#### 2.4.3 circular membrane, no circular symmetry, speciﬁc problem from exam

This solves wave PDE on disk also as above. This was problem from exam, moved here. Math 322. Spring 2018. Solve

$u_{tt}=u_{xx}+u_{yy}$ On the unit disk $$x^{2}+y^{2}\leq 1$$ with with boundary conditions$u\left ( x,y\right ) =0\qquad \text{if }x^{2}+y^{2}=1$ And initial conditions\begin{align*} u\left ( x,y,0\right ) & =0\\ u_{t}\left ( x,y,0\right ) & =\left \{ \begin{array} [c]{ccc}\frac{1}{\pi \epsilon ^{2}} & & \text{if }\sqrt{x^{2}+y^{2}}\leq \epsilon \\ 0 & & \text{otherwise}\end{array} \right . \end{align*}

Where $$0<\epsilon <1$$. Plot the solution $$u\left ( r,t\right )$$ for $$\epsilon =\frac{1}{2}$$

Solution

The PDE and initial and boundary conditions are converted to polar coordinates to become$$u_{tt}=u_{rr}+\frac{1}{r}u_{r}+\frac{1}{r^{2}}u_{\theta \theta } \tag{1}$$ On the unit disk with radius $$1$$. The boundary conditions are\begin{align*} u\left ( 1,\theta ,t\right ) & =0\\ u\left ( 0,\theta ,t\right ) & <\infty \end{align*}

Where $$u\left ( 0,\theta ,t\right ) <\infty$$ means the solution is bounded at center of disk $$r=0$$.  The boundary conditions on $$\theta$$ are the standard periodic boundary conditions\begin{align*} u\left ( r,-\pi ,t\right ) & =u\left ( r,\pi ,t\right ) \\ u_{\theta }\left ( r,-\pi ,t\right ) & =u_{\theta }\left ( r,\pi ,t\right ) \end{align*}

And initial conditions are\begin{align*} u\left ( r,\theta ,0\right ) & =0\\ u_{t}\left ( r,\theta ,0\right ) & =\left \{ \begin{array} [c]{ccc}\frac{1}{\pi \epsilon ^{2}} & & \text{if }r\leq \epsilon \\ 0 & & \text{otherwise}\end{array} \right . \end{align*}

The above PDE is solved by separation of variables.  Let $$u\left ( r,\theta ,t\right ) =T\left ( t\right ) R\left ( r\right ) \Theta \left ( \theta \right )$$. Substituting this in the PDE (1) gives$T^{\prime \prime }R\Theta =R^{\prime \prime }T\Theta +\frac{1}{r}R^{\prime }T\Theta +\frac{1}{r^{2}}\Theta ^{\prime \prime }RT$ Dividing by $$RT\Theta$$$\frac{T^{\prime \prime }}{T}=\frac{R^{\prime \prime }}{R}+\frac{1}{r}\frac{R^{\prime }}{R}+\frac{1}{r^{2}}\frac{\Theta ^{\prime \prime }}{\Theta }=-\lambda ^{2}$ Where $$\lambda$$ is the ﬁrst separation variable. This results in two equations\begin{align} \frac{T^{\prime \prime }}{T} & =-\lambda ^{2}\tag{1}\\ \frac{R^{\prime \prime }}{R}+\frac{1}{r}\frac{R^{\prime }}{R}+\frac{1}{r^{2}}\frac{\Theta ^{\prime \prime }}{\Theta } & =-\lambda ^{2} \tag{2} \end{align}

The time ODE (1) is$$T^{\prime \prime }+\lambda ^{2}T=0 \tag{1A}$$ Multiplying (2) by $$r^{2}$$ and rearranging$r^{2}\frac{R^{\prime \prime }}{R}+r\frac{R^{\prime }}{R}+r^{2}\lambda ^{2}=-\frac{\Theta ^{\prime \prime }}{\Theta }=\mu ^{2}$ Where $$\mu$$ is the second separation constant. This gives the $$R$$ ODE as$$r^{2}R^{\prime \prime }+rR^{\prime }+\left ( r^{2}\lambda ^{2}-\mu ^{2}\right ) R=0 \tag{3}$$ And the $$\Theta$$ ODE as$$\Theta ^{\prime \prime }+\mu ^{2}\Theta =0 \tag{4}$$ The eigenvalues for (4) determine the Bessel equation (3) order. Therefore (4) needs to be solved ﬁrst to determined the order. The ODE boundary conditions for (4) are periodic\begin{align*} \Theta \left ( -\pi \right ) & =\Theta \left ( \pi \right ) \\ \Theta ^{\prime }\left ( -\pi \right ) & =\Theta ^{\prime }\left ( \pi \right ) \end{align*}

