2.15.7 Buckmaster \( u_t = (u^4)_{xx} + (u^3)_x\)

problem number 116

Added December 27, 2018.

Taken from https://en.wikipedia.org/wiki/List_of_nonlinear_partial_differential_equations

Buckmaster. Solve for \(u(x,t)\) \[ u_t = (u^4)_{xx} + (u^3)_x \]

Mathematica


Failed

Maple


\[u \left (x , t\right ) = \RootOf \left (c_{1} x +c_{2} t +c_{3}+c_{4}+\int _{}^{\mathit {\_Z}}\frac {4 c_{1}^{2} \mathit {\_f}^{3}}{c_{1} \mathit {\_f}^{3}+4 c_{3} c_{1}^{2}-c_{2} \mathit {\_f}}d\mathit {\_f} \right )\] Answer in terms of RootOf.

________________________________________________________________________________________