Some notes made during making the collision demo

Written by Nasser M. Abbasi

June 28, 2015

Given 2 particles v, u with velocity components as shown.

After collision

In elastic collision linear momentum in the x and y directions holds

$$
\begin{align*}
& m_{1} v_{1 x}+m_{2} v_{2 x}=m_{1} V_{1 x}+m_{2} V_{2 x} \tag{1}\\
& m_{1} v_{1 y}+m_{2} v_{2 y}=m_{1} V_{1 y}+m_{2} V_{2 y} \tag{2}
\end{align*}
$$

In addition, kinetic energy is constant. Let $v_{1}^{2}=\left(v_{1 x}^{2}+v_{1 y}^{2}\right), v_{2}^{2}=\left(v_{2 x}^{2}+v_{2 y}^{2}\right), V_{1}^{2}=\left(V_{1 x}^{2}+V_{1 y}^{2}\right), V_{2}^{2}=\left(V_{2 x}^{2}+V_{2 y}^{2}\right)$ then

$$
\begin{align*}
\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2} & =\frac{1}{2} m_{1} V_{1}^{2}+\frac{1}{2} m_{2} V_{2}^{2} \\
m_{1}\left(v_{1 x}^{2}+v_{1 y}^{2}\right)+m_{2}\left(v_{2 x}^{2}+v_{2 y}^{2}\right) & =m_{1}\left(V_{1 x}^{2}+V_{1 y}^{2}\right)+m_{2}\left(V_{2 x}^{2}+V_{2 y}^{2}\right) \tag{3}
\end{align*}
$$

We have 3 equations above, but 4 unknowns $\left(V_{1 x}, V_{1 y}, V_{2 x}, V_{2 y}\right)$. The 4 th equation comes from knowing that after collision, particles will travel at 90° trajectories.

