home

PDF

Selection of Math fonts and usage status with tex4ht

Nasser M. Abbasi

September 8, 2023   Compiled on September 8, 2023 at 10:54am  [public]

Contents

 1 mathpazo,eulervm
 2 mathpazo,mathabx
 3 kpfonts
 4 newtxtext,newtxmath
 5 libertine,newtxmath
 6 stix
 7 lmodern
 8 mathpazo
 9 txfonts
 10 XCharter
 11 charter with mathdesign
 12 math,anttor
 13 condensed,math,anttor
 14 condensed,math,anttor
 15 arev
 16 lf,Baskervaldx
 17 boisik

1 mathpazo,eulervm

Latex file

\documentclass{article} 
\usepackage[T1]{fontenc} 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{amsmath} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[tracking]{microtype} 
\usepackage[sc,osf]{mathpazo}%With old-style figures and real smallcaps. 
\usepackage[euler-digits,small]{eulervm} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

PDF Output

PDF

pict

HTML Output

HTML

status

  1. lualatex: ok
  2. pdflatex: ok
  3. tex4ht: ok, both .png and .svg math

reference

Math Code fragment thanks to Answer by mforbes at Tex.stackexchange

2 mathpazo,mathabx

Latex file

\documentclass{article} 
\usepackage[T1]{fontenc} 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{amsmath} %must be before next line 
\usepackage{mathpazo,mathabx} 
\DeclareMathOperator{\Res}{Res} 
\usepackage[english]{babel} 
\usepackage{blindtext} 
 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

PDF Output

PDF

pict

HTML Output

HTML

status

  1. lualatex: ok
  2. pdflatex: ok
  3. tex4ht: ok, both .png and .svg math

reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

3 kpfonts

Latex file

\documentclass{article} 
\usepackage[T1]{fontenc} 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{kpfonts} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

PDF Output

PDF

pict

HTML Output

HTML

status

  1. lualatex: ok
  2. pdflatex: ok
  3. tex4ht: No.

reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

4 newtxtext,newtxmath

Latex file

\documentclass{article} 
\usepackage[T1]{fontenc} 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{newtxtext,newtxmath} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

PDF Output

PDF

pict

HTML Output

HTML

status

  1. lualatex: ok
  2. pdflatex: ok
  3. tex4ht: No. Drops the  fi  letters in text. But Math looks ok.

reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

5 libertine,newtxmath

Latex file

\documentclass{article} 
\usepackage[T1]{fontenc} 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage[libertine]{newtxmath} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

PDF Output

PDF

pict

HTML Output

HTML

status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: Missing some fonts.

reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

6 stix

Latex file

\documentclass{article} 
\usepackage[T1]{fontenc} 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{amsmath} 
\usepackage{stix} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

PDF Output

PDF

pict

HTML Output

HTML

status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: No. Drops the  fi  letters in text. But Math looks ok.

reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

7 lmodern

Latex file

\documentclass{article} 
\usepackage[T1]{fontenc} 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{amsmath} 
\usepackage{lmodern} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

PDF Output

PDF

pict

HTML Output

HTML

status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: Ok

reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

8 mathpazo

Latex file

\documentclass{article} 
\usepackage[T1]{fontenc} 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{amsmath} 
\usepackage{mathpazo} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

PDF Output

PDF

pict

HTML Output

HTML

status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: Ok

reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

9 txfonts

Latex file

\documentclass{article} 
\usepackage[T1]{fontenc} 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{amsmath} 
\usepackage{txfonts} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

PDF Output

PDF

pict

HTML Output

HTML

status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: No., changed one \(f\) to an up arrow in text.

reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

10 XCharter

Latex file

\documentclass{article} 
\usepackage[T1]{fontenc} 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{amsmath} 
\usepackage{XCharter} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

PDF Output

PDF

pict

HTML Output

HTML

status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: No. Compile error in latest texlive.

reference

Math Code fragment thanks to Tex.Stackexchange

11 charter with mathdesign

Latex file

\documentclass{article} 
\usepackage[T1]{fontenc} 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{amsmath} 
\usepackage[charter]{mathdesign} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

PDF Output

PDF

pict

HTML Output

HTML

status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: No. All text is mangled. Math looks ok.

reference

Math Code fragment thanks to Tex.Stackexchange

12 math,anttor

Latex file

\documentclass{article} 
\usepackage[math]{anttor} 
\usepackage[T1]{fontenc} 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{amsmath} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

PDF Output

PDF

pict

HTML Output

HTML

status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: Ok.

reference

http://www.tug.dk/FontCatalogue/anttor/

13 condensed,math,anttor

Latex file

\documentclass{article} 
\usepackage[condensed,math]{anttor} 
\usepackage[T1]{fontenc} 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{amsmath} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

PDF Output

PDF

pict

HTML Output

HTML

status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: Ok

reference

http://www.tug.dk/FontCatalogue/anttor/

14 condensed,math,anttor

Latex file

\documentclass{article} 
\usepackage[light,math]{anttor} 
\usepackage[T1]{fontenc} 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{amsmath} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

PDF Output

PDF

pict

HTML Output

HTML

status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: Ok

reference

http://www.tug.dk/FontCatalogue/anttor/

15 arev

Latex file

\documentclass{article} 
\usepackage[utf8]{inputenc} 
\usepackage{arev} 
\usepackage[T1]{fontenc} 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{amsmath} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

PDF Output

PDF

pict

HTML Output

N/A did not compile.

status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: No. Missing fonts, will not compile.

reference

http://www.tug.dk/FontCatalogue/anttor/

16 lf,Baskervaldx

Latex file

\documentclass{article} 
\usepackage[utf8]{inputenc} 
\usepackage{amsmath} 
\usepackage[lf]{Baskervaldx} % lining figures 
\usepackage[bigdelims,vvarbb]{newtxmath} % math italic letters from Nimbus Roman 
\usepackage[cal=boondoxo]{mathalfa} % mathcal from STIX, unslanted a bit 
\renewcommand*\oldstylenums[1]{\textosf{#1}} 
 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{amsmath} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

PDF Output

PDF

pict

HTML Output

HTML

status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: compiles, but text drops fi, but math looks ok.

reference

http://www.tug.dk/FontCatalogue/anttor/

17 boisik

Latex file

\documentclass{article} 
\usepackage{amsmath} 
\usepackage{boisik} 
\usepackage[OT1]{fontenc} 
 
\usepackage{ntheorem} 
\newtheorem{theorem}{Theorem} 
\usepackage{amsmath} 
\DeclareMathOperator{\Res}{Res} 
 
\usepackage[english]{babel} 
\usepackage{blindtext} 
\begin{document} 
\blindtext 
\pagestyle{empty} 
\begin{theorem}[Residue Theorem] 
Let $f$ be analytic in the region $G$ except for the isolated 
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed 
rectifiable curve in $G$ which does not pass through any of the 
points $a_k$ and if $\gamma\approx 0$ in $G$, then 
\[ 
  \frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m 
  n(\gamma;a_k)\Res(f;a_k)\,. 
\] 
\end{theorem} 
\end{document}

PDF Output

PDF

PIC

HTML Output

HTML

status

  1. lualatex: Ok
  2. pdflatex: Ok
  3. tex4ht: compiles, but text drops fi, but math looks ok.

reference

http://www.tug.dk/FontCatalogue/anttor/