
The port of MGI DVDMax software from Linux to Solaris

Nasser M. Abbasi

Sept 18, 2000 page compiled on July 2, 2015 at 5:05pm

Contents

1 Introduction 2

2 Software requirements 2

3 Main port issues 3

4 High level Architecture 4

5 Loading of a plugin and creation of a filter object 6

6 MPEG-2 decoder design and dataflow 8
6.1 Assembler modules used by mpeg-2 decoder . 8
6.2 general logic flow in the mpeg-2 decoder . 8
6.3 Decoding macroblocks . 9
6.4 Assembler interfaces in mpeg decoder . 9

6.4.1 mmxGetBits.S interface . 10
6.4.2 vrecon.S interface . 13
6.4.3 vscale.S interface . 14
6.4.4 vld.S interface . 14
6.4.5 vquant.S . 14
6.4.6 vidct.S interface . 15

7 Video output filter design 16
7.1 VIDMEM mode for video display . 16
7.2 DGA mode for video display . 17
7.3 intel I810 mode for video display . 18
7.4 Shared memory mode for video display . 18
7.5 SDL mode for video display . 20

8 Current status of Solaris build 24

List of Figures

1 Software architecture of DVDMax on Linux and Solaris. arch1.vsd 5
2 Internal data flow between filters in DVDMax demux overview.vsd . 6
3 Mpeg filter internals. mpeg filter.vsd . 25
4 mpeg-2 filter main logic . 26
5 macroblock decoding using samplemc.c as the driver . 27
6 High level diagram showing the C and Assembler modules used in MPEG-2 decoder and global

buffers . 28

1

mailto:nma@12000.org

7 walk though initGetBits MMX code used in GetBits.S . 29
8 walk though InptToMmx MMX code used in GetBits.S . 30
9 follow up of walk though InptToMmx MMX code used in GetBits.S 31
10 summary of InptToMmx MMX code used in GetBits.S . 32
11 MmxToInput walk though MMX code used in GetBits.S . 33
12 GetVideoBitsSmall walk though MMX code used in GetBits.S 34

1 Introduction

DVDMax was MGI Inc. software for playing DVD’s.
Current version on windows is version 5.0. A linux version is currently under development and in final stages.
The purpose of this report is to describes the design and implementation of the DVDMax software on Linux

to help in the port of the software to SUN Solaris operating system.
The port of the DVDMax software to Solaris will be based on the Linux version.

2 Software requirements

The following is from the statement of work for DVDMax on Solaris

The features of the sunDVD player will be the same as the features listed in the product description
SoftDVDMax, entitled ”SoftDVD Max Reviewer’s Guide (july 1999)” and ”MGI SoftDVD Max
specifications (July 1999)” copies of which are attached to this statement of work.

Examining the above mentioned document, I come up with the following points.

1. Auto detect DVD drive.

2. Allow window size reduction.

3. Parental control panel. (works if supported on DVD disc).

4. Supports following audio setting:

(a) Stereo 2 channel output.

(b) Surround Sound. 2 channel Dolby pro-logic output.

(c) 3D audio.

(d) Use DirectSound (windows specific I assume).

(e) Generate S/PDIF output. (Sony/Phillips Digital Interface format).

(f) speed up decoding via subsampling.

(g) Karoake vocals (if dvd disc supported)

5. Support 16:9 and 4:3 aspect ratios. These are the configurations

(a) Auto. Display 4:3 video in 4:3 screen. Display 16:9 video in 16:9 screen.

(b) letter box. Allows display of 16:9 in 4:3 screen.

(c) Pan and Scan. Display 16:9 to 4:3 using pan and Scan process.

(d) Wide screen. Display 4:3 video in 16:9 window.

6. Advanced features.

(a) Automatic adjust of resolution for optimum performance.

(b) Allows hardware motion compensation acceleration (if graphic controller supports it)

(c) Deinterlacing.

(d) Auto detect interlaced and non-interlaced content and select Bob or Weave.

2

3 Main port issues

These are the main port issues that I see right now for a successfully port of the Linux based DVDMax to Solaris.

1. Build issues. Initially, the same build process used on Linux will used on Solaris, making only the necessary
changes to get a complete build. The goal is to make minimal changes to the build process initially in
order to speed the port. The current build process on Linux is based on heavy use of GNU tools such as:

(a) bison

(b) cvs (for source control)

(c) flex

(d) autoconf

(e) m4

(f) gawk

(g) gcc

(h) libtool

All the above tools needs to be installed on Solaris before starting to build DVDMax.

To minimize changes to the build process, and to speed the port process, gcc will be used initially.

After a successfully completion of the port, gcc can be replaced with SUN cc compiler along with any
changes to cc commands and options used in the current Makefiles.

There will be changes needed in the makefiles in order to build Sparc assembler routines using VIS
instructions. Those are the modules that will replace the current intel assembler modules. My current
understanding is that the Solaris build will target UltraSparc with v9a extensions, so the option -Xarch=v9a
will be used to assembler the Sparc assembler modules.

The resulting executables will only run on Solaris with 64-bit Kernels on UltraSprac hardware. 1

Another changes in the current Makefiles that needs to be made are those to link against the Solaris libdvd
and, if needed, against MediaLib libraries. The Makefiles that come with the examples of how to use the
above libraries will be used to help in making the changes.

We also need to find a way to make the build system easier to use on multiple operating systems. One
possible way is to use autoconf macro to guess the OS name, and based on the OS name, generate the
correct compile and link options, and any compile time variables, such as -DSOLARIS into the compile
command and have those automatically generated when the configure command is run. This needs to be
investigated more.

2. User interface issues. The current user interface on linux uses Qt libraries. It also uses the skin technology
to modify the look of the user interface dynamically.

On Solaris Motif will be used instead on Qt. But with latest announcement by SUN that they will adopt
GNOME as the default desktop for feature Solaris releases, it seems that it will make more sense to use
GTK+ for the user interface. 2.

There will also be an impact on the build process here for build the user interface, a new Makefiles will be
needed to build the user interface on Solaris since different libraries are used than on Linux.

3. DVD Authentication software (CSS). On Linux, DeCSS is used for the authentication of the DVD and
used many Linux ioctls() and linux specific header files such as <linux/cdrom.h>

On Solaris a new implementation will be used. This needs to be coordinated and integrated into the Solaris
DVDMax build process. My understanding is that a third party will write this software.

