PDF

## Selection of Math fonts and usage status with tex4ht

September 8, 2023   Compiled on September 8, 2023 at 10:54am  [public]

### 1 mathpazo,eulervm

#### Latex ﬁle

\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{amsmath}
\DeclareMathOperator{\Res}{Res}

\usepackage[tracking]{microtype}
\usepackage[sc,osf]{mathpazo}%With old-style figures and real smallcaps.
\usepackage[euler-digits,small]{eulervm}

\usepackage[english]{babel}
\usepackage{blindtext}

\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
$\frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m n(\gamma;a_k)\Res(f;a_k)\,.$
\end{theorem}
\end{document}

#### status

1. lualatex: ok
2. pdﬂatex: ok
3. tex4ht: ok, both .png and .svg math

#### reference

Math Code fragment thanks to Answer by mforbes at Tex.stackexchange

### 2 mathpazo,mathabx

#### Latex ﬁle

\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{amsmath} %must be before next line
\usepackage{mathpazo,mathabx}
\DeclareMathOperator{\Res}{Res}
\usepackage[english]{babel}
\usepackage{blindtext}

\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
$\frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m n(\gamma;a_k)\Res(f;a_k)\,.$
\end{theorem}
\end{document}

#### status

1. lualatex: ok
2. pdﬂatex: ok
3. tex4ht: ok, both .png and .svg math

#### reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

### 3 kpfonts

#### Latex ﬁle

\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{kpfonts}
\DeclareMathOperator{\Res}{Res}

\usepackage[english]{babel}
\usepackage{blindtext}
\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
$\frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m n(\gamma;a_k)\Res(f;a_k)\,.$
\end{theorem}
\end{document}

#### status

1. lualatex: ok
2. pdﬂatex: ok
3. tex4ht: No.

#### reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

### 4 newtxtext,newtxmath

#### Latex ﬁle

\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{newtxtext,newtxmath}
\DeclareMathOperator{\Res}{Res}

\usepackage[english]{babel}
\usepackage{blindtext}
\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
$\frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m n(\gamma;a_k)\Res(f;a_k)\,.$
\end{theorem}
\end{document}

#### status

1. lualatex: ok
2. pdﬂatex: ok
3. tex4ht: No. Drops the  fi  letters in text. But Math looks ok.

#### reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

### 5 libertine,newtxmath

#### Latex ﬁle

\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage[libertine]{newtxmath}
\DeclareMathOperator{\Res}{Res}

\usepackage[english]{babel}
\usepackage{blindtext}
\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
$\frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m n(\gamma;a_k)\Res(f;a_k)\,.$
\end{theorem}
\end{document}

#### status

1. lualatex: Ok
2. pdﬂatex: Ok
3. tex4ht: Missing some fonts.

#### reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

### 6 stix

#### Latex ﬁle

\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{amsmath}
\usepackage{stix}
\DeclareMathOperator{\Res}{Res}

\usepackage[english]{babel}
\usepackage{blindtext}
\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
$\frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m n(\gamma;a_k)\Res(f;a_k)\,.$
\end{theorem}
\end{document}

#### status

1. lualatex: Ok
2. pdﬂatex: Ok
3. tex4ht: No. Drops the  fi  letters in text. But Math looks ok.

#### reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

### 7 lmodern

#### Latex ﬁle

\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{amsmath}
\usepackage{lmodern}
\DeclareMathOperator{\Res}{Res}

\usepackage[english]{babel}
\usepackage{blindtext}
\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
$\frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m n(\gamma;a_k)\Res(f;a_k)\,.$
\end{theorem}
\end{document}

#### status

1. lualatex: Ok
2. pdﬂatex: Ok
3. tex4ht: Ok

#### reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

### 8 mathpazo

#### Latex ﬁle

\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{amsmath}
\usepackage{mathpazo}
\DeclareMathOperator{\Res}{Res}

\usepackage[english]{babel}
\usepackage{blindtext}
\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
$\frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m n(\gamma;a_k)\Res(f;a_k)\,.$
\end{theorem}
\end{document}

#### status

1. lualatex: Ok
2. pdﬂatex: Ok
3. tex4ht: Ok

#### reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

### 9 txfonts

#### Latex ﬁle

\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{amsmath}
\usepackage{txfonts}
\DeclareMathOperator{\Res}{Res}

\usepackage[english]{babel}
\usepackage{blindtext}
\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
$\frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m n(\gamma;a_k)\Res(f;a_k)\,.$
\end{theorem}
\end{document}

#### status

1. lualatex: Ok
2. pdﬂatex: Ok
3. tex4ht: No., changed one $$f$$ to an up arrow in text.

#### reference

Math Code fragment thanks to Answer by Mico at Tex.stackexchange

### 10 XCharter

#### Latex ﬁle

\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{amsmath}
\usepackage{XCharter}
\DeclareMathOperator{\Res}{Res}

\usepackage[english]{babel}
\usepackage{blindtext}
\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
$\frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m n(\gamma;a_k)\Res(f;a_k)\,.$
\end{theorem}
\end{document}

#### status

1. lualatex: Ok
2. pdﬂatex: Ok
3. tex4ht: No. Compile error in latest texlive.