case $$\mu =0$$. This leads to solution \begin{align*} \Theta & =c_{1}\theta +c_{2}\\ \Theta ^{\prime } & =c_{1} \end{align*}

First BC gives\begin{align*} -c_{1}\pi +c_{2} & =c_{1}\pi +c_{2}\\ c_{1} & =0 \end{align*}

And since second BC $$\Theta ^{\prime }=c_{1}$$, this implies $$\Theta \left ( \theta \right )$$ is constant. So $$\mu =0$$ is an eigenvalue, with $$\Theta _{0}\left ( \theta \right ) =1$$ being the eigenfunction.

Case $$\mu >0$$ The solution to (4) becomes$\Theta \left ( \theta \right ) =A\cos \left ( \mu \theta \right ) +B\sin \left ( \mu \theta \right )$ To satisfy the periodic boundary conditions, $$\mu$$ must be an integer, and since $$\mu >0$$, then $$\mu =n$$ for $$n=1,2,3,\cdots$$. Therefore\begin{align} \Theta _{0}\left ( \theta \right ) & =1\qquad n=0\tag{5A}\\ \Theta _{n}\left ( \theta \right ) & =A_{n}\cos n\theta +B_{n}\sin n\theta \qquad n=1,2,3,\cdots \tag{5B} \end{align}

The above solution can be combined to one$$\Theta _{n}\left ( \theta \right ) =A_{n}\cos n\theta +B_{n}\sin n\theta \qquad n=0,1,2,\cdots \tag{5}$$ Because when $$n=0$$ the above solution gives $$\Theta _{0}\left ( \theta \right ) =A_{0}$$ which is the constant eigenfunction. Now that $$\mu$$ is found, Bessel ODE (3) can be solved.\begin{align} r^{2}R^{\prime \prime }\left ( r\right ) +rR^{\prime }\left ( r\right ) +\left ( r^{2}\lambda ^{2}-n^{2}\right ) R\left ( r\right ) & =0\qquad n=0,1,2,3,\cdots \tag{5C}\\ R\left ( 1\right ) & =0\nonumber \\ R\left ( 0\right ) & <\infty \nonumber \end{align}

$$\lambda =0$$ is not a possible eigenvalue. This can be shown as follows. When $$\lambda =0$$ equation (5C) becomes the Euler ODE$r^{2}R^{\prime \prime }\left ( r\right ) +rR^{\prime }\left ( r\right ) +n^{2}R\left ( r\right ) =0\qquad n=0,1,2,3,\cdots$ Now, when $$n=0$$, then the ODE becomes $$r^{2}R^{\prime \prime }\left ( r\right ) +rR^{\prime }\left ( r\right ) =0$$ whose solution is $$R\left ( r\right ) =c_{1}+c_{2}\ln \left ( r\right )$$. Since solution is bounded at $$r=0$$, then $$R\left ( r\right ) =c_{1}$$. And since $$R\left ( 1\right ) =0$$ then $$c_{1}=0$$ also, leading to trivial solution. When $$n>0$$, the ODE becomes $$r^{2}R^{\prime \prime }\left ( r\right ) +rR^{\prime }\left ( r\right ) +n^{2}R\left ( r\right ) =0$$ whose solution is $$R\left ( r\right ) =c_{1}r^{n}+c_{2}\frac{1}{r^{n}}$$. Since solution is bounded at $$r=0$$, then $$c_{2}=0$$ and the solution now becomes $$R\left ( r\right ) =c_{1}r^{n}$$. Using BC $$R\left ( 1\right ) =0$$ gives $$c_{1}=0$$ leading again to trivial solution. This shows that $$\lambda =0$$ is not eigenvalue.