1verify these requirements with SUN.
2discuses the Motif/GTK+ options with SUN to verify, also verify if current skin used on Linux will work with GTK+ on Solaris

3

4. DVD Keys. It is expected that SUN will supplies these keys. How/when? How will this affect the build? I
need to understand more about this.

5. Audio output. Now, on linux, OSS is used to output audio, and it used Linux specific ioctls and header
files. Need to understand how will audio be output on Solaris. Direct interface to /dev/audio How will
audio control be done? Note that /dev/audio can only be opened by one process at a time. Also Solaris
does support asynchronous IO on /dev/audio. It is expected that audio output on Solaris will be a new
implementation from that of Linux, but this needs to be analyzed more.

6. Video output. libdvd will be used on Solaris for display of video bitstream. This will be a new
implementation from that on Linux. Initially, I will try to use the X11 implementation that exist already
on Linux as is on Solaris to see that will work, and make changes to libdvd after that.

Linux implementation of display have an MMX module for doing color space conversion from YUV to
RGB.

7. MPEG-2 decoder. This is the most difficult software component to port to Solaris/Sparc. MPEG-2 decoder
implementation on Linux, which is based on the windows version, is heavily dependent on intel assembler
and MMX instructions. This is done to achieve the maximum performance.

The Solaris implementation will use VIS sparc instructions to achieve the maximum performance on Sparc
hardware. Hence a conversion of the Intel assembler and MMX to Sparc assembler and VIS will be the
most critical work that needs to be completed successfully.

I outline in details the current Linux design and implementation of MPEG-2 decoder below with the
interfaces to the Intel assembler in order to help with this conversion. It is expected that SUN will do the
actual conversion based on these interfaces. 3

8. Standard integer types include file. On linux, those are defined in /usr/include/stdint.h while on Solaris,
those are obtained by including /usr/include/inttypes.h. An #ifdefined will be used to include the correct
header file at compile time.

9. UDF file system interface for reading DVD discs. The C module dvd2/src/common/udf.c is the interface
used by DVDMax to access the UDF file system on the DVD disc. It is possible that some changes will be
needed when porting this to Solaris. udf.c uses large file programming environments and uses such calls as
fsetpos64 to position itself in the DVD disc file system.

udf.c is used by the DVDDisc filter and the IFO implementation.

10. Threads yielding issues. The Linux based code uses usleep() to yield, because linuxthreads does not have a
pthread yield(). Solaris has a pthread yield(), so it might be more efficient to use on Solaris that to force
thread context switching than calling usleep().

11. The timing synchronization code in dvd/src/filters/syncmaster/mpeg2sync.c needs to examined to make
sure it is correct under Solaris/Sparc and that there is nothing Linux specific in that code.

Design of DVDMax on Linux

4 High level Architecture

The DVDMax software on linux is based on individual components, called filters. Each filter has what is called
pins. These are software connection that connect the input of one filter to the output of another filter.

Each filter takes some input, process the input, and sends the output to one of its output pins. A filter can
have more than one output pin. For example, the demux filter have a number of output pins.

A plugin shared library is loaded at run time by the main program of DVDMax, each plugin create one type
of filter. So there is one-to-one mapping between the plugin and the filter it creates. For example, the dvddisk.so

3any one knows of an Intel/MMX to Sparc/VIS conversion software? :)

4

plugin creates the filter that reads from the dvd disc and write to the demux filter. The actual methods that
implement the work of the filter are in the plugin, the filter is the data structure that is used to interface to
those methods. The filter also contains pointers to other variables important for the working of the plugin, such
as buffers and flags.

Each plugin contains one pthread thread than continuously runs reading input and generating output. 4

Figure 1 shows the architecture of DVDMax on Linux and Solaris. The grayed components indicates an
assembler/MMX intel modules.

Figure 1: Software architecture of DVDMax on Linux and Solaris. arch1.vsd

The unit of data exchanged between filters is LMFpacket struct. Figure 2 on the next page shows how an

4On Linux, the Audio output filter, based on OSS, does not have a thread in it

5

LMFPacket is send from the one of demux filter output pins that is connected to the mpeg-2 decoder input pin.

Figure 2: Internal data flow between filters in DVDMax demux overview.vsd

5 Loading of a plugin and creation of a filter object

A user program main() starts by a call to lmf manager.c/loadLMFPlugin(), passing it a string name of the
plugin (the sharable module) to load. When this call returns, it return back a pointer to a filter object associated
with this plugin.

loadLMFPlugin() uses dlopen() to load the sharable library to memory, then dlsym() is used to obtain a
pointer to the function called ’initPlugin’ in that module. So each plugin must have such an entry point.

Then initPlugin() is then called, which creates the filter object. The filter is then returned to the caller.
Notice that the handle to the plugin sharable library is saved in the filter object, so it is not lost.

Each filter has an initPlugin(), which calls lmf filter.c/createLMFFilter() to create the Filter structure.
Then another call to lmf filter.c/initLMFFilter() is made to do any initialization to the filter struct and

which will setup the command table in the filter, which contains pointers to default functions in the lmf filter.c
module.

6

Name of Plugin

o---------->

lmf_manager.c

+---------------------------------------+ +--+

| main() | | |

| { | +->| loadLMFPlugin(char *path, |

| LMFFilter *mpeg; | | | LMFFilter **filter) |

| | | | { |

| loadLMFPlugin(| | | void *handle; |

| "/usr/local/DVDMax/plugins/mpeg.so" | | | |

| &mpeg); |--+ | int res; |

| } | | int (*initplugin)(LMFFilter**); |

--+ | |

| handle = dlopen(path, RTLD_NOW); |

| initplugin = dlsym(handle, "initPlugin");|

| res = initplugin(filter); |

| (*filter)->pluginref = handle; |

| return LMFMANAGER_SUCCESS; |

| } |

+--+

Filter Object

<-----------o

The plugin simply allocates a filter struct from the heap. The filter struct contains a table of function
pointers. These functions are inside the plugin and the filter is passed around during the calls. The filter struct
contains pointers to any data buffers used by the plugin.

7

6 MPEG-2 decoder design and dataflow

The mpeg decoder is a filter, it contains a pthread thread, it reads its input from a ring buffer, each entry in the
ring buffer is a pointer to data of type LMFPacket. The ring buffer is written to by the demux filter via the
connection between the output pin of the demux filter to the input pin of the mpeg filter. The ring buffer is
protected by a pthread mutex against concurrency access by more than one thread at a time.

