4.1.1 Cartesian coordinates

   4.1.1.1 [281] Rectangle, 3 edges zero, buttom edge not
   4.1.1.2 [282] Rectangle, 3 edges zero, right edge not
   4.1.1.3 [283] Rectangle, 3 edges zero, buttom edge has impulse
   4.1.1.4 [284] Haberman 2.5.1 (a)
   4.1.1.5 [285] Haberman 2.5.1 (b)
   4.1.1.6 [286] Haberman 2.5.1 (c)
   4.1.1.7 [287] Haberman 2.5.1 (d)
   4.1.1.8 [288] Haberman 2.5.1 (e)
   4.1.1.9 [289] Unit triangle B.C.
   4.1.1.10 [290] Top edge at infinity
   4.1.1.11 [291] Top edge at infinity
   4.1.1.12 [292] Right edge at infinity
   4.1.1.13 [293] Right edge at infinity
   4.1.1.14 [294] Right edge at infinity
   4.1.1.15 [295] Laplace PDE in 2D Cartessian with boundary condition as Dirac function
   4.1.1.16 [296] One side homogeneous
   4.1.1.17 [297] In right half plane
   4.1.1.18 [298] Right edge at infinity
   4.1.1.19 [299] Dirichlet problem Upper half
   4.1.1.20 [300] Right half-plane
   4.1.1.21 [301] First quadrant
   4.1.1.22 [302] Neumann problem upper half-plane
   4.1.1.23 [303] Dirichlet problem in a rectangle
   4.1.1.24 [304] Strip in upper half
   4.1.1.25 [305] in Rectangle, right edge at infinity

4.1.1.1 [281] Rectangle, 3 edges zero, buttom edge not

problem number 281

Added Nov 20, 2019

Solve Laplace PDE \[ \frac{\partial ^2 u}{\partial x^2} + \frac{\partial ^2 u}{\partial y^2} = 0 \] inside a rectangle \(0 \leq x \leq L, 0 \leq y \leq H\), with following boundary conditions \begin{align*} u(x,0)&=f(x) \\ u(x,H)&=0 \\ u(0,y)&=0 \\ u(L,y)&=0 \end{align*}

pict
Figure 4.1:PDE specification

Mathematica

\[\left \{\left \{u(x,y)\to \underset{n=1}{\overset{\infty }{\sum }}\text{csch}\left (\frac{H n \pi }{L}\right ) \text{FourierSinCoefficient}\left [f(x),x,n,\text{FourierParameters}\to \left \{1,\frac{\pi }{L}\right \}\right ] \sin \left (\frac{n \pi x}{L}\right ) \sinh \left (\frac{n \pi (H-y)}{L}\right )\right \}\right \}\]

Maple

\[u \left ( x,y \right ) =\sum _{n=1}^{\infty } \left ( -2\,{\frac{1}{L}\sin \left ({\frac{n\pi \,x}{L}} \right ) \int _{0}^{L}\!\sin \left ({\frac{n\pi \,x}{L}} \right ) f \left ( x \right ) \,{\rm d}x \left ( -{{\rm e}^{-{\frac{n\pi \, \left ( -2\,H+y \right ) }{L}}}}+{{\rm e}^{{\frac{n\pi \,y}{L}}}} \right ) \left ({{\rm e}^{2\,{\frac{n\pi \,H}{L}}}}-1 \right ) ^{-1}} \right ) \]

Hand solution

Solve

\begin{align*} \nabla ^{2}u & =0\qquad \text{on a rectangle}\qquad R=\left \{ 0<x<a,0<y<b\right \} \\ u\left ( x,0\right ) & =f\left ( x\right ) \\ u\left ( x,H\right ) & =0\\ u\left ( 0,y\right ) & =0\\ u\left ( L,y\right ) & =0 \end{align*}

Solution

Let \(u\left ( x,y\right ) =X\left ( x\right ) Y\left ( x\right ) \). Substituting this into the PDE \(\frac{\partial ^{2}u}{\partial x^{2}}+\frac{\partial ^{2}u}{\partial y^{2}}=0\) and simplifying gives\[ \frac{X^{\prime \prime }}{X}=-\frac{Y^{\prime \prime }}{Y}\] Each side depends on different independent variable and they are equal, therefore they must be equal to same constant.\[ \frac{X^{\prime \prime }}{X}=-\frac{Y^{\prime \prime }}{Y}=\pm \lambda \] Since the boundary conditions along the \(x\) direction are the homogeneous ones, \(-\lambda \) is selected in the above.\[ \frac{X^{\prime \prime }}{X}=-\frac{Y^{\prime \prime }}{Y}=-\lambda \] Two ODE’s are obtained\begin{equation} X^{\prime \prime }+\lambda X=0\tag{1} \end{equation} With the boundary conditions\begin{align*} X\left ( 0\right ) & =0\\ X\left ( L\right ) & =0 \end{align*}

And\begin{equation} Y^{\prime \prime }-\lambda Y=0\tag{2} \end{equation} With the boundary conditions\begin{align*} Y\left ( 0\right ) & =f\left ( x\right ) \\ Y\left ( H\right ) & =0 \end{align*}

Case \(\lambda <0\)

The solution to (1) is

\[ X=A\cosh \left ( \sqrt{\left \vert \lambda \right \vert }x\right ) +B\sinh \left ( \sqrt{\left \vert \lambda \right \vert }x\right ) \] At \(x=0\), the above gives \(0=A\). Hence \(X=B\sinh \left ( \sqrt{\left \vert \lambda \right \vert }x\right ) \). At \(x=L\) this gives \(X=B\sinh \left ( \sqrt{\left \vert \lambda \right \vert }L\right ) \). But \(\sinh \left ( \sqrt{\left \vert \lambda \right \vert }L\right ) =0\) only at \(0\) and \(\sqrt{\left \vert \lambda \right \vert }L\neq 0\), therefore \(B=0\) and this leads to trivial solution. Hence \(\lambda <0\) is not an eigenvalue.

Case \(\lambda =0\)

\[ X=Ax+B \] Hence at \(x=0\) this gives \(0=B\) and the solution becomes \(X=B\). At \(x=L\), \(B=0\). Hence the trivial solution. \(\lambda =0\) is not an eigenvalue.

Case \(\lambda >0\)

Solution is \[ X=A\cos \left ( \sqrt{\lambda }x\right ) +B\sin \left ( \sqrt{\lambda }x\right ) \] At \(x=0\) this gives \(0=A\) and the solution becomes \(X=B\sin \left ( \sqrt{\lambda }x\right ) \). At \(x=L\)\[ 0=B\sin \left ( \sqrt{\lambda }L\right ) \] For non-trivial solution \(\sin \left ( \sqrt{\lambda }L\right ) =0\) or \(\sqrt{\lambda }L=n\pi \) where \(n=1,2,3,\cdots \), therefore\[ \lambda _{n}=\left ( \frac{n\pi }{L}\right ) ^{2}\qquad n=1,2,3,\cdots \] Eigenfunctions are\begin{equation} X_{n}\left ( x\right ) =B_{n}\sin \left ( \frac{n\pi }{L}x\right ) \qquad n=1,2,3,\cdots \tag{3} \end{equation} For the \(Y\) ODE, the solution is\begin{equation} Y_{n}=C_{n}\cosh \left ( \frac{n\pi }{L}y\right ) +D_{n}\sinh \left ( \frac{n\pi }{L}y\right ) \tag{4} \end{equation} Applying B.C. at \(y=H\) gives\begin{align*} 0 & =C_{n}\cosh \left ( \frac{n\pi }{L}H\right ) +D_{n}\sinh \left ( \frac{n\pi }{L}H\right ) \\ C_{n} & =-D_{n}\frac{\sinh \left ( \frac{n\pi }{L}H\right ) }{\cosh \left ( \frac{n\pi }{L}H\right ) }\\ & =-D_{n}\tanh \left ( \frac{n\pi }{L}H\right ) \end{align*}

Hence (4) becomes \begin{align*} Y_{n} & =-D_{n}\tanh \left ( \frac{n\pi }{L}H\right ) \cosh \left ( \frac{n\pi }{L}y\right ) +D_{n}\sinh \left ( \frac{n\pi }{L}y\right ) \\ & =D_{n}\left ( \sinh \left ( \frac{n\pi }{L}y\right ) -\tanh \left ( \frac{n\pi }{L}H\right ) \cosh \left ( \frac{n\pi }{L}y\right ) \right ) \end{align*}

Now the complete solution is produced\begin{align*} u_{n}\left ( x,y\right ) & =Y_{n}X_{n}\\ & =D_{n}\left ( \sinh \left ( \frac{n\pi }{L}y\right ) -\tanh \left ( \frac{n\pi }{L}H\right ) \cosh \left ( \frac{n\pi }{L}y\right ) \right ) B_{n}\sin \left ( \frac{n\pi }{L}x\right ) \end{align*}

Let \(D_{n}B_{n}=B_{n}\) since a constant. (no need to make up a new symbol).\[ u_{n}\left ( x,y\right ) =B_{n}\left ( \sinh \left ( \frac{n\pi }{L}y\right ) -\tanh \left ( \frac{n\pi }{L}H\right ) \cosh \left ( \frac{n\pi }{L}y\right ) \right ) \sin \left ( \frac{n\pi }{L}x\right ) \] Sum of eigenfunctions is the solution, hence\begin{equation} u\left ( x,y\right ) =\sum _{n=1}^{\infty }B_{n}\left ( \sinh \left ( \frac{n\pi }{L}y\right ) -\tanh \left ( \frac{n\pi }{L}H\right ) \cosh \left ( \frac{n\pi }{L}y\right ) \right ) \sin \left ( \frac{n\pi }{L}x\right ) \tag{5} \end{equation} The nonhomogeneous boundary condition is now resolved.  At \(y=0\)\[ u\left ( x,0\right ) =f\left ( x\right ) \] Therefore (5) becomes\[ f\left ( x\right ) =\sum _{n=1}^{\infty }-B_{n}\tanh \left ( \frac{n\pi }{a}b\right ) \sin \left ( \frac{n\pi }{a}x\right ) \] Multiplying both sides by \(\sin \left ( \frac{m\pi }{L}x\right ) \) and integrating gives\begin{align*} \int _{0}^{L}f\left ( x\right ) \sin \left ( \frac{m\pi }{L}x\right ) dx & =-\int _{0}^{a}\sin \left ( \frac{m\pi }{L}x\right ) \sum _{n=1}^{\infty }B_{n}\tanh \left ( \frac{n\pi }{L}H\right ) \sin \left ( \frac{n\pi }{L}x\right ) dx\\ & =-\sum _{n=1}^{\infty }B_{n}\tanh \left ( \frac{n\pi }{L}b\right ) \int _{0}^{L}\sin \left ( \frac{n\pi }{L}x\right ) \sin \left ( \frac{m\pi }{L}x\right ) dx\\ & =-B_{n}\tanh \left ( \frac{m\pi }{L}H\right ) \left ( \frac{L}{2}\right ) \end{align*}

