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Internal problem ID [5480]
Internal file name [OUTPUT/4728_Sunday_June_05_2022_03_04_13_PM_17619304/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999
Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136
Problem number: 3.5.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact linear second order ode",
"second_order_integrable_as_is", "second order series method. Ordinary
point", "second_order_change_of_variable_on_y_method_1", "linear_sec-
ond_order_ode_solved_by_an_integrating_factor", "second order series
method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

(x− 1) (−2 + x) y′′ + (4x− 6) y′ + 2y = 0

With initial conditions

[y(0) = 2, y′(0) = 1]

With the expansion point for the power series method at x = 0.
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1.1.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 4x− 6
x2 − 3x+ 2

q(x) = 2
x2 − 3x+ 2

F = 0

Hence the ode is

y′′ + (4x− 6) y′
x2 − 3x+ 2 + 2y

x2 − 3x+ 2 = 0

The domain of p(x) = 4x−6
x2−3x+2 is

{−∞ ≤ x < 1, 1 < x < 2, 2 < x ≤ ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 2
x2−3x+2 is

{−∞ ≤ x < 1, 1 < x < 2, 2 < x ≤ ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (2)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −2(2xy′ − 3y′ + y)
x2 − 3x+ 2

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= (18x2 − 54x+ 42) y′ + (12x− 18) y
(x2 − 3x+ 2)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

=
(−96x3 + 432x2 − 672x+ 360) y′ − 72y

(
x2 − 3x+ 7

3

)
(x2 − 3x+ 2)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(600x4 − 3600x3 + 8400x2 − 9000x+ 3720) y′ + 480y

(
x− 3

2

) (
x2 − 3x+ 5

2

)
(x2 − 3x+ 2)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

=
−4320

(
x− 3

2

)
(x2 − 3x+ 3)

(
x2 − 3x+ 7

3

)
y′ − 3600y

(
x4 − 6x3 + 14x2 − 15x+ 31

5

)
(x2 − 3x+ 2)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 2 and
y′(0) = 1 gives

F0 = 1

F1 =
3
2

F2 = 3

F3 =
15
2

F4 =
45
2
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Substituting all the above in (7) and simplifying gives the solution as

y = x+ 2 + x2

2 + x3

4 + x4

8 + x5

16 + x6

32 +O
(
x6)

y = x+ 2 + x2

2 + x3

4 + x4

8 + x5

16 + x6

32 +O
(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

y′′
(
x2 − 3x+ 2

)
+ (4x− 6) y′ + 2y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives(
∞∑
n=2

n(n− 1) anxn−2

)(
x2 − 3x+ 2

)
+ (4x− 6)

(
∞∑
n=1

nanx
n−1

)
+ 2
(

∞∑
n=0

anx
n

)
= 0

(1)

Which simplifies to

(2)

(
∞∑
n=2

xnann(n− 1)
)

+
∞∑

n =2

(
−3nxn−1an(n− 1)

)
+
(

∞∑
n=2

2n(n− 1) anxn−2

)

+
(

∞∑
n=1

4nanxn

)
+

∞∑
n =1

(
−6nanxn−1)+( ∞∑

n=0

2anxn

)
= 0
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The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

(
−3nxn−1an(n− 1)

)
=

∞∑
n=1

(−3(n+ 1) an+1nxn)

∞∑
n =2

2n(n− 1) anxn−2 =
∞∑
n=0

2(n+ 2) an+2(n+ 1)xn

∞∑
n =1

(
−6nanxn−1) = ∞∑

n=0

(−6(n+ 1) an+1x
n)

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=2

xnann(n− 1)
)

+
∞∑

n =1

(−3(n+ 1) an+1nxn)

+
(

∞∑
n=0

2(n+ 2) an+2(n+ 1)xn

)
+
(

∞∑
n=1

4nanxn

)

+
∞∑

n =0

(−6(n+ 1) an+1x
n) +

(
∞∑
n=0

2anxn

)
= 0

n = 0 gives
4a2 − 6a1 + 2a0 = 0

a2 = −a0
2 + 3a1

2

n = 1 gives
−18a2 + 12a3 + 6a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −3a0
4 + 7a1

4
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For 2 ≤ n, the recurrence equation is

(4)nan(n−1)−3(n+1) an+1n+2(n+2) an+2(n+1)+4nan−6(n+1) an+1+2an = 0

Solving for an+2, gives

(5)

an+2 = −an
2 + 3an+1

2

= −an
2 + 3an+1

2

For n = 2 the recurrence equation gives

12a2 − 36a3 + 24a4 = 0

Which after substituting the earlier terms found becomes

a4 = −7a0
8 + 15a1

8

For n = 3 the recurrence equation gives

20a3 − 60a4 + 40a5 = 0

Which after substituting the earlier terms found becomes

a5 = −15a0
16 + 31a1

16

For n = 4 the recurrence equation gives

30a4 − 90a5 + 60a6 = 0

Which after substituting the earlier terms found becomes

a6 = −31a0
32 + 63a1

32

For n = 5 the recurrence equation gives

42a5 − 126a6 + 84a7 = 0
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Which after substituting the earlier terms found becomes

a7 = −63a0
64 + 127a1

64

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+
(
−a0

2 + 3a1
2

)
x2 +

(
−3a0

4 + 7a1
4

)
x3

+
(
−7a0

8 + 15a1
8

)
x4 +

(
−15a0

16 + 31a1
16

)
x5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

2x
2− 3

4x
3− 7

8x
4− 15

16x
5
)
a0+

(
x+ 3

2x
2+ 7

4x
3+ 15

8 x4+ 31
16x

5
)
a1+O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 1

2x
2 − 3

4x
3 − 7

8x
4 − 15

16x
5
)
c1 +

(
x+ 3

2x
2 + 7

4x
3 + 15

8 x4 + 31
16x

5
)
c2 +O

(
x6)

y = 2 + x2

2 + x3

4 + x4

8 + x5

16 + x+O
(
x6)

Summary
The solution(s) found are the following

(1)y = x+ 2 + x2

2 + x3

4 + x4

8 + x5

16 + x6

32 +O
(
x6)

(2)y = 2 + x2

2 + x3

4 + x4

8 + x5

16 + x+O
(
x6)
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Verification of solutions

y = x+ 2 + x2

2 + x3

4 + x4

8 + x5

16 + x6

32 +O
(
x6)

Verified OK.

y = 2 + x2

2 + x3

4 + x4

8 + x5

16 + x+O
(
x6)

Verified OK.

1.1.2 Maple step by step solution

Let’s solve[
y′′(x2 − 3x+ 2) + (4x− 6) y′ + 2y = 0, y(0) = 2, y′

∣∣∣{x=0}
= 1
]

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = − 2y
x2−3x+2 −

2(2x−3)y′
x2−3x+2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 2(2x−3)y′
x2−3x+2 + 2y

x2−3x+2 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2(2x−3)
x2−3x+2 , P3(x) = 2

x2−3x+2

]
◦ (x− 1) · P2(x) is analytic at x = 1

((x− 1) · P2(x))
∣∣∣∣
x=1

= 2

◦ (x− 1)2 · P3(x) is analytic at x = 1(
(x− 1)2 · P3(x)

) ∣∣∣∣
x=1

= 0

◦ x = 1is a regular singular point
Check to see if x0 is a regular singular point
x0 = 1

• Multiply by denominators
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y′′(x2 − 3x+ 2) + (4x− 6) y′ + 2y = 0
• Change variables using x = u+ 1 so that the regular singular point is at u = 0

(u2 − u)
(

d2

du2y(u)
)
+ (4u− 2)

(
d
du
y(u)

)
+ 2y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(1 + r)u−1+r +
(

∞∑
k=0

(−ak+1(k + r + 1) (k + r + 2) + ak(k + r + 2) (k + r + 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {−1, 0}

• Each term in the series must be 0, giving the recursion relation
(k + r + 2) (k + r + 1) (−ak+1 + ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

• Recursion relation for r = −1
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ak+1 = ak

• Solution for r = −1[
y(u) =

∞∑
k=0

aku
k−1, ak+1 = ak

]
• Revert the change of variables u = x− 1[

y =
∞∑
k=0

ak(x− 1)k−1 , ak+1 = ak

]
• Recursion relation for r = 0

ak+1 = ak

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak

]
• Revert the change of variables u = x− 1[

y =
∞∑
k=0

ak(x− 1)k , ak+1 = ak

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(x− 1)k−1
)
+
(

∞∑
k=0

bk(x− 1)k
)
, ak+1 = ak, bk+1 = bk

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 20� �
Order:=6;
dsolve([(x-1)*(x-2)*diff(y(x),x$2)+(4*x-6)*diff(y(x),x)+2*y(x)=0,y(0) = 2, D(y)(0) = 1],y(x),type='series',x=0);� �

y(x) = 2 + x+ 1
2x

2 + 1
4x

3 + 1
8x

4 + 1
16x

5 +O
(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 34� �
AsymptoticDSolveValue[{(x-1)*(x-2)*y''[x]+(4*x-6)*y'[x]+2*y[x]==0,{y[0]==2,y'[0]==1}},y[x],{x,0,5}]� �

y(x) → x5

16 + x4

8 + x3

4 + x2

2 + x+ 2
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1.2 problem 3.6 (a)
1.2.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 16

Internal problem ID [5481]
Internal file name [OUTPUT/4729_Sunday_June_05_2022_03_04_14_PM_5913645/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999
Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136
Problem number: 3.6 (a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ − 2xy′ + 8y = 0

With initial conditions

[y(0) = 4, y′(0) = 0]

With the expansion point for the power series method at x = 0.

1.2.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = −2x
q(x) = 8

F = 0

16



Hence the ode is

y′′ − 2xy′ + 8y = 0

The domain of p(x) = −2x is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 8 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

17



But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (4)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = 2xy′ − 8y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 4x2y′ − 16xy − 6y′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= 8y′x3 − 32yx2 − 20xy′ + 32y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(
16x4 − 48x2 + 12

)
y′ +

(
−64x3 + 96x

)
y

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= 32x
((

x4 − 3x2 + 3
4

)
y′ +

(
−4x3 + 6x

)
y

)
And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 4 and
y′(0) = 0 gives

F0 = −32
F1 = 0
F2 = 128
F3 = 0
F4 = 0

Substituting all the above in (7) and simplifying gives the solution as

y = −16x2 + 4 + 16x4

3 +O
(
x6)

y = −16x2 + 4 + 16x4

3 +O
(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = 2x
(

∞∑
n=1

nanx
n−1

)
− 8
(

∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+

∞∑
n =1

(−2nxnan) +
(

∞∑
n=0

8anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+

∞∑
n =1

(−2nxnan) +
(

∞∑
n=0

8anxn

)
= 0

n = 0 gives
2a2 + 8a0 = 0

a2 = −4a0
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For 1 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1)− 2nan + 8an = 0

Solving for an+2, gives

(5)an+2 =
2an(n− 4)

(n+ 2) (n+ 1)

For n = 1 the recurrence equation gives

6a3 + 6a1 = 0

Which after substituting the earlier terms found becomes

a3 = −a1

For n = 2 the recurrence equation gives

12a4 + 4a2 = 0

Which after substituting the earlier terms found becomes

a4 =
4a0
3

For n = 3 the recurrence equation gives

20a5 + 2a3 = 0

Which after substituting the earlier terms found becomes

a5 =
a1
10

For n = 4 the recurrence equation gives

30a6 = 0

Which after substituting the earlier terms found becomes

a6 = 0
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For n = 5 the recurrence equation gives

42a7 − 2a5 = 0

Which after substituting the earlier terms found becomes

a7 =
a1
210

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 4a0x2 − a1x
3 + 4

3a0x
4 + 1

10a1x
5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 4x2 + 4

3x
4
)
a0 +

(
x− x3 + 1

10x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 4x2 + 4

3x
4
)
c1 +

(
x− x3 + 1

10x
5
)
c2 +O

(
x6)

y = −16x2 + 4 + 16x4

3 +O
(
x6)

Summary
The solution(s) found are the following

(1)y = −16x2 + 4 + 16x4

3 +O
(
x6)

(2)y = −16x2 + 4 + 16x4

3 +O
(
x6)
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Verification of solutions

y = −16x2 + 4 + 16x4

3 +O
(
x6)

Verified OK.

y = −16x2 + 4 + 16x4

3 +O
(
x6)

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
Order:=6;
dsolve([diff(y(x),x$2)-2*x*diff(y(x),x)+8*y(x)=0,y(0) = 4, D(y)(0) = 0],y(x),type='series',x=0);� �

y(x) = 4− 16x2 + 16
3 x4 +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 17� �
AsymptoticDSolveValue[{y''[x]-2*x*y'[x]+8*y[x]==0,{y[0]==4,y'[0]==0}},y[x],{x,0,5}]� �

y(x) → 16x4

3 − 16x2 + 4
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1.3 problem 3.6 (b)
1.3.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 26

Internal problem ID [5482]
Internal file name [OUTPUT/4730_Sunday_June_05_2022_03_04_16_PM_25200396/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999
Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136
Problem number: 3.6 (b).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ − 2xy′ + 8y = 0

With initial conditions

[y(0) = 0, y′(0) = 4]

With the expansion point for the power series method at x = 0.

1.3.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = −2x
q(x) = 8

F = 0
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Hence the ode is

y′′ − 2xy′ + 8y = 0

The domain of p(x) = −2x is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 8 is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (7)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (8)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...

28



And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = 2xy′ − 8y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 4x2y′ − 16xy − 6y′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= 8y′x3 − 32yx2 − 20xy′ + 32y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

=
(
16x4 − 48x2 + 12

)
y′ +

(
−64x3 + 96x

)
y

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= 32x
((

x4 − 3x2 + 3
4

)
y′ +

(
−4x3 + 6x

)
y

)
And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 0 and
y′(0) = 4 gives

F0 = 0
F1 = −24
F2 = 0
F3 = 48
F4 = 0

Substituting all the above in (7) and simplifying gives the solution as

y = −4x3 + 4x+ 2x5

5 +O
(
x6)

y = −4x3 + 4x+ 2x5

5 +O
(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = 2x
(

∞∑
n=1

nanx
n−1

)
− 8
(

∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+

∞∑
n =1

(−2nxnan) +
(

∞∑
n=0

8anxn

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+

∞∑
n =1

(−2nxnan) +
(

∞∑
n=0

8anxn

)
= 0

n = 0 gives
2a2 + 8a0 = 0

a2 = −4a0
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For 1 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1)− 2nan + 8an = 0

Solving for an+2, gives

(5)an+2 =
2an(n− 4)

(n+ 2) (n+ 1)

For n = 1 the recurrence equation gives

6a3 + 6a1 = 0

Which after substituting the earlier terms found becomes

a3 = −a1

For n = 2 the recurrence equation gives

12a4 + 4a2 = 0

Which after substituting the earlier terms found becomes

a4 =
4a0
3

For n = 3 the recurrence equation gives

20a5 + 2a3 = 0

Which after substituting the earlier terms found becomes

a5 =
a1
10

For n = 4 the recurrence equation gives

30a6 = 0

Which after substituting the earlier terms found becomes

a6 = 0
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For n = 5 the recurrence equation gives

42a7 − 2a5 = 0

Which after substituting the earlier terms found becomes

a7 =
a1
210

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 4a0x2 − a1x
3 + 4

3a0x
4 + 1

10a1x
5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 4x2 + 4

3x
4
)
a0 +

(
x− x3 + 1

10x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 4x2 + 4

3x
4
)
c1 +

(
x− x3 + 1

10x
5
)
c2 +O

(
x6)

y = −4x3 + 4x+ 2x5

5 +O
(
x6)

Summary
The solution(s) found are the following

(1)y = −4x3 + 4x+ 2x5

5 +O
(
x6)

(2)y = −4x3 + 4x+ 2x5

5 +O
(
x6)
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Verification of solutions

y = −4x3 + 4x+ 2x5

5 +O
(
x6)

Verified OK.

y = −4x3 + 4x+ 2x5

5 +O
(
x6)

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:

-> Bessel
-> elliptic
-> Legendre
<- Kummer successful

<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form is not straightforward to achieve - returning special function solution free of uncomputed integrals

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 14� �
Order:=6;
dsolve([diff(y(x),x$2)-2*x*diff(y(x),x)+8*y(x)=0,y(0) = 0, D(y)(0) = 4],y(x),type='series',x=0);� �

y(x) = 4x− 4x3 + 2
5x

5 +O
(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 19� �
AsymptoticDSolveValue[{y''[x]-2*x*y'[x]+8*y[x]==0,{y[0]==0,y'[0]==4}},y[x],{x,0,5}]� �

y(x) → 2x5

5 − 4x3 + 4x
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1.4 problem 3.6 (c)
1.4.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 36
1.4.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 44

Internal problem ID [5483]
Internal file name [OUTPUT/4731_Sunday_June_05_2022_03_04_17_PM_33109312/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999
Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136
Problem number: 3.6 (c).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[_Gegenbauer]

(
−x2 + 1

)
y′′ − 2xy′ + 12y = 0

With initial conditions

[y(0) = 0, y′(0) = 3]

With the expansion point for the power series method at x = 0.

1.4.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = − 2x
−x2 + 1

q(x) = 12
−x2 + 1

F = 0
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Hence the ode is

y′′ − 2xy′
−x2 + 1 + 12y

−x2 + 1 = 0

The domain of p(x) = − 2x
−x2+1 is

{−∞ ≤ x < −1,−1 < x < 1, 1 < x ≤ ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 12
−x2+1 is

{−∞ ≤ x < −1,−1 < x < 1, 1 < x ≤ ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (10)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (11)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −2(xy′ − 6y)
x2 − 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= 18x2y′ − 48xy − 10y′

(x2 − 1)2

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −120y′x3 + 360yx2 + 72xy′ − 72y
(x2 − 1)3

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= 192(5y′x3 − 15yx2 − 3xy′ + 3y)x
(x2 − 1)4

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= −
8640

((
x3 − 3

5x
)
y′ + y

(
−3x2 + 3

5

)) (
x2 + 1

9

)
(x2 − 1)5

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 0 and
y′(0) = 3 gives

F0 = 0
F1 = −30
F2 = 0
F3 = 0
F4 = 0

Substituting all the above in (7) and simplifying gives the solution as

y = −5x3 + 3x+O
(
x6)
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y = −5x3 + 3x+O
(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be(

−x2 + 1
)
y′′ − 2xy′ + 12y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives(
−x2 + 1

)( ∞∑
n=2

n(n− 1) anxn−2

)
− 2x

(
∞∑
n=1

nanx
n−1

)
+ 12

(
∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to

∞∑
n =2

(−xnann(n− 1)) +
(

∞∑
n=2

n(n− 1) anxn−2

)
+

∞∑
n =1

(−2nanxn) +
(

∞∑
n=0

12anxn

)
= 0

(2)

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

∞∑
n =2

(−xnann(n− 1)) +
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)

+
∞∑

n =1

(−2nanxn) +
(

∞∑
n=0

12anxn

)
= 0
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n = 0 gives
2a2 + 12a0 = 0

a2 = −6a0

n = 1 gives
6a3 + 10a1 = 0

Which after substituting earlier equations, simplifies to

a3 = −5a1
3

For 2 ≤ n, the recurrence equation is

(4)−nan(n− 1) + (n+ 2) an+2(n+ 1)− 2nan + 12an = 0

Solving for an+2, gives

(5)an+2 =
an(n2 + n− 12)
(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

6a2 + 12a4 = 0

Which after substituting the earlier terms found becomes

a4 = 3a0

For n = 3 the recurrence equation gives

20a5 = 0

Which after substituting the earlier terms found becomes

a5 = 0

For n = 4 the recurrence equation gives

−8a4 + 30a6 = 0
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Which after substituting the earlier terms found becomes

a6 =
4a0
5

For n = 5 the recurrence equation gives

−18a5 + 42a7 = 0

Which after substituting the earlier terms found becomes

a7 = 0

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− 6a0x2 − 5
3a1x

3 + 3a0x4 + . . .

Collecting terms, the solution becomes

(3)y =
(
3x4 − 6x2 + 1

)
a0 +

(
x− 5

3x
3
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
3x4 − 6x2 + 1

)
c1 +

(
x− 5

3x
3
)
c2 +O

(
x6)

y = −5x3 + 3x+O
(
x6)

Summary
The solution(s) found are the following

(1)y = −5x3 + 3x+O
(
x6)

(2)y = −5x3 + 3x+O
(
x6)
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Verification of solutions

y = −5x3 + 3x+O
(
x6)

Verified OK.

y = −5x3 + 3x+O
(
x6)

Verified OK.

1.4.2 Maple step by step solution

Let’s solve[
(−x2 + 1) y′′ − 2xy′ + 12y = 0, y(0) = 0, y′

∣∣∣{x=0}
= 3
]

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − 2xy′

x2−1 +
12y
x2−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 2xy′

x2−1 −
12y
x2−1 = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2x
x2−1 , P3(x) = − 12

x2−1

]
◦ (1 + x) · P2(x) is analytic at x = −1

((1 + x) · P2(x))
∣∣∣∣
x=−1

= 1

◦ (1 + x)2 · P3(x) is analytic at x = −1(
(1 + x)2 · P3(x)

) ∣∣∣∣
x=−1

= 0

◦ x = −1is a regular singular point
Check to see if x0 is a regular singular point
x0 = −1

• Multiply by denominators
(x2 − 1) y′′ + 2xy′ − 12y = 0
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• Change variables using x = u− 1 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (2u− 2)

(
d
du
y(u)

)
− 12y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r2u−1+r +
(

∞∑
k=0

(
−2ak+1(k + 1 + r)2 + ak(k + r + 4) (k + r − 3)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
−2ak+1(k + 1)2 + ak(k + 4) (k − 3) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+4)(k−3)

2(k+1)2

• Recursion relation for r = 0 ; series terminates at k = 3
ak+1 = ak(k+4)(k−3)

2(k+1)2

45



• Apply recursion relation for k = 0
a1 = −6a0

• Apply recursion relation for k = 1
a2 = −5a1

4

• Express in terms of a0
a2 = 15a0

2

• Apply recursion relation for k = 2
a3 = −a2

3

• Express in terms of a0
a3 = −5a0

2

• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 ·

(
1− 6u+ 15

2 u
2 − 5

2u
3)

• Revert the change of variables u = 1 + x[
y = a0

(3
2x− 5

2x
3)]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 13� �
Order:=6;
dsolve([(1-x^2)*diff(y(x),x$2)-2*x*diff(y(x),x)+12*y(x)=0,y(0) = 0, D(y)(0) = 3],y(x),type='series',x=0);� �

y(x) = −5x3 + 3x

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 12� �
AsymptoticDSolveValue[{(1-x^2)*y''[x]-2*x*y'[x]+12*y[x]==0,{y[0]==0,y'[0]==3}},y[x],{x,0,5}]� �

y(x) → 3x− 5x3
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1.5 problem 3.6 (d)
1.5.1 Existence and uniqueness analysis . . . . . . . . . . . . . . . . . 48
1.5.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 56

Internal problem ID [5484]
Internal file name [OUTPUT/4732_Sunday_June_05_2022_03_04_19_PM_13770176/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999
Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136
Problem number: 3.6 (d).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode", "sec-
ond order series method. Ordinary point", "second order series method.
Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ − (x− 1) y = 0

With initial conditions

[y(0) = 1, y′(0) = 0]

With the expansion point for the power series method at x = 0.