The mpeg thread runs all the time, it calls video.c/PLayBackCycle(), which in turn calls getvideo.c/request-
ConsecutiveVideoBytes(), which in turn calls mpeg.c/GetVideoInputBytesFromFile() which removes bytes from
the ring buffer, and write them to the global MPEG buffer.

So, when it returns, video.c has stream data in the global MPEG buffer to process.
Figure 3 on page 25 shows the mpeg filter and related data structures involved.

6.1 Assembler modules used by mpeg-2 decoder

The mpeg decoder contains a number of assembler modules. They are:

1. mmxGetBits.S: MMX optimized version of the bit streaming routines. Services offered are functions to
consume, show, initialize and swap bits.

2. mmxRecon.S: mmx version of software motion comp reconstruction

3. vdata.S: Defines data structures used by assembly language modules. Optimized for 4-way, 16kbyte data
cache.

4. vidct.S: Computes IDCT on 8x8 array of DCT coefficients. Optimized for Pentium MMX.

5. vld.S: Decodes MPEG Variable Length Code blocks into 8x8 arrays. Optimized for Pentium II.

6. vquant.S Dequantizes, scales, and clamps output arrays from VLD. Requires Pentium MMX or Pentium II

7. vrecon.S Video reconstruction and averaging routines. Requires Pentium MMX or Pentium II

8. vscale.S Scales IDCT results to suit formats required by software and hardware motion comp. Optimized
for Pentium MMX.

6.2 general logic flow in the mpeg-2 decoder

Life starts when the runfilter() thread is started, this is the mpeg-2 internal thread, which continues to loop
calling playbackcycle() in video.c.

When playbackcycle() is called, it calls GetVideoStartCode() in video.c which in turn looks into the global
vd variable, if it needs video stream data to process, it calls requestConsecutiveVideoBytes() in getvideo.c to get
the required number of bytes.

requestConsecutiveVideoBytes() will call GetVideoInputBytesFromFile() in mpeg.c to move the required
bytes from the mpeg-2 ring buffer to the global vd variable. If the Ringbuffer is empty, It will block waiting.

During the decoding of the bit stream. many calls are made to MmxGetBits.S (MMX instructions) for
parsing video bit stream.

When GetVideoStartCode() returns, playBackCycle() continues by doing a large switch statement on the
picture code (in the global vd.i.startcode). Looking at one case, when a picture() start code is detected, picture()
is called (in video.c).

picture() parses the picture stream, it parses each macroblock, there is a LOOP over all macroblocks, each
time it needs to decode a macroblock, it calls SampleProcessMacroBlock() in samplemc.c. This assumes that
samplemc.c is the modules used to driver the actual decoding at the assembler level. There are two main C
modules for doing this, one is samplemc.c which the diagram below is based on, and another one called fastmc.c
which I’ll will into in more details later on. These C modules interface to the assembler modules for doing the
actual decoding in assembler.

8

SampleProcessMacroBlock() finds the type of the block. Motion compensation is first done by making calls to
’recon()’ C routine, which ends up calling ’recon comp()’ in recon.c, in this file, there is a #if USE MMX FOR RE-
CON to decide if motion compensation is done using MMX or plain C. If MMX is to be used, MMX routine in
recon.S is called.

When motion compensation is done, MMX routines in Vscale.S are called to decode the blocks. Either
IntraVldIdctEightBitOutput() is called, or NonIntraVldIdctNineBitSun() is called.

MMX instructions in Vscale.S calls intraVld or NonIntraVld MMX routine in vld.S to Decodes MPEG
Variable Length Code blocks into 8x8 arrays. After the routines in Vld.S return, Vscale.S calls IntraQuant or
NonIntraQuant MMX routines in vquant.S to Dequantizes, scales, and clamps output arrays from VLD.

vquant.S MMX routines in turn jump to the idct MMX routine in idct.S to Computes IDCT on 8x8 array of
DCT coefficients.

When this is all done, and when end of picture is reached, then SampleEndingPictureMC() in samplemc.c is
called. This in turn called QueueForDecodeAndDisplay() in vidqueue.c to queue the decoded frame. This ends
up calling SampleRenderingFunctionMC() in sampelmc.c which call DecodedYCrCbToDisplay() in swdisp.c to
display the frame.

In swdisp.c, there is a queue where the decoded frame is send to the output filter (X11 filter for example).
Which will actually display the picture to the display. Notice that color mapping conversion is done in the
output filter and not by the mpeg decoder.

Figure below shows the main dataflow in the mpeg-2 filter.

6.3 Decoding macroblocks

The core of the decoder is in decoding macrobloacks. This is in samplemc.c, in the function SampleProcessMac-
roBlock() or in fastmc.c in the function FastSoftwareProcessMacroBlockMC() depending on how the build was
done.

Figure ?? on page 27 shows the algorithm used.

6.4 Assembler interfaces in mpeg decoder

The decoding process goes through these steps

1. Motion compensation for non Intra blocks.

2. Variable length decoding VLD.

3. Dequantizes, scales, and clamps output arrays from VLD.

4. IDCT.

5. color mapping conversion from YUV to RGB before display.

The mpeg is divided in two main section, the C modules does the high level processing, such as reading the
bit stream, locating the macroblocks, deciding on the type of the picture and type of prediction needed. Once
the macroblock is found and needs to be decoded, the assembler routines are called to do the process. The
interface between the C modules and the assembler modules can be looked at as being the fastmc.c module, or
the samplemc.c modules depending on the build parameter used (only one of those can be used).

Figure ?? on page 28 illustrate the above. It shows that the C modules share C based global variables, and
that the assembler modules share assembler based data buffers and tables. Also, the assembler routines have
access to the C based buffers.

9

6.4.1 mmxGetBits.S interface

mmxGetBits is used to obtain, examine, and skips bits in the video bit stream. It is the main interface to access
the video bit stream during the decoding process.

The bit stream is accessed via global pointer vd.i.puDword, 2 MMX registers are used to store the top 128
bits in the bit stream. 5. The symbolic names of these 2 MMX registers is FIRST and SECOND.

Another MMX register, with a symbolic name of COUNT is used to store the number of bits consumed in
the FIRST register. The value in the COUNT register is saved in memory in the variable vd. i.bitsUsedInDword.

