx

_OF N OF;, J OF;,
or Oy oy’

8640((z® — 2z) v + y(—32* + 2)) (22 + §)
- (22 —1)°

F;

And so on. Evaluating all the above at initial conditions z = 0 and y(0) = 0 and
y'(0) = 3 gives

Fy,=0
Fy =-30
F,=0
F;=0
Fy=0

Substituting all the above in (7) and simplifying gives the solution as

y = —52° + 3z + O(2°)
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y = —5z° + 3z + O(z°)

Since the expansion point z = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

(—2*+1)y" —2zy' + 12y =0

Let the solution be represented as power series of the form

(e o]
Y= E a,x"
n=0

Then

o0
y = g na,z""
n=1

Y’ = Z n(n — 1) a,z" 2
n=2

Substituting the above back into the ode gives

(—2® +1) <§: n(n —1) anx"_2> — 2z <§: nanx”_1> +12 (f: anx") =0 (1)

n=2
Which simplifies to

i (—z"ayn(n —1)) + (i n(n —1)a,z” ) Z —2na,z") + (i 12anx”> =0

n =2 n=2 n=0
(2)

3

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already z™ and adjusting the
power and the corresponding index gives

Z nin—1)az" % = Z (n+2)api2(n+1) 2"
n =2 n=0

Substituting all the above in Eq (2) gives the following equation where now all powers
of z are the same and equal to n.

Z (=z"a,n(n —1)) + (Z (7 +2) ani2(n +1) xn) 3)

n =2 n=0
+ i (—2na,z™) + (i 12ana:"> =0
n =1 n=0
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n = 0 gives

2a2 + 12&0 =0
as = —6ay
n =1 gives
6asz + 10a; =0

Which after substituting earlier equations, simplifies to

4o — 0B
3T 3

For 2 < n, the recurrence equation is

—nay(n — 1)+ (n+2) apy2(n+ 1) — 2na, + 12a, =0

Solving for a2, gives
o an(n?+n —12)
T (n+2)(n+1)

For n = 2 the recurrence equation gives

6as; +12a4 =0

Which after substituting the earlier terms found becomes

as = 3ag

For n = 3 the recurrence equation gives

20a5 =0

Which after substituting the earlier terms found becomes

a5=O

For n = 4 the recurrence equation gives

—8&4 + 300'6 =0
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Which after substituting the earlier terms found becomes

a_4a0
6~ 5

For n = 5 the recurrence equation gives

—18as + 42a7; =0

Which after substituting the earlier terms found becomes

(1,7=0

And so on. Therefore the solution is

o0
yzg anx"
n=0
_ 3 2
=a3x” +ax” +a1x+ag+...

Substituting the values for a,, found above, the solution becomes
2 9 3 4
Yy = ag + a1x — 6apx —galz + 3agz™ + ...
Collecting terms, the solution becomes
4 2 5 3 6
y=(3z* — 62"+ 1) ap + z =3 a1 + O(z°)
At x = 0 the solution above becomes

Y= (3w4 —62% + 1) c + (x — g:ﬁ’) co + O(a:6)

y = —5z° + 3z + O(z°)

Summary
The solution(s) found are the following

y=—5x3+ 3z + O(a:6)
y = —5z° + 3z + O(2°)
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Verification of solutions

y = —5x3+ 3z + O(x6)

Verified OK.
y = —5z° + 3z + O(z°)

Verified OK.

1.4.2 Maple step by step solution

Let’s solve
(=2 +1)y" — 22y + 12y = 0,y(0) = 0,y )~ 3}
° Highest derivative means the order of the ODE is 2
yll
° Isolate 2nd derivative
R S
. Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
YOS TANE
O Check to see if xg is a regular singular point

o Define functions
[Pa(z) = 3%, P3(2) = — %]
o (1+z)- Py(z)is analytic at x = —1

=1

r=-—1

(1 +2) - P())

o (14 2)®- Py(z)is analytic at z = —1

(L+2)*- Py(z))| =0

r=—1

o x = —lis a regular singular point
Check to see if xq is a regular singular point
o= —1
° Multiply by denominators
(z2 —1)y" +2zy — 12y =0
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Change variables using x = u — 1 so that the regular singular point is at u =0
(u? — 2u) <%y(u)> + (2u —2) (Ly(u)) — 12y(u) =0

Assume series solution for y(u)
y(u) = 3 aputt
k=0

Rewrite ODE with series expansions

Convert u™ - (Ly(u)) to series expansion for m = 0..1

u™ - (%y(u)) — kzoak(k + T‘) yktr—14m
Shift index using k— >k +1—m

o0

um™ - (%y(u)) = Z ak+1—m(k +1—m+ ’I") uk+r
k=—1+m

Convert u™ - <j—;2y(u)> to series expansion for m = 1..2

u™ . <dd—u22y(u)) = E ak(k + 7-) (k +r— 1) yktr—2+m
k=0

Shift index using k— >k +2—m

um - (dd—;y(u)) = Y apromk+2—m+7r)(k+1—m+r)urtr
k=—2+m

Rewrite ODE with series expansions

—2ar?u~ T + (li (—2ap41(k+1+7)° +ap(k+r+4) (k+7—3)) u’“”) =0
apcannot be 0 by assumption, giving the indicial equation

—2r2 =0

Values of r that satisfy the indicial equation

r=20

Each term in the series must be 0, giving the recursion relation

—2a511(k+ 1) +ar(k+4) (k—3) =0

Recursion relation that defines series solution to ODE
_ ak(k+4)(k—3)

Qkt1 = = 3(kr1)?

Recursion relation for r = 0 ; series terminates at k = 3

A1 = —ak(g(;fl(;cz_g)
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p

° Apply recursion relation for k =0

a; = —6ayg
° Apply recursion relation for k =1
4y = —5
° Express in terms of ag
L
° Apply recursion relation for k = 2
az = —%
° Express in terms of ag
as = —5m
° Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second li

y(u) = ag - (1 —6u+ Lu? — 2u3)
° Revert the change of variablesu =1+

[y = a0(32 — 32%)]

Maple trace Kovacic algorithm successful

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients

checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]

checking if the LODE is missing y

-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful”
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

‘0rder:=6; ‘
|dsolve([(1-x"2)*diff (y(x),x$2)-24x*diff (y(x),x)+12%y(x)=0,y(0) = 0, D(y)(0) = 3],y(x),type='

y(z) = -5z + 3z

v Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 12

LAsymptoticDSolveValue[{(1—x“2)*y"[x]—2*x*y'[x]+12*y[x]==0,{y[0]== ,y'[0]==3}?,y[x],{x,0,5}]

y(x) — 3z — bx®
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1.5 problem 3.6 (d)

1.5.1 Existence and uniqueness analysis. . . . . ... ... .. .... [48]
1.5.2 Maple step by step solution . . . . ... ... ... ... ... . 50l

Internal problem ID [5484]
Internal file name [OUTPUT/4732_Sunday_June_05_2022_03_04_19_PM_13770176/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136

Problem number: 3.6 (d).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__bessel__ode", "sec-
ond order series method. Ordinary point", "second order series method.
Taylor series method"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

y' —(z-1)y=0

With initial conditions

[¥(0) = 1,4/(0) = 0]

With the expansion point for the power series method at x = 0.

1.5.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

Y +p(z)y +q(z)y=F

Where here
p(z) =0
g(z)=1-z
F=0



Hence the ode is
v +(1—x2)y=0

The domain of p(z) = 0 is
{—00 <z < o0}

And the point zo = 0 is inside this domain. The domain of ¢(z) =1 — z is

{—o0 <z < o0}

And the point xzq = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let

y' = f(z,9,9)
Assuming expansion is at o = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x,y,y’) is analytic at xo which must be the

case for an ordinary point. Let initial conditions be y(zo) = yo and y'(zo) = yg. Using
Taylor series gives

(x — z0)3
3!

(x — w0)2
2
x? x3
— / /
- yO + xyo + Ef'm()’yo’y(’) + yf |$0,y0,y6 + e

oo wn+2 dnf
. !
=Wt D g de

y(.’E) = y(xo) + (Z’ — wo) y/(-%'o) + y”(.’I}o) —+ y'"(wo) P

£0,Y0,Y(
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But

a _
dz

df

dz?

&f _
dz3

0f s 0fdy , 01 dy
Oxdr Oydxr Oy dr
of  of . 9f .

Oz + 3yy + 8y’y

of of , 0Of

ac TayY Tay

df
)
df o (df\ , 0 [df
@)*a—y(a)“a—y(@f

90
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And so on. Hence if we name Fy = f(z,y,y’) then the above can be written as

F0=f(.'L',’y,yl)
_d
Fi=2
_dR
C dx
of of /+6f "
oz oy’ T oy
of  of , Of
oz " ay? oy
_OF, 0F , 0F
or + 8yy 8y’F0
d [ d
F2—%<£f>
d
—%(Fl)

d
_%(
0

. 6Fn_1 ’ a-Fn—l "
_awF”_1+( oy )y +< oy )y

0 OF, - OF,
s () ()

Ox Oy

Therefore (6) can be used from now on along with

. o0 2
) =t Z; (n 3 2)1 "eososs
n=|
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To find y(z) series solution around z = 0. Hence

Fo=(x—-1)y
dF,

F=—

! dx

_0F, , OF, , OF

or Oy y oy’ Fo

=y+(@=-1)y
dFy
Be=i
6F1 6F1 ’ 6F1
= F
Oox + Oy v+ ay '
:2y'—|—(x—1)2y
dF,
=22
3 dz
an 8F2 ’ an
= F
Oox + Oy v+ oy’ ?
=(-1)(z -1y +4y)
dF;
=23
4 dz

_ OF; 4 OF; 4 OF;
Oz 8yy oy’
=(—1)y+ (62— 6)y +4y

F3

And so on. Evaluating all the above at initial conditions z = 0 and y(0) = 1 and
y'(0) = 0 gives

Fh=-1
F,=1
F,=1
F3=—-4
F,=3

Substituting all the above in (7) and simplifying gives the solution as

2 .’IJ3 $4 .’IJ5 $6

7 v ¥ 6
Y 7+t % T2 30t a0 T O

2 3 4 5 6
A A A z (29)

- T
y >t 1t22 30 220
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Since the expansion point £ = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

Ie9)
y=>_ aw"
n=0

Then

oo

y = E na,z" !

n=1
o)

y' = Z n(n —1)a,z"?

n=2

Substituting the above back into the ode gives

Z nn—1)a,z" %= (z - 1) (Z anm") (1)

n=2

Which simplifies to

(Z n(n —1) anx"_2> + (Z anx”> + Z (—z"*"a,) =0 (2)

n=2

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already z™ and adjusting the
power and the corresponding index gives

nin—1)az" % = Z (n+2) anyo(l +n)z"
n =2 n=0
> (=2Man) =) (~an-12")
n =0 n=1

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(Z (n+2) any2(1 +n) ﬂv") + (Z anz") + Z (—ap—12™) =0 (3)

n=0 —

n = 0 gives
2&2 + ag = 0
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For 1 < n, the recurrence equation is

n+2)api2(l+n)+a,—a,—1 =0

Solving for a2, gives

an+2 = _(

(5) (7% Ap—1

=T+ (0+n)  mt+2)d+n)

For n = 1 the recurrence equation gives

6a3+a1—a0=0

Which after substituting the earlier terms found becomes

a1 Qo

w=—g+%g

For n = 2 the recurrence equation gives

12a4+a2—a1=0

Which after substituting the earlier terms found becomes

_ o &
U=t
For n = 3 the recurrence equation gives

2Oa5—|—a3—a2=0

Which after substituting the earlier terms found becomes

ay ap

%= 120 " 30
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For n = 4 the recurrence equation gives

30a¢ + a4 —a3 =0

Which after substituting the earlier terms found becomes

Qo ay

6 -

%= 240 120
For n = 5 the recurrence equation gives

42a7+a5—a4=0

Which after substituting the earlier terms found becomes

a1 ag

%= 560 T 560

And so on. Therefore the solution is

o0
n=0
:a3x3+a2x2+a1w+a0+...
Substituting the values for a,, found above, the solution becomes
2

— _ Q¥ (G Qo) 3 (@ ﬂ)‘i (ﬂ_@> 5
Yy=ao+az—— +< 6+6>””+ 24 T12)% T\130 "30)% T

Collecting terms, the solution becomes

=11—-—= 2 _:L‘?’ _:L-4 — _.'L'S 3 4 5 10 6 3

At z = 0 the solution above becomes

_ 1, 154 s 15 14, 1 4,4, 1 5 6
—<1 4+ -+ —=z e+ (T 6x+12x+120x e+ O0(2°)

2+6+24 30
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Summary
The solution(s) found are the following

2 3 4 5 6

., T T 6
y=1 22+63+221 3(5)+240+O($) (1)
{1, r 6
y=1 st v 3O+O(x) (2)
Verification of solutions
2 g3 gt b £
=1-" 4+ 4= 4= 6
v 7+t% T2 30t a0 T O@)
Verified OK.
I ]
y—l—E—t-g—l-ﬂ—%—i-O(x)
Verified OK.

1.5.2 Maple step by step solution

Let’s solve
V== Dy = 1y|_ =]
{z=0}
° Highest derivative means the order of the ODE is 2
yll
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y'+(1-2)y=0
° Assume series solution for y
y=> aa
k=0
O Rewrite ODE with series expansions

o Convert ™ - y to series expansion for m = 0..1

[e )

.y: Z akx

k=max(0,—m)

k+m

o Shift index using k— >k —m

Y= > ak—mZ

k=max(0,—m)+m

k

o Convert y” to series expansion

96



v =" apk(k — 1) zF2
k=2
Shift index using k— >k + 2
y' = apsa(k+2) (k+1)zF
k=0

Rewrite ODE with series expansions

2a9 + ag + (Ii (apso(k+2) (k+1) +ar — ap_1) x’“) =0

Each term must be 0

209 +ay=0

Each term in the series must be 0, giving the recursion relation
(k? + 3k +2) agyo +ar —ax_1 =0

Shift index using k— >k + 1

((k+1)* + 3k +5) a3 + arp1 — ax, =0

Recursion relation that defines the series solution to the ODE

00
— k _ “Ok+1tak —
Yy= kz_:oa'km y Ak+3 = k2 +5k+6 ,2&2 +ay=0

Maple trace

“Methods
--- Tryi

for second order ODEs:
ng classification methods ---

trying a quadrature

checking
checking
trying a
checking
=> Tryin
<- No Li
=> Tryin

-> Be

<- Be
<- speci

if the LODE has constant coefficients
if the LODE is of Euler type
symmetry of the form [xi=0, eta=F(x)]
if the LODE is missing y
g a Liouvillian solution using Kovacics algorithm
ouvillian solutions exists
g a solution in terms of special functions:
ssel
ssel successful
al function solution successful”
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v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 18

‘0rder:=6; ‘
‘dsolve([diff(y(x),x$2)=(x—1)*y(x),y(O) =1, D(y(0) = 0],y(x),type='series',X%O);

1 1 1 1
y(z) =1- ézz + 6:1:3 + ﬂx‘l - %f + O (2%
v/ Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 33

LAsymptoticDSolveValue [{y'' [x]==(x-1)*y[x],{y[0]==1,y' [0]==0}},y[x],{x,0,5}] J

()_)x_i_x_i_x = 1
y\x 30 246 2
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1.6 problem 3.24 (a)
1.6.1 Maple step by step solution . . . . . ... ... ... ...... 671

Internal problem ID [5485]
Internal file name [OUTPUT/4733_Sunday_June_05_2022_03_04_21_PM_58288000/index . tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136

Problem number: 3.24 (a).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

z(z+2)y" +2(1+z)y —2y=0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

(£ +22)y" + (2+22)y —2y =0

The following is summary of singularities for the above ode. Writing the ode as

Y + @)y +q(z)y =0

Where
24 2x
p(z) = m
2
a(e) = Cz(z+2)
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Table 4: Table p(z), ¢(z) singularites.

p(e) = 22 4(@) = — 32y
singularity type singularity type
x=—2 | “regular” x=—2 | “regular”
=0 “regular” =0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [—2,0, o0]
Irregular singular points : ||

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be
z(z+2)y" +(2+22)y —2y=0

Let the solution be represented as Frobenius power series of the form

00
y = 2 anxn+r
n=0

Then
Y= (n+r)ae™!
n=0
y' = Z (n+r)(n+r—1)a,z""?

I
o

T

Substituting the above back into the ode gives

z(z + 2) (Z (n+7)(n+r—1) an$n+r—2>

n=0

+ (2 4 22) (i (n+r) anmn+r—1> _9 (i anmn+r> -0

n=0 n=0

60



Which simplifies to

(war (n+r (n+r—1> (Z%"”l n+r)(n+r—1)> (2A)
+ (Z 2xn+?“a,n(n + 7")) + (Z 2(7’1, + 7.) a’nmn-l—r—l) i 2anxn+r -0

n=0 n=0

The next step is to make all powers of x be n + r — 1 in each summation term. Going
over each summation term above with power of z in it which is not already z"*"~! and
adjusting the power and the corresponding index gives

Z " Ta,(n+r)(n+r—1)= Z ani(n+r—1)(n+r—2)z""!
n =0 n=1
Z 22" a,(n+71) = Z 20, 1(n+r—1)z""!
n =0 n=1
Z (—2a,2™") = Z (—2a,_12™" 1)
n =0 n=1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of z are the same and equal ton +r — 1.

(Z an—1(n+r—1) (n +r— 2) xn+7‘—1>

n=1

(Z 2" an(n ) (o 1>> " <i 20,1 (n+ 7 1)w"”_1> B

n=1

+ (Z 2(n+r) anx"”_l) + Z (—2a,_12™"71) =0
n=0 n =1

The indicial equation is obtained from n = 0. From Eq (2B) this gives
22" g, (n+r)(n+r—1)+2n+71)az" =0
When n = 0 the above becomes

22 M agr(—1 + 1) + 2ragzr " =0

61



Or
(227 (=14 1)+ 2rz7 ) ap =0

Since ag # 0 then the above simplifies to
20 T2 = 0
Since the above is true for all x then the indicial equation becomes
2r2 =0
Solving for r gives the roots of the indicial equation as

7"1:0

To = 0
Since ag # 0 then the indicial equation becomes
22 14r? =0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y(z) = Z an ™" (1A)

Now the second solution g, is found using

yo(z) = y1(z) In (z) + (Z bnz"+T> (1B)
n=1
Then the general solution will be

y = ay(z) + oy ()

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), ag is never zero, and is
arbitrary and is typically taken as ap = 1, and {ci, co} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y;(z). Eq (2B) derived above is now used to find all a,, coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. ag is
arbitrary and taken as ap = 1. For 1 < n the recursive equation is

an-1(n+r—1)(n+r—2)+2a,(n+r)(n+r—1) (3)
+2a,1(n+7—1)+2a,(n+71) — 20,1 =0
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Solving for a,, from recursive equation (4) gives

(M2 +2nr+r2—n—r—2) (1)
2 (n? 4+ 2nr +r?)

a, =

Which for the root r = 0 becomes

_ api(n?—n—2)
n = 2n? (5)

At this point, it is a good idea to keep track of a,, in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n | Gny | Gy

ap 1 1

For n = 1, using the above recursive equation gives

-T2
2(r+1)°
Which for the root r = 0 becomes
a; = 1
And the table now becomes
n A Qn
ao 1 1
—r2—r42
aq W 1

For n = 2, using the above recursive equation gives
4y — (r+3)r(-1+r)
4(r+2)(r+1)°
Which for the root r = 0 becomes

Qg = 0
And the table now becomes
n | any an
Qo 1 1
_p2_ +2
ay ﬁ 1
a (r+3)r(=1+4r) 0
2 | drene
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For n = 3, using the above recursive equation gives

(=147r)r(r+4)

as = —
2T 8 +3)(r+1)(r+2)
Which for the root r = 0 becomes
as = 0
And the table now becomes
no| any an
Qo 1 1
—r2—r42
ay W 1
(r+3)r(—1+r)
Q2 | 4r+2)(r+1)? 0
as (=147)r(r+4) 0

T 8(r3)(r+1)(r+2)

For n = 4, using the above recursive equation gives

_ r(=1+7)(r+5)
C16(r+4)(r+1)(r+3)

Which for the root r = 0 becomes

a4

as =0
And the table now becomes
no| Gn, an
ap | 1 1
a ﬁ 1
as | — s(ijré;r(:)l gzﬁz) 0
a4 16(7;(3;2:3517&513) 0

For n = 5, using the above recursive equation gives

(=147r)r(r+6)
32(r+5)(r+1)(r+4)

as = —
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Which for the root r = 0 becomes

a5 = 0
And the table now becomes
n | Qny an
Qo 1 1
_p2__ +2
a1 22r+§)2 1
(r4+3)r(=1+r)
% | Sorar)? 0
(=147)r(r+4)
% | ~srerty | O
(=1+47)(r+5)
a4 16(r+4)(:+1T)(r+3) 0
(=1+47)r(r+6)
as _32(r+5)€rr+;)(r+4) 0

Using the above table, then the first solution y;(z) becomes

2 4
yl(x) = ag + a1 + asx” + a3:c3 + a4x” + a5x5 + a6z6. ..

—1+2+0(:)

Now the second solution is found. The second solution is given by

y2(z) = y1(x) In (z) + (Z bnl'n+r>

Where b, is found using

And the above is then evaluated at » = 0. The above table for a,, is used for this
purpose. Computing the derivatives gives the following table
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n bn,'r Qnp, bn,v' = diran,T bn(r = O)
bo | 1 1 | N/A since b, starts from 1 | N/A
b —r2—r42 1 —r—5 _5

L1 "2(r41)? 2(r1)° 2
b (r+3)r(—1+r) 0 r3+7r24+7r—3 _3

2 | 4(r+2)(r+1)2 2(r+2)2(r+1)3 8
be | —_Clinretd) | g | 3=gr=Rr—gri-iprd 1

3 8(r+3)(r+1)(r+2) (r+3)2(r+1)*(r+2)? 12
b r(=1+7)(r+5) 0 r4412r34+38r2+24r—15 _ 5
4 | 16(r+4)(r+1)(r+3) 4(r+4)2(r+1)%(r+3)? 192
be | —_Clinr6) | o | Zogrogpriogriogr 3

5 32(r+5) (r+1)(r+4) (r+5)%(r+1)%(r+4)2 320

The above table gives all values of b, needed. Hence the second solution is

y2(z) = y1(z) In () + bo + b1 + box® + b3z® + byx* + bsx® + bez®. ..

_ 6 _ 5z 3 o8 52t 3° 6
=(1+2+4+0(2°)In(z) 5 s T 1o 192+320+O(x)

Therefore the homogeneous solution is

Yn(t) = c1y1 () + coya(z)

5¢ 3z 2 b5zt  3a°
:cl(l+x+0(a:6))+cz((1+x+0(a}6))1n(z)—7—?4-&—1—924-%

+0 (wﬁ))
Hence the final solution is
Y=1Yn

=c1(1—|-ac—|-0(x6))+c2<(1+m—|—0(x6)) In(z)————+—=——+-—-+0(z

Summary
The solution(s) found are the following

+02((1+x+0(a:6))1n(m)————+————|-——|-0

y= 01(1 +x+ O(mG))
5r 3z 2 5x* 32 (29) 1)
2~ 8 12 192 320 "~V
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Verification of solutions

2 3 4 5
y=c1(1+z+0(z%)) +02((1+x+0(m6)) In (3:)—5;—3%+%—%+§%0+0(m6))

Verified OK.

1.6.1 Maple step by step solution

Let’s solve
z(z+2)y"+(2+2z)y —2y=0
° Highest derivative means the order of the ODE is 2

1

Y

° Isolate 2nd derivative

n_ 2y  2(4x)y
¥y = z(z+2) z(z+2)

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

2(1+z)y’ 2y _
y” + z(:c+2?)J - x(zg-Q) =0

O Check to see if xg is a regular singular point

o Define functions

[Paa) = 25555 Pula) =~y

o (z+2)- Py(z)is analytic at x = —2
(@ +2) P =1
o (z+2)%- Py(z)is analytic at z = —2

=0

r=—2

((z +2)* - Ps(z))

o 1z = —2is a regular singular point

Check to see if xg is a regular singular point

To = —2
° Multiply by denominators
zz+2)y" +(2+2r)y —2y=0
° Change variables using z = u — 2 so that the regular singular point is at u = 0

(u? — 2u) <j—;y(u)> + (—2+2u) (Ly(u)) —2y(u) =0
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Assume series solution for y(u)
o0

y(u) = 3 et
k=0

Rewrite ODE with series expansions

Convert u™ - (Ly(u)) to series expansion for m = 0..1
u™ - (Ly(u)) = 3 ap(k +r) ubtr=—tm
k=0

Shift index using k— >k +1—m

o0

u™ - (Ly(W) = X apnom(k+1—m4r)uttT
k=—14m

Convert u™ - (j—;y(u)) to series expansion for m = 1..2

- (Lry()) = X ax(k+7) (k+r — 1) uktr-2m
k=0
Shift index using k— >k +2—m

e .e]

um - <f—;y(u)> = k:§+m arro-mk+2—m+71)(k+1—m+7)urT

Rewrite ODE with series expansions

—2aor2u~ 1t 4 (Z (—2ak+1(k +1+ r)2 +ark+r+2)(k+r— 1)) uktr

k=0
apcannot be 0 by assumption, giving the indicial equation
—2r2 =0

Values of r that satisfy the indicial equation

r=20

Each term in the series must be 0, giving the recursion relation
—2a51(k+1) +ar(k+2)(k—1)=0

Recursion relation that defines series solution to ODE

ar(k+2)(k—1
oy = DD

Recursion relation for r = 0 ; series terminates at k = 1
_ ap(k+2)(k—1)
Qkt1 = = g(h41)?