1.5.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

y′′ + p(x)y′ + q(x)y = F

Where here

p(x) = 0
q(x) = 1− x

F = 0
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Hence the ode is

y′′ + (1− x) y = 0

The domain of p(x) = 0 is
{−∞ < x < ∞}

And the point x0 = 0 is inside this domain. The domain of q(x) = 1− x is

{−∞ < x < ∞}

And the point x0 = 0 is also inside this domain. Hence solution exists and is unique.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (13)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (14)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = (x− 1) y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= y + (x− 1) y′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= 2y′ + (x− 1)2 y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= (x− 1) ((x− 1) y′ + 4y)

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (x− 1)3 y + (6x− 6) y′ + 4y

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = 1 and
y′(0) = 0 gives

F0 = −1
F1 = 1
F2 = 1
F3 = −4
F4 = 3

Substituting all the above in (7) and simplifying gives the solution as

y = 1− x2

2 + x3

6 + x4

24 − x5

30 + x6

240 +O
(
x6)

y = 1− x2

2 + x3

6 + x4

24 − x5

30 + x6

240 +O
(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = (x− 1)
(

∞∑
n=0

anx
n

)
(1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=0

anx
n

)
+

∞∑
n =0

(
−x1+nan

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n)xn

∞∑
n =0

(
−x1+nan

)
=

∞∑
n=1

(−an−1x
n)

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(1 + n)xn

)
+
(

∞∑
n=0

anx
n

)
+

∞∑
n =1

(−an−1x
n) = 0

n = 0 gives
2a2 + a0 = 0
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a2 = −a0
2

For 1 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(1 + n) + an − an−1 = 0

Solving for an+2, gives

(5)

an+2 = − an − an−1

(n+ 2) (1 + n)

= − an
(n+ 2) (1 + n) +

an−1

(n+ 2) (1 + n)

For n = 1 the recurrence equation gives

6a3 + a1 − a0 = 0

Which after substituting the earlier terms found becomes

a3 = −a1
6 + a0

6

For n = 2 the recurrence equation gives

12a4 + a2 − a1 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
24 + a1

12

For n = 3 the recurrence equation gives

20a5 + a3 − a2 = 0

Which after substituting the earlier terms found becomes

a5 =
a1
120 − a0

30
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For n = 4 the recurrence equation gives

30a6 + a4 − a3 = 0

Which after substituting the earlier terms found becomes

a6 =
a0
240 − a1

120

For n = 5 the recurrence equation gives

42a7 + a5 − a4 = 0

Which after substituting the earlier terms found becomes

a7 =
a1
560 + a0

560

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− a0x
2

2 +
(
−a1

6 + a0
6

)
x3 +

(a0
24 + a1

12

)
x4 +

( a1
120 − a0

30

)
x5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

2x
2 + 1

6x
3 + 1

24x
4 − 1

30x
5
)
a0 +

(
x− 1

6x
3 + 1

12x
4 + 1

120x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 1

2x
2 + 1

6x
3 + 1

24x
4 − 1

30x
5
)
c1 +

(
x− 1

6x
3 + 1

12x
4 + 1

120x
5
)
c2 +O

(
x6)

y = 1− x2

2 + x3

6 + x4

24 − x5

30 +O
(
x6)
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Summary
The solution(s) found are the following

(1)y = 1− x2

2 + x3

6 + x4

24 − x5

30 + x6

240 +O
(
x6)

(2)y = 1− x2

2 + x3

6 + x4

24 − x5

30 +O
(
x6)

Verification of solutions

y = 1− x2

2 + x3

6 + x4

24 − x5

30 + x6

240 +O
(
x6)

Verified OK.

y = 1− x2

2 + x3

6 + x4

24 − x5

30 +O
(
x6)

Verified OK.

1.5.2 Maple step by step solution

Let’s solve[
y′′ = (x− 1) y, y(0) = 1, y′

∣∣∣{x=0}
= 0
]

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + (1− x) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..1

xm · y =
∞∑

k=max(0,−m)
akx

k+m

◦ Shift index using k− >k −m

xm · y =
∞∑

k=max(0,−m)+m

ak−mx
k

◦ Convert y′′ to series expansion

56



y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

2a2 + a0 +
(

∞∑
k=1

(ak+2(k + 2) (k + 1) + ak − ak−1)xk

)
= 0

• Each term must be 0
2a2 + a0 = 0

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 + ak − ak−1 = 0

• Shift index using k− >k + 1(
(k + 1)2 + 3k + 5

)
ak+3 + ak+1 − ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+3 = −ak+1+ak

k2+5k+6 , 2a2 + a0 = 0
]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 18� �
Order:=6;
dsolve([diff(y(x),x$2)=(x-1)*y(x),y(0) = 1, D(y)(0) = 0],y(x),type='series',x=0);� �

y(x) = 1− 1
2x

2 + 1
6x

3 + 1
24x

4 − 1
30x

5 +O
(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 33� �
AsymptoticDSolveValue[{y''[x]==(x-1)*y[x],{y[0]==1,y'[0]==0}},y[x],{x,0,5}]� �

y(x) → −x5

30 + x4

24 + x3

6 − x2

2 + 1
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1.6 problem 3.24 (a)
1.6.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 67

Internal problem ID [5485]
Internal file name [OUTPUT/4733_Sunday_June_05_2022_03_04_21_PM_58288000/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999
Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136
Problem number: 3.24 (a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x(x+ 2) y′′ + 2(1 + x) y′ − 2y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x2 + 2x
)
y′′ + (2 + 2x) y′ − 2y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 2 + 2x
x (x+ 2)

q(x) = − 2
x (x+ 2)

59



Table 4: Table p(x), q(x) singularites.

p(x) = 2+2x
x(x+2)

singularity type
x = −2 “regular”
x = 0 “regular”

q(x) = − 2
x(x+2)

singularity type
x = −2 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−2, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x(x+ 2) y′′ + (2 + 2x) y′ − 2y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x(x+ 2)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ (2 + 2x)
(

∞∑
n=0

(n+ r) anxn+r−1

)
− 2
(

∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2xn+ran(n+ r)
)

+
(

∞∑
n=0

2(n+ r) anxn+r−1

)
+

∞∑
n =0

(
−2anxn+r

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+ran(n+ r) (n+ r − 1) =
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r−1

∞∑
n =0

2xn+ran(n+ r) =
∞∑
n=1

2an−1(n+ r − 1)xn+r−1

∞∑
n =0

(
−2anxn+r

)
=

∞∑
n=1

(
−2an−1x

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r−1

)

+
(

∞∑
n=0

2xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

2an−1(n+ r − 1)xn+r−1

)

+
(

∞∑
n=0

2(n+ r) anxn+r−1

)
+

∞∑
n =1

(
−2an−1x

n+r−1) = 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+r−1an(n+ r) (n+ r − 1) + 2(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

2x−1+ra0r(−1 + r) + 2ra0x−1+r = 0
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Or (
2x−1+rr(−1 + r) + 2r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

2x−1+rr2 = 0

Since the above is true for all x then the indicial equation becomes

2r2 = 0

Solving for r gives the roots of the indicial equation as

r1 = 0
r2 = 0

Since a0 6= 0 then the indicial equation becomes

2x−1+rr2 = 0

Solving for r gives the roots of the indicial equation as Since the root of the indicial
equation is repeated, then we can construct two linearly independent solutions. The
first solution has the form

y1(x) =
∞∑
n=0

anx
n+r (1A)

Now the second solution y2 is found using

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)
(1B)

Then the general solution will be

y = c1y1(x) + c2y2(x)

In Eq (1B) the sum starts from 1 and not zero. In Eq (1A), a0 is never zero, and is
arbitrary and is typically taken as a0 = 1, and {c1, c2} are two arbitray constants of
integration which can be found from initial conditions. We start by finding the first
solution y1(x). Eq (2B) derived above is now used to find all an coefficients. The case
n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)an−1(n+ r − 1) (n+ r − 2) + 2an(n+ r) (n+ r − 1)
+ 2an−1(n+ r − 1) + 2an(n+ r)− 2an−1 = 0
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Solving for an from recursive equation (4) gives

an = −an−1(n2 + 2nr + r2 − n− r − 2)
2 (n2 + 2nr + r2) (4)

Which for the root r = 0 becomes

an = −an−1(n2 − n− 2)
2n2 (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−r2 − r + 2
2 (r + 1)2

Which for the root r = 0 becomes
a1 = 1

And the table now becomes

n an,r an

a0 1 1
a1

−r2−r+2
2(r+1)2 1

For n = 2, using the above recursive equation gives

a2 =
(r + 3) r(−1 + r)
4 (r + 2) (r + 1)2

Which for the root r = 0 becomes
a2 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−r2−r+2
2(r+1)2 1

a2
(r+3)r(−1+r)
4(r+2)(r+1)2 0
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For n = 3, using the above recursive equation gives

a3 = − (−1 + r) r(r + 4)
8 (r + 3) (r + 1) (r + 2)

Which for the root r = 0 becomes
a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−r2−r+2
2(r+1)2 1

a2
(r+3)r(−1+r)
4(r+2)(r+1)2 0

a3 − (−1+r)r(r+4)
8(r+3)(r+1)(r+2) 0

For n = 4, using the above recursive equation gives

a4 =
r(−1 + r) (r + 5)

16 (r + 4) (r + 1) (r + 3)

Which for the root r = 0 becomes
a4 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−r2−r+2
2(r+1)2 1

a2
(r+3)r(−1+r)
4(r+2)(r+1)2 0

a3 − (−1+r)r(r+4)
8(r+3)(r+1)(r+2) 0

a4
r(−1+r)(r+5)

16(r+4)(r+1)(r+3) 0

For n = 5, using the above recursive equation gives

a5 = − (−1 + r) r(r + 6)
32 (r + 5) (r + 1) (r + 4)
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Which for the root r = 0 becomes
a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1

−r2−r+2
2(r+1)2 1

a2
(r+3)r(−1+r)
4(r+2)(r+1)2 0

a3 − (−1+r)r(r+4)
8(r+3)(r+1)(r+2) 0

a4
r(−1+r)(r+5)

16(r+4)(r+1)(r+3) 0

a5 − (−1+r)r(r+6)
32(r+5)(r+1)(r+4) 0

Using the above table, then the first solution y1(x) becomes

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

= 1 + x+O
(
x6)

Now the second solution is found. The second solution is given by

y2(x) = y1(x) ln (x) +
(

∞∑
n=1

bnx
n+r

)

Where bn is found using
bn = d

dr
an,r

And the above is then evaluated at r = 0. The above table for an,r is used for this
purpose. Computing the derivatives gives the following table
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n bn,r an bn,r = d
dr
an,r bn(r = 0)

b0 1 1 N/A since bn starts from 1 N/A
b1

−r2−r+2
2(r+1)2 1 −r−5

2(r+1)3 −5
2

b2
(r+3)r(−1+r)
4(r+2)(r+1)2 0 r3+7r2+7r−3

2(r+2)2(r+1)3 −3
8

b3 − (−1+r)r(r+4)
8(r+3)(r+1)(r+2) 0 3− 9

2 r−
75
8 r2− 3

8 r
4− 15

4 r3

(r+3)2(r+1)2(r+2)2
1
12

b4
r(−1+r)(r+5)

16(r+4)(r+1)(r+3) 0 r4+12r3+38r2+24r−15
4(r+4)2(r+1)2(r+3)2 − 5

192

b5 − (−1+r)r(r+6)
32(r+5)(r+1)(r+4) 0

15
4 − 25

4 r− 265
32 r2− 5

32 r
4− 35

16 r
3

(r+5)2(r+1)2(r+4)2
3

320

The above table gives all values of bn needed. Hence the second solution is

y2(x) = y1(x) ln (x) + b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

=
(
1 + x+O

(
x6)) ln (x)− 5x

2 − 3x2

8 + x3

12 − 5x4

192 + 3x5

320 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
(
1 + x+O

(
x6))+ c2

((
1 + x+O

(
x6)) ln (x)− 5x

2 − 3x2

8 + x3

12 − 5x4

192 + 3x5

320

+O
(
x6))

Hence the final solution is

y = yh

= c1
(
1+x+O

(
x6))+c2

((
1+x+O

(
x6)) ln (x)− 5x

2 − 3x2

8 + x3

12−
5x4

192 +
3x5

320 +O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1

(
1 + x+O

(
x6))

+ c2

((
1 + x+O

(
x6)) ln (x)− 5x

2 − 3x2

8 + x3

12 − 5x4

192 + 3x5

320 +O
(
x6))
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Verification of solutions

y= c1
(
1+x+O

(
x6))+c2

((
1+x+O

(
x6)) ln (x)− 5x

2 − 3x2

8 + x3

12−
5x4

192+
3x5

320+O
(
x6))

Verified OK.

1.6.1 Maple step by step solution

Let’s solve
x(x+ 2) y′′ + (2 + 2x) y′ − 2y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = 2y
x(x+2) −

2(1+x)y′
x(x+2)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + 2(1+x)y′
x(x+2) − 2y

x(x+2) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 2(1+x)
x(x+2) , P3(x) = − 2

x(x+2)

]
◦ (x+ 2) · P2(x) is analytic at x = −2

((x+ 2) · P2(x))
∣∣∣∣
x=−2

= 1

◦ (x+ 2)2 · P3(x) is analytic at x = −2(
(x+ 2)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 is a regular singular point
x0 = −2

• Multiply by denominators
x(x+ 2) y′′ + (2 + 2x) y′ − 2y = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (−2 + 2u)

(
d
du
y(u)

)
− 2y(u) = 0

67



• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−2a0r2u−1+r +
(

∞∑
k=0

(
−2ak+1(k + 1 + r)2 + ak(k + r + 2) (k + r − 1)

)
uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−2r2 = 0

• Values of r that satisfy the indicial equation
r = 0

• Each term in the series must be 0, giving the recursion relation
−2ak+1(k + 1)2 + ak(k + 2) (k − 1) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+2)(k−1)

2(k+1)2

• Recursion relation for r = 0 ; series terminates at k = 1
ak+1 = ak(k+2)(k−1)

2(k+1)2

• Apply recursion relation for k = 0
a1 = −a0
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• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 · (−u+ 1)

• Revert the change of variables u = x+ 2
[y = a0(−1− x)]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 43� �
Order:=6;
dsolve(x*(x+2)*diff(y(x),x$2)+2*(x+1)*diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);� �

y(x) = (c2 ln (x) + c1)
(
1 + x+O

(
x6))

+
(
−5
2x− 3

8x
2 + 1

12x
3 − 5

192x
4 + 3

320x
5 +O

(
x6)) c2

3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 53� �
AsymptoticDSolveValue[x*(x+2)*y''[x]+2*(x+1)*y'[x]-2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
3x5

320 − 5x4

192 + x3

12 − 3x2

8 − 5x
2 + (x+ 1) log(x)

)
+ c1(x+ 1)
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1.7 problem 3.24 (b)
1.7.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 81

Internal problem ID [5486]
Internal file name [OUTPUT/4734_Sunday_June_05_2022_03_04_22_PM_53719317/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999
Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136
Problem number: 3.24 (b).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

xy′′ + y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 0

q(x) = 1
x
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Table 6: Table p(x), q(x) singularites.

p(x) = 0
singularity type

q(x) = 1
x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ + y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
(

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x+

(
∞∑
n=0

anx
n+r

)
= 0

Which simplifies to

(2A)
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

anx
n+r

)
= 0
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

anx
n+r =

∞∑
n=1

an−1x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

an−1x
n+r−1

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) = 0

Or
x−1+ra0r(−1 + r) = 0

Since a0 6= 0 then the above simplifies to

x−1+rr(−1 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(−1 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr(−1 + r) = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+1

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an(n+ r) (n+ r − 1) + an−1 = 0

Solving for an from recursive equation (4) gives

an = − an−1

(n+ r) (n+ r − 1) (4)

Which for the root r = 1 becomes

an = − an−1

(n+ 1)n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
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For n = 1, using the above recursive equation gives

a1 = − 1
(1 + r) r

Which for the root r = 1 becomes
a1 = −1

2
And the table now becomes

n an,r an

a0 1 1
a1 − 1

(1+r)r −1
2

For n = 2, using the above recursive equation gives

a2 =
1

(1 + r)2 r (2 + r)

Which for the root r = 1 becomes
a2 =

1
12

And the table now becomes

n an,r an

a0 1 1
a1 − 1

(1+r)r −1
2

a2
1

(1+r)2r(2+r)
1
12

For n = 3, using the above recursive equation gives

a3 = − 1
(1 + r)2 r (2 + r)2 (3 + r)

Which for the root r = 1 becomes

a3 = − 1
144

And the table now becomes
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n an,r an

a0 1 1
a1 − 1

(1+r)r −1
2

a2
1

(1+r)2r(2+r)
1
12

a3 − 1
(1+r)2r(2+r)2(3+r) − 1

144

For n = 4, using the above recursive equation gives

a4 =
1

(1 + r)2 r (2 + r)2 (3 + r)2 (4 + r)

Which for the root r = 1 becomes

a4 =
1

2880

And the table now becomes

n an,r an

a0 1 1
a1 − 1

(1+r)r −1
2

a2
1

(1+r)2r(2+r)
1
12

a3 − 1
(1+r)2r(2+r)2(3+r) − 1

144

a4
1

(1+r)2r(2+r)2(3+r)2(4+r)
1

2880

For n = 5, using the above recursive equation gives

a5 = − 1
(1 + r)2 r (2 + r)2 (3 + r)2 (4 + r)2 (5 + r)

Which for the root r = 1 becomes

a5 = − 1
86400

And the table now becomes
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n an,r an

a0 1 1
a1 − 1

(1+r)r −1
2

a2
1

(1+r)2r(2+r)
1
12

a3 − 1
(1+r)2r(2+r)2(3+r) − 1

144

a4
1

(1+r)2r(2+r)2(3+r)2(4+r)
1

2880

a5 − 1
(1+r)2r(2+r)2(3+r)2(4+r)2(5+r) − 1

86400

Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= − 1
(1 + r) r

Therefore

lim
r→r2

− 1
(1 + r) r = lim

r→0
− 1
(1 + r) r

= undefined

Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
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Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode xy′′ + y = 0 gives(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2 +

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+ Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
= 0

Which can be written as

(7)

(
(y′′1(x)x+ y1(x)) ln (x) +

(
2y′1(x)

x
− y1(x)

x2

)
x

)
C

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x+

(
∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

y′′1(x)x+ y1(x) = 0

Eq (7) simplifes to

(8)

(
2y′1(x)

x
− y1(x)

x2

)
xC +

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

+
(

∞∑
n=0

bnx
n+r2

)
= 0
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Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x−

(
∞∑
n=0

anx
n+r1

))
C

x

+

(
∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2 +

(
∞∑
n=0

bnx
n+r2

)
x

x
= 0

Since r1 = 1 and r2 = 0 then the above becomes

(10)

(
2
(

∞∑
n=0

xnan(n+ 1)
)
x−

(
∞∑
n=0

anx
n+1
))

C

x

+

(
∞∑
n=0

x−2+nbnn(n− 1)
)
x2 +

(
∞∑
n=0

bnx
n

)
x

x
= 0

Which simplifies to(
∞∑
n=0

2C xnan(n+ 1)
)

+
∞∑

n =0

(−C xnan) +
(

∞∑
n=0

nxn−1bn(n− 1)
)

+
(

∞∑
n=0

bnx
n

)
= 0

(2A)

The next step is to make all powers of x be n − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

2C xnan(n+ 1) =
∞∑
n=1

2Can−1nxn−1

∞∑
n =0

(−C xnan) =
∞∑
n=1

(
−Can−1x

n−1)
∞∑

n =0

bnx
n =

∞∑
n=1

bn−1x
n−1
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Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 1.

(2B)

(
∞∑
n=1

2Can−1nxn−1

)
+

∞∑
n =1

(
−Can−1x

n−1)
+
(

∞∑
n=0

nxn−1bn(n− 1)
)

+
(

∞∑
n=1

bn−1x
n−1

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = N , where
N = 1 which is the difference between the two roots, we are free to choose b1 = 0.
Hence for n = 1, Eq (2B) gives

C + 1 = 0

Which is solved for C. Solving for C gives

C = −1

For n = 2, Eq (2B) gives
3Ca1 + b1 + 2b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

2b2 +
3
2 = 0

Solving the above for b2 gives
b2 = −3

4
For n = 3, Eq (2B) gives

5Ca2 + b2 + 6b3 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

6b3 −
7
6 = 0

Solving the above for b3 gives
b3 =

7
36

For n = 4, Eq (2B) gives
7Ca3 + b3 + 12b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

12b4 +
35
144 = 0
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Solving the above for b4 gives
b4 = − 35

1728
For n = 5, Eq (2B) gives

9Ca4 + b4 + 20b5 = 0
Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

20b5 −
101
4320 = 0

Solving the above for b5 gives
b5 =

101
86400

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Using the above value found for C = −1 and all bn, then the second solution becomes

y2(x) = (−1)
(
x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6))) ln (x)

+ 1− 3x2

4 + 7x3

36 − 35x4

1728 + 101x5

86400 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6))

+ c2

(
(−1)

(
x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6))) ln (x) + 1

− 3x2

4 + 7x3

36 − 35x4

1728 + 101x5

86400 +O
(
x6))

Hence the final solution is
y = yh

= c1x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6))

+ c2

(
−x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6)) ln (x) + 1− 3x2

4 + 7x3

36

− 35x4

1728 + 101x5

86400 +O
(
x6))
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Summary
The solution(s) found are the following

(1)

y = c1x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6))

+ c2

(
−x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6)) ln (x) + 1− 3x2

4

+ 7x3

36 − 35x4

1728 + 101x5

86400 +O
(
x6))

Verification of solutions

y = c1x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6))

+ c2

(
−x

(
1− x

2 + x2

12 − x3

144 + x4

2880 − x5

86400 +O
(
x6)) ln (x) + 1− 3x2

4 + 7x3

36

− 35x4

1728 + 101x5

86400 +O
(
x6))

Verified OK.

1.7.1 Maple step by step solution

Let’s solve
y′′x+ y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − y

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + y

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 0, P3(x) = 1
x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 0
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◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x+ y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−1 + r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r) + ak)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 1}

• Each term in the series must be 0, giving the recursion relation
ak+1(k + 1 + r) (k + r) + ak = 0

• Recursion relation that defines series solution to ODE
ak+1 = − ak

(k+1+r)(k+r)

• Recursion relation for r = 0
ak+1 = − ak

(k+1)k
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• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = − ak

(k+1)k

]
• Recursion relation for r = 1

ak+1 = − ak
(k+2)(k+1)

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+1 = − ak

(k+2)(k+1)

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+1
)
, ak+1 = − ak

(k+1)k , bk+1 = − bk
(k+2)(k+1)

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 58� �
Order:=6;
dsolve(x*diff(y(x),x$2)+y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x

(
1− 1

2x+ 1
12x

2 − 1
144x

3 + 1
2880x

4 − 1
86400x

5 +O
(
x6))

+ c2

(
ln (x)

(
−x+ 1

2x
2 − 1

12x
3 + 1

144x
4 − 1

2880x
5 +O

(
x6))

+
(
1− 3

4x
2 + 7

36x
3 − 35

1728x
4 + 101

86400x
5 +O

(
x6)))

3 Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 85� �
AsymptoticDSolveValue[x*y''[x]+y[x]==0,y[x],{x,0,5}]� �
y(x) → c1

(
1
144x

(
x3 − 12x2 + 72x− 144

)
log(x)

+ −47x4 + 480x3 − 2160x2 + 1728x+ 1728
1728

)
+ c2

(
x5

2880 −
x4

144 +
x3

12 −
x2

2 +x

)
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1.8 problem 3.24 (c)
Internal problem ID [5487]
Internal file name [OUTPUT/4735_Sunday_June_05_2022_03_04_24_PM_70902532/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999
Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136
Problem number: 3.24 (c).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode_form_A",
"second order series method. Ordinary point", "second order series method.
Taylor series method"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

y′′ + (ex − 1) y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0
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But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (18)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (19)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 = −(ex − 1) y

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= −y′ex − exy + y′

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= e2xy − 2y′ex − 3 exy + y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= (4y + y′) e2x + (−5 ex + 1) y′ − 5 exy

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= (14y + 6y′) e2x − e3xy − 10y′ex + (−11 ex + 1) y

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 0
F1 = −y(0)
F2 = −y(0)− 2y′(0)
F3 = −y(0)− 3y′(0)
F4 = 3y(0)− 4y′(0)

Substituting all the above in (7) and simplifying gives the solution as

y=
(
1− 1

6x
3− 1

24x
4− 1

120x
5+ 1

240x
6
)
y(0)+

(
x− 1

12x
4− 1

40x
5− 1

180x
6
)
y′(0)+O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 = −(ex − 1)
(

∞∑
n=0

anx
n

)
(1)

Expanding ex− 1 as Taylor series around x = 0 and keeping only the first 6 terms gives

ex − 1 = x+ 1
2x

2 + 1
6x

3 + 1
24x

4 + 1
120x

5 + 1
720x

6 + . . .