Another MMX register with symbolic name of SOURCE is used to contain the address the top of the bit
stream, and is advanced by 8 bytes at a time. The value of this register is saved in memory in the variable
vd.i.puDword.

The C interface to the mmxGetBits.S is as follows

signature: unsigned int GetVideoBitsSmall(int numberOfBits)

semantics: returns back the number of bits requested from the video

stream, and consumes them. internally it updates the MMX

registers COUNT and FIRST and SECOND, and SOURCE.

Notice that a maximum of 32 bits can be returned per call,

since this is the sizeof unsigned int.

signature: unsigned int NextVideoBitsSmall(int numberOfBits)

semantics: Similar to GetVideoBitsSmall() function, expect the bits

returned are not consumed, i.e. the COUNT MMX register is not

advanced. Also, the SOURCE, FIRST and SECOND MMX registers are

not modified. This is like a 'peek' call, just to see the bits

in the bit stream, without advancing.

Notice that a maximum of 32 bits can be returned per call,

since this is the sizeof unsigned int.

signature: void SkipVideoBitsSmall(int numberOfBits)

semantics: Skips the numberOfBits bits in the bitstream.

No bits are returned, but bits are consumed. the MMX registers

COUNT, FIRST, SECOND, and SOURCE are all modified.

signature: void initGetBits(unsigned int *ptr)

semantics: This is the first call to use to initialize the mmxGetBits.S module.

It will initialize the MMX registers COUNT, FIRST, SECOND and

SOURCE to the correct values.

The argument ptr have the value of vd.i.puDword<<2

signature: void InputToMmx()

semantics: This call is used to load MMX registers from the values

stored in memory. after this call returns, the MMX registers

FIRST, SECOND, COUNT and SOURCE contains the correct values

5Each MMX register is 64 bit long

10

as before. The variables vd.i.puDword and vd.i.bitsUsedInDword

are read and used to updated the content of the MMX registers.

signature: void MmxToInput()

semantics: This call is made to store the content of SOURCE register

(after dividing by 4 and adding 2) back in vd.i.puDword

and to store the content of MMX register COUNT into

vd.i.bitsUsedInDword

This is a high level version of mmxGetBits. Lets call this cGetBits.c It will have the same interface as the
Mmx based functions. The purpose of this is to help show what the GetBits MMX code does, this is not meant
to be working code that will compile as is.

static unsigned char first[8]; /* first is MMX register in assembler*/

static unsigend char second[8]; /* second is MMX register in assembler*/

static int count; /* count is another MMX register in assmbler code*/

static unsigned char *src; /* src points to current top of buffer of bit stream*/

static _initGetBits(char *ptr)

{

int i;

count=0;

for(i=0;i<7;i++)

first[i]=ptr[i];

ptr=ptr+8;

for(i=0;i<7;i++)

second[i]=ptr[i];

src=ptr;

}

static loadBits()

{

src= src+8;

for(i=0;i<7;i++)

second[i]=src[i];

//left shift second by count INTO lower first

// note: count here is the overflow

}

static _skipBits()

{

count = count +n;

// left shift first by n

// left shift second by n into first lower first

if (count >= 64)

11

{

count = count - 64;

loadBits();

}

}

/* gets and consumes the numberOfBits bits from the bitstream. */

unsigned int GetVideoBitsSmall(int numberOfBits)

{

unsigned int result= /* top most numberOfBits from first */

// shift left first by numberofbits

//shift left second by numberOfBits INTO lower first

count = count + numberOfBits;

if (count >=64)

{

count = count - 64;

loadBits();

}

return result;

}

/* Returns the numberOfBits bits from the bitstream without consuming them. */

unsigned int NextVideoBitsSmall(int numberOfBits)

{

return top-most numberOfBits from first;

}

/* Skips the numberOfBits bits in the bitstream. */

void SkipVideoBitsSmall(int numberOfBits)

{

count = count + numberOfBits;

//left shift first by numberOfBits

//left shift second by numberOfBits INTO lower first

if(count >= 64)

{

count = count - 64;

loadBits()

}

}

void MmxToInput()

{

vd.i.puDword = (src/4) -2 ; // check on this

vd.i.bitsUsedInDword = count;

}

void InputToMmx()

{

_initGetBits((vd.i.puDword)<<2);

_skipBits(vd.i.bitsUsedInDword)

12

}

void initGetBits()

{

_initGetBits((vd.i.puDword)<<2);

}

Figure ?? on page 29 shows detailed walkthough of the initGetBits MMX code. Figure ?? on page 30 shows
detailed walkthough of the InputToMmx MMX code. Figure ?? on page 31 shows the rest of the walkthough of
the InputToMmx MMX code. Figure ?? on page 32 shows summary of InputToMmx MMX code.

Figure ?? on page 33 shows detailed walkthough of the MmxToInput MMX code, MmxToInput() basically
takes the output of the opertation in MMX registers, and update the vd.i.puDword and vd.i.bitsUsedInDword.

Figure ?? on page 34 is a walk though of GetVideoBitsSmall(), it takes as an argument the number of bits
to return from the video stream, and the return value will contains those bits. Since unsigned int is used for the
return value, only 32 bites can be returned per each call. MMX registers COUNT, FIRST and SECOND are
updated as needed for next call.

6.4.2 vrecon.S interface

The vrecon.S MMX module contains the code for doing video reconstruction and averaging routines. the C
interfaces to the entry points in this module is declared in vrecon.h This MMX module is called from the fastmc.c
module. Total number of lines in vrecon.S module is about 1130 including comments.

These are C interfaces from vrecon.h

void MMX_Recon_no_motion_f();

void MMX_Recon_full();

void MMX_Recon_right_half();

void MMX_Recon_down_half();

void MMX_Recon_rightdown_half();

void MMX_Recon_full_fb();

void MMX_Recon_right_half_f_full_b();

void MMX_Recon_down_half_f_full_b();

void MMX_Recon_full_f_right_half_b();

void MMX_Recon_full_f_down_half_b();

void MMX_Recon_right_half_f_right_half_b();

void MMX_Recon_down_half_f_right_half_b();

void MMX_Recon_right_half_f_down_half_b();

void MMX_Recon_down_half_f_down_half_b();

void MMX_Recon_rightdown_half_f_full_b();

void MMX_Recon_full_f_rightdown_half_b();

void MMX_Recon_rightdown_half_f_right_half_b();

void MMX_Recon_rightdown_half_f_down_half_b();

void MMX_Recon_right_half_f_rightdown_half_b();

void MMX_Recon_down_half_f_rightdown_half_b();

void MMX_Recon_rightdown_half_f_rightdown_half_b();

I’ll will look at one function from the above, the MMX Recon no motion f() to show the interface to it.