Apply recursion relation for k =0

a; = —Qo
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° Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second li
y(u) =ao-(—u+1)
° Revert the change of variables u = x + 2

[y = ao(=1 - z)]

Maple trace Kovacic algorithm successful

“Methods for second order ODEs:

-—- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients

checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]

checking if the LODE is missing y

-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful”

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 43

N

p
‘0rder:=6; ‘
Ldsolve(x*(x+2)*diff(y(x),x$2)+2*(x+1)*diff(y(x),x)—2*y(x)=0,y(x),type='serieéf,x=0);

y(z)=(ecln(z)+c)(1+z+0 (xﬁ))

> 3, 14 5 4, 3 5 6
+( 5%~ g% +12w T +320x + 0 (z°%) ) e

v Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 53

LAsymptoticDSolveValue[x*(x+2)*y"[x]+2*(x+1)*y'[x]—2*y[x]==0,y[x],{x,0,5}]

J

325 5z* 2* 322 b5z
X _ oL TS 0% 11 1
y(z) —>cz<320 TR 5 +(z+1) og(x)) +c(z+1)
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1.7 problem 3.24 (b)
1.7.1 Maple step by step solution . . . . ... ... ... ... ... 811

Internal problem ID [5486]
Internal file name [OUTPUT/4734_Sunday_June_05_2022_03_04_22_PM_53719317/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136

Problem number: 3.24 (b).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type

[[_Emden, _Fowler]]

zy" +y=0

With the expansion point for the power series method at = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.
zy’ +y=0

The following is summary of singularities for the above ode. Writing the ode as

Y + @)y +q(x)y=0

Where
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Table 6: Table p(x), g(z) singularites.

1

q(z) =3

p(z) =0

singularity type

singularity | type

=0 “regular”

Combining everything together gives the following summary of singularities for the ode

as
Regular singular points : [0]

Irregular singular points : [00]

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is

normalized to be
zy" +y=0

Let the solution be represented as Frobenius power series of the form

e
y = E : anxn+r
n=0

Then

(n+r) a,z"tr!

<
|

Me 17

(n+r)(n+r—1)a,z" 2

<
|

3
I
o

Substituting the above back into the ode gives

(Z m+r)(n+r—1) anx"+’"_2) T+ (Z anx"”) =0

n=0

Which simplifies to

(Z " la,(n+r)(n+71— 1)) + (Z a,@"”) =0
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The next step is to make all powers of x be n + r — 1 in each summation term. Going
over each summation term above with power of z in it which is not already z"+"~!
adjusting the power and the corresponding index gives

and

0o 00
E :anxn—l—r — E :an_lxn—l—r—l
n =0 n=1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of z are the same and equal ton +r — 1.

(Z " la,(n4+r)(n+r— 1)) + (Z an_lz"“""_l) =0 (2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives
"t la,(n+r)(n+r—1)=0
When n = 0 the above becomes
T agr(=1417) =0

Or
" agr(=14+7)=0

Since ag # 0 then the above simplifies to
T r(=14+7)=0
Since the above is true for all x then the indicial equation becomes
r(=14+7r)=0
Solving for r gives the roots of the indicial equation as

T =

Ty = 0
Since ag # 0 then the indicial equation becomes

T r(=147)=0
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Solving for r gives the roots of the indicial equation as Since r; — ro = 1 is an integer,
then we can construct two linearly independent solutions

yl(x =z (Zanz )
ya(e) = Oy (2) In (a) + 2™ (Z w")

yi(z) =2z (Z anm")
y2(2) = Co (= (Z ba” >

oo
— § anxn—i-l

n=0

v2(z) = Cus(x (Z bpz” )

Where C above can be zero. We start by finding y;. Eq (2B) derived above is now used
to find all a,, coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. ag is arbitrary and taken as ay = 1. For 1 < n the recursive
equation is

ar(n+r)(n+r—1)4+a,_1 =0 (3)

Solving for a,, from recursive equation (4) gives

S S . § @

Which for the root r = 1 becomes
an—1

(n+1)n (5)

At this point, it is a good idea to keep track of a,, in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

Ap = —

n | Gpy | Gy

ap 1 1
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For n = 1, using the above recursive equation gives

1
SN S
Which for the root r = 1 becomes 1
a; = —5
And the table now becomes
n | Gny an
Qo 1 1
1 1
a1 |~ | T2

For n = 2, using the above recursive equation gives

1
(L+7)°r2+r)

ag =

Which for the root r = 1 becomes

o — 1
2712
And the table now becomes
n | Gny an
Qo 1 1
1 1
1 | T e T2
ay | ——— | L
2| (+r)r(2+r) | 12

For n = 3, using the above recursive equation gives

1
(14+r)’r@2+7r)?2@B+7)

ag = —

Which for the root r = 1 becomes

1

o= ~14

And the table now becomes
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no| Gnyr an
ao 1 1
1 1
1| T @Fnr T2
1 1
%2 | T2 12
as | — 1 _1
3 (147)2r(2+7)(3+r) 144

For n = 4, using the above recursive equation gives

1
1+r)2r@2+r>@+r)’@+r)

ay =

Which for the root r = 1 becomes

. 1
472880
And the table now becomes
no| Gy an
Qo 1 1
1 1

“ | T 3
a | — 1 1

2| (14n)%r(2+7) 12
as | — 1 -

3 (147)2r(2+47)%(3+r) 144
a 1 1

4 (A+r)2r(2+r)2(3+r)2(d+r) | 2880

For n = 5, using the above recursive equation gives

1
1+ ?rC+r)2@+r)@+r)(G+r)

Which for the root r = 1 becomes

as = —

1
% = T 86400

And the table now becomes
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no| ny an
Qo 1 1
1 1
o T ~2
1 1

@2 | G2t 12
o | — 1 _ L

3 (A7) 2r(2+r)2(3+r) 144
a 1 1

4 (1) %r@+r)2(3+r) 2 (4+r) 2880
a | — 1 1

5 (1+r)%r(2+7)2(3+7)2(4+7)% (5+7) 86400

Using the above table, then the solution y; () is

y1(z) = z(ao + a1% + a2z” + a3z’ + asz + a5z° + agz®. . )
2 3 4 5

_rry o7 6
(1 2 T2 7 144 T %80 86400+O(x)>

Now the second solution y(z) is found. Let

T'1—7"2:N

Where N is positive integer which is the difference between the two roots. r; is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding lim, ., a;(r). If this limit exists, then C = 0,
else we need to keep the log term and C' # 0. The above table shows that

ay = a;
1
- 1+4+r)r
Therefore
lim —; = lim —;
rors (14+7r)r 0 (147r)r
= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution

has the form
yo(z) = Cy1(z) In (z (Z bnx"”z)
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Therefore

x
N i (bnxn-i-rz (’I’L + 7.2)2 B bnxn+r2(n + r2))

x2 2

=Cy{(z)In(z)+

2Cy)(z) Cu(z) (

T x2

Z 22 (n4ry) (—1 +n+r2)>

n=0

Substituting these back into the given ode zy” + y = 0 gives

(Cyi,(x) in (o) + 29%4(2) _ On@) | 5~ (bx (n+72)° _ b (n+12) )) .

T T s 2 2
+ Cyi(z)In (x (Z bnw""'”) =0

Which can be written as

(@ +n@)mE + (2D - 1)) o

T 2

o0 bnxn+r2 (TL + 7"2)2 bnxn+r2 (n + 7~2) ° -
+<Z( a? - 2 o 2 ba™ | =0
n=0

n=0

But since y;(z) is a solution to the ode, then
yi(@)z +y1(x) =0
Eq (7) simplifes to

(M- 10) o (S (ot b))

(Srr) o
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Substituting y; = Z a,z"*" into the above gives
n=0

(2 ( S5 oty (o + 7‘1)) - ( Pl ana:n+r1)) c

z (9)
(fj 722 (R4 1mo) (—14+n+ 7"2)) x? + (f bnm"+T2) T .

n=0 n=0
+ =
T

Since 1 = 1 and 73 = 0 then the above becomes

(2 ( Z;Oxnan(n + 1)) z— ( Zjo anx"H)) C

T

(i T2, n(n — 1)) T2 + (20 bnx") T L,

(10)

n=0

+
T

Which simplifies to
(Z 2C z"an(n + 1)) + Z (—Cz"a,) + (Zn:c”_lbn(n - 1)> + (Z bnx”> =0
n=0 n =0 n=0 n=0
(24)

The next step is to make all powers of £ be n — 1 in each summation term. Going
over each summation term above with power of z in it which is not already 2"~ and
adjusting the power and the corresponding index gives

Z2Cm a,(n+1)= Z2Can mnx™ !

n =0
i (—Cz"a,) = i (—Cap_13™")
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Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n — 1.

(Z 2Ca,_1nx"" ) Z: C’an 1z (2B)
<an” Y (n — 1)) (Z bn_lz"_1> =0

For n = 0 in Eq. (2B), we choose arbitray value for by as by = 1. For n = N, where
N = 1 which is the difference between the two roots, we are free to choose b; = 0.
Hence for n = 1, Eq (2B) gives

C+1=0

Which is solved for C'. Solving for C' gives
C=-1

For n = 2, Eq (2B) gives
30@1 + bl + 2b2 =0

Which when replacing the above values found already for b,, and the values found earlier

for a,, and for C, gives

3
2b2+§=0

Solving the above for by gives

3
b2=—:1

For n = 3, Eq (2B) gives
500,2 + b2 + 6b3 =0

Which when replacing the above values found already for b,, and the values found earlier
for a,, and for C, gives

7
6b3_6=0

Solving the above for bs gives ;
by = —
°7 36
For n = 4, Eq (2B) gives

70&3 + b3 + 12b4 =0

Which when replacing the above values found already for b, and the values found earlier

for a,, and for C, gives .
1264 + m =0
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Solving the above for by gives .

bi= 1738

For n =5, Eq (2B) gives
90(14 + b4 + 20b5 =0

Which when replacing the above values found already for b, and the values found earlier
for a,, and for C, gives

101
20bs — 1320 — 0
Solving the above for b5 gives Lo1
% = 86400

Now that we found all b, and C, we can calculate the second solution from

y2(z) = Cys(x) In (z (Z bnz"+m>

n=0

Using the above value found for C' = —1 and all b, then the second solution becomes

z z* o8 z z° 6
va(z) = (=1) ( (1 ~5 13 142 " 280 sea00 T O ))) In(z)

3 5
3z 7z* 35z 101z +0(a%)

1=+ 35 ~ 17 T 36200

Therefore the homogeneous solution is

Yn(z) = c1y1(z) + coya()

2 3 4 5
—C1x(1——+x——x—+ c__ 2 +O(x6))

2 12 144 2880 86400

2 2 o o .
- -5+~ 1 E 1 1
+CQ<( 1)( ( 2+ 1 144 " 2880 " 86400 T O ))) n(z) +
322  7z®  35z* 101a° .
~ 1 T 36 " 1728 T aeaoo T O ))

Hence the final solution is

Y=1Yn
x zz x* z°
= ]___ _ _ 6
clx( 2" 12" 144 T 2880 86400+O(x)>
x zz z? x? 3z 723
1Ty v 0(z) ) 1 R
“2( < 2 7127 124 T 2880 86400 T <x)> n(@)+1-=+ 35

35z*  101z° 6
~ 7728 + s6a00 T O >)
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Summary
The solution(s) found are the following

r z* o zt z° 6
y‘“¢@‘§+iﬁ_iﬁ+2%0_%mo+o@)>
z z* o3 zt z® 6 3z?
o1t _ 32 g
+c?( x(l 2" 12 " 144 T 2880 86400+O(x)>1n(x)+1 7 W

723 35zt 101x° 6
36 1728 T sea00 T O )>

Verification of solutions

r x> 3 z* x?
= 1242 2 _ 6
y Clx( 213 124 T 3880 sodoo T O ))
2 3 4 5

2 2 " 12 144 ' 2880 86400

2 3

+O(:v6)>ln(x)+1—3%+73i6
1 5

352* 101z O(mﬁ))

~ 1728 T 86400

Verified OK.

1.7.1 Maple step by step solution

Let’s solve
y'r+y=0
° Highest derivative means the order of the ODE is 2

i

Yy
° Isolate 2nd derivative

v'=-t
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y'+2=0
0J Check to see if xg = 0 is a regular singular point
o Define functions
[Po(z) = 0, Py(z) = ]

o x-Py(x)is analytic at x =0

(z- Py(x))| =0

z=0
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z? - P3(x)is analytic at x = 0

(«*- Py(z))| =0

=0

x = Ois a regular singular point
Check to see if xyg = 0 is a regular singular point
Tog = 0
Multiply by denominators
y'r+y=0
Assume series solution for y

o0
y = Z akzk-l—r

k=0
Rewrite ODE with series expansions

Convert x - " to series expansion

z-y' = Ii)ak(k +7)(k+r—1)gkr1

Shift index using k— >k + 1

z-y' = kilak—kl(k +1+7)(k+7)zhr

Rewrite ODE with series expansions

aor(=1+r) 2" + (ki:) (ars1(k+147) (k+7)+ak) x’““) =0

apcannot be 0 by assumption, giving the indicial equation

r(=1+7)=0
Values of r that satisfy the indicial equation
r € {0,1}

Each term in the series must be 0, giving the recursion relation
apr1(k+14+7r)(k+7r)+ar=0

Recursion relation that defines series solution to ODE

- %
Ok+1 = = G ivr) (htr)

Recursion relation forr =0

— Ok
Ap+1 = (k+1k
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Solution forr =0

0o

— k — ak

Yy= Z apT”, Qg1 = _(k+1)k:|
k=0

Recursion relation forr =1

_ ak
Ak+1 = ~ (k12)(k+1)

Solution forr =1

00
_ k+1 — _ ak
Yy= E arZ y Ak+1 = (k+2)(k+1):|
L k=0

Combine solutions and rename parameters

Maple trace

_ = k = k _ a _ b
y= <kZ::0ak$ ) + (kzzjobkw +1) y Q41 = —m,bkﬂ = —m

“Methods

for second order ODEs:

--- Trying classification methods ---

trying a
checking
checking
trying a
checking

quadrature

if the LODE has constant coefficients
if the LODE is of Euler type

symmetry of the form [xi=0, eta=F(x)]
if the LODE is missing y

-> Trying a Liouvillian solution using Kovacics algorithm

<- No Li

ouvillian solutions exists

-> Trying a solution in terms of special functioms:

-> Be
<- Be
<- speci

ssel
ssel successful
al function solution successful”
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v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 58

‘0rder:=6;
|dsolve (x*diff (y(x) ,x$2)+y(x)=0,y(x) ,type='series',x=0);

= N — — — O

1 1
+ ¢ (ln (z) (—m + le - ix3 +—zt— —2°+0 (x6)>

2 12 144 2880
101
+<1_§$2+1x3— ot +O(x6)))

5
47 T 36" T 1728" T 86400”

v/ Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 85

LAsymptoticDSolveValue [xxy' ' [x]+y[x]==0,y[x],{x,0,5}]

144

—47z* + 48023 — 216022 + 1728z + 1728 x® [l
+ C2 -t 55tz
1728 2880 144 12 2

y(z) = (Lx(z?’ — 122° + 72z — 144) log()
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1.8 problem 3.24 (c)

Internal problem ID [5487]
Internal file name [QUTPUT/4735_Sunday_June_05_2022_03_04_24_PM_70902532/index.tex|

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136

Problem number: 3.24 (c).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__bessel__ode_ form_ A",
"second order series method. Ordinary point", "second order series method.
Taylor series method"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

Y '+ (" =1)y=0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let

y' = f(z,9,9)
Assuming expansion is at o = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x,y,y’) is analytic at xo which must be the
case for an ordinary point. Let initial conditions be y(zo) = yo and y'(zo) = yg. Using
Taylor series gives
(z — zo)®

3!

(x — w0)2

2 y//(xo) +

y(x) = y(zo) + (& — 20) ¥ (o) + y" (o) + -+ -

B R 2
- yo + xyo + 5f|x07y07y(,) + ?f |xo,yo,y6 + e

oo xn+2 dnf
. !
=W D gl der

zO;yO:’yE)
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But

a _
dz

df

dz?

&f _
dz3

0f s 0fdy , 01 dy
Oxdr Oydxr Oy dr
of  of . 9f .

Oz + 3yy + 8y’y

of of , 0Of

ac TayY Tay

df
)
df o (df\ , 0 [df
@)*a—y(a)“a—y(@f
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And so on. Hence if we name Fy = f(z,y,y’) then the above can be written as

F0=f(.'L',’y,yl)
_d
Fi=2
_dR
C dx
of of /+6f "
oz oy’ T oy
of  of , Of
oz " ay? oy
_OF, 0F , 0F
or + 8yy 8y’F0
d [ d
F2—%<£f>
d
—%(Fl)

d
_%(
0

. 6Fn_1 ’ a-Fn—l "
_awF”_1+( oy )y +< oy )y

0 OF, - OF,
s () ()

Ox Oy

Therefore (6) can be used from now on along with

. o0 2
) =t Z; (n 3 2)1 "eososs
n=|
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To find y(z) series solution around z = 0. Hence

Fo=—(e"-1)y

dFy
F,=—
YT dx
OFy, OF, , OFy
= F
Oox + Oy v+ oy’ 0
_ _y/ex — %y +y/
dFy
F=—
T dx
OF, O0F, , OF
= F;
or + Oy v oy’ !
— eZacy . 2ylez . 3e:1:y +y
dF;
F;=—=
7 dx
aFQ 6F2 ’ 6F2
= F:
Oox + oy v+ ay ?
=4y+y)e* +(=5e"+ 1)y —5e'y
dF3
Fy=—
YT dx

0F; OF; , OF;3
=+ 2+

Oox Oy oy’
= (14y + 6y) e* — e**y — 10y'e” + (—=11e” + 1)y

Fy

And so on. Evaluating all the above at initial conditions z = 0 and y(0) = y(0) and
y'(0) = y'(0) gives

=0

Fy = —y(0)

Fy = —y(0) — 2¢/(0)
Fy = —y(0) — 3y/(0)
Fy =3y(0) — 4y'(0)

Substituting all the above in (7) and simplifying gives the solution as
_ g 1 4 1 5 1 ¢ L, 1 5 1 g\, 6
y= (1 6% ~91% ~120% toa0® y(0)+ (= 5% ~ 0%~ 180° y'(0)+0(z°)

Since the expansion point z = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

o0
y=>_ au"
n=0

Then

o0

y = g na,z""
n=1
o

y' = Z n(n —1) a,z" 2

n=2

Substituting the above back into the ode gives

Zn(n —1)az" 2= —(e* - 1) <Z anx”> (1)

n=2
Expanding e” — 1 as Taylor series around x = 0 and keeping only the first 6 terms gives
1 1 1 1 1
T _1— g ST ST S . ST ST
© T T T T T T

_ 12 13 1 4 1 5 1 6
ST T AT T o T 0T T 70”

Hence the ODE in Eq (1) becomes

C 1 1 1 1 1 .
_ n—2 12,13 4 5 6 n| _
<E n(n —1)a,x >+(a:+2:v +6x +24:v +12Oz +720x) (E anz> 0

n=2

Expanding the second term in (1) gives

<Z n(n —1) anx"_2> +z- (Z angg") + %2 . (Z anx"> + T

n=2 n=0 6
: Zoanx +ﬂ' Zoanw +ﬁo- Zoaniv +%- Zoanz =0

Which simplifies to
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The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already z™ and adjusting the
power and the corresponding index gives

e o]

n n=0

o0 o0

g zt"a,, = E Q12"

TLZO n=1

o0 o0

PRI Gl
2 2

n =0 n=2

oo o0

PRI S

n =0 6 n=3 6

o0 o0

PRI QLI

ot 24 — 24

o0

PRI T
120 120

n =0 n=

o0

Z nt6q,, Qp—6T

ot 720 ot 720

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

n=0 n=1 n=2
- an 3$ - an 4$ - n—5mn - an—61'n
07 1 =
n=3 n=4 n=>5 n=6
n =1 gives
6as +ag=0

Which after substituting earlier equations, simplifies to

Qo
as = ——

6
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n = 2 gives

12a4+a1+%=0

Which after substituting earlier equations, simplifies to

n = 3 gives

ay Qo
2005 + @y + — + = =0
a5 T G2 2 6

Which after substituting earlier equations, simplifies to

o (41 a;
%= 7120 40
n = 4 gives

az ar Gy
30a6+a3+5+€+ﬂ—0

Which after substituting earlier equations, simplifies to

. QAo ax
%= 940 T 180
n = 5 gives
a a a a
A2 +ag+ 2+ o+ o =0

2 6 24 120

Which after substituting earlier equations, simplifies to

_ % , @&
"~ 360 + 1008

ar

For 6 < n, the recurrence equation is

a
(n+2)ani2(1 +n) +ap_1 + + +
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Solving for a2, gives

720a,,—1 + 360a,,_o + 120a,,_3 + 30a,,—4 + 6a,,_5 + Apn_g

n+2 = = 720 (n + 2) (1 + n)
_ QAn—6 _ An—5 _ Qn—4
(5) T TT0m+2)(1+n) 120m+2)(1+n) 24(n+2)(1+n)
Ap—3 Ap—2 ap—1

T 6n+2)(1+n) 2m+2)(1+n) @+2)(1+n)
And so on. Therefore the solution is
n=0
=a3z3+a2z2+a1x+a0+...

Substituting the values for a,, found above, the solution becomes

3
_ _ GoT” _% M@\ 4 (_G 41\ 5
Y=dot+mr— g +< 24 u>x'k(1m) m)x*““

Collecting terms, the solution becomes

1 1 1 1 1
= (1 =23 — %t — 45 _ 4 _ 5 6
Y < 6$ 2430 120x)a0+ (:c 12z 4035 a1+0(:v)

At z = 0 the solution above becomes

1 1 1 1 1
= (1 =23 - gt —_4° _ 4 _ 5 6
( 6x 24x 120x>cl+ (x 12x 40.'13 CQ+O(.'L')

Summary
The solution(s) found are the following

_ 1 3 1 4 1 5 1 6
V= (1 6" ~21% ~120° T2m0° )V
+ (z— LI RN B I y'(0) + O(z°)
127 40" T 180

92

3)

(2)



Verification of solutions

1 1 1 1 1 1 1
= 1—— 3__ 4__ 5 6 _ 4_ 5_ 6 / 6
y ( 5T =517 ~ 150% *310° > y(0)+ <m 5%~ 10% " 150% ) Y (0)+0(z°)

Verified OK.

1 1 1 1 1
Y= (1 -t gt — —a:5> c + (x — Ez‘l — Ezf’) co + O(z6)

Verified OK.
Maple trace

e N

“Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power| @ Moebius
-> trying a solution of the form rO(x) * Y + ri(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functioms:
-> Bessel
<- Bessel successful
<- special function solution successful
Change of variables used:
[x = 1In(%)]
Linear ODE actually solved:
(t-1)*u(t) +t*diff (u(t) ,t)+t~2*diff (diff (u(t),t),t) = 0
<- change of variables successful”
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v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 39

‘0rder:=6;
‘dsolve(diff(y(x),x$2)+(exp(x)-1)*y(x)=0,y(x),type='series',x=0);

v/ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 49

LAsymptoticDSolveValue [y'' [x]+(Exp[x]-1)*y[x]==0,y[x],{x,0,5}]
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1.9 problem 3.24 (d)
1.9.1 Maple step by step solution . . . . ... ... ... ....... 107

Internal problem ID [5488|
Internal file name [OUTPUT/4736_Sunday_June_05_2022_03_04_26_PM_31832984/index . tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136

Problem number: 3.24 (d).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type

[[_2nd_order, _exact, _linear, _homogeneous]]

z(l—z)y" —3zy' —y=0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.
(—z*+2)y" —3zy —y=0

The following is summary of singularities for the above ode. Writing the ode as
¥ +p@@)y +4q(z)y=0

Where
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Table 8: Table p(x), g(z) singularites.

