6.4.1 1.1

   6.4.1.1 [1021] Example 1
   6.4.1.2 [1022] Example 2
   6.4.1.3 [1023] Example 3

6.4.1.1 [1021] Example 1

problem number 1021

Added Feb. 17, 2019.

Chapter 4.1.1 example 1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + a y w_y = b y^2 w \]

Mathematica

\[\left \{\left \{w(x,y)\to e^{\frac{b y^2}{2 a}} c_1\left (y e^{-a x}\right )\right \}\right \}\]

Maple

\[w \left ( x,y \right ) ={\it \_F1} \left ( y{{\rm e}^{-ax}} \right ){{\rm e}^{1/2\,{\frac{b{y}^{2}}{a}}}}\]

________________________________________________________________________________________

6.4.1.2 [1022] Example 2

problem number 1022

Added Feb. 17, 2019.

Chapter 4.1.1 example 2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + a y w_y = b e^{\lambda x} y w \]

Mathematica

\[\left \{\left \{w(x,y)\to c_1\left (y e^{-a x}\right ) e^{\frac{b y e^{\lambda x}}{a+\lambda }}\right \}\right \}\]

Maple

\[w \left ( x,y \right ) ={\it \_F1} \left ( y{{\rm e}^{-ax}} \right ){{\rm e}^{{\frac{by{{\rm e}^{\lambda \,x}}}{a+\lambda }}}}\]

________________________________________________________________________________________

6.4.1.3 [1023] Example 3

problem number 1023

Added Feb. 17, 2019.

Chapter 4.1.1 example 3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + a w_y = b w \]

Mathematica

\[\left \{\left \{w(x,y)\to e^{b x} c_1(y-a x)\right \}\right \}\]

Maple

\[w \left ( x,y \right ) ={\it \_F1} \left ( -ax+y \right ){{\rm e}^{bx}}\]

________________________________________________________________________________________