Now that $$\lambda$$ is is shown not to be zero, the Bessel ODE (5C) is solved . The ﬁrst step is to convert the ODE to a Bessel ODE in the classical form in order to use the standard solution. Let $$t=\lambda r$$, then $$R^{\prime }\left ( r\right ) =R^{\prime }\left ( t\right ) \lambda$$ and $$R^{\prime \prime }\left ( r\right ) =R^{\prime \prime }\left ( t\right ) \lambda ^{2}$$. ODE (5C) becomes\begin{align*} \frac{t^{2}}{\lambda ^{2}}\lambda ^{2}R^{\prime \prime }\left ( t\right ) +\frac{t}{\lambda }\lambda R^{\prime }\left ( t\right ) +\left ( \frac{t^{2}}{\lambda ^{2}}\lambda ^{2}-n^{2}\right ) R\left ( t\right ) & =0\\ t^{2}R^{\prime \prime }\left ( t\right ) +tR^{\prime }\left ( t\right ) +\left ( t^{2}-n^{2}\right ) R\left ( t\right ) & =0 \end{align*}

This is now in standard Bessel ODE form. This is of order $$n$$, where $$n$$ is $$n=0,1,2,3,\cdots$$. Since the order is integer, then the solution is given by$R_{n}\left ( t\right ) =C_{n}J_{n}\left ( t\right ) +D_{n}Y_{n}\left ( t\right )$ Where $$J_{n}\left ( t\right )$$ is the Bessel function of order $$n$$ and $$Y_{n}\left ( t\right )$$ is the Bessel function of second kind of order $$n$$. In terms of $$r$$ the above solution becomes$R_{n}\left ( r\right ) =C_{n}J_{n}\left ( \lambda r\right ) +D_{n}Y_{n}\left ( \lambda r\right )$ Because the solution is bounded at $$r=0$$ and since $$Y_{n}\left ( 0\right )$$ blows up, then $$D_{n}=0$$. The above solution simpliﬁes to$R_{n}\left ( r\right ) =C_{n}J_{n}\left ( \lambda r\right )$ Applying the second boundary conditions, when $$r=1$$ then$0=C_{n}J_{n}\left ( \lambda \right )$ For non-trivial solution $$J_{n}\left ( \lambda \right ) =0$$. Hence $$\lambda$$ are the positive zeros of $$J_{n}\left ( z\right )$$. Let the positive zeros of $$J_{n}\left ( z\right )$$ be $$j_{nm}$$. For $$m=1,2,3,\cdots$$. Therefore $\lambda _{nm}=j_{nm}\qquad n=0,1,2,\cdots ,m=1,2,3,\cdots$ This means that $$j_{nm}$$ is the $$m^{th}$$ eigenvalue for the $$n^{th}$$ order Bessel function $$J_{n}\left ( z\right )$$. So there are two indices to handle in this problem. The order of the Bessel function is determined from the $$\Theta _{n}\left ( \theta \right )$$ eigenvalues, and then once this order $$n$$ is ﬁxed, the second eigenvalue $$\lambda _{nm}$$ is determined from the zeros of the Bessel function $$J_{n}\left ( z\right )$$. Hence the $$R_{nm}\left ( r\right )$$ solution is$R_{nm}\left ( r\right ) =C_{nm}J_{n}\left ( \lambda _{nm}r\right ) \qquad n=0,1,2,3,\cdots ,m=1,2,3,\cdots$ Now that $$\lambda _{nm}$$ is known, the time ODE (1) can be solved\begin{align*} T_{nm}^{\prime \prime }+\lambda _{nm}^{2}T_{nm} & =0\\ T_{nm} & =A_{nm}\cos \left ( \lambda _{nm}t\right ) +B_{nm}\sin \left ( \lambda _{nm}t\right ) \qquad n=0,1,2,3,\cdots ,m=1,2,3,\cdots \end{align*}