9(2) = 35p
p(z) =% S
- - singularity type
singularity type
z=0 “regular”
r=1 “regular”
rx=1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [1, 0, 00]
Irregular singular points : ||

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be
—y'z(x—1)—3zy —y=0

Let the solution be represented as Frobenius power series of the form

00
y = 2 anxn+r
n=0

Then
Y= (n+r)ae™!
n=0
y' = Z (n+r)(n+r—1)a,z""?

3
I
o

Substituting the above back into the ode gives

—(Z(n+r)(n+r—1)anm” ")x(m—l) 0

n=0

— 3z < (n+r) anz"*"’_l) — <Z anx"+’"> =0
n=0 n=0
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Which simplifies to

Y (—a"an(n+r)(n+r—1)) + (Z " lay(n+r)(n+r— 1)) (2A)

(e} o0

+ Z (_3zn+'ran(n + ’l")) + Z (—a,n(l;n‘i'?") =0

n =0 n =0

The next step is to make all powers of  be n + r — 1 in each summation term. Going
over each summation term above with power of z in it which is not already z"*"~! and
adjusting the power and the corresponding index gives

(—an-1(n+7r—1) (n+7r—2) ™)

I
NE

Z an(n+r)(n+r—1))

n =0 n=1
3:cn+"an(n + 7")) = Z (—3an_1(n +r— 1) xﬂ-i—r—l)
n =0 n=1
e 00
Z anxn—i-r — Z (—an_1$n+T_1)

3
Il
—

Substituting all the above in Eq (2A) gives the following equation where now all powers
of z are the same and equal ton +r — 1.

Z (=@n-1(n+r—1) (n+r—2) ")+ (Z " ta, (n+r) (n+r— 1))

n =1

(2B)

+ Z (=3ap_i(n+r—1)z"" 1) + Z (—@n_1z™ 1) =0
n =1 n =1
The indicial equation is obtained from n = 0. From Eq (2B) this gives
" la,(n+r)(n+r—1)=0

When n = 0 the above becomes

T agr(—=14+7) =0

T agr(=147) =0
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Since ag # 0 then the above simplifies to
T r(=14+7)=0
Since the above is true for all x then the indicial equation becomes
r(=1+7)=0
Solving for r gives the roots of the indicial equation as

r =

o = 0
Since ag # 0 then the indicial equation becomes
T r(=1+7)=0

Solving for r gives the roots of the indicial equation as Since ; — 75 = 1 is an integer,
then we can construct two linearly independent solutions

y1(z) = =™ (Z anx")

12(2) = Cyr(2) In (2) + 27 (Z b)

Or

@) = (f; x)

ele) = Oz In (z) + (i b>
N -

yl(x) _ Zan$n+1
n=0

Where C' above can be zero. We start by finding y;. Eq (2B) derived above is now used
to find all a,, coefficients. The case n = 0 is skipped since it was used to find the roots
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of the indicial equation. ag is arbitrary and taken as ay = 1. For 1 < n the recursive
equation is

—Op_1(n+r—1)(n+r—2)+a,(n+r)(n+r—1)—-3a,_1(n+7r—1)—a,_1 =0 (3)

Solving for a, from recursive equation (4) gives

(n+7)an—1
p= D Gnct 4
n+r—1 )
Which for the root r = 1 becomes
1) a,_
= DOt )
n

At this point, it is a good idea to keep track of a,, in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n | Gy | Gn

Qo 1 1

For n = 1, using the above recursive equation gives

1+7r
a] =
r

Which for the root r = 1 becomes
a; = 2

And the table now becomes

(0]

[
3
[\

a1

B |

For n = 2, using the above recursive equation gives

247
a9 =

r

Which for the root r = 1 becomes
Qa9 = 3
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And the table now becomes

Qo 1
aiq 14r 2

a9 24r 3

For n = 3, using the above recursive equation gives

3+
oy

as
Which for the root r = 1 becomes
as = 4

And the table now becomes

n | Gy | Gy
Qo 1 1
ai 17# 2
(45} 27# 3
as ?% 4

4+
aqg =
r
Which for the root » = 1 becomes
as = 5
And the table now becomes
n | Gnyr | g
ap 1 1
a; 17# 2
(05) 27# 3
as 31# 4
ay 4% 5




For n = 5, using the above recursive equation gives

Which for the root r = 1 becomes

And the table now becomes

n Qn,r | On
Qo 1 1
ay 17# 2
(45} 21# 3
as 31# 4
ay 4% 5
as 51# 6

Using the above table, then the solution y; () is

y1(z) = z(ao + a1% + a2z® + a3z’ + asz + a5z° + agz®. . )
= z(1+ 2z 4 32° + 42° + 5z* + 62° + O(=°))
Now the second solution y»(z) is found. Let
T —To = N

Where N is positive integer which is the difference between the two roots. r; is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding lim, ., a;(r). If this limit exists, then C' = 0,
else we need to keep the log term and C' # 0. The above table shows that

ay = a;
1+
oy
Therefore
147 147
lim = lim
7o r r—0 r
= undefined
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Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

Y2(z) = Cyi(z) In (z) + (Z bnx"Jr”)
n=0
Therefore

2 (@) = Oy (o) (@) + 1) (Z "*’"”)

= Cyi(z) In(z) + Cy1 (Z 7 HET2h (0 4 r2)>

n=0

z2 T2

T
i (bnmn-i-rz (n _|_7,.2)2 B bnxn+r2(n+ 7-2))

= Cy{(z)In(z)+ 20m(@) _ Cn(z) (Z 22 () (=1 +n+ 7"2))

X fL’
n=0

Substituting these back into the given ode —y"x(z — 1) — 3zy’ — y = 0 gives

. <Cy1'<x> In(2) + 20%@) _ Cn(@)

2
xT
n=0

— 3z (Cy'l(x) In(z) + C’y;(x) + (i bn$”+’"2£n + 1) ))

n=

— Cyi(z)In (z) — (f: “+’"2>

=0
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Which can be written as

((—ya'@c) 2(e — 1) = 34}(2) 7 — y1()) In (z) - (Qyi(x) - yl(x)) 2z — 1)

@) 0 - (Z ("(" e ) ) sa-1) O
_ 3y (i bnx"-i‘?"zz(:n + 7‘2)) _ (i bnxn-l-'l‘z) -0

But since y;(z) is a solution to the ode, then

—yi(e)z(z — 1) =3y (z) z — y1(z) = 0

Eq (7) simplifes to

(- (26 10 ooy ) 0

x x?
o n4+ro 2 n+ro
3 (Z (bnx (gt +12)" bz (2n + r2)>> 2z — 1) (8)
X X
n=0
o0 n+r2 o0
_ 3 (Z bn-’I; ;n + 7'2)> _ <Z bn.’L'n+T2> =0
n=0 n=0

o0
Substituting y; = Y a,z™*™ into the above gives
n=0

(—Qx(x _1) (i gl (n 4 7"1)) +(—1—22) (i anxn+r1)> C

n=0 . n=0 (9)
(—2® + 2?) (E = HH2h, (n+ 1) (—1+n + 7'2)) — 3(2 g=HE2h, (0 + 7'2)) z? — (2 bnx"+"2>
n=0 n=0 n=0

_|_

x
=0
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Since 71 = 1 and r5 = 0 then the above becomes

<—2x(m - 1) (20 z"an(n + 1)> + (=1 —22) <7§0 anmn—i-l)) c
B S

n=0 n=0

+
=0

T

Which simplifies to

i (=20 z"a,(n+1)) + (i 2C z"a,(n + 1))

n =0 n=0
+ i (—Canz™) i —2Cz"a,) + i (—z"b,n(n — 1)) (24)
n =0 =0 n =0
+ (inaz”_lbn(n - 1)) + i (—3z™b,n) + i (=bp2™) =0
n=0 n =0 n =0

The next step is to make all powers of £ be n — 1 in each summation term. Going
over each summation term above with power of z in it which is not already ="~ and
adjusting the power and the corresponding index gives

oo

[M]8

(—2Cz"ap(n+1)) =

n =0

(—2Ca_g4n(n —1) 2" ")

3
[l
I\

Mg

ZZCCL‘ a,(n+1) = 2Ca,_1nx""
n =0 n=1
Z (—Capz™) = Z (=Cap_12™")
n =0 n=1

o
[M]8

f: —20C .,L,n+1

(—2Ca_g4nz" ")

3
[l
)

NE

Z (=2"ban(n — 1)) = (—(n —1)bp—1(—2+mn) z"_l)

1

3
I|
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n =0 n=1
Z (=bp2™) = Z (=bp—1z™ 1)
n =0 n=1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of z are the same and equal to n — 1.

" nzzl (o) ,,ZZQ (m2Ca2n2™) (2B)
+ Z (=(n—=1)byor(—2+mn)z" ") + (ann T (n — 1)>
+ Z (=3(n—1) bp1z™ ) + Z (=bpyz™) =0

For n = 0 in Eq. (2B), we choose arbitray value for by as by = 1. For n = N, where
N = 1 which is the difference between the two roots, we are free to choose b; = 0.
Hence for n = 1, Eq (2B) gives

C—-1=0

Which is solved for C. Solving for C' gives
C=1
For n = 2, Eq (2B) gives
(—4ag+3a1)C —4by +2b =0

Which when replacing the above values found already for b,, and the values found earlier
for a,, and for C, gives
24+2b,=0

Solving the above for by gives
by =—1

For n = 3, Eq (2B) gives

(—6(1,1 + 5&2) C - 9b2 + 6b3 =0
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Which when replacing the above values found already for b,, and the values found earlier
for a,, and for C, gives
124 6b3 =0

Solving the above for b3 gives
by = —2

For n = 4, Eq (2B) gives
(—80,2 + 7&3) C - 16b3 + 12b4 =0

Which when replacing the above values found already for b,, and the values found earlier
for a,, and for C, gives
36 +12b, =0

Solving the above for by gives
by = —3

For n =5, Eq (2B) gives
(—10a3 + 9a4) C — 25b4 + 20b5 = 0

Which when replacing the above values found already for b,, and the values found earlier
for a,, and for C, gives
80 + 20b5 =0

Solving the above for bs gives
bs = —4

Now that we found all b,, and C, we can calculate the second solution from

Y2(7) = Cyi(z) In (z) + (Z bnx"+’“2>

n=0

Using the above value found for C = 1 and all b,,, then the second solution becomes

yo(z) = 1(z(1 4 2z + 32° + 42° + 53" + 62° + O(z%)) ) In (2)
+1—2%—22% - 32* — 42° +O(:v6)

Therefore the homogeneous solution is

Yn(z) = c1y1(z) + coya()

= a1z(1 + 2z + 3z% + 42° + 52* + 62° + O(2°))
+ 2 (1(z(1 + 2z + 32 + 42° + 52* + 62° + O(2°))) In (z) + 1 — 2* — 22°
— 3z —42° + O(xﬁ))
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Hence the final solution is

Y=1Yn
= c1z(1 + 2z + 3z% + 42° + 52" + 62° + O(2%))
+ o (z (14 2z + 32 + 42° + 52" + 62° + O(2°)) In (z) + 1 — 2* — 22° — 3z* — 42°
+0(2%))

Summary
The solution(s) found are the following

y = c1z(1 + 2z + 327 + 42° + 52* + 62° + O(2°))
+co (2 (1 + 2z + 32 + 42° 4 52* + 62° + O(2%)) In (z) + 1 — 2? — 22° — 3241)
— 42° + O0(2?))

Verification of solutions

y =1z (1 + 2z + 3z” + 42° + 5z + 62° + O(2°)
+ o (z (14 2z + 32 4+ 42° + 52" + 62° + O(2%) ) In (z) + 1 — 2° — 22° — 3z — 42"

+0(z°))
Verified OK.
1.9.1 Maple step by step solution
Let’s solve
—y"z(x—1)—3zy’ —y =0
° Highest derivative means the order of the ODE is 2
yll
° Isolate 2nd derivative
no__ Y _ M
¥y = z(z—1) z—1
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y” + j_gll + m(my—l) =0
O Check to see if g is a regular singular point

o Define functions
[P2(ff) =25, By(z) = ﬁ]

o - Py(x)is analytic at z =0
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(z - Py(z))

=0

z? - P3(x)is analytic at x = 0

(z* - Py(z))

=0
x = Qis a regular singular point
Check to see if xg is a regular singular point
To = 0
Multiply by denominators
Y'r(x —1)+ 32y +y =0
Assume series solution for y
o0
y = Z akxk+r
k=0
Rewrite ODE with series expansions

Convert x - 3 to series expansion
o0

2oy = aplk+r) Tk
k=0

Convert ™ - 3" to series expansion for m = 1..2
o0

g™y = ap(k+r1) (k+71—1)ghtr—2m
k=0

Shift index using k— >k +2 —m
g™y = Y agpemk+2-—m+7r)(k+1—m+7r)zFtT
k=—24+m

Rewrite ODE with series expansions
—aogr(—=1+7)z 14" + <Z (—app1(b+7+1) (k+7) +ar(k+7+1)%) x"””") =0
k=0

apcannot be 0 by assumption, giving the indicial equation

—r(—1+7r)=0
Values of r that satisfy the indicial equation
r € {0,1}

Each term in the series must be 0, giving the recursion relation

(k+r+1)(—ags1(k+7)+ar(k+r+1)=0
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° Recursion relation that defines series solution to ODE

_ ax(ktr+l)
Uetl = = e
° Recursion relation forr =0
_ ag k+1)
ap = 2EF
° Solution forr =0
o0
_ k _ ag(k+1
y_za’kwaak-i-l_ (k ):|
k=0
° Recursion relation forr =1
_ ag(k+2)
A+l = “p31
) Solution forr =1
B 00
_ k+1 _ ag(k+2)
y= > apz™t yOk+1 = 7
+
L k=0
° Combine solutions and rename parameters
B %) o)
_ k k+1 _ ap(k+1) _ be(k+2)
Yy= <Z apZ ) + ( brz™t ) yAk+1 = — ¢ y b1 = Tkl
L k=0 k=0

Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]

<- linear_1 successful"

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 60

‘Order:=6; ‘
‘dsolve(x*(l—x)*diff(y(x),x$2)—3*x*diff(y(x),x)—y(x)=0,y(x),type='series',x=0)#

y(z) = In(z) (z + 22° + 32° + 42* + 52° 4+ O (2°))
+C1$(1+2m+3x2+4m3+5x4+6x5+0(m6))
+ (1+ 3z + 52° + 72° + 92" + 112° 4+ O (2°)) e
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v/ Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 63

-

kAsymptoticDSolveValue [x*(1-x)*y' "' [x]-3*x*y' [x]-y[x]==0,y[x],{x,0,5}]

—

y(z) > ar(z* +2° +2° + (42° + 32° + 22+ 1) zlog(z) + =+ 1)
+ c2(52° + 4z* + 32° + 22° + 1)
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1.10 problem 3.24 (e)
1.10.1 Maple step by step solution . . . . . ... .. ... .. ..... 119

Internal problem ID [5489]
Internal file name [QUTPUT/4737_Sunday_June_05_2022_03_04_28_PM_3695263/index . tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136

Problem number: 3.24 (e).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type

[[_Emden, _Fowler], [_2nd_order, _linear, ~_with_symmetry_[0,F(
x)]1°11]

2xy”—y’+y:c2 =0

With the expansion point for the power series method at = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.
22" — oy +yz® =0

The following is summary of singularities for the above ode. Writing the ode as

Y + @)y +q(x)y=0

Where
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Table 10: Table p(x), g(z) singularites.

o —" q(z) = 5
i singularity type
singularity type _ « lar”
z=0 “regular” i S
xr=—00 | “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0, 0o, —o0]
Irregular singular points : [00]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be
2:vy” _ y/ +y9:2 =0

Let the solution be represented as Frobenius power series of the form

00
y = § an xn+1‘
n=0

Then
Y=Y (n+r)a,a™
n=0
y' = Z (n+r)(n+r—1)a,z""?

3
I
o

Substituting the above back into the ode gives
2 (Z (n+r)(n+r—1) anx"+r_2> z— (Z (n+r) anx"+’"_1> + (Z anx"”) z2=0
n=0 n=0 n=0
(1)

Which simplifies to

(Z 2z"  ta,(n+71)(n+7— 1)) + Z (—(n+7)apz™ ") + <Z x2+”+Tan> =0

n =0
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The next step is to make all powers of x be n + r — 1 in each summation term. Going

n+r—1

over each summation term above with power of x in it which is not already x and

adjusting the power and the corresponding index gives

oo
E 2+n+r E :an— n+r—1
n =0

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n +r — 1.

(Z 22" ta,(n+7) (n+r—1) > Z (n+7)a,z™ 1) + (Z an_gx"”_l) =0
=0 n=3

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives
22" g, (n+r)(n+r—1)—(n+7)a,z"" =0
When n = 0 the above becomes
22 agr(—=1+71) —ragr " =0

Or
(27 r(=147) —rz ") ap =0

Since ag # 0 then the above simplifies to
re (=3 +2r) =0
Since the above is true for all  then the indicial equation becomes
2r* —3r =0

Solving for r gives the roots of the indicial equation as

r—3
79
T2=:0

Since ag # 0 then the indicial equation becomes

re (=3 42r)=0
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Solving for r gives the roots of the indicial equation as Since r, — ry = g is not an
integer, then we can construct two linearly independent solutions

y1(z) = =™ (Z anz">

We start by finding y;(z). Eq (2B) derived above is now used to find all a,, coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
ap is arbitrary and taken as ag = 1. Substituting n = 1 in Eq. (2B) gives

a1 =0
Substituting n = 2 in Eq. (2B) gives
a, =0
For 3 < n the recursive equation is
2ap(n+71)(n+1r—-1)—a,(n+7)+a,_3=0 (3)

Solving for a,, from recursive equation (4) gives

a _ an—3 (4)
" on2 4+ 4nr +2r2 — 3n — 3r

Which for the root r = % becomes

" +d) ?

At this point, it is a good idea to keep track of a,, in a table both before substituting
r= % and after as more terms are found using the above recursive equation.
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Qo

a1

a2

For n = 3, using the above recursive equation gives

1
B Ty or+9
Which for the root r = g becomes
1
a3 = —5-
And the table now becomes
n | Gpy an,
ao
a1
a2
as | —5ier7s |~

For n = 4, using the above recursive equation gives

as = 0
And the table now becomes

n | Gpy an
Qo
a1
a2

1 1
a3 | ~ 224919 27
ay 0 0

For n = 5, using the above recursive equation gives

a5=0
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And the table now becomes

ao

a1

as

as | ——L 1
3 2r249r49 27

a4

as

Using the above table, then the solution y; () is

yi(z) = 72 (ag + a1Z + asx?® + asx® + agx* + asx® + agzb. .. )

N

X

(1 Sy O(mﬁ))

Now the second solution ys(z) is found. Eq (2B) derived above is now used to find all
b, coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. by is arbitrary and taken as by = 1. Substituting n = 1 in Eq. (2B)

gives
by =0

Substituting n = 2 in Eq. (2B) gives
by =0

For 3 < n the recursive equation is
2b,(n+7r)(n+r—1)—(n+7)by +bp—3=0

Solving for b, from recursive equation (4) gives

bn—3

" on2 4+ dnr+2r2 —3n—3r
Which for the root r = 0 becomes

bn—3

b= = an—3)

(4)

(5)

At this point, it is a good idea to keep track of b, in a table both before substituting

r = 0 and after as more terms are found using the above recursive equation.
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n | by | bn
|1l |1
b |0 |0
b |0 |0

For n = 3, using the above recursive equation gives

oo L
5T 24 9r+9
Which for the root r = 0 becomes 1
b3 - —§
And the table now becomes
n bn,r bn
bo | 1 1
b | 0 0
by | O 0
bs _2T2+197'+9 _%

For n = 4, using the above recursive equation gives

by =0
And the table now becomes

n bn,r bn
bo | 1 1
by | 0 0
by | O 0
bs | —zrorrs | —9
bs | O 0

For n = 5, using the above recursive equation gives

bs =0
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And the table now becomes

n | bny bn
b | 1 1
by | O 0
by | O 0
by | =3 +19r+9 - %
by | O 0
bs 0

Using the above table, then the solution y,(z) is
Ya2(z) = by + b1z + box® + bsx® + byz* + bsx® + be®. ..

3
:ﬂ—%+Mﬂ

Therefore the homogeneous solution is

Yn(r) = cry1 () + coya(z)

— cyz3 1—x—3+0(:c6) +c l—m——l-O(xﬁ)
! 27 ? 9

Hence the final solution is

Summary
The solution(s) found are the following

12 l—x—3—|—0(x6) +c l—z—3+0(x6)
! 27 2 9

Verification of solutions

Y

3 3

ﬁﬁ@—%+0w0+@@—%+ow0

Y

Verified OK.
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1.10.1 Maple step by step solution

Let’s solve

2y"'x —y +yz? =0

° Highest derivative means the order of the ODE is 2
y//
° Isolate 2nd derivative
=17
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
- h+=0
OJ Check to see if xg = 0 is a regular singular point

o Define functions
[Py(z) = — 5, P3(z) = 2]

o x-Py(x)is analyticat x =0

@ R@)| _ =-}

o z?. P3(z)is analytic at z =0

(@ Py(a)| =0

z=0

o z = (is a regular singular point

Check to see if xg = 0 is a regular singular point

zo=0
° Multiply by denominators
2y —y' +yz? =0
° Assume series solution for y
Y= i T
k=0
0J Rewrite ODE with series expansions

o Convert z? - y to series expansion

o0
2. y= Z akxk+r+2
k=0

o Shift index using k— >k — 2
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k+r

&NJ
18

Y= ag—2T

k=2

Convert y' to series expansion

o0

Y = kZ ap(k +r) g+l
=0

Shift index using k— >k + 1
v = apr(k+1+7)zht
k=—1

Convert x - y” to series expansion

-y’ = Iiak(k +7)(k+r—1)zFt !

Shift index using k— >k + 1

z-y' = k§1ak+1(k +1+7)(k+7)zhtr

Rewrite ODE with series expansions

aor(=3+2r)z " +a;(1+7) (=14 2r) 2" + az(2 +7) (1 + 2r) 2" + (Ii (ap1(k+1+7)(

apcannot be 0 by assumption, giving the indicial equation

r(—=3+2r)=0
Values of r that satisfy the indicial equation
re {0,2

The coefficients of each power of x must be 0
[a1(1+7)(=142r) =0,a2(2+7) (1+2r) =0]

Solve for the dependent coefficient(s)

{a1 =0,as =0}

Each term in the series must be 0, giving the recursion relation
2(k—3+r)(k+1+7)ar1+ar—2=0

Shift index using k— >k + 2

2(k+3+7r)(k+3+7)ars+ar =0

Recursion relation that defines series solution to ODE

Aprz = — ol
k+3 = T (2k+3+2r)(k+3+7)

Recursion relation forr =0
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N S
Ak+3 = ~ (2k43)(k+3)

° Solution forr =0
S k
— — ag — —
Y= apT°,0k3 = — @i @ = 0,02 =0
k=0
° Recursion relation for r = 3
—_ ag
=
Ok+3 (2k+6) (k12
° Solution for r = 2
_ - »
_ +35 _ ag _ _
= arr"" 2, a =———*% —a;=0,a,=0
Yy ].;;Z::O k y Wk+3 (2k+6)(k‘~|—g)7 1 s U2
° Combine solutions and rename parameters

r _ 0 B o k+§ B u _ B B , )

Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful”

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 28

‘0rder:=6; ‘
‘dsolve(2*x*diff(y(x),x$2)-diff(y(x),x)+x“2*y(x)=0,y(x),type='series',x=0); ‘

y(z) = crz: (1 - 2—17x3 +0 (m6)> + ¢y (1 - %x?’ +0 (xﬁ))
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v/ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 33

-

kAsymptoticDSolveValue [2xx*xy' ' [x]-y' [x]+x~2*y[x]==0,y[x],{x,0,5}]

—

3 3
y(x) —)@(1— %) +cl(1— %) z3/?
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1.11 problem 3.24 (f)

Internal problem ID [5490]
Internal file name [OUTPUT/4738_Sunday_June_05_2022_03_04_29_PM_85478439/index.tex|

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136

Problem number: 3.24 (f).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

sin (z)y" —2cos (z)y —sin(z)y =0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.
sin (z)y” —2cos (z)y —sin(z)y =0

The following is summary of singularities for the above ode. Writing the ode as

Y +p(@)y +q(z)y =0

Where
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Table 12: Table p(z), ¢(z) singularites.

