4.2216   y′′′′(x)+ ay(x) = 0

ODE

y′′′′(x)+ ay(x) = 0

ODE Classification

[[_high_order, _missing_x]]

Book solution method
TO DO

Mathematica
cpu = 0.00750143 (sec), leaf count = 76

{{                -       √--  -             -      √ -- - }}
  y(x) → c1e(−1)3∕4 4√ax + c2e− 4− 14√ax + c3e−(−1)3∕4 4√ax + c4e 4−14√ax

Maple
cpu = 0.012 (sec), leaf count = 50

{y(x) = C1e −i4√−ax +-C2ei4√−ax + C3e− 4√−ax + C4e 4√−ax}

Mathematica raw input

DSolve[a*y[x] + y''''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> E^((-1)^(3/4)*a^(1/4)*x)*C[1] + C[2]/E^((-1)^(1/4)*a^(1/4)*x) + C[3]/E
^((-1)^(3/4)*a^(1/4)*x) + E^((-1)^(1/4)*a^(1/4)*x)*C[4]}}

Maple raw input

dsolve(diff(diff(diff(diff(y(x),x),x),x),x)+a*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = _C1*exp(-I*(-a)^(1/4)*x)+_C2*exp(I*(-a)^(1/4)*x)+_C3*exp(-(-a)^(1/4)*x)+_
C4*exp((-a)^(1/4)*x)