### 119 HFOPDE, chapter 4.8.2

119.1 Problem 1
119.2 Problem 2
119.3 Problem 3
119.4 Problem 4
119.5 Problem 5
119.6 Problem 6
119.7 Problem 7

_______________________________________________________________________________________

#### 119.1 Problem 1

problem number 968

Added March 10, 2019.

Problem Chapter 4.8.2.1, from Handbook of ﬁrst order partial diﬀerential equations by Polyanin, Zaitsev, Moussiaux.

Solve for $$w(x,y)$$

$a w_x + b w_y = (f(x)+g(y)) w$

Mathematica

$\left \{\left \{w(x,y)\to c_1\left (\frac{a y-b x}{a}\right ) \exp \left (\int _1^x \frac{g\left (\frac{b K[1]+a y-b x}{a}\right )+f(K[1])}{a} \, dK[1]\right )\right \}\right \}$

Maple

$w \left ( x,y \right ) ={\it \_F1} \left ({\frac{ya-bx}{a}} \right ){{\rm e}^{\int ^{x}\!{\frac{1}{a} \left ( f \left ({\it \_a} \right ) +g \left ({\frac{{\it \_a}\,b+ya-bx}{a}} \right ) \right ) }{d{\it \_a}}}}$

_______________________________________________________________________________________

#### 119.2 Problem 2

problem number 969

Added March 10, 2019.

Problem Chapter 4.8.2.2, from Handbook of ﬁrst order partial diﬀerential equations by Polyanin, Zaitsev, Moussiaux.

Solve for $$w(x,y)$$

$w_x + a w_y = f(x) g(y) w$

Mathematica

$\left \{\left \{w(x,y)\to c_1(y-a x) \exp \left (\int _1^x f(K[1]) g(a K[1]-a x+y) \, dK[1]\right )\right \}\right \}$

Maple

$w \left ( x,y \right ) ={\it \_F1} \left ( -ax+y \right ){{\rm e}^{\int ^{x}\!f \left ({\it \_a} \right ) g \left ({\it \_a}\,a-ax+y \right ){d{\it \_a}}}}$

_______________________________________________________________________________________

#### 119.3 Problem 3

problem number 970

Added March 10, 2019.

Problem Chapter 4.8.2.3, from Handbook of ﬁrst order partial diﬀerential equations by Polyanin, Zaitsev, Moussiaux.

Solve for $$w(x,y)$$

$w_x + (a y+f(x)) w_y = g(x) h(y) w$

Mathematica

$\left \{\left \{w(x,y)\to c_1\left (-e^{-a x} \left (e^{a x} \int _1^x e^{-a K[1]} f(K[1]) \, dK[1]-y\right )\right ) \exp \left (\int _1^x g(K[2]) h\left (e^{a K[2]} \left (\text{Integrate}\left [e^{-a K[1]} f(K[1]),\{K[1],1,K[2]\},\text{Assumptions}\to \text{True}\right ]-e^{-a x} \left (e^{a x} \text{Integrate}\left [e^{-a K[1]} f(K[1]),\{K[1],1,x\},\text{Assumptions}\to \text{True}\right ]-y\right )\right )\right ) \, dK[2]\right )\right \}\right \}$

Maple

$w \left ( x,y \right ) ={\it \_F1} \left ( -\int \!f \left ( x \right ){{\rm e}^{-ax}}\,{\rm d}x+y{{\rm e}^{-ax}} \right ){{\rm e}^{\int ^{x}\!g \left ({\it \_b} \right ) h \left ( \left ( \int \!f \left ({\it \_b} \right ){{\rm e}^{-a{\it \_b}}}\,{\rm d}{\it \_b}-\int \!f \left ( x \right ){{\rm e}^{-ax}}\,{\rm d}x+y{{\rm e}^{-ax}} \right ){{\rm e}^{a{\it \_b}}} \right ){d{\it \_b}}}}$

_______________________________________________________________________________________

#### 119.4 Problem 4

problem number 971

Added March 10, 2019.