= x+ 1
2x

2 + 1
6x

3 + 1
24x

4 + 1
120x

5 + 1
720x

6

Hence the ODE in Eq (1) becomes(
∞∑
n=2

n(n− 1) anxn−2

)
+
(
x+ 1

2x
2 + 1

6x
3 + 1

24x
4 + 1

120x
5 + 1

720x
6
)( ∞∑

n=0

anx
n

)
= 0

Expanding the second term in (1) gives(
∞∑
n=2

n(n− 1) anxn−2

)
+ x ·

(
∞∑
n=0

anx
n

)
+ x2

2 ·

(
∞∑
n=0

anx
n

)
+ x3

6

·

(
∞∑
n=0

anx
n

)
+ x4

24 ·

(
∞∑
n=0

anx
n

)
+ x5

120 ·

(
∞∑
n=0

anx
n

)
+ x6

720 ·

(
∞∑
n=0

anx
n

)
= 0

Which simplifies to

(2)

(
∞∑
n=2

n(n− 1) anxn−2

)
+
(

∞∑
n=0

x1+nan

)
+
(

∞∑
n=0

xn+2an
2

)
+
(

∞∑
n=0

xn+3an
6

)

+
(

∞∑
n=0

xn+4an
24

)
+
(

∞∑
n=0

xn+5an
120

)
+
(

∞∑
n=0

xn+6an
720

)
= 0
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The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(1 + n)xn

∞∑
n =0

x1+nan =
∞∑
n=1

an−1x
n

∞∑
n =0

xn+2an
2 =

∞∑
n=2

an−2x
n

2

∞∑
n =0

xn+3an
6 =

∞∑
n=3

an−3x
n

6

∞∑
n =0

xn+4an
24 =

∞∑
n=4

an−4x
n

24

∞∑
n =0

xn+5an
120 =

∞∑
n=5

an−5x
n

120

∞∑
n =0

xn+6an
720 =

∞∑
n=6

an−6x
n

720

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=0

(n+ 2) an+2(1 + n)xn

)
+
(

∞∑
n=1

an−1x
n

)
+
(

∞∑
n=2

an−2x
n

2

)

+
(

∞∑
n=3

an−3x
n

6

)
+
(

∞∑
n=4

an−4x
n

24

)
+
(

∞∑
n=5

an−5x
n

120

)
+
(

∞∑
n=6

an−6x
n

720

)
= 0

n = 1 gives
6a3 + a0 = 0

Which after substituting earlier equations, simplifies to

a3 = −a0
6
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n = 2 gives

12a4 + a1 +
a0
2 = 0

Which after substituting earlier equations, simplifies to

a4 = −a0
24 − a1

12

n = 3 gives

20a5 + a2 +
a1
2 + a0

6 = 0

Which after substituting earlier equations, simplifies to

a5 = − a0
120 − a1

40

n = 4 gives

30a6 + a3 +
a2
2 + a1

6 + a0
24 = 0

Which after substituting earlier equations, simplifies to

a6 =
a0
240 − a1

180

n = 5 gives

42a7 + a4 +
a3
2 + a2

6 + a1
24 + a0

120 = 0

Which after substituting earlier equations, simplifies to

a7 =
a0
360 + a1

1008

For 6 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(1 + n) + an−1 +
an−2

2 + an−3

6 + an−4

24 + an−5

120 + an−6

720 = 0
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Solving for an+2, gives

(5)

an+2 = −720an−1 + 360an−2 + 120an−3 + 30an−4 + 6an−5 + an−6

720 (n+ 2) (1 + n)

= − an−6

720 (n+ 2) (1 + n) −
an−5

120 (n+ 2) (1 + n) −
an−4

24 (n+ 2) (1 + n)
− an−3

6 (n+ 2) (1 + n) −
an−2

2 (n+ 2) (1 + n) −
an−1

(n+ 2) (1 + n)

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x− a0x
3

6 +
(
−a0
24 − a1

12

)
x4 +

(
− a0
120 − a1

40

)
x5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

6x
3 − 1

24x
4 − 1

120x
5
)
a0 +

(
x− 1

12x
4 − 1

40x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1− 1

6x
3 − 1

24x
4 − 1

120x
5
)
c1 +

(
x− 1

12x
4 − 1

40x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)
y =

(
1− 1

6x
3 − 1

24x
4 − 1

120x
5 + 1

240x
6
)
y(0)

+
(
x− 1

12x
4 − 1

40x
5 − 1

180x
6
)
y′(0) +O

(
x6)

(2)y =
(
1− 1

6x
3 − 1

24x
4 − 1

120x
5
)
c1 +

(
x− 1

12x
4 − 1

40x
5
)
c2 +O

(
x6)
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Verification of solutions

y=
(
1− 1

6x
3− 1

24x
4− 1

120x
5+ 1

240x
6
)
y(0)+

(
x− 1

12x
4− 1

40x
5− 1

180x
6
)
y′(0)+O

(
x6)

Verified OK.

y =
(
1− 1

6x
3 − 1

24x
4 − 1

120x
5
)
c1 +

(
x− 1

12x
4 − 1

40x
5
)
c2 +O

(
x6)

Verified OK.

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful
Change of variables used:

[x = ln(t)]
Linear ODE actually solved:

(t-1)*u(t)+t*diff(u(t),t)+t^2*diff(diff(u(t),t),t) = 0
<- change of variables successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 39� �
Order:=6;
dsolve(diff(y(x),x$2)+(exp(x)-1)*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1− 1

6x
3 − 1

24x
4 − 1

120x
5
)
y(0) +

(
x− 1

12x
4 − 1

40x
5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 49� �
AsymptoticDSolveValue[y''[x]+(Exp[x]-1)*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
−x5

40 − x4

12 + x

)
+ c1

(
− x5

120 − x4

24 − x3

6 + 1
)
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1.9 problem 3.24 (d)
1.9.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 107

Internal problem ID [5488]
Internal file name [OUTPUT/4736_Sunday_June_05_2022_03_04_26_PM_31832984/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999
Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136
Problem number: 3.24 (d).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

x(1− x) y′′ − 3xy′ − y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

−x2 + x
)
y′′ − 3xy′ − y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 3
x− 1

q(x) = 1
x (x− 1)
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Table 8: Table p(x), q(x) singularites.

p(x) = 3
x−1

singularity type
x = 1 “regular”

q(x) = 1
x(x−1)

singularity type
x = 0 “regular”
x = 1 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [1, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

−y′′x(x− 1)− 3xy′ − y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
−

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x(x− 1)

− 3x
(

∞∑
n=0

(n+ r) anxn+r−1

)
−

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

∞∑
n =0

(
−xn+ran(n+ r) (n+ r − 1)

)
+
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−3xn+ran(n+ r)

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−xn+ran(n+ r) (n+ r − 1)

)
=

∞∑
n=1

(
−an−1(n+ r − 1) (n+ r − 2)xn+r−1)

∞∑
n =0

(
−3xn+ran(n+ r)

)
=

∞∑
n=1

(
−3an−1(n+ r − 1)xn+r−1)

∞∑
n =0

(
−anx

n+r
)
=

∞∑
n=1

(
−an−1x

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

∞∑
n =1

(
−an−1(n+r−1) (n+r−2)xn+r−1)+( ∞∑

n=0

xn+r−1an(n+r) (n+r−1)
)

+
∞∑

n =1

(
−3an−1(n+ r − 1)xn+r−1)+ ∞∑

n =1

(
−an−1x

n+r−1) = 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) = 0

Or
x−1+ra0r(−1 + r) = 0
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Since a0 6= 0 then the above simplifies to

x−1+rr(−1 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(−1 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 1
r2 = 0

Since a0 6= 0 then the indicial equation becomes

x−1+rr(−1 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+1

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
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of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)−an−1(n+ r− 1) (n+ r− 2) + an(n+ r) (n+ r− 1)− 3an−1(n+ r− 1)− an−1 = 0

Solving for an from recursive equation (4) gives

an = (n+ r) an−1

n+ r − 1 (4)

Which for the root r = 1 becomes

an = (n+ 1) an−1

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
1 + r

r

Which for the root r = 1 becomes
a1 = 2

And the table now becomes

n an,r an

a0 1 1
a1

1+r
r

2

For n = 2, using the above recursive equation gives

a2 =
2 + r

r

Which for the root r = 1 becomes
a2 = 3
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And the table now becomes

n an,r an

a0 1 1
a1

1+r
r

2
a2

2+r
r

3

For n = 3, using the above recursive equation gives

a3 =
3 + r

r

Which for the root r = 1 becomes
a3 = 4

And the table now becomes

n an,r an

a0 1 1
a1

1+r
r

2
a2

2+r
r

3
a3

3+r
r

4

For n = 4, using the above recursive equation gives

a4 =
4 + r

r

Which for the root r = 1 becomes
a4 = 5

And the table now becomes

n an,r an

a0 1 1
a1

1+r
r

2
a2

2+r
r

3
a3

3+r
r

4
a4

4+r
r

5
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For n = 5, using the above recursive equation gives

a5 =
5 + r

r

Which for the root r = 1 becomes
a5 = 6

And the table now becomes

n an,r an

a0 1 1
a1

1+r
r

2
a2

2+r
r

3
a3

3+r
r

4
a4

4+r
r

5
a5

5+r
r

6

Using the above table, then the solution y1(x) is

y1(x) = x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
(
1 + 2x+ 3x2 + 4x3 + 5x4 + 6x5 +O

(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 1. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a1(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a1

= 1 + r

r

Therefore

lim
r→r2

1 + r

r
= lim

r→0

1 + r

r

= undefined
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Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode −y′′x(x− 1)− 3xy′ − y = 0 gives

−

(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x(x− 1)

− 3x
(
Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

))

− Cy1(x) ln (x)−
(

∞∑
n=0

bnx
n+r2

)
= 0
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Which can be written as

(7)

(
(−y′′1(x)x(x− 1)− 3y′1(x)x− y1(x)) ln (x)−

(
2y′1(x)

x
− y1(x)

x2

)
x(x− 1)

− 3y1(x)
)
C −

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x(x− 1)

− 3x
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
−

(
∞∑
n=0

bnx
n+r2

)
= 0

But since y1(x) is a solution to the ode, then

−y′′1(x)x(x− 1)− 3y′1(x)x− y1(x) = 0

Eq (7) simplifes to

(8)

(
−
(
2y′1(x)

x
− y1(x)

x2

)
x(x− 1)− 3y1(x)

)
C

−

(
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x(x− 1)

− 3x
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
−

(
∞∑
n=0

bnx
n+r2

)
= 0

Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
−2x(x− 1)

(
∞∑
n=0

x−1+n+r1an(n+ r1)
)
+ (−1− 2x)

(
∞∑
n=0

anx
n+r1

))
C

x

+
(−x3 + x2)

(
∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
− 3
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)
x2 −

(
∞∑
n=0

bnx
n+r2

)
x

x
= 0
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Since r1 = 1 and r2 = 0 then the above becomes

(10)

(
−2x(x− 1)

(
∞∑
n=0

xnan(n+ 1)
)
+ (−1− 2x)

(
∞∑
n=0

anx
n+1
))

C

x

+
(−x3 + x2)

(
∞∑
n=0

x−2+nbnn(n− 1)
)
− 3
(

∞∑
n=0

xn−1bnn

)
x2 −

(
∞∑
n=0

bnx
n

)
x

x
= 0

Which simplifies to

(2A)

∞∑
n =0

(
−2C xn+1an(n+ 1)

)
+
(

∞∑
n=0

2C xnan(n+ 1)
)

+
∞∑

n =0

(−Canx
n) +

∞∑
n =0

(
−2C xn+1an

)
+

∞∑
n =0

(−xnbnn(n− 1))

+
(

∞∑
n=0

nxn−1bn(n− 1)
)

+
∞∑

n =0

(−3xnbnn) +
∞∑

n =0

(−bnx
n) = 0

The next step is to make all powers of x be n − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−2C xn+1an(n+ 1)

)
=

∞∑
n=2

(
−2Ca−2+n(n− 1)xn−1)

∞∑
n =0

2C xnan(n+ 1) =
∞∑
n=1

2Can−1nxn−1

∞∑
n =0

(−Canx
n) =

∞∑
n=1

(
−Can−1x

n−1)
∞∑

n =0

(
−2C xn+1an

)
=

∞∑
n=2

(
−2Ca−2+nx

n−1)
∞∑

n =0

(−xnbnn(n− 1)) =
∞∑
n=1

(
−(n− 1) bn−1(−2 + n)xn−1)
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∞∑
n =0

(−3xnbnn) =
∞∑
n=1

(
−3(n− 1) bn−1x

n−1)
∞∑

n =0

(−bnx
n) =

∞∑
n=1

(
−bn−1x

n−1)
Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 1.

(2B)

∞∑
n =2

(
−2Ca−2+n(n− 1)xn−1)+( ∞∑

n=1

2Can−1nxn−1

)

+
∞∑

n =1

(
−Can−1x

n−1)+ ∞∑
n =2

(
−2Ca−2+nx

n−1)
+

∞∑
n =1

(
−(n− 1) bn−1(−2 + n)xn−1)+( ∞∑

n=0

nxn−1bn(n− 1)
)

+
∞∑

n =1

(
−3(n− 1) bn−1x

n−1)+ ∞∑
n =1

(
−bn−1x

n−1) = 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = N , where
N = 1 which is the difference between the two roots, we are free to choose b1 = 0.
Hence for n = 1, Eq (2B) gives

C − 1 = 0

Which is solved for C. Solving for C gives

C = 1

For n = 2, Eq (2B) gives

(−4a0 + 3a1)C − 4b1 + 2b2 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

2 + 2b2 = 0

Solving the above for b2 gives
b2 = −1

For n = 3, Eq (2B) gives

(−6a1 + 5a2)C − 9b2 + 6b3 = 0
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Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

12 + 6b3 = 0

Solving the above for b3 gives
b3 = −2

For n = 4, Eq (2B) gives

(−8a2 + 7a3)C − 16b3 + 12b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

36 + 12b4 = 0

Solving the above for b4 gives
b4 = −3

For n = 5, Eq (2B) gives

(−10a3 + 9a4)C − 25b4 + 20b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

80 + 20b5 = 0

Solving the above for b5 gives
b5 = −4

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Using the above value found for C = 1 and all bn, then the second solution becomes

y2(x) = 1
(
x
(
1 + 2x+ 3x2 + 4x3 + 5x4 + 6x5 +O

(
x6))) ln (x)

+ 1− x2 − 2x3 − 3x4 − 4x5 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
(
1 + 2x+ 3x2 + 4x3 + 5x4 + 6x5 +O

(
x6))

+ c2
(
1
(
x
(
1 + 2x+ 3x2 + 4x3 + 5x4 + 6x5 +O

(
x6))) ln (x) + 1− x2 − 2x3

− 3x4 − 4x5 +O
(
x6))
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Hence the final solution is

y = yh

= c1x
(
1 + 2x+ 3x2 + 4x3 + 5x4 + 6x5 +O

(
x6))

+ c2
(
x
(
1 + 2x+ 3x2 + 4x3 + 5x4 + 6x5 +O

(
x6)) ln (x) + 1− x2 − 2x3 − 3x4 − 4x5

+O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1x

(
1 + 2x+ 3x2 + 4x3 + 5x4 + 6x5 +O

(
x6))

+ c2
(
x
(
1 + 2x+ 3x2 + 4x3 + 5x4 + 6x5 +O

(
x6)) ln (x) + 1− x2 − 2x3 − 3x4

− 4x5 +O
(
x6))

Verification of solutions

y = c1x
(
1 + 2x+ 3x2 + 4x3 + 5x4 + 6x5 +O

(
x6))

+ c2
(
x
(
1 + 2x+ 3x2 + 4x3 + 5x4 + 6x5 +O

(
x6)) ln (x) + 1− x2 − 2x3 − 3x4 − 4x5

+O
(
x6))

Verified OK.

1.9.1 Maple step by step solution

Let’s solve
−y′′x(x− 1)− 3xy′ − y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − y

x(x−1) −
3y′
x−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ + 3y′

x−1 +
y

x(x−1) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 3
x−1 , P3(x) = 1

x(x−1)

]
◦ x · P2(x) is analytic at x = 0
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(x · P2(x))
∣∣∣∣
x=0

= 0

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 is a regular singular point
x0 = 0

• Multiply by denominators
y′′x(x− 1) + 3xy′ + y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert xm · y′′ to series expansion form = 1..2

xm · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−2+m

◦ Shift index using k− >k + 2−m

xm · y′′ =
∞∑

k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)xk+r

Rewrite ODE with series expansions

−a0r(−1 + r)x−1+r +
(

∞∑
k=0

(
−ak+1(k + r + 1) (k + r) + ak(k + r + 1)2

)
xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−1 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 1}

• Each term in the series must be 0, giving the recursion relation
(k + r + 1) (−ak+1(k + r) + ak(k + r + 1)) = 0
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• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r+1)

k+r

• Recursion relation for r = 0
ak+1 = ak(k+1)

k

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = ak(k+1)

k

]
• Recursion relation for r = 1

ak+1 = ak(k+2)
k+1

• Solution for r = 1[
y =

∞∑
k=0

akx
k+1, ak+1 = ak(k+2)

k+1

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+1
)
, ak+1 = ak(k+1)

k
, bk+1 = bk(k+2)

k+1

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 60� �
Order:=6;
dsolve(x*(1-x)*diff(y(x),x$2)-3*x*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);� �

y(x) = ln (x)
(
x+ 2x2 + 3x3 + 4x4 + 5x5 +O

(
x6)) c2

+ c1x
(
1 + 2x+ 3x2 + 4x3 + 5x4 + 6x5 +O

(
x6))

+
(
1 + 3x+ 5x2 + 7x3 + 9x4 + 11x5 +O

(
x6)) c2
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3 Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 63� �
AsymptoticDSolveValue[x*(1-x)*y''[x]-3*x*y'[x]-y[x]==0,y[x],{x,0,5}]� �

y(x) → c1
(
x4 + x3 + x2 +

(
4x3 + 3x2 + 2x+ 1

)
x log(x) + x+ 1

)
+ c2

(
5x5 + 4x4 + 3x3 + 2x2 + x

)

110



1.10 problem 3.24 (e)
1.10.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 119

Internal problem ID [5489]
Internal file name [OUTPUT/4737_Sunday_June_05_2022_03_04_28_PM_3695263/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999
Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136
Problem number: 3.24 (e).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_Emden , _Fowler], [_2nd_order , _linear , `_with_symmetry_ [0,F(

x)]`]]

2xy′′ − y′ + yx2 = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

2xy′′ − y′ + yx2 = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = − 1
2x

q(x) = x

2
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Table 10: Table p(x), q(x) singularites.

p(x) = − 1
2x

singularity type
x = 0 “regular”

q(x) = x
2

singularity type
x = ∞ “regular”
x = −∞ “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0,∞,−∞]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

2xy′′ − y′ + yx2 = 0
Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

2
(

∞∑
n=0

(n+ r) (n+ r−1) anxn+r−2

)
x−

(
∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)
x2 = 0

(1)

Which simplifies to(
∞∑
n=0

2xn+r−1an(n+ r) (n+ r− 1)
)

+
∞∑

n =0

(
−(n+ r) anxn+r−1)+( ∞∑

n=0

x2+n+ran

)
= 0

(2A)
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The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

x2+n+ran =
∞∑
n=3

an−3x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

2xn+r−1an(n+ r) (n+ r−1)
)
+

∞∑
n =0

(
−(n+ r) anxn+r−1)+( ∞∑

n=3

an−3x
n+r−1

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+r−1an(n+ r) (n+ r − 1)− (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

2x−1+ra0r(−1 + r)− ra0x
−1+r = 0

Or (
2x−1+rr(−1 + r)− r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(−3 + 2r) = 0

Since the above is true for all x then the indicial equation becomes

2r2 − 3r = 0

Solving for r gives the roots of the indicial equation as

r1 =
3
2

r2 = 0

Since a0 6= 0 then the indicial equation becomes

r x−1+r(−3 + 2r) = 0
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Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+ 3

2

y2(x) =
∞∑
n=0

bnx
n

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

Substituting n = 2 in Eq. (2B) gives

a2 = 0

For 3 ≤ n the recursive equation is

(3)2an(n+ r) (n+ r − 1)− an(n+ r) + an−3 = 0

Solving for an from recursive equation (4) gives

an = − an−3

2n2 + 4nr + 2r2 − 3n− 3r (4)

Which for the root r = 3
2 becomes

an = − an−3

n (2n+ 3) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 3

2 and after as more terms are found using the above recursive equation.
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n an,r an

a0 1 1
a1 0 0
a2 0 0

For n = 3, using the above recursive equation gives

a3 = − 1
2r2 + 9r + 9

Which for the root r = 3
2 becomes

a3 = − 1
27

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 − 1

2r2+9r+9 − 1
27

For n = 4, using the above recursive equation gives

a4 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 − 1

2r2+9r+9 − 1
27

a4 0 0

For n = 5, using the above recursive equation gives

a5 = 0
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And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 0 0
a3 − 1

2r2+9r+9 − 1
27

a4 0 0
a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x
3
2
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
3
2

(
1− x3

27 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. Substituting n = 1 in Eq. (2B)
gives

b1 = 0

Substituting n = 2 in Eq. (2B) gives

b2 = 0

For 3 ≤ n the recursive equation is

(3)2bn(n+ r) (n+ r − 1)− (n+ r) bn + bn−3 = 0

Solving for bn from recursive equation (4) gives

bn = − bn−3

2n2 + 4nr + 2r2 − 3n− 3r (4)

Which for the root r = 0 becomes

bn = − bn−3

n (2n− 3) (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.
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n bn,r bn

b0 1 1
b1 0 0
b2 0 0

For n = 3, using the above recursive equation gives

b3 = − 1
2r2 + 9r + 9

Which for the root r = 0 becomes
b3 = −1

9
And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 − 1

2r2+9r+9 −1
9

For n = 4, using the above recursive equation gives

b4 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 − 1

2r2+9r+9 −1
9

b4 0 0

For n = 5, using the above recursive equation gives

b5 = 0

117



And the table now becomes

n bn,r bn

b0 1 1
b1 0 0
b2 0 0
b3 − 1

2r2+9r+9 −1
9

b4 0 0
b5 0 0

Using the above table, then the solution y2(x) is

y2(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= 1− x3

9 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
3
2

(
1− x3

27 +O
(
x6))+ c2

(
1− x3

9 +O
(
x6))

Hence the final solution is

y = yh

= c1x
3
2

(
1− x3

27 +O
(
x6))+ c2

(
1− x3

9 +O
(
x6))

Summary
The solution(s) found are the following

(1)y = c1x
3
2

(
1− x3

27 +O
(
x6))+ c2

(
1− x3

9 +O
(
x6))

Verification of solutions

y = c1x
3
2

(
1− x3

27 +O
(
x6))+ c2

(
1− x3

9 +O
(
x6))

Verified OK.
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1.10.1 Maple step by step solution

Let’s solve
2y′′x− y′ + yx2 = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = y′

2x − xy
2

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − y′

2x + xy
2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = − 1
2x , P3(x) = x

2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= −1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
2y′′x− y′ + yx2 = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert x2 · y to series expansion

x2 · y =
∞∑
k=0

akx
k+r+2

◦ Shift index using k− >k − 2
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x2 · y =
∞∑
k=2

ak−2x
k+r

◦ Convert y′ to series expansion

y′ =
∞∑
k=0

ak(k + r)xk+r−1

◦ Shift index using k− >k + 1

y′ =
∞∑

k=−1
ak+1(k + 1 + r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−3 + 2r)x−1+r + a1(1 + r) (−1 + 2r)xr + a2(2 + r) (1 + 2r)x1+r +
(

∞∑
k=2

(ak+1(k + 1 + r) (2k − 1 + 2r) + ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−3 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 32
}

• The coefficients of each power of x must be 0
[a1(1 + r) (−1 + 2r) = 0, a2(2 + r) (1 + 2r) = 0]

• Solve for the dependent coefficient(s)
{a1 = 0, a2 = 0}

• Each term in the series must be 0, giving the recursion relation
2
(
k − 1

2 + r
)
(k + 1 + r) ak+1 + ak−2 = 0

• Shift index using k− >k + 2
2
(
k + 3

2 + r
)
(k + 3 + r) ak+3 + ak = 0

• Recursion relation that defines series solution to ODE
ak+3 = − ak

(2k+3+2r)(k+3+r)

• Recursion relation for r = 0
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ak+3 = − ak
(2k+3)(k+3)

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+3 = − ak

(2k+3)(k+3) , a1 = 0, a2 = 0
]

• Recursion relation for r = 3
2

ak+3 = − ak
(2k+6)

(
k+ 9

2
)

• Solution for r = 3
2[

y =
∞∑
k=0

akx
k+ 3

2 , ak+3 = − ak
(2k+6)

(
k+ 9

2
) , a1 = 0, a2 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 3

2

)
, ak+3 = − ak

(2k+3)(k+3) , a1 = 0, a2 = 0, bk+3 = − bk
(2k+6)

(
k+ 9

2
) , b1 = 0, b2 = 0

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 28� �
Order:=6;
dsolve(2*x*diff(y(x),x$2)-diff(y(x),x)+x^2*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
3
2

(
1− 1

27x
3 +O

(
x6))+ c2

(
1− 1

9x
3 +O

(
x6))
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3 Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 33� �
AsymptoticDSolveValue[2*x*y''[x]-y'[x]+x^2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
1− x3

9

)
+ c1

(
1− x3

27

)
x3/2

122



1.11 problem 3.24 (f)
Internal problem ID [5490]
Internal file name [OUTPUT/4738_Sunday_June_05_2022_03_04_29_PM_85478439/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999
Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136
Problem number: 3.24 (f).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

sin (x) y′′ − 2 cos (x) y′ − sin (x) y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

sin (x) y′′ − 2 cos (x) y′ − sin (x) y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −2 cos (x)
sin (x)

q(x) = −1
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Table 12: Table p(x), q(x) singularites.

p(x) = −2 cos(x)
sin(x)

singularity type
x = πZ “regular”

q(x) = −1
singularity type

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [πZ]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. Let the
solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
sin (x)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

− 2 cos (x)
(

∞∑
n=0

(n+ r) anxn+r−1

)
− sin (x)

(
∞∑
n=0

anx
n+r

)
= 0

Expanding sin (x) as Taylor series around x = 0 and keeping only the first 6 terms
gives

sin (x) = x− 1
6x

3 + 1
120x

5 − 1
5040x

7 + . . .