Hence\[ B_{n}=-\frac{2}{L}\frac{\int _{0}^{L}f\left ( x\right ) \sin \left ( \frac{n\pi }{L}x\right ) dx}{\tanh \left ( \frac{n\pi }{L}H\right ) }\] The solution (5) becomes\begin{align*} u\left ( x,y\right ) & =-\frac{2}{L}\sum _{n=1}^{\infty }\frac{\int _{0}^{L}f\left ( x\right ) \sin \left ( \frac{n\pi }{L}x\right ) dx}{\tanh \left ( \frac{n\pi }{L}H\right ) }\left ( \sinh \left ( \frac{n\pi }{L}y\right ) -\tanh \left ( \frac{n\pi }{L}H\right ) \cosh \left ( \frac{n\pi }{L}y\right ) \right ) \sin \left ( \frac{n\pi }{L}x\right ) \\ & =-\frac{2}{L}\sum _{n=1}^{\infty }\int _{0}^{L}f\left ( x\right ) \sin \left ( \frac{n\pi }{L}x\right ) dx\left ( \frac{\sinh \left ( \frac{n\pi }{L}y\right ) }{\tanh \left ( \frac{n\pi }{L}H\right ) }-\cosh \left ( \frac{n\pi }{L}y\right ) \right ) \sin \left ( \frac{n\pi }{L}x\right ) \end{align*}

________________________________________________________________________________________

4.1.1.2 [282] Rectangle, 3 edges zero, right edge not

problem number 282

Added January 12, 2020

Solve Laplace PDE inside square \(\nabla ^2 u(x,y) = 0\) with \(0 \leq x \leq 1, 0 \leq y \leq 1\), with following boundary conditions \begin{align*} u(x,0)&=0 \\ u(x,1)&=0 \\ u(0,y)&=0 \\ u(1,y)&=y(1-y) \end{align*}

pict
Figure 4.2:PDE specification

Mathematica

\[\left \{\left \{u(x,y)\to \underset{n=1}{\overset{\infty }{\sum }}-\frac{4 \left (-1+(-1)^n\right ) \text{csch}(n \pi ) \sin (n \pi y) \sinh (n \pi x)}{n^3 \pi ^3}\right \}\right \}\]

Maple

\[u \left ( x,y \right ) =\sum _{n=1}^{\infty }-4\,{\frac{ \left ( \left ( -1 \right ) ^{n}-1 \right ){{\rm e}^{\pi \,n}}\sin \left ( n\pi \,y \right ) \left ({{\rm e}^{n\pi \,x}}-{{\rm e}^{-n\pi \,x}} \right ) }{{n}^{3}{\pi }^{3} \left ({{\rm e}^{2\,\pi \,n}}-1 \right ) }}\]

Hand solution

\(a\) is used for the length of the \(x\) dimension and \(b\) for the length of the \(y\) dimension.

Solution

Let \(u\left ( x,y\right ) =X\left ( x\right ) Y\left ( x\right ) \). Substituting this into the PDE gives\[ X^{\prime \prime }Y+Y^{\prime \prime }X=0 \] Dividing throughout by \(XY\neq 0\,\) and simplifying gives\[ \frac{X^{\prime \prime }}{X}=-\frac{Y^{\prime \prime }}{Y}=\lambda \] This gives the eigenvalue ODE\begin{align} Y^{\prime \prime }+\lambda Y & =0\tag{1}\\ Y\left ( 0\right ) & =0\nonumber \\ Y\left ( b\right ) & =0\nonumber \end{align}

The solution to (1) gives the eigenvalues \(\lambda _{n}=\left ( \frac{n\pi }{L}\right ) ^{2}\) for \(n=1,2,3\cdots \) and since \(L=b\), this becomes \[ \lambda _{n}=\left ( \frac{n\pi }{b}\right ) ^{2}\qquad n=1,2,\cdots \] And the corresponding eigenfunction\begin{align*} Y_{n}\left ( y\right ) & =c_{n}\sin \left ( \sqrt{\lambda _{n}}y\right ) \\ & =c_{n}\sin \left ( \frac{n\pi }{b}y\right ) \end{align*}

Therefore the corresponding nonhomogeneous \(X\left ( x\right ) \) ODE\begin{align} X_{n}^{\prime \prime }-\lambda _{n}X_{n} & =0\tag{2}\\ X_{n}\left ( 0\right ) & =0\nonumber \\ X_{n}\left ( a\right ) & =y-y^{2}\nonumber \end{align}

The solution to (2), since \(\lambda _{n}\) is positive is \begin{align*} X_{n}\left ( x\right ) & =A_{n}\cosh \left ( \sqrt{\lambda _{n}}x\right ) +B_{n}\sinh \left ( \sqrt{\lambda _{n}}x\right ) \\ & =A_{n}\cosh \left ( \frac{n\pi }{b}x\right ) +B_{n}\sinh \left ( \frac{n\pi }{b}x\right ) \end{align*}

Boundary conditions \(X\left ( 0\right ) =0\) gives\[ 0=A_{n}\] The solution (3) now simplifies to\[ X_{n}\left ( x\right ) =B_{n}\sinh \left ( \frac{n\pi }{b}x\right ) \] Hence the fundamental solution is\begin{align*} u_{n}\left ( x,y\right ) & =X_{n}Y_{n}\\ & =c_{n}\sinh \left ( \frac{n\pi }{b}x\right ) \sin \left ( \frac{n\pi }{b}y\right ) \end{align*}

Where the constants \(B_{n}\) is merged with \(c_{n}\). The solution is\begin{equation} u\left ( x,y\right ) =\sum _{n=1}^{\infty }c_{n}\sinh \left ( \frac{n\pi }{b}x\right ) \sin \left ( \frac{n\pi }{b}y\right ) \tag{3} \end{equation} \(c_{n}\) is now found by applying the boundary condition at \(x=a\). The above becomes\[ y-y^{2}=\sum _{n=1}^{\infty }c_{n}\sinh \left ( \frac{n\pi }{b}a\right ) \sin \left ( \frac{n\pi }{b}y\right ) \] Multiplying both sides by \(\sin \left ( \frac{m\pi }{b}y\right ) \) and integrating gives\[ \int _{0}^{b}\left ( y-y^{2}\right ) \sin \left ( \frac{m\pi }{b}y\right ) dy=\sum _{n=1}^{\infty }c_{n}\sinh \left ( \frac{n\pi }{b}a\right ) \left ( \int _{0}^{b}\sin \left ( \frac{m\pi }{b}y\right ) \sin \left ( \frac{n\pi }{b}y\right ) dy\right ) \] By orthogonality the above reduces to \begin{align*} \int _{0}^{b}\left ( y-y^{2}\right ) \sin \left ( \frac{m\pi }{b}y\right ) dy & =c_{n}\sinh \left ( \frac{m\pi }{b}a\right ) \int _{0}^{b}\sin ^{2}\left ( \frac{m\pi }{b}y\right ) dy\\ & =\frac{b}{2}c_{m}\sinh \left ( \frac{m\pi }{b}a\right ) \end{align*}

Therefore\[ c_{n}=\frac{2}{b}\frac{1}{\sinh \left ( \frac{m\pi }{b}a\right ) }\int _{0}^{b}\left ( y-y^{2}\right ) \sin \left ( \frac{n\pi }{b}y\right ) dy \] Now replacing \(a=1,b=1\), the above becomes\begin{align*} c_{n} & =\frac{2}{\sinh \left ( n\pi \right ) }\int _{0}^{1}\left ( y-y^{2}\right ) \sin \left ( n\pi y\right ) dy\\ & =\frac{2}{\sinh \left ( n\pi \right ) }\left ( \frac{-2\left ( -1+\left ( -1\right ) ^{n}\right ) }{n^{3}\pi ^{3}}\right ) \\ & =\frac{-4}{\sinh \left ( n\pi \right ) }\frac{\left ( -1+\left ( -1\right ) ^{n}\right ) }{n^{3}\pi ^{3}} \end{align*}

Hence the solution (3) becomes\[ u\left ( x,y\right ) =\frac{-4}{\pi ^{3}}\sum _{n=1}^{\infty }\frac{\left ( -1+\left ( -1\right ) ^{n}\right ) }{n^{3}}\frac{\sinh \left ( n\pi x\right ) }{\sinh \left ( n\pi \right ) }\sin \left ( n\pi y\right ) \] This is a 3D plot of the solution.

pict

This is a contour plot

pict

________________________________________________________________________________________

4.1.1.3 [283] Rectangle, 3 edges zero, buttom edge has impulse

problem number 283

Added Jan. 8, 2020.

This is Problem 6.3.10 from Introduction to Partial Differential Equations by Peter Olver ISBN 9783319020983.

Solve

\begin{align*} \nabla ^{2}u & =0\qquad \text{on a rectangle}\qquad R=\left \{ 0<x<a,0<y<b\right \} \\ u\left ( x,0\right ) & =f\left ( x\right ) \\ u\left ( x,b\right ) & =0\\ u\left ( 0,y\right ) & =0\\ u\left ( a,y\right ) & =0 \end{align*}

When the boundary data \(f\left ( x\right ) =\delta \left ( x-\xi \right ) \) is a delta function at a point \(0<\xi <a\).

pict
Figure 4.3:PDE specification

Mathematica

\[\left \{\left \{u(x,y)\to \underset{n=1}{\overset{\infty }{\sum }}\frac{2 \text{csch}\left (\frac{b n \pi }{a}\right ) \sin \left (\frac{n \pi x}{a}\right ) \sin \left (\frac{n \pi \zeta }{a}\right ) \sinh \left (\frac{n \pi (b-y)}{a}\right )}{a}\right \}\right \}\]

Maple

\[u \left ( x,y \right ) =\sum _{n=1}^{\infty }2\,{\frac{1}{a}\sin \left ({\frac{n\pi \,x}{a}} \right ) \sin \left ({\frac{n\pi \,\zeta }{a}} \right ) \left ({{\rm e}^{{\frac{n\pi \, \left ( 2\,b-y \right ) }{a}}}}-{{\rm e}^{{\frac{n\pi \,y}{a}}}} \right ) \left ({{\rm e}^{2\,{\frac{n\pi \,b}{a}}}}-1 \right ) ^{-1}}\]

Hand solution

Let \(u\left ( x,y\right ) =X\left ( x\right ) Y\left ( x\right ) \). Substituting this into the PDE \(\frac{\partial ^{2}u}{\partial x^{2}}+\frac{\partial ^{2}u}{\partial y^{2}}=0\) and simplifying gives\[ \frac{X^{\prime \prime }}{X}=-\frac{Y^{\prime \prime }}{Y}\] Each side depends on different independent variable and they are equal, therefore they must be equal to same constant.\[ \frac{X^{\prime \prime }}{X}=-\frac{Y^{\prime \prime }}{Y}=\pm \lambda \] Since the boundary conditions along the \(x\) direction are the homogeneous ones, \(-\lambda \) is selected in the above.

\[ \frac{X^{\prime \prime }}{X}=-\frac{Y^{\prime \prime }}{Y}=-\lambda \]

Two ODE’s are obtained\begin{equation} X^{\prime \prime }+\lambda X=0 \tag{1} \end{equation} With the boundary conditions\begin{align*} X\left ( 0\right ) & =0\\ X\left ( a\right ) & =0 \end{align*}

And\begin{equation} Y^{\prime \prime }-\lambda Y=0 \tag{2} \end{equation} With the boundary conditions\begin{align*} Y\left ( 0\right ) & =f\left ( x\right ) \\ Y\left ( b\right ) & =0 \end{align*}

In all these cases \(\lambda \) will turn out to be positive. This is shown below.