MMX_Recon_no_motion_f(int motionCompStride,

unsigned char *from1,

unsigned char *to,

int lineStride,

13

int nYlines);

This MMX code will copy 8 bytes at a time from where 'from1' points to, to buffer

pointed to by 'to'. It does this for nYLines number of times.

There is a C version of vrecon.S that exist. It is commented out code sections in the same file vrecon.S, so it
is possible to initially use that for Solaris. See the C code (all written as macros) for more description of what
the assembler does.

6.4.3 vscale.S interface

The vscale.S module is called after motion compensation. There are number of interface to this module, however,
only two are used. One for non-intra blocks, and one for intra blocks.

These are the entry points to the vscale.S module:

.globl IntraVldIdctSevenBitShiftedOutput

.globl NonIntraVldIdctEightBitShiftedSum

.globl IntraVldIdctEightBitOutput

.globl IntraVldIdctEightBitSignedOutput

.globl NonIntraVldIdctNineBitSum

.globl NonIntraVldIdctEightBitShiftedOutput

.globl NonIntraVldIdctSixteenBitOutput

For intra blocks, IntraVldIdctSevenBitShiftedOutput is called.
For non-intra NonIntraVldIdctEightBitShiftedSum is called.
vscale.S does not access C based structures, but will access the 8x8 IDCTbuffer defined in data.S assembler

module.

6.4.4 vld.S interface

For intra blocks, the entry point is intraVld and for non-intra blocks, the entry point is NonIntraVld. These
MMX entry points read from C based global structures and read and write to assembler based buffers such as
the IDCTbuffer, VLCTable0, VLCtable1, VLCTable2, VLCTable3, DCluma buffer, DCShift.

The C based fields in C structures that this assembler code reads are fields in a structure of type
struct MPEG VIDEO VLD VARIABLES STRUCT declared in vld.h and type struct MPEG VIDEO IN-
PUT DATA VARIABLES declared in video.h.

The C fields read from struct MPEG VIDEO VLD VARIABLES STRUCT are: flag mc intraBlockIsLumFlag,
flag dPictureFlag, intra vlc format, macroblockIsIntraFlag, mpeg2IfNotZero.

The C fields written into struct MPEG VIDEO VLD VARIABLES STRUCT are: vldLimitOverflowFlag.
The C fields read from struct MPEG VIDEO INPUT DATA VARIABLES are: bitsUsedInDword, puDword,

bitsUsedInDword.
The C fields written into struct MPEG VIDEO INPUT DATA VARIABLES are: bitsUsedInDword.

6.4.5 vquant.S

Dequantizes, scales, and clamps output arrays from VLD.
There are two main entries into this assembler module. For Intra blocks it is IntraQuant and for non-intra

blocks, it is NonIntraQuant.
This assemble module access C based global variables, and assembler based buffers and tables.
The C based variables accessed are fields in global variable vld, which is of type MPEG VIDEO VLD VARI-

ABLES STRUCT. The variable vld itself is a field in a larger variable, vd, of type MPEG VIDEO DE-
CODER VARIABLES TYPE that is allocated in the module video.c.

14

The C based fields in struct MPEG VIDEO VLD VARIABLES STRUCT accessed in vld.S are: intra dc pre-
cision (which can be 1,2,4 or 8), mc pDcPredictor (ptr to block), psIntraQuantMatrix (ptr to Intra quantizing
matrix), intraQuantMatrixScale, psNonIntraQuantMatrix (ptr to non-intra quantizing matrix), nonIntraQuant-
MatrixScale, quantizer scale(global quantizer scale).

Assembler based buffers accessed are located in data.S module, and they are: IdctColumnMask, 8x8
IDCTBuffer (read/write access).

6.4.6 vidct.S interface

Computes IDCT on 8x8 array of DCT coefficients.
The entry point in this module is idct, which is called to do idct on the 8x8 IDCTBufger.
The C based variables read in this module are fields in structure of type MPEG_VIDEO_VLD_VARIABLES_STRUCT,

and these are: mc_IdctblockDestinationStride, and mc_pucBlockDestination.
The assembler based buffer accessed are: 8x8 IDCTBuffer. This contains the dct coefficients, to perform idct

on. the DCSTEP and various other assembler based constants, all of these are defined in data.S.
idct stores 16 bits final results in MMX registers, then it calls the output routine, which clamps the results,

scales them to a specified precision, and stores or sums the results into 8-bit, pre-configured C based buffers.
The output routine for intra blocks is called Out7BitIntra in the assembler module vscale.S, and the output

routine for non-intra blocks is called Sum8BitNonIntra in the assembler module vscale.S.

15

7 Video output filter design

The X11 output filter takes as input a decoded picture frames from the mpeg-2 decoder (or subpic decoder), and
will display the frame. Currently, the output filter will do YUV to RGB conversion using an MMX module.

The X11 output filter is located in dvd2/src/filters/sink/video/x11/ directory in the source tree.
The main filter is implemented in the file x11video.c. Other supporting files are display.c which has functions

that are called from X11video.c to actually display the frames, and yuvconv.S, which is an MMX modules that
does the YUV to RGB conversion. There are two versions of YUV to RGB conversions, one with alpha blending
and one without.

The MMX code is called from the display.c module to do the conversion before displaying.

+-------------+ +---------+

| X11video.c |<--- input frames from mpeg-2 decoder<--- | MPEG-2 |

| | | decoder |

+-------------+ +---------+

| display.c |

+-------------+

| yuvconv.S |

+-------------+

The video output filter is build in one of 5 modes. Once selects the mode to build the filter in by manually
editing the file build.h in the same directory, and setting the variable OUTPUT_MODE to the mode needed. Looking
at build.h we see:

/* the different types of output modes. Selected with OUTPUT_MODE */

#define OUTPUT_MODE_VIDMEM 2

#define OUTPUT_MODE_XSHM 3

#define OUTPUT_MODE_SDL 4 /* not implemented fully (requires addition

of -lSDL in the makefile) */

#define OUTPUT_MODE_DGA 5

#define OUTPUT_MODE_I810 6

/* the mode selected */

#define OUTPUT_MODE OUTPUT_MODE_XSHM

7.1 VIDMEM mode for video display

If OUTPUT MODE VIDMEM is selected, the the device /dev/agpgrat is opened and used to write to. The
device is opened, then queried using an IOCTL call to compute the video memory size. Then the device is
memory maped using mmap() call for the calculated size.