2 cos(z)

p(l’) == sin(z)
singularity type

q(z) = -1
singularity | type

x=7nZ | “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [7Z]
Irregular singular points : [00]

Since x = 0 is regular singular point, then Frobenius power series is used. Let the
solution be represented as Frobenius power series of the form

e
y = E : anxn+r
n=0

Then

(n+7)a,z"t

Me 17

(n+r)(n+r—1)a,z""?

<
Il

3
I
o

Substituting the above back into the ode gives

sin (z) (Z (n+r)(n+r—1) anx”+’"_2>

— 2cos () <Z (n+7) anm""'r_l) — sin (z) (Z anz"+r> =0

Expanding sin (z) as Taylor series around z = 0 and keeping only the first 6 terms
gives

1 1 1
sin(x)=x—6x3—l—m$5—mx7+...
_ 1 3 1 5 1 7
=T76" T 120" T 5040”

124



Expanding —2 cos (z) as Taylor series around z = 0 and keeping only the first 6 terms
gives

1 1
—9 -9 i il
cos (z) = —2 + 2 12a: +360x +.
1 1
=2+ 22— —
SRR TR
Expanding — sin (x) as Taylor series around z = 0 and keeping only the first 6 terms
gives
1 1 1
—sin(z)=—-z+ 23— —2°+ 2" +...

6 120 5040
$3_L5 I

120° T 5040

| =

Which simplifies to

i (_xn+T+5an(n +r)(n+r— 1))

n =0 5040
n <ni;0 2" 3q, (n —1—272)) (n+r— 1)>
n ni;o _x1+n+ran(n +6r) (n+r— 1))
T (2 e a,(n+r) (41— 1)) + (g anrHS;gén + r)) (24)
+ ni;o (_xn+T+3C;g(n + 7’)) + (g x1+n+'ran(n n r))
+ i (=2(n+7)az™ 1) + Z (—a™+™7q,,)
n=0 —~
) B )

The next step is to make all powers of x be n + r — 1 in each summation term. Going

n+r—1

over each summation term above with power of x in it which is not already x and
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adjusting the power and the corresponding index gives

i <_.’L’n+r+5an(n;;);'()) (n+r— 1)) _ i (_an_e(n +r— 6)5(()20_ 747) x”+T—1)

n =0 n=~6

2" a,(n+r)(n+r—1) i an_s(—4+n+7)(n—5+7)2"" !

— 120 — 120
i "o (n+r)(n+r—1)\ io: ano(n+r—2)(n—3+r)z"!
n= 6 N n=2 6
e a,(n+1) i an_g(n+7—6) "1
£ 360 = 360
i " Ba,(n+71)\ i an-a(—4+n+r)z"tt
12 B 12
n =0 n=4
Z e, (n 4 1) = Z an_o(n+r—2)z"t !
n =0 n=2
> (-0 = 3 (o)
n =0 n=2
i xn+r+3an B i an_4xn+r—1
n =0 6 n=4 6
i (_xn—}-r—{—San) _ i (_ an_6xn+r—1)
— 120 o 120
i xn+'r+7an B i an_smn+r—1
4= 5040 4= 5040

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n +r — 1.

i( an_g(n+1 —6) (n—T+7)z™+~ 1)

n =6 5040

4 (g an—a(—4+n+ 722((7; —547) xn-}—r—l)
+n§; _na(ntr—2) (g —3+71) xn+r—1)
+ g "t ta, (n+r) (n+r— 1)) + (ni:% an—6(n + 26—0 6) xn+r_1) (2B)
n 2 (_ an—a(—4 + 11124_ r) xn—f-r—l)
+ (i An—o(n+r— n+r—1> 4 Z n 1) a g 1)

n=2 4
t i (—@n_oz™ ) + (i an—492"+” 1)

n =2 —

The indicial equation is obtained from n = 0. From Eq (2B) this gives
"o, (n+r)(n+r—1)—-2(n+7)a,z"" =0
When n = 0 the above becomes
T agr(=1471) — 2ragz™ " =0

Or
(7 r(=1+71)—2rz7 ") ap =0

Since ag # 0 then the above simplifies to
re T (=3417)=0
Since the above is true for all x then the indicial equation becomes

r(=3+7r)=0
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Solving for r gives the roots of the indicial equation as

T =

o = 0
Since ag # 0 then the indicial equation becomes
re T (=34+71)=0

Solving for r gives the roots of the indicial equation as Since r; — 75 = 3 is an integer,
then we can construct two linearly independent solutions

oo
=z E a,z"
n=0

y2(z) = Cy1(z) In (z) + 2™ (Z bnx">

=23 (Z anx”>
ya(z) = Cy1(z (Z b,x" >

— Z anmn+3
Y2(z) = Cyi(z (Z bnx" )

Where C' above can be zero. We start by finding y;. Eq (2B) derived above is now used
to find all a,, coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. ag is arbitrary and taken as ag = 1. Substituting n = 1 in Eq.
(2B) gives

ay = 0

Substituting n = 2 in Eq. (2B) gives

r—6
12 + 6r

Ao =
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Substituting n = 3 in Eq. (2B) gives
az = 0
Substituting n = 4 in Eq. (2B) gives

_Tr® —63r? 4 146r 4 120
T 360(2+7)(44+7)(1+7)

aq

Substituting n = 5 in Eq. (2B) gives
as = 0
Substituting n = 6 in Eq. (2B) gives

3175 — 248r* + 4973 + 1508r% — 6324r — 3024
15120 2+ ) (A +7) (L+7) (6 +7) (3 +7)

g =

Substituting n = 7 in Eq. (2B) gives
a7 = 0

For 8 < n the recursive equation is

_ps(n+r—6)(n—T+r) +an_4(—4+n+r)(n—5+r)

5040 120
n— —2 -
_ana(ntr 6)(n 3+r)+an(n+r)(n+r—1) 3)
an-6(n+1—6) ap_a(—4+n+r)
+ 360 12 + ap_o(n+r—2)

Ap—4g Ap—6 Ap—38 -0

~2an(ntr) = an2+ =5~ — o5 + 5000 =

Solving for a,, from recursive equation (4) gives

_ nPan_g — 42n%ay_4 4 84010, _o + 2010y — 84NTa,_s + 168007003 + 770n_6 — 4277054 + 8407
N 5040n2 + 10

Qn
(4)
Which for the root r = 3 becomes
(an_¢ — 42a,,_4 + 840a,,_2) n? + (—21a,_¢ + 546a,_4 — 4200a,,_2) n — a,_g + 96a,_¢ — 1344a,_4
5040n (n + 3)
(5)

At this point, it is a good idea to keep track of a,, in a table both before substituting
r = 3 and after as more terms are found using the above recursive equation.

ap =
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n | Gngr Qp,
ao
aq 0 0
r—6 _1

02 | T376r 10
as 0 0
a 7r3—63r2+146r+120 1

4 | 360(2+7)(4+7)(1+7) 280
as 0 0
a 31r5—248r44+497r3+1508r2—6324r—3024 | _ 1

6 15120(24r) (4+r) (1+r) (64r) (3+r) 15120
ay 0 0

Using the above table, then the solution y;(z) is

v (z) = 2° (ao + a1z + asx?® + a3z + aux* + a5z’ + agzb. .. )
6

2 4
_ a2 3w 6
_x(l 10 280 15120+O(‘”)>

Now the second solution y»(z) is found. Let

T'1—7"2:N

Where N is positive integer which is the difference between the two roots. r; is taken
as the larger root. Hence for this problem we have N = 3. Now we need to determine if
C is zero or not. This is done by finding lim, ., az(r). If this limit exists, then C = 0,
else we need to keep the log term and C' # 0. The above table shows that

an = as
=0
Therefore
Jim 0= im0

=0

The limit is 0. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

yz(x) — Z bnxn-l—r
n=0

o0
= E b,x"
n=0
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Eq (3) derived above is used to find all b, coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. by is arbitrary and taken as by = 1.
Substituting n = 1 in Eq(3) gives

by =0
Substituting n = 2 in Eq(3) gives
_r—6
27 12+ 6r
Substituting n = 3 in Eq(3) gives
bs =0

Substituting n = 4 in Eq(3) gives

_7r® — 63r% + 146r + 120
360 (2+7) (r2 +5r +4)

Substituting n = 5 in Eq(3) gives

ba

bs =0
Substituting n = 6 in Eq(3) gives

317r° — 248r* + 497r3 + 1508r% — 6324r — 3024
15120 (2 +r) (r2 + 5r +4) (r2 + 9r + 18)

Substituting n = 7 in Eq(3) gives

bs =

b =0

For 8 < n the recursive equation is

bns(n+r—6)(n—T74+r) +bn_4(—4+n+r)(n—5+r)

5040 120
n— —2 -
_0 2(ntr 6)(n 3+T)+bn(n+r)(n+r—1) (4)
bps(n+1r—6) bpa(—4+n+r)
* 360 12 +bna(ntr—2)

bn—4 bn—ﬁ bn—S =0

Which for for the root r = 0 becomes

_bns(n—6)(n—T7) 4 by—4(n —4) (n —5)

(5040 ) (n — 3) 10 (n—6) (n—4)  (44)
bp_2(n—2)(n—3 bp_g(n —6 bp_a(n —4
— 5 +byn(n—1) + 360 12

bn—4 _ bn—6 bn—8 =0
6 120 5040

+ by_2(n —2) — 2nb, — b,_2 +
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Solving for b, from the recursive equation (4) gives

_ nPbp_g — 42n°bn_y + 840n°b,_3 + 2n7b,_g — 84n7Tb,_y + 1680n7by_g + 720y — 427%b,_4 + 84072,

bn 5040n2 4 1008

(5)
Which for the root r = 0 becomes
B n2b,_¢ — 42n2b,,_4 + 840n2b,,_o — 27nb,_g + 798nb,,_s — 9240nb,,_5 — b,_g + 168b,,_¢ — 3360b,,_4 +
N 5040n2 — 15120n
(6)

At this point, it is a good idea to keep track of b, in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

bn

n bn,r bn

bo | 1 1

b1 1 0 0

ba | Tover -3

bs | 0 0

by ggz —63r24+146r+120 1
2+r)(4+r)(1+r) 24

bs | 0 0

be 311~51 g1224(§§(r24:497r3+1508r2—6324r—3024 1

7)(44+7)(1+7)(6+7)(3+7) 720
bz |1 0 0

Using the above table, then the solution y,(x) is

yz(x) = bO + blx + b2$2 + b3$3 + b4.’L’4 + b5.’L'5 + b(,'.’L'G. ..

2 ozt 2

_ _ Lo 6
=1-5 +51 " 735 10"

Therefore the homogeneous solution is

Yn(z) = c11(2) + c2y2(2)
2 4 6 2 4 6
et 22 6 1 r T 6
clx( 10+ 280 15120 T O ) T 2+ 21 7 T OE)

Hence the final solution is

Y=1Yn
2 4 6

—ed(1 T 6 v T 6
=z (1 TR 15120+O(w))+02(1 5 T 51 720+O(x)>
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N

Summary
The solution(s) found are the following

2 4 6
— 3 1_$_ Z'__ z 6 1_1:_ x__x_ 6 1
Y Clz( 10+ 280 15100 T O ) T2 2 21 7 T O )M

Verification of solutions

2 4 6

y=01w3(1—$—+x— i +O(x6)) +c2<1—x—+w——$—+0(x6)>

10 ' 280 15120

Verified OK.
Maple trace Kovacic algorithm successful

“Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power
-> trying a solution of the form rO(x) * Y + ri1(x) * Y where Y = exp(int(r(x)
-> Trying changes of variables to rationalize or make the ODE simpler
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
<- Kovacics algorithm successful
Change of variables used:
[x = arccos(t)]
Linear ODE actually solved:
—u(t)+t*diff (u(t),t)+(-t"2+1) *diff (diff (u(t),t),t) = 0
<- change of variables successful"

133

@ Moebius
, dx)) * 2F1([a




v/ Solution by Maple
Time used: 0.14 (sec). Leaf size: 32

‘0rder:=6; ‘
‘dsolve(sin(x)*diff(y(x),x$2)-2*cos(x)*diff(y(x),x)-sin(x)*y(x)=0,y(x),type='s#ries',x=0);

1 1 1
y(z) = 123 (1 - 1—0372 + @x‘L +0 (a:6)> + ¢ (12 — 622 + 51’4 +0 (z6))
v/ Solution by Mathematica

Time used: 0.015 (sec). Leaf size: 44

LAsymptoticDSolveValue [Sin[x]*y'' [x]-2*Cos[x]*y' [x]-Sin[x]*y[x]==0,y[x],{x,0, 5}}]
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1.12 problem 3.24 (g)
1.12.1 Maple step by step solution . . . . ... ... .. ... ..... 141

Internal problem ID [5491]
Internal file name [OUTPUT/4739_Sunday_June_05_2022_03_04_31_PM_2570596/index. tex|

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136

Problem number: 3.24 (g).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__bessel__ode", "sec-
ond order series method. Ordinary point", "second order series method.
Taylor series method"

Maple gives the following as the ode type

[[_Emden, _Fowler]]

yll_nyZO

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y' = f(z,y,9)

Assuming expansion is at g = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(z,y,y’) is analytic at zo which must be the
case for an ordinary point. Let initial conditions be y(zo) = yo and y'(zo) = yg. Using
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Taylor series gives
(&) = y(wo) + (2 — o)/ (wo) + =

B a2 23
= Yo + TYq + ?flmo,yo,y(’) + af |z0,yo,y6 + ...

xn+2 dnf
—_— l PR
_y0+$yo+zo(n+2)!dxn

Zo,yo,yé
But

df 8fdw+8fdy+6fdy
dz  Ozdzx Oydr 0y dx

_of [ of , Of ,
~or " ayY TayY
ﬂ+gy/+ﬁ
oy’
“_L(4)
_ 90 9 (df
= oz (ae) * o) Y+ o (2
Bf d (&f
da:3_%( )
2(

2
& f o &f\ ,, 8 (d&f
?) (8ydw2> Y+ oy oy’ <dx2> f

136
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2)

3)



And so on. Hence if we name Fy = f(z,y,y’) then the above can be written as

F0=f(.'L',’y,yl)
_d
Fi=2
_dR
C dx
of of /+6f "
oz oy’ T oy
of  of , Of
oz " ay? oy
_OF, 0F , 0F
or + 8yy 8y’F0
d [ d
F2—%<£f>
d
—%(Fl)

d
_%(
0

. 6Fn_1 ’ a-Fn—l "
_awF”_1+( oy )y +< oy )y

0 OF, - OF,
s () ()

Ox Oy

Therefore (6) can be used from now on along with

. o0 2
) =t Z; (n 3 2)1 "eososs
n=|
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To find y(z) series solution around z = 0. Hence

Fy = yz2
dFy
F,=—
! dzx

_ OF, N oF, , 4 0F,
- Oz oy Y oy’
= z(zy' + 2y)

dF,

T dr
_0R  9R ,, OR

or Oy y oy’
=yt + 4oy + 2y

Fo

Fy

Fy

dF,
Fy=22
87 dx
0F, OF, , O0F;
= E:
ox + oy v+ Yy’ ?
= y'z* + 8yz® + 6y
dF3
=20
YT dx
OF; O0F3; , OF;
= F:
ox + Oy v+ oy’ s
= 12y'z® + 2’y (z* + 30)

And so on. Evaluating all the above at initial conditions z = 0 and y(0) = y(0) and
y'(0) = y'(0) gives

F,=0
F,=0
F, =2y(0)
F3 = 6y/(0)
F,=0

Substituting all the above in (7) and simplifying gives the solution as
y=[(1+ 2 y(0)+ |z + 1 y'(0) + O(z°)
12 20

Since the expansion point z = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

n=0
Then

E na,x" "

o0
n=1
o0
—2
n(n —1) a,x"
n=2

Substituting the above back into the ode gives

in (n—1)a,z" %= <§: ana:”> z? (1)
n=2 n=0

Which simplifies to

(Z n(n —1) anx”_2> + Z (—z"*?a,) =0 (2)

n=2

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already z™ and adjusting the
power and the corresponding index gives

Z nn—1)a,z" 2= Z (n+2)ap2(n+1)z"
n =2 n=0

Z (_:L,n+2an) = Z (—an_2x )

n =0 n=2

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(Z (n+2)api2(n+1)z ) Z —Qp—22") =0 (3)

For 2 < n, the recurrence equation is

n+2)api2(n+1)—a,2=0 (4)
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Solving for a2, gives

Int2 = (n+ Q;En +1) (5)

For n = 2 the recurrence equation gives

12&4 — Qg = 0

Which after substituting the earlier terms found becomes

4= 20
‘T 12
For n = 3 the recurrence equation gives
20&5 —a; = 0

Which after substituting the earlier terms found becomes

as = i
° 720
For n = 4 the recurrence equation gives
30&6 — Qg = 0

Which after substituting the earlier terms found becomes

a6=0

For n = 5 the recurrence equation gives

42(17 —az = 0

Which after substituting the earlier terms found becomes

a7:0

And so on. Therefore the solution is

o0
y= E anx"
n=0

3 2
=a3x” +ax"+a1x+ag+...
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Substituting the values for a,, found above, the solution becomes

=ap+ a1z + lax4—|— lax5+
Yy=ao 1 120 201

Collecting terms, the solution becomes
y = 1—|—CB—4 ap + :c—l—iwf’ a1 + O(z°) (3)
12) ™ 20
At z = 0 the solution above becomes

xt 1
y = (1 + E) ¢+ (x—l— %x“r‘) e+ O(z%)

Summary
The solution(s) found are the following

y = (1 + f—;) y(0) + (x + 2—1()355) y'(0) + O(z°) (1)
Y= (1+f—;) 1+ (z+%z5) c2 +O(z%) (2)

Verification of solutions

z? 1 ,
y = (1 + E) y(0) + (x + 2—0x5) y'(0) + O(z°)
Verified OK.
xt 1 . 6
y= 1+ﬁ ¢+ x—|—%m e+ O(z%)
Verified OK.

1.12.1 Maple step by step solution

Let’s solve
y// — ym2
° Highest derivative means the order of the ODE is 2
y//
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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y// _ ny =0
Assume series solution for y
o
y=> axz”
k=0
Rewrite ODE with series expansions

Convert x? - y to series expansion
2. y= Z akxk+2
k=0
Shift index using k— >k — 2
o0
z? -y = > ap—oz”
k=2
Convert y” to series expansion
o0
v = apk(k — 1) z*2
k=2
Shift index using k— >k + 2
' = apio(k+2) (k+1)zF
k=0

Rewrite ODE with series expansions

6asz + 2a2 + (’i (apso(k +2) (k+1) — ar_2) zk) =0

The coefficients of each power of x must be 0

[2a2 = 0,6a3 = 0]

Solve for the dependent coefficient(s)

{az = 0,a3 =0}

Each term in the series must be 0, giving the recursion relation
(k* + 3k +2) agy2 — ap_o =0

Shift index using k— >k + 2

((k+2)°+3k+8) apsa —ar =0

Recursion relation that defines the series solution to the ODE

o0

— k — ak — —
y—kZOakx y Okta = ez @2 = 0,a3 =0
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Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functionms:
-> Bessel
<- Bessel successful
<- special function solution successful”

N\

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

‘Order:=6;
|dsolve(diff (y(x),x$2)-x"2%y(x)=0,y(x) ,type='series',x=0);

M@z(L+%>M®+(m+%ﬁ)D@Hm+O@q

v/ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28

-

AsymptoticDSolveValuel[y'' [x]-x"2*y[x]==0,y[x],{x,0,5}]

N\

z° zt
N Zdz) 4o =41
y(@) = e (20 x) “ (12 )
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1.13 problem 3.24 (h)
1.13.1 Maple step by step solution . . . . ... ... ... ....... 154

Internal problem ID [5492]
Internal file name [OUTPUT/4740_Sunday_June_05_2022_03_04_32_PM_12686391/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136

Problem number: 3.24 (h).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear,
_with_symmetry_I[0,F(x)] 1]

z(z+2)y" +(1+z)y —4y=0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.
2 7 /
(£ +22)y" +(1+2)y —4y=0

The following is summary of singularities for the above ode. Writing the ode as

Y + @)y +q(z)y =0

Where
14z
p(z) = z(x+2)
4
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Table 14: Table p(z), ¢(z) singularites.

(@) = 5 @) = —3ary
singularity type singularity type
x=—2 | “regular” x=—2 | “regular”
=0 “regular” =0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [—2,0, o0]
Irregular singular points : ||

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be
z(@z+2)y" +(1+z)y —4y=0

Let the solution be represented as Frobenius power series of the form

00
Y= E anxn+r
n=0

Then
Y= (n+r)ae™!
n=0
y' = Z (n+7)(n+r—1)a,z"t?

I
o

T

Substituting the above back into the ode gives

z(z + 2) <Z (n+r)y(n+r—1) anxn+’”—2>

n=0
+(1+4+2) (Z (n+r) anx""""_l) —4 <Z anx"""") =0
n=0 n=0
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Which simplifies to

(Zmn-i-ran(n_'_,r (n+7’—1) <Z2xn+r 1 ’n,+7") (n+7”—1)> (2A)

n=0

(Z " a,(n + r)) (Z (n+r) anx’”’r_l) Z (—4a,z™") =0

n=0

The next step is to make all powers of x be n + r — 1 in each summation term. Going
over each summation term above with power of z in it which is not already z"*"~! and
adjusting the power and the corresponding index gives

e .e]

Z " Ta,(n+r)(n+r—1)= Z ani(n+r—1)(n+r—2)z""!

o0

i :L"fb+ran(n + r) = g an—l(n +7r— 1) :L,n+7"—1
n =0
—

n=1

(—4a,z™") = Z (—dap_1z™ 1)

n=1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of z are the same and equal ton +r — 1.