Case \(\lambda <0\)

The solution to (1) is

\[ X=A\cosh \left ( \sqrt{\left \vert \lambda \right \vert }x\right ) +B\sinh \left ( \sqrt{\left \vert \lambda \right \vert }x\right ) \] At \(x=0\), the above gives \(0=A\). Hence \(X=B\sinh \left ( \sqrt{\left \vert \lambda \right \vert }x\right ) \). At \(x=a\) this gives \(X=B\sinh \left ( \sqrt{\left \vert \lambda \right \vert }a\right ) \). But \(\sinh \left ( \sqrt{\left \vert \lambda \right \vert }a\right ) =0\) only at \(0\) and \(\sqrt{\left \vert \lambda \right \vert }a\neq 0\), therefore \(B=0\) and this leads to trivial solution. Hence \(\lambda <0\) is not an eigenvalue.

Case \(\lambda =0\)

\[ X=Ax+B \] Hence at \(x=0\) this gives \(0=B\) and the solution becomes \(X=B\). At \(x=a\), \(B=0\). Hence the trivial solution. \(\lambda =0\) is not an eigenvalue.

Case \(\lambda >0\)

Solution is \[ X=A\cos \left ( \sqrt{\lambda }x\right ) +B\sin \left ( \sqrt{\lambda }x\right ) \] At \(x=0\) this gives \(0=A\) and the solution becomes \(X=B\sin \left ( \sqrt{\lambda }x\right ) \). At \(x=a\) \[ 0=B\sin \left ( \sqrt{\lambda }a\right ) \] For non-trivial solution \(\sin \left ( \sqrt{\lambda }a\right ) =0\) or \(\sqrt{\lambda }a=n\pi \) where \(n=1,2,3,\cdots \), therefore\[ \lambda _{n}=\left ( \frac{n\pi }{a}\right ) ^{2}\qquad n=1,2,3,\cdots \] Eigenfunctions are\begin{equation} X_{n}\left ( x\right ) =B_{n}\sin \left ( \frac{n\pi }{a}x\right ) \qquad n=1,2,3,\cdots \tag{3} \end{equation} For the \(Y\) ODE, the solution is\begin{equation} Y_{n}=C_{n}\cosh \left ( \frac{n\pi }{a}y\right ) +D_{n}\sinh \left ( \frac{n\pi }{a}y\right ) \tag{4} \end{equation} Applying B.C. at \(y=b\) gives\begin{align*} 0 & =C_{n}\cosh \left ( \frac{n\pi }{a}b\right ) +D_{n}\sinh \left ( \frac{n\pi }{a}b\right ) \\ C_{n} & =-D_{n}\frac{\sinh \left ( \frac{n\pi }{a}b\right ) }{\cosh \left ( \frac{n\pi }{a}b\right ) }\\ & =-D_{n}\tanh \left ( \frac{n\pi }{a}b\right ) \end{align*}

Hence (4) becomes \begin{align*} Y_{n} & =-D_{n}\tanh \left ( \frac{n\pi }{a}b\right ) \cosh \left ( \frac{n\pi }{a}y\right ) +D_{n}\sinh \left ( \frac{n\pi }{a}y\right ) \\ & =D_{n}\left ( \sinh \left ( \frac{n\pi }{a}y\right ) -\tanh \left ( \frac{n\pi }{a}b\right ) \cosh \left ( \frac{n\pi }{a}y\right ) \right ) \end{align*}

Now the complete solution is produced\begin{align*} u_{n}\left ( x,y\right ) & =Y_{n}X_{n}\\ & =D_{n}\left ( \sinh \left ( \frac{n\pi }{a}y\right ) -\tanh \left ( \frac{n\pi }{a}b\right ) \cosh \left ( \frac{n\pi }{a}y\right ) \right ) B_{n}\sin \left ( \frac{n\pi }{a}x\right ) \end{align*}

Let \(D_{n}B_{n}=B_{n}\) since a constant. (no need to make up a new symbol).\[ u_{n}\left ( x,y\right ) =B_{n}\left ( \sinh \left ( \frac{n\pi }{a}y\right ) -\tanh \left ( \frac{n\pi }{a}b\right ) \cosh \left ( \frac{n\pi }{a}y\right ) \right ) \sin \left ( \frac{n\pi }{a}x\right ) \] Sum of eigenfunctions is the solution, hence\begin{equation} u\left ( x,y\right ) =\sum _{n=1}^{\infty }B_{n}\left ( \sinh \left ( \frac{n\pi }{a}y\right ) -\tanh \left ( \frac{n\pi }{a}b\right ) \cosh \left ( \frac{n\pi }{a}y\right ) \right ) \sin \left ( \frac{n\pi }{a}x\right ) \tag{5} \end{equation} The nonhomogeneous boundary condition is now resolved.  At \(y=0\)\[ u\left ( x,0\right ) =f\left ( x\right ) =\delta \left ( x-\xi \right ) \] Therefore (5) becomes\[ \delta \left ( x-\xi \right ) =\sum _{n=1}^{\infty }-B_{n}\tanh \left ( \frac{n\pi }{a}b\right ) \sin \left ( \frac{n\pi }{a}x\right ) \] Multiplying both sides by \(\sin \left ( \frac{m\pi }{a}x\right ) \) and integrating gives\begin{align*} \int _{0}^{a}\delta \left ( x-\xi \right ) \sin \left ( \frac{m\pi }{a}x\right ) dx & =-\int _{0}^{a}\sin \left ( \frac{m\pi }{a}x\right ) \sum _{n=1}^{\infty }B_{n}\tanh \left ( \frac{n\pi }{a}b\right ) \sin \left ( \frac{n\pi }{a}x\right ) dx\\ & =-\sum _{n=1}^{\infty }B_{n}\tanh \left ( \frac{n\pi }{a}b\right ) \int _{0}^{a}\sin \left ( \frac{n\pi }{a}x\right ) \sin \left ( \frac{m\pi }{a}x\right ) dx\\ & =-B_{n}\tanh \left ( \frac{m\pi }{a}b\right ) \left ( \frac{a}{2}\right ) \end{align*}

Hence\[ B_{n}=-\frac{2}{a}\frac{\int _{0}^{a}\delta \left ( x-\xi \right ) \sin \left ( \frac{n\pi }{a}x\right ) dx}{\tanh \left ( \frac{n\pi }{a}b\right ) }\] But \(\int _{0}^{a}\delta \left ( x-\xi \right ) \sin \left ( \frac{m\pi }{L}x\right ) dx=\sin \left ( \frac{m\pi }{L}\xi \right ) \) by the property delta function. Therefore\[ B_{n}=-\frac{2}{a}\frac{\sin \left ( \frac{n\pi }{a}\xi \right ) }{\tanh \left ( \frac{n\pi }{a}b\right ) }\] This completes the solution. (4) becomes\begin{align*} u\left ( x,y\right ) & =-\frac{2}{a}\sum _{n=1}^{\infty }\frac{\sin \left ( \frac{n\pi }{a}\xi \right ) }{\tanh \left ( \frac{n\pi }{a}b\right ) }\left ( \sinh \left ( \frac{n\pi }{a}y\right ) -\tanh \left ( \frac{n\pi }{a}b\right ) \cosh \left ( \frac{n\pi }{a}y\right ) \right ) \sin \left ( \frac{n\pi }{a}x\right ) \\ & =-\frac{2}{a}\sum _{n=1}^{\infty }\sin \left ( \frac{n\pi }{a}\xi \right ) \sin \left ( \frac{n\pi }{a}x\right ) \left ( \frac{\sinh \left ( \frac{n\pi }{a}y\right ) }{\tanh \left ( \frac{n\pi }{a}b\right ) }-\cosh \left ( \frac{n\pi }{a}y\right ) \right ) \end{align*}

Looking at the solution above, it is composed of functions that are all differentiable. Hence the solution is infinitely differentiable inside the rectangle.

Here is a plot of the above solution using \(a=\pi ,b=\frac{1}{2},\xi =1\).

pict
Figure 4.4:Plot of \(u(x,y)\)

pict
Figure 4.5:Code used for the above plot

________________________________________________________________________________________

4.1.1.4 [284] Haberman 2.5.1 (a)

problem number 284

This is problem 2.5.1 part (a) from Richard Haberman applied partial differential equations, 5th edition

Solve Laplace equation \[ \frac{\partial ^2 u}{\partial x^2} + \frac{\partial ^2 u}{\partial y^2} = 0 \] inside a rectangle \(0 \leq x \leq L, 0 \leq y \leq H\), with following boundary conditions \begin{align*} \frac{\partial u}{\partial x}(0,y) &= 0 \\ \frac{\partial u}{\partial x}(L,y) &= 0 \\ u(x,0)&=0 \\ u(x,H)&=f(x) \\ \end{align*}

pict
Figure 4.6:PDE specification

Mathematica

\[\left \{\left \{u(x,y)\to \underset{n=1}{\overset{\infty }{\sum }}\frac{2 \cos \left (\frac{n \pi x}{L}\right ) \text{csch}\left (\frac{H n \pi }{L}\right ) \left (\int _0^L \cos \left (\frac{n \pi x}{L}\right ) f(x) \, dx\right ) \sinh \left (\frac{n \pi y}{L}\right )}{L}+\frac{y \int _0^L f(x) \, dx}{H L}\right \}\right \}\]

Maple

\[u \left ( x,y \right ) ={\frac{1}{H\,L} \left ( 4\,\sum _{n=1}^{\infty } \left ( 1/2\,\cos \left ({\frac{n\pi \,x}{L}} \right ) \int _{0}^{L}\!f \left ( x \right ) \cos \left ({\frac{n\pi \,x}{L}} \right ) \,{\rm d}x\sinh \left ({\frac{n\pi \,y}{L}} \right ) \left ( \sinh \left ({\frac{n\pi \,H}{L}} \right ) \right ) ^{-1} \right ) H+\int _{0}^{L}\!f \left ( x \right ) \,{\rm d}xy \right ) }\]

________________________________________________________________________________________

4.1.1.5 [285] Haberman 2.5.1 (b)

problem number 285

This is problem 2.5.1 part (b) from Richard Haberman applied partial differential equations, 5th edition

Solve Laplace equation \[ \frac{\partial ^2 u}{\partial x^2} + \frac{\partial ^2 u}{\partial y^2} = 0 \] inside a rectangle \(0 \leq x \leq L, 0 \leq y \leq H\), with following boundary conditions \begin{align*} \frac{\partial u}{\partial x}(0,y) &= g(y) \\ \frac{\partial u}{\partial x}(L,y) &= 0 \\ u(x,0)&=0 \\ u(x,H)&=0 \\ \end{align*}

pict
Figure 4.7:PDE specification

Mathematica

\[\left \{\left \{u(x,y)\to \underset{n=1}{\overset{\infty }{\sum }}-\frac{2 \cosh \left (\frac{n \pi (L-x)}{H}\right ) \text{csch}\left (\frac{L n \pi }{H}\right ) \left (\int _0^H g(y) \sin \left (\frac{n \pi y}{H}\right ) \, dy\right ) \sin \left (\frac{n \pi y}{H}\right )}{n \pi }\right \}\right \}\]

Maple

\[u \left ( x,y \right ) =\sum _{n=1}^{\infty } \left ( -2\,{\frac{1}{n\pi }\sin \left ({\frac{n\pi \,y}{H}} \right ) \int _{0}^{H}\!\sin \left ({\frac{n\pi \,y}{H}} \right ) g \left ( y \right ) \,{\rm d}y \left ( \cosh \left ({\frac{\pi \,n \left ( -2\,L+x \right ) }{H}} \right ) -\sinh \left ({\frac{\pi \,n \left ( -2\,L+x \right ) }{H}} \right ) +\cosh \left ({\frac{n\pi \,x}{H}} \right ) +\sinh \left ({\frac{n\pi \,x}{H}} \right ) \right ) \left ( \cosh \left ( 2\,{\frac{n\pi \,L}{H}} \right ) +\sinh \left ( 2\,{\frac{n\pi \,L}{H}} \right ) -1 \right ) ^{-1}} \right ) \]

