6.1.4 problem number 4

problem number 420

Added January 2, 2019.

Problem 1.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\) \[ w_y = w f(x,y) \]

Mathematica

\[\left \{\left \{w(x,y)\to c_1(x) \exp \left (\int _1^yf(x,K[1])dK[1]\right )\right \}\right \}\]

Maple

\[w \left ( x,y \right ) ={\it \_F1} \left ( y \right ){{\rm e}^{\int \!f \left ( x,y \right ) \,{\rm d}x}}\]

________________________________________________________________________________________