Table of distributions properties
by Nasser Abbasi, generated using Mathematica 6.0 .1
Table of discrete distributions functions, E (X), Var (X)
| Name | X= | pmf P(X=K) | params | E(X) | Var(X) |
| Bernulli | Number of wins on this trial | p | p | (1-p) p | |
| Binomial | Number of wins in n trials Each trial has p chance of winning |
p,n | n p | n (1-p) p | |
| Geometric | Number of trials needed to to obtain a success, Each trial has p chance of success |
p | |||
| Negative Binomial | Number of trials needed to to obtain r successes, Each trial has p chance of success |
r,p | |||
| Hypergeometric | Number of black balls drawn from urn when taking m balls without replacement. urn has total of n balls r black and m white |
![]() |
m,r,n | ||
| Poisson | Number of events in given period | λ | λ | λ |
| Name | X= | pmf P(X=K) | params | E(X) | Var(X) |
| Bernulli | Number of wins on this trial | p | p | (1-p) p | |
| Binomial | Number of wins in n trials Each trial has p chance of winning |
p,n | n p | n (1-p) p | |
| Geometric | Number of trials needed to to obtain a success, Each trial has p chance of success |
p | |||
| Negative Binomial | Number of trials needed to to obtain r successes, Each trial has p chance of success |
r,p | |||
| Hypergeometric | Number of black balls drawn from urn when taking m balls without replacement. urn has total of n balls r black and m white |
![]() |
m,r,n | ||
| Poisson | Number of events in given period | λ | λ | λ |
Table of continuous distributions functions, E (X), Var (X)
| Name | X= | pdf f(x) | params | E(X) | Var(X) |
| Normal | ![]() |
μ,σ | μ | ||
| Exponential | λ | ||||
| Gamma | α,β | α β | |||
| ChiSquare | ![]() |
n | n | 2 n | |
| Chi | ![]() |
n | ![]() |
![]() |
|
| Uniform | min,max | ||||
| Cauchy | ![]() |
a,b | Indeterminate | Indeterminate | |
| Beta | α,β | ||||
| ExtremeValue | ![]() |
α,β | α+γ β | ||
| Gumbel | ![]() |
α,β | α-γ β | ||
| Laplace | μ,β | μ | |||
| HalfNormal | θ |
Table of expected value of functions of random variable
| Name | Y, Function of random variable X | E(Y) | ||
| X=Normal | X | μ | ||
| X=Normal | 2 X | 2 μ | ||
| X=Normal | ||||
| X=Normal | ||||
| X=Normal | ||||
| X=Poisson | 2 X | 2 λ | ||
| X=Poisson | ||||
| X=Poisson | ||||
| X=Poisson | ||||
| X=Poisson | ||||
| X=Poisson | ||||
| X=Poisson | λ | |||
| X=Gamma(α,β) | 2 X | 2 α β | ||
| X=Gamma(α,β) | ||||
| X=Gamma(α,β) | ||||
| X=Gamma(α,β) | ||||
| X=Gamma(α,β) | ![]() |
![]() |
||
| X=Gamma(α,β) | ![]() |
![]() |
||
| X=Gamma(α,β) | α β | |||
| X=ChiSquare(n) | X | n | n (n+2) | |
| X=ChiSquare(1) | X | 1 | 3 | 2 |
| X=ChiSquare(1) | 2 X | 2 | 12 | 8 |
| X=ChiSquare(2) | X | 2 | 8 | 4 |
| X=ChiSquare(2) | 2 X | 4 | 32 | 16 |
| X=T(n) | X | ![]() |
![]() |
|
| X=StudentTDistribution(1) | X | ExpectedValue[x,StudentTDistribution[1],x] | ||
| X=StudentTDistribution(1) | 2 X | ExpectedValue[2 x,StudentTDistribution[1],x] | ||
| X=StudentTDistribution(2) | X | 0 | ||
| X=StudentTDistribution(2) | 2 X | 0 |
Some formulas
| Var(X)=Cov(X,X) | ||
| Cov(X,Y)=E(XY)-E(X)E(Y) | Cov(a+X,Y)=Cov(X,Y) | |
| Cov(aX,bY)=ab Cov(X,Y) | Cov(X,Y+Z)=Cov(X,Y)+Cov(X,Z) | |
| E(X+Y)=E(X)+E(Y) | ||
| M'(t=0)=E(X) | ||
| Theorem B, page 138: Var(Y)=Var(E(Y|X))+E(Var(Y|X)) | ||
![]() |
||
![]() |
Table of moment generating functions
| Distribution | M'(t=0)=E(x) | |||
| Binomial | n p | |||
| Geometric | ||||
| NegativeBinomial | ||||
| Hypergeometric | ![]() |
|||
| Poisson | λ | |||
| Normal | μ | |||
| Exponential | ||||
| Gamma | α β | |||
| ChiSquare | n | |||
| Chi | ![]() |
-n | ![]() |
|
| Uniform | ||||
| Cauchy | a-b | |||
| Beta | Hypergeometric1F1[α,α+β,t] | |||
| ExtremeValue | α+EulerGamma β | |||
| Gumbel | α-EulerGamma β | |||
| Laplace | μ | |||
| HalfNormal | ![]() |
| Created by Wolfram Mathematica 6.0 for Students - Personal Use Only (02 February 2008) |