________________________________________________________________________________________

4.1.1.6 [286] Haberman 2.5.1 (c)

problem number 286

This is problem 2.5.1 part (c) from Richard Haberman applied partial differential equations, 5th edition

Solve Laplace equation \[ \frac{\partial ^2 u}{\partial x^2} + \frac{\partial ^2 u}{\partial y^2} = 0 \] inside a rectangle \(0 \leq x \leq L, 0 \leq y \leq H\), with following boundary conditions \begin{align*} \frac{\partial u}{\partial x}(0,y) &= 0 \\ u(L,y) &= g(y) \\ u(x,0)&=0 \\ u(x,H)&=0 \\ \end{align*}

pict
Figure 4.8:PDE specification

Mathematica

Failed

Maple

\[u \left ( x,y \right ) =\sum _{n=1}^{\infty } \left ( 4\,{\frac{1}{H}\sin \left ({\frac{n\pi \,y}{H}} \right ) \int _{0}^{H}\!\sin \left ({\frac{n\pi \,y}{H}} \right ) g \left ( y \right ) \,{\rm d}y \left ( \cosh \left ({\frac{n\pi \,L}{H}} \right ) +\sinh \left ({\frac{n\pi \,L}{H}} \right ) \right ) \cosh \left ({\frac{n\pi \,x}{H}} \right ) \left ( \cosh \left ( 2\,{\frac{n\pi \,L}{H}} \right ) +\sinh \left ( 2\,{\frac{n\pi \,L}{H}} \right ) +1 \right ) ^{-1}} \right ) \]

________________________________________________________________________________________

4.1.1.7 [287] Haberman 2.5.1 (d)

problem number 287

This is problem 2.5.1 part (d) from Richard Haberman applied partial differential equations, 5th edition

Solve Laplace equation \[ \frac{\partial ^2 u}{\partial x^2} + \frac{\partial ^2 u}{\partial y^2} = 0 \]

inside a rectangle \(0 \leq x \leq L, 0 \leq y \leq H\), with following boundary conditions

\begin{align*} u(0,y) &= g(y) \\ u(L,y) &= 0 \\ \frac{\partial u}{\partial y}u(x,0)&=0 \\ u(x,H)&=0 \\ \end{align*}

pict
Figure 4.9:PDE specification

Mathematica

Failed

Maple

\[u \left ( x,y \right ) =\sum _{n=0}^{\infty } \left ( 2\,{\frac{1}{H}\sin \left ( 1/2\,{\frac{\pi \, \left ( 2\,ny+H+y \right ) }{H}} \right ) \int _{0}^{H}\!\sin \left ( 1/2\,{\frac{\pi \, \left ( 2\,ny+H+y \right ) }{H}} \right ) g \left ( y \right ) \,{\rm d}y \left ( -\cosh \left ({\frac{\pi \, \left ( 1/2+n \right ) \left ( -2\,L+x \right ) }{H}} \right ) -\sinh \left ({\frac{\pi \, \left ( 1/2+n \right ) \left ( -2\,L+x \right ) }{H}} \right ) +\cosh \left ( 1/2\,{\frac{ \left ( 1+2\,n \right ) \pi \,x}{H}} \right ) -\sinh \left ( 1/2\,{\frac{ \left ( 1+2\,n \right ) \pi \,x}{H}} \right ) \right ) \left ( -\cosh \left ({\frac{ \left ( 1+2\,n \right ) \pi \,L}{H}} \right ) +\sinh \left ({\frac{ \left ( 1+2\,n \right ) \pi \,L}{H}} \right ) +1 \right ) ^{-1}} \right ) \]

________________________________________________________________________________________

4.1.1.8 [288] Haberman 2.5.1 (e)

problem number 288

This is problem 2.5.1 part (e) from Richard Haberman applied partial differential equations, 5th edition

Solve Laplace equation \[ \frac{\partial ^2 u}{\partial x^2} + \frac{\partial ^2 u}{\partial y^2} = 0 \] inside a rectangle \(0 \leq x \leq L, 0 \leq y \leq H\), with following boundary conditions \begin{align*} u(0,y) &= 0 \\ u(L,y) &= 0 \\ u(x,0) - \frac{\partial u}{\partial y}u(x,0)&=0 \\ u(x,H)&= f(x) \\ \end{align*}

pict
Figure 4.10:PDE specification

Mathematica

Failed

Maple

\[u \left ( x,y \right ) =\sum _{n=1}^{\infty } \left ( 4\,{\frac{1}{L} \left ( \cosh \left ({\frac{n\pi \,H}{L}} \right ) +\sinh \left ({\frac{n\pi \,H}{L}} \right ) \right ) \left ( \pi \,\cosh \left ({\frac{n\pi \,y}{L}} \right ) n+L\,\sinh \left ({\frac{n\pi \,y}{L}} \right ) \right ) \int _{0}^{L}\!\sin \left ({\frac{\pi \,nx}{L}} \right ) f \left ( x \right ) \,{\rm d}x\sin \left ({\frac{\pi \,nx}{L}} \right ) \left ( \left ( \pi \,n+L \right ) \cosh \left ( 2\,{\frac{n\pi \,H}{L}} \right ) + \left ( \pi \,n+L \right ) \sinh \left ( 2\,{\frac{n\pi \,H}{L}} \right ) +\pi \,n-L \right ) ^{-1}} \right ) \]

Hand solution

Let \(u\left ( x,y\right ) =X\left ( x\right ) Y\left ( x\right ) \). Substituting this into the PDE \(\frac{\partial ^{2}u}{\partial x^{2}}+\frac{\partial ^{2}u}{\partial y^{2}}=0\) and simplifying gives\[ \frac{X^{\prime \prime }}{X}=-\frac{Y^{\prime \prime }}{Y}\] Each side depends on different independent variable and they are equal, therefore they must be equal to same constant.\[ \frac{X^{\prime \prime }}{X}=-\frac{Y^{\prime \prime }}{Y}=\pm \lambda \] Since the boundary conditions along the \(x\) direction are the homogeneous ones, \(-\lambda \) is selected in the above. Two ODE’s (1,2) are obtained as follows\begin{equation} X^{\prime \prime }+\lambda X=0 \tag{1} \end{equation} With the boundary conditions\begin{align*} X\left ( 0\right ) & =0\\ X\left ( L\right ) & =0 \end{align*}

And\begin{equation} Y^{\prime \prime }-\lambda Y=0 \tag{2} \end{equation} With the boundary conditions\begin{align*} Y\left ( 0\right ) & =Y^{\prime }\left ( 0\right ) \\ Y\left ( H\right ) & =f\left ( x\right ) \end{align*}

In all these cases \(\lambda \) will turn out to be positive. This is shown for this problem only and not be repeated again.

Case \(\lambda <0\)

The solution to (1) us

\[ X=A\cosh \left ( \sqrt{\left \vert \lambda \right \vert }x\right ) +B\sinh \left ( \sqrt{\left \vert \lambda \right \vert }x\right ) \] At \(x=0\), the above gives \(0=A\). Hence \(X=B\sinh \left ( \sqrt{\left \vert \lambda \right \vert }x\right ) \). At \(x=L\) this gives \(X=B\sinh \left ( \sqrt{\left \vert \lambda \right \vert }L\right ) \). But \(\sinh \left ( \sqrt{\left \vert \lambda \right \vert }L\right ) =0\) only at \(0\) and \(\sqrt{\left \vert \lambda \right \vert }L\neq 0\), therefore \(B=0\) and this leads to trivial solution. Hence \(\lambda <0\) is not an eigenvalue.

Case \(\lambda =0\)

\[ X=Ax+B \] Hence at \(x=0\) this gives \(0=B\) and the solution becomes \(X=B\). At \(x=L\), \(B=0\). Hence the trivial solution. \(\lambda =0\) is not an eigenvalue.

Case \(\lambda >0\)

Solution is \[ X=A\cos \left ( \sqrt{\lambda }x\right ) +B\sin \left ( \sqrt{\lambda }x\right ) \] At \(x=0\) this gives \(0=A\) and the solution becomes \(X=B\sin \left ( \sqrt{\lambda }x\right ) \). At \(x=L\) \[ 0=B\sin \left ( \sqrt{\lambda }L\right ) \] For non-trivial solution \(\sin \left ( \sqrt{\lambda }L\right ) =0\) or \(\sqrt{\lambda }L=n\pi \) where \(n=1,2,3,\cdots \), therefore\[ \lambda _{n}=\left ( \frac{n\pi }{L}\right ) ^{2}\qquad n=1,2,3,\cdots \] Eigenfunctions are\begin{equation} X_{n}\left ( x\right ) =B_{n}\sin \left ( \frac{n\pi }{L}x\right ) \qquad n=1,2,3,\cdots \tag{3} \end{equation} For the \(Y\) ODE, the solution is\begin{align*} Y_{n} & =C_{n}\cosh \left ( \frac{n\pi }{L}y\right ) +D_{n}\sinh \left ( \frac{n\pi }{L}y\right ) \\ Y_{n}^{\prime } & =C_{n}\frac{n\pi }{L}\sinh \left ( \frac{n\pi }{L}y\right ) +D_{n}\frac{n\pi }{L}\cosh \left ( \frac{n\pi }{L}y\right ) \end{align*}

Applying B.C. at \(y=0\) gives\begin{align*} Y\left ( 0\right ) & =Y^{\prime }\left ( 0\right ) \\ C_{n}\cosh \left ( 0\right ) & =D_{n}\frac{n\pi }{L}\cosh \left ( 0\right ) \\ C_{n} & =D_{n}\frac{n\pi }{L} \end{align*}

The eigenfunctions \(Y_{n}\) are\begin{align*} Y_{n} & =D_{n}\frac{n\pi }{L}\cosh \left ( \frac{n\pi }{L}y\right ) +D_{n}\sinh \left ( \frac{n\pi }{L}y\right ) \\ & =D_{n}\left ( \frac{n\pi }{L}\cosh \left ( \frac{n\pi }{L}y\right ) +\sinh \left ( \frac{n\pi }{L}y\right ) \right ) \end{align*}

Now the complete solution is produced\begin{align*} u_{n}\left ( x,y\right ) & =Y_{n}X_{n}\\ & =D_{n}\left ( \frac{n\pi }{L}\cosh \left ( \frac{n\pi }{L}y\right ) +\sinh \left ( \frac{n\pi }{L}y\right ) \right ) B_{n}\sin \left ( \frac{n\pi }{L}x\right ) \end{align*}