Problem Chapter 4.8.2.4, from Handbook of ﬁrst order partial diﬀerential equations by Polyanin, Zaitsev, Moussiaux.

Solve for $$w(x,y)$$

$f(x) w_x + g(y) w_y = (h_1(x)+h_2(y)) w$

Mathematica

$\text{DSolve}\left [f(x) w^{(1,0)}(x,y)+g(y) w^{(0,1)}(x,y)=w(x,y) (\text{h1}(x)+\text{h2}(y)),w(x,y),\{x,y\}\right ]$

Maple

$w \left ( x,y \right ) ={\it \_F1} \left ( -\int \! \left ( f \left ( x \right ) \right ) ^{-1}\,{\rm d}x+\int \! \left ( g \left ( y \right ) \right ) ^{-1}\,{\rm d}y \right ){{\rm e}^{\int ^{x}\!{\frac{{\it h1} \left ({\it \_f} \right ) +{\it h2} \left ( \RootOf \left ( \int \! \left ( f \left ({\it \_f} \right ) \right ) ^{-1}\,{\rm d}{\it \_f}-\int ^{{\it \_Z}}\! \left ( g \left ({\it \_a} \right ) \right ) ^{-1}{d{\it \_a}}-\int \! \left ( f \left ( x \right ) \right ) ^{-1}\,{\rm d}x+\int \! \left ( g \left ( y \right ) \right ) ^{-1}\,{\rm d}y \right ) \right ) }{f \left ({\it \_f} \right ) }}{d{\it \_f}}}}$ contains RootOf

_______________________________________________________________________________________

#### 119.5 Problem 5

problem number 972

Added March 10, 2019.

Problem Chapter 4.8.2.5, from Handbook of ﬁrst order partial diﬀerential equations by Polyanin, Zaitsev, Moussiaux.

Solve for $$w(x,y)$$

$f_1(x) w_x +(f_2(x)+f_3(x) y^k)w_y = g(x) h(y) w$

Mathematica

$\text{DSolve}\left [\text{f1}(x) w^{(1,0)}(x,y)+w^{(0,1)}(x,y) \left (\text{f2}(x)+\text{f3}(x) y^k\right )=g(x) h(y) w(x,y),w(x,y),\{x,y\}\right ]$

Maple

$\text{ sol=() }$

_______________________________________________________________________________________

#### 119.6 Problem 6

problem number 973

Added March 10, 2019.

Problem Chapter 4.8.2.6, from Handbook of ﬁrst order partial diﬀerential equations by Polyanin, Zaitsev, Moussiaux.

Solve for $$w(x,y)$$

$f_1(x) g_1(y) w_x + f_2(x) g_2(y) w_y = h_1(x) h_2(y) w$

Mathematica

$\text{DSolve}\left [\text{f1}(x) \text{g1}(y) w^{(1,0)}(x,y)+\text{f2}(x) \text{g2}(y) w^{(0,1)}(x,y)=\text{h1}(x) \text{h2}(y) w(x,y),w(x,y),\{x,y\}\right ]$