(Z n_1(n+r—1)(n+r—2) x’n-l-'r—l)

n=1
ad 2B
(Z%"“ Ya(n+7)(n+r—1) ) + (Zan_l(n—i-r — 1)x”+T—1) (28)
n=1
+ <Z (n+r) anx"+T_1) + Z (—4a,_12""1) =0
n=0 n =1

The indicial equation is obtained from n = 0. From Eq (2B) this gives
22" g, (n+r)(n+r—1)+(n+r)a,z" =0
When n = 0 the above becomes

2z " agr(—=1+7) + ragz " =0
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Or
2z r(=14+r)+rz ") ag =0

Since ag # 0 then the above simplifies to
re 1 tT(2r —1)=0
Since the above is true for all x then the indicial equation becomes
22 —r=0

Solving for r gives the roots of the indicial equation as

1
’l"1=§
’1"2=0

Since ag # 0 then the indicial equation becomes
re 1 tT(2r —1)=0

Solving for r gives the roots of the indicial equation as Since 7, — ry = % is not an
integer, then we can construct two linearly independent solutions

yi(z) =2 (Zanz>
ya(z) = 2" (Zm)

o0
= Z a,x"t
n=0
o0
= Z b,z"
n=0

We start by finding y;(z). Eq (2B) derived above is now used to find all a,, coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
ag is arbitrary and taken as ag = 1. For 1 < n the recursive equation is

an1(n+r—1)(n+r—2)+2a,(n+r)(n+r—1) (3)
+ap1(n+r—1)4+an(n+r)—4a,_1 =0
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Solving for a,, from recursive equation (4) gives

_an_l(n2 +2nr + 1% — 2n — 2r — 3)

n = 2n2 +4nr+2r2 —n —r

(4)
Which for the root r = 7 becomes

_an_1(4n2 —4n — 15)
8n2 +4n

Ap =

()

At this point, it is a good idea to keep track of a, in a table both before substituting
r= % and after as more terms are found using the above recursive equation.

n | Gy | Gy

Qo 1 1

For n = 1, using the above recursive equation gives

w = —r24+4
YT 24 3r +1
Which for the root r = % becomes
5
a; = 4_1
And the table now becomes
no| Gny an,
ao 1 1
—r244 5
01 | 327341 | 4

For n = 2, using the above recursive equation gives

_ ™ —T7r+6
434+ 1272 4+ 117+ 3

a2

Which for the root r = % becomes
a9 = ——

And the table now becomes
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n | Qnyr an
ap 1 1
a —r244 5
1| 2r2y3ry1 1
a r3—7r+6 e
2 | 3312r2411r43 | 32

For n = 3, using the above recursive equation gives

_ (r+4yr(-1+47)(r—2)
8rt 4+ 4473 + 82r2 + 61r + 15
Which for the root r = % becomes

as =

3
a3 = ———
128
And the table now becomes
no| Qnyr an
Qg 1 1
a —r2+4 5
1| 2r233r11 4
a r3—7r4+6 7
2 | r3312r24 11743 32
a . (r+4)r(—1+7)(r—2) 3
3 8r1+44r3+82r2+61r+15 128

For n = 4, using the above recursive equation gives

_ (r—2)(=14+r)r(r+5)
1674 + 12873 + 34472 + 352r + 105
Which for the root r = % becomes

Qa4

11
Ay = ———
2048
And the table now becomes
n A an
ao 1 1
a —r244 5
1| 27233711 4
a r3—Tr+6 7
2 | 311272411743 32
a _ (r+4)r(=1+7r)(r—2) _ 3
3 8ri+44r3+82r2+61r+15 128
a (r—2)(=1+r)r(r+5) 11
4 | 16r%3128r3+344r2+352r+105 | 2048
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For n = 5, using the above recursive equation gives

B (r+6)(r+2)r(r—2)(-1+r)
32r® + 40074 + 184073 + 380072 + 33787 + 945

Which for the root r = 7 becomes

as =

13
ag = ———
8192
And the table now becomes
n A Gn
Qo 1 1
a —r244 5
1| 27233711 4
a r3—7r+6 7
2 | 311272411743 32
a _ (r+)r(=14+1)(r—2) 3
3 8ri+44r3+82r2+61r+15 128
a (r=2)(=1+4r)r(r+5) 11
4 | 16r%3128r3+344r2+352r+105 2048
a _ (r+6) (r+2)r(r—2)(—1+r) 13
5 3275+400r%+1840r3+3800r2+3378r+945 8192

Using the above table, then the solution y; () is

yl(x) = \/E(ao +a1x + a2x2 + a3x3 + a4x4 + a5x5 + a6z6. .. )
5¢ 7x? 32 11z* 1325
= 1 - - _ O 6
ﬁ( t 7 T 32 18 Tooas sz O ))

Now the second solution ys(z) is found. Eq (2B) derived above is now used to find all
b, coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. by is arbitrary and taken as by = 1. For 1 < n the recursive equation
is

bp_i(n+r—1)(n+r—2)+2b,(n+7r)(n+r—1) (3)
+bi(n+r—1)+(n+7r)b, —4b,_; =

Solving for b, from recursive equation (4) gives

bn—1(n?+ 2nr + r? — 2n — 2r — 3)

b, = — 4
2n2 +4nr +2r2 —n—r S

Which for the root r = 0 becomes

_ bpi(n®*—2n-3)
bn == n(2n—1) (5)
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At this point, it is a good idea to keep track of b, in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n bn T bn

)

by | 1 1

For n = 1, using the above recursive equation gives

b —r? 4+ 4
YT 24 3r 41
Which for the root r = 0 becomes
bl = 4
And the table now becomes
n | by, b,
by | 1
—r2
b | magar | 4

For n = 2, using the above recursive equation gives

r3—Tr+6
4r3 +12r2 + 117+ 3

by =

Which for the root r = 0 becomes

by = 2
And the table now becomes
n bn,'r bn
bo | 1 1
—r244

by | 5 4
3—Tr+6

b 4r3-:12r21:{—11'r+3 2

For n = 3, using the above recursive equation gives

Y r(=1+1)(r—-2)
37 T 8rt 1 4473 1 82r2 + 61r + 15
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Which for the root r = 0 becomes

bs =0
And the table now becomes
n | by, b,
by | 1 1
—r244
by 2r243r+1 4
b r3—Tr+6 9
2 | 331272411743
b (4 )r(=14r)(r=2) 0
3 811+ 44r3+82r2+61r+15

For n = 4, using the above recursive equation gives

_ (r—=2)(=1+7r)r(r+5)
 167% + 12873 + 34472 + 352r + 105
Which for the root r = 0 becomes

ba

bs=0
And the table now becomes
n bn,r bn
bo | 1 1
—r244
by 2r243r+1 4
r3—7r+6

by 4r3412r24 11743 2

b (4 )r(=14r)(r=2) 0
3 8ri+44r3+82r2+61r+15

b (r—2)(=1+7)r(r+5) 0
4 | 16r%1128r3+344r2+352r+105

For n = 5, using the above recursive equation gives
B (r+6)(r+2)r(r—2)(-1+r)

3275 + 40074 + 184073 + 380072 4 3378r + 945
Which for the root » = 0 becomes

bs =

bs =0

And the table now becomes

152



n bn,r bn
bo | 1 1
—r244
by 2r243r+1 4
r3—7r+6

by 4r3412r2411743 2

b (4 )r(=14r)(r=2) 0
3 8ri+44r3+82r2+61r+15

b (r—2)(=1+r)r(r+5) 0
4 | 16r%1128r3+344r2+352r+105

b _ (r+6)(r+2)r(r—2)(—1+r) 0
5 32r5+400r2+184073+380072+3378r+945

Using the above table, then the solution y,(x) is

y2($) = bo + blx + b2$2 + b31§3 + b4l’4 + b5l’5 + b6.’IJ6. ..
=144z +22% + O(a:6)

Therefore the homogeneous solution is

Yn(z) = c1y1(z) + coya()

VT 1+5x+7x2 3x3+11x4 13z°
- 4 " 32 128 ' 2048 8192

+O(x6)) +c(1+4z+22°+0(2°))

Hence the final solution is

Y=1Yn

52 7z 32° 1l 1345
=c1\/5<1+—m+i d z x

— — 6 2 6
1732 T 128" 2048 8192+O(‘”))+02(1+4””+2x +0(2°))

Summary
The solution(s) found are the following

—C\/E 1+5_:I7+7_£l:2_3_l'3+11l'4_13£115
y=a 4 32 128 ' 2048 8192

Verification of solutions

+O(z6)> +02(1+4x+2x2+0(x(}>

—C\/E 1+5_x+7_a:2_3_x3+11x4_13x5
y=a 4 32 T 128 T 2048 8192

O(acG)) T o1+ 4o+ 207+ 0(29))

Verified OK.
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1.13.1 Maple step by step solution

Let’s solve
z(z+2)y"+(1+2)y —4y=0
° Highest derivative means the order of the ODE is 2

7

Y

° Isolate 2nd derivative

n_ 4y (l+=z)y
¥y = z(z+2) z(z+2)

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
Y+ (I+z)y’ v __

z(z+2) z(z+2)

OJ Check to see if xq is a regular singular point

o Define functions

[Pz(w) = sy Pa(z) = —m]
o (z+42)- Py(x)is analytic at x = —2

((z +2) - Py(2))

1
2

r=—

o (z+2)* Ps(z)is analytic at z = —2

((z+2)* Ps(2)) =0

T=—2

o z = —2is a regular singular point

Check to see if z is a regular singular point

To = —2

° Multiply by denominators
z(z+2)y"+(1+2z)y —4y=0

° Change variables using z = u — 2 so that the regular singular point is at u =0
(w2 = 20) (y(w)) + (-1 + ) (Ly(w) - 4y(w) =0

o Assume series solution for y(u)

o0
y(u) = 3 aputtr
k=0

O Rewrite ODE with series expansions
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Convert u™ - (Ly(u)) to series expansion for m = 0..1

o)

u™ . (%y(u)) — kzoak(k- + T') uk-i—'r—l-i—m
Shift index using k— >k +1—m

um (%y(u)) = Z a’k—l-l—m(k +1—-—m+ 'r') uktr
k=-1+m

Convert u™ - <j—;y(u)) to series expansion for m = 1..2

us (dd_:?y(u)) = > ap(k+7)(k+r—1)urtr—2tm
k=0

Shift index using k— >k +2 —m

u™ - (dd_quy(u)) = > aromk+2—-m+r)(k+1—m+r)urtr
k=—24m

Rewrite ODE with series expansions

—aor(—=142r)u= " + (Z (—akp1(k+14+7)(2k+1+42r)+ap(k+7+2) (k+r—2))urtr
k=0 ,

apcannot be 0 by assumption, giving the indicial equation

—r(—=1+2r)=0

Values of r that satisfy the indicial equation

re{0,1}

Each term in the series must be 0, giving the recursion relation
—2k+i+r)(k+14+r)apm+apk+r+2)(k+7—2)=0

Recursion relation that defines series solution to ODE

a _ ag(k+r+2)(k+r—2)
k+1 = (2k+1+2r)(k+1+7)

Recursion relation for r = 0 ; series terminates at k = 2

_ ag(k+2)(k—2)
Ak+1 = (k2k+1)(k+1)

Apply recursion relation for k = 0
a; = —4ag

Apply recursion relation for k =1
az = —%

Express in terms of ag

Ao = 2&0
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° Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second li
y(u) = ag - (2u® —4du +1)

° Revert the change of variables u = x + 2
[y = ao(1 + 4z + 22?)]

o Recursion relation for r = 1

_ ok (k+3) (k—3)
U1 = k1) (513)
1
2
' ax (k+3) k—%]

s 1
y(u) = kz::oa’ku'k-i-z y Qk41 = (2k‘+2)(l§7+%3

° Solution for r =

° Revert the change of variables u = x + 2

[ x k+1 ag (k+3) (k-2
y= kz::oak(w +2)"2 gy = —fz(k+22))(,(€+5)]

° Combine solutions and rename parameters

i 0 1 by (k+2) (k—2
y=aop(l+4z +22%) + <kz::o bi(z + 2)k+2> b1 = &#)((H%z))

Maple trace Kovacic algorithm successful

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
Solution is available but has compositions of trig with 1n functions of radicals. Attempt
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)
<- Kovacics algorithm successful

<- linear_1 successful"
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v/ Solution by Maple
Time used: 0.032 (sec). Leaf size: 38

‘0rder:=6; ‘
‘dsolve(x*(x+2)*diff(y(x),x$2)+(x+1)*diff(y(x),x)—4*y(x)=0,y(x),type='series',#=0);

5 7T, 3 , 11 , 13 | 6
= et L Rt s ' N 0
y@) = ave (1 TR 18 Tt st O

+02(1—|—4:v—|—2x2+0 ($6))

v/ Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 60

‘AsymptoticDSolveValue[x*(x+2)*y"[x]+(x+1)*y'[x]-4*y[X]==0,Y[X],{X,0,5}] ‘

+ o+ +1

13z° 11z* 323 Tz®2 5z
2 _ _
y(z) = c2(22° + 4z +1) + Cl‘ﬁ( 8192 T 2048 128 " 32 T 1 )
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1.14 problem 3.24 (i)
1.14.1 Maple step by step solution . . . . ... ... ... ... .... 168

Internal problem ID [5493]
Internal file name [OUTPUT/4741_Sunday_June_05_2022_03_04_34_PM_42135889/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136

Problem number: 3.24 (i).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type

[[_2nd_order, _exact, _linear, _homogeneous]]

1
:vy"+(§—m>y’—y=0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

2

The following is summary of singularities for the above ode. Writing the ode as

1
xy"+(——w>y'—y=0

Y +p@)y +q(z)y =0

Where
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Table 16: Table p(x), g(z) singularites.

p(z) = -2 q(z) = —;
singularity type singularity type
=0 “regular” =0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]
Irregular singular points : [00]

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2

Let the solution be represented as Frobenius power series of the form

1
xy//_'_(__x)y/_y:()

00
y = E anxn+r
n=0

Then

(n+7)a,z"t

<
Il

Me 1M

(n+r)(n+r—1)a,z"t 2

<
I

3
I
o

Substituting the above back into the ode gives

(Z(n+r)(n+r—1)an:c" T‘)x 0

n=0

(2o (S ) - (So) <o

n=0
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Which simplifies to

(Z :L.n-l—r 1 TL + 7") (n +r— ]. ) + Z (_xn—l—'ran(n —+ ’I")) (2A)

n =0

(S0 4 5 o) o

n=0

The next step is to make all powers of £ be n + r — 1 in each summation term. Going
over each summation term above with power of z in it which is not already z"*"~! and
adjusting the power and the corresponding index gives

i(_xn-l— ’I’L+T' =i — Qe 17’L+’I’—1) n-l—r—l)
n =0 n=1

> (o) = (i)

n =0 n=1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of z are the same and equal ton +r — 1.

(Zz"""” ! n—l—r)(n—l—r—l)—i-nzz1 —ap_1(n+r—1)z""" 1) (2B)

o0 n+r—1 o0
4 (Z (n+r) f;nm > 4 Z (—@n_12" 1) =0
n =1

n=0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

n+r—1
"V a,(n+r)(n+r—1)+ (n+7) ;"x =0
When n = 0 the above becomes
—14r
T agr(—147) + —raozz =0

—14r
(ac‘”’"r(—l +7r)+ rw2 ) ap =0
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Since ag # 0 then the above simplifies to

1
ra T (—5 + r) =0

Since the above is true for all  then the indicial equation becomes
2
r"——-r=20
2
Solving for r gives the roots of the indicial equation as
1

==

2
o = 0

Since ag # 0 then the indicial equation becomes

1
ra T (—5 + 7") =0

Solving for r gives the roots of the indicial equation as Since r; — ry = % is not an

integer, then we can construct two linearly independent solutions

yi(z) = 2" (Zanz>
yo(z) = " (Zm)

We start by finding y;(x). Eq (2B) derived above is now used to find all a,, coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
ag is arbitrary and taken as ag = 1. For 1 < n the recursive equation is

an(n-l—r)(n-l—r—l)—an_l(n—i-r—l)—l—@—an_lzo (3)
Solving for a,, from recursive equation (4) gives

2afn—l

an:2n—1+2r
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Which for the root r = 7 becomes

()

At this point, it is a good idea to keep track of a,, in a table both before substituting
r= % and after as more terms are found using the above recursive equation.

n | Gny | Gn

aop 1 1

For n = 1, using the above recursive equation gives

2
14 2r

a; =

Which for the root r = 7 becomes
a; = 1

And the table now becomes

n Qn r an
Qo 1 1

2
a1 | 117 1

For n = 2, using the above recursive equation gives

4
a = -
2T 421+ 8r +3
Which for the root r = % becomes
1
Qg = 5
And the table now becomes
n A Qn
Qo 1 1
2
aq m ].
4 1
@2 | L2813 | 2
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For n = 3, using the above recursive equation gives

8
a fry
37 8r3 + 36r2 + 46r + 15
Which for the root r = % becomes
1
az = 6
And the table now becomes
n A an
ao 1 1
2
aq m 1
4 1
92 | T2ysr+3 2
8 |1
A3 | 83136r2+46r+15 | 6

For n = 4, using the above recursive equation gives

16

94 1604 + 1283 + 34472 + 352r + 105

Which for the root r = 7 becomes

1
ay = —
24
And the table now becomes
n | Gpy an
Qo 1 1
2
01 | 1327 1
4 1
@2 | 758r+3 2
e | 8 1
3 | 8r3+36r2+46r+15 6
a 16 1
4 | 16r41128r31344r21352r 1105 | 24

For n = 5, using the above recursive equation gives

32
3275 + 4007 + 184073 + 380072 + 3378r + 945

as
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Which for the root r = 7 becomes

1
a5 = —
120
And the table now becomes
n Qn an
ap 1 1
2
a1 | Tior 1
4 1
02 | 421813 2
go | —— 8 1
3 | 8r3+36r2+46r+15 6
a 16 1
4 | 16r4+128r3+344r2+352r+105 24
a 32 1
5 | 32r51400r%+1840r3+3800r2+3378r+945 | 120

Using the above table, then the solution y;(z) is

y1(z) = \/E(ao + a1z + asx?® + asz® + asx* + a5z’ + agzb. .. )

22 22 2t 2P
= 1 Lyt 2 6
\/5( tr o+ +24+120+O(x))
Now the second solution ys(z) is found. Eq (2B) derived above is now used to find all
b, coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. by is arbitrary and taken as by = 1. For 1 < n the recursive equation
is

bn(n—|—r)(n+r—1)—bn_1(n+r—1)—|—w—bn_l=O (3)
Solving for b, from recursive equation (4) gives
e ®
Which for the root r = 0 becomes
b= ot @

At this point, it is a good idea to keep track of b, in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.
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For n =1, using the above recursive equation gives

2
14 2r

by =

Which for the root r = 0 becomes

And the table now becomes

b, 212

For n = 2, using the above recursive equation gives

b — 4
> 424+ 8r+3
Which for the root r = 0 becomes 4
b2 == §
And the table now becomes
n bn,r bn
by | 1 1
b | 15 2
by | -—4 | 4
2| 24813 | 3

For n = 3, using the above recursive equation gives

8
be =
57 8r3 1+ 36r2 + 467 + 15
Which for the root r = 0 becomes 8
b3 - 1—5

And the table now becomes
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n bn,r bn
bo | 1 1
2

by 1+2r 2

by | —4 4
2 | 423%8r+3 3

ba|l —— 8 | 8
3 | 83+36r2+46r+15 | 15

For n = 4, using the above recursive equation gives

16
T 1674 + 12873 + 34472 + 352r + 105

Which for the root r = 0 becomes

ba

16
by = —
105
And the table now becomes
n | by, b,
by | 1 1
2
b | 2
by | —4 4
2 | 4r?+8r+3 3
ba | —— 8 8
3 | 8r3+36r2+46r+15 15
b 16 16
4 | 16r%1+128r3+344r2+352r+105 | 105

For n = 5, using the above recursive equation gives

. 32

3275 4 40074 + 184073 + 380072 + 3378r + 945
Which for the root » = 0 becomes

bs

32

% = 515

And the table now becomes
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n bn,r bn
bo | 1 1
2
b 1+2r 2
b _ 4 S
2 | 23843 3
be | 8 3
3 8r3+367r2+46r+15 15
b 16 16
4 | 16r1+128r3+344r2+352r+105 105
b 32 32
5 | 32r51400r%+1840r3+3800r2+3378r+945 | 945

Using the above table, then the solution ys(z) is

Y2 (z) = by + b1 + box® + bax® + byx* + bsx® + be®. ..
42  8z% 16z* 322°

=424+ 705 T o

Therefore the homogeneous solution is

+ O(mﬁ)

yn(x) = ciy1(z) + cay2(x)

3 334
—Cl\/_(1+.’1:+ +E+ﬂ+m+0( ))

4%  8z3 162* 3225 6
(1+2x+—+1—5+ 105 T omE —l—O(x))

Hence the final solution is
Y=1Yn

2 6 24 120

4z 8z  16z*  322° 6
+02<1+2£L‘+?+E+ 105 +%+O($ ))

2 3 .’E4
_Cl\/_(1+x+—+—+—+—+0( ))

Summary
The solution(s) found are the following

276 24" 120
4 1 205
+c2<1+2x+i+8i+ 6" | 32 +O(x6)>

2 3 4 5
_cn/_<1+:c+—+m—+x—+z—+0( ))

3 15 105 945
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Verification of solutions

22 3 z* 2P
= 1 S 6
y cn/E( +m+2+6+24+120+0(x)>

42  8z3 16z*  322°
1422+ — + —— — 6
+m< e e R TR YT +O(a:)>

Verified OK.

1.14.1 Maple step by step solution

Let’s solve
y'r+(3-2)y —y=0
° Highest derivative means the order of the ODE is 2
y//
° Isolate 2nd derivative
Y=Y+ (222—1)?/
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y - B v =

O Check to see if o = 0 is a regular singular point
o Define functions
[Po(z) = =23, Py(z) = —]

2z )

o z- Py(z)is analyticatz =0

(z - Py(x))

1
z=0 2

o z?. P3(z)is analytic at z =0

(z? - P3(x)) =0

=0

o z = (is a regular singular point

Check to see if xg = 0 is a regular singular point

g =0
° Multiply by denominators
2y"r+(1—-22)y —2y=0
° Assume series solution for y
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oo
Y= Z akxk-i—r
k=0

Rewrite ODE with series expansions

Convert ™ - 3/ to series expansion for m = 0..1
o

™. y/ — Z ak(k + 'f') xk:+'r—1+m
k=0

Shift index using k— >k+1—m
"y = Y aprim(k+1—m+7)T
k=—14+m

Convert x - y” to series expansion

Ty = Iiak(k‘ +7)(k+r—1)gktrt

Shift index using k— >k + 1

vy’ = kilam(k +147) (k+7) 2k

Rewrite ODE with series expansions

aor(—1+2r)z= 1" + (Ii (aps1(k+14+7)(2k+1+2r) —2ax(k+1+7)) xk+r) —0

apcannot be 0 by assumption, giving the indicial equation

r(=1+2r)=0
Values of r that satisfy the indicial equation
re{0,1}

Each term in the series must be 0, giving the recursion relation
2((k+i+r)ap1—ap) (k+1+7)=0

Recursion relation that defines series solution to ODE

Ag+1 = %

Recursion relation for r =0

ak+1 = 2%’_“1

Solution for r =0

00
_ k __ _2ag
y_kz:oa'ka; y Ok41 = 2k+1

Recursion relation for r = 1
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__ 2ax
Ok+1 = 2532

o Solution for r = 1
_ - " .
— 5 — 40k
y—Zalﬂ? 27ak1+1_2k+2
L k=0
° Combine solutions and rename parameters

i 00 00
_ k k:-|-l _ 2ag _ 2b
Yy = <kz_:o QX ) + <k2_30 bkz 2) y Qp+1 = 2k+1? bk-l-l — 2k+2

Maple trace

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients
checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful"

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 44

N

p
‘0rder:=6; ‘
‘dsolve(x*diff(y(x),x$2)+(1/2—x)*diff(y(x),x)—y(x)=0,y(x),type='series',x=0);

1 1 1 1
y(z) = vz (1 +z+ 5302 + 6563 + ﬂx‘l + maﬁ +0 (xﬁ))

4 8 16 32
1+2r+ -2+ —2® + —ax* + ——2°+ O (2°
+02(+a:+3w +15a:+15:c—|—95:c—|— (z°)

v Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 79

-

LAsymptoticDSolveValue[x*y"[x]+(1/2—x)*y'[x]-yEXJ==O,y[X],{X,0,5}]

-/

(2) = o1VE x5+x4+x3+x2+x+1 te 32x5+16x4+8x3+4x2+2x+1
y W 12072476 T 2 2\ 045 " 105 " 15 " 3
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1.15 problem 3.25 v=1/2
1.15.1 Maple step by step solution . . . . . ... .. ... ....... 178

Internal problem ID [5494]
Internal file name [OUTPUT/4742_Sunday_June_05_2022_03_04_36_PM_88820856/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136

Problem number: 3.25 v=1/2.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Complex roots"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

1
o2y +xy + <x2 + Zl) y=0

With the expansion point for the power series method at = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

4

The following is summary of singularities for the above ode. Writing the ode as

1
o2y + xy + (x2 + —> y=0

Y +p@)y +q(x)y =0

Where
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Table 18: Table p(x), g(z) singularites.

2
p(z) = ; q(z) = 5
singularity type singularity type
z=0 “regular” z=0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]
Irregular singular points : [00]

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4

Let the solution be represented as Frobenius power series of the form

1
o2y + xy + (x2 + —) y=0

00
y = E anxn+r
n=0

Then

(n+7)a,z"t

<
Il

Me 1M

(n+7r)(n+r—1)a,z""?

<
I

3
I
)

Substituting the above back into the ode gives

z <Z(n+r)(n+r—1)anx” ’”‘) 0

n=0
o0 1 o0
+ (Z (n+7) an:c"”_l) + (a:2 + 71) <Z anx’“”") =0
n=0 n=0
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Which simplifies to

NE

(24)

(Z " a,(n+r)(n+r— 1)) + ( xn+’an(n—|—r)>
T )

n=0

Il
=}

The next step is to make all powers of z be n + r in each summation term. Going
over each summation term above with power of z in it which is not already z"*" and
adjusting the power and the corresponding index gives

3, = 3 e

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n + 7.