Let \(D_{n}B_{n}=B_{n}\) since a constant. (no need to make up a new symbol).\[ u_{n}\left ( x,y\right ) =B_{n}\left ( \frac{n\pi }{L}\cosh \left ( \frac{n\pi }{L}y\right ) +\sinh \left ( \frac{n\pi }{L}y\right ) \right ) \sin \left ( \frac{n\pi }{L}x\right ) \] Sum of eigenfunctions is the solution, hence\[ u\left ( x,y\right ) =\sum _{n=1}^{\infty }B_{n}\left ( \frac{n\pi }{L}\cosh \left ( \frac{n\pi }{L}y\right ) +\sinh \left ( \frac{n\pi }{L}y\right ) \right ) \sin \left ( \frac{n\pi }{L}x\right ) \] The nonhomogeneous boundary condition is now resolved.  At \(y=H\)\[ u\left ( x,H\right ) =f\left ( x\right ) \] Therefore\[ f\left ( x\right ) =\sum _{n=1}^{\infty }B_{n}\left ( \frac{n\pi }{L}\cosh \left ( \frac{n\pi }{L}H\right ) +\sinh \left ( \frac{n\pi }{L}H\right ) \right ) \sin \left ( \frac{n\pi }{L}x\right ) \] Multiplying both sides by \(\sin \left ( \frac{m\pi }{L}x\right ) \) and integrating gives\begin{align*} \int _{0}^{L}f\left ( x\right ) \sin \left ( \frac{m\pi }{L}x\right ) dx & =\int _{0}^{L}\sin \left ( \frac{m\pi }{L}x\right ) \sum _{n=1}^{\infty }B_{n}\left ( \frac{n\pi }{L}\cosh \left ( \frac{n\pi }{L}H\right ) +\sinh \left ( \frac{n\pi }{L}H\right ) \right ) \sin \left ( \frac{n\pi }{L}x\right ) dx\\ & =\sum _{n=1}^{\infty }B_{n}\left ( \frac{n\pi }{L}\cosh \left ( \frac{n\pi }{L}H\right ) +\sinh \left ( \frac{n\pi }{L}H\right ) \right ) \int _{0}^{L}\sin \left ( \frac{n\pi }{L}x\right ) \sin \left ( \frac{m\pi }{L}x\right ) dx\\ & =B_{m}\left ( \frac{m\pi }{L}\cosh \left ( \frac{m\pi }{L}H\right ) +\sinh \left ( \frac{m\pi }{L}H\right ) \right ) \frac{L}{2} \end{align*}

Hence\begin{equation} B_{n}=\frac{2}{L}\frac{\int _{0}^{L}f\left ( x\right ) \sin \left ( \frac{n\pi }{L}x\right ) dx}{\left ( \frac{n\pi }{L}\cosh \left ( \frac{n\pi }{L}H\right ) +\sinh \left ( \frac{n\pi }{L}H\right ) \right ) } \tag{4} \end{equation} This completes the solution. In summary\[ u\left ( x,y\right ) =\sum _{n=1}^{\infty }B_{n}\left ( \frac{n\pi }{L}\cosh \left ( \frac{n\pi }{L}y\right ) +\sinh \left ( \frac{n\pi }{L}y\right ) \right ) \sin \left ( \frac{n\pi }{L}x\right ) \] With \(B_{n}\) given by (4).

________________________________________________________________________________________

4.1.1.9 [289] Unit triangle B.C.

problem number 289

Taken from Mathematica DSolve help pages.

Solve Laplace equation \[ \frac{\partial ^2 u}{\partial x^2} + \frac{\partial ^2 u}{\partial y^2} = 0 \] inside a rectangle \(0 \leq x \leq 1, 0 \leq y \leq 2\), with following boundary conditions \begin{align*} u(0,y) &= 0 \\ u(1,y) &= 0 \\ u(x,0) &= \text{UnitTriagle(2 x-1)} \\ u(x,2) &= \text{UnitTriagle(2 x-1)} \end{align*}

pict
Figure 4.11:PDE specification

Mathematica

\[\left \{\left \{u(x,y)\to \underset{n=1}{\overset{\infty }{\sum }}\frac{8 \text{csch}(2 n \pi ) \sin \left (\frac{n \pi }{2}\right ) \sin (n \pi x) (\sinh (n \pi (2-y))+\sinh (n \pi y))}{n^2 \pi ^2}\right \}\right \}\]

Maple

\[u \left ( x,y \right ) =\sum _{n=1}^{\infty }8\,{\frac{\sin \left ( 1/2\,\pi \,n \right ){{\rm e}^{2\,\pi \,n}}\sin \left ( \pi \,nx \right ) \left ( -{{\rm e}^{\pi \,n \left ( y-2 \right ) }}+{{\rm e}^{-\pi \,n \left ( y-2 \right ) }}+{{\rm e}^{n\pi \,y}}-{{\rm e}^{-n\pi \,y}} \right ) }{{n}^{2}{\pi }^{2} \left ({{\rm e}^{4\,\pi \,n}}-1 \right ) }}\]

________________________________________________________________________________________

4.1.1.10 [290] Top edge at infinity

problem number 290

Added December 20, 2018.

Example 21, Taken from https://www.mapleprimes.com/posts/209970-Exact-Solutions-For-PDE-And-Boundary--Initial-Conditions-2018

Solve Laplace equation \[ u_{xx}+u_{yy} = 0 \] Inside a rectangle \(0 \leq x \leq L, 0 \leq y \leq \infty \), with following boundary conditions \begin{align*} u(0,y) &= A \\ u(L,y) &= 0 \\ u(x,0) &= 0 \end{align*}

pict
Figure 4.12:PDE specification

Mathematica

Failed

Maple

\[u \left ( x,y \right ) ={\frac{1}{L} \left ( \sum _{n=1}^{\infty }-2\,{\frac{A}{\pi \,n}\sin \left ({\frac{\pi \,nx}{L}} \right ){{\rm e}^{-{\frac{n\pi \,y}{L}}}}}L+A \left ( L-x \right ) \right ) }\]

Hand solution

Let \begin{equation} u=U+v\tag{1} \end{equation} Where \(U\) satisfies \(\nabla ^{2}U=0\) but with right edge boundary conditions zero, and \(v\left ( x\right ) \) satisfies the nonhomogeneous boundary conditions \(v\left ( 0\right ) =A,v\left ( L\right ) =0\). This implies \[ v\left ( x\right ) =A\left ( 1-\frac{x}{L}\right ) \] Hence \(u=U+A\left ( 1-\frac{x}{L}\right ) \). Substituting this back in \(\nabla ^{2}u=0\) gives\[ \nabla ^{2}U=0 \] But with boundary condition on right edge being zero now. Let \(U=X\left ( x\right ) Y\left ( x\right ) \). Substituting this in the above gives\[ \frac{X^{\prime \prime }}{X}+\frac{Y^{\prime \prime }}{Y}=0 \] We want the eigenvalue problem to be in the \(X\) direction. Hence \begin{align*} X^{\prime \prime }+\lambda X & =0\\ X\left ( 0\right ) & =0\\ X\left ( L\right ) & =0 \end{align*}

This has eigenvalues \(\lambda _{n}=\left ( \frac{n\pi }{L}\right ) ^{2},n=1,2,\cdots \) with eigenfunctions \(X_{n}\left ( x\right ) =\sin \left ( \sqrt{\lambda _{n}}x\right ) \). The \(Y\) ode is\begin{align*} Y_{n}^{\prime \prime }-\lambda _{n}Y_{n} & =0\\ Y_{n}\left ( 0\right ) & =0 \end{align*}

Since \(\lambda _{n}>0\) then the solution is \(Y_{n}\left ( y\right ) =c_{1_{n}}e^{\sqrt{\lambda _{n}}y}+c_{2_{n}}e^{-\sqrt{\lambda _{n}}y}\). Since \(Y_{n}\left ( y\right ) \) is bounded, then \(c_{1_{n}}=0\) and the \(Y_{n}\left ( y\right ) =c_{2_{n}}e^{-\sqrt{\lambda _{n}}y}\). Hence\begin{align*} U\left ( x,y\right ) & =\sum _{n=1}^{\infty }X_{n}\left ( x\right ) Y_{n}\left ( y\right ) \\ & =\sum _{n=1}^{\infty }B_{n}\sin \left ( \sqrt{\lambda _{n}}x\right ) e^{-\sqrt{\lambda _{n}}y}\\ & =\sum _{n=1}^{\infty }B_{n}\sin \left ( \frac{n\pi }{L}x\right ) e^{-\frac{n\pi }{L}y} \end{align*}

Using the above in (1) gives the solution\begin{equation} u\left ( x,y\right ) =A\left ( 1-\frac{x}{L}\right ) +\sum _{n=1}^{\infty }B_{n}\sin \left ( \frac{n\pi }{L}x\right ) e^{-\frac{n\pi }{L}y}\tag{2} \end{equation} At \(y=0\) the above gives\begin{align*} 0 & =A\left ( 1-\frac{x}{L}\right ) +\sum _{n=1}^{\infty }B_{n}\sin \left ( \frac{n\pi }{L}x\right ) \\ A\left ( \frac{x}{L}-1\right ) & =\sum _{n=1}^{\infty }B_{n}\sin \left ( \frac{n\pi }{L}x\right ) \end{align*}

Therefore \(B_{n}\) are the Fourier sine coefficients of \(\frac{A}{L}x\)\begin{align*} B_{n} & =\frac{2}{L}\int _{0}^{L}A\left ( \frac{x}{L}-1\right ) \sin \left ( \frac{n\pi }{L}x\right ) dx\\ & =\frac{2A}{L}\int _{0}^{L}\left ( \frac{x}{L}-1\right ) \sin \left ( \frac{n\pi }{L}x\right ) dx\\ & =-\frac{2A}{L}\frac{L}{n\pi }\\ & =-\frac{2A}{n\pi } \end{align*}

Hence the solution (2) becomes\[ u\left ( x,y\right ) =A\left ( 1-\frac{x}{L}\right ) -2\frac{A}{\pi }\sum _{n=1}^{\infty }\frac{1}{n}\sin \left ( \frac{n\pi }{L}x\right ) e^{-\frac{n\pi }{L}y}\]

________________________________________________________________________________________

4.1.1.11 [291] Top edge at infinity

problem number 291

Added March 19, 2019

Solve Laplace equation \[ u_{xx} + u_{yy} = 0 \]

Inside a rectangle \(0 \leq x \leq L, 0 \leq y \leq \infty \), with following boundary conditions

\begin{align*} u(0,y) &= 0 \\ u(L,y) &= A \\ u(x,0) &= 0 \end{align*}

pict
Figure 4.13:PDE specification

Mathematica

Failed

Maple

\[u \left ( x,y \right ) ={\frac{1}{L} \left ( Ax+\sum _{n=1}^{\infty }2\,{\frac{ \left ( -1 \right ) ^{n}A}{\pi \,n}\sin \left ({\frac{\pi \,nx}{L}} \right ){{\rm e}^{-{\frac{n\pi \,y}{L}}}}}L \right ) }\]

Hand solution

Let \begin{equation} u=U+v\tag{1} \end{equation} Where \(U\) satisfies \(\nabla ^{2}U=0\) but with right edge boundary conditions zero, and \(v\left ( x\right ) \) satisfies the nonhomogeneous boundary conditions \(v\left ( 0\right ) =0A,v\left ( L\right ) =A\). This implies \[ v\left ( x\right ) =A\frac{x}{L}\] Hence \(u=U+\frac{A}{L}x\). Substituting this back in \(\nabla ^{2}u=0\) gives\[ \nabla ^{2}U=0 \] But with boundary condition on right edge being zero now. Let \(U=X\left ( x\right ) Y\left ( x\right ) \). Substituting this in the above gives\[ \frac{X^{\prime \prime }}{X}+\frac{Y^{\prime \prime }}{Y}=0 \] We want the eigenvalue problem to be in the \(X\) direction. Hence \begin{align*} X^{\prime \prime }+\lambda X & =0\\ X\left ( 0\right ) & =0\\ X\left ( L\right ) & =0 \end{align*}