= x− 1
6x

3 + 1
120x

5 − 1
5040x

7

124



Expanding −2 cos (x) as Taylor series around x = 0 and keeping only the first 6 terms
gives

−2 cos (x) = −2 + x2 − 1
12x

4 + 1
360x

6 + . . .

= −2 + x2 − 1
12x

4 + 1
360x

6

Expanding − sin (x) as Taylor series around x = 0 and keeping only the first 6 terms
gives

− sin (x) = −x+ 1
6x

3 − 1
120x

5 + 1
5040x

7 + . . .

= −x+ 1
6x

3 − 1
120x

5 + 1
5040x

7

Which simplifies to

(2A)

∞∑
n =0

(
−xn+r+5an(n+ r) (n+ r − 1)

5040

)
+
(

∞∑
n=0

xn+r+3an(n+ r) (n+ r − 1)
120

)

+
∞∑

n =0

(
−x1+n+ran(n+ r) (n+ r − 1)

6

)
+
(

∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+r+5an(n+ r)
360

)

+
∞∑

n =0

(
−xn+r+3an(n+ r)

12

)
+
(

∞∑
n=0

x1+n+ran(n+ r)
)

+
∞∑

n =0

(
−2(n+ r) anxn+r−1)+ ∞∑

n =0

(
−x1+n+ran

)
+
(

∞∑
n=0

xn+r+3an
6

)
+

∞∑
n =0

(
−xn+r+5an

120

)
+
(

∞∑
n=0

xn+r+7an
5040

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
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adjusting the power and the corresponding index gives

∞∑
n =0

(
−xn+r+5an(n+ r) (n+ r − 1)

5040

)
=

∞∑
n=6

(
−an−6(n+ r − 6) (n− 7 + r)xn+r−1

5040

)
∞∑

n =0

xn+r+3an(n+ r) (n+ r − 1)
120 =

∞∑
n=4

an−4(−4 + n+ r) (n− 5 + r)xn+r−1

120

∞∑
n =0

(
−x1+n+ran(n+ r) (n+ r − 1)

6

)
=

∞∑
n=2

(
−an−2(n+ r − 2) (n− 3 + r)xn+r−1

6

)
∞∑

n =0

xn+r+5an(n+ r)
360 =

∞∑
n=6

an−6(n+ r − 6)xn+r−1

360

∞∑
n =0

(
−xn+r+3an(n+ r)

12

)
=

∞∑
n=4

(
−an−4(−4 + n+ r)xn+r−1

12

)
∞∑

n =0

x1+n+ran(n+ r) =
∞∑
n=2

an−2(n+ r − 2)xn+r−1

∞∑
n =0

(
−x1+n+ran

)
=

∞∑
n=2

(
−an−2x

n+r−1)
∞∑

n =0

xn+r+3an
6 =

∞∑
n=4

an−4x
n+r−1

6

∞∑
n =0

(
−xn+r+5an

120

)
=

∞∑
n=6

(
−an−6x

n+r−1

120

)
∞∑

n =0

xn+r+7an
5040 =

∞∑
n=8

an−8x
n+r−1

5040

Substituting all the above in Eq (2A) gives the following equation where now all powers
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of x are the same and equal to n+ r − 1.

(2B)

∞∑
n =6

(
−an−6(n+ r − 6) (n− 7 + r)xn+r−1

5040

)
+
(

∞∑
n=4

an−4(−4 + n+ r) (n− 5 + r)xn+r−1

120

)

+
∞∑

n =2

(
−an−2(n+ r − 2) (n− 3 + r)xn+r−1

6

)
+
(

∞∑
n=0

xn+r−1an(n+r) (n+r−1)
)
+
(

∞∑
n=6

an−6(n+ r − 6)xn+r−1

360

)

+
∞∑

n =4

(
−an−4(−4 + n+ r)xn+r−1

12

)
+
(

∞∑
n=2

an−2(n+ r − 2)xn+r−1

)
+

∞∑
n =0

(
−2(n+ r) anxn+r−1)

+
∞∑

n =2

(
−an−2x

n+r−1)+( ∞∑
n=4

an−4x
n+r−1

6

)

+
∞∑

n =6

(
−an−6x

n+r−1

120

)
+
(

∞∑
n=8

an−8x
n+r−1

5040

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1)− 2(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r)− 2ra0x−1+r = 0

Or (
x−1+rr(−1 + r)− 2r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(−3 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(−3 + r) = 0
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Solving for r gives the roots of the indicial equation as

r1 = 3
r2 = 0

Since a0 6= 0 then the indicial equation becomes

r x−1+r(−3 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) = x3

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+3

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)

Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. Substituting n = 1 in Eq.
(2B) gives

a1 = 0

Substituting n = 2 in Eq. (2B) gives

a2 =
r − 6
12 + 6r
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Substituting n = 3 in Eq. (2B) gives

a3 = 0

Substituting n = 4 in Eq. (2B) gives

a4 =
7r3 − 63r2 + 146r + 120
360 (2 + r) (4 + r) (1 + r)

Substituting n = 5 in Eq. (2B) gives

a5 = 0

Substituting n = 6 in Eq. (2B) gives

a6 =
31r5 − 248r4 + 497r3 + 1508r2 − 6324r − 3024
15120 (2 + r) (4 + r) (1 + r) (6 + r) (3 + r)

Substituting n = 7 in Eq. (2B) gives

a7 = 0

For 8 ≤ n the recursive equation is

(3)

−an−6(n+ r − 6) (n− 7 + r)
5040 + an−4(−4 + n+ r) (n− 5 + r)

120
− an−2(n+ r − 2) (n− 3 + r)

6 + an(n+ r) (n+ r − 1)

+ an−6(n+ r − 6)
360 − an−4(−4 + n+ r)

12 + an−2(n+ r − 2)

− 2an(n+ r)− an−2 +
an−4

6 − an−6

120 + an−8

5040 = 0

Solving for an from recursive equation (4) gives

an = n2an−6 − 42n2an−4 + 840n2an−2 + 2nran−6 − 84nran−4 + 1680nran−2 + r2an−6 − 42r2an−4 + 840r2an−2 − 27nan−6 + 798nan−4 − 9240nan−2 − 27ran−6 + 798ran−4 − 9240ran−2 − an−8 + 168an−6 − 3360an−4 + 20160an−2

5040n2 + 10080nr + 5040r2 − 15120n− 15120r
(4)

Which for the root r = 3 becomes

an = (an−6 − 42an−4 + 840an−2)n2 + (−21an−6 + 546an−4 − 4200an−2)n− an−8 + 96an−6 − 1344an−4

5040n (n+ 3)
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 3 and after as more terms are found using the above recursive equation.
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n an,r an

a0 1 1
a1 0 0
a2

r−6
12+6r − 1

10

a3 0 0
a4

7r3−63r2+146r+120
360(2+r)(4+r)(1+r)

1
280

a5 0 0
a6

31r5−248r4+497r3+1508r2−6324r−3024
15120(2+r)(4+r)(1+r)(6+r)(3+r) − 1

15120

a7 0 0

Using the above table, then the solution y1(x) is

y1(x) = x3(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x3

(
1− x2

10 + x4

280 − x6

15120 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 3. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a3(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a3

= 0

Therefore

lim
r→r2

0 = lim
r→0

0

= 0

The limit is 0. Since the limit exists then the log term is not needed and we can set
C = 0. Therefore the second solution has the form

y2(x) =
∞∑
n=0

bnx
n+r

=
∞∑
n=0

bnx
n
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Eq (3) derived above is used to find all bn coefficients. The case n = 0 is skipped since
it was used to find the roots of the indicial equation. b0 is arbitrary and taken as b0 = 1.
Substituting n = 1 in Eq(3) gives

b1 = 0
Substituting n = 2 in Eq(3) gives

b2 =
r − 6
12 + 6r

Substituting n = 3 in Eq(3) gives
b3 = 0

Substituting n = 4 in Eq(3) gives

b4 =
7r3 − 63r2 + 146r + 120
360 (2 + r) (r2 + 5r + 4)

Substituting n = 5 in Eq(3) gives
b5 = 0

Substituting n = 6 in Eq(3) gives

b6 =
31r5 − 248r4 + 497r3 + 1508r2 − 6324r − 3024

15120 (2 + r) (r2 + 5r + 4) (r2 + 9r + 18)
Substituting n = 7 in Eq(3) gives

b7 = 0
For 8 ≤ n the recursive equation is

(4)

−bn−6(n+ r − 6) (n− 7 + r)
5040 + bn−4(−4 + n+ r) (n− 5 + r)

120
− bn−2(n+ r − 2) (n− 3 + r)

6 + bn(n+ r) (n+ r − 1)

+ bn−6(n+ r − 6)
360 − bn−4(−4 + n+ r)

12 + bn−2(n+ r − 2)

− 2(n+ r) bn − bn−2 +
bn−4

6 − bn−6

120 + bn−8

5040 = 0

Which for for the root r = 0 becomes

(4A)
−bn−6(n− 6) (n− 7)

5040 + bn−4(n− 4) (n− 5)
120

− bn−2(n− 2) (n− 3)
6 + bnn(n− 1) + bn−6(n− 6)

360 − bn−4(n− 4)
12

+ bn−2(n− 2)− 2nbn − bn−2 +
bn−4

6 − bn−6

120 + bn−8

5040 = 0

131



Solving for bn from the recursive equation (4) gives

bn = n2bn−6 − 42n2bn−4 + 840n2bn−2 + 2nrbn−6 − 84nrbn−4 + 1680nrbn−2 + r2bn−6 − 42r2bn−4 + 840r2bn−2 − 27nbn−6 + 798nbn−4 − 9240nbn−2 − 27rbn−6 + 798rbn−4 − 9240rbn−2 − bn−8 + 168bn−6 − 3360bn−4 + 20160bn−2

5040n2 + 10080nr + 5040r2 − 15120n− 15120r
(5)

Which for the root r = 0 becomes

bn = n2bn−6 − 42n2bn−4 + 840n2bn−2 − 27nbn−6 + 798nbn−4 − 9240nbn−2 − bn−8 + 168bn−6 − 3360bn−4 + 20160bn−2

5040n2 − 15120n
(6)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1
b1 0 0
b2

r−6
12+6r −1

2

b3 0 0
b4

7r3−63r2+146r+120
360(2+r)(4+r)(1+r)

1
24

b5 0 0
b6

31r5−248r4+497r3+1508r2−6324r−3024
15120(2+r)(4+r)(1+r)(6+r)(3+r) − 1

720

b7 0 0

Using the above table, then the solution y2(x) is

y2(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= 1− x2

2 + x4

24 − x6

720 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
3
(
1− x2

10 + x4

280 − x6

15120 +O
(
x6))+ c2

(
1− x2

2 + x4

24 − x6

720 +O
(
x6))

Hence the final solution is
y = yh

= c1x
3
(
1− x2

10 + x4

280 − x6

15120 +O
(
x6))+ c2

(
1− x2

2 + x4

24 − x6

720 +O
(
x6))
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Summary
The solution(s) found are the following

(1)y = c1x
3
(
1− x2

10 + x4

280 − x6

15120 +O
(
x6))+ c2

(
1− x2

2 + x4

24 − x6

720 +O
(
x6))

Verification of solutions

y = c1x
3
(
1− x2

10 + x4

280 − x6

15120 +O
(
x6))+ c2

(
1− x2

2 + x4

24 − x6

720 +O
(
x6))

Verified OK.
Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f)
-> Trying changes of variables to rationalize or make the ODE simpler

trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible

<- Kovacics algorithm successful
Change of variables used:

[x = arccos(t)]
Linear ODE actually solved:

-u(t)+t*diff(u(t),t)+(-t^2+1)*diff(diff(u(t),t),t) = 0
<- change of variables successful`� �
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3 Solution by Maple
Time used: 0.14 (sec). Leaf size: 32� �
Order:=6;
dsolve(sin(x)*diff(y(x),x$2)-2*cos(x)*diff(y(x),x)-sin(x)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
3
(
1− 1

10x
2 + 1

280x
4 +O

(
x6))+ c2

(
12− 6x2 + 1

2x
4 +O

(
x6))

3 Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 44� �
AsymptoticDSolveValue[Sin[x]*y''[x]-2*Cos[x]*y'[x]-Sin[x]*y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
x4

24 − x2

2 + 1
)
+ c2

(
x7

280 − x5

10 + x3
)
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1.12 problem 3.24 (g)
1.12.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 141

Internal problem ID [5491]
Internal file name [OUTPUT/4739_Sunday_June_05_2022_03_04_31_PM_2570596/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999
Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136
Problem number: 3.24 (g).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode", "sec-
ond order series method. Ordinary point", "second order series method.
Taylor series method"

Maple gives the following as the ode type
[[_Emden , _Fowler ]]

y′′ − yx2 = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (24)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (25)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)

137



To find y(x) series solution around x = 0. Hence

F0 = yx2

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= x(xy′ + 2y)

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= yx4 + 4xy′ + 2y

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= y′x4 + 8yx3 + 6y′

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= 12y′x3 + x2y
(
x4 + 30

)
And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = 0
F1 = 0
F2 = 2y(0)
F3 = 6y′(0)
F4 = 0

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1 + x4

12

)
y(0) +

(
x+ 1

20x
5
)
y′(0) +O

(
x6)

Since the expansion point x = 0 is an ordinary, we can also solve this using standard
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power series Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives
∞∑
n=2

n(n− 1) anxn−2 =
(

∞∑
n=0

anx
n

)
x2 (1)

Which simplifies to

(2)
(

∞∑
n=2

n(n− 1) anxn−2

)
+

∞∑
n =0

(
−xn+2an

)
= 0

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

n(n− 1) anxn−2 =
∞∑
n=0

(n+ 2) an+2(n+ 1)xn

∞∑
n =0

(
−xn+2an

)
=

∞∑
n=2

(−an−2x
n)

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(n+ 2) an+2(n+ 1)xn

)
+

∞∑
n =2

(−an−2x
n) = 0

For 2 ≤ n, the recurrence equation is

(4)(n+ 2) an+2(n+ 1)− an−2 = 0
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Solving for an+2, gives

(5)an+2 =
an−2

(n+ 2) (n+ 1)

For n = 2 the recurrence equation gives

12a4 − a0 = 0

Which after substituting the earlier terms found becomes

a4 =
a0
12

For n = 3 the recurrence equation gives

20a5 − a1 = 0

Which after substituting the earlier terms found becomes

a5 =
a1
20

For n = 4 the recurrence equation gives

30a6 − a2 = 0

Which after substituting the earlier terms found becomes

a6 = 0

For n = 5 the recurrence equation gives

42a7 − a3 = 0

Which after substituting the earlier terms found becomes

a7 = 0

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .
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Substituting the values for an found above, the solution becomes

y = a0 + a1x+ 1
12a0x

4 + 1
20a1x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1 + x4

12

)
a0 +

(
x+ 1

20x
5
)
a1 +O

(
x6)

At x = 0 the solution above becomes

y =
(
1 + x4

12

)
c1 +

(
x+ 1

20x
5
)
c2 +O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1 + x4

12

)
y(0) +

(
x+ 1

20x
5
)
y′(0) +O

(
x6)

(2)y =
(
1 + x4

12

)
c1 +

(
x+ 1

20x
5
)
c2 +O

(
x6)

Verification of solutions

y =
(
1 + x4

12

)
y(0) +

(
x+ 1

20x
5
)
y′(0) +O

(
x6)

Verified OK.

y =
(
1 + x4

12

)
c1 +

(
x+ 1

20x
5
)
c2 +O

(
x6)

Verified OK.

1.12.1 Maple step by step solution

Let’s solve
y′′ = yx2

• Highest derivative means the order of the ODE is 2
y′′

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
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y′′ − yx2 = 0
• Assume series solution for y

y =
∞∑
k=0

akx
k

� Rewrite ODE with series expansions
◦ Convert x2 · y to series expansion

x2 · y =
∞∑
k=0

akx
k+2

◦ Shift index using k− >k − 2

x2 · y =
∞∑
k=2

ak−2x
k

◦ Convert y′′ to series expansion

y′′ =
∞∑
k=2

akk(k − 1)xk−2

◦ Shift index using k− >k + 2

y′′ =
∞∑
k=0

ak+2(k + 2) (k + 1)xk

Rewrite ODE with series expansions

6a3x+ 2a2 +
(

∞∑
k=2

(ak+2(k + 2) (k + 1)− ak−2)xk

)
= 0

• The coefficients of each power of x must be 0
[2a2 = 0, 6a3 = 0]

• Solve for the dependent coefficient(s)
{a2 = 0, a3 = 0}

• Each term in the series must be 0, giving the recursion relation
(k2 + 3k + 2) ak+2 − ak−2 = 0

• Shift index using k− >k + 2(
(k + 2)2 + 3k + 8

)
ak+4 − ak = 0

• Recursion relation that defines the series solution to the ODE[
y =

∞∑
k=0

akx
k, ak+4 = ak

k2+7k+12 , a2 = 0, a3 = 0
]
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Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 24� �
Order:=6;
dsolve(diff(y(x),x$2)-x^2*y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1 + x4

12

)
y(0) +

(
x+ 1

20x
5
)
D(y) (0) +O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28� �
AsymptoticDSolveValue[y''[x]-x^2*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2

(
x5

20 + x

)
+ c1

(
x4

12 + 1
)
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1.13 problem 3.24 (h)
1.13.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 154

Internal problem ID [5492]
Internal file name [OUTPUT/4740_Sunday_June_05_2022_03_04_32_PM_12686391/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999
Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136
Problem number: 3.24 (h).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries], [_2nd_order , _linear , `

_with_symmetry_ [0,F(x)]`]]

x(x+ 2) y′′ + (1 + x) y′ − 4y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE. (

x2 + 2x
)
y′′ + (1 + x) y′ − 4y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1 + x

x (x+ 2)

q(x) = − 4
x (x+ 2)

144



Table 14: Table p(x), q(x) singularites.

p(x) = 1+x
x(x+2)

singularity type
x = −2 “regular”
x = 0 “regular”

q(x) = − 4
x(x+2)

singularity type
x = −2 “regular”
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [−2, 0,∞]

Irregular singular points : []

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x(x+ 2) y′′ + (1 + x) y′ − 4y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x(x+ 2)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ (1 + x)
(

∞∑
n=0

(n+ r) anxn+r−1

)
− 4
(

∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

2xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+

∞∑
n =0

(
−4anxn+r

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+ran(n+ r) (n+ r − 1) =
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r−1

∞∑
n =0

xn+ran(n+ r) =
∞∑
n=1

an−1(n+ r − 1)xn+r−1

∞∑
n =0

(
−4anxn+r

)
=

∞∑
n=1

(
−4an−1x

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=1

an−1(n+ r − 1) (n+ r − 2)xn+r−1

)

+
(

∞∑
n=0

2xn+r−1an(n+ r) (n+ r − 1)
)

+
(

∞∑
n=1

an−1(n+ r − 1)xn+r−1

)

+
(

∞∑
n=0

(n+ r) anxn+r−1

)
+

∞∑
n =1

(
−4an−1x

n+r−1) = 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

2xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1 = 0

When n = 0 the above becomes

2x−1+ra0r(−1 + r) + ra0x
−1+r = 0
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Or (
2x−1+rr(−1 + r) + r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(2r − 1) = 0

Since the above is true for all x then the indicial equation becomes

2r2 − r = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 = 0

Since a0 6= 0 then the indicial equation becomes

r x−1+r(2r − 1) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)

Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) =
∞∑
n=0

bnx
n

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)an−1(n+ r − 1) (n+ r − 2) + 2an(n+ r) (n+ r − 1)
+ an−1(n+ r − 1) + an(n+ r)− 4an−1 = 0
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Solving for an from recursive equation (4) gives

an = −an−1(n2 + 2nr + r2 − 2n− 2r − 3)
2n2 + 4nr + 2r2 − n− r

(4)

Which for the root r = 1
2 becomes

an = −an−1(4n2 − 4n− 15)
8n2 + 4n (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
−r2 + 4

2r2 + 3r + 1

Which for the root r = 1
2 becomes

a1 =
5
4

And the table now becomes

n an,r an

a0 1 1
a1

−r2+4
2r2+3r+1

5
4

For n = 2, using the above recursive equation gives

a2 =
r3 − 7r + 6

4r3 + 12r2 + 11r + 3

Which for the root r = 1
2 becomes

a2 =
7
32

And the table now becomes
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n an,r an

a0 1 1
a1

−r2+4
2r2+3r+1

5
4

a2
r3−7r+6

4r3+12r2+11r+3
7
32

For n = 3, using the above recursive equation gives

a3 = − (r + 4) r(−1 + r) (r − 2)
8r4 + 44r3 + 82r2 + 61r + 15

Which for the root r = 1
2 becomes

a3 = − 3
128

And the table now becomes

n an,r an

a0 1 1
a1

−r2+4
2r2+3r+1

5
4

a2
r3−7r+6

4r3+12r2+11r+3
7
32

a3 − (r+4)r(−1+r)(r−2)
8r4+44r3+82r2+61r+15 − 3

128

For n = 4, using the above recursive equation gives

a4 =
(r − 2) (−1 + r) r(r + 5)

16r4 + 128r3 + 344r2 + 352r + 105
Which for the root r = 1

2 becomes

a4 =
11
2048

And the table now becomes

n an,r an

a0 1 1
a1

−r2+4
2r2+3r+1

5
4

a2
r3−7r+6

4r3+12r2+11r+3
7
32

a3 − (r+4)r(−1+r)(r−2)
8r4+44r3+82r2+61r+15 − 3

128

a4
(r−2)(−1+r)r(r+5)

16r4+128r3+344r2+352r+105
11

2048
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For n = 5, using the above recursive equation gives

a5 = − (r + 6) (r + 2) r(r − 2) (−1 + r)
32r5 + 400r4 + 1840r3 + 3800r2 + 3378r + 945

Which for the root r = 1
2 becomes

a5 = − 13
8192

And the table now becomes

n an,r an

a0 1 1
a1

−r2+4
2r2+3r+1

5
4

a2
r3−7r+6

4r3+12r2+11r+3
7
32

a3 − (r+4)r(−1+r)(r−2)
8r4+44r3+82r2+61r+15 − 3

128

a4
(r−2)(−1+r)r(r+5)

16r4+128r3+344r2+352r+105
11

2048

a5 − (r+6)(r+2)r(r−2)(−1+r)
32r5+400r4+1840r3+3800r2+3378r+945 − 13

8192

Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1 + 5x

4 + 7x2

32 − 3x3

128 + 11x4

2048 − 13x5

8192 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)bn−1(n+ r − 1) (n+ r − 2) + 2bn(n+ r) (n+ r − 1)
+ bn−1(n+ r − 1) + (n+ r) bn − 4bn−1 = 0

Solving for bn from recursive equation (4) gives

bn = −bn−1(n2 + 2nr + r2 − 2n− 2r − 3)
2n2 + 4nr + 2r2 − n− r

(4)

Which for the root r = 0 becomes

bn = −bn−1(n2 − 2n− 3)
n (2n− 1) (5)
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At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.

n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 =
−r2 + 4

2r2 + 3r + 1

Which for the root r = 0 becomes
b1 = 4

And the table now becomes

n bn,r bn

b0 1 1
b1

−r2+4
2r2+3r+1 4

For n = 2, using the above recursive equation gives

b2 =
r3 − 7r + 6

4r3 + 12r2 + 11r + 3

Which for the root r = 0 becomes
b2 = 2

And the table now becomes

n bn,r bn

b0 1 1
b1

−r2+4
2r2+3r+1 4

b2
r3−7r+6

4r3+12r2+11r+3 2

For n = 3, using the above recursive equation gives

b3 = − (r + 4) r(−1 + r) (r − 2)
8r4 + 44r3 + 82r2 + 61r + 15
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Which for the root r = 0 becomes
b3 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