#### reference

Math Code fragment thanks to Tex.Stackexchange

### 11 charter with mathdesign

#### Latex ﬁle

\documentclass{article}
\usepackage[T1]{fontenc}
\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{amsmath}
\usepackage[charter]{mathdesign}
\DeclareMathOperator{\Res}{Res}

\usepackage[english]{babel}
\usepackage{blindtext}
\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
$\frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m n(\gamma;a_k)\Res(f;a_k)\,.$
\end{theorem}
\end{document}

#### status

1. lualatex: Ok
2. pdﬂatex: Ok
3. tex4ht: No. All text is mangled. Math looks ok.

#### reference

Math Code fragment thanks to Tex.Stackexchange

### 12 math,anttor

#### Latex ﬁle

\documentclass{article}
\usepackage[math]{anttor}
\usepackage[T1]{fontenc}
\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{amsmath}
\DeclareMathOperator{\Res}{Res}

\usepackage[english]{babel}
\usepackage{blindtext}
\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
$\frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m n(\gamma;a_k)\Res(f;a_k)\,.$
\end{theorem}
\end{document}

#### status

1. lualatex: Ok
2. pdﬂatex: Ok
3. tex4ht: Ok.

### 13 condensed,math,anttor

#### Latex ﬁle

\documentclass{article}
\usepackage[condensed,math]{anttor}
\usepackage[T1]{fontenc}
\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{amsmath}
\DeclareMathOperator{\Res}{Res}

\usepackage[english]{babel}
\usepackage{blindtext}
\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
$\frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m n(\gamma;a_k)\Res(f;a_k)\,.$
\end{theorem}
\end{document}

#### status

1. lualatex: Ok
2. pdﬂatex: Ok
3. tex4ht: Ok

### 14 condensed,math,anttor

#### Latex ﬁle

\documentclass{article}
\usepackage[light,math]{anttor}
\usepackage[T1]{fontenc}
\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{amsmath}
\DeclareMathOperator{\Res}{Res}

\usepackage[english]{babel}
\usepackage{blindtext}
\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
$\frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m n(\gamma;a_k)\Res(f;a_k)\,.$
\end{theorem}
\end{document}

#### status

1. lualatex: Ok
2. pdﬂatex: Ok
3. tex4ht: Ok

### 15 arev

#### Latex ﬁle

\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{arev}
\usepackage[T1]{fontenc}
\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{amsmath}
\DeclareMathOperator{\Res}{Res}

\usepackage[english]{babel}
\usepackage{blindtext}
\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
$\frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m n(\gamma;a_k)\Res(f;a_k)\,.$
\end{theorem}
\end{document}

#### HTML Output

N/A did not compile.

#### status

1. lualatex: Ok
2. pdﬂatex: Ok
3. tex4ht: No. Missing fonts, will not compile.

#### Latex ﬁle

\documentclass{article}
\usepackage[utf8]{inputenc}
\usepackage{amsmath}
\usepackage[lf]{Baskervaldx} % lining figures
\usepackage[bigdelims,vvarbb]{newtxmath} % math italic letters from Nimbus Roman
\usepackage[cal=boondoxo]{mathalfa} % mathcal from STIX, unslanted a bit
\renewcommand*\oldstylenums[1]{\textosf{#1}}

\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{amsmath}
\DeclareMathOperator{\Res}{Res}

\usepackage[english]{babel}
\usepackage{blindtext}
\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
$\frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m n(\gamma;a_k)\Res(f;a_k)\,.$
\end{theorem}
\end{document}

#### status

1. lualatex: Ok
2. pdﬂatex: Ok
3. tex4ht: compiles, but text drops fi, but math looks ok.

### 17 boisik

#### Latex ﬁle

\documentclass{article}
\usepackage{amsmath}
\usepackage{boisik}
\usepackage[OT1]{fontenc}

\usepackage{ntheorem}
\newtheorem{theorem}{Theorem}
\usepackage{amsmath}
\DeclareMathOperator{\Res}{Res}

\usepackage[english]{babel}
\usepackage{blindtext}
\begin{document}
\blindtext
\pagestyle{empty}
\begin{theorem}[Residue Theorem]
Let $f$ be analytic in the region $G$ except for the isolated
singularities $a_1,a_2,\dots,a_m$. If $\gamma$ is a closed
rectifiable curve in $G$ which does not pass through any of the
points $a_k$ and if $\gamma\approx 0$ in $G$, then
$\frac{1}{2\pi i}\int_\gamma\! f = \sum_{k=1}^m n(\gamma;a_k)\Res(f;a_k)\,.$
\end{theorem}
\end{document}

#### status

1. lualatex: Ok
2. pdﬂatex: Ok
3. tex4ht: compiles, but text drops fi, but math looks ok.