(Zx"” n-l—r)(n—i—r—l) (Zx"“ n+r> (2B)

(o) (5257
n=2 n=0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

anzn+r

4

" a,(n+r)(n+r—1)+2"""a,(n+71)+ =0

When n = 0 the above becomes

T

aogx

x"agr(—1+4r) + z"aor + 1

(xrr(—l +7r)+2"r+ %) ap=0
Since ag # 0 then the above simplifies to

(4r? +1)z"

4 =0
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Since the above is true for all x then the indicial equation becomes

1
2 —_ =
r+4 0

Solving for r gives the roots of the indicial equation as

Since ag # 0 then the indicial equation becomes

(4r? +1)z"
T:0

Solving for r gives the roots of the indicial equation as Since the roots are complex
conjugates, then two linearly independent solutions can be constructed using

Or

yo(x) = Z bnx”_%

n=0

y1(z) is found first. Eq (2B) derived above is now used to find all a,, coefficients. The
case n = 0 is skipped since it was used to find the roots of the indicial equation. ag is
arbitrary and taken as ap = 1. Substituting n = 1 in Eq. (2B) gives

a; = 0

For 2 < n the recursive equation is

an(n-l—r)(n—l—r—1)+an(n+r)+an_2+z—":O (3)

Solving for a,, from recursive equation (4) gives

4an—2

- 4
An?2 + 8nr +4r2 +1 (4)

ap, =
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Which for the root r = £ becomes

An—2

anz_n(i+n)

(5)

At this point, it is a good idea to keep track of a,, in a table both before substituting
r= % and after as more terms are found using the above recursive equation.

n Apr | Qp

’

Qo 1
a; 0 0

For n = 2, using the above recursive equation gives

4
C4r2 4+ 16r + 17

a9 =

Which for the root r = % becomes

1 )
g =—=+ —
5 10
And the table now becomes
n | any an
Qo
a; 0 0
4 1, i
a2 T2 i6r17 5 T 10

For n = 3, using the above recursive equation gives

az = 0
And the table now becomes
n | Gy an
Qo
a; 0 0
4 1, i
Q2 | “gErriegi7 | 5 T 10
as 0 0

175



For n = 4, using the above recursive equation gives

Which for the root r = £ becomes

16

a4

And the table now becomes

~ (4r2 + 167 + 17) (472 + 32r + 65)

For n = 5, using the above recursive equation gives

And the table now becomes

7 31
Ay = — — ——
680 340
n | Qnr an
Qg
ai 0 0
4 1 i
a2 2 16r417 5 T 10
as 0 0
a 16 7 _ 3i
4 | (4r2116r+17)(4r24+32r+65) | 680 340
a5 = 0
n | Qpyr Qn,
ag 1
aiq 0 0
4 1 i
a2 4r2+16r+17 5t 10
as 0 0
a 16 7 _ 3
4 | (@r2116r+17)(4r24+32r+65) | 680 340
as 0 0

Using the above table, then the solution y; () is

yi(z) = ] (ao + a1z + asx? + asx® + agzt + asz® + agxb. .. )

=32

(1

1 7
__+_

5 10 680

)2
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The second solution ys(z) is found by taking the complex conjugate of y;(z) which

gives
y(r) ==z (1+( : 10>x +(680+340>x +O(z ))

Therefore the homogeneous solution is

Yn(r) = ey () + coya(z)

_ 1 i\, [T 3\, ;
= (1+( 5+10)w +(680 340>x +O(w)>

+ oz (l—l—( 5 10):1: +(680+340)x -l—O(z))

Hence the final solution is

(I

1
_i 1 2\ 4 7 3\ 4 6
+02x2( +< E 1O)x +(680+340)x +O(x)>

Summary
The solution(s) found are the following

i 1 7 7 3
— 5 1 _ _ 2 o 4 O 6
v clx2< +( 5+10>x +(680 340)3: +0() 0
tor (14 (2o L) 2y (L S z* + O(2f)
2 5 10 680 = 340
Verification of solutions
i 1 7 7 3
—czi(1 L L 6
y 61$2< —I—( 5+10)m +(680 340)30 +O(m)>

i 1 4 7 3
-2(1 - _ 2 o Il 4 6
+C2x2( +( : 10)x +(680+340)$ +O(x))

Verified OK.
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1.15.1 Maple step by step solution

Let’s solve
2y +zy + (2> +1)y=0

° Highest derivative means the order of the ODE is 2

yl/
° Isolate 2nd derivative

z2 /

yi= -t -
. Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
OJ Check to see if zp = 0 is a regular singular point

o Define functions
Pa(z) = 1, Py(a) = 241

o x-Py(x)is analytic at x =0

(z - Pa(z)) = 1
o x?- Py(z)is analytic at z = 0
@ B)|_ =

o z = (is a regular singular point

Check to see if xg = 0 is a regular singular point

To = 0
° Multiply by denominators
4r%y" + 4zy + (422 + 1)y =0
° Assume series solution for y
o
y=73 apt
k=0
O Rewrite ODE with series expansions

o Convert ™ - y to series expansion for m = 0..2

oo
™. Y= Z ak$k+r+m
k=0
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(e]

Shift index using k— >k — m

o0
_ k
Ty = > ap_mxt"
k=m

Convert x - 3 to series expansion
o k

z-y =5 ap(k+r) "t
k=0

Convert z2 - y” to series expansion

22y = > ap(k+71)(k+7—1)xFT
k=0

Rewrite ODE with series expansions

&)

ao(4r? + 1) z" + ay (47 + 8r + 5) " + (Z (ar(4k? + 8kr + 472 + 1) + day,_o) %

k=2
apcannot be 0 by assumption, giving the indicial equation
424+1=0
Values of r that satisfy the indicial equation
ref{-s;
Each term must be 0
a1(4r* +8r+5) =0
Solve for the dependent coefficient(s)
a; =0
Each term in the series must be 0, giving the recursion relation
a,(4k? + 8kr + 4r? + 1) + 4ax_2 =0
Shift index using k— >k + 2
a2 (4(k+2)° +8(k+2)r +4r2 +1) +4a, =0

Recursion relation that defines series solution to ODE

4ay,

Ok+2 = ~ 2 8kr14r2+16k+ 167417
Recursion relation for r = —1
Ak+2 = _4k2—41ki(i’§—81+16k
Solution for r = —
S k—1 4a
Y= > arT" 2, ap9 = — e —aTirie—sieien @1 = 0

k=0
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° Recursion relation for r = 1

a _ 4ay
k+2 — T 423 41k+16+81+16k
I

° Solution for r = 3

o0
_ k+1 _ 4ay, _
y= kz_oakw % 0k+2 = 2 qatkt16481+16k A1 = O}

° Combine solutions and rename parameters

o0 o0
_ k-1 k+1 _ day, _ . 1) S
V= (kz—o Ut 2) + (,;0 brz™2 ), a2 = 2 —4aTk+16—81+16k* 31 = 0, bet2 = 4k24+4Tk+16+814

Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful
<- special function solution successful”

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 45

‘Order:=6; ‘
Ldsolve(x“2*diff(y(x),x$2)+x*diff(y(x),x)+(x“2+(1/2)“2)*y(x)=0,y(x),type='seri%s',x=0);

(LN e (T LB e o s
y(z) = c1z (1—|—< 5 10)1‘ +(680+340)w +O(m))

+czx2(1—|—< 5+10>x +<680 340)x +0(z )>
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v/ Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 66

-

kAsymptoticDSolveValue [x~2xy' ' [x]+x*xy' [x]+(x"2+1/4) *y[x]==0,y[x],{x,0,5}]

—

7 3'L _ 4 4 . 2 .
SN . — (16 — 43)a + (56 — 4
y(z) <680 340) cr 2 (z* — (16 — 44)z” + (56 — 484))

7 3 .y Ny .
+ (@ - m) az? (z* — (16 + 44)z* + (56 + 481))
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1.16 problem 3.25 v=3/2
1.16.1 Maple step by step solution . . . . ... ... ... ....... 189

Internal problem ID [5495]
Internal file name [OUTPUT/4743_Sunday_June_05_2022_03_04_40_PM_72257281/index . tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136

Problem number: 3.25 v=3/2.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Complex roots"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

9
o2y +xy + <x2 + Zl) y=0

With the expansion point for the power series method at = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

4

The following is summary of singularities for the above ode. Writing the ode as

9
o2y + xy + (x2 + —> y=0

Y +p@)y +q(x)y =0

Where
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Table 20: Table p(x), g(z) singularites.

2
p(z) = ; q(z) = *E°
singularity type singularity type
z=0 “regular” z=0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]
Irregular singular points : [00]

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4

Let the solution be represented as Frobenius power series of the form

9
o2y + xy + (x2 + —) y=0

00
y = E anxn+r
n=0

Then

(n+7)a,z"t

<
Il

Me 1M

(n+7r)(n+r—1)a,z""?

<
I

3
I
)

Substituting the above back into the ode gives

z <Z(n+r)(n+r—1)anx” ’”‘) 0

n=0
+ (Z (n+7) an:c"”_l) + (a:2 + Z) <Z anx’“”") =0
n=0 n=0
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Which simplifies to

(nzzo " a,(n+r)(n+r— 1)) + (Z " a,(n + r)) (24)

n=0

o n+r Oognn—}-r
(S (S2)-

n=0

The next step is to make all powers of z be n + r in each summation term. Going
over each summation term above with power of z in it which is not already z"*" and
adjusting the power and the corresponding index gives

o0

00
E :xn+r+2an — E :an_an+r
n=2

n =0

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n + 7.

[M]8

(Z " a,(n+71)(n+1— 1)> + (
> > 9a, "™t
(Err) (£=5)

n=0

" a,(n + r)) (2B)

Il
=)

0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

9a,,z"t"
4

" a,(n+r)(n+r—1)+2""a,(n+71) + =0

When n = 0 the above becomes

9 ‘s
z"agr(—14r) + z"aer + azx =0

<xrr(—1 +7r)+2"r+ QZ ) ag =0
Since ag # 0 then the above simplifies to

(4r? +9)z"
=0
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Since the above is true for all x then the indicial equation becomes
9
2
r 4+ -=0
+ 4
Solving for r gives the roots of the indicial equation as
31

2
_3

2

Since ag # 0 then the indicial equation becomes

(4r? +9)z"
=0

Solving for r gives the roots of the indicial equation as Since the roots are complex
conjugates, then two linearly independent solutions can be constructed using

yi(z) = 2™ (Z anz">
yo(x) = 2™ (Z b,m")

T1

To =

o0

31

yi(z) = Z a, "2
n=0

31

yo(x) = Z bpx" "2
n=0

y1(z) is found first. Eq (2B) derived above is now used to find all a,, coefficients. The
case n = ( is skipped since it was used to find the roots of the indicial equation. ag is
arbitrary and taken as ay = 1. Substituting n = 1 in Eq. (2B) gives

a; = 0
For 2 < n the recursive equation is

9a,
an(n—l—r)(n—l—r—1)+an(n—|—1')+an_2+%=0 (3)

Solving for a,, from recursive equation (4) gives

4an—2
An?2 4+ 8nr +4r2 4+ 9

(4)

ap, =
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Which for the root r = % becomes

R ?

At this point, it is a good idea to keep track of a,, in a table both before substituting
r= % and after as more terms are found using the above recursive equation.

n Apr | Qp

’

Qo 1
a; 0 0

For n = 2, using the above recursive equation gives

4
4r2 4 16r +25

a9 =

Which for the root r = % becomes

0 — 1 + 3i
27 13" 26
And the table now becomes
n | any an
Qo
ay 0 0
4 1, 3i
@ | “%Piieriss | 13 1%

For n = 3, using the above recursive equation gives

az = 0
And the table now becomes
n | any an
Qo
a; 0 0
4 1, 3i
Q2 | “2riesm | 13 T 26
as 0 0
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For n = 4, using the above recursive equation gives

a4

16

~ (4r2 + 167 + 25) (472 + 32r + 73)

Which for the root r = % becomes

1 97
0y = ——— —
2600 1300
And the table now becomes
no| Gy an
ao
aq 0 0
4 1, 3
@2 | ~grrieress 15t
as 0 0
a 16 1 9
4 | (4r2+16r+25)(4r2+32r+73) 2600 1300
For n = 5, using the above recursive equation gives
a5 = 0
And the table now becomes
n | any an
ag 1
aq 0 0
___ 4 _1 4 3
a2 4r2+16r+25 5T 2%
as 0 0
a 16 1 9
4 | (4r2F16r+25)(4r2+32r+73) 2600 1300
as 0 0

Using the above table, then the solution y; () is

yi(z) = ) (ao + a1z + aox? + a3z’ + agzt + asx® + agxb. .. )

_ 3 _l oY) 2
=z <1+( 13+26)x +<

3t
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The second solution ys(z) is found by taking the complex conjugate of y;(z) which
gives

5 1 3 1 9
=z 2|1 - = 2 = 4 6
va(z) =z ( +( 13 26)36 +( 2600 T 1300)x +0( ))

Therefore the homogeneous solution is

Yn(z) = c191(%) + c2y2()
5 1 3 1 9
- LA P L 4 6
Cl“( +( 13+26)‘7” +( 2600 1300)3” +O($)>

5i 1 3 1 9
- (1 _ -2 2 - 4 6
+ cox z( +< B 26):c +( 2600+1300)z +O(a:)>

Hence the final solution is

der 214+ —— =2 )2+ [ ——— 4+ )zt 6
v * < ( 13 26) v ( 2600 1300) v O(x ))

Summary
The solution(s) found are the following

3i 1 3t 1 9¢
- T D I 6
y=cz? ( + ( T 26) z + ( 5600 1300> ' +0(z )) "
i 1 3\ 1 9 4 6
+ cox z<1+( 3 26)x +( 2600+1300>x +O0(z ))
Verification of solutions
3i 1 3 1 9
= 2 ]_ - — 2 [ 4 6
Y C”“( +( 13+26)$ +( 2600 1300>x +0( ))
i 1 3\ 1 9 4 "
+ cox z<1+( 03 26)1‘ +( 2600+1300>x +O0(z ))

Verified OK.
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1.16.1 Maple step by step solution

Let’s solve
2y +ay + (2> +2)y=0

° Highest derivative means the order of the ODE is 2

yl/
° Isolate 2nd derivative

z2 /

y= -t -
. Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
OJ Check to see if zp = 0 is a regular singular point

o Define functions
(Pa(z) = 1, Py(a) = 252

o x-Py(x)is analytic at x =0

(z - Pa(z)) = 1
o x?- Py(z)is analytic at z = 0
@ B@)|_ =

o z = (is a regular singular point

Check to see if xg = 0 is a regular singular point

To = 0
° Multiply by denominators
4r%y" + 4zy + (422 +9)y =0
° Assume series solution for y
o
y=73 apt
k=0
O Rewrite ODE with series expansions

o Convert ™ - y to series expansion for m = 0..2

oo
™. Y= Z ak$k+r+m
k=0
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(e]

Shift index using k— >k — m

o0
_ k
Ty = > ap_mxt"
k=m

Convert x - 3 to series expansion

z-y = ap(k+r)zktr
k=0

Convert z2 - y” to series expansion
o0

22y =Y ap(k+7)(k+r—1)zF
k=0

Rewrite ODE with series expansions

o0

ao(4r? +9) " + a; (472 + 8r + 13) 27 + (Z (ar(4Kk? + 8kr + 4r% + 9) + 4ay,_o) =~

k=2
apcannot be 0 by assumption, giving the indicial equation
42 4+9=0

Values of r that satisfy the indicial equation

31 31
re{-%,%

Each term must be 0

a1(4r* +8r+13) =0

Solve for the dependent coefficient(s)

a; =0

Each term in the series must be 0, giving the recursion relation
ay(4k® + 8kr +4r? +9) +4ar_o =0

Shift index using k— >k + 2

apy2(4(k+2)° +8(k+2)r +4r2 +9) +4a, =0

Recursion relation that defines series solution to ODE

a _ 4ay,
k+2 — T 4121 8kr+4r2+16k+16r+25
Recursion relation for r = —331
a _ day
k+2 = T 42 12Tk +16—241+16k
Solution for r = —%
ad k31 4ay, 0
Y= T2, 0542 = T I —12Tkt16—2a1f16k> M1 =

k=0

190

)=o



° Recursion relation for r = 3!

a _ 4ay
k+2 — T 421121kt 164241116k
31

° Solution for r = 5

o0
_ k431 _ dag _
Y= kZ_Oakw 25 0k+2 = T gaioTkt164241416k A1 = 0

° Combine solutions and rename parameters

o0 o0
_ k-3l k431 _ dag, — - 4b
V= (kz—o W ) + (,CZ_O N L a2 _12Tk+16—241+16k> 31 = 0, bry2 = 4k2+121k+16

Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful
<- special function solution successful”

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 45

‘Order:=6; ‘
Ldsolve(x“2*diff(y(x),x$2)+x*diff(y(x),x)+(x“2+(3/2)“2)*y(x)=0,y(x),type='seri%s',x=0);

3 1 3 1 9
— 21 - 2 o v 4 6
y(z) = c1z7 2 ( + ( 13 26) z + ( 5600 + 1300) z*+0 (z ))
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v/ Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 66

-

kAsymptoticDSolveValue [x~2xy' ' [x]+x*y' [x]+(x"2+9/4) *y [x]==0,y[x],{x,0,5}]

—

1 9 3i 4 N2 .
. — (16 + 120)2% — (8 — 144
y(z) — ( 5600 130()) az? (z* — (16 + 12i)z” — ( i)
1 9 _ 3t 4 N2 .
Y (16 — 12i)2? — (8 + 144
(2600 1300) S Gl i)a” — (8 + 1440))

192



1.17 problem 3.25 v=5/2
1.17.1 Maple step by step solution . . . . . ... .. ... ... .... 200

Internal problem ID [5496]
Internal file name [OUTPUT/4744_Sunday_June_05_2022_03_04_46_PM_28423381/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136

Problem number: 3.25 v=5/2.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Complex roots"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

25
oy + zy + (x2 + Z) y=0

With the expansion point for the power series method at = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

4

The following is summary of singularities for the above ode. Writing the ode as

25
2y + zy + (x2 + —) y=0

Y +p@)y +q(x)y =0

Where
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Table 22: Table p(z), ¢(z) singularites.

2
p(z) = 1 dla) =
singularity type singularity type
z=0 “regular” z=0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]
Irregular singular points : [00]

Since z = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

4

Let the solution be represented as Frobenius power series of the form

25
2y + zy + (w2 + —) y=0

00
y = E anxn+r
n=0

Then

(n+7)a,z"t

<
Il

Me 1M

(n+7r)(n+r—1)a,z""?

<
I

3
I
)

Substituting the above back into the ode gives

x <Z(n+r)(n+r—1)anx" T‘) 0

n=0
.- n+r—1 2 25 - n4+r
+z Z(n-l—r)anz +let+ Zanx =0
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Which simplifies to

(Zx”” n—l—r)(n-l—r—l) (an”” n—l—r) (24)
n (Z g2 an> n (Z 25anx"“>

n=0

The next step is to make all powers of z be n + r in each summation term. Going
over each summation term above with power of z in it which is not already z"*" and
adjusting the power and the corresponding index gives

3, = 3 e

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n + 7.

(Zx"” n-l—r)(n—i—r—l) (Zx"“ n+r> (2B)
+ (Z an_2$n+r> n (f: 25aqfn+r) o

n=0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

25a, """

" a,(n+r)(n+r—1)+3""a,(n+71) + —Y = 0
When n = 0 the above becomes
25a0x”
z"agr(—147r) + z"aer + BT _

2 T
(wwr(—l +r)+z'r+ 5433 ) ap =0
Since ag # 0 then the above simplifies to

(472 4+ 25)x"
— =
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Since the above is true for all x then the indicial equation becomes

25
2
by
r+4

Solving for r gives the roots of the indicial equation as

i
1779

%
2

Since ag # 0 then the indicial equation becomes

(4r% + 25) z"
4 =0

Solving for r gives the roots of the indicial equation as Since the roots are complex
conjugates, then two linearly independent solutions can be constructed using

yi(z) = 2™ (Z anz">
yo(x) = 2™ (Z b,m")

To =

o0

5%

yi(z) = Z a2
n=0

5%

yo(x) = Z b,x" "2
n=0

y1(z) is found first. Eq (2B) derived above is now used to find all a,, coefficients. The
case n = ( is skipped since it was used to find the roots of the indicial equation. ag is
arbitrary and taken as ay = 1. Substituting n = 1 in Eq. (2B) gives

a; = 0
For 2 < n the recursive equation is

25a,
ar(n+r)(n+r—1)+a,(n+7)+a,o+ 4a =0 (3)

Solving for a,, from recursive equation (4) gives

4an—2
4n? + 8nr +4r?2 + 25

(4)

a, =
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Which for the root r = % becomes

ETC ) ?

At this point, it is a good idea to keep track of a,, in a table both before substituting
r= % and after as more terms are found using the above recursive equation.

n Apr | Qp

’

Qo 1
a; 0 0

For n = 2, using the above recursive equation gives

4
C4r2 4 16r + 41

a9 =

Which for the root r = % becomes

0 — 1 + 5%
27 29 " 58
And the table now becomes
n | any an
Qo
ay 0 0
4 1, 5i
@ | ~gPiierial | 25 158

For n = 3, using the above recursive equation gives

az = 0
And the table now becomes
n | any an
Qo
a; 0 0
4 1, 5i
02 | — 423160541 | 20 T 58
as 0 0
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For n = 4, using the above recursive equation gives

a4

16

T (4r2 + 167 + 41) (472 + 32r + 89)

Which for the root r = % becomes

17 15¢
Gy = ——— —
9512 4756
And the table now becomes
no| Gy an
Qo
aq 0 0
4 1, 5i
@2 | ~grerral “25 Tt 58
as 0 0
a 16 _ 17 _ 156
4 | (4r2416r+41)(4r2+32r+89) 9512 ~ 4756
For n = 5, using the above recursive equation gives
a5 = 0
And the table now becomes
n | Gny an
ag 1
ay 0 0
___ 4 _1 4 5
az 4r2116r+41 25 T 58
as 0 0
a 16 _ 17 _ 15
4 | (4r2+16r+41)(4r2+32r+89) 9512 ~ 4756
as 0 0

Using the above table, then the solution y; () is

yi(z) = T2 (ao + a1z + aox? + a3z’ + agzt + asx® + agxb. .. )

:acs;<1+(

1
29

__+ﬁ CL’2+ __- _
58
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The second solution ys(z) is found by taking the complex conjugate of y;(z) which
gives

_ 1 5\ 17 15\ .
va(e) =@ (H( 29 58)x+( 9512+4756)w+0(x)

Therefore the homogeneous solution is

yn(z) = c1y1(z) + c2y2(2)
_ 1 5\ 17 15\ .
- (H( 29+58)$ +( 9512 4756)3” +0(=)

s 150\ 17 15\ .
et 2(”( 29 58)x +( 9512+4756)‘7” +0(=)

Hence the final solution is

w 1 5\ 17 15 \ 4 6
=cz? (1+ <—2—9+58>x +< 9512 4756)x +O(z ))

_si 1 5\ 17 155\ , 6
+ ez 2 <1+ (—2—9— %) z? + ( T +4756> *+O0(z ))
Summary
The solution(s) found are the following

1 5 17 150

—ex2(1 T P I P T

Y CW( +( 29+58)‘” +( 9512 4756)"’ +0( )) )
i 1 5\ 17 15\ ;
+ cor ™2 <1+ (_E - %) z° + (——9512 + 4756> *+0(z ))
Verification of solutions

o 1 5\ 17 15\ 5

y‘““(”( 29+58)$ +( 9512 4756>x +0(2")

_s 1 5\ , 17 150\ 6
+ cox z<1+( 59 58)1‘ +( 9512+4756>x + O(z°)

Verified OK.
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1.17.1 Maple step by step solution

Let’s solve
2y +ay + (2> +2)y=0
° Highest derivative means the order of the ODE is 2

1

Y

° Isolate 2nd derivative

n_ (4z2+25)y Y
Yy = 422 T

. Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
g B
OJ Check to see if xg = 0 is a regular singular point

o Define functions
[Pa(z) = L, Py() = 2222

o x-Py(x)is analytic at x =0

@ Pa)| =1
o x?- Py(z)is analytic at z = 0
@ B@)| =2

o z = (is a regular singular point

Check to see if xg = 0 is a regular singular point

To=0
° Multiply by denominators
4z2y" + dzy’ + (422 +25)y =0
° Assume series solution for y
yo S gkt
k=0
O Rewrite ODE with series expansions

o Convert ™ - y to series expansion for m = 0..2

oo
™. Y= Z ak$k+r+m
k=0
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(e]

Shift index using k— >k — m

o0
_ k
Ty = > ap_mxt"
k=m

Convert x - 3 to series expansion
o k

z-y =5 ap(k+r) "t
k=0

Convert z2 - y” to series expansion

22y = > ap(k+71)(k+7—1)xFT
k=0

Rewrite ODE with series expansions

o0

ao(4r? 4+ 25) " + a1 (4r% + 8r + 29) z' 1" + (Z (ar(4k* + 8kr + 4r% + 25) + dag_2) T

k=2
apcannot be 0 by assumption, giving the indicial equation
4?2 4+25=0

Values of r that satisfy the indicial equation

51 51
re{-%.%

Each term must be 0

a1(4r? +8r+29)=0

Solve for the dependent coefficient(s)

ar =0

Each term in the series must be 0, giving the recursion relation
ay(4k? + 8kr + 4r? + 25) + day_ =0

Shift index using k— >k + 2

apy2(4(k +2)° +8(k +2)r +4r2 +25) + 4a, = 0

Recursion relation that defines series solution to ODE

4ay,

k42 = ~ 1121 8kr+4r2+16k+ 16741
Recursion relation for r = —%I
Ok+2 = — 13230 ka-(;]é—m I+16k
Solution for r = —%
>, k— 51 day,
Y= arx"2,0p42 = T IKZ—201k+16—401+ 16k 91 = 0

k=0
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° Recursion relation for r = 2!

a _ 4ay
k+2 — T 4k23201k+16+401+16k
51

° Solution for r = 5

o0
_ k451 _ dag _
Y= kZ_Oakw 25 0k+2 = T p220 Tkt 164401416k A1 = 0

° Combine solutions and rename parameters

o0 o0
_ k—51 k431 _ dag, — - 4b
V= (kz—o W ) + (,CZ_O N L a2 —20Th+16—401+16k> %1 = 0, bry2 = 4k2+201k+16

Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
<- Bessel successful
<- special function solution successful”

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 45

‘Order:=6; ‘
Ldsolve(x“2*diff(y(x),x$2)+x*diff(y(x),x)+(x“2+(5/2)“2)*y(x)=0,y(x),type='seri%s',x=0);

1 5 17 15
— 21 - Y 2 o Eahd 4 6
ylo) = e ( + ( 29 58) v ( o512 + 4756) 740 >)
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v/ Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 66

( N

kAsymptoticDSolveValue [x~2xy' ' [x]+x*y' [x]+(x~2+(5/2) "2)*y[x]==0,y[x],{x,0,5}] J

17 150 ;
M@—+(———————i)qx%@4—aﬁ+2mﬁ3—(36—24m)

9512 4756
17 150\ sy o |
—<éﬂ2—1ﬁ%)@w2@n—(m—2mn-—a%+amg)
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1.18 problem 3.26
1.18.1 Maple step by step solution . . . . ... ... ... ....... 211

Internal problem ID [5497]
Internal file name [OUTPUT/4745_Sunday_June_05_2022_03_04_50_PM_29781487/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136

Problem number: 3.26.

