2.1.74 $$2 u_x + 3 u_y = 1$$

problem number 74

Added May 23, 2019.

From Math 5587 midterm I, Fall 2016, practice exam, problem 5.

Solve for $$u(x,y)$$ \begin {align*} 2 u_x + 3 u_y = 1 \end {align*}

Mathematica

$\left \{\left \{u(x,y)\to \frac {x}{2}+c_1\left (y-\frac {3 x}{2}\right )\right \}\right \}$

Maple

$u \left (x , y\right ) = \frac {x}{2}+\mathit {\_F1} \left (-\frac {3 x}{2}+y \right )$

Hand solution

Solve $$2u_{x}+3u_{y}=1$$. Using the method of characteristics$\frac {dx}{2}=\frac {dy}{3}=\frac {du}{1}$

From the ﬁrst pair of equations we obtain $$\frac {1}{2}x=\frac {1}{3}y+C_{1}$$ or $$C_{1}=\frac {1}{2}x-\frac {1}{3}y$$. From the pair $$\frac {dx}{2}=\frac {du}{1}$$ we obtain

$$\frac {1}{2}x=u+C_{2}$$ or $$C_{2}=\frac {1}{2}x-u$$. But $$C_{2}=F\left ( C_{1}\right )$$ where $$F$$ is arbitrary function. Hence \begin {align*} \frac {1}{2}x-u & =F\left ( \frac {1}{2}x-\frac {1}{3}y\right ) \\ u & =\frac {1}{2}x-F\left ( \frac {1}{2}x-\frac {1}{3}y\right ) \end {align*}

________________________________________________________________________________________