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Abstract—In this paper we demonstrate the feasibility in 
disease detection using a pattern recognition technique on 
DNA data expressed in microarrays. Specifically, we 
employ the Principal Orthogonal Decomposition (POD) 
method (also known as the Karhunen-Loève method) to 
extract the characteristics of a disease from a collection of 
DNA samples of individuals who suffer the disease. The 
resulting primary component captures the dominant features 
of the original samples. Such representatives are then 
correlated with an arbitrary sample to determine whether the 
sample carries the disease. Though the approach can be 
applied to other diseases, in our study we showed that the 
POD method could be applied to the DNA microarrays to 
positively detect liver and bladder cancers. 

 2. MATHEMATICAL FORMULATION FOR POD 
2.1 Principal Orthogonal Decomposition 

This section provides a brief summary of the Principal 
Orthogonal Decomposition (POD) method. The POD 
method has received much attention in recent years as a tool 
to reduce the complexity and dimensions of dynamical 
models in engineering and science [3]-[5]. In principle, one 
begins with an ensemble of data, called snapshots, collected 
from an experiment or a numerical procedure characterizing 
a physical system. The POD technique is then used to 
produce a few principal elements that can be used to 
reconstruct the entire snapshot collection.  
 

 In the POD method we are given a series of images or 
snapshots, ( ){ } sn

ii xV 1=
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, whose first few elements can capture 

all the dominant features of the entire snapshots collection. 
In other words, the primary component 1Φ  captures most of 
the essential features of the original ensemble, while 
subsequent basis elements capture more of the smaller and 
finer variability between the snapshots. As a result, we wish 
to choose the primary componentΦ  such that the quantity  1
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 1. INTRODUCTION 

DNA microarrays store the expressions of thousands of 
individual genes on a single surface that is about the size of 
a microscope slide.  Such image allows one to see genes 
that are induced or repressed in an experiment. As a result, 
signatures of a disease may be encrypted in DNA 
microarrays, and once found, can be used for diagnoses. 
Our goal in this study is to apply a pattern recognition 
technique, called the principal orthogonal decomposition, 
to extract the characteristics of a disease from an ensemble 
of samples known to carry the disease and to use the 
extracted feature for disease detection. 
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is as large as possible with ⋅⋅ , denotes the inner product. 

It is natural to assume 1Φ  to be of the linear combination of 
the snapshots, 
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vector assigned to the snapshots. Thus maximizing the 
quantity in (1) is equivalent to maximizing the following 

 
Our significant achievement is to demonstrate that the POD 
technique can be applied to DNA microarray data collected 
from cancerous tissue samples to detect liver and bladder 
cancers. Namely, we obtain the two sets of DNA microarray 
data from the liver cancer [1] and the gastric cancer [2] 
studies. Both sets are stored in the Stanford Microarray 
Database, genome-www5.stanford.edu. The detail can be 
found in the case-studies section. It is noteworthy to 
mention that although our study focuses on liver and 
bladder cancers, the method is not necessarily restricted to 
these types of diseases. 
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where θ is the covariance matrix of the snapshots with its  

(i, j) component, ji ,θ , defined by 
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Note that with distinct snapshots, the covariance matrixθ is 
symmetric positive definite and thus the weighting vector 
that maximizes (3) will also maximize  
 

( ) wwwJ T rrr θ= ,  (5) 
 

In this process, the weighting vector for the primary 
component is exactly the dominant eigenvector of θ  
corresponding to the largest eigenvalue. Let us denote the 
eigenpairs of by {θ ( ) sn
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 and sort the eigenvalues in 

decreasing order .0≥
snλλλ L  It follows that  
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2.2 Projection and Pattern Recognition 

In our study, we seek solely Φ  and once the primary 
component of a set of images has been determined it can be 
used for comparison with other images.  Projection forms a 
simple way of implementing the comparison.  If V  is an 
arbitrary image to be tested, then 
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measures of the correlation between V  with 1Φ .  The 
larger the magnitude of  the greater the correlation 
there is between the image V  and the original set of 
images. 
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 3. CASE STUDIES 
As an application of the method, we examined DNA 
microarray data from references [1] and [2].  The data were 
obtained from the Stanford Microarray Database at genome-
www5.stanford.edu.  This analysis used the log(base 2) of 
the R/G normalized ratio (mean).  Data for each of these 
references contain normal tissue samples in addition to the 
samples from tumorous tissue.  Genes were only included in 
the analysis if good data were present in over  80% of the 
samples.  For samples, which were missing data for a 
particular gene, the missing value was imputed with the 
average of the values for that gene from the other samples.  
After imputing the missing data, the average value for each 
gene was removed. 
 
The principal component was determined using a random 
selection of the tumorous tissue samples.  Projections onto 
this principal component were performed for all the 

tumorous samples, as well as all of the normal tissue 
samples.  We then compare the projections for the normal 
and tumorous samples.  If the principal component derived 
from the tumorous samples is significantly different from 
that for a normal tissue sample, the normal tissue 
projections should differ considerably from the tumorous 
tissue projections. 
 