This has eigenvalues \(\lambda _{n}=\left ( \frac{n\pi }{L}\right ) ^{2},n=1,2,\cdots \) with eigenfunctions \(X_{n}\left ( x\right ) =\sin \left ( \sqrt{\lambda _{n}}x\right ) \). The \(Y\) ode is\begin{align*} Y_{n}^{\prime \prime }-\lambda _{n}Y_{n} & =0\\ Y_{n}\left ( 0\right ) & =0 \end{align*}

Since \(\lambda _{n}>0\) then the solution is \(Y_{n}\left ( y\right ) =c_{1_{n}}e^{\sqrt{\lambda _{n}}y}+c_{2_{n}}e^{-\sqrt{\lambda _{n}}y}\). Since \(Y_{n}\left ( y\right ) \) is bounded, then \(c_{1_{n}}=0\) and the \(Y_{n}\left ( y\right ) =c_{2_{n}}e^{-\sqrt{\lambda _{n}}y}\). Hence\begin{align*} U\left ( x,y\right ) & =\sum _{n=1}^{\infty }X_{n}\left ( x\right ) Y_{n}\left ( y\right ) \\ & =\sum _{n=1}^{\infty }B_{n}\sin \left ( \sqrt{\lambda _{n}}x\right ) e^{-\sqrt{\lambda _{n}}y}\\ & =\sum _{n=1}^{\infty }B_{n}\sin \left ( \frac{n\pi }{L}x\right ) e^{-\frac{n\pi }{L}y} \end{align*}

Using the above in (1) gives the solution\begin{equation} u\left ( x,y\right ) =\frac{A}{L}x+\sum _{n=1}^{\infty }B_{n}\sin \left ( \frac{n\pi }{L}x\right ) e^{-\frac{n\pi }{L}y}\tag{2} \end{equation} At \(y=0\) the above gives\begin{align*} 0 & =\frac{A}{L}x+\sum _{n=1}^{\infty }B_{n}\sin \left ( \frac{n\pi }{L}x\right ) \\ -\frac{A}{L}x & =\sum _{n=1}^{\infty }B_{n}\sin \left ( \frac{n\pi }{L}x\right ) \end{align*}

Therefore \(B_{n}\) are the Fourier sine coefficients of \(-\frac{A}{L}x\)\begin{align*} B_{n} & =-\frac{2}{L}\int _{0}^{L}\frac{A}{L}x\sin \left ( \frac{n\pi }{L}x\right ) dx\\ & =-\frac{2A}{L^{2}}\int _{0}^{L}x\sin \left ( \frac{n\pi }{L}x\right ) dx\\ & =-\frac{2A}{L^{2}}\frac{\left ( -1\right ) ^{n+1}L^{2}}{n\pi }\\ & =\frac{2A}{n\pi }\left ( -1\right ) ^{n} \end{align*}

Hence the solution (2) becomes\[ u\left ( x,y\right ) =\frac{A}{L}x+\frac{2A}{\pi }\sum _{n=1}^{\infty }\frac{\left ( -1\right ) ^{n}}{n}\sin \left ( \frac{n\pi }{L}x\right ) e^{-\frac{n\pi }{L}y}\]

________________________________________________________________________________________

4.1.1.12 [292] Right edge at infinity

problem number 292

Added March 19, 2019.

Solve Laplace equation \[ u_{xx}+u_{yy}= 0 \] Inside a rectangle \(0 \leq y \leq L, 0 \leq x \leq \infty \), with following boundary conditions \begin{align*} u(0,y) &= 0 \\ u(x,0) &= A \\ u(x,L) &= 0 \end{align*}

pict
Figure 4.14:PDE specification

Mathematica

Failed

Maple

\[u \left ( x,y \right ) ={\frac{1}{L} \left ( \sum _{n=1}^{\infty }-2\,{\frac{A}{\pi \,n}{{\rm e}^{-{\frac{\pi \,nx}{L}}}}\sin \left ({\frac{n\pi \,y}{L}} \right ) }L+A \left ( L-y \right ) \right ) }\]

Hand solution

Let \begin{equation} u\left ( x,y\right ) =U\left ( x,y\right ) +v\left ( y\right ) \tag{1} \end{equation} Where \(U\) satisfies \(\nabla ^{2}U=0\) but with bottom edge boundary conditions zero, and \(v\left ( y\right ) \) satisfies the nonhomogeneous boundary conditions \(v\left ( 0\right ) =A,v\left ( L\right ) =0\). This implies \[ v\left ( y\right ) =A\left ( 1-\frac{y}{L}\right ) \] Substituting (1) back in \(\nabla ^{2}u=0\) results in\[ \nabla ^{2}U=0 \] But with boundary condition on bottom edge as \(U=0\). Now we can use separation of variables. Let \(U=X\left ( x\right ) Y\left ( x\right ) \). Substituting this in the above gives\[ \frac{X^{\prime \prime }}{X}+\frac{Y^{\prime \prime }}{Y}=0 \] We want the eigenvalue problem to be in the \(Y\) direction. Hence\[ \frac{Y^{\prime \prime }}{Y}=-\frac{X^{\prime \prime }}{X}=-\lambda \] Therefore the eigenvalue problem is\begin{align*} Y^{\prime \prime }+\lambda Y & =0\\ Y\left ( 0\right ) & =0\\ Y\left ( L\right ) & =0 \end{align*}

This has eigenvalues \(\lambda _{n}=\left ( \frac{n\pi }{L}\right ) ^{2},n=1,2,\cdots \) with eigenfunctions \(Y_{n}\left ( x\right ) =\sin \left ( \sqrt{\lambda _{n}}y\right ) \). The \(X\) ode is\begin{align*} X_{n}^{\prime \prime }-\lambda _{n}X_{n} & =0\\ X_{n}\left ( 0\right ) & =0 \end{align*}

Since \(\lambda _{n}>0\) then the solution is \(X_{n}\left ( y\right ) =c_{1_{n}}e^{\sqrt{\lambda _{n}}x}+c_{2_{n}}e^{-\sqrt{\lambda _{n}}x}\). Since \(X_{n}\left ( x\right ) \) is bounded, then \(c_{1_{n}}=0\) and the \(X_{n}\left ( x\right ) =c_{2_{n}}e^{-\sqrt{\lambda _{n}}x}\). Hence by superposition the solution is\begin{align*} U\left ( x,y\right ) & =\sum _{n=1}^{\infty }X_{n}\left ( x\right ) Y_{n}\left ( y\right ) \\ & =\sum _{n=1}^{\infty }B_{n}\sin \left ( \sqrt{\lambda _{n}}y\right ) e^{-\sqrt{\lambda _{n}}x}\\ & =\sum _{n=1}^{\infty }B_{n}\sin \left ( \frac{n\pi }{L}y\right ) e^{-\frac{n\pi }{L}x} \end{align*}

Substituting the above in (1) gives\begin{equation} u\left ( x,y\right ) =A\left ( 1-\frac{y}{L}\right ) +\sum _{n=1}^{\infty }B_{n}\sin \left ( \frac{n\pi }{L}y\right ) e^{-\frac{n\pi }{L}x}\tag{2} \end{equation} At \(x=0\) the above gives\begin{align*} 0 & =A\left ( 1-\frac{y}{L}\right ) +\sum _{n=1}^{\infty }B_{n}\sin \left ( \frac{n\pi }{L}y\right ) \\ A\left ( \frac{y}{L}-1\right ) & =\sum _{n=1}^{\infty }B_{n}\sin \left ( \frac{n\pi }{L}y\right ) \end{align*}

Therefore \(B_{n}\) are the Fourier sine coefficients of \(A\left ( \frac{y}{L}-1\right ) \)\begin{align*} B_{n} & =\frac{2}{L}\int _{0}^{L}A\left ( \frac{y}{L}-1\right ) \sin \left ( \frac{n\pi }{L}y\right ) dy\\ & =\frac{2A}{L}\int _{0}^{L}\left ( \frac{y}{L}-1\right ) \sin \left ( \frac{n\pi }{L}y\right ) dy\\ & =-\frac{2A}{L}\frac{L}{n\pi }\\ & =-\frac{2A}{n\pi } \end{align*}

Hence the solution (2) becomes\[ u\left ( x,y\right ) =A\left ( 1-\frac{y}{L}\right ) -\frac{2A}{\pi }\sum _{n=1}^{\infty }\frac{1}{n}\sin \left ( \frac{n\pi }{L}y\right ) e^{-\frac{n\pi }{L}x}\]

________________________________________________________________________________________

4.1.1.13 [293] Right edge at infinity

problem number 293

Added March 20, 2019.

Solve Laplace equation \[ u_{xx}+u_{yy} = 0 \] Inside a rectangle \(0 \leq y \leq L, 0 \leq x \leq \infty \), with following boundary conditions \begin{align*} u(0,y) &= 0 \\ u(x,L) &= e^{-x} \\ u(x,0) &= 0 \end{align*}

pict
Figure 4.15:PDE specification

Mathematica

Failed

Maple

\[u \left ( x,y \right ) ={\frac{1}{L} \left ( \sum _{n=1}^{\infty }-{\frac{1}{\pi \,n \left ( \pi \,n+L \right ) }\sin \left ({\frac{n\pi \,y}{L}} \right ) \left ({\it \_C5} \left ( n \right ) \left ( -{\pi }^{2}{n}^{2}+{L}^{2} \right ){{\rm e}^{-{\frac{\pi \,nx}{L}}}}+ \left ( \left ( -2\,\pi \,n-4\,L \right ) \left ( -1 \right ) ^{n}+{\it \_C5} \left ( n \right ) \left ( \pi \,n+L \right ) ^{2} \right ){{\rm e}^{{\frac{\pi \,nx}{L}}}}-2\, \left ( - \left ( -1 \right ) ^{n}{{\rm e}^{-x}}+{\it \_C5} \left ( n \right ) \left ( \pi \,n+L \right ) \right ) L \right ) }L+y{{\rm e}^{-x}} \right ) }\]

Hand solution

Let \(u=X\left ( x\right ) Y\left ( x\right ) \). Substituting this in \(\nabla ^{2}u=0\)\[ \frac{X^{\prime \prime }}{X}+\frac{Y^{\prime \prime }}{Y}=0 \] We want the eigenvalue problem to be in the \(X\) direction. Hence\[ \frac{X^{\prime \prime }}{X}=-\frac{Y^{\prime \prime }}{Y}=-\lambda \] Therefore the eigenvalue problem is\begin{align*} X^{\prime \prime }+\lambda X & =0\\ X\left ( 0\right ) & =0\\ \left \vert X\left ( x\right ) \right \vert & <\infty \end{align*}

case \(\lambda <0\)

Solution is \(X\left ( x\right ) =c_{1}\cosh \left ( \sqrt{-\lambda }x\right ) +c_{2}\sinh \left ( \sqrt{-\lambda }x\right ) \). Since \(X\left ( 0\right ) =0\) then \(c_{1}=0\). Solution becomes \(X\left ( x\right ) =c_{2}\sinh \left ( \sqrt{-\lambda }x\right ) \). Since \(\sinh \) is not bounded on \(x>0\) as \(x\rightarrow \infty \) then \(c_{2}=0\). Therefore \(\lambda <0\) is not eigenvalue.

case \(\lambda =0\)

Solution is \(X\left ( x\right ) =c_{1}x+c_{2}\). At \(x=0\) this gives \(c_{2}=0\).  Hence solution is \(X\left ( x\right ) =c_{1}x\). This is bounded as \(x\rightarrow \infty \) only when \(c_{1}=0\). Therefore \(\lambda =0\) is not eigenvalue.