The fundamental solution is therefore$u_{nm}\left ( r,\theta ,t\right ) =\Theta _{n}\left ( \theta \right ) T_{nm}\left ( t\right ) R_{nm}\left ( r\right )$ The complete solution is the superposition of the fundamental solutions given by \begin{align*} u\left ( r,\theta ,t\right ) & =\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }\Theta _{n}\left ( \theta \right ) T_{nm}\left ( t\right ) R_{nm}\left ( r\right ) \\ & =\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }\left ( A_{n}\cos n\theta +B_{n}\sin n\theta \right ) \left \{ A_{nm}\cos \left ( \lambda _{nm}t\right ) +B_{nm}\sin \left ( \lambda _{nm}t\right ) \right \} C_{nm}J_{n}\left ( \lambda _{nm}r\right ) \end{align*}

The above can now be written as\begin{align*} u\left ( r,\theta ,t\right ) & =\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }A_{n}\cos n\theta \left ( \left ( A_{nm}\cos \left ( \lambda _{nm}t\right ) +B_{nm}\sin \left ( \lambda _{nm}t\right ) \right ) C_{nm}J_{n}\left ( \lambda _{nm}r\right ) \right ) \\ & +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }B_{n}\sin n\theta \left ( \left ( A_{nm}\cos \left ( \lambda _{nm}t\right ) +B_{nm}\sin \left ( \lambda _{nm}t\right ) \right ) C_{nm}J_{n}\left ( \lambda _{nm}r\right ) \right ) \end{align*}

Or\begin{align} u\left ( r,\theta ,t\right ) & =\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }A_{n}\cos n\theta A_{nm}\cos \left ( \lambda _{nm}t\right ) C_{nm}J_{n}\left ( \lambda _{nm}r\right ) \nonumber \\ & +\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }A_{n}\cos n\theta B_{nm}\sin \left ( \lambda _{nm}t\right ) C_{nm}J_{n}\left ( \lambda _{nm}r\right ) \nonumber \\ & +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }B_{n}\sin n\theta A_{nm}\cos \left ( \lambda _{nm}t\right ) C_{nm}J_{n}\left ( \lambda _{nm}r\right ) \nonumber \\ & +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }B_{n}\sin n\theta B_{nm}\sin \left ( \lambda _{nm}t\right ) C_{nm}J_{n}\left ( \lambda _{nm}r\right ) \tag{6} \end{align}

Constants are now merged and renamed as follows in order to simplify the rest of the solution. Let\begin{align*} A_{n}A_{nm}C_{nm} & =\bar{A}_{nm}\\ A_{n}B_{nm}C_{nm} & =\bar{B}_{nm}\\ B_{n}A_{nm}C_{nm} & =\bar{C}_{nm}\\ B_{n}B_{nm}C_{nm} & =\bar{D}_{nm} \end{align*}

Equation (6) can now be written as\begin{align} u\left ( r,\theta ,t\right ) & =\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }\bar{A}_{nm}\cos \left ( n\theta \right ) \cos \left ( \lambda _{nm}t\right ) J_{n}\left ( \lambda _{nm}r\right ) \nonumber \\ & +\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }\bar{B}_{nm}\cos \left ( n\theta \right ) \sin \left ( \lambda _{nm}t\right ) J_{n}\left ( \lambda _{nm}r\right ) \nonumber \\ & +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }\bar{C}_{nm}\sin \left ( n\theta \right ) \cos \left ( \lambda _{nm}t\right ) J_{n}\left ( \lambda _{nm}r\right ) \nonumber \\ & +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }\bar{D}_{nm}\sin \left ( n\theta \right ) \sin \left ( \lambda _{nm}t\right ) J_{n}\left ( \lambda _{nm}r\right ) \tag{7} \end{align}