−r2+4
2r2+3r+1 4

b2
r3−7r+6

4r3+12r2+11r+3 2

b3 − (r+4)r(−1+r)(r−2)
8r4+44r3+82r2+61r+15 0

For n = 4, using the above recursive equation gives

b4 =
(r − 2) (−1 + r) r(r + 5)

16r4 + 128r3 + 344r2 + 352r + 105

Which for the root r = 0 becomes
b4 = 0

And the table now becomes

n bn,r bn

b0 1 1
b1

−r2+4
2r2+3r+1 4

b2
r3−7r+6

4r3+12r2+11r+3 2

b3 − (r+4)r(−1+r)(r−2)
8r4+44r3+82r2+61r+15 0

b4
(r−2)(−1+r)r(r+5)

16r4+128r3+344r2+352r+105 0

For n = 5, using the above recursive equation gives

b5 = − (r + 6) (r + 2) r(r − 2) (−1 + r)
32r5 + 400r4 + 1840r3 + 3800r2 + 3378r + 945

Which for the root r = 0 becomes
b5 = 0

And the table now becomes
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n bn,r bn

b0 1 1
b1

−r2+4
2r2+3r+1 4

b2
r3−7r+6

4r3+12r2+11r+3 2

b3 − (r+4)r(−1+r)(r−2)
8r4+44r3+82r2+61r+15 0

b4
(r−2)(−1+r)r(r+5)

16r4+128r3+344r2+352r+105 0

b5 − (r+6)(r+2)r(r−2)(−1+r)
32r5+400r4+1840r3+3800r2+3378r+945 0

Using the above table, then the solution y2(x) is

y2(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= 1 + 4x+ 2x2 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1+ 5x

4 + 7x2

32 − 3x3

128 +
11x4

2048 −
13x5

8192 +O
(
x6))+ c2

(
1+4x+2x2+O

(
x6))

Hence the final solution is

y = yh

= c1
√
x

(
1 + 5x

4 + 7x2

32 − 3x3

128 + 11x4

2048 − 13x5

8192 +O
(
x6))+ c2

(
1 + 4x+ 2x2 +O

(
x6))

Summary
The solution(s) found are the following

(1)y = c1
√
x

(
1+ 5x

4 + 7x2

32 − 3x3

128 + 11x4

2048 −
13x5

8192 +O
(
x6))+ c2

(
1+4x+2x2+O

(
x6))

Verification of solutions

y = c1
√
x

(
1 + 5x

4 + 7x2

32 − 3x3

128 + 11x4

2048 − 13x5

8192 +O
(
x6))+ c2

(
1 + 4x+ 2x2 +O

(
x6))

Verified OK.
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1.13.1 Maple step by step solution

Let’s solve
x(x+ 2) y′′ + (1 + x) y′ − 4y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = 4y
x(x+2) −

(1+x)y′
x(x+2)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + (1+x)y′
x(x+2) −

4y
x(x+2) = 0

� Check to see if x0 is a regular singular point
◦ Define functions[

P2(x) = 1+x
x(x+2) , P3(x) = − 4

x(x+2)

]
◦ (x+ 2) · P2(x) is analytic at x = −2

((x+ 2) · P2(x))
∣∣∣∣
x=−2

= 1
2

◦ (x+ 2)2 · P3(x) is analytic at x = −2(
(x+ 2)2 · P3(x)

) ∣∣∣∣
x=−2

= 0

◦ x = −2is a regular singular point
Check to see if x0 is a regular singular point
x0 = −2

• Multiply by denominators
x(x+ 2) y′′ + (1 + x) y′ − 4y = 0

• Change variables using x = u− 2 so that the regular singular point is at u = 0

(u2 − 2u)
(

d2

du2y(u)
)
+ (−1 + u)

(
d
du
y(u)

)
− 4y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
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◦ Convert um ·
(

d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert um ·
(

d2

du2y(u)
)

to series expansion form = 1..2

um ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−2+m

◦ Shift index using k− >k + 2−m

um ·
(

d2

du2y(u)
)
=

∞∑
k=−2+m

ak+2−m(k + 2−m+ r) (k + 1−m+ r)uk+r

Rewrite ODE with series expansions

−a0r(−1 + 2r)u−1+r +
(

∞∑
k=0

(−ak+1(k + 1 + r) (2k + 1 + 2r) + ak(k + r + 2) (k + r − 2))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
−r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term in the series must be 0, giving the recursion relation
−2
(
k + 1

2 + r
)
(k + 1 + r) ak+1 + ak(k + r + 2) (k + r − 2) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak(k+r+2)(k+r−2)

(2k+1+2r)(k+1+r)

• Recursion relation for r = 0 ; series terminates at k = 2
ak+1 = ak(k+2)(k−2)

(2k+1)(k+1)

• Apply recursion relation for k = 0
a1 = −4a0

• Apply recursion relation for k = 1
a2 = −a1

2

• Express in terms of a0
a2 = 2a0
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• Terminating series solution of the ODE for r = 0 . Use reduction of order to find the second linearly independent solution
y(u) = a0 · (2u2 − 4u+ 1)

• Revert the change of variables u = x+ 2
[y = a0(1 + 4x+ 2x2)]

• Recursion relation for r = 1
2

ak+1 =
ak

(
k+ 5

2
)(
k− 3

2
)

(2k+2)
(
k+ 3

2
)

• Solution for r = 1
2[

y(u) =
∞∑
k=0

aku
k+ 1

2 , ak+1 =
ak

(
k+ 5

2
)(
k− 3

2
)

(2k+2)
(
k+ 3

2
)
]

• Revert the change of variables u = x+ 2[
y =

∞∑
k=0

ak(x+ 2)k+
1
2 , ak+1 =

ak
(
k+ 5

2
)(
k− 3

2
)

(2k+2)
(
k+ 3

2
)
]

• Combine solutions and rename parameters[
y = a0(1 + 4x+ 2x2) +

(
∞∑
k=0

bk(x+ 2)k+
1
2

)
, bk+1 =

bk
(
k+ 5

2
)(
k− 3

2
)

(2k+2)
(
k+ 3

2
)
]

Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]

Solution is available but has compositions of trig with ln functions of radicals. Attempting a simpler solution
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful
<- linear_1 successful`� �
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3 Solution by Maple
Time used: 0.032 (sec). Leaf size: 38� �
Order:=6;
dsolve(x*(x+2)*diff(y(x),x$2)+(x+1)*diff(y(x),x)-4*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1
√
x

(
1 + 5

4x+ 7
32x

2 − 3
128x

3 + 11
2048x

4 − 13
8192x

5 +O
(
x6))

+ c2
(
1 + 4x+ 2x2 +O

(
x6))

3 Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 60� �
AsymptoticDSolveValue[x*(x+2)*y''[x]+(x+1)*y'[x]-4*y[x]==0,y[x],{x,0,5}]� �

y(x) → c2
(
2x2 + 4x+ 1

)
+ c1

√
x

(
−13x5

8192 + 11x4

2048 − 3x3

128 + 7x2

32 + 5x
4 + 1

)
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1.14 problem 3.24 (i)
1.14.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 168

Internal problem ID [5493]
Internal file name [OUTPUT/4741_Sunday_June_05_2022_03_04_34_PM_42135889/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999
Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136
Problem number: 3.24 (i).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order , _exact , _linear , _homogeneous ]]

xy′′ +
(
1
2 − x

)
y′ − y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ +
(
1
2 − x

)
y′ − y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −2x− 1
2x

q(x) = −1
x
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Table 16: Table p(x), q(x) singularites.

p(x) = −2x−1
2x

singularity type
x = 0 “regular”

q(x) = − 1
x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ +
(
1
2 − x

)
y′ − y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x

+
(
1
2 − x

)( ∞∑
n=0

(n+ r) anxn+r−1

)
−

(
∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−xn+ran(n+ r)

)
+
(

∞∑
n=0

(n+ r) anxn+r−1

2

)
+

∞∑
n =0

(
−anx

n+r
)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

(
−xn+ran(n+ r)

)
=

∞∑
n=1

(
−an−1(n+ r − 1)xn+r−1)

∞∑
n =0

(
−anx

n+r
)
=

∞∑
n=1

(
−an−1x

n+r−1)

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.

(2B)

(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =1

(
−an−1(n+ r − 1)xn+r−1)

+
(

∞∑
n=0

(n+ r) anxn+r−1

2

)
+

∞∑
n =1

(
−an−1x

n+r−1) = 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1) + (n+ r) anxn+r−1

2 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r) + ra0x
−1+r

2 = 0

Or (
x−1+rr(−1 + r) + r x−1+r

2

)
a0 = 0
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Since a0 6= 0 then the above simplifies to

r x−1+r

(
−1
2 + r

)
= 0

Since the above is true for all x then the indicial equation becomes

r2 − 1
2r = 0

Solving for r gives the roots of the indicial equation as

r1 =
1
2

r2 = 0

Since a0 6= 0 then the indicial equation becomes

r x−1+r

(
−1
2 + r

)
= 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 1
2 is not an

integer, then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 1

2

y2(x) =
∞∑
n=0

bnx
n

We start by finding y1(x). Eq (2B) derived above is now used to find all an coefficients.
The case n = 0 is skipped since it was used to find the roots of the indicial equation.
a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1)− an−1(n+ r − 1) + an(n+ r)
2 − an−1 = 0

Solving for an from recursive equation (4) gives

an = 2an−1

2n− 1 + 2r (4)
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Which for the root r = 1
2 becomes

an = an−1

n
(5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 1

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 =
2

1 + 2r

Which for the root r = 1
2 becomes

a1 = 1

And the table now becomes

n an,r an

a0 1 1
a1

2
1+2r 1

For n = 2, using the above recursive equation gives

a2 =
4

4r2 + 8r + 3

Which for the root r = 1
2 becomes

a2 =
1
2

And the table now becomes

n an,r an

a0 1 1
a1

2
1+2r 1

a2
4

4r2+8r+3
1
2
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For n = 3, using the above recursive equation gives

a3 =
8

8r3 + 36r2 + 46r + 15

Which for the root r = 1
2 becomes

a3 =
1
6

And the table now becomes

n an,r an

a0 1 1
a1

2
1+2r 1

a2
4

4r2+8r+3
1
2

a3
8

8r3+36r2+46r+15
1
6

For n = 4, using the above recursive equation gives

a4 =
16

16r4 + 128r3 + 344r2 + 352r + 105

Which for the root r = 1
2 becomes

a4 =
1
24

And the table now becomes

n an,r an

a0 1 1
a1

2
1+2r 1

a2
4

4r2+8r+3
1
2

a3
8

8r3+36r2+46r+15
1
6

a4
16

16r4+128r3+344r2+352r+105
1
24

For n = 5, using the above recursive equation gives

a5 =
32

32r5 + 400r4 + 1840r3 + 3800r2 + 3378r + 945
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Which for the root r = 1
2 becomes

a5 =
1
120

And the table now becomes

n an,r an

a0 1 1
a1

2
1+2r 1

a2
4

4r2+8r+3
1
2

a3
8

8r3+36r2+46r+15
1
6

a4
16

16r4+128r3+344r2+352r+105
1
24

a5
32

32r5+400r4+1840r3+3800r2+3378r+945
1

120

Using the above table, then the solution y1(x) is

y1(x) =
√
x
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

=
√
x

(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

Now the second solution y2(x) is found. Eq (2B) derived above is now used to find all
bn coefficients. The case n = 0 is skipped since it was used to find the roots of the
indicial equation. b0 is arbitrary and taken as b0 = 1. For 1 ≤ n the recursive equation
is

(3)bn(n+ r) (n+ r − 1)− bn−1(n+ r − 1) + (n+ r) bn
2 − bn−1 = 0

Solving for bn from recursive equation (4) gives

bn = 2bn−1

2n− 1 + 2r (4)

Which for the root r = 0 becomes

bn = 2bn−1

2n− 1 (5)

At this point, it is a good idea to keep track of bn in a table both before substituting
r = 0 and after as more terms are found using the above recursive equation.
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n bn,r bn

b0 1 1

For n = 1, using the above recursive equation gives

b1 =
2

1 + 2r

Which for the root r = 0 becomes
b1 = 2

And the table now becomes

n bn,r bn

b0 1 1
b1

2
1+2r 2

For n = 2, using the above recursive equation gives

b2 =
4

4r2 + 8r + 3

Which for the root r = 0 becomes
b2 =

4
3

And the table now becomes

n bn,r bn

b0 1 1
b1

2
1+2r 2

b2
4

4r2+8r+3
4
3

For n = 3, using the above recursive equation gives

b3 =
8

8r3 + 36r2 + 46r + 15

Which for the root r = 0 becomes
b3 =

8
15

And the table now becomes
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n bn,r bn

b0 1 1
b1

2
1+2r 2

b2
4

4r2+8r+3
4
3

b3
8

8r3+36r2+46r+15
8
15

For n = 4, using the above recursive equation gives

b4 =
16

16r4 + 128r3 + 344r2 + 352r + 105

Which for the root r = 0 becomes
b4 =

16
105

And the table now becomes

n bn,r bn

b0 1 1
b1

2
1+2r 2

b2
4

4r2+8r+3
4
3

b3
8

8r3+36r2+46r+15
8
15

b4
16

16r4+128r3+344r2+352r+105
16
105

For n = 5, using the above recursive equation gives

b5 =
32

32r5 + 400r4 + 1840r3 + 3800r2 + 3378r + 945

Which for the root r = 0 becomes
b5 =

32
945

And the table now becomes
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n bn,r bn

b0 1 1
b1

2
1+2r 2

b2
4

4r2+8r+3
4
3

b3
8

8r3+36r2+46r+15
8
15

b4
16

16r4+128r3+344r2+352r+105
16
105

b5
32

32r5+400r4+1840r3+3800r2+3378r+945
32
945

Using the above table, then the solution y2(x) is

y2(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6. . .

= 1 + 2x+ 4x2

3 + 8x3

15 + 16x4

105 + 32x5

945 +O
(
x6)

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1
√
x

(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

+ c2

(
1 + 2x+ 4x2

3 + 8x3

15 + 16x4

105 + 32x5

945 +O
(
x6))

Hence the final solution is

y = yh

= c1
√
x

(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

+ c2

(
1 + 2x+ 4x2

3 + 8x3

15 + 16x4

105 + 32x5

945 +O
(
x6))

Summary
The solution(s) found are the following

(1)
y = c1

√
x

(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

+ c2

(
1 + 2x+ 4x2

3 + 8x3

15 + 16x4

105 + 32x5

945 +O
(
x6))
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Verification of solutions

y = c1
√
x

(
1 + x+ x2

2 + x3

6 + x4

24 + x5

120 +O
(
x6))

+ c2

(
1 + 2x+ 4x2

3 + 8x3

15 + 16x4

105 + 32x5

945 +O
(
x6))

Verified OK.

1.14.1 Maple step by step solution

Let’s solve
y′′x+

(1
2 − x

)
y′ − y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = y
x
+ (2x−1)y′

2x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ − (2x−1)y′
2x − y

x
= 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = −2x−1
2x , P3(x) = − 1

x

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1
2

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 0

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
2y′′x+ (1− 2x) y′ − 2y = 0

• Assume series solution for y
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y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y′ to series expansion form = 0..1

xm · y′ =
∞∑
k=0

ak(k + r)xk+r−1+m

◦ Shift index using k− >k + 1−m

xm · y′ =
∞∑

k=−1+m

ak+1−m(k + 1−m+ r)xk+r

◦ Convert x · y′′ to series expansion

x · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r−1

◦ Shift index using k− >k + 1

x · y′′ =
∞∑

k=−1
ak+1(k + 1 + r) (k + r)xk+r

Rewrite ODE with series expansions

a0r(−1 + 2r)x−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (2k + 1 + 2r)− 2ak(k + 1 + r))xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−1 + 2r) = 0

• Values of r that satisfy the indicial equation
r ∈

{
0, 12
}

• Each term in the series must be 0, giving the recursion relation
2
((
k + 1

2 + r
)
ak+1 − ak

)
(k + 1 + r) = 0

• Recursion relation that defines series solution to ODE
ak+1 = 2ak

2k+1+2r

• Recursion relation for r = 0
ak+1 = 2ak

2k+1

• Solution for r = 0[
y =

∞∑
k=0

akx
k, ak+1 = 2ak

2k+1

]
• Recursion relation for r = 1

2
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ak+1 = 2ak
2k+2

• Solution for r = 1
2[

y =
∞∑
k=0

akx
k+ 1

2 , ak+1 = 2ak
2k+2

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k

)
+
(

∞∑
k=0

bkx
k+ 1

2

)
, ak+1 = 2ak

2k+1 , bk+1 = 2bk
2k+2

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`� �
3 Solution by Maple
Time used: 0.031 (sec). Leaf size: 44� �
Order:=6;
dsolve(x*diff(y(x),x$2)+(1/2-x)*diff(y(x),x)-y(x)=0,y(x),type='series',x=0);� �

y(x) = c1
√
x

(
1 + x+ 1

2x
2 + 1

6x
3 + 1

24x
4 + 1

120x
5 +O

(
x6))

+ c2

(
1 + 2x+ 4

3x
2 + 8

15x
3 + 16

105x
4 + 32

945x
5 +O

(
x6))

3 Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 79� �
AsymptoticDSolveValue[x*y''[x]+(1/2-x)*y'[x]-y[x]==0,y[x],{x,0,5}]� �
y(x)→ c1

√
x

(
x5

120 + x4

24 + x3

6 + x2

2 + x+1
)
+ c2

(
32x5

945 + 16x4

105 + 8x3

15 + 4x2

3 + 2x+1
)

170



1.15 problem 3.25 v=1/2
1.15.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 178

Internal problem ID [5494]
Internal file name [OUTPUT/4742_Sunday_June_05_2022_03_04_36_PM_88820856/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999
Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136
Problem number: 3.25 v=1/2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Complex roots"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + xy′ +
(
x2 + 1

4

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ + xy′ +
(
x2 + 1

4

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = 4x2 + 1
4x2

171



Table 18: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = 4x2+1
4x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ + xy′ +
(
x2 + 1

4

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ x

(
∞∑
n=0

(n+ r) anxn+r−1

)
+
(
x2 + 1

4

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

xn+r+2an

)
+
(

∞∑
n=0

anx
n+r

4

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an =
∞∑
n=2

an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=2

an−2x
n+r

)
+
(

∞∑
n=0

anx
n+r

4

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r) + anx
n+r

4 = 0

When n = 0 the above becomes

xra0r(−1 + r) + xra0r +
a0x

r

4 = 0

Or (
xrr(−1 + r) + xrr + xr

4

)
a0 = 0

Since a0 6= 0 then the above simplifies to

(4r2 + 1)xr

4 = 0
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Since the above is true for all x then the indicial equation becomes

r2 + 1
4 = 0

Solving for r gives the roots of the indicial equation as

r1 =
i

2
r2 = − i

2
Since a0 6= 0 then the indicial equation becomes

(4r2 + 1)xr

4 = 0

Solving for r gives the roots of the indicial equation as Since the roots are complex
conjugates, then two linearly independent solutions can be constructed using

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ i

2

y2(x) =
∞∑
n=0

bnx
n− i

2

y1(x) is found first. Eq (2B) derived above is now used to find all an coefficients. The
case n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an(n+ r) + an−2 +
an
4 = 0

Solving for an from recursive equation (4) gives

an = − 4an−2

4n2 + 8nr + 4r2 + 1 (4)
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Which for the root r = i
2 becomes

an = − an−2

n (i+ n) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = i

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 4
4r2 + 16r + 17

Which for the root r = i
2 becomes

a2 = −1
5 + i

10
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 4

4r2+16r+17 −1
5 +

i
10

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 4

4r2+16r+17 −1
5 +

i
10

a3 0 0
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For n = 4, using the above recursive equation gives

a4 =
16

(4r2 + 16r + 17) (4r2 + 32r + 65)

Which for the root r = i
2 becomes

a4 =
7
680 − 3i

340
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 4

4r2+16r+17 −1
5 +

i
10

a3 0 0
a4

16
(4r2+16r+17)(4r2+32r+65)

7
680 −

3i
340

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 4

4r2+16r+17 −1
5 +

i
10

a3 0 0
a4

16
(4r2+16r+17)(4r2+32r+65)

7
680 −

3i
340

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x
i
2
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
i
2

(
1 +

(
−1
5 + i

10

)
x2 +

(
7
680 − 3i

340

)
x4 +O

(
x6))
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The second solution y2(x) is found by taking the complex conjugate of y1(x) which
gives

y2(x) = x− i
2

(
1 +

(
−1
5 − i

10

)
x2 +

(
7
680 + 3i

340

)
x4 +O

(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
i
2

(
1 +

(
−1
5 + i

10

)
x2 +

(
7
680 − 3i

340

)
x4 +O

(
x6))

+ c2x
− i

2

(
1 +

(
−1
5 − i

10

)
x2 +

(
7
680 + 3i

340

)
x4 +O

(
x6))

Hence the final solution is

y = yh

= c1x
i
2

(
1 +

(
−1
5 + i

10

)
x2 +

(
7
680 − 3i

340

)
x4 +O

(
x6))

+ c2x
− i

2

(
1 +

(
−1
5 − i

10

)
x2 +

(
7
680 + 3i

340

)
x4 +O

(
x6))

Summary
The solution(s) found are the following

(1)
y = c1x

i
2

(
1 +

(
−1
5 + i

10

)
x2 +

(
7
680 − 3i

340

)
x4 +O

(
x6))

+ c2x
− i

2

(
1 +

(
−1
5 − i

10

)
x2 +

(
7
680 + 3i

340

)
x4 +O

(
x6))

Verification of solutions

y = c1x
i
2

(
1 +

(
−1
5 + i

10

)
x2 +

(
7
680 − 3i

340

)
x4 +O

(
x6))

+ c2x
− i

2

(
1 +

(
−1
5 − i

10

)
x2 +

(
7
680 + 3i

340

)
x4 +O

(
x6))

Verified OK.
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1.15.1 Maple step by step solution

Let’s solve
x2y′′ + xy′ +

(
x2 + 1

4

)
y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
4x2+1

)
y

4x2 − y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + y′

x
+

(
4x2+1

)
y

4x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = 4x2+1

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 1
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
4x2y′′ + 4xy′ + (4x2 + 1) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(4r2 + 1)xr + a1(4r2 + 8r + 5)x1+r +
(

∞∑
k=2

(ak(4k2 + 8kr + 4r2 + 1) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r2 + 1 = 0

• Values of r that satisfy the indicial equation
r ∈

{
− I

2 ,
I
2

}
• Each term must be 0

a1(4r2 + 8r + 5) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(4k2 + 8kr + 4r2 + 1) + 4ak−2 = 0
• Shift index using k− >k + 2

ak+2
(
4(k + 2)2 + 8(k + 2) r + 4r2 + 1

)
+ 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

4k2+8kr+4r2+16k+16r+17

• Recursion relation for r = − I
2

ak+2 = − 4ak
4k2−4 Ik+16−8 I+16k

• Solution for r = − I
2[

y =
∞∑
k=0

akx
k− I

2 , ak+2 = − 4ak
4k2−4 Ik+16−8 I+16k , a1 = 0

]
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• Recursion relation for r = I
2

ak+2 = − 4ak
4k2+4 Ik+16+8 I+16k

• Solution for r = I
2[

y =
∞∑
k=0

akx
k+ I

2 , ak+2 = − 4ak
4k2+4 Ik+16+8 I+16k , a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k− I

2

)
+
(

∞∑
k=0

bkx
k+ I

2

)
, ak+2 = − 4ak

4k2−4 Ik+16−8 I+16k , a1 = 0, bk+2 = − 4bk
4k2+4 Ik+16+8 I+16k , b1 = 0

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 45� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(x^2+(1/2)^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
− i

2

(
1 +

(
−1
5 − i

10

)
x2 +

(
7
680 + 3i

340

)
x4 +O

(
x6))

+ c2x
i
2

(
1 +

(
−1
5 + i

10

)
x2 +

(
7
680 − 3i

340

)
x4 +O

(
x6))
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3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 66� �
AsymptoticDSolveValue[x^2*y''[x]+x*y'[x]+(x^2+1/4)*y[x]==0,y[x],{x,0,5}]� �

y(x) →
(

7
680 + 3i

340

)
c2x

− i
2
(
x4 − (16− 4i)x2 + (56− 48i)

)
+
(

7
680 − 3i

340

)
c1x

i
2
(
x4 − (16 + 4i)x2 + (56 + 48i)

)
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1.16 problem 3.25 v=3/2
1.16.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 189

Internal problem ID [5495]
Internal file name [OUTPUT/4743_Sunday_June_05_2022_03_04_40_PM_72257281/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999
Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136
Problem number: 3.25 v=3/2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Complex roots"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + xy′ +
(
x2 + 9

