#### 6.4.4 2.3

6.4.4.1 [1039] Problem 1
6.4.4.2 [1040] Problem 2
6.4.4.3 [1041] Problem 3
6.4.4.4 [1042] Problem 4
6.4.4.5 [1043] Problem 5
6.4.4.6 [1044] Problem 6

##### 6.4.4.1 [1039] Problem 1

problem number 1039

Added Feb. 17, 2019.

Problem Chapter 4.2.3.1 from Handbook of ﬁrst order partial diﬀerential equations by Polyanin, Zaitsev, Moussiaux.

Solve for $$w(x,y)$$ $a w_x + b w_y = (c x^3+d y^3) w$

Mathematica

$\left \{\left \{w(x,y)\to c_1\left (y-\frac{b x}{a}\right ) e^{\frac{1}{4} \left (\frac{c x^4}{a}+\frac{d y^4}{b}\right )}\right \}\right \}$

Maple

$w \left ( x,y \right ) ={\it \_F1} \left ({\frac{ya-bx}{a}} \right ){{\rm e}^{1/4\,{\frac{x \left ( c{x}^{3}{a}^{3}+4\,{a}^{3}d{y}^{3}-6\,{a}^{2}bdx{y}^{2}+4\,a{b}^{2}d{x}^{2}y-{b}^{3}d{x}^{3} \right ) }{{a}^{4}}}}}$

________________________________________________________________________________________

##### 6.4.4.2 [1040] Problem 2

problem number 1040

Added Feb. 17, 2019.

Problem Chapter 4.2.3.2 from Handbook of ﬁrst order partial diﬀerential equations by Polyanin, Zaitsev, Moussiaux.

Solve for $$w(x,y)$$ $x w_x + y w_y = a \sqrt{x^2+y^2} w$

Mathematica

$\left \{\left \{w(x,y)\to e^{a \sqrt{x^2+y^2}} c_1\left (\frac{y}{x}\right )\right \}\right \}$

Maple

$w \left ( x,y \right ) ={\it \_F1} \left ({\frac{y}{x}} \right ){{\rm e}^{a\sqrt{{x}^{2}+{y}^{2}}}}$

________________________________________________________________________________________

##### 6.4.4.3 [1041] Problem 3

problem number 1041

Added Feb. 17, 2019.

Problem Chapter 4.2.3.3 from Handbook of ﬁrst order partial diﬀerential equations by Polyanin, Zaitsev, Moussiaux.

Solve for $$w(x,y)$$ $x^2 w_x + x y w_y = y^2 (a x + b y) w$

Mathematica

$\left \{\left \{w(x,y)\to c_1\left (\frac{y}{x}\right ) e^{\frac{1}{2} y^2 \left (a+\frac{b y}{x}\right )}\right \}\right \}$

Maple

$w \left ( x,y \right ) ={\it \_F1} \left ({\frac{y}{x}} \right ){{\rm e}^{1/2\,{\frac{b{y}^{3}}{x}}+1/2\,{y}^{2}a}}$

________________________________________________________________________________________

##### 6.4.4.4 [1042] Problem 4

problem number 1042

Added Feb. 17, 2019.

Problem Chapter 4.2.3.4 from Handbook of ﬁrst order partial diﬀerential equations by Polyanin, Zaitsev, Moussiaux.

Solve for $$w(x,y)$$ $x^2 y w_x + a x y^2 w_y = (b x y +c x+ d y + k) w$

Mathematica

$\left \{\left \{w(x,y)\to x^b c_1\left (y x^{-a}\right ) \exp \left (-\frac{a^2 d y+a c x+a d y+a k+c x}{a^2 x y+a x y}\right )\right \}\right \}$

Maple

$w \left ( x,y \right ) ={x}^{b}{\it \_F1} \left ( y{x}^{-a} \right ){{\rm e}^{{\frac{-{a}^{2}yd+ \left ( -cx-dy-k \right ) a-cx}{x \left ( a+1 \right ) ya}}}}$

________________________________________________________________________________________

##### 6.4.4.5 [1043] Problem 5

problem number 1043

Added Feb. 17, 2019.

Problem Chapter 4.2.3.5 from Handbook of ﬁrst order partial diﬀerential equations by Polyanin, Zaitsev, Moussiaux.

Solve for $$w(x,y)$$ $a x y^2 w_x + b x^2 y w_y = (a n y^2+ b m x^2) w$

Mathematica

$\left \{\left \{w(x,y)\to x^n \left (a y^2\right )^{m/2} c_1\left (\frac{a y^2-b x^2}{2 a}\right )\right \}\right \}$

Maple

$w \left ( x,y \right ) ={\it \_F1} \left ({\frac{{y}^{2}a-b{x}^{2}}{a}} \right ) \left ({y}^{2}a \right ) ^{m/2}{x}^{n}$

________________________________________________________________________________________

##### 6.4.4.6 [1044] Problem 6

problem number 1044

Added Feb. 17, 2019.

Problem Chapter 4.2.3.6 from Handbook of ﬁrst order partial diﬀerential equations by Polyanin, Zaitsev, Moussiaux.

Solve for $$w(x,y)$$ $x^3 w_x + a y^3 w_y = x^2 (b x + c y) w$

Mathematica

\begin{align*} & \left \{w(x,y)\to c_1\left (\frac{1}{2} \left (\frac{a}{x^2}-\frac{1}{y^2}\right )\right ) \exp \left (b x-\frac{c \tan ^{-1}\left (\frac{x \sqrt{\frac{a}{x^2}-\frac{1}{y^2}}}{\sqrt{\frac{x^2}{y^2}}}\right )}{\sqrt{\frac{a}{x^2}-\frac{1}{y^2}}}\right )\right \}\\& \left \{w(x,y)\to c_1\left (\frac{1}{2} \left (\frac{a}{x^2}-\frac{1}{y^2}\right )\right ) \exp \left (\frac{c \tan ^{-1}\left (\frac{x \sqrt{\frac{a}{x^2}-\frac{1}{y^2}}}{\sqrt{\frac{x^2}{y^2}}}\right )}{\sqrt{\frac{a}{x^2}-\frac{1}{y^2}}}+b x\right )\right \}\\ \end{align*}

Maple

$w \left ( x,y \right ) ={\it \_F1} \left ({\frac{-{y}^{2}a+{x}^{2}}{{y}^{2}{x}^{2}}} \right ){{\rm e}^{bx}} \left ( \sqrt{{\frac{-{y}^{2}a+{x}^{2}}{{y}^{2}{x}^{2}}}}x+\sqrt{{\frac{{x}^{2}}{{y}^{2}}}} \right ) ^{{c{\frac{1}{\sqrt{{\frac{-{y}^{2}a+{x}^{2}}{{y}^{2}{x}^{2}}}}}}}}$

________________________________________________________________________________________