Initial conditions are used to determine the $$4$$ new constants above. Using initial condition at $$t=0,u\left ( r,\theta ,0\right ) =0$$ the above equation becomes$$0=\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }\bar{A}_{nm}\cos \left ( n\theta \right ) J_{n}\left ( \lambda _{nm}r\right ) +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }\bar{C}_{nm}\sin \left ( n\theta \right ) J_{n}\left ( \lambda _{nm}r\right ) \nonumber$$ Applying orthogonality on $$\cos \left ( n\theta \right )$$ and $$\sin \left ( n\theta \right )$$ in turn shows that $$\bar{A}_{nm}=0$$ and $$\bar{C}_{nm}=0$$. Therefore the solution (7) reduces to the following two sums only$$u\left ( r,\theta ,t\right ) =\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }\bar{B}_{nm}\cos \left ( n\theta \right ) \sin \left ( \lambda _{nm}t\right ) J_{n}\left ( \lambda _{nm}r\right ) +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }\bar{D}_{nm}\sin \left ( n\theta \right ) \sin \left ( \lambda _{nm}t\right ) J_{n}\left ( \lambda _{nm}r\right ) \tag{8}$$ Taking time derivative gives$u_{t}\left ( r,\theta ,t\right ) =\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }\bar{B}_{nm}\cos \left ( n\theta \right ) \lambda _{nm}\cos \left ( \lambda _{nm}t\right ) J_{n}\left ( \lambda _{nm}r\right ) +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }\bar{D}_{nm}\sin \left ( n\theta \right ) \lambda _{nm}\cos \left ( \lambda _{nm}t\right ) J_{n}\left ( \lambda _{nm}r\right )$ Applying the second initial condition at $$t=0$$ gives$$\sum _{n=0}^{\infty }\sum _{m=1}^{\infty }\bar{B}_{nm}\cos \left ( n\theta \right ) \lambda _{nm}J_{n}\left ( \lambda _{nm}r\right ) +\sum _{n=1}^{\infty }\sum _{m=1}^{\infty }\bar{D}_{nm}\sin \left ( n\theta \right ) \lambda _{nm}J_{n}\left ( \lambda _{nm}r\right ) =\left \{ \begin{array} [c]{ccc}\frac{1}{\pi \epsilon ^{2}} & & \text{if }r\leq \epsilon \\ 0 & & \text{otherwise}\end{array} \right . \tag{9}$$ Case $$n=0$$ (9) becomes$\sum _{m=1}^{\infty }\bar{B}_{0m}\lambda _{0m}J_{0}\left ( \lambda _{0m}r\right ) =\left \{ \begin{array} [c]{ccc}\frac{1}{\pi \epsilon ^{2}} & & \text{if }r\leq \epsilon \\ 0 & & \text{otherwise}\end{array} \right .$ Applying orthogonality on $$J_{0}\left ( \lambda _{0m}r\right )$$ results in\begin{align} \bar{B}_{0m}\lambda _{0m}\int _{0}^{1}rJ_{0}^{2}\left ( \lambda _{0m}r\right ) dr & =\frac{1}{\pi \epsilon ^{2}}\int _{0}^{\epsilon }rJ_{0}\left ( \lambda _{0m}r\right ) dr\nonumber \\ \bar{B}_{0m} & =\frac{1}{\pi \epsilon ^{2}\lambda _{0m}}\frac{\int _{0}^{\epsilon }rJ_{0}\left ( \lambda _{0m}r\right ) dr}{\int _{0}^{1}rJ_{0}^{2}\left ( \lambda _{0m}r\right ) dr} \tag{9A} \end{align}

Case $$n>1$$ Applying orthogonality on $$\cos \left ( n\theta \right ) ,$$ equation (9) becomes\begin{align*} \sum _{m=1}^{\infty }\bar{B}_{nm}\left ( \int _{-\pi }^{\pi }\cos ^{2}\left ( n\theta \right ) d\theta \right ) \lambda _{nm}J_{n}\left ( \lambda _{nm}r\right ) & =\left \{ \begin{array} [c]{ccc}\frac{1}{\pi \epsilon ^{2}}\int _{-\pi }^{\pi }\cos \left ( n\theta \right ) d\theta & & \text{if }r^{2}\leq \epsilon \\ 0 & & \text{otherwise}\end{array} \right . \\ \sum _{m=1}^{\infty }\pi \bar{B}_{nm}\lambda _{nm}J_{n}\left ( \lambda _{nm}r\right ) & =\left \{ \begin{array} [c]{ccc}0 & & \text{if }r^{2}\leq \epsilon \\ 0 & & \text{otherwise}\end{array} \right . \end{align*}

Hence $$\bar{B}_{nm}=0$$ for all $$n>0$$.

