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Problem Description

• Given a set of DNA microarray data from 
diseased samples

• Apply Principal Component Analysis (PCA) 
techniques to extract the primary component 
of the diseased samples (captures the 
diseased features)

• Perform simple disease detection tests by 
finding the projection of arbitrary samples 
onto the principal component

Principal Component Analysis
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Mathematics of the PCA
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• We begin with a series of “snapshots” 
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• Assume that the principal component 
is a linear combination of the snapshots, 
with weighting factors wi.
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• The weighting factors can be shown to be the components of the 
primary eigenvector of the covariance matrix θ, where the (i,j)
component of θ is defined as:
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Computational Problem for PCA

The conventional POD method is O(n × Ns3), where 
n is the snapshot size and 
Ns is the number of snapshots.  

Genome-scale!!
LARGE Collection !!!
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The Lump Method (many samples)

we developed the matrix-free lump method, which is O(n × Ns).  
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The Adaptive Method (large-size samples)

The adaptive algorithm is also a matrix-free PCA method that is O(n × Ns).  However, 
the adaptive method allows for the snapshots to be read and analyzed in small portions.  
Because the entire snapshots do not need to be stored, this saves memory
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DNA Microarray Data Images

• Data available from Stanford Microarray Database 
(genome-www5.stanford.edu).

• Each gene is expressed at a specific grid location in the 
microarray images.  Intensity of the image at the grid 
location shows amount of response (green – minimal 
response;  yellow – average response; red – maximal 
response).  Some genes from tumorous samples will 
express themselves differently than the same genes from 
normal tissue samples.

• Data is extracted from database in tabular form, rather than 
processing the raw image.
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Chen Liver Cancer Case Study

• Data for analysis was obtained from Chen, Xin, et. al, “Gene Expression 
Patterns in Human Liver Cancers”, Molecular Biology of the Cell, Vol. 
13, 1929-1939, June 2002

• Reference provided DNA data for:
• 76 normal tissue samples 
• 105 primary liver tumor samples.

• Data for 5520 genes were extracted
• In order for a gene to be included in this analysis, data for that gene 

had to be present in at least 80% of the samples
• If a sample is missing data for a particular gene, the value was

imputed by using the mean of the values from the remaining 
samples.
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Projections Onto The Principal Component
Chen Liver Cancer Study

• Tumorous tissue samples (1 - 105)
• Normal tissue samples (106 - 181)
• Principal component analysis 

performed 100 times
• The principal component was 

extracted using 85 tumorous 
tissue samples (selected at 
random)

• Figure shows the projections of the 
samples onto the principal 
component

• Projections for normal tissue 
samples are almost always 
negative.
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Normal Distribution Curves 
Chen Liver Cancer Study

• Statistics generated for 
normal and tumorous tissue 
samples.

• Data tended to be normally 
distributed.

• Normal distribution curves 
are shown here.

• If projection is positive, 
sample is almost certainly 
tumorous.

• If projection is negative, there 
is approximately a 25% 
chance that the sample is 
tumorous.
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Probability of Cancer vs. Projection
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Conclusions

• Applying Principal Component Analysis techniques to DNA microarray 
data can be used as a basis for simple disease detection applications.

• The method was demonstrated using data from Chen’s liver cancer 
study, although the method is general and could be applied to any type 
of disease.

• The case study presented in this analysis showed that the method
could be prone to false negatives;  i.e., in the Chen liver cancer study 
25% of the tumorous samples had negative projections.

• Increased reliability of the method might be achieved by including more 
components, other than just the principal component, in the analysis 
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