4

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ + xy′ +
(
x2 + 9

4

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = 4x2 + 9
4x2
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Table 20: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = 4x2+9
4x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ + xy′ +
(
x2 + 9

4

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ x

(
∞∑
n=0

(n+ r) anxn+r−1

)
+
(
x2 + 9

4

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

xn+r+2an

)
+
(

∞∑
n=0

9anxn+r

4

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an =
∞∑
n=2

an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=2

an−2x
n+r

)
+
(

∞∑
n=0

9anxn+r

4

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r) + 9anxn+r

4 = 0

When n = 0 the above becomes

xra0r(−1 + r) + xra0r +
9a0xr

4 = 0

Or (
xrr(−1 + r) + xrr + 9xr

4

)
a0 = 0

Since a0 6= 0 then the above simplifies to

(4r2 + 9)xr

4 = 0
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Since the above is true for all x then the indicial equation becomes

r2 + 9
4 = 0

Solving for r gives the roots of the indicial equation as

r1 =
3i
2

r2 = −3i
2

Since a0 6= 0 then the indicial equation becomes

(4r2 + 9)xr

4 = 0

Solving for r gives the roots of the indicial equation as Since the roots are complex
conjugates, then two linearly independent solutions can be constructed using

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 3i

2

y2(x) =
∞∑
n=0

bnx
n− 3i

2

y1(x) is found first. Eq (2B) derived above is now used to find all an coefficients. The
case n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an(n+ r) + an−2 +
9an
4 = 0

Solving for an from recursive equation (4) gives

an = − 4an−2

4n2 + 8nr + 4r2 + 9 (4)
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Which for the root r = 3i
2 becomes

an = − an−2

n (3i+ n) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 3i

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 4
4r2 + 16r + 25

Which for the root r = 3i
2 becomes

a2 = − 1
13 + 3i

26
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 4

4r2+16r+25 − 1
13 +

3i
26

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 4

4r2+16r+25 − 1
13 +

3i
26

a3 0 0
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For n = 4, using the above recursive equation gives

a4 =
16

(4r2 + 16r + 25) (4r2 + 32r + 73)

Which for the root r = 3i
2 becomes

a4 = − 1
2600 − 9i

1300
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 4

4r2+16r+25 − 1
13 +

3i
26

a3 0 0
a4

16
(4r2+16r+25)(4r2+32r+73) − 1

2600 −
9i

1300

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 4

4r2+16r+25 − 1
13 +

3i
26

a3 0 0
a4

16
(4r2+16r+25)(4r2+32r+73) − 1

2600 −
9i

1300

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x
3i
2
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
3i
2

(
1 +

(
− 1
13 + 3i

26

)
x2 +

(
− 1
2600 − 9i

1300

)
x4 +O

(
x6))
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The second solution y2(x) is found by taking the complex conjugate of y1(x) which
gives

y2(x) = x− 3i
2

(
1 +

(
− 1
13 − 3i

26

)
x2 +

(
− 1
2600 + 9i

1300

)
x4 +O

(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
3i
2

(
1 +

(
− 1
13 + 3i

26

)
x2 +

(
− 1
2600 − 9i

1300

)
x4 +O

(
x6))

+ c2x
− 3i

2

(
1 +

(
− 1
13 − 3i

26

)
x2 +

(
− 1
2600 + 9i

1300

)
x4 +O

(
x6))

Hence the final solution is

y = yh

= c1x
3i
2

(
1 +

(
− 1
13 + 3i

26

)
x2 +

(
− 1
2600 − 9i

1300

)
x4 +O

(
x6))

+ c2x
− 3i

2

(
1 +

(
− 1
13 − 3i

26

)
x2 +

(
− 1
2600 + 9i

1300

)
x4 +O

(
x6))

Summary
The solution(s) found are the following

(1)
y = c1x

3i
2

(
1 +

(
− 1
13 + 3i

26

)
x2 +

(
− 1
2600 − 9i

1300

)
x4 +O

(
x6))

+ c2x
− 3i

2

(
1 +

(
− 1
13 − 3i

26

)
x2 +

(
− 1
2600 + 9i

1300

)
x4 +O

(
x6))

Verification of solutions

y = c1x
3i
2

(
1 +

(
− 1
13 + 3i

26

)
x2 +

(
− 1
2600 − 9i

1300

)
x4 +O

(
x6))

+ c2x
− 3i

2

(
1 +

(
− 1
13 − 3i

26

)
x2 +

(
− 1
2600 + 9i

1300

)
x4 +O

(
x6))

Verified OK.
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1.16.1 Maple step by step solution

Let’s solve
x2y′′ + xy′ +

(
x2 + 9

4

)
y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
4x2+9

)
y

4x2 − y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + y′

x
+

(
4x2+9

)
y

4x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = 4x2+9

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 9
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
4x2y′′ + 4xy′ + (4x2 + 9) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(4r2 + 9)xr + a1(4r2 + 8r + 13)x1+r +
(

∞∑
k=2

(ak(4k2 + 8kr + 4r2 + 9) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r2 + 9 = 0

• Values of r that satisfy the indicial equation
r ∈

{
−3 I

2 ,
3 I
2

}
• Each term must be 0

a1(4r2 + 8r + 13) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(4k2 + 8kr + 4r2 + 9) + 4ak−2 = 0
• Shift index using k− >k + 2

ak+2
(
4(k + 2)2 + 8(k + 2) r + 4r2 + 9

)
+ 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

4k2+8kr+4r2+16k+16r+25

• Recursion relation for r = −3 I
2

ak+2 = − 4ak
4k2−12 Ik+16−24 I+16k

• Solution for r = −3 I
2[

y =
∞∑
k=0

akx
k− 3 I

2 , ak+2 = − 4ak
4k2−12 Ik+16−24 I+16k , a1 = 0

]
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• Recursion relation for r = 3 I
2

ak+2 = − 4ak
4k2+12 Ik+16+24 I+16k

• Solution for r = 3 I
2[

y =
∞∑
k=0

akx
k+ 3 I

2 , ak+2 = − 4ak
4k2+12 Ik+16+24 I+16k , a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k− 3 I

2

)
+
(

∞∑
k=0

bkx
k+ 3 I

2

)
, ak+2 = − 4ak

4k2−12 Ik+16−24 I+16k , a1 = 0, bk+2 = − 4bk
4k2+12 Ik+16+24 I+16k , b1 = 0

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.016 (sec). Leaf size: 45� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(x^2+(3/2)^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
− 3i

2

(
1 +

(
− 1
13 − 3i

26

)
x2 +

(
− 1
2600 + 9i

1300

)
x4 +O

(
x6))

+ c2x
3i
2

(
1 +

(
− 1
13 + 3i

26

)
x2 +

(
− 1
2600 − 9i

1300

)
x4 +O

(
x6))
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3 Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 66� �
AsymptoticDSolveValue[x^2*y''[x]+x*y'[x]+(x^2+9/4)*y[x]==0,y[x],{x,0,5}]� �

y(x) →
(
− 1
2600 − 9i

1300

)
c1x

3i
2
(
x4 − (16 + 12i)x2 − (8− 144i)

)
−
(

1
2600 − 9i

1300

)
c2x

− 3i
2
(
x4 − (16− 12i)x2 − (8 + 144i)

)
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1.17 problem 3.25 v=5/2
1.17.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 200

Internal problem ID [5496]
Internal file name [OUTPUT/4744_Sunday_June_05_2022_03_04_46_PM_28423381/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999
Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136
Problem number: 3.25 v=5/2.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Complex roots"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

x2y′′ + xy′ +
(
x2 + 25

4

)
y = 0

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x2y′′ + xy′ +
(
x2 + 25

4

)
y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 1
x

q(x) = 4x2 + 25
4x2
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Table 22: Table p(x), q(x) singularites.

p(x) = 1
x

singularity type
x = 0 “regular”

q(x) = 4x2+25
4x2

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

x2y′′ + xy′ +
(
x2 + 25

4

)
y = 0

Let the solution be represented as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives

(1)
x2

(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)

+ x

(
∞∑
n=0

(n+ r) anxn+r−1

)
+
(
x2 + 25

4

)( ∞∑
n=0

anx
n+r

)
= 0
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Which simplifies to

(2A)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=0

xn+r+2an

)
+
(

∞∑
n=0

25anxn+r

4

)
= 0

The next step is to make all powers of x be n + r in each summation term. Going
over each summation term above with power of x in it which is not already xn+r and
adjusting the power and the corresponding index gives

∞∑
n =0

xn+r+2an =
∞∑
n=2

an−2x
n+r

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r.

(2B)

(
∞∑
n=0

xn+ran(n+ r) (n+ r − 1)
)

+
(

∞∑
n=0

xn+ran(n+ r)
)

+
(

∞∑
n=2

an−2x
n+r

)
+
(

∞∑
n=0

25anxn+r

4

)
= 0

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+ran(n+ r) (n+ r − 1) + xn+ran(n+ r) + 25anxn+r

4 = 0

When n = 0 the above becomes

xra0r(−1 + r) + xra0r +
25a0xr

4 = 0

Or (
xrr(−1 + r) + xrr + 25xr

4

)
a0 = 0

Since a0 6= 0 then the above simplifies to

(4r2 + 25)xr

4 = 0
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Since the above is true for all x then the indicial equation becomes

r2 + 25
4 = 0

Solving for r gives the roots of the indicial equation as

r1 =
5i
2

r2 = −5i
2

Since a0 6= 0 then the indicial equation becomes

(4r2 + 25)xr

4 = 0

Solving for r gives the roots of the indicial equation as Since the roots are complex
conjugates, then two linearly independent solutions can be constructed using

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+ 5i

2

y2(x) =
∞∑
n=0

bnx
n− 5i

2

y1(x) is found first. Eq (2B) derived above is now used to find all an coefficients. The
case n = 0 is skipped since it was used to find the roots of the indicial equation. a0 is
arbitrary and taken as a0 = 1. Substituting n = 1 in Eq. (2B) gives

a1 = 0

For 2 ≤ n the recursive equation is

(3)an(n+ r) (n+ r − 1) + an(n+ r) + an−2 +
25an
4 = 0

Solving for an from recursive equation (4) gives

an = − 4an−2

4n2 + 8nr + 4r2 + 25 (4)
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Which for the root r = 5i
2 becomes

an = − an−2

n (5i+ n) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 5i

2 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1
a1 0 0

For n = 2, using the above recursive equation gives

a2 = − 4
4r2 + 16r + 41

Which for the root r = 5i
2 becomes

a2 = − 1
29 + 5i

58
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 4

4r2+16r+41 − 1
29 +

5i
58

For n = 3, using the above recursive equation gives

a3 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 4

4r2+16r+41 − 1
29 +

5i
58

a3 0 0
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For n = 4, using the above recursive equation gives

a4 =
16

(4r2 + 16r + 41) (4r2 + 32r + 89)

Which for the root r = 5i
2 becomes

a4 = − 17
9512 − 15i

4756
And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 4

4r2+16r+41 − 1
29 +

5i
58

a3 0 0
a4

16
(4r2+16r+41)(4r2+32r+89) − 17

9512 −
15i
4756

For n = 5, using the above recursive equation gives

a5 = 0

And the table now becomes

n an,r an

a0 1 1
a1 0 0
a2 − 4

4r2+16r+41 − 1
29 +

5i
58

a3 0 0
a4

16
(4r2+16r+41)(4r2+32r+89) − 17

9512 −
15i
4756

a5 0 0

Using the above table, then the solution y1(x) is

y1(x) = x
5i
2
(
a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6. . .
)

= x
5i
2

(
1 +

(
− 1
29 + 5i

58

)
x2 +

(
− 17
9512 − 15i

4756

)
x4 +O

(
x6))
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The second solution y2(x) is found by taking the complex conjugate of y1(x) which
gives

y2(x) = x− 5i
2

(
1 +

(
− 1
29 − 5i

58

)
x2 +

(
− 17
9512 + 15i

4756

)
x4 +O

(
x6))

Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
5i
2

(
1 +

(
− 1
29 + 5i

58

)
x2 +

(
− 17
9512 − 15i

4756

)
x4 +O

(
x6))

+ c2x
− 5i

2

(
1 +

(
− 1
29 − 5i

58

)
x2 +

(
− 17
9512 + 15i

4756

)
x4 +O

(
x6))

Hence the final solution is

y = yh

= c1x
5i
2

(
1 +

(
− 1
29 + 5i

58

)
x2 +

(
− 17
9512 − 15i

4756

)
x4 +O

(
x6))

+ c2x
− 5i

2

(
1 +

(
− 1
29 − 5i

58

)
x2 +

(
− 17
9512 + 15i

4756

)
x4 +O

(
x6))

Summary
The solution(s) found are the following

(1)
y = c1x

5i
2

(
1 +

(
− 1
29 + 5i

58

)
x2 +

(
− 17
9512 − 15i

4756

)
x4 +O

(
x6))

+ c2x
− 5i

2

(
1 +

(
− 1
29 − 5i

58

)
x2 +

(
− 17
9512 + 15i

4756

)
x4 +O

(
x6))

Verification of solutions

y = c1x
5i
2

(
1 +

(
− 1
29 + 5i

58

)
x2 +

(
− 17
9512 − 15i

4756

)
x4 +O

(
x6))

+ c2x
− 5i

2

(
1 +

(
− 1
29 − 5i

58

)
x2 +

(
− 17
9512 + 15i

4756

)
x4 +O

(
x6))

Verified OK.
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1.17.1 Maple step by step solution

Let’s solve
x2y′′ + xy′ +

(
x2 + 25

4

)
y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative

y′′ = −
(
4x2+25

)
y

4x2 − y′

x

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

y′′ + y′

x
+

(
4x2+25

)
y

4x2 = 0

� Check to see if x0 = 0 is a regular singular point
◦ Define functions[

P2(x) = 1
x
, P3(x) = 4x2+25

4x2

]
◦ x · P2(x) is analytic at x = 0

(x · P2(x))
∣∣∣∣
x=0

= 1

◦ x2 · P3(x) is analytic at x = 0

(x2 · P3(x))
∣∣∣∣
x=0

= 25
4

◦ x = 0is a regular singular point
Check to see if x0 = 0 is a regular singular point
x0 = 0

• Multiply by denominators
4x2y′′ + 4xy′ + (4x2 + 25) y = 0

• Assume series solution for y

y =
∞∑
k=0

akx
k+r

� Rewrite ODE with series expansions
◦ Convert xm · y to series expansion form = 0..2

xm · y =
∞∑
k=0

akx
k+r+m
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◦ Shift index using k− >k −m

xm · y =
∞∑

k=m

ak−mx
k+r

◦ Convert x · y′ to series expansion

x · y′ =
∞∑
k=0

ak(k + r)xk+r

◦ Convert x2 · y′′ to series expansion

x2 · y′′ =
∞∑
k=0

ak(k + r) (k + r − 1)xk+r

Rewrite ODE with series expansions

a0(4r2 + 25)xr + a1(4r2 + 8r + 29)x1+r +
(

∞∑
k=2

(ak(4k2 + 8kr + 4r2 + 25) + 4ak−2)xk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
4r2 + 25 = 0

• Values of r that satisfy the indicial equation
r ∈

{
−5 I

2 ,
5 I
2

}
• Each term must be 0

a1(4r2 + 8r + 29) = 0
• Solve for the dependent coefficient(s)

a1 = 0
• Each term in the series must be 0, giving the recursion relation

ak(4k2 + 8kr + 4r2 + 25) + 4ak−2 = 0
• Shift index using k− >k + 2

ak+2
(
4(k + 2)2 + 8(k + 2) r + 4r2 + 25

)
+ 4ak = 0

• Recursion relation that defines series solution to ODE
ak+2 = − 4ak

4k2+8kr+4r2+16k+16r+41

• Recursion relation for r = −5 I
2

ak+2 = − 4ak
4k2−20 Ik+16−40 I+16k

• Solution for r = −5 I
2[

y =
∞∑
k=0

akx
k− 5 I

2 , ak+2 = − 4ak
4k2−20 Ik+16−40 I+16k , a1 = 0

]
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• Recursion relation for r = 5 I
2

ak+2 = − 4ak
4k2+20 Ik+16+40 I+16k

• Solution for r = 5 I
2[

y =
∞∑
k=0

akx
k+ 5 I

2 , ak+2 = − 4ak
4k2+20 Ik+16+40 I+16k , a1 = 0

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

akx
k− 5 I

2

)
+
(

∞∑
k=0

bkx
k+ 5 I

2

)
, ak+2 = − 4ak

4k2−20 Ik+16−40 I+16k , a1 = 0, bk+2 = − 4bk
4k2+20 Ik+16+40 I+16k , b1 = 0

]

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 45� �
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+(x^2+(5/2)^2)*y(x)=0,y(x),type='series',x=0);� �

y(x) = c1x
− 5i

2

(
1 +

(
− 1
29 − 5i

58

)
x2 +

(
− 17
9512 + 15i

4756

)
x4 +O

(
x6))

+ c2x
5i
2

(
1 +

(
− 1
29 + 5i

58

)
x2 +

(
− 17
9512 − 15i

4756

)
x4 +O

(
x6))
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3 Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 66� �
AsymptoticDSolveValue[x^2*y''[x]+x*y'[x]+(x^2+(5/2)^2)*y[x]==0,y[x],{x,0,5}]� �

y(x) →
(
− 17
9512 − 15i

4756

)
c1x

5i
2
(
x4 − (16 + 20i)x2 − (136− 240i)

)
−
(

17
9512 − 15i

4756

)
c2x

− 5i
2
(
x4 − (16− 20i)x2 − (136 + 240i)

)
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1.18 problem 3.26
1.18.1 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 211

Internal problem ID [5497]
Internal file name [OUTPUT/4745_Sunday_June_05_2022_03_04_50_PM_29781487/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999
Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136
Problem number: 3.26.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Ordi-
nary point", "second_order_change_of_variable_on_y_method_2", "sec-
ond order series method. Taylor series method", "second_order_ode_non_con-
stant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order , _with_linear_symmetries ]]

(x− 1) y′′ − xy′ + y = 0

With the expansion point for the power series method at x = 0.

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving second order ode.

Let
y′′ = f(x, y, y′)

Assuming expansion is at x0 = 0 (we can always shift the actual expansion point to
0 by change of variables) and assuming f(x, y, y′) is analytic at x0 which must be the
case for an ordinary point. Let initial conditions be y(x0) = y0 and y′(x0) = y′0. Using
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Taylor series gives

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′′(x0) + · · ·

= y0 + xy′0 +
x2

2 f |x0,y0,y′0
+ x3

3! f
′|x0,y0,y′0

+ · · ·

= y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) !
dnf

dxn

∣∣∣∣
x0,y0,y′0

But

df

dx
= ∂f

∂x

dx

dx
+ ∂f

∂y

dy

dx
+ ∂f

∂y′
dy′

dx
(1)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′ (32)

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (33)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
y′ + ∂

∂y′

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
y′ + ∂

∂y′

(
d2f

dx2

)
f (3)

...
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And so on. Hence if we name F0 = f(x, y, y′) then the above can be written as

F0 = f(x, y, y′) (4)

F1 =
df

dx

= dF0

dx

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
y′′

= ∂f

∂x
+ ∂f

∂y
y′ + ∂f

∂y′
f (5)

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

F2 =
d

dx

(
d

dx
f

)
= d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
y′′

= ∂

∂x
F1 +

(
∂F1

∂y

)
y′ +

(
∂F1

∂y′

)
F0

...

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
y′′

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
y′ +

(
∂Fn−1

∂y′

)
F0 (6)

Therefore (6) can be used from now on along with

y(x) = y0 + xy′0 +
∞∑
n=0

xn+2

(n+ 2) ! Fn|x0,y0,y′0
(7)
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To find y(x) series solution around x = 0. Hence

F0 =
−y + xy′

x− 1

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
y′ + ∂F0

∂y′
F0

= −y + xy′

x− 1

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
y′ + ∂F1

∂y′
F1

= −y + xy′

x− 1

F3 =
dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
y′ + ∂F2

∂y′
F2

= −y + xy′

x− 1

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
y′ + ∂F3

∂y′
F3

= −y + xy′

x− 1

And so on. Evaluating all the above at initial conditions x = 0 and y(0) = y(0) and
y′(0) = y′(0) gives

F0 = y(0)
F1 = y(0)
F2 = y(0)
F3 = y(0)
F4 = y(0)

Substituting all the above in (7) and simplifying gives the solution as

y =
(
1 + 1

2x
2 + 1

6x
3 + 1

24x
4 + 1

120x
5 + 1

720x
6
)
y(0) + xy′(0) +O

(
x6)
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Since the expansion point x = 0 is an ordinary, we can also solve this using standard
power series The ode is normalized to be

(x− 1) y′′ − xy′ + y = 0

Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n

Then

y′ =
∞∑
n=1

nanx
n−1

y′′ =
∞∑
n=2

n(n− 1) anxn−2

Substituting the above back into the ode gives

(x− 1)
(

∞∑
n=2

n(n− 1) anxn−2

)
− x

(
∞∑
n=1

nanx
n−1

)
+
(

∞∑
n=0

anx
n

)
= 0 (1)

Which simplifies to(
∞∑
n=2

nxn−1an(n− 1)
)

+
∞∑

n =2

(
−n(n− 1) anxn−2)+ ∞∑

n =1

(−nanx
n) +

(
∞∑
n=0

anx
n

)
= 0

(2)

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =2

nxn−1an(n− 1) =
∞∑
n=1

(n+ 1) an+1nxn

∞∑
n =2

(
−n(n− 1) anxn−2) = ∞∑

n=0

(−(n+ 2) an+2(n+ 1)xn)
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Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)

(
∞∑
n=1

(n+ 1) an+1nxn

)
+

∞∑
n =0

(−(n+ 2) an+2(n+ 1)xn)

+
∞∑

n =1

(−nanx
n) +

(
∞∑
n=0

anx
n

)
= 0

n = 0 gives
−2a2 + a0 = 0

a2 =
a0
2

For 1 ≤ n, the recurrence equation is

(4)(n+ 1) an+1n− (n+ 2) an+2(n+ 1)− nan + an = 0

Solving for an+2, gives

(5)

an+2 =
n2an+1 − nan + nan+1 + an

(n+ 2) (n+ 1)

= (−n+ 1) an
(n+ 2) (n+ 1) +

(n2 + n) an+1

(n+ 2) (n+ 1)

For n = 1 the recurrence equation gives

2a2 − 6a3 = 0

Which after substituting the earlier terms found becomes

a3 =
a0
6

For n = 2 the recurrence equation gives

6a3 − 12a4 − a2 = 0

209



Which after substituting the earlier terms found becomes

a4 =
a0
24

For n = 3 the recurrence equation gives

12a4 − 20a5 − 2a3 = 0

Which after substituting the earlier terms found becomes

a5 =
a0
120

For n = 4 the recurrence equation gives

20a5 − 30a6 − 3a4 = 0

Which after substituting the earlier terms found becomes

a6 =
a0
720

For n = 5 the recurrence equation gives

30a6 − 42a7 − 4a5 = 0

Which after substituting the earlier terms found becomes

a7 =
a0

5040

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + a1x+ 1
2a0x

2 + 1
6a0x

3 + 1
24a0x

4 + 1
120a0x

5 + . . .
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Collecting terms, the solution becomes

(3)y =
(
1 + 1

2x
2 + 1

6x
3 + 1

24x
4 + 1

120x
5
)
a0 + a1x+O

(
x6)

At x = 0 the solution above becomes

y =
(
1 + 1

2x
2 + 1

6x
3 + 1

24x
4 + 1

120x
5
)
c1 + c2x+O

(
x6)

Summary
The solution(s) found are the following

(1)y =
(
1 + 1

2x
2 + 1

6x
3 + 1

24x
4 + 1

120x
5 + 1

720x
6
)
y(0) + xy′(0) +O

(
x6)

(2)y =
(
1 + 1

2x
2 + 1

6x
3 + 1

24x
4 + 1

120x
5
)
c1 + c2x+O

(
x6)

Verification of solutions

y =
(
1 + 1

2x
2 + 1

6x
3 + 1

24x
4 + 1

120x
5 + 1

720x
6
)
y(0) + xy′(0) +O

(
x6)

Verified OK.

y =
(
1 + 1

2x
2 + 1

6x
3 + 1

24x
4 + 1

120x
5
)
c1 + c2x+O

(
x6)

Verified OK.