Maple

$w \left ( x,y \right ) ={\it \_F1} \left ( -\int \!{\frac{{\it f2} \left ( x \right ) }{{\it f1} \left ( x \right ) }}\,{\rm d}x+\int \!{\frac{{\it g1} \left ( y \right ) }{{\it g2} \left ( y \right ) }}\,{\rm d}y \right ){{\rm e}^{\int ^{x}\!{\frac{{\it h1} \left ({\it \_f} \right ) }{{\it f1} \left ({\it \_f} \right ) }{\it h2} \left ( \RootOf \left ( \int \!{\frac{{\it f2} \left ({\it \_f} \right ) }{{\it f1} \left ({\it \_f} \right ) }}\,{\rm d}{\it \_f}-\int ^{{\it \_Z}}\!{\frac{{\it g1} \left ({\it \_a} \right ) }{{\it g2} \left ({\it \_a} \right ) }}{d{\it \_a}}-\int \!{\frac{{\it f2} \left ( x \right ) }{{\it f1} \left ( x \right ) }}\,{\rm d}x+\int \!{\frac{{\it g1} \left ( y \right ) }{{\it g2} \left ( y \right ) }}\,{\rm d}y \right ) \right ) \left ({\it g1} \left ( \RootOf \left ( \int \!{\frac{{\it f2} \left ({\it \_f} \right ) }{{\it f1} \left ({\it \_f} \right ) }}\,{\rm d}{\it \_f}-\int ^{{\it \_Z}}\!{\frac{{\it g1} \left ({\it \_a} \right ) }{{\it g2} \left ({\it \_a} \right ) }}{d{\it \_a}}-\int \!{\frac{{\it f2} \left ( x \right ) }{{\it f1} \left ( x \right ) }}\,{\rm d}x+\int \!{\frac{{\it g1} \left ( y \right ) }{{\it g2} \left ( y \right ) }}\,{\rm d}y \right ) \right ) \right ) ^{-1}}{d{\it \_f}}}}$ has RootOf

_______________________________________________________________________________________

#### 119.7 Problem 7

problem number 974

Added March 10, 2019.

Problem Chapter 4.8.2.7, from Handbook of ﬁrst order partial diﬀerential equations by Polyanin, Zaitsev, Moussiaux.

Solve for $$w(x,y)$$

$f_1(x) g_1(y) w_x + f_2(x) g_2(y) w_y = (h_1(x)+ h_2(y)) w$

Mathematica

$\text{DSolve}\left [\text{f1}(x) \text{g1}(y) w^{(1,0)}(x,y)+\text{f2}(x) \text{g2}(y) w^{(0,1)}(x,y)=w(x,y) (\text{h1}(x)+\text{h2}(y)),w(x,y),\{x,y\}\right ]$

Maple

$w \left ( x,y \right ) ={\it \_F1} \left ( -\int \!{\frac{{\it f2} \left ( x \right ) }{{\it f1} \left ( x \right ) }}\,{\rm d}x+\int \!{\frac{{\it g1} \left ( y \right ) }{{\it g2} \left ( y \right ) }}\,{\rm d}y \right ){{\rm e}^{\int ^{x}\!{\frac{1}{{\it f1} \left ({\it \_f} \right ) } \left ({\it h1} \left ({\it \_f} \right ) +{\it h2} \left ( \RootOf \left ( \int \!{\frac{{\it f2} \left ({\it \_f} \right ) }{{\it f1} \left ({\it \_f} \right ) }}\,{\rm d}{\it \_f}-\int ^{{\it \_Z}}\!{\frac{{\it g1} \left ({\it \_a} \right ) }{{\it g2} \left ({\it \_a} \right ) }}{d{\it \_a}}-\int \!{\frac{{\it f2} \left ( x \right ) }{{\it f1} \left ( x \right ) }}\,{\rm d}x+\int \!{\frac{{\it g1} \left ( y \right ) }{{\it g2} \left ( y \right ) }}\,{\rm d}y \right ) \right ) \right ) \left ({\it g1} \left ( \RootOf \left ( \int \!{\frac{{\it f2} \left ({\it \_f} \right ) }{{\it f1} \left ({\it \_f} \right ) }}\,{\rm d}{\it \_f}-\int ^{{\it \_Z}}\!{\frac{{\it g1} \left ({\it \_a} \right ) }{{\it g2} \left ({\it \_a} \right ) }}{d{\it \_a}}-\int \!{\frac{{\it f2} \left ( x \right ) }{{\it f1} \left ( x \right ) }}\,{\rm d}x+\int \!{\frac{{\it g1} \left ( y \right ) }{{\it g2} \left ( y \right ) }}\,{\rm d}y \right ) \right ) \right ) ^{-1}}{d{\it \_f}}}}$ has RootOf