#### 2.15.29 Thomas equation $$u_{xy} + \alpha u_x + \beta u_y+ \nu u_x u_y =0$$

problem number 138

Thomas equation. Solve for $$u(x,t)$$ $u_{xy} + \alpha u_x + \beta u_y+ \nu u_x u_y =0$

Mathematica

Failed

Maple

$u \left (x , y\right ) = \frac {-2 \alpha y -2 \beta x -\ln \left (\frac {\alpha ^{2}-2 \alpha \beta +\beta ^{2}-4 \mathit {\_c}_{1} \nu }{\left (c_{1} {\mathrm e}^{\left (x -y \right ) \sqrt {\alpha ^{2}-2 \alpha \beta +\beta ^{2}-4 \mathit {\_c}_{1} \nu }}-c_{2}\right )^{2} \nu ^{2}}\right )-\ln \left (\frac {\alpha ^{2}+2 \alpha \beta +\beta ^{2}-4 \mathit {\_c}_{1} \nu }{\left (c_{3} {\mathrm e}^{\left (x +y \right ) \sqrt {\alpha ^{2}+2 \alpha \beta +\beta ^{2}-4 \mathit {\_c}_{1} \nu }}-c_{4}\right )^{2} \nu ^{2}}\right )+\left (-x +y \right ) \sqrt {\alpha ^{2}-2 \alpha \beta +\beta ^{2}-4 \mathit {\_c}_{1} \nu }+\left (-x -y \right ) \sqrt {\alpha ^{2}+2 \alpha \beta +\beta ^{2}-4 \mathit {\_c}_{1} \nu }-4 \ln (2)}{2 \nu }$

________________________________________________________________________________________