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Ordi-
nary point", "second_ order__change_of variable_on_y_ method_ 2", "sec-
ond order series method. Taylor series method", "second_ order_ode_ non_ con-
stant_ coeff transformation on_B"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

(z-1)y" —zy’+y=0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.
Let
y' = f(z,9,9)
Assuming expansion is at g = 0 (we can always shift the actual expansion point to

0 by change of variables) and assuming f(z,y,y’) is analytic at zo which must be the
case for an ordinary point. Let initial conditions be y(zo) = yo and y/'(zo) = yg. Using
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Taylor series gives
(&) = y(wo) + (2 — o)/ (wo) + =

B a2 23
= Yo + TYq + ?flmo,yo,y(’) + af |z0,yo,y6 + ...

xn+2 dnf
—_— l PR
_y0+$yo+zo(n+2)!dxn

Zo,yo,yé
But

df 8fdw+8fdy+6fdy
dz  Ozdzx Oydr 0y dx

_of [ of , Of ,
~or " ayY TayY
ﬂ+gy/+ﬁ
oy’
“_L(4)
_ 90 9 (df
= oz (ae) * o) Y+ o (2
Bf d (&f
da:3_%( )
2(

2
& f o &f\ ,, 8 (d&f
?) (8ydw2> Y+ oy oy’ <dx2> f
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And so on. Hence if we name Fy = f(z,y,y’) then the above can be written as

F0=f(.'L',’y,yl)
_d
Fi=2
_dR
C dx
of of /+6f "
oz oy’ T oy
of  of , Of
oz " ay? oy
_OF, 0F , 0F
or + 8yy 8y’F0
d [ d
F2—%<£f>
d
—%(Fl)

d
_%(
0

. 6Fn_1 ’ a-Fn—l "
_awF”_1+( oy )y +< oy )y

0 OF, - OF,
s () ()

Ox Oy

Therefore (6) can be used from now on along with

. o0 2
) =t Z; (n 3 2)1 "eososs
n=|
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To find y(z) series solution around z = 0. Hence

Fy=

F1:

-y +xy’
r—1

dF,

dz

_ 0F, + 0F,

P =

Fs =

Fy =

or Oy

—y+azy
z—1

dFy

dr

OF; + oOF,

oF,
y 4

oy’ Fo

OF;
y’+ 1F1

ox Oy

—y+azy
z—1

dF,

dr

oy’

OF, + OF,

Ox Jy y

-y +zy
r—1

dFy

dr

_ O0F; + OF;

,, OF,

oy’ F

OF
Y+

ox Oy

—-y+azy

r—1

oy’ Fs

And so on. Evaluating all the above at initial conditions z = 0 and y(0) = y(0) and

y'(0) = y'(0) gives

Fy =y(0)
Fy =y(0)
Fy, = y(0)
F3 =y(0)
Fy =y(0)

Substituting all the above in (7) and simplifying gives the solution as

1 1 1 1
y = (1+—x2+—x3+—m4+—m5

24

120

207

+ %Omﬁ) y(0) + zy'(0) + O(=°)



Since the expansion point £ = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

(z-1)y" -2y’ +y=0

Let the solution be represented as power series of the form

o0
y= 5 a,x"
n=0

Then

na,z" !

QQ\
I
NE

n=1

n(n — 1) a,z" 2

s
I
Nk

||
)

n

Substituting the above back into the ode gives

(x—1) (Z n(n — 1) anw"_2> —z (Z nanw”_1> + (Z a,m") =0 (1)

n=2

Which simplifies to

o o0

(an”‘lan(n — 1)> + Z (=n(n — 1) az™?) + Z (—nanz™) + (Z anxn) =0
n=2 n =2 n =1 n=0

(2)
The next step is to make all powers of x be n in each summation term. Going over each

summation term above with power of x in it which is not already z™ and adjusting the
power and the corresponding index gives

Z nz" ta,(n —1) = Z (n+1)a,p nz”
(—n(n —1)anz" %) = (=(n+2) ansz(n + 1) z")
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(Z (n+1)anpn x") +Y  (—(n+2) ansa(n+1)z")

n=1 n =0 (3)
+ 3 oy (S -
n =1 n=0
n = 0 gives
—202 —|— ag = 0
ao
Qg = ?

For 1 < n, the recurrence equation is
(n+1)aptin — (n+2)api2(n+1) —na, +a, =0 (4)

Solving for a,2, gives

n%a,11 — Nay + NGpy1 + ay
(n+2)(n+1)
(5) _ (-n+1)ay, (n? +n)an
S (n+2)(n+1)  m+2)(n+1)

Apy2 =

For n = 1 the recurrence equation gives

2&2 — 60,3 =0

Which after substituting the earlier terms found becomes

Qo
as = —

6
For n = 2 the recurrence equation gives

6(13 - 120,4—(1,2 =0

209



Which after substituting the earlier terms found becomes

ao

=9

For n = 3 the recurrence equation gives

].2(14 - 20@5 - 2&3 =0

Which after substituting the earlier terms found becomes

Qo

“ = 120

For n = 4 the recurrence equation gives

20@5 — 30(16 - 3a4 =0

Which after substituting the earlier terms found becomes

Qg

a6 = ——

° 7 720
For n = 5 the recurrence equation gives

30ag — 42a7; — 4a5 =0

Which after substituting the earlier terms found becomes

~ 5040

ar

And so on. Therefore the solution is

o0
y=§ apx"
n=0
_ 3 2
=a3x” +ax"+a1x+ag+...

Substituting the values for a,, found above, the solution becomes

+ @+ 2a0a® + aor® + a0z + —07” +
=a a1x + —apx —Qox — Qo — Qo
Yy 0 1 20 60 240 1200
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Collecting terms, the solution becomes

1 1 1 1
= ]_ JR— 6
y ( +2:c +6a: —|-24x +120x)a0+a1x+0(x) (3)

At z = 0 the solution above becomes

1 1 1 1
— (14 224 28 . 6
Y ( + et e +120x)c1+c2x+0(x)

Summary
The solution(s) found are the following

27 167 247 1200 ' 720
1+1 2oy Loy LosYe o +O0(z°) (2)
T 6:0 2410 120w c1 + cox T

Verification of solutions

(1+ o pleyloy Lo Ly 6) y(0) +zy/(0) +O(z°) (1)

Y YR S S SN S S S U / 6
—(1+2z + T+ 5+ 1o +720 y(0) + zy'(0) + O(z°)

Verified OK.

1 1 1 1
(123 Sty 6
y < +5T e o +120x)c1+c2x+0(x)

Verified OK.

1.18.1 Maple step by step solution

Let’s solve
(z—-1)y" —zy+y=0
° Highest derivative means the order of the ODE is 2

7

Y

° Isolate 2nd derivative

y' =4+
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y - Ty =0
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Check to see if xg = 1 is a regular singular point

Define functions

[Py(z) = =%, Py(z) = &5 ]

(x — 1) - Py(z)is analyticat z = 1
((z —1) - Po(x))
(z — 1) - Ps(z) is analytic at z = 1

((z—1)°- Py(2))

x = lis a regular singular point

=-1

=1

=0

=1

Check to see if xyg = 1is a regular singular point
To=1

Multiply by denominators

(z-1)y" —zy'+y=0

Change variables using = u + 1 so that the regular singular point is at u = 0
u(Eyw) + (—u—1) (Ey() +y(w) =0

Assume series solution for y(u)
y(u) = 3 aut*
k=0

Rewrite ODE with series expansions

Convert u™ - (Ly(u)) to series expansion for m = 0..1

o)

um - (%y(u)) = kzoak(k—*_r) yktr=1+m

Shift index using k— >k+1—m

um e (Ly(w) = Y aprom(k+1—mr)uttT
k=—14+m

Convert u - (%y(u)) to series expansion

u- <,{d—;y(u)) = ki;oak(k +7r)(k+71—1)urtrt

Shift index using k— >k + 1
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U - (j—;y(u)) = kzl app1(k+1+7)(k+7)urt

Rewrite ODE with series expansions
aor(—=2 +7r)u " + (Z (apri(b+147)(k+r—1)—ap(k+r—1)) uk+r) ~0
k=0

apcannot be 0 by assumption, giving the indicial equation

r(=2+7)=0
Values of r that satisfy the indicial equation
r € {0,2}

Each term in the series must be 0, giving the recursion relation
(k+r—1)(akt1(k+1+7)—ar) =0

Recursion relation that defines series solution to ODE

A+l = joter

Recursion relation forr =0

Ak+1 = kaT'_“l

Solution forr =0

y(u) = 3 apu, apy = ka—ﬁ}

L k=0

Revert the change of variablesu =z — 1

y=> ap(x—1)", a1 = ka—ﬁ}
k=0

Recursion relation for r = 2
— Qg

Ak+1 = %43

Solution for r = 2

i 00
y(’u,) = kzoakuk’-’-Q, a’k+1 = ka—_{f?):|

Revert the change of variablesu =z — 1

[ x k+2 a
y= 5 o~ )" o = —}

Combine solutions and rename parameters

y— (2 anlz — 1)’“) ; (z b(z — 1)’““) et = by = 2
L k=0

k=0
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Maple trace Kovacic algorithm successful

“Methods for second order ODEs:

--- Trying classification methods ---

trying a quadrature

checking if the LODE has constant coefficients

checking if the LODE is of Euler type

trying a symmetry of the form [xi=0, eta=F(x)]

checking if the LODE is missing y

-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful”

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

‘0rder:=6;
‘dsolve((x-l)*diff(y(x),x$2)—x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

_ 1, 145 1, 1 4 6
y(z) = (1+ 57 —|-6ac +24x + 150% y(0) + D(y) (0) z + O(z°)

v/ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 41

LAsymptoticDSolveValue[(x-l)*y"[x]-x*y'[x]+y[x]==0,y[x],{X,0,5}]

2 xt 2 2P
Y (R A
y(z) 01(120+24+6+2+ )+62x
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1.19 problem 3.48 (a)
1.19.1 Solving asseriesode . . . . . .. ... ... ... ... ..., 215
1.19.2 Maple step by step solution . . . . . ... ... ... .. .... 2272

Internal problem ID [5498]
Internal file name [OUTPUT/4746_Sunday_June_05_2022_03_04_51_PM_15119847/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136

Problem number: 3.48 (a).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "first order ode series method.
Ordinary point", "first order ode series method. Taylor series method"

Maple gives the following as the ode type

[_linear]

Y + zy = cos ()

With the expansion point for the power series method at = 0.

1.19.1 Solving as series ode

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving first order ode. Let

Y = f(z,y)

Where f(z,y) is analytic at expansion point z,. We can always shift to zo = 0 if z is
not zero. So from now we assume zo = 0. Assume also that y(z¢) = yo. Using Taylor
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series

2
(@) = (o) + (2 z0) v/ (w0) + 0y ) + E TN
_ z? df 2 A f
_y0+wf+3%$0,yo gﬁwo,yo—k.”
y N o xn—i—l dnf
=Y —_n
— (n+1)!dz 20,40
But
@ o5 of
dr 0z Oy
¢f _d(df
drz? dz \dx
_Oo(d\, o(d
- Oz (dx) * Oy (dx) f
&f _ d(&f
dz?  dx \ dz?
o (d*f o d*f
= 5:(z) * (yae)

$0)3

3!

/(@) +

And so on. Hence if we name Fy = f(z,y) then the above can be written as

FO = f(x7y)
d
Fn - E(Fn—l)
0 OF,_,
_%F"_Hr(ay)F0

For example, for n =1 we see that

d
by = - (Fo)
_ 0 0F,
- 8xF0+<8y)F0
_of  of
dx Oy
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Which is (1). And when n = 2

d

F, = %(Fl)
9 OF,
“att ( By ) Fo

of Of of Oof
8x(8x+8y )+8_y<% f)f

~5:(a) "o (%)

Which is (2) and so on. Therefore (4,5) can be used from now on along with

Hence

yo+z

+1 | nlxoyo

Fy = —xy + cos (z)

F =

F2:—

Fy=—2

F4:

i,
dz
_ 0K 6F0
N 8x Oy Fo
= yx® — cos (z) x — y — sin (z)
dFy
dz
_OF 8F1
o Ty
= (2* — 3) cos (z) — z((2* — 3) y — sin (z))
dF;,
dz
_O0F;,  O0F;
Oz + Oy F
(z* — 62% +3) y + (—2° + 67) cos (z) + (—z* + 4) sin (z)
a,
dz
OF3 8F3
oty

= (z* — 102* 4 13) cos (z) —
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And so on. Evaluating all the above at initial conditions z(0) = 0 and y(0) = y(0) gives

=1

Fy = —y(0)
F,=-3
F3 = 3y(0)
F,=13

Substituting all the above in (6) and simplifying gives the solution as

1 1 3 132°
— 1—Z= 2 — 4 oz Il 6
( 57 +8a:>y(0)+a: 5 T 120 + O(z°)

Since x = 0 is also an ordinary point, then standard power series can also be used.
Writing the ODE as

Y +q(z)y = p(x)
Y + zy = cos (x)

Where

g(z) =z
p(z) = cos (z)

Next, the type of the expansion point £ = 0 is determined. This point can be an
ordinary point, a regular singular point (also called removable singularity), or irregular
singular point (also called non-removable singularity or essential singularity). When
x = 0 is an ordinary point, then the standard power series is used. If the point is a
regular singular point, Frobenius series is used instead. Irregular singular point requires
more advanced methods (asymptotic methods) and is not supported now. Hopefully
this will be added in the future. z = 0 is called an ordinary point ¢(x) has a Taylor
series expansion around the point z = 0. z = 0 is called a regular singular point if g(x)
is not not analytic at = 0 but zq(z) has Taylor series expansion. And finally, = 0
is an irregular singular point if the point is not ordinary and not regular singular. This
is the most complicated case. Now the expansion point z = 0 is checked to see if it is
an ordinary point or not. Let the solution be represented as power series of the form

o0
Y= E a,x"
n=0
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Then

o0
y = E na,z" !
n=1

Substituting the above back into the ode gives

(Z nana:"_1) +z (Z anx"> = cos (z) (1)

Expanding cos (z) as Taylor series around x = 0 and keeping only the first 6 terms

gives
L 4 1,
— - = 1+...
cos (z) = 5% ~ 5% T1+
Ly 1,
= — _— ]_
241' 2:1: +

Hence the ODE in Eq (1) becomes

<Znanx )—l—x(Zanw)——z‘l—%x +1 (1)

Which simplifies to

<§: nanx"_1> (Z e ) = ix ;xQ +1 (2)

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of z in it which is not already 2™ and adjusting the
power and the corresponding index gives

o0 o0
Z na,z" ' = Z (14+n)a1inx
n =1 n=0
o0 o0
Z z ", = Z Ap1Z"
n =0 n=1

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(Z (1+mn) a1+na:"> + (Z an_lw") = 2—149;4 - %xz +1 (3)
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n = 0 gives

(al) 1=1
a; = 1
Or
a; = 1
For 1 < n, the recurrence equation is
(1 +7n) ar4n + )”1412+1
n Ap— = a5 I
n)aiy 1)ZT 24m 2x

For n = 1 the recurrence equation gives

(2a2+a0)x=0
2a2+a0=0

Which after substituting the earlier terms found becomes

ap
Qg = —5
For n = 2 the recurrence equation gives
2
x
(3az +a;) 2 = —5
3(13 + a; = —5

Which after substituting the earlier terms found becomes

1
a3=—§

For n = 3 the recurrence equation gives

(4a4 +az)z® =0
4a4 + a9 = 0
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Which after substituting the earlier terms found becomes

ao
a4 = —
8

For n = 4 the recurrence equation gives

T

5 4=
(a,5+a3)x 24
1

5 = —

as + as 24

Which after substituting the earlier terms found becomes

13

%= 120

For n = 5 the recurrence equation gives

(6ag + a4) x° =0
6ag + a4 =0

Which after substituting the earlier terms found becomes

ao

T

And so on. Therefore the solution is

o0
y=§ an,x"
n=0
_ 3 2
=a3xr” + "+ a1 x +ap+ ...

Substituting the values for a,, found above, the solution becomes

G0+ T — tapr? — 2P+ —agrt 4 o 4
y=do g0t T ¥ TgWT T gt T

Collecting terms, the solution becomes

1 1
y:(l——x2+—x4

9 3 ag+2r— — +

3 132° 6
) 2+ 120 TOW)
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Summary

132°

1;3
+$_E+1_20+

The solution(s) found are the following

(1)
(2)

O(xﬁ)

)

6

T

5
13z +O(

$3

Cl-l-.’E—E'F

120
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Figure 1: Slope field plot

Verification of solutions

+ O(xﬁ)

120

132°

fo- Ty
w__
2

%f>y®)

1
2 +

1—=
2

-

Verified OK.

8

+0(

132°
120

x2+1x4 c +x—w—3+
8" )™ 2

1
2

v=(1-

Verified OK.
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1.19.2 Maple step by step solution

Let’s solve
Yy + zy = cos ()
° Highest derivative means the order of the ODE is 1

/

Y

° Isolate the derivative
Yy = —zy + cos (z)

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y' + zy = cos (x)

° The ODE is linear; multiply by an integrating factor u(x)
w(z) (v + zy) = p(z) cos (z)

o Assume the lhs of the ODE is the total derivative £ (u(z) y)
u(z) (v +zy) = pW'(2)y + p(z)y'

e  Isolate p/(x)
w(z) = p(z)

° Solve to find the integrating factor
u(z) = o

° Integrate both sides with respect to x
[ (& (ule)v)) do = [ p(a) cos (z) dz + e,

° Evaluate the integral on the lhs
u(w)y = [ p(a) cos (z) da +

° Solve for y
y = [ () c;jzg)dx-l—cl

o Substitute u(z) = o

22
y= J &2 cos(z)dz+ci

T

e 2
° Evaluate the integrals on the rhs
Iﬁe%ﬁerf(%ﬂfg) I\/Fe%\/ierf(l%?—xﬁL@)
I 2 - 4 ta
y= =2
e 2
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N

° Simplify

(Iﬁe%ﬁerf(%)+lﬁe%ﬁerf(%) —4cl)e_7
y=- 1

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 27

‘0rder:=6;
‘dsolve(diff(y(x),x)+x*y(x)=cos(x),y(x),type=‘series‘,x=0);

1 1
y(z) = (1 - 5.’132 + §z4) y(0) +z — T4

v/ Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 38

LAsymptoticDSolveValue[y'[x]+x*y[x]==Cos[x],y[x],{x,O,S}]

1325 28 xt  z?
y(x) — 120 —?+c1 §—5+1 +
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1.20 problem 3.48 (b)

1.20.1 Solving aslinearode . . . . . .. . . ... ... ... ... .. 225
1.20.2 Solving as first order ode lie symmetry lookup ode . . . .. .. 227
1.20.3 Solvingasexactode . . .. ... ... ... ... ... ... 2311
1.20.4 Maple step by step solution . . . . . ... ... ... ... ... 236

Internal problem ID [5499]
Internal file name [OUTPUT/4747_Sunday_June_05_2022_03_04_52_PM_79415664/index.tex|

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136

Problem number: 3.48 (b).

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order__ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

, 1
ytary=—
z

1.20.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

Y +p(z)y = q(z)

Where here
p(z) ==
1
q(z) = 23
Hence the ode is
, 1
yt+ay=—
T
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The integrating factor u is

The ode becomes

Integrating gives

:2)2
22 e?
ey = ? dz
2 o5  explntegral, (—%)
Ty=— —
ey 902 4 +a

1:2
Dividing both sides by the integrating factor u = e results in

2

2 %  explntegral <— % )

»

T

y=e ot T 1 tae
Summary
The solution(s) found are the following
2 e% expIntegral, <—§) 2
y=e | -5 5~ 1 +cie 2 (1)
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Figure 2: Slope field plot

Verification of solutions

z?
2

|
[<5]
—
QO
+
~/
/N
e
|
~—
ol
=
& <t
20
8
=]
[
o
%
[«D]
|
Sl 2$
O |V
|
N~ —
e
|
[<5]
|
N

Verified OK.

1.20.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

yzt—1

3

Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

0

Nz + w(ny - gx) - w2§y - wx§ - wyn

The type of this ode is known. It is of type linear. Therefore we do not need to solve

the PDE (A), and can just use the lookup table shown below to find £,
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Table 26: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

{(z,y) =0

»N

x

n(z,y) =e 2 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _

ds
§ N

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R=«x

Sz/ldy
n

:/ 1z2dy
e 2

x

S:e?y

S is found from

Which results in

[

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

4
yx*—1
(.U(.’L‘ ) y) == 3
Evaluating all the partial derivatives gives
R,=1
R,=0
22
S;=ezzxy
22
Sy=e?

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates
dS e
ez

o~z 2A

dR 23 (24)

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

ds _ e
dR R3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

% explntegral, <—%2>
S(R):_ZRZ_ 4 + (4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

eé expIntegral, (—%)

w?
2y = — _
ezy 972 4 +c
Which simplifies to
2 o5  explntegral, (—%)
2y = — _
ey 2x2 4 ta

Which gives
z2 22
ez (e:)cpIntegral1 <—%> z? —dc1x?® + 2 e?)
4x2
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

y=-

Canonical

. . . : ODE in canonical coordinates
Original ode in z,y coordinates coordinates

(R,5)

transformation

R2
__ e 2
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8
8
[9%]
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Summary

The solution(s) found are the following

1)
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Figure 3: Slope field plot

Verification of solutions

)

z?
2

<eprn‘cegral1 <—§> x? — 4ci2% + 2e

22
2

e~

472

Verified OK.

1.20.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(w,y)£=0

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
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ode. Taking derivative of ¢ w.r.t.  gives

d
Hence 96 04d
Y
e st B
ox + Oy dx 0 (B)
Comparing (A,B) shows that
09
9 M
09
TN
Oy
But since % = % then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
6‘9: ;’y = aa; g; is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore
1
dy = (—xy + —3> dx
T

(acy - l) de+dy=0 (2A)

3
Comparing (1A) and (2A) shows that

1
M@w=w—;

N(z,y) =1
The next step is to determine if the ODE is is exact or not. The ODE is exact when

the following condition is satisfied

oM _ oN
oy Oz
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Using result found above gives
oMm_9o(  _1
dy Oy I

And

Since ‘9M £ N 5. > then the ODE is not exact. Since the ODE is not exact, we will try to
find an 1ntegrat1ng factor to make it exact. Let

am LM _on
dy ox
1((37) —(0))
=2z
Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor p is

N:efAd:c

=efxdx

The result of integrating gives

=
Il

Q)
o8,

|
(¢”]
She

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = uM
z? 1
(o)
B e%(yﬂc4 -1
— 3
And
N =uN

|
o

|
o
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

_dy
M+NY =
+N - =0

(o0 () 8
x3 dz

The following equations are now set up to solve for the function ¢(z,y)

8¢

Integrating (1) w.r.t. z gives
— dx = / Mdz

8¢ /emz(g/ac4 —1) dz

8:c 3

4e2yz + explntegral, ( >x —|—2e2
6= — +£) )

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

a9

2=t r) @

22
But equation (2) says that g—z = e2 . Therefore equation (4) becomes

ez =ez + f'(y) (5)
Solving equation (5) for f'(y) gives
f'y) =0
Therefore
fly) =a
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Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢

m2 a:2
4e7yz? + explntegral, <—§> z2 4+ 2ez
¢ = 122 +c

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

1‘2 z2
4e'zyz? + explntegral, (—%) 224+ 2e7

C1 =
42

The solution becomes

22

22
ez (eprntegrad1 (—%) z? — 4z + 2 e?)