1.18.1 Maple step by step solution

Let’s solve
(x− 1) y′′ − xy′ + y = 0

• Highest derivative means the order of the ODE is 2
y′′

• Isolate 2nd derivative
y′′ = − y

x−1 +
xy′

x−1

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
y′′ − xy′

x−1 +
y

x−1 = 0
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� Check to see if x0 = 1 is a regular singular point
◦ Define functions[

P2(x) = − x
x−1 , P3(x) = 1

x−1

]
◦ (x− 1) · P2(x) is analytic at x = 1

((x− 1) · P2(x))
∣∣∣∣
x=1

= −1

◦ (x− 1)2 · P3(x) is analytic at x = 1(
(x− 1)2 · P3(x)

) ∣∣∣∣
x=1

= 0

◦ x = 1is a regular singular point
Check to see if x0 = 1 is a regular singular point
x0 = 1

• Multiply by denominators
(x− 1) y′′ − xy′ + y = 0

• Change variables using x = u+ 1 so that the regular singular point is at u = 0

u
(

d2

du2y(u)
)
+ (−u− 1)

(
d
du
y(u)

)
+ y(u) = 0

• Assume series solution for y(u)

y(u) =
∞∑
k=0

aku
k+r

� Rewrite ODE with series expansions
◦ Convert um ·

(
d
du
y(u)

)
to series expansion form = 0..1

um ·
(

d
du
y(u)

)
=

∞∑
k=0

ak(k + r)uk+r−1+m

◦ Shift index using k− >k + 1−m

um ·
(

d
du
y(u)

)
=

∞∑
k=−1+m

ak+1−m(k + 1−m+ r)uk+r

◦ Convert u ·
(

d2

du2y(u)
)

to series expansion

u ·
(

d2

du2y(u)
)
=

∞∑
k=0

ak(k + r) (k + r − 1)uk+r−1

◦ Shift index using k− >k + 1
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u ·
(

d2

du2y(u)
)
=

∞∑
k=−1

ak+1(k + 1 + r) (k + r)uk+r

Rewrite ODE with series expansions

a0r(−2 + r)u−1+r +
(

∞∑
k=0

(ak+1(k + 1 + r) (k + r − 1)− ak(k + r − 1))uk+r

)
= 0

• a0cannot be 0 by assumption, giving the indicial equation
r(−2 + r) = 0

• Values of r that satisfy the indicial equation
r ∈ {0, 2}

• Each term in the series must be 0, giving the recursion relation
(k + r − 1) (ak+1(k + 1 + r)− ak) = 0

• Recursion relation that defines series solution to ODE
ak+1 = ak

k+1+r

• Recursion relation for r = 0
ak+1 = ak

k+1

• Solution for r = 0[
y(u) =

∞∑
k=0

aku
k, ak+1 = ak

k+1

]
• Revert the change of variables u = x− 1[

y =
∞∑
k=0

ak(x− 1)k , ak+1 = ak
k+1

]
• Recursion relation for r = 2

ak+1 = ak
k+3

• Solution for r = 2[
y(u) =

∞∑
k=0

aku
k+2, ak+1 = ak

k+3

]
• Revert the change of variables u = x− 1[

y =
∞∑
k=0

ak(x− 1)k+2 , ak+1 = ak
k+3

]
• Combine solutions and rename parameters[

y =
(

∞∑
k=0

ak(x− 1)k
)
+
(

∞∑
k=0

bk(x− 1)k+2
)
, ak+1 = ak

k+1 , bk+1 = bk
k+3

]
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Maple trace Kovacic algorithm successful

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm

A Liouvillian solution exists
Reducible group (found an exponential solution)
Reducible group (found another exponential solution)

<- Kovacics algorithm successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
Order:=6;
dsolve((x-1)*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);� �

y(x) =
(
1 + 1

2x
2 + 1

6x
3 + 1

24x
4 + 1

120x
5
)
y(0) +D(y) (0)x+O

(
x6)

3 Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 41� �
AsymptoticDSolveValue[(x-1)*y''[x]-x*y'[x]+y[x]==0,y[x],{x,0,5}]� �

y(x) → c1

(
x5

120 + x4

24 + x3

6 + x2

2 + 1
)
+ c2x
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1.19 problem 3.48 (a)
1.19.1 Solving as series ode . . . . . . . . . . . . . . . . . . . . . . . . 215
1.19.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 222

Internal problem ID [5498]
Internal file name [OUTPUT/4746_Sunday_June_05_2022_03_04_51_PM_15119847/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999
Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136
Problem number: 3.48 (a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first order ode series method.
Ordinary point", "first order ode series method. Taylor series method"

Maple gives the following as the ode type
[_linear]

y′ + xy = cos (x)

With the expansion point for the power series method at x = 0.

1.19.1 Solving as series ode

Solving ode using Taylor series method. This gives review on how the Taylor series
method works for solving first order ode. Let

y′ = f(x, y)

Where f(x, y) is analytic at expansion point x0. We can always shift to x0 = 0 if x0 is
not zero. So from now we assume x0 = 0 . Assume also that y(x0) = y0. Using Taylor
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series

y(x) = y(x0) + (x− x0) y′(x0) +
(x− x0)2

2 y′′(x0) +
(x− x0)3

3! y′′(x0) + · · ·

= y0 + xf + x2

2
df

dx

∣∣∣∣
x0,y0

+ x3

3!
d2f

dx2

∣∣∣∣
x0,y0

+ · · ·

= y0 +
∞∑
n=0

xn+1

(n+ 1) !
dnf

dxn

∣∣∣∣
x0,y0

But

df

dx
= ∂f

∂x
+ ∂f

∂y
f (1)

d2f

dx2 = d

dx

(
df

dx

)
= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
f (2)

d3f

dx3 = d

dx

(
d2f

dx2

)
= ∂

∂x

(
d2f

dx2

)
+
(

∂

∂y

d2f

dx2

)
f (3)

...

And so on. Hence if we name F0 = f(x, y) then the above can be written as

F0 = f(x, y) (4)

Fn = d

dx
(Fn−1)

= ∂

∂x
Fn−1 +

(
∂Fn−1

∂y

)
F0 (5)

For example, for n = 1 we see that

F1 =
d

dx
(F0)

= ∂

∂x
F0 +

(
∂F0

∂y

)
F0

= ∂f

∂x
+ ∂f

∂y
f
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Which is (1). And when n = 2

F2 =
d

dx
(F1)

= ∂

∂x
F1 +

(
∂F1

∂y

)
F0

= ∂

∂x

(
∂f

∂x
+ ∂f

∂y
f

)
+ ∂

∂y

(
∂f

∂x
+ ∂f

∂y
f

)
f

= ∂

∂x

(
df

dx

)
+ ∂

∂y

(
df

dx

)
f

Which is (2) and so on. Therefore (4,5) can be used from now on along with

y(x) = y0 +
∞∑
n=0

xn+1

(n+ 1) ! Fn|x0,y0
(6)

Hence

F0 = −xy + cos (x)

F1 =
dF0

dx

= ∂F0

∂x
+ ∂F0

∂y
F0

= yx2 − cos (x)x− y − sin (x)

F2 =
dF1

dx

= ∂F1

∂x
+ ∂F1

∂y
F1

=
(
x2 − 3

)
cos (x)− x

((
x2 − 3

)
y − sin (x)

)
F3 =

dF2

dx

= ∂F2

∂x
+ ∂F2

∂y
F2

=
(
x4 − 6x2 + 3

)
y +

(
−x3 + 6x

)
cos (x) +

(
−x2 + 4

)
sin (x)

F4 =
dF3

dx

= ∂F3

∂x
+ ∂F3

∂y
F3

=
(
x4 − 10x2 + 13

)
cos (x)−

((
x4 − 10x2 + 15

)
y +

(
−x2 + 8

)
sin (x)

)
x
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And so on. Evaluating all the above at initial conditions x(0) = 0 and y(0) = y(0) gives

F0 = 1
F1 = −y(0)
F2 = −3
F3 = 3y(0)
F4 = 13

Substituting all the above in (6) and simplifying gives the solution as

y =
(
1− 1

2x
2 + 1

8x
4
)
y(0) + x− x3

2 + 13x5

120 +O
(
x6)

Since x = 0 is also an ordinary point, then standard power series can also be used.
Writing the ODE as

y′ + q(x)y = p(x)
y′ + xy = cos (x)

Where

q(x) = x

p(x) = cos (x)

Next, the type of the expansion point x = 0 is determined. This point can be an
ordinary point, a regular singular point (also called removable singularity), or irregular
singular point (also called non-removable singularity or essential singularity). When
x = 0 is an ordinary point, then the standard power series is used. If the point is a
regular singular point, Frobenius series is used instead. Irregular singular point requires
more advanced methods (asymptotic methods) and is not supported now. Hopefully
this will be added in the future. x = 0 is called an ordinary point q(x) has a Taylor
series expansion around the point x = 0. x = 0 is called a regular singular point if q(x)
is not not analytic at x = 0 but xq(x) has Taylor series expansion. And finally, x = 0
is an irregular singular point if the point is not ordinary and not regular singular. This
is the most complicated case. Now the expansion point x = 0 is checked to see if it is
an ordinary point or not. Let the solution be represented as power series of the form

y =
∞∑
n=0

anx
n
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Then

y′ =
∞∑
n=1

nanx
n−1

Substituting the above back into the ode gives(
∞∑
n=1

nanx
n−1

)
+ x

(
∞∑
n=0

anx
n

)
= cos (x) (1)

Expanding cos (x) as Taylor series around x = 0 and keeping only the first 6 terms
gives

cos (x) = 1
24x

4 − 1
2x

2 + 1 + . . .

= 1
24x

4 − 1
2x

2 + 1

Hence the ODE in Eq (1) becomes(
∞∑
n=1

nanx
n−1

)
+ x

(
∞∑
n=0

anx
n

)
= 1

24x
4 − 1

2x
2 + 1 (1)

Which simplifies to

(2)
(

∞∑
n=1

nanx
n−1

)
+
(

∞∑
n=0

x1+nan

)
= 1

24x
4 − 1

2x
2 + 1

The next step is to make all powers of x be n in each summation term. Going over each
summation term above with power of x in it which is not already xn and adjusting the
power and the corresponding index gives

∞∑
n =1

nanx
n−1 =

∞∑
n=0

(1 + n) a1+nx
n

∞∑
n =0

x1+nan =
∞∑
n=1

an−1x
n

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

(3)
(

∞∑
n=0

(1 + n) a1+nx
n

)
+
(

∞∑
n=1

an−1x
n

)
= 1

24x
4 − 1

2x
2 + 1
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n = 0 gives

(a1) 1 = 1
a1 = 1

Or

a1 = 1

For 1 ≤ n, the recurrence equation is

(4)((1 + n) a1+n + an−1)xn = 1
24x

4 − 1
2x

2 + 1

For n = 1 the recurrence equation gives

(2a2 + a0)x = 0
2a2 + a0 = 0

Which after substituting the earlier terms found becomes

a2 = −a0
2

For n = 2 the recurrence equation gives

(3a3 + a1)x2 = −x2

2

3a3 + a1 = −1
2

Which after substituting the earlier terms found becomes

a3 = −1
2

For n = 3 the recurrence equation gives

(4a4 + a2)x3 = 0
4a4 + a2 = 0
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Which after substituting the earlier terms found becomes

a4 =
a0
8

For n = 4 the recurrence equation gives

(5a5 + a3)x4 = x4

24

5a5 + a3 =
1
24

Which after substituting the earlier terms found becomes

a5 =
13
120

For n = 5 the recurrence equation gives

(6a6 + a4)x5 = 0
6a6 + a4 = 0

Which after substituting the earlier terms found becomes

a6 = −a0
48

And so on. Therefore the solution is

y =
∞∑
n=0

anx
n

= a3x
3 + a2x

2 + a1x+ a0 + . . .

Substituting the values for an found above, the solution becomes

y = a0 + x− 1
2a0x

2 − 1
2x

3 + 1
8a0x

4 + 13
120x

5 + . . .

Collecting terms, the solution becomes

(3)y =
(
1− 1

2x
2 + 1

8x
4
)
a0 + x− x3

2 + 13x5

120 +O
(
x6)
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Summary
The solution(s) found are the following

(1)y =
(
1− 1

2x
2 + 1

8x
4
)
y(0) + x− x3

2 + 13x5

120 +O
(
x6)

(2)y =
(
1− 1

2x
2 + 1

8x
4
)
c1 + x− x3

2 + 13x5

120 +O
(
x6)

Figure 1: Slope field plot

Verification of solutions

y =
(
1− 1

2x
2 + 1

8x
4
)
y(0) + x− x3

2 + 13x5

120 +O
(
x6)

Verified OK.

y =
(
1− 1

2x
2 + 1

8x
4
)
c1 + x− x3

2 + 13x5

120 +O
(
x6)

Verified OK.
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1.19.2 Maple step by step solution

Let’s solve
y′ + xy = cos (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −xy + cos (x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + xy = cos (x)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ + xy) = µ(x) cos (x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ + xy) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)x

• Solve to find the integrating factor

µ(x) = ex2
2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) cos (x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) cos (x) dx+ c1

• Solve for y

y =
∫
µ(x) cos(x)dx+c1

µ(x)

• Substitute µ(x) = ex2
2

y =
∫
e
x2
2 cos(x)dx+c1

e
x2
2

• Evaluate the integrals on the rhs

y = −
I
√
π e

1
2
√
2 erf

(
I
√
2 x
2 −

√
2

2

)
4 −

I
√
π e

1
2
√
2 erf

(
I
√
2 x
2 +

√
2

2

)
4 +c1

e
x2
2

223



• Simplify

y = −
(
I
√
π e

1
2
√
2 erf

(√
2 (Ix−1)

2

)
+I

√
π e

1
2
√
2 erf

(√
2 (1+Ix)

2

)
−4c1

)
e−

x2
2

4

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 27� �
Order:=6;
dsolve(diff(y(x),x)+x*y(x)=cos(x),y(x),type='series',x=0);� �

y(x) =
(
1− 1

2x
2 + 1

8x
4
)
y(0) + x− x3

2 + 13x5

120 +O
(
x6)

3 Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 38� �
AsymptoticDSolveValue[y'[x]+x*y[x]==Cos[x],y[x],{x,0,5}]� �

y(x) → 13x5

120 − x3

2 + c1

(
x4

8 − x2

2 + 1
)
+ x
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1.20 problem 3.48 (b)
1.20.1 Solving as linear ode . . . . . . . . . . . . . . . . . . . . . . . . 225
1.20.2 Solving as first order ode lie symmetry lookup ode . . . . . . . 227
1.20.3 Solving as exact ode . . . . . . . . . . . . . . . . . . . . . . . . 231
1.20.4 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 236

Internal problem ID [5499]
Internal file name [OUTPUT/4747_Sunday_June_05_2022_03_04_52_PM_79415664/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999
Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136
Problem number: 3.48 (b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

y′ + xy = 1
x3

1.20.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

y′ + p(x)y = q(x)

Where here

p(x) = x

q(x) = 1
x3

Hence the ode is

y′ + xy = 1
x3
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The integrating factor µ is

µ = e
∫
xdx

= ex2
2

The ode becomes

d
dx(µy) = (µ)

(
1
x3

)
d
dx

(
ex2

2 y
)
=
(
ex2

2

)( 1
x3

)
d
(
ex2

2 y
)
=
(
ex2

2

x3

)
dx

Integrating gives

ex2
2 y =

∫ ex2
2

x3 dx

ex2
2 y = − ex2

2

2x2 −
expIntegral1

(
−x2

2

)
4 + c1

Dividing both sides by the integrating factor µ = ex2
2 results in

y = e−x2
2

− ex2
2

2x2 −
expIntegral1

(
−x2

2

)
4

+ c1e−
x2
2

Summary
The solution(s) found are the following

(1)y = e−x2
2

− ex2
2

2x2 −
expIntegral1

(
−x2

2

)
4

+ c1e−
x2
2
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Figure 2: Slope field plot

Verification of solutions

y = e−x2
2

− ex2
2

2x2 −
expIntegral1

(
−x2

2

)
4

+ c1e−
x2
2

Verified OK.

1.20.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

y′ = −y x4 − 1
x3

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is known. It is of type linear. Therefore we do not need to solve
the PDE (A), and can just use the lookup table shown below to find ξ, η
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Table 26: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx

The above table shows that

ξ(x, y) = 0

η(x, y) = e−x2
2 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

e−x2
2

dy

Which results in

S = ex2
2 y

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −y x4 − 1
x3

Evaluating all the partial derivatives gives

Rx = 1
Ry = 0

Sx = ex2
2 xy

Sy = ex2
2

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= ex2

2

x3 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= eR2

2

R3
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = − eR2
2

2R2 −
expIntegral1

(
−R2

2

)
4 + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

ex2
2 y = − ex2

2

2x2 −
expIntegral1

(
−x2

2

)
4 + c1

Which simplifies to

ex2
2 y = − ex2

2

2x2 −
expIntegral1

(
−x2

2

)
4 + c1

Which gives

y = −
e−x2

2

(
expIntegral1

(
−x2

2

)
x2 − 4c1x2 + 2 ex2

2

)
4x2

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates
Canonical
coordinates

transformation

ODE in canonical coordinates
(R,S)

dy
dx

= −y x4−1
x3

dS
dR

= e
R2
2

R3

R = x

S = ex2
2 y
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Summary
The solution(s) found are the following

(1)y = −
e−x2

2

(
expIntegral1

(
−x2

2

)
x2 − 4c1x2 + 2 ex2

2

)
4x2

Figure 3: Slope field plot

Verification of solutions

y = −
e−x2

2

(
expIntegral1

(
−x2

2

)
x2 − 4c1x2 + 2 ex2

2

)
4x2

Verified OK.

1.20.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
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ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)

Therefore

dy =
(
−xy + 1

x3

)
dx(

xy − 1
x3

)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = xy − 1
x3

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x
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Using result found above gives
∂M

∂y
= ∂

∂y

(
xy − 1

x3

)
= x

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1((x)− (0))
= x

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor µ is

µ = e
∫
Adx

= e
∫
xdx

The result of integrating gives

µ = e
x2
2

= ex2
2

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N .

M = µM

= ex2
2

(
xy − 1

x3

)
= ex2

2 (y x4 − 1)
x3

And

N = µN

= ex2
2 (1)

= ex2
2
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M +N
dy
dx = 0(

ex2
2 (y x4 − 1)

x3

)
+
(
ex2

2

) dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx

∫
∂φ

∂x
dx =

∫ ex2
2 (y x4 − 1)

x3 dx

(3)φ =
4 ex2

2 y x2 + expIntegral1
(
−x2

2

)
x2 + 2 ex2

2

4x2 + f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)∂φ

∂y
= ex2

2 + f ′(y)

But equation (2) says that ∂φ
∂y

= ex2
2 . Therefore equation (4) becomes

(5)ex2
2 = ex2

2 + f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1
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Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ =
4 ex2

2 y x2 + expIntegral1
(
−x2

2

)
x2 + 2 ex2

2

4x2 + c1

But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 =
4 ex2

2 y x2 + expIntegral1
(
−x2

2

)
x2 + 2 ex2

2

4x2

The solution becomes

y = −
e−x2

2

(
expIntegral1

(
−x2

2

)
x2 − 4c1x2 + 2 ex2

2

)
4x2

Summary
The solution(s) found are the following

(1)y = −
e−x2

2

(
expIntegral1

(
−x2

2

)
x2 − 4c1x2 + 2 ex2

2

)
4x2

Figure 4: Slope field plot
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Verification of solutions

y = −
e−x2

2

(
expIntegral1

(
−x2

2

)
x2 − 4c1x2 + 2 ex2

2

)
4x2

Verified OK.

1.20.4 Maple step by step solution

Let’s solve
y′ + xy = 1

x3

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = −xy + 1

x3

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ + xy = 1

x3

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x) (y′ + xy) = µ(x)

x3

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x) (y′ + xy) = µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = µ(x)x

• Solve to find the integrating factor

µ(x) = ex2
2

• Integrate both sides with respect to x∫ (
d
dx
(µ(x) y)

)
dx =

∫ µ(x)
x3 dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫ µ(x)
x3 dx+ c1

• Solve for y

y =
∫ µ(x)

x3 dx+c1

µ(x)

• Substitute µ(x) = ex2
2
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y =
∫ e

x2
2

x3 dx+c1

e
x2
2

• Evaluate the integrals on the rhs

y = − e
x2
2

2x2 −
Ei1

(
−x2

2

)
4 +c1

e
x2
2

• Simplify

y =
4c1x2e−

x2
2 −Ei1

(
−x2

2

)
x2e−

x2
2 −2

4x2

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 41� �
dsolve(diff(y(x),x)+x*y(x)=1/x^3,y(x), singsol=all)� �

y(x) =
4c1x2e−x2

2 − expIntegral1
(
−x2

2

)
x2e−x2

2 − 2
4x2

3 Solution by Mathematica
Time used: 0.067 (sec). Leaf size: 46� �
DSolve[y'[x]+x*y[x]==1/x^3,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → 1
4e

−x2
2 ExpIntegralEi

(
x2

2

)
− 1

2x2 + c1e
−x2

2
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1.21 problem 3.48 (c)
Internal problem ID [5500]
Internal file name [OUTPUT/4748_Sunday_June_05_2022_03_04_54_PM_50846618/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999
Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136
Problem number: 3.48 (c).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_bessel_ode", "sec-
ond order series method. Irregular singular point"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

Unable to solve or complete the solution.

x3y′′ + y = 1
x4

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

x3y′′ + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = 0

q(x) = 1
x3
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Table 29: Table p(x), q(x) singularites.

p(x) = 0
singularity type

q(x) = 1
x3

singularity type
x = 0 “irregular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [∞]

Irregular singular points : [0]

Since x = 0 is not an ordinary point, then we will now check if it is a regular singular
point. Unable to solve since x = 0 is not regular singular point. Terminating.

Verification of solutions N/A

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful
<- solving first the homogeneous part of the ODE successful`� �
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7 Solution by Maple� �
Order:=6;
dsolve(x^3*diff(y(x),x$2)+y(x)=1/x^4,y(x),type='series',x=0);� �

No solution found

3 Solution by Mathematica
Time used: 0.364 (sec). Leaf size: 800� �
AsymptoticDSolveValue[x^3*y''[x]+y[x]==1/x^4,y[x],{x,0,5}]� �
y(x) → e

− 2i√
xx3/4

(
33424574007825x5

281474976710656 − 468131288625ix9/2

8796093022208 − 14783093325x4

549755813888

+ 66891825ix7/2

4294967296 + 2837835x3

268435456 − 72765ix5/2

8388608 − 4725x2

524288 + 105ix3/2

8192 + 15x
512 − 3i

√
x

16

+1
)
c1+e

2i√
xx3/4

(
33424574007825x5

281474976710656 +468131288625ix9/2

8796093022208 − 14783093325x4

549755813888 − 66891825ix7/2

4294967296 + 2837835x3

268435456+
72765ix5/2

8388608 − 4725x2

524288−
105ix3/2

8192 +15x
512 +

3i
√
x

16 +1
)
c2+

(
33424574007825x5

281474976710656 + 468131288625ix9/2

8796093022208 − 14783093325x4

549755813888 − 66891825ix7/2

4294967296 + 2837835x3

268435456 +
72765ix5/2

8388608 − 4725x2

524288 −
105ix3/2

8192 + 15x
512 +

3i
√
x

16 + 1
)(

−45110302419831396543150980625ix21/2 − 42687836833427482392928732500x10 − 51974136213779750627466810000ix19/2 + 787128410789845519875480000x9 + 23504262853301237929117996800ix17/2 − 2844571059555743253185049600x8 − 16882400309820166719959961600ix15/2 + 14244707939052130467069542400x7 + 26274579672761392011514675200ix13/2 − 287333474777679866805355806720x6 − 2357805487104328892389014896640ix11/2 − 9431221948417315569556059586560x5 + (13135986528809356661664114058199040 + 13135986528809356661664114058199040i)e
2i√
x
√
πerf

(
1+i
4
√
x

)
x19/4 − 52591304980570082036042064671539200ix9/2 + 70120300724414415842325758056857600x4 + 56096676899434227136229379617587200ix7/2 − 32055063435269639516813675986944000x3 − 14246790158231042731950078280335360ix5/2 + 5180586990275096078169557560197120x2 + 1594083009187391326184853272002560ix3/2 − 425019477807771039020566521577472x− 100144397418030122718239553224704i

√
x+ 20282409603651670423947251286016

)
40564819207303340847894502572032x4 +

e
− 2i√

xx3/4
(

33424574007825x5

281474976710656 − 468131288625ix9/2

8796093022208 − 14783093325x4

549755813888 + 66891825ix7/2

4294967296 + 2837835x3

268435456 −
72765ix5/2

8388608 − 4725x2

524288 +
105ix3/2

8192 + 15x
512 −

3i
√
x

16 + 1
)(

4e
2i√
x
(
45110302419831396543150980625ix21/2−42687836833427482392928732500x10+51974136213779750627466810000ix19/2+787128410789845519875480000x9−23504262853301237929117996800ix17/2−2844571059555743253185049600x8+16882400309820166719959961600ix15/2+14244707939052130467069542400x7−26274579672761392011514675200ix13/2−287333474777679866805355806720x6+2357805487104328892389014896640ix11/2−9431221948417315569556059586560x5+52591304980570082036042064671539200ix9/2+70120300724414415842325758056857600x4−56096676899434227136229379617587200ix7/2−32055063435269639516813675986944000x3+14246790158231042731950078280335360ix5/2+5180586990275096078169557560197120x2−1594083009187391326184853272002560ix3/2−425019477807771039020566521577472x+100144397418030122718239553224704i

√
x+20282409603651670423947251286016

)
x19/4 − (52543946115237426646656456232796160 + 52543946115237426646656456232796160i)

√
πerfi

(
1+i
4
√
x

))
162259276829213363391578010288128
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1.22 problem 3.48 (d)
Internal problem ID [5501]
Internal file name [OUTPUT/4749_Sunday_June_05_2022_03_04_54_PM_8074703/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999
Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136
Problem number: 3.48 (d).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method.
Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order , _linear , _nonhomogeneous ]]

Unable to solve or complete the solution.

xy′′ − 2y′ + y = cos (x)

With the expansion point for the power series method at x = 0.