The same is now done to ﬁnd $$\bar{D}_{nm}$$. Applying orthogonality on $$\sin \left ( n\theta \right ) ,$$ equation (9) becomes\begin{align*} \sum _{m=1}^{\infty }\bar{D}_{nm}\left ( \int _{-\pi }^{\pi }\sin ^{2}\left ( n\theta \right ) d\theta \right ) \lambda _{nm}J_{n}\left ( \lambda _{nm}r\right ) & =\left \{ \begin{array} [c]{ccc}\frac{1}{\pi \epsilon ^{2}}\int _{-\pi }^{\pi }\sin \left ( n\theta \right ) d\theta & & \text{if }r^{2}\leq \epsilon \\ 0 & & \text{otherwise}\end{array} \right . \\ \sum _{m=1}^{\infty }\bar{D}_{nm}\left ( \int _{-\pi }^{\pi }\sin ^{2}\left ( n\theta \right ) d\theta \right ) \lambda _{nm}J_{n}\left ( \lambda _{nm}r\right ) & =\left \{ \begin{array} [c]{ccc}0 & & \text{if }r^{2}\leq \epsilon \\ 0 & & \text{otherwise}\end{array} \right . \end{align*}

Hence all $$\bar{D}_{nm}=0$$ for all $$n>0$$.

Therefore the solution (8) reduces to only using $$n=0,m=1,2,3,\cdots$$. The solution can now be written as$$u\left ( r,\theta ,t\right ) =\sum _{m=1}^{\infty }\bar{B}_{0m}\sin \left ( \lambda _{0m}t\right ) J_{0}\left ( \lambda _{0m}r\right ) \tag{10}$$ Where $$\bar{B}_{0m}=\frac{1}{\pi \epsilon ^{2}\lambda _{0m}}\frac{\int _{0}^{\epsilon }rJ_{0}\left ( \lambda _{0m}r\right ) dr}{\int _{0}^{1}rJ_{0}^{2}\left ( \lambda _{0m}r\right ) dr}$$ And $$\lambda _{0m}$$ are all the positive zeros of $$J_{0}\left ( z\right )$$, $$m=1,2,3,\cdots$$.

$$\bar{B}_{0m}$$ is now simpliﬁed more. Considering ﬁrst the numerator of $$\bar{B}_{0m}$$ which is $$\int _{0}^{\epsilon }rJ_{0}\left ( \lambda _{0m}r\right ) dr$$. The hint given says that$\frac{d}{dr}\left ( rJ_{1}\left ( r\right ) \right ) =rJ_{0}\left ( r\right )$ This is the same as saying$$rJ_{1}\left ( r\right ) =\int rJ_{0}\left ( r\right ) dr \tag{10A}$$ However the integral in $$\bar{B}_{0m}$$ is $$\int rJ_{0}\left ( \lambda _{0m}r\right ) dr$$ and not $$\int rJ_{0}\left ( r\right ) dr$$. To transform it so that the hint can be used, let $$\lambda _{0m}r=\bar{r}$$, then $$\frac{dr}{d\bar{r}}=\frac{1}{\lambda _{0m}}$$ or $$dr=\frac{d\bar{r}}{\lambda _{0m}}$$. Now $$\int rJ_{0}\left ( \lambda _{0m}r\right ) dr$$ becomes $$\int \frac{\bar{r}}{\lambda _{0m}}J_{0}\left ( \bar{r}\right ) \frac{d\bar{r}}{\lambda _{0m}}$$ or $$\frac{1}{\lambda _{0m}^{2}}\int \bar{r}J_{0}\left ( \bar{r}\right ) d\bar{r}$$ and now the hint (10A) can be used on this integral giving$\frac{1}{\lambda _{0m}^{2}}\left ( \int \bar{r}J_{0}\left ( \bar{r}\right ) d\bar{r}\right ) =\frac{1}{\lambda _{0m}^{2}}\left ( \bar{r}J_{1}\left ( \bar{r}\right ) \right )$ Replacing $$\bar{r}$$ back by $$\lambda _{0m}r$$, gives the result needed\begin{align*} \frac{1}{\lambda _{0m}^{2}}\left ( \bar{r}J_{1}\left ( \bar{r}\right ) \right ) & =\frac{1}{\lambda _{0m}^{2}}\left ( \lambda _{0m}rJ_{1}\left ( \lambda _{0m}r\right ) \right ) \\ & =\frac{1}{\lambda _{0m}}rJ_{1}\left ( \lambda _{0m}r\right ) \end{align*}

