#### 4.2.2 Cylinderical coordinates

4.2.2.1 [317] Haberman 7.9.1 (a)
4.2.2.2 [318] Haberman 7.9.1 (b)
4.2.2.3 [319] Haberman 7.9.1 (c)
4.2.2.4 [320] Haberman 7.9.1 (d)
4.2.2.5 [321] Haberman 7.9.1 (e)
4.2.2.6 [322] Haberman 7.9.2 (a)
4.2.2.7 [323] Haberman 7.9.2 (b)
4.2.2.8 [324] Haberman 7.9.2 (c)
4.2.2.9 [325] Haberman 7.9.2 (d)

##### 4.2.2.1 [317] Haberman 7.9.1 (a)

problem number 317

Added May 25, 2019.

Problem 7.9.1 (a) from Richard Haberman Applied Partial Diﬀerential Equations, 4th edition.

Solve Laplace PDE inside circular cylinder subject to boundary conditions $$u(r,\theta ,0)=f(r,\theta )$$, $$u(r,\theta ,H)=0$$, $$u(a,\theta ,z)=0$$.

\begin {align*} u_{rr} + \frac {1}{r} u_r + \frac {1}{r^2} u_{\theta \theta } + u_{zz} = 0 \end {align*}

Mathematica

Failed

Maple

sol=()

________________________________________________________________________________________

##### 4.2.2.2 [318] Haberman 7.9.1 (b)

problem number 318

Added May 25, 2019.

Problem 7.9.1 (b) from Richard Haberman Applied Partial Diﬀerential Equations, 4th edition.

Solve Laplace PDE inside circular cylinder subject to boundary conditions $$u(r,\theta ,0)=f(r) \sin (7\theta )$$, $$u(r,\theta ,H)=0$$, $$u(a,\theta ,z)=0$$.

\begin {align*} u_{rr} + \frac {1}{r} u_r + \frac {1}{r^2} u_{\theta \theta } + u_{zz} = 0 \end {align*}

Mathematica

Failed

Maple

sol=()

________________________________________________________________________________________

##### 4.2.2.3 [319] Haberman 7.9.1 (c)

problem number 319

Added May 25, 2019.

Problem 7.9.1 (c) from Richard Haberman Applied Partial Diﬀerential Equations, 4th edition.

Solve Laplace PDE inside circular cylinder subject to boundary conditions $$u(r,\theta ,0)=0$$, $$u(r,\theta ,H)=f(r) \cos (3 \theta )$$, $$u_r(a,\theta ,z)=0$$.

\begin {align*} u_{rr} + \frac {1}{r} u_r + \frac {1}{r^2} u_{\theta \theta } + u_{zz} = 0 \end {align*}

Mathematica

Failed

Maple

sol=()

________________________________________________________________________________________

##### 4.2.2.4 [320] Haberman 7.9.1 (d)

problem number 320

Added May 25, 2019.

Problem 7.9.1 (d) from Richard Haberman Applied Partial Diﬀerential Equations, 4th edition.

Solve Laplace PDE inside circular cylinder subject to boundary conditions $$u_z(r,\theta ,0)=f(r) \sin (3 \theta )$$, $$u_z(r,\theta ,H)=0$$, $$u_r(a,\theta ,z)=0$$.

\begin {align*} u_{rr} + \frac {1}{r} u_r + \frac {1}{r^2} u_{\theta \theta } + u_{zz} = 0 \end {align*}

Mathematica

Failed

Maple

sol=()

________________________________________________________________________________________

##### 4.2.2.5 [321] Haberman 7.9.1 (e)

problem number 321

Added May 25, 2019.

Problem 7.9.1 (e) from Richard Haberman Applied Partial Diﬀerential Equations, 4th edition.

Solve Laplace PDE inside circular cylinder subject to boundary conditions $$u_z(r,\theta ,0)=f(r,\theta )$$, $$u_z(r,\theta ,H)=0$$, $$u_r(a,\theta ,z)=0$$.

\begin {align*} u_{rr} + \frac {1}{r} u_r + \frac {1}{r^2} u_{\theta \theta } + u_{zz} = 0 \end {align*}

Mathematica

Failed

Maple

sol=()

________________________________________________________________________________________

##### 4.2.2.6 [322] Haberman 7.9.2 (a)

problem number 322

Added May 25, 2019.

Problem 7.9.2 (a) from Richard Haberman Applied Partial Diﬀerential Equations, 4th edition.

Solve Laplace PDE inside semicircular cylinder subject to boundary conditions $$u(r,\theta ,0)=0$$, $$u(r,\theta ,H)=f(r,\theta )$$, $$u(r,0,z)=0$$, $$u(r,\pi ,z)=0$$, $$u(a,\theta ,z)=0$$.

\begin {align*} u_{rr} + \frac {1}{r} u_r + \frac {1}{r^2} u_{\theta \theta } + u_{zz} = 0 \end {align*}

Mathematica

Failed

Maple

sol=()

________________________________________________________________________________________

##### 4.2.2.7 [323] Haberman 7.9.2 (b)

problem number 323

Added May 25, 2019.

Problem 7.9.2 (b) from Richard Haberman Applied Partial Diﬀerential Equations, 4th edition.

Solve Laplace PDE inside semicircular cylinder subject to boundary conditions $$u(r,\theta ,0)=0$$, $$u_z(r,\theta ,H)=0$$, $$u(r,0,z)=0$$, $$u(r,\pi ,z)=0$$, $$u(a,\theta ,z)=g(\theta ,z)$$.

\begin {align*} u_{rr} + \frac {1}{r} u_r + \frac {1}{r^2} u_{\theta \theta } + u_{zz} = 0 \end {align*}

Mathematica

Failed

Maple

sol=()

________________________________________________________________________________________

##### 4.2.2.8 [324] Haberman 7.9.2 (c)

problem number 324

Added May 25, 2019.

Problem 7.9.2 (c) from Richard Haberman Applied Partial Diﬀerential Equations, 4th edition.

Solve Laplace PDE inside semicircular cylinder subject to boundary conditions $$u_z(r,\theta ,0)=0$$, $$u_z(r,\theta ,H)=0$$, $$u_\theta (r,0,z)=0$$, $$u_\theta (r,\pi ,z)=0$$, $$u_r(a,\theta ,z)=g(\theta ,z)$$.

\begin {align*} u_{rr} + \frac {1}{r} u_r + \frac {1}{r^2} u_{\theta \theta } + u_{zz} = 0 \end {align*}

Mathematica

Failed

Maple

sol=()

________________________________________________________________________________________

##### 4.2.2.9 [325] Haberman 7.9.2 (d)

problem number 325

Added May 26, 2019.

Problem 7.9.2 (d) from Richard Haberman Applied Partial Diﬀerential Equations, 4th edition.

Solve Laplace PDE inside semicircular cylinder subject to boundary conditions $$u(r,\theta ,0)=0$$, $$u(r,0,z)=0$$, $$u(a,\theta ,z)=0$$, $$u(r,\theta ,H)=0$$, $$u_\theta (r,\pi ,z)=f(r,z)$$.

\begin {align*} u_{rr} + \frac {1}{r} u_r + \frac {1}{r^2} u_{\theta \theta } + u_{zz} = 0 \end {align*}

Mathematica

Failed

Maple

sol=()