3.1 Chen Liver Cancer Data 

Reference [1] contained data from 76 normal tissue samples 
and 105 primary liver tumor samples.  The POD analysis 
was performed 100 times, each time using a different set of 
85 of the tumor samples selected at random.  Thus, in this 
case we are finding the principal component of the 
tumorous samples.   
 
The projections for all of the samples onto the principal 
components for each case are summarized in Figure 1.  In 
this figure, the horizontal axis is the case number and the 
vertical axis represents the projections for the samples onto 
the principal component.  Samples 1 through 105 were the 
tumorous samples whereas samples 106 through 181 were 
the normal tissue samples.  Figure 1 shows that a very large 
percentage of the normal tissue samples (samples 106 
through 181) have negative projections onto the principal 
component.  The tumorous samples (samples 1 through 
105) show more variability, but about 75% of them show 
positive projections. 
 
We generated statistics for the projections of the tumorous 
samples to find the sample mean and standard deviation for 
each of the 100 cases.  We then averaged these values to 
determine an average mean and standard deviation value for 
tumorous samples.  The projections for the tumorous 
samples tend to be normally distributed.  To show this, we 
‘normalized’ the projections by subtracting the mean and 
dividing the result by the standard deviation.  The 
projections were then sorted into ascending order, and the 
percentile values were plotted against those from a standard 
normal distribution.  The results are shown in the top plot of 
Figure 2.  If the projections are normally distributed, the 
percentile values should fall close to the middle line shown 
on the Figure.  The top and bottom line on the Figure show 
the mean plus and minus three sigma values.  The percentile 
values for the tumorous sample projections line up fairly 
well with those from the standard normal.  Thus, it is a 
reasonable to assume that these projections are normally 
distributed. 
 
Similar statistics were generated for the projections from the 
normal tissue samples, with the percentile values plotted 
against those from a standard normal distribution in the 
bottom plot of Figure 2.  From this figure, it also seems 
reasonable to consider the projections from the normal 
tissue samples as being normally distributed. 
 



  

 

The normal probability density functions for the projections 
are shown in Figure 3.  This figure shows that if the 
projection of a sample is positive, the sample is almost 
certainly tumorous.  There is about a 25% probability of a 
tumorous sample having a negative projection.   
 
 
3.2 Chen Bladder Cancer Data 

 
A similar analysis was performed using the Chen bladder 
cancer data from Reference [2].  The data used in this 
analysis consisted of 103 cancerous tissue samples and 21 
normal tissue samples.  Similar to the analysis in section 
3.1, the principal component for the tumorous samples was 
performed 100 times, each time using 83 randomly selected 
samples for the principal component analysis.  The resulting 
projections onto the principal components are shown in 
Figure 4.   

Figure 1 – Projections onto Principal Component – Chen 
Liver Cancer Data 

 

 

 
Examination of the figure shows that there is much more 
variability for the projections.  About 40% of the 
projections from tumorous samples are negative.   
 
We once again generated statistics for the projections of the 
mean and tumorous samples, and plotted percentile values 
against those for a standard normal distribution (Figure 5).  
Once again, we can see that the normal distribution 
assumption is not unreasonable.  The normal probability 
distribution functions are plotted in Figure 6.  Once again, 
the Figure shows that if a sample has a positive projection, 
it is almost certainly tumorous.  If the projection is negative, 
however, there is about a 40% probability that the sample is 
tumorous. 

Figure 2 – Percentile Limits vs. Standard Normal 
Distribution – Chen Liver Cancer Data 

 
 

  
 

 
 Figure 4 – Projections onto Principal Component – Chen 

Bladder Cancer Data Figure 3 – Normal Density Functions – Chen Liver Cancer 
Data  

 

 



 
Figure 5 - Percentile Limits vs. Standard Normal 

Distribution – Chen Bladder Cancer Data 
 

 
Figure 6 – Normal Density Functions – Chen Bladder 

Cancer Data 
 

 4.  SUMMARY AND CONCLUSIONS 
The above study showed an example of how the Proper 
Orthogonal Decomposition method can be used for a simple 
pattern recognition application.  The principal component of 
a set of images is found.  The magnitude of the projection of 
an arbitrary image onto the principal component is a 
measure of the correlation of an arbitrary image with the 
original set of data. 

 
As a practical application, the process was used to form the 
principal components for a set of DNA microarray data for 
tumorous samples.  Then projections were made for normal 
tissue samples, as well as other tumorous samples, against 
the principal components.   
 
The analysis was performed using data from two different 
studies.  In both cases, positive projections indicate 
tumorous samples.  However, the method is prone to false 
negatives; in the liver cancer study 25% of the tumorous 
samples had negative projections, while 40% of the 

tumorous samples in the bladder cancer study had negative 
projections. 
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