Now the limits are applied, using the fundamental theory of calculus\begin{align} \int _{0}^{\epsilon }rJ_{0}\left ( \lambda _{0m}r\right ) dr & =\frac{1}{\lambda _{0m}}\left [ rJ_{1}\left ( \lambda _{0m}r\right ) \right ] _{0}^{\epsilon }\nonumber \\ & =\frac{\epsilon }{\lambda _{0m}}J_{1}\left ( \lambda _{0m}\epsilon \right ) \tag{10B} \end{align}

This completes ﬁnding the numerator integral in $$\bar{B}_{0m}$$. The denominator integral in $$\bar{B}_{0m}$$ is $$\int _{0}^{1}rJ_{0}^{2}\left ( \lambda _{0m}r\right ) dr$$. This was found in HW4, from problem 3, which is $\int _{0}^{1}rJ_{0}^{2}\left ( \lambda _{0m}r\right ) dr=\frac{1}{2}\left [ J_{0}^{\prime }\left ( \lambda _{0m}\right ) \right ] ^{2}$ But $$J_{0}^{\prime }\left ( \lambda _{0m}\right ) =-J_{1}\left ( \lambda _{0m}\right )$$, hence the above becomes$$\int _{0}^{1}rJ_{0}^{2}\left ( \lambda _{0m}r\right ) dr=\frac{1}{2}J_{1}^{2}\left ( \lambda _{0m}\right ) \tag{10C}$$ Applying (10B) and (10C), $$\bar{B}_{0m}$$ simpliﬁes to the following expression\begin{align*} \bar{B}_{0m} & =\frac{1}{\pi \epsilon ^{2}\lambda _{0m}}\frac{\frac{\epsilon }{\lambda _{0m}}J_{1}\left ( \lambda _{0m}\epsilon \right ) }{\frac{1}{2}J_{1}^{2}\left ( \lambda _{0m}\right ) }\\ & =\frac{2}{\pi \epsilon \lambda _{0m}^{2}}\frac{J_{1}\left ( \lambda _{0m}\epsilon \right ) }{J_{1}^{2}\left ( \lambda _{0m}\right ) } \end{align*}

Therefore the ﬁnal solution becomes\begin{align} u\left ( r,\theta ,t\right ) & =\sum _{m=1}^{\infty }\bar{B}_{0m}\sin \left ( \lambda _{0m}t\right ) J_{0}\left ( \lambda _{0m}r\right ) \nonumber \\ u\left ( r,\theta ,t\right ) & =\frac{2}{\pi \epsilon }\sum _{m=1}^{\infty }\frac{1}{\lambda _{0m}^{2}}\frac{J_{1}\left ( \lambda _{0m}\epsilon \right ) }{J_{1}^{2}\left ( \lambda _{0m}\right ) }J_{0}\left ( \lambda _{0m}r\right ) \sin \left ( \lambda _{0m}t\right ) \tag{11} \end{align}

When $$\epsilon =\frac{1}{2}$$, the above solution (11) becomes$$u\left ( r,\theta ,t\right ) =\frac{4}{\pi }\sum _{m=1}^{\infty }\frac{1}{\lambda _{0m}^{2}}\frac{J_{1}\left ( \frac{1}{2}\lambda _{0m}\right ) }{J_{1}^{2}\left ( \lambda _{0m}\right ) }J_{0}\left ( \lambda _{0m}r\right ) \sin \left ( \lambda _{0m}t\right ) \tag{11A}$$

Animation

Here is animation for 5 seconds made in Mathematica

Mathematica Source code for all the above animations

Here is the same animation made in Maple 2018

Maple source code for all the above animations

Here is the same animation made in Matlab 2016a

Matlab source code for all the above animations