The result of the mmap() call is to return a memory pointer which is the mapped memory the the device
accessable memory to write the frame to. This memory address is used in the function DisplayFrame() by the
x86 instructions to move the frame buffer to the device /dev/agpgrat/ mapped buffer as shown below

dest=vidmem; /* vidmem is address of mapped graphic device memory */

if(vfbd->blendframe!= ((void *)0)){

CALL_YUV_ALPHA(yval,

cbval,

crval,

dest, /* address of mapped memory */

vfbd);

16

}

else

{

asm("movl %3,%%edi\n" "call yuv_convert" :: "S" (yval),

"c" (cbval),

"d" (crval),

"m" (dest), /* address of mapped memory */

"a" (bobFlag) : "%esi","%ecx","%edx","%edi","%eax"); ;

}

7.2 DGA mode for video display

If OUTPUT MODE DGA is used, the file /usr/X11R6/include/X11/extensions/xf86dga.h is included and the
build is linked to shared library xf86dga.so. The process of using direct graphics calls is initialized using the
following sequence of calls to function in the xf86dga.so library.

display=XOpenDisplay(((void *)0));

screen= (((_XPrivDisplay) display)->default_screen) ;

int min,maj,flags;

XF86DGAQueryVersion(display,&min,&maj);

XF86DGAQueryDirectVideo(display,screen,&flags);

XF86DGAGetVideo(display,screen,(char**)&vidmem,&vidmem_width,&vidmem_size,&ram_size);

XF86DGAGetViewPortSize(display,screen,&sizex,&sizey);

XF86DGADirectVideo(display,screen,0x0002);

}

To output a frame using direct graphics mode, after calling YUV to RGB conversion, calls to XF86DGASetView-
Port() are made as shown

dest=whichpage ? page2 : page1;

if(vfbd->blendframe!= ((void *)0)){

CALL_YUV_ALPHA(yval,cbval,crval,dest,vfbd);

}else{

asm("movl %3,%%edi\n" "call yuv_convert" ::

"S" (yval),

"c" (cbval),

"d" (crval),

"m" (dest),

"a" (bobFlag) : "%esi","%ecx","%edx","%edi","%eax"); ;

}

if(whichpage==0){

XF86DGASetViewPort(display,screen,0,0);

whichpage=1;

}else{

17

XF86DGASetViewPort(display,screen,0,vidmem_height);

whichpage=0;

}

The screen is closed in DGA mode by making a call to XF86DGADirectVideo(display,screen,0).

7.3 intel I810 mode for video display

The intel i810 graphic card has the following features (obtained from the net http://www.xfree86.org/4.0/i810.html).

• Full support for 8, 15, 16, and 24 bit pixel depths.

• Hardware cursor support to reduce sprite flicker.

• Hardware accelerated 2D drawing engine support for 8, 15, 16 and 24 bit pixel depths.

• Support for high resolution video modes up to 1600x1200.

• Fully programmable clock supported.

• Robust text mode restore for VT switching.

Hardware acceleration is not possible when using the framebuffer in 32 bit per pixel format, and this mode is
not supported by this driver.

Interlace modes cannot be supported.
This driver currently only works for Linux/ix86, and normal use requires the agpgart.o kernel module,

included in Linux kernels 2.3.42 and higher.
This mode requires mgilib.h which I was not able to find in the source tree. (ask Ben on that).
some of the functions called in the mgilib when running in i810 mode are:
mgiGetDriverInfo(), mgiMapDriverInfo(), mgiStartOverlay(), mgiCloseOverlay().
(Need to find more information on this mgilib).

7.4 Shared memory mode for video display

In this mode, we use functions as defined in X11 extention /usr/X11R6/include/X11/extensions/XShm.h

To load the display window in XSHM mode we create a shared memory segment and map it to the window
created as shown:

XSizeHints hint;

int screen;

XEvent xev;

display=XOpenDisplay(((void *)0));

screen= (((_XPrivDisplay) display)->default_screen) ;

gc= ((&((_XPrivDisplay) display)->screens[screen]) ->default_gc) ;

window=XCreateSimpleWindow(...);

XSetStandardProperties(display,window,

"DVDMax",

"DVDMax",

0L ,

((void *)0) ,

0,

&hint);

18

XSelectInput(display,window,(1L<<17));

XMapWindow(display,window);

do{

XNextEvent(display,&xev);

}while((xev.type!= 19) || (xev.xmap.event!=window));

XSelectInput(display,window,(1L<<17) | (1L<<2));

printf("window created\n");

}

int pixtype;

int datalen;

CompletionType = XShmGetEventBase(display) + 0 ;

pixtype=XShmPixmapFormat(display);

image = XShmCreateImage(

display,

0L ,

16,

pixtype,

((void *)0) ,

&shminfo,

720 , 480);

datalen=image->bytes_per_line*(image->height+2);

shminfo.shmid = shmget(((__key_t) 0) , datalen, 01000 |0777);

shminfo.shmaddr = shmat(shminfo.shmid,((void *)0) ,0);

image->data=shminfo.shmaddr;

shminfo.readOnly= 0 ;

XShmAttach(display,&shminfo)

}

To close the display in XSHM mode we detach from the shared memory segment and then use X call to
destroy the display.