422

Yy=-

Summary
The solution(s) found are the following

ez (eprntegrad1 (—%) z? — 4z’ + 2 e?)

e/ /)N NN NN

(S IESCECNEE S O W \ / [ e ———

1——————= 7/ | N N\ NN
T —~———==~~~N\\\\ |
| ———————\\/Mfrrer————

|
w

|
S

|
—_
o
f—

<
—_
=
N—
(e
1
d——— / \ N NN s s

Figure 4: Slope field plot
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Verification of solutions

22

22
e 2z (eprntegrad1 (—%) z? —4cyx? + 2 e?)

42

y=—-
Verified OK.

1.20.4 Maple step by step solution

Let’s solve

Y +ay= 5

° Highest derivative means the order of the ODE is 1

/

Yy
° Isolate the derivative
Y =-zy+ 5

° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
yt+ay=

° The ODE is linear; multiply by an integrating factor u(x)
wz) (y + zy) = 45

o Assume the lhs of the ODE is the total derivative - (u(z) y)
u(z) (v +zy) = pW(2)y + p(@)y'

e  Isolate y/(x)
w(z) = p(z)

° Solve to find the integrating factor
u(z) = e

° Integrate both sides with respect to x

[ ((u@)y) do = [ “2ddz +c
° Evaluate the integral on the lhs

x)y=f“(m)d:c+cl

° Solve for y

. f%dm+cl
V¥="uo

o Substitute u(z) = o7
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o

J ew3 dz+c1
Yy=—""z—
e 2
° Evaluate the integrals on the rhs
2 . 2
o m(E)
— 222 4 L
y= 22
e 2
° Simplify
2 2
4clw2e_gT—Ei1 (—%)m2e_%—2
y = Ax2

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 41

Ldsolve(diff(y(x),x)+x*y(x)=1/x“3,y(x), singsol=all)

4cir%e” 2 — explntegral, (—%) r?e”z —2
y(z) = 122

v Solution by Mathematica
Time used: 0.067 (sec). Leaf size: 46

LDSolve[y'[x]+x*y[x]==1/x‘3,y[x],x,IncludeSingularSolutions -> True]

1 22 xz
y(z) — 16_7 ExplntegralEi (?)
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1.21 problem 3.48 (c)

Internal problem ID [5500]
Internal file name [OUTPUT/4748_Sunday_June_05_2022_03_04_54_PM_50846618/index.tex|

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136

Problem number: 3.48 (c).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second__order__bessel__ode", "sec-
ond order series method. Irregular singular point"

Maple gives the following as the ode type

[[_2nd_order, _linear, _nonhomogeneous]]

Unable to solve or complete the solution.

1
.,]:3y//_|_y= =
T

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

L’y +y=0
The following is summary of singularities for the above ode. Writing the ode as
y' +p(z)y +q(z)y =0
Where
p(z) =0

q(z) = %
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Table 29: Table p(x), g(z) singularites.

q(z) = 35
singularity type

p(z) =0
singularity | type

z=0 “irregular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [00]
Irregular singular points : [0]

Since z = 0 is not an ordinary point, then we will now check if it is a regular singular
point. Unable to solve since z = 0 is not regular singular point. Terminating.

Verification of solutions N/A

Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functioms:
-> Bessel
<- Bessel successful
<- special function solution successful
<- solving first the homogeneous part of the ODE successful"”
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X Solution by Maple

‘0rder:=6; ‘
‘dsolve(x‘3*diff(y(x),x$2)+y(x)=1/x“4,y(x),type='series',x=0);

No solution found

v Solution by Mathematica
Time used: 0.364 (sec). Leaf size: 800

LAsymptoticDSolveValue [x~3*y' ' [x]+y[x]==1/x"4,y[x],{x,0,5}] J

2y, (334245740078255°  468131288625iz%% 14783093325z

ylo) > e Ve (281474976710656 T T 8796003022208 549755813888
66891825ix7/2  2837835z%  72765ix%/2 4725z  105iz%/% 15z  3iy/x
4204967206 | 268435456 8388608 524288 | 8192 | 512 16

33424574007825x° 4 468131288625i1°/2 _ 14783093325z* _ 668918254z 7/ + 28378
281474976710656 8796093022208 549755813888 4294967296 = 26843

-I-I) cl+e\2/i5w3/4<

240



1.22 problem 3.48 (d)

Internal problem ID [5501]
Internal file name [OUTPUT/4749_Sunday_June_05_2022_03_04_54_PM_8074703/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136

Problem number: 3.48 (d).

ODE order: 2.

ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type

[[_2nd_order, _linear, _nonhomogeneous]]

Unable to solve or complete the solution.

zy’ — 2y +y = cos (x)

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.
zy" —2y' +y=0

The following is summary of singularities for the above ode. Writing the ode as

Y +p@)y +q(z)y =0

Where
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Table 30: Table p(x), g(z) singularites.

plz) = 2 (2) =1
singularity type singularity type
=0 “regular” =0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]
Irregular singular points : [0o]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be
zy" — 2y’ +y = cos (x)

Since this is an inhomogeneous, then let the solution be

Y=Yn+ Y

Where yj, is the solution to the homogeneous ode zy” —2y'+y = 0, and y, is a particular
solution to the inhomogeneous ode.which is found using the balance equation generated
from indicial equation

First, we solve for y, Let the solution be represented as Frobenius power series of the

form
y=>2 "
n=0
Then
o0
IR ST
n=0
y' = Z (n+7r)(n+r—1)a,z""?

3
Il
o

Substituting the above back into the ode gives

(Z (m+r)(n+r—1) anx”“_z) x—2 (Z (n+r) anx’“”‘—l) + (Z anx”“) —0

1)
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Which simplifies to

<Z " a,(n+7r)(n+r— 1)> + Z (=2(n+r)a,™ ) + (Z anx"“) =0
n=0

(2A)

The next step is to make all powers of £ be n + r — 1 in each summation term. Going

over each summation term above with power of z in it which is not already z"*"~! and
adjusting the power and the corresponding index gives

00 00
E :anxn—l—r — E :an_lxn—l—r—l
n =0 n=1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of z are the same and equal ton +r — 1.

o0
<Z " ta,(n+r) (n+r—1 ) —I—Z 2(n+7) anz™ ) + (Z an_lw"JrT_l) =0
n=1

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives
"t la,(n+r)(n+r—1)—2(n+7r)az"" =0
When n = 0 the above becomes
T agr(=1471) — 2ragz™ " =0

Or
(7 r(=1+7r)—2rz ") ap =0

Since ag # 0 then the above simplifies to
re T (=3417)=0
Since the above is true for all x then the indicial equation becomes
r(=3+r)=0
Solving for r gives the roots of the indicial equation as

’1"1:3

’l"2=0
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The corresponding balance equation is found by replacing » by m and a by c to avoid
confusing terms between particular solution and the homogeneous solution. Hence the
balance equation is

(z7"™m(—1+m) — 2mz~"™) ¢o = cos (z)
This equation will used later to find the particular solution.

Since ag # 0 then the indicial equation becomes
re T (=34+71)=0

Solving for r gives the roots of the indicial equation as Since r; — ro = 3 is an integer,
then we can construct two linearly independent solutions

o0
r1 § :anxn
n=0

() = Con(a) n (a) + 2" (Z bnx")

=23 (Z anx“>
v2(z) = Cu(z (Z bnz" )

— Z anzn+3
y2(2) = Ot (2 (Z bz >

Where C' above can be zero. We start by finding y;. Eq (2B) derived above is now used
to find all a,, coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. ag is arbitrary and taken as ag = 1. For 1 < n the recursive
equation is

an(n+r)(n+r—1)—2a,(n+7)+a,.1=0 (3)

Solving for a,, from recursive equation (4) gives

Gp-1
n — — 4
N n?+2nr+1r2—3n—3r )
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Which for the root r = 3 becomes

An—1
Op = ———< 5
n(n+ 3) (5)
At this point, it is a good idea to keep track of a,, in a table both before substituting
r = 3 and after as more terms are found using the above recursive equation.

n | Gy | Gn

Qo 1 1

For n = 1, using the above recursive equation gives

" 1
Y22
Which for the root r = 3 becomes 1
a; = _é_l
And the table now becomes
n | Gn, an,
Qo 1 1
a1 T r2 —1'1“—2 _711

For n = 2, using the above recursive equation gives

1
927 5 g
Which for the root r = 3 becomes 1
g = —
2740
And the table now becomes
n | Gny an,
ap 1 1
ar | — r2 —17"—2 _4_11
1 1
a2 | 755244 | 20
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For n = 3, using the above recursive equation gives

1
(r*=5r24+4)r(r+3)

as = —

Which for the root r = 3 becomes

1
a3 = ———
720
And the table now becomes
n | Gn, an
ap 1 1
1 1
a1 |~ —q
1 1
O )
o | ——_ 1 [ _ 1
3 T =5r2+4)r(r+3) 720

For n = 4, using the above recursive equation gives

1
(r*=5r2+4)r(r+3)(r2+5r +4)

Which for the root r = 3 becomes

ay =

1
a4 = ———
20160
And the table now becomes
n Qn Gn
ap 1 1
1
a1 r2—r—2 4
1 1
a2 | 15714 10
o | — 1 _ 1
3 (T =5r2+ ) r(r+3) 720
a 1 1
4 | GIEr2+ ) r(r+3)(r2+5r+4) | 20160

For n = 5, using the above recursive equation gives

1

B T ) (r =2 (r+ 22 (=14 7)r(r+3) (r+4) (r + 5)
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Which for the root r = 3 becomes

1
as = —
806400
And the table now becomes
n | Gpy an
ao 1 1
1 1
a1 r2—r—2 4
1 1
a2 | 73 5214 40
Gn | — 1 _ L
3 (rT=5r244)r(r+3) 720
a 1 1
4 | (F=5r24a)r(r+3)(r2+5r+4) 20160
ar | — 1 1
5 (r+1)%(r—=2)(r+2)2(—147)r(r+3)(r-+4)(r+5) 806400

Using the above table, then the solution y; () is

y1(z) = 2° (a0 + a1z + axx® + asx® + asz* + a5z’ + aez®. .. )

2 3 4 5
_g3( ot _r . 2 O (8
x( 171 720 * 20160 06400 T O

Now the second solution ys(z) is found. Let
T —T9 = N

Where N is positive integer which is the difference between the two roots. r; is taken
as the larger root. Hence for this problem we have N = 3. Now we need to determine if
C is zero or not. This is done by finding lim, ., az(r). If this limit exists, then C' = 0,
else we need to keep the log term and C' # 0. The above table shows that

an = as
1
T (=54 4)r(r+3)
Therefore
lim — L = lim — L
rory (rt=5r24+4)r(r+3) 0 (r*=>5r24+4)r(r+3)
= undefined
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Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

yz(.’IJ) =Cuy (-’E) In (.’L’) + (Z bnxn-i-m)

n=0
Therefore

2 @) = @) @) + )y (Z bz (n + r2)>

xT
n=0

T

— Cyl(2)In (2) + Cyi(z) 4 (i w—1+n+r2bn(n + r2)>

n=0
a? _ " QCyi (IL‘) Cyl (CL‘)
() = Oyl(2) In (@) + A

+ 72

i (b nZ"12(n —|— r2) bnav"”2 (n+ m))

n=

= Cy{(z) 1n(x)+2cyll( ) _Culz ) (Zx 24n472h (n413) (—1+n+r2)>

T z2
n=0

Substituting these back into the given ode zy"” — 2y’ + y = 0 gives

x x2
(b2 (n+1r9) bzt (n + 1
+ Z ( 3(32 2) _ x(2 2)>) z — 20y, (z) In (z)
n=0
2Cy; () . b2 (n 4 7y)
-2 7 _9 b, n+ry | _
- ;) - + Cyl Z T

Which can be written as

(0@ 2+ (o) - 2 @) o) + (24 - 1)), 200

xr2

00 b xn+r2 n_|_ 1"2) bnl.n—i-rz (’I’L _|_7-2) (7)
+ (Z 22 T
-2

<§: by, xn+r2z’n, + 7o ) (Z b xn+m> —0
0
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But since y;(z) is a solution to the ode, then
Yi(z)z +y1(z) — 2y1(z) =0
Eq (7) simplifes to

<(2y;(x) yl(z))m_2y1—(w)>0
. (b xfm n+r2) ' bnx”+”(n+7"2)>> 3;

+ (ZO p
—9 (i bn.’I,'n-i-TzaEn + 7"2)) + (i bnxn+r2) =0
n=0 n=0

o0
Substituting y; = Y a,z™*™ into the above gives
n=0

(2 ( i g~Hmirg (n + r1)> z—3 ( i anx"+"1) ) C
n=0 n=0

T
(i =22 (n 4+ 1) (=1 +n+ 7"2)) 2 —2 ( i g~ Hnt2p, (n 4+ r2)>

n=0 n=0

9)

T+ (Z bnm“Jr”) x
n=0

+
T
=0

Since 71 = 3 and ry = 0 then the above becomes

(o5 i +9) - S )

X

n=

n=0

(i 2", n(n — 1)) z? — 2( 3 x"‘lbnn) T+ (i bnx”> T
0 n=0

+
T

Which simplifies to

<Z2Cx2+" n+3> Z (—=3C z**"a,

n=

(10)

(24)

+ <Z nz" b, (n — 1)) + i (—22""'b,n) + <§: b,ﬁ”) =0

n =0
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The next step is to make all powers of £ be n — 1 in each summation term. Going
over each summation term above with power of z in it which is not already z"~! and
adjusting the power and the corresponding index gives

Z 2C z**"a,(n + 3) = Z 2Ca,_snx™*
n =0 n=3

i (=3C z**"a,) = i (=3Can—3z" ")
n =0 n=3

i"’: b,x" = i b1z

n =0 n=1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n — 1.

(; 2Ca,_3n x"_1> + ; (—3C’an_3x”_1) + (Z nz" b, (n — 1)) (2B)

n=0

+ i (—2x"‘1bnn) + (i bn_lm"_1> =0
n =0 n=1

For n = 0 in Eq. (2B), we choose arbitray value for by as by = 1. For n = 1, Eq (2B)
gives
—2b; +by =0

Which when replacing the above values found already for b, and the values found earlier
for a,, and for C, gives

—2b1+1=0
Solving the above for b; gives .
b1 == 5
For n = 2, Eq (2B) gives
—2bs+b, =0

Which when replacing the above values found already for b,, and the values found earlier

for a,, and for C, gives .
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Solving the above for by gives
1

b2 = Z
For n = N, where N = 3 which is the difference between the two roots, we are free to
choose b3 = 0. Hence for n = 3, Eq (2B) gives
1

3C+7=0

Which is solved for C'. Solving for C' gives

1
C = D
For n = 4, Eq (2B) gives

50&1 + b3 +4b4 =0

Which when replacing the above values found already for b,, and the values found earlier

for a,, and for C, gives

)
4b4+E—0

Solving the above for b, gives
5

T
For n = 5, Eq (2B) gives
70&2 + b4 + 10b5 =0

Which when replacing the above values found already for b,, and the values found earlier

for a,, and for C, gives
13

106 — — =
0bs = 330 =°
Solving the above for b; gives

b — 13

® 3200

Now that we found all b,, and C, we can calculate the second solution from

y2(z) = Cys(x) In (z (Z bnz”Jm)

n=0

Using the above value found for C = —1—12 and all b, then the second solution becomes

1 2 28 zt z°
v2() 12( ( 4+40 720 * 20160 ~ 806400 * O ))) n(@)
.’1,‘2 5.’1/' 13.’1,' 6
+14 5+ 7~ 53+ g0+ 00"
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Therefore the homogeneous solution is

Yn(t) = cry1 () + coya(z)

2 3 4 5
e P e .
Clx( 2" 10 720 * 20160 ~ 806400 T 0%

1 3 T .'L'2 ,’1,‘3 x4 x5
12 l-2+0~ - O(z%) ) |1 1
i c2< 12 (w ( 2120 720 T 20160 ~ soeaoo T O@) ) ) m(@) +
2 4 5
r x 5% 13z N O(xG))

T2t 7192 T 3200

The particular solution is found by solving for ¢, m the balance equation
(z7""m(-1+m) —2mz™ ") g =F

Where F'(z) is the RHS of the ode. If F'(z) has more than one term, then this is done for
each term one at a time and then all the particular solutions are added. The function
F(z) will be converted to series if needed. in order to solve for ¢,, m for each term, the
same recursive relation used to find yp(x) is used to find ¢,, m which is used to find
the particular solution ) _, c,2™*™ by replacing a, by c, and r by m.

The following are the values of a,, found in terms of the indicial root r.

ay
ay = _r2—$'—2
_ ag
az = r4d—5r2+4+4
— ag
a3 = ~ A 5r2+4)r(r+3)
a4 = a0
4 = Io5r244)r(r+3) (r2+5r+4)
a5 = — a0
5 (7'-|—1)2(r—2)(r+2)2(—1+7')r(r+3)(r+4)(r+5)

Expanding the rhs of the ode cos (x) in series gives

1 1
cos (x) = ﬂx‘l - 51‘2 +1

Since the F' = iw"‘ — %xz + 1 has more than one term then we find a particular solution
for each term and add the result to find the particular solution to the ode.

Now we determine the particular solution y, associated with F' = % by solving the

balance equation

$4

(27 m(—1+m) — 2mz™ ") ¢ = 21
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For ¢y and z. This results in

1
240"

Where in the above ¢y =
The remaining c,, values are found using the same recurrence relation given in the earlier
table which was used to find the homogeneous solution but using ¢y in place of ay and
using m = 5 in place of the root of the indicial equation used to find the homogeneous
solution. By letting ay = ¢y or ag = ﬁ and 7 = m or r = 5. The following table gives
the resulting ¢, values. These values will be used to find the particular solution. Values

of ¢, found not defined when doing the substitution will be discarded and not used

_ 1
€0 = 3410
_ 1
C1= —1320
1
€2 = 130060
- __ 1
€3 = — 1838400
_ 1
C4 = 361273600
e 1
5 — 7 18289152000

The particular solution is now found using

o0
Yyp=z" Z cnx"
n=0
[e.e]
=z’ Z "
n=0

Using the values found above for ¢, into the above sum gives

yp:x5<1 LR B 1 1 . 1 5>

240 ~ 320" T 120060°  1838400° T 261273600°  18289152000"
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1 . 1

- 1 1
240" T 1320”7

27— . 1 9 1 10
120960 4838400

8 _
* 261273600°  18289152000°

6+

Unable to solve the balance equation (z7**™m(—1+ m) — 2mz~"™) ¢, for ¢y and .
No particular solution exists.

Failed to convert RHS cos () to series in order to find particular solution. Unable to
solve. Terminating Unable to find the particular solution or no solution exists.

Verification of solutions N/A

Maple trace

“Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functioms:
-> Bessel
<- Bessel successful
<- special function solution successful
<- solving first the homogeneous part of the ODE successful”

N J

X Solution by Maple

~N

p
‘Order:=6; ‘
‘dsolve(x*diff(y(x),x$2)—2*diff(y(x),x)+y(x)=cos(x),y(x),type='series',x=0);

No solution found
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v/ Solution by Mathematica
Time used: 0.161 (sec). Leaf size: 312

-

kAsymptoticDSolveValue [xxy' ' [x]-2*y' [x]+y[x]==Cos[x],y[x],{x,0,5}]

—
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1.23 problem 3.50
1.23.1 Solving asseriesode . . . . . .. ... ... ... ... ... 256]
1.23.2 Maple step by step solution . . . . . ... ... ... ... ... 259

Internal problem ID [5502]
Internal file name [OUTPUT/4750_Sunday_June_05_2022_03_04_56_PM_66020216/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999

Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136

Problem number: 3.50.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type

[_linear]

Unable to solve or complete the solution.

r Y
y - = cos ()

With the expansion point for the power series method at x = 0.
1.23.1 Solving as series ode
Writing the ODE as

Y +q(z)y = p(x)
y

I —
y — _ =cos (x)
Where
1
q(z) = Tz

p(x) = cos (z)

Next, the type of the expansion point z = 0 is determined. This point can be an
ordinary point, a regular singular point (also called removable singularity), or irregular
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singular point (also called non-removable singularity or essential singularity). When
x = 0 is an ordinary point, then the standard power series is used. If the point is a
regular singular point, Frobenius series is used instead. Irregular singular point requires
more advanced methods (asymptotic methods) and is not supported now. Hopefully
this will be added in the future. £ = 0 is called an ordinary point ¢(x) has a Taylor
series expansion around the point z = 0. z = 0 is called a regular singular point if g(x)
is not not analytic at = 0 but zq(z) has Taylor series expansion. And finally, = 0
is an irregular singular point if the point is not ordinary and not regular singular. This
is the most complicated case. Now the expansion point z = 0 is checked to see if it is
an ordinary point or not.

Since z = 0 is not an ordinary point, we now check to see if it is a regular singular
point. zg(z) = —1 has a Taylor series around z = 0. Since x = 0 is regular singular
point, then Frobenius power series is used. Since this is an inhomogeneous, then let the
solution be
Y=Y+ Yp

Where yj, is the solution to the homogeneous ode y' — £ = 0,and y, is a particular
solution to the inhomogeneous ode. First, we solve for y; Let the solution be represented
as Frobenius power series of the form

00
y = 2 anxn-l-r
n=0

Then

Y= (n+r)aa™

n=0

Substituting the above back into the ode gives

o Z anxn—i-r
(Z (n+r) anx"JrT_l) - "ZOT =0 (1)
n=0
Hence the ODE in Eq (1) becomes
o anwn—i-r
(Z (n+7) anx"JrT_l) -n= . =0 (1)
n=0

Expanding the second term in (1) gives

(Z (n+r) an:(:"”_l) +-1- <Z an:c"J“’") + i . (Z anxn+r> =0 (1)
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Which simplifies to
(Z (n+r) anx””_l) + Z (=2 'a,) =0 (2A)
n=0 n =0

The next step is to make all powers of  be n + r — 1 in each summation term. Going
over each summation term above with power of z in it which is not already z"*"~! and
adjusting the power and the corresponding index gives Substituting all the above in
Eq (2A) gives the following equation where now all powers of = are the same and equal
ton+r—1.

(Z (n+r) anzcn”_l) + Z (=2 'a,) =0 (2B)

n=0
The indicial equation is obtained from n = 0. From Eq (2) this gives
(n+7) anz™1 — g lg, =0
When n = 0 the above becomes
ragz T — M qy =0

The corresponding balance equation is found by replacing » by m and a by c¢ to avoid
confusing terms between particular solution and the homogeneous solution. Hence the
balance equation is

(z7™m — 7™ ¢g = cos (z)

This equation will used later to find the particular solution.

Since ag # 0 then the indicial equation becomes
(-14+r)z7"" =0
Since the above is true for all  then the indicial equation simplifies to
—14+r=0
Solving for r gives the root of the indicial equation as

r=1
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We start by finding y,. From the above we see that there is no recurrence relation since
there is only one summation term. Therefore all a,, terms are zero except for ag. Hence

Yn = aox’
Therefore the homogeneous solution is
yn(z) = ao(z + O(2%))

Unable to solve the balance equation (z7*™m — z7'7™) ¢y = cos () for ¢y and z. No
particular solution exists.

Unable to find the particular solution. No solution exist.

Verification of solutions N/A

1.23.2 Maple step by step solution

Let’s solve
Yy — % = cos (z)

° Highest derivative means the order of the ODE is 1

/

Y

° Isolate the derivative
y' =2+ cos ()
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
Yy — ¥ = cos (z)
° The ODE is linear; multiply by an integrating factor u(x)
() (v — ¥) = p(z) cos (z)
o Assume the lhs of the ODE is the total derivative - (u(z)y)
p(@) (v = 2) = p' (@) y +plz)y
o Isolate ()

p(z) = -2

° Solve to find the integrating factor
px) = ;

° Integrate both sides with respect to x
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J (& (@) y)) dz = [ p(z) cos (z) dz + e
° Evaluate the integral on the lhs
p@)y = [ p(z)cos(z)dx + ¢

° Solve for y
— Ju(@)cos(z)dzter

y )

o Substitute p(z) = %
y:x(fwswﬁdx+c1>

° Evaluate the integrals on the rhs

y =z(Ci(z) + c1)

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful"

X Solution by Maple

‘Order:=6;
‘dsolve(diff(y(x),x)-y(x)/x=cos(x),y(x),type='series',x=0);

No solution found

v/ Solution by Mathematica
Time used: 0.056 (sec). Leaf size: 34

LAsymptoticDSolveValue [y' [x]-y[x]/x==Cos[x],y[x],{x,0,5}]

28 zt z?

_ r_T
y(z) — x( 50 e 1t og(x)) +az
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