case \(\lambda >0\)

Let \(\lambda =\alpha ^{2},\alpha >0\). Then solution is \(X\left ( x\right ) =c_{1}\cos \left ( \alpha x\right ) +c_{2}\sin \left ( \alpha x\right ) \). At \(x=0\) this results in \(0=c_{1}\). Hence the eigenvalues are \(\lambda =\alpha ^{2}\) for all real positive real numbers and eigenfunctions are \[ X_{\alpha }\left ( x\right ) =\sin \left ( \alpha x\right ) \] For the \(Y\) ode, \begin{align*} Y^{\prime \prime }-\alpha ^{2}Y & =0\\ Y\left ( 0\right ) & =0 \end{align*}

The solution is \(Y_{\alpha }\left ( y\right ) =c_{1}e^{\alpha y}+c_{2}e^{-\alpha y}\). Since \(Y\left ( 0\right ) =0\) then \(c_{2}=-c_{1}\) and the solution becomes \(Y_{\alpha }\left ( y\right ) =c_{1}\left ( e^{\alpha y}-e^{-\alpha y}\right ) =c_{1}\sinh \left ( \alpha y\right ) \). Hence the solution is generalized linear combination of \(Y\left ( y\right ) X\left ( x\right ) \) given by Fourier integral (since eigenvalues are continuous now and not discrete)\begin{align} u\left ( x,y\right ) & =\int _{0}^{\infty }A\left ( \alpha \right ) Y_{\alpha }\left ( y\right ) X_{\alpha }\left ( x\right ) d\alpha \nonumber \\ & =\int _{0}^{\infty }A\left ( \alpha \right ) \sinh \left ( \alpha y\right ) \sin \left ( \alpha x\right ) d\alpha \tag{1} \end{align}

When \(y=L\), then above becomes\[ e^{-x}=\int _{0}^{\infty }\left ( A\left ( \alpha \right ) \sinh \left ( \alpha L\right ) \right ) \sin \left ( \alpha x\right ) d\alpha \] Hence the coefficient\(\ A\left ( \alpha \right ) \sinh \left ( \alpha L\right ) \) is given by\begin{align*} A\left ( \alpha \right ) \sinh \left ( \alpha L\right ) & =\frac{2}{\pi }\int _{0}^{\infty }e^{-x}\sin \left ( \alpha x\right ) dx\\ & =\frac{2}{\pi }\frac{\alpha }{1+\alpha ^{2}} \end{align*}

Therefore \(A\left ( \alpha \right ) =\frac{2}{\pi \sinh \left ( \alpha L\right ) }\frac{\alpha }{1+\alpha }\). The solution (1) becomes\[ u\left ( x,y\right ) =\frac{2}{\pi }\int _{0}^{\infty }\frac{\alpha \sinh \left ( \alpha y\right ) \sin \left ( \alpha x\right ) }{\left ( 1+\alpha ^{2}\right ) \sinh \left ( \alpha L\right ) }d\alpha \]

________________________________________________________________________________________

4.1.1.14 [294] Right edge at infinity

problem number 294

Added April 4, 2019.

Second midterm exam problem, Math 4567, UMN. Spring 2019.

Solve Laplace equation \[ u_{xx}+u_{yy} = 0 \] Inside a rectangle \(0 \leq y \leq 1, 0 \leq x \leq \infty \), with following boundary conditions \begin{align*} u(0,y) &= 0 \\ u(x,1) &= f(x) \\ u(x,0) &= 0 \end{align*}

pict
Figure 4.16:PDE specification

Mathematica

Failed

Maple

\[u \left ( x,y \right ) =\sum _{n=1}^{\infty }{\frac{\sin \left ( n\pi \,y \right ) \left ({\it \_C5} \left ( n \right ){{\rm e}^{-\pi \,nx}}\pi \,n-{{\rm e}^{\pi \,nx}} \left ( \pi \,n{\it \_C5} \left ( n \right ) -2\,f \left ( 0 \right ) \left ( -1 \right ) ^{n} \right ) \right ) }{\pi \,n}}+\int _{0}^{x}\!\sum _{n=1}^{\infty }{\frac{\sin \left ( n\pi \,y \right ) \left ( 2\, \left ({\frac{{\rm d}^{2}}{{\rm d}{\tau }^{2}}}f \left ( \tau \right ) \right ) \left ( -{{\rm e}^{\pi \, \left ( -x+\tau \right ) }} \right ) ^{-n}+\pi \,n{\it \_C5} \left ( n \right ) \left ({{\rm e}^{n\pi \, \left ( -x+\tau \right ) }}-{{\rm e}^{n\pi \, \left ( x-\tau \right ) }} \right ) \right ) }{\pi \,n}}\,{\rm d}\tau +yf \left ( x \right ) \]

________________________________________________________________________________________

4.1.1.15 [295] Laplace PDE in 2D Cartessian with boundary condition as Dirac function

problem number 295

Added December 20, 2018

Taken from https://www.mapleprimes.com/posts/209970-Exact-Solutions-For-PDE-And-Boundary--Initial-Conditions-2018

Solve Laplace equation for \(u(x,y)\) \[ \frac{\partial ^2 u}{\partial x^2} + \frac{\partial ^2 u}{\partial y^2} = 0 \] With boundary condition \begin{align*} u(x,0) &= \delta (x) \end{align*}

Mathematica

\[\left \{\left \{u(x,y)\to \begin{array}{cc} \{ & \begin{array}{cc} \frac{y}{\pi \left (x^2+y^2\right )} & y\geq 0 \\ \text{Indeterminate} & \text{True} \\\end{array} \\\end{array}\right \}\right \}\]

Maple

\[u \left ( x,y \right ) =1/2\,{\frac{\int _{-\infty }^{\infty }\!{{\rm e}^{s \left ( ix-y \right ) }}\,{\rm d}s}{\pi }}\]

________________________________________________________________________________________

4.1.1.16 [296] One side homogeneous

problem number 296

Added December 20, 2018

Taken from https://www.mapleprimes.com/posts/209970-Exact-Solutions-For-PDE-And-Boundary--Initial-Conditions-2018

Solve Laplace equation for \(u(x,y)\) \[ u_{xx}+u_{yy} = 0 \] With boundary condition \begin{align*} u(0,y)&=0 \\ u(\pi ,y) &= \sinh (\pi ) \cos (y) \\ u(x,0) &= \sin (x) \\ u(x,\pi ) &= -\sinh (x) \end{align*}

pict
Figure 4.17:PDE specification

Mathematica

\[\left \{\left \{u(x,y)\to \underset{K[1]=1}{\overset{\infty }{\sum }}\text{csch}(\pi K[1]) \left (\delta (K[1]-1) \sin (x K[1]) \sinh ((\pi -y) K[1])+\frac{2 K[1] \sinh (\pi ) \left (\left (1+(-1)^{K[1]}\right ) \left (K[1]^2+1\right ) \sin (y K[1]) \sinh (x K[1])+(-1)^{K[1]} \left (K[1]^2-1\right ) \sin (x K[1]) \sinh (y K[1])\right )}{\pi \left (K[1]^4-1\right )}\right )\right \}\right \}\]

Maple

\[u \left ( x,y \right ) ={\frac{1}{{{\rm e}^{2\,\pi }}-1} \left ( \left ({{\rm e}^{2\,\pi }}-1 \right ) \sum _{n=1}^{\infty }{\frac{ \left ( -1 \right ) ^{n}n \left ({{\rm e}^{2\,\pi }}-1 \right ){{\rm e}^{ \left ( n-1 \right ) \pi -ny}}\sin \left ( nx \right ) \left ({{\rm e}^{2\,ny}}-1 \right ) }{\pi \, \left ({n}^{2}+1 \right ) \left ({{\rm e}^{2\,\pi \,n}}-1 \right ) }}+ \left ({{\rm e}^{2\,\pi }}-1 \right ) \sum _{n=2}^{\infty }2\,{\frac{\sin \left ( ny \right ){{\rm e}^{n \left ( \pi -x \right ) }}\sinh \left ( \pi \right ) n \left ( \left ( -1 \right ) ^{n}+1 \right ) \left ({{\rm e}^{2\,nx}}-1 \right ) }{\pi \, \left ({{\rm e}^{2\,\pi \,n}}-1 \right ) \left ({n}^{2}-1 \right ) }}+\sin \left ( x \right ) \left ({{\rm e}^{-y+2\,\pi }}-{{\rm e}^{y}} \right ) \right ) }\]

________________________________________________________________________________________

4.1.1.17 [297] In right half plane

problem number 297

PDE example 18 from Maple help page

see march_20_2019_11_pm.tex for start of solution. Not completed yet

Solve Laplace equation \[ u_{xx} + u_{yy} = 0 \] With boundary conditions \begin{align*} u(0,y) &= \frac{\sin y}{y} \end{align*}

pict
Figure 4.18:PDE specification

Mathematica

\[\left \{\left \{u(x,y)\to \frac{-2 y \sinh (x) \sin (y)-2 x \cosh (x) \cos (y)+x}{x^2+y^2}\right \}\right \}\]

Maple

\[u \left ( x,y \right ) ={\frac{\sin \left ( ix-y \right ) +{\it \_F2} \left ( y-ix \right ) \left ( y-ix \right ) + \left ( ix-y \right ){\it \_F2} \left ( y+ix \right ) }{ix-y}}\]

________________________________________________________________________________________

4.1.1.18 [298] Right edge at infinity

problem number 298

Solve Laplace equation \[ u_{xx} + u_{yy} =0 \] With boundary conditions \begin{align*} u(0,y) &= \sin y \\ u(x,0) &= 0 \\ u(x,a) &= 0 \\ u(\infty ,y) &= 0 \end{align*}

pict
Figure 4.19:PDE specification

Mathematica

Failed

Maple

\[u \left ( x,y \right ) =\sum _{n=1}^{\infty }{\frac{1}{\pi \,n+a} \left ( -2\,\pi \,{{\rm e}^{{\frac{\pi \,nx}{a}}}}\cases{-1&$a=\pi \,n$\cr -{\frac{\sin \left ( a \right ) \left ( -1 \right ) ^{n}}{-\pi \,n+a}}&otherwise\cr }n+{\it \_C5} \left ( n \right ) \left ( \pi \,n+a \right ) \left ({{\rm e}^{-{\frac{\pi \,nx}{a}}}}-{{\rm e}^{{\frac{\pi \,nx}{a}}}} \right ) \right ) \sin \left ({\frac{n\pi \,y}{a}} \right ) }\]

________________________________________________________________________________________

4.1.1.19 [299] Dirichlet problem Upper half

problem number 299

Taken from Mathematica DSolve help pages

Solve for \(u( x,y) \) \begin{align*} u_{xx}+ y_{yy} =0 \end{align*}

Boundary conditions \(u(x,0)=1\) for \(-\frac{1}{2}\leq x \leq \frac{1}{2}\) and \(x=0\) otherwise. This is called UnitBox in Mathematica.

pict
Figure 4.20:PDE specification

Mathematica

\[\left \{\left \{u(x,y)\to \frac{\tan ^{-1}\left (\frac{\frac{1}{2}-x}{y}\right )+\tan ^{-1}\left (\frac{x+\frac{1}{2}}{y}\right )}{\pi }\right \}\right \}\]

Maple

\[u \left ( x,y \right ) =-{\it \_F2} \left ( ix-y \right ) +\cases{0&$x+iy<-1/2$\cr 1&$x+iy\leq 1/2$\cr 0&$1/2<x+iy$\cr }+{\it \_F2} \left ( y+ix \right ) \]