XShmDetach(display,&shminfo);

XDestroyWindow(display,window);

shmdt(shminfo.shmaddr);

To display a frame in XSHM mode we make a call to XShmPutImage() followed by a call to XSync().

unsigned char *crval = vfbd->baseframe->planes[2];

unsigned char *cbval = vfbd->baseframe->planes[1];

unsigned char *yval = vfbd->baseframe->planes[0];

unsigned char *dest;

dest=image->data;

if(vfbd->blendframe!= ((void *)0)){

19

CALL_YUV_ALPHA(yval,cbval,crval,dest,vfbd);

}else{

asm("movl %3,%%edi\n" "call yuv_convert" :: "S" (yval),

"c" (cbval), "d" (crval), "m" (dest), "a" (bobFlag) :

"%esi","%ecx","%edx","%edi","%eax"); ;

}

XShmPutImage(

display,

window,

gc,

image,

0,0,

0,0,

image->width,

image->height,

0

);

XSync(display,0);

7.5 SDL mode for video display

The SDL functions used when running in this mode are:

int SDL_Init(Uint32 flags); void SDL_Quit(void); int SDL_LockSO(void);

void SDL_Quite(); SDL_UpdateRect(...);

To load the display window in SDL we do

SDL_Init(0x0020);

screen = SDL_SetVideoMode(720 ,480 +2,16,0x00000000 | 0x00000002);

To display a frame in SDL mode, do

dest=(unsigned char *)screen->pixels;

if(vfbd->blendframe!= ((void *)0)){

CALL_YUV_ALPHA(yval,cbval,crval,dest,vfbd);

}else{

asm("movl %3,%%edi\n" "call yuv_convert" ::

"S" (yval), "c" (cbval), "d" (crval),

"m" (dest), "a" (bobFlag) : "%esi","%ecx","%edx","%edi","%eax"); ;

}

SDL_UpdateRect(screen,0,0,720 ,480);

The SDL functions are implemeted in the directory dvd2/src/filters/sink/video/sdl/ in the source tree.
Building DVDMax
These are the steps I did to build DVDMax on Solaris.

1. download the following packages from my web site at MGI and install using the commands

gunzip file.gz

pkgadd -d file

where file.gz is any one of the following

20

• cvs-1.10.7-sol8-sparc-local.gz

• bison-1.28-sol8-sparc-local.gz

• flex-2.5.4a-sol8-sparc-local.gz

• autoconf-2.13-sol8-sparc-local.gz

• m4-1.4-sol8-sparc-local.gz

• gawk-3.0.4-sol8-sparc-local.gz

• make-3.79-sol8-sparc-local.gz

• pkg SMCgcc for gcc, this is already installed on Solaris 8 before building. If we later decide to go with
Sun CC, then need to remove this package. If unable to find the solaris SMCgcc already installed on
Solaris8, use gcc-2.95.2-sol8-sparc-local.gz (I did build with gcc-2.95.2).

2. download fileutils-4.0i_build_solaris8.tar.gz. I’ve already pre-build fileutils for Solaris8/sparc
with my changes to the install.c to ignore -C option (which is used by our Makefiles, this is until I find out
how to make autoconf not generate -C option for install)..

Simply gunzip and tar xf the above, and run ’make install’ from the top level directory. If for some reason
you get an error /usr/local/bin/install not found, then from the top level directory of fileutils do this

cp /src/ginstall /usr/local/bin/install

make install

3. download libtool-1.3.5_build_solaris8.tar.gz. I’ve already prebuild this for solaris8/sparc. simply
extract and run make install from its top level directory.

4. download qt-2.2.0-beta2_build_solaris8.tar.gz, I’ve already pre-build this for Solaris8/sparc, so
simply extract only (i.e. gunzip followed by tar xf). No need to install this. The only thing needed is to
set an env. variables to point to where it is located.

Assume this is installed in /home/nabbasi/data/QT_downloads/qt-2.2.0-beta2 then add this to your
.bashrc (for bash):

QTDIR=/home/nabbasi/data/QT_downloads/qt-2.2.0-beta2

PATH=$QTDIR/bin:$PATH

if [$MANPATH]

then

MANPATH=$QTDIR/man:$MANPATH

else

MANPATH=$QTDIR/man:

fi

if [$LD_LIBRARY_PATH]

then

LD_LIBRARY_PATH=$QTDIR/lib:$LD_LIBRARY_PATH

else

LD_LIBRARY_PATH=$QTDIR/lib

fi

LIBRARY_PATH=$LD_LIBRARY_PATH

if [$CPLUS_INCLUDE_PATH]

then

CPLUS_INCLUDE_PATH=$QTDIR/include:$CPLUS_INCLUDE_PATH

else

CPLUS_INCLUDE_PATH=$QTDIR/include

fi

export QTDIR PATH MANPATH LD_LIBRARY_PATH LIBRARY_PATH

export CPLUS_INCLUDE_PATH

21

To build QT yourself, do this

1. make sure QTDIR path is first set correctly to the QT your

are building as shown above.

2. cd $QTDIR; ./configure

NOte the build type.

3. cd configs

and edit the correct config that matches the solaris build type

(default should be solaris-cc-shared and do the following

changes (notes difference between original and changed file.)

basically, I've used -fPIC instead of -KPIC (since building with

gcc not Sun Compiler for now). and to fix a problem in Qt

build on Solaris, use the '-isystem' instead of '-I' as shown

#diff solaris-cc-shared solaris-cc-shared.orig

6c6

< SYSCONF_CXXFLAGS_X11 = -isystem /usr/openwin/include

> SYSCONF_CXXFLAGS_X11 = -I/usr/openwin/include

84,87c84,85

< #SYSCONF_CXXFLAGS_LIB = -KPIC

< SYSCONF_CXXFLAGS_LIB = -fPIC

< #SYSCONF_CFLAGS_LIB = -KPIC

< SYSCONF_CFLAGS_LIB = -fPIC

> SYSCONF_CXXFLAGS_LIB = -KPIC

> SYSCONF_CFLAGS_LIB = -KPIC

89,92c87,88

< #SYSCONF_CXXFLAGS_SHOBJ = -KPIC

< SYSCONF_CXXFLAGS_SHOBJ = -fPIC

< #SYSCONF_CFLAGS_SHOBJ = -KPIC

< SYSCONF_CFLAGS_SHOBJ = -fPIC

> SYSCONF_CXXFLAGS_SHOBJ = -KPIC

> SYSCONF_CFLAGS_SHOBJ = -KPIC

4. Now, simply do 'make' from top level, go get a cup of

coffee, and in about 1-2 hrs, Qt will be build.

5. download kde-1.1.2-1-Solaris-7-Sparc.tar.gz. This is a pre-build KDE for Solaris. It is only needed to make
our GUI configuration happy.(it is OK that it is for Solaris 7), Simply extract it to some directory.

Assume you extracted it to /export/home/kde-1.1.2-1-Solaris-7-Sparc/ then do this

cd /opt

ln -s /export/home/kde-1.1.2-1-Solaris-7-Sparc kde

and edit .bashrc and add this

KDEDIR=/opt/kde

export KDEDIR

and add $KDEDIR/bin to your PATH also.

