2.1930   ODE No. 1930

\[ \left \{x'(t)=y(t)-z(t),y'(t)=x(t)^2+y(t),z'(t)=x(t)^2+z(t)\right \} \] Mathematica : cpu = 0.0329601 (sec), leaf count = 308


\[\left \{\left \{x(t)\to e^{-c_3} \left (e^t+e^{c_3} c_1\right ),y(t)\to c_2 \left (e^{-c_3} \left (e^t+e^{c_3} c_1\right )-c_1\right )+\left (e^{-c_3} \left (e^t+e^{c_3} c_1\right )-c_1\right ) \left (-\frac {c_1{}^2}{e^{-c_3} \left (e^t+e^{c_3} c_1\right )-c_1}+e^{-c_3} \left (e^t+e^{c_3} c_1\right )+2 c_1 \log \left (e^{-c_3} \left (e^t+e^{c_3} c_1\right )-c_1\right )\right ),z(t)\to -e^{-c_3} \left (e^t+e^{c_3} c_1\right )+c_2 \left (e^{-c_3} \left (e^t+e^{c_3} c_1\right )-c_1\right )+\left (e^{-c_3} \left (e^t+e^{c_3} c_1\right )-c_1\right ) \left (-\frac {c_1{}^2}{e^{-c_3} \left (e^t+e^{c_3} c_1\right )-c_1}+e^{-c_3} \left (e^t+e^{c_3} c_1\right )+2 c_1 \log \left (e^{-c_3} \left (e^t+e^{c_3} c_1\right )-c_1\right )\right )+c_1\right \}\right \}\] Maple : cpu = 0.064 (sec), leaf count = 45


\[[\{x \relax (t ) = c_{2}+c_{3} {\mathrm e}^{t}\}, \{y \relax (t ) = \left (\int x \relax (t )^{2} {\mathrm e}^{-t}d t +c_{1}\right ) {\mathrm e}^{t}\}, \{z \relax (t ) = -\frac {d}{d t}x \relax (t )+y \relax (t )\}]\]