________________________________________________________________________________________

4.1.1.20 [300] Right half-plane

problem number 300

Taken from Mathematica DSolve help pages

Solve for \(u( x,y) \) \begin{align*} u_{xx}+ y_{yy} =0 \end{align*}

Boundary conditions \(u(0,y)=\sinc (y)\).

pict
Figure 4.21:PDE specification

Mathematica

\[\left \{\left \{u(x,y)\to \frac{-2 y \sinh (x) \sin (y)-2 x \cosh (x) \cos (y)+x}{x^2+y^2}\right \}\right \}\]

Maple

\[u \left ( x,y \right ) ={\frac{\sin \left ( ix-y \right ) +{\it \_F2} \left ( y-ix \right ) \left ( y-ix \right ) + \left ( ix-y \right ){\it \_F2} \left ( y+ix \right ) }{ix-y}}\]

________________________________________________________________________________________

4.1.1.21 [301] First quadrant

problem number 301

Taken from Mathematica DSolve help pages

Solve for \(u( x,y) \) \begin{align*} u_{xx}+ y_{yy} =0 \end{align*}

Boundary conditions \begin{align*} u(x,0) &= - \frac{1}{(x-2)^2+3}\\ u(0,y) &= \frac{1}{(y-3)^2+1}\\ \end{align*}

pict
Figure 4.22:PDE specification

Mathematica

\[\left \{\left \{u(x,y)\to \frac{2 \left (\frac{3 \left (y \left (x \left (x^4+2 x^2 \left (y^2-10\right )+y^4+20 y^2-260\right ) \log \left (x^2+y^2\right )+x \left (x^4 \left (6 \tan ^{-1}(3)-\log (10)\right )+2 x^2 \left (y^2 \left (6 \tan ^{-1}(3)-\log (10)\right )+10 \left (\log (10)+6 \tan ^{-1}(3)\right )\right )+y^4 \left (6 \tan ^{-1}(3)-\log (10)\right )-20 y^2 \left (\log (10)+6 \tan ^{-1}(3)\right )+260 \log (10)+360 \tan ^{-1}(3)\right )+3 \pi (x+1) \left (x^4-4 x^3+2 x^2 \left (y^2+12\right )-4 x \left (y^2+10\right )+y^4-16 y^2+100\right )\right )-\left (x^6+x^4 \left (y^2+6\right )-x^2 \left (y^4-92 y^2+60\right )-y^6+6 y^4+60 y^2-1000\right ) \tan ^{-1}\left (\frac{y}{x}\right )\right )}{\left (x^2-2 x+y^2-6 y+10\right ) \left (x^2+2 x+y^2-6 y+10\right ) \left (x^2-2 x+y^2+6 y+10\right ) \left (x^2+2 x+y^2+6 y+10\right )}-\frac{x \left (3 y \left (x^4+2 x^2 \left (y^2+7\right )+y^4-14 y^2-63\right ) \log \left (x^2+y^2\right )+y \left (x^4 \left (4 \sqrt{3} \tan ^{-1}\left (\frac{2}{\sqrt{3}}\right )-3 \log (7)\right )+2 x^2 \left (y^2 \left (4 \sqrt{3} \tan ^{-1}\left (\frac{2}{\sqrt{3}}\right )-3 \log (7)\right )-7 \left (\log (343)+4 \sqrt{3} \tan ^{-1}\left (\frac{2}{\sqrt{3}}\right )\right )\right )+y^4 \left (4 \sqrt{3} \tan ^{-1}\left (\frac{2}{\sqrt{3}}\right )-3 \log (7)\right )+14 y^2 \left (\log (343)+4 \sqrt{3} \tan ^{-1}\left (\frac{2}{\sqrt{3}}\right )\right )+189 \log (7)-140 \sqrt{3} \tan ^{-1}\left (\frac{2}{\sqrt{3}}\right )\right )+2 \pi \left (x^4 \left (\sqrt{3} y+3\right )+2 x^2 \left (\sqrt{3} y^3-3 y^2-7 \sqrt{3} y-3\right )+\sqrt{3} y^5-9 y^4+14 \sqrt{3} y^3-6 y^2-35 \sqrt{3} y+147\right )\right )+3 \left (x^6+x^4 \left (y^2+5\right )-x^2 \left (y^4+46 y^2-35\right )-y^6+5 y^4-35 y^2+343\right ) \tan ^{-1}\left (\frac{x}{y}\right )}{\left (x^4-8 x^3+2 x^2 \left (y^2+15\right )-8 x \left (y^2+7\right )+y^4+2 y^2+49\right ) \left (x^4+8 x^3+2 x^2 \left (y^2+15\right )+8 x \left (y^2+7\right )+y^4+2 y^2+49\right )}\right )}{3 \pi }\right \}\right \}\]

Maple

sol=()

________________________________________________________________________________________

4.1.1.22 [302] Neumann problem upper half-plane

problem number 302

Taken from Mathematica DSolve help pages

Solve for \(u( x,y) \) \begin{align*} \nabla ^2 u(x,y)=0 \end{align*}

Boundary conditions \(\frac{\partial u}{\partial y}(x,0)=\text{UnitBox[x]}\) where \(\text{UnitBox[x]}\) is \(1\) for \(-\frac{1}{2}\leq x \leq \frac{1}{2}\) and \(0\) otherwise. This is called UnitBox in Mathematica.

pict
Figure 4.23:PDE specification

Mathematica

\[\left \{\left \{u(x,y)\to \frac{-2 x \log \left (4 x^2-4 x+4 y^2+1\right )+\log \left (4 x^2-4 x+4 y^2+1\right )+2 x \log \left (4 x^2+4 x+4 y^2+1\right )+\log \left (4 x^2+4 x+4 y^2+1\right )-4 y \tan ^{-1}\left (\frac{x-\frac{1}{2}}{y}\right )+4 y \tan ^{-1}\left (\frac{x+\frac{1}{2}}{y}\right )-4-2 \log (4)}{4 \pi }\right \}\right \}\]

Maple

\[u \left ( x,y \right ) ={\frac{-i/2}{\pi } \left ( \int _{-\infty }^{\infty }\!{\frac{{{\rm e}^{1/2\,s \left ( 2\,ix-i-2\,y \right ) }}}{{s}^{2}}}\,{\rm d}s-\int _{-\infty }^{\infty }\!{\frac{{{\rm e}^{1/2\,s \left ( 2\,ix+i-2\,y \right ) }}}{{s}^{2}}}\,{\rm d}s \right ) }\] used convert(sol,Int).

________________________________________________________________________________________

4.1.1.23 [303] Dirichlet problem in a rectangle

problem number 303

Taken from Mathematica DSolve help pages

Solve for \(u( x,y) \) \begin{align*} \frac{\partial ^2 u}{\partial x^2}+\frac{\partial ^2 u}{\partial y^2}=0 \end{align*}

Boundary conditions \(u(x, 0) = x^2 (1 - x), u(x, 2) = 0, u(0, y) = 0, u(1, y) = 0\).

pict
Figure 4.24:PDE specification

Mathematica

\[\left \{\left \{u(x,y)\to \underset{n=1}{\overset{\infty }{\sum }}-\frac{4 \left (1+2 (-1)^n\right ) \text{csch}(2 n \pi ) \sin (n \pi x) \sinh (n \pi (2-y))}{n^3 \pi ^3}\right \}\right \}\]

Maple

\[u \left ( x,y \right ) =\sum _{n=1}^{\infty }8\,{\frac{ \left ( -{{\rm e}^{-\pi \,n \left ( y-4 \right ) }}+{{\rm e}^{n\pi \,y}} \right ) \left ( \left ( -1 \right ) ^{n}+1/2 \right ) \sin \left ( \pi \,nx \right ) }{{n}^{3}{\pi }^{3} \left ({{\rm e}^{4\,\pi \,n}}-1 \right ) }}\]

________________________________________________________________________________________

4.1.1.24 [304] Strip in upper half

problem number 304

Added December 20, 2018.

Taken from https://www.mapleprimes.com/posts/209970-Exact-Solutions-For-PDE-And-Boundary--Initial-Conditions-2018

Solve for \(u( x,y) \) \begin{align*} \frac{\partial ^2 u}{\partial x^2}+\frac{\partial ^2 u}{\partial y^2}=0 \end{align*}

Boundary conditions \begin{align*} u(x, 0) &= 0 \\ u(x, b) &= h(x) \end{align*}

pict
Figure 4.25:PDE specification

Mathematica

Failed

Maple

\[u \left ( x,y \right ) =1/2\,{\frac{1}{\pi \,b} \left ( \int _{-\infty }^{\infty }\!-{\frac{\int _{-\infty }^{\infty }\!h \left ( x \right ){{\rm e}^{-ixs}}\,{\rm d}x{{\rm e}^{s \left ( ix+b-y \right ) }}}{{{\rm e}^{2\,sb}}-1}}\,{\rm d}sb+\int _{-\infty }^{\infty }\!-{\frac{\int _{-\infty }^{\infty }\!h \left ( x \right ){{\rm e}^{-ixs}}\,{\rm d}x{{\rm e}^{s \left ( ix+2\,b \right ) }}}{{{\rm e}^{2\,sb}}-1}}\,{\rm d}sy-\int _{-\infty }^{\infty }\!-{\frac{\int _{-\infty }^{\infty }\!h \left ( x \right ){{\rm e}^{-ixs}}\,{\rm d}x{{\rm e}^{s \left ( ix+b+y \right ) }}}{{{\rm e}^{2\,sb}}-1}}\,{\rm d}sb-y \left ( -2\,\pi \,h \left ( x \right ) +\int _{-\infty }^{\infty }\!-{\frac{\int _{-\infty }^{\infty }\!h \left ( x \right ){{\rm e}^{-ixs}}\,{\rm d}x{{\rm e}^{isx}}}{{{\rm e}^{2\,sb}}-1}}\,{\rm d}s \right ) \right ) }\]

________________________________________________________________________________________

4.1.1.25 [305] in Rectangle, right edge at infinity

problem number 305

Added December 20, 2018.

Example 23, Taken from https://www.mapleprimes.com/posts/209970-Exact-Solutions-For-PDE-And-Boundary--Initial-Conditions-2018

Solve for \(u( x,y) \) \begin{align*} \frac{\partial ^2 u}{\partial x^2}+\frac{\partial ^2 u}{\partial y^2}=0 \end{align*}

Boundary conditions \begin{align*} u(x, 0) &= 0 \\ u(x, a) &= 0\\ u(0,y) &= \sin (y) \\ u(\infty ,y) &=0 \end{align*}

pict
Figure 4.26:PDE specification

Mathematica

Failed

Maple

\[u \left ( x,y \right ) =\sum _{n=1}^{\infty }{\frac{1}{\pi \,n+a} \left ( -2\,\pi \,{{\rm e}^{{\frac{\pi \,nx}{a}}}}\cases{-1&$a=\pi \,n$\cr -{\frac{ \left ( -1 \right ) ^{n}\sin \left ( a \right ) }{-\pi \,n+a}}&otherwise\cr }n+{\it \_C5} \left ( n \right ) \left ( \pi \,n+a \right ) \left ({{\rm e}^{-{\frac{\pi \,nx}{a}}}}-{{\rm e}^{{\frac{\pi \,nx}{a}}}} \right ) \right ) \sin \left ({\frac{n\pi \,y}{a}} \right ) }\]

________________________________________________________________________________________