22

6. Edit your .bashrc and have this PATH (notice, /usr/local/bin is first)

PATH=/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin:/sbin:/usr/ccs/bin:/usr/openwin/bin:$KDEDIR/bin

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib

export PATH

export LD_LIBRARY_PATH

we add /usr/local/lib since during the build this where our libraries go, and linker

needs to find them.

7. Ok, now we have all the needed software. Use CVS to obtains the source tree.

8. Build the tree using these steps 6

(a) add some symbolic links

cd /usr/loca/bin

ln -s gcc CC

ln -s gcc cc

ln -s flex flex++

ln -s flex lex

(b) set a CC env. variable as follows

export CC=''gcc -DSOLARIS''

(c) cd dvd2/src/filters/sink/video/x11 and edit the build.h file as needed to specify the video mode
output to be used. (I used XSHM)

/* the mode selected */

#define OUTPUT_MODE OUTPUT_MODE_XSHM

(d) cd lmf; rm config.cache; ./configure; make uninstall; make; make install

(e) cd sconv; rm config.cache; ./configure; make uninstall; make; make install

(f) For DVD2, need to do make twice:

cd dvd2; rm config.cache; ./configure; make uninstall; make -i; make -i install; make -i; make -i install

(g) Make sure X11 is running in 16 bit depth (since this is what DVDmax on linux based source now
supports). On Linux7 this is done as follows

startx -- -bpp 16

(h) set up the skin directory:

6You do not need to be root unless root permission is needed to write to /usr/local. I had my /usr/local write allowed by everyone
so I do not need to keep switching to root to install sw.

7find how to do this on CDE/Solaris

23

cp ./dvd2/src/app/frontend/skin.tar.gz $HOME

cd

gunzip skin.tar.gz

tar xf skin.tar

(i) su; export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib; cd dvd2/src/tests;

./ftest12

8 Current status of Solaris build

As of 090500, result of Solaris build shows these plugins being build (9 plugins)

cd /usr/local/DVDMax/plugins

SunOS>ls -l *.so

-rwxr-xr-x 1 nabbasi staff 99028 Sep 5 00:55 dvdmax_demux.so

-rwxr-xr-x 1 nabbasi staff 72184 Sep 5 00:55 dvdmax_dvddisc.so

-rwxr-xr-x 1 nabbasi staff 650248 Sep 5 00:55 dvdmax_dvdnav.so

-rwxr-xr-x 1 nabbasi staff 48420 Sep 5 00:55 dvdmax_hli.so

-rwxr-xr-x 1 nabbasi staff 33684 Sep 5 00:55 dvdmax_mpeg2sync.so

-rwxr-xr-x 1 nabbasi staff 39024 Sep 5 00:55 dvdmax_pcm.so

-rwxr-xr-x 1 nabbasi staff 93396 Sep 5 00:55 dvdmax_rawfile.so

-rwxr-xr-x 1 nabbasi staff 95572 Sep 5 00:55 dvdmax_subpic.so

-rwxr-xr-x 1 nabbasi staff 111880 Sep 5 00:55 libdvdapp.so

On Linux, complete build shows 14 plugins.

cd /usr/local/DVDMax/plugins

nabbasi>ls -l *.so

-rwxr-xr-x 1 nabbasi users 209711 Sep 4 23:38 dvdmax_ac3_filter.so

-rwxr-xr-x 1 nabbasi users 113375 Sep 4 23:38 dvdmax_decss.so

-rwxr-xr-x 1 nabbasi users 79181 Sep 4 23:38 dvdmax_demux.so

-rwxr-xr-x 1 nabbasi users 69295 Sep 4 23:38 dvdmax_dvddisc.so

-rwxr-xr-x 1 nabbasi users 418122 Sep 4 23:38 dvdmax_dvdnav.so

-rwxr-xr-x 1 nabbasi users 44292 Sep 4 23:38 dvdmax_hli.so

-rwxr-xr-x 1 nabbasi users 271365 Sep 4 23:38 dvdmax_mpeg.so

-rwxr-xr-x 1 nabbasi users 43113 Sep 4 23:38 dvdmax_mpeg2sync.so

-rwxr-xr-x 1 nabbasi users 71574 Sep 4 23:38 dvdmax_oss.so

-rwxr-xr-x 1 nabbasi users 48213 Sep 4 23:38 dvdmax_pcm.so

-rwxr-xr-x 1 nabbasi users 74610 Sep 4 23:38 dvdmax_rawfile.so

-rwxr-xr-x 1 nabbasi users 79182 Sep 4 23:38 dvdmax_subpic.so

-rwxr-xr-x 1 nabbasi users 112248 Sep 4 23:38 dvdmax_x11video.so

-rwxr-xr-x 1 nabbasi users 113059 Sep 4 23:38 libdvdapp.so

nabbasi>

plugins failed to link on Solaris are: ac3, decss, mpeg, oss, x11.

24

Figure 3: Mpeg filter internals. mpeg filter.vsd

25

Figure 4: mpeg-2 filter main logic

26

Figure 5: macroblock decoding using samplemc.c as the driver

27

Figure 6: High level diagram showing the C and Assembler modules used in MPEG-2 decoder and global buffers

28

Figure 7: walk though initGetBits MMX code used in GetBits.S

29

Figure 8: walk though InptToMmx MMX code used in GetBits.S

30

Figure 9: follow up of walk though InptToMmx MMX code used in GetBits.S

31

Figure 10: summary of InptToMmx MMX code used in GetBits.S

32

Figure 11: MmxToInput walk though MMX code used in GetBits.S

33

Figure 12: GetVideoBitsSmall walk though MMX code used in GetBits.S

34

	Introduction
	Software requirements
	Main port issues
	High level Architecture
	Loading of a plugin and creation of a filter object
	MPEG-2 decoder design and dataflow
	Assembler modules used by mpeg-2 decoder
	general logic flow in the mpeg-2 decoder
	Decoding macroblocks
	Assembler interfaces in mpeg decoder
	mmxGetBits.S interface
	vrecon.S interface
	vscale.S interface
	vld.S interface
	vquant.S
	vidct.S interface

	Video output filter design
	VIDMEM mode for video display
	DGA mode for video display
	intel I810 mode for video display
	Shared memory mode for video display
	SDL mode for video display

	Current status of Solaris build

