4.2224   y′′′′(x)− 2y′′(x)+ y(x) = ex + 4

ODE

y′′′′(x)− 2y′′(x)+ y(x ) = ex + 4

ODE Classification

[[_high_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0528111 (sec), leaf count = 55

{{                                                               }}
         -1 −x ( 2x (                    2   )                  x)
   y(x) → 16e    e  4 (4c4 − 1)x + 16c3 + 2x + 3 + 16(c2x+ c1)+ 64e

Maple
cpu = 0.024 (sec), leaf count = 41

{                               (                           )   }
        (16 C4x-+-16-C2)e−x     -2x2-+-(16-C3-−-4)x+-16-C1-+3--ex
 y (x ) =        16         + 4+                16

Mathematica raw input

DSolve[y[x] - 2*y''[x] + y''''[x] == 4 + E^x,y[x],x]

Mathematica raw output

{{y[x] -> (64*E^x + 16*(C[1] + x*C[2]) + E^(2*x)*(3 + 2*x^2 + 16*C[3] + 4*x*(-1 
+ 4*C[4])))/(16*E^x)}}

Maple raw input

dsolve(diff(diff(diff(diff(y(x),x),x),x),x)-2*diff(diff(y(x),x),x)+y(x) = 4+exp(x), y(x),'implicit')

Maple raw output

y(x) = 1/16*(16*_C4*x+16*_C2)*exp(-x)+4+1/16*(2*x^2+(16*_C3-4)*x+16*_C1+3)*exp(x
)