The type of the expansion point is first determined. This is done on the homogeneous
part of the ODE.

xy′′ − 2y′ + y = 0

The following is summary of singularities for the above ode. Writing the ode as

y′′ + p(x)y′ + q(x)y = 0

Where

p(x) = −2
x

q(x) = 1
x
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Table 30: Table p(x), q(x) singularites.

p(x) = − 2
x

singularity type
x = 0 “regular”

q(x) = 1
x

singularity type
x = 0 “regular”

Combining everything together gives the following summary of singularities for the ode
as

Regular singular points : [0]

Irregular singular points : [∞]

Since x = 0 is regular singular point, then Frobenius power series is used. The ode is
normalized to be

xy′′ − 2y′ + y = cos (x)
Since this is an inhomogeneous, then let the solution be

y = yh + yp

Where yh is the solution to the homogeneous ode xy′′−2y′+y = 0, and yp is a particular
solution to the inhomogeneous ode.which is found using the balance equation generated
from indicial equation

First, we solve for yh Let the solution be represented as Frobenius power series of the
form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

y′′ =
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

Substituting the above back into the ode gives(
∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

)
x− 2

(
∞∑
n=0

(n+ r) anxn+r−1

)
+
(

∞∑
n=0

anx
n+r

)
= 0

(1)
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Which simplifies to(
∞∑
n=0

xn+r−1an(n+ r) (n+ r − 1)
)

+
∞∑

n =0

(
−2(n+ r) anxn+r−1)+( ∞∑

n=0

anx
n+r

)
= 0

(2A)

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

anx
n+r =

∞∑
n=1

an−1x
n+r−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n+ r − 1.(

∞∑
n=0

xn+r−1an(n+ r) (n+ r−1)
)
+

∞∑
n =0

(
−2(n+ r) anxn+r−1)+( ∞∑

n=1

an−1x
n+r−1

)
= 0

(2B)

The indicial equation is obtained from n = 0. From Eq (2B) this gives

xn+r−1an(n+ r) (n+ r − 1)− 2(n+ r) anxn+r−1 = 0

When n = 0 the above becomes

x−1+ra0r(−1 + r)− 2ra0x−1+r = 0

Or (
x−1+rr(−1 + r)− 2r x−1+r

)
a0 = 0

Since a0 6= 0 then the above simplifies to

r x−1+r(−3 + r) = 0

Since the above is true for all x then the indicial equation becomes

r(−3 + r) = 0

Solving for r gives the roots of the indicial equation as

r1 = 3
r2 = 0
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The corresponding balance equation is found by replacing r by m and a by c to avoid
confusing terms between particular solution and the homogeneous solution. Hence the
balance equation is (

x−1+mm(−1 +m)− 2mx−1+m
)
c0 = cos (x)

This equation will used later to find the particular solution.

Since a0 6= 0 then the indicial equation becomes

r x−1+r(−3 + r) = 0

Solving for r gives the roots of the indicial equation as Since r1 − r2 = 3 is an integer,
then we can construct two linearly independent solutions

y1(x) = xr1

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) + xr2

(
∞∑
n=0

bnx
n

)
Or

y1(x) = x3

(
∞∑
n=0

anx
n

)

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
Or

y1(x) =
∞∑
n=0

anx
n+3

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n

)
Where C above can be zero. We start by finding y1. Eq (2B) derived above is now used
to find all an coefficients. The case n = 0 is skipped since it was used to find the roots
of the indicial equation. a0 is arbitrary and taken as a0 = 1. For 1 ≤ n the recursive
equation is

(3)an(n+ r) (n+ r − 1)− 2an(n+ r) + an−1 = 0

Solving for an from recursive equation (4) gives

an = − an−1

n2 + 2nr + r2 − 3n− 3r (4)
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Which for the root r = 3 becomes

an = − an−1

n (n+ 3) (5)

At this point, it is a good idea to keep track of an in a table both before substituting
r = 3 and after as more terms are found using the above recursive equation.

n an,r an

a0 1 1

For n = 1, using the above recursive equation gives

a1 = − 1
r2 − r − 2

Which for the root r = 3 becomes
a1 = −1

4
And the table now becomes

n an,r an

a0 1 1
a1 − 1

r2−r−2 −1
4

For n = 2, using the above recursive equation gives

a2 =
1

r4 − 5r2 + 4

Which for the root r = 3 becomes
a2 =

1
40

And the table now becomes

n an,r an

a0 1 1
a1 − 1

r2−r−2 −1
4

a2
1

r4−5r2+4
1
40
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For n = 3, using the above recursive equation gives

a3 = − 1
(r4 − 5r2 + 4) r (r + 3)

Which for the root r = 3 becomes

a3 = − 1
720

And the table now becomes

n an,r an

a0 1 1
a1 − 1

r2−r−2 −1
4

a2
1

r4−5r2+4
1
40

a3 − 1
(r4−5r2+4)r(r+3) − 1

720

For n = 4, using the above recursive equation gives

a4 =
1

(r4 − 5r2 + 4) r (r + 3) (r2 + 5r + 4)

Which for the root r = 3 becomes

a4 =
1

20160
And the table now becomes

n an,r an

a0 1 1
a1 − 1

r2−r−2 −1
4

a2
1

r4−5r2+4
1
40

a3 − 1
(r4−5r2+4)r(r+3) − 1

720

a4
1

(r4−5r2+4)r(r+3)(r2+5r+4)
1

20160

For n = 5, using the above recursive equation gives

a5 = − 1
(r + 1)2 (r − 2) (r + 2)2 (−1 + r) r (r + 3) (r + 4) (r + 5)
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Which for the root r = 3 becomes

a5 = − 1
806400

And the table now becomes

n an,r an

a0 1 1
a1 − 1

r2−r−2 −1
4

a2
1

r4−5r2+4
1
40

a3 − 1
(r4−5r2+4)r(r+3) − 1

720

a4
1

(r4−5r2+4)r(r+3)(r2+5r+4)
1

20160

a5 − 1
(r+1)2(r−2)(r+2)2(−1+r)r(r+3)(r+4)(r+5) − 1

806400

Using the above table, then the solution y1(x) is

y1(x) = x3(a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6. . .

)
= x3

(
1− x

4 + x2

40 − x3

720 + x4

20160 − x5

806400 +O
(
x6))

Now the second solution y2(x) is found. Let

r1 − r2 = N

Where N is positive integer which is the difference between the two roots. r1 is taken
as the larger root. Hence for this problem we have N = 3. Now we need to determine if
C is zero or not. This is done by finding limr→r2 a3(r). If this limit exists, then C = 0,
else we need to keep the log term and C 6= 0. The above table shows that

aN = a3

= − 1
(r4 − 5r2 + 4) r (r + 3)

Therefore

lim
r→r2

− 1
(r4 − 5r2 + 4) r (r + 3) = lim

r→0
− 1
(r4 − 5r2 + 4) r (r + 3)

= undefined
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Since the limit does not exist then the log term is needed. Therefore the second solution
has the form

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)
Therefore

d

dx
y2(x) = Cy′1(x) ln (x) +

Cy1(x)
x

+
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)

= Cy′1(x) ln (x) +
Cy1(x)

x
+
(

∞∑
n=0

x−1+n+r2bn(n+ r2)
)

d2

dx2y2(x) = Cy′′1(x) ln (x) +
2Cy′1(x)

x
− Cy1(x)

x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

)

= Cy′′1(x) ln (x)+
2Cy′1(x)

x
− Cy1(x)

x2 +
(

∞∑
n=0

x−2+n+r2bn(n+ r2) (−1+n+ r2)
)

Substituting these back into the given ode xy′′ − 2y′ + y = 0 gives(
Cy′′1(x) ln (x) +

2Cy′1(x)
x

− Cy1(x)
x2

+
∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x− 2Cy′1(x) ln (x)

− 2Cy1(x)
x

− 2
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+ Cy1(x) ln (x) +

(
∞∑
n=0

bnx
n+r2

)
= 0

Which can be written as

(7)

(
(y′′1(x)x+ y1(x)− 2y′1(x)) ln (x) +

(
2y′1(x)

x
− y1(x)

x2

)
x− 2y1(x)

x

)
C

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

− 2
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+
(

∞∑
n=0

bnx
n+r2

)
= 0
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But since y1(x) is a solution to the ode, then

y′′1(x)x+ y1(x)− 2y′1(x) = 0

Eq (7) simplifes to

(8)

((
2y′1(x)

x
− y1(x)

x2

)
x− 2y1(x)

x

)
C

+
(

∞∑
n=0

(
bnx

n+r2(n+ r2)2

x2 − bnx
n+r2(n+ r2)

x2

))
x

− 2
(

∞∑
n=0

bnx
n+r2(n+ r2)

x

)
+
(

∞∑
n=0

bnx
n+r2

)
= 0

Substituting y1 =
∞∑
n=0

anx
n+r1 into the above gives

(9)

(
2
(

∞∑
n=0

x−1+n+r1an(n+ r1)
)
x− 3

(
∞∑
n=0

anx
n+r1

))
C

x

+

(
∞∑
n=0

x−2+n+r2bn(n+ r2) (−1 + n+ r2)
)
x2 − 2

(
∞∑
n=0

x−1+n+r2bn(n+ r2)
)
x+

(
∞∑
n=0

bnx
n+r2

)
x

x
= 0

Since r1 = 3 and r2 = 0 then the above becomes

(10)

(
2
(

∞∑
n=0

x2+nan(n+ 3)
)
x− 3

(
∞∑
n=0

anx
n+3
))

C

x

+

(
∞∑
n=0

x−2+nbnn(n− 1)
)
x2 − 2

(
∞∑
n=0

xn−1bnn

)
x+

(
∞∑
n=0

bnx
n

)
x

x
= 0

Which simplifies to

(2A)

(
∞∑
n=0

2C x2+nan(n+ 3)
)

+
∞∑

n =0

(
−3C x2+nan

)
+
(

∞∑
n=0

nxn−1bn(n− 1)
)

+
∞∑

n =0

(
−2xn−1bnn

)
+
(

∞∑
n=0

bnx
n

)
= 0
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The next step is to make all powers of x be n − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn−1 and
adjusting the power and the corresponding index gives

∞∑
n =0

2C x2+nan(n+ 3) =
∞∑
n=3

2Can−3nxn−1

∞∑
n =0

(
−3C x2+nan

)
=

∞∑
n=3

(
−3Can−3x

n−1)
∞∑

n =0

bnx
n =

∞∑
n=1

bn−1x
n−1

Substituting all the above in Eq (2A) gives the following equation where now all powers
of x are the same and equal to n− 1.

(2B)

(
∞∑
n=3

2Can−3nxn−1

)
+

∞∑
n =3

(
−3Can−3x

n−1)+( ∞∑
n=0

nxn−1bn(n− 1)
)

+
∞∑

n =0

(
−2xn−1bnn

)
+
(

∞∑
n=1

bn−1x
n−1

)
= 0

For n = 0 in Eq. (2B), we choose arbitray value for b0 as b0 = 1. For n = 1, Eq (2B)
gives

−2b1 + b0 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−2b1 + 1 = 0

Solving the above for b1 gives
b1 =

1
2

For n = 2, Eq (2B) gives
−2b2 + b1 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

−2b2 +
1
2 = 0
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Solving the above for b2 gives
b2 =

1
4

For n = N , where N = 3 which is the difference between the two roots, we are free to
choose b3 = 0. Hence for n = 3, Eq (2B) gives

3C + 1
4 = 0

Which is solved for C. Solving for C gives

C = − 1
12

For n = 4, Eq (2B) gives
5Ca1 + b3 + 4b4 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

4b4 +
5
48 = 0

Solving the above for b4 gives
b4 = − 5

192
For n = 5, Eq (2B) gives

7Ca2 + b4 + 10b5 = 0

Which when replacing the above values found already for bn and the values found earlier
for an and for C, gives

10b5 −
13
320 = 0

Solving the above for b5 gives
b5 =

13
3200

Now that we found all bn and C, we can calculate the second solution from

y2(x) = Cy1(x) ln (x) +
(

∞∑
n=0

bnx
n+r2

)

Using the above value found for C = − 1
12 and all bn, then the second solution becomes

y2(x) = − 1
12

(
x3
(
1− x

4 + x2

40 − x3

720 + x4

20160 − x5

806400 +O
(
x6))) ln (x)

+ 1 + x

2 + x2

4 − 5x4

192 + 13x5

3200 +O
(
x6)
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Therefore the homogeneous solution is

yh(x) = c1y1(x) + c2y2(x)

= c1x
3
(
1− x

4 + x2

40 − x3

720 + x4

20160 − x5

806400 +O
(
x6))

+ c2

(
− 1
12

(
x3
(
1− x

4 + x2

40 − x3

720 + x4

20160 − x5

806400 +O
(
x6))) ln (x) + 1

+ x

2 + x2

4 − 5x4

192 + 13x5

3200 +O
(
x6))

The particular solution is found by solving for c,m the balance equation(
x−1+mm(−1 +m)− 2mx−1+m

)
c0 = F

Where F (x) is the RHS of the ode. If F (x) has more than one term, then this is done for
each term one at a time and then all the particular solutions are added. The function
F (x) will be converted to series if needed. in order to solve for cn,m for each term, the
same recursive relation used to find yh(x) is used to find cn,m which is used to find
the particular solution

∑
n=0 cnx

n+m by replacing an by cn and r by m.

The following are the values of an found in terms of the indicial root r.

a1 = − a0
r2−r−2

a2 = a0
r4−5r2+4

a3 = − a0
(r4−5r2+4)r(r+3)

a4 = a0
(r4−5r2+4)r(r+3)(r2+5r+4)

a5 = − a0
(r+1)2(r−2)(r+2)2(−1+r)r(r+3)(r+4)(r+5)

Expanding the rhs of the ode cos (x) in series gives

cos (x) = 1
24x

4 − 1
2x

2 + 1

Since the F = 1
24x

4− 1
2x

2+1 has more than one term then we find a particular solution
for each term and add the result to find the particular solution to the ode.

Now we determine the particular solution yp associated with F = x4

24 by solving the
balance equation (

x−1+mm(−1 +m)− 2mx−1+m
)
c0 =

x4

24
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For c0 and x. This results in

c0 =
1
240

m = 5

The particular solution is therefore

yp =
∞∑
n=0

cnx
n+m

=
∞∑
n=0

cnx
n+5

Where in the above c0 = 1
240 .

The remaining cn values are found using the same recurrence relation given in the earlier
table which was used to find the homogeneous solution but using c0 in place of a0 and
using m = 5 in place of the root of the indicial equation used to find the homogeneous
solution. By letting a0 = c0 or a0 = 1

240 and r = m or r = 5. The following table gives
the resulting cn values. These values will be used to find the particular solution. Values
of cn found not defined when doing the substitution will be discarded and not used

c0 = 1
240

c1 = − 1
4320

c2 = 1
120960

c3 = − 1
4838400

c4 = 1
261273600

c5 = − 1
18289152000

The particular solution is now found using

yp = xm
∞∑
n=0

cnx
n

= x5
∞∑
n=0

cnx
n

Using the values found above for cn into the above sum gives

yp = x5
(

1
240 − 1

4320x+ 1
120960x

2 − 1
4838400x

3 + 1
261273600x

4 − 1
18289152000x

5
)
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= 1
240x

5 − 1
4320x

6 + 1
120960x

7 − 1
4838400x

8 + 1
261273600x

9 − 1
18289152000x

10

Unable to solve the balance equation (x−1+mm(−1 +m)− 2mx−1+m) c0 for c0 and x.
No particular solution exists.

Failed to convert RHS cos (x) to series in order to find particular solution. Unable to
solve. Terminating Unable to find the particular solution or no solution exists.

Verification of solutions N/A

Maple trace

� �
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE

checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:

-> Bessel
<- Bessel successful

<- special function solution successful
<- solving first the homogeneous part of the ODE successful`� �
7 Solution by Maple� �
Order:=6;
dsolve(x*diff(y(x),x$2)-2*diff(y(x),x)+y(x)=cos(x),y(x),type='series',x=0);� �

No solution found
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3 Solution by Mathematica
Time used: 0.161 (sec). Leaf size: 312� �
AsymptoticDSolveValue[x*y''[x]-2*y'[x]+y[x]==Cos[x],y[x],{x,0,5}]� �
y(x) → c1

(
x4
(
log(x)
48 − 5

192

)
− 1

12x
3 log(x) + x2

4 + x

2 + 1
)

+ c2

(
− x5

806400 + x4

20160 − x3

720 + x2

40 − x

4 + 1
)
x3 +

(
− x5

806400 + x4

20160 − x3

720

+ x2

40 − x

4 + 1
)
x3

(
x6(−20160 log2(x) + 141222 log(x)− 201569

)
3135283200

+ x5(22277− 114360 log(x))
435456000 + x4(69541− 29064 log(x))

34836480
+ x3(1860 log(x) + 193)

388800 − 1
6x2 + x2(4 log(x)− 23)

1152 − 1
6x + 1

36x(− log(x)− 2)

− log(x)
12

)
+
(
x6(5791− 672 log(x))

8709120 − 589x5

302400 − 89x4

8640 + 19x3

360 + x2

24

− x

3

)(
x4
(
log(x)
48 − 5

192

)
− 1

12x
3 log(x) + x2

4 + x

2 + 1
)
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1.23 problem 3.50
1.23.1 Solving as series ode . . . . . . . . . . . . . . . . . . . . . . . . 256
1.23.2 Maple step by step solution . . . . . . . . . . . . . . . . . . . . 259

Internal problem ID [5502]
Internal file name [OUTPUT/4750_Sunday_June_05_2022_03_04_56_PM_66020216/index.tex]

Book: Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag.
Springer October 29, 1999
Section: Chapter 3. APPROXIMATE SOLUTION OF LINEAR DIFFERENTIAL EQUA-
TIONS. page 136
Problem number: 3.50.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :

Maple gives the following as the ode type
[_linear]

Unable to solve or complete the solution.

y′ − y

x
= cos (x)

With the expansion point for the power series method at x = 0.

1.23.1 Solving as series ode

Writing the ODE as

y′ + q(x)y = p(x)

y′ − y

x
= cos (x)

Where

q(x) = −1
x

p(x) = cos (x)

Next, the type of the expansion point x = 0 is determined. This point can be an
ordinary point, a regular singular point (also called removable singularity), or irregular
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singular point (also called non-removable singularity or essential singularity). When
x = 0 is an ordinary point, then the standard power series is used. If the point is a
regular singular point, Frobenius series is used instead. Irregular singular point requires
more advanced methods (asymptotic methods) and is not supported now. Hopefully
this will be added in the future. x = 0 is called an ordinary point q(x) has a Taylor
series expansion around the point x = 0. x = 0 is called a regular singular point if q(x)
is not not analytic at x = 0 but xq(x) has Taylor series expansion. And finally, x = 0
is an irregular singular point if the point is not ordinary and not regular singular. This
is the most complicated case. Now the expansion point x = 0 is checked to see if it is
an ordinary point or not.

Since x = 0 is not an ordinary point, we now check to see if it is a regular singular
point. xq(x) = −1 has a Taylor series around x = 0. Since x = 0 is regular singular
point, then Frobenius power series is used. Since this is an inhomogeneous, then let the
solution be

y = yh + yp

Where yh is the solution to the homogeneous ode y′ − y
x
= 0,and yp is a particular

solution to the inhomogeneous ode. First, we solve for yh Let the solution be represented
as Frobenius power series of the form

y =
∞∑
n=0

anx
n+r

Then

y′ =
∞∑
n=0

(n+ r) anxn+r−1

Substituting the above back into the ode gives

(
∞∑
n=0

(n+ r) anxn+r−1

)
−

∞∑
n=0

anx
n+r

x
= 0 (1)

Hence the ODE in Eq (1) becomes

(
∞∑
n=0

(n+ r) anxn+r−1

)
−

∞∑
n=0

anx
n+r

x
= 0 (1)

Expanding the second term in (1) gives(
∞∑
n=0

(n+ r) anxn+r−1

)
+−1 ·

(
∞∑
n=0

anx
n+r

)
+ 1

x
·

(
∞∑
n=0

anx
n+r

)
= 0 (1)
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Which simplifies to

(2A)
(

∞∑
n=0

(n+ r) anxn+r−1

)
+

∞∑
n =0

(
−xn+r−1an

)
= 0

The next step is to make all powers of x be n+ r − 1 in each summation term. Going
over each summation term above with power of x in it which is not already xn+r−1 and
adjusting the power and the corresponding index gives Substituting all the above in
Eq (2A) gives the following equation where now all powers of x are the same and equal
to n+ r − 1.

(2B)
(

∞∑
n=0

(n+ r) anxn+r−1

)
+

∞∑
n =0

(
−xn+r−1an

)
= 0

The indicial equation is obtained from n = 0. From Eq (2) this gives

(n+ r) anxn+r−1 − xn+r−1an = 0

When n = 0 the above becomes

ra0x
−1+r − x−1+ra0 = 0

The corresponding balance equation is found by replacing r by m and a by c to avoid
confusing terms between particular solution and the homogeneous solution. Hence the
balance equation is (

x−1+mm− x−1+m
)
c0 = cos (x)

This equation will used later to find the particular solution.

Since a0 6= 0 then the indicial equation becomes

(−1 + r)x−1+r = 0

Since the above is true for all x then the indicial equation simplifies to

−1 + r = 0

Solving for r gives the root of the indicial equation as

r = 1
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We start by finding yh. From the above we see that there is no recurrence relation since
there is only one summation term. Therefore all an terms are zero except for a0. Hence

yh = a0x
r

Therefore the homogeneous solution is

yh(x) = a0
(
x+O

(
x6))

Unable to solve the balance equation (x−1+mm− x−1+m) c0 = cos (x) for c0 and x. No
particular solution exists.

Unable to find the particular solution. No solution exist.

Verification of solutions N/A

1.23.2 Maple step by step solution

Let’s solve
y′ − y

x
= cos (x)

• Highest derivative means the order of the ODE is 1
y′

• Isolate the derivative
y′ = y

x
+ cos (x)

• Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y′ − y

x
= cos (x)

• The ODE is linear; multiply by an integrating factor µ(x)
µ(x)

(
y′ − y

x

)
= µ(x) cos (x)

• Assume the lhs of the ODE is the total derivative d
dx
(µ(x) y)

µ(x)
(
y′ − y

x

)
= µ′(x) y + µ(x) y′

• Isolate µ′(x)
µ′(x) = −µ(x)

x

• Solve to find the integrating factor
µ(x) = 1

x

• Integrate both sides with respect to x
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∫ (
d
dx
(µ(x) y)

)
dx =

∫
µ(x) cos (x) dx+ c1

• Evaluate the integral on the lhs
µ(x) y =

∫
µ(x) cos (x) dx+ c1

• Solve for y

y =
∫
µ(x) cos(x)dx+c1

µ(x)

• Substitute µ(x) = 1
x

y = x
(∫ cos(x)

x
dx+ c1

)
• Evaluate the integrals on the rhs

y = x(Ci(x) + c1)

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`� �
7 Solution by Maple� �
Order:=6;
dsolve(diff(y(x),x)-y(x)/x=cos(x),y(x),type='series',x=0);� �

No solution found

3 Solution by Mathematica
Time used: 0.056 (sec). Leaf size: 34� �
AsymptoticDSolveValue[y'[x]-y[x]/x==Cos[x],y[x],{x,0,5}]� �

y(x) → x

(
− x6

4320 + x4

96 − x2

4 + log(x)
)
+ c1x
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