5.3.39 Problems 3801 to 3900

Table 5.111: Problems not solved by Sympy

#

ODE

Mathematica

Maple

Sympy

12069

\[ {} y^{\prime } = y^{2}+a x \coth \left (b x \right )^{m} y+a \coth \left (b x \right )^{m} \]

12070

\[ {} \left (a \coth \left (\lambda x \right )+b \right ) y^{\prime } = y^{2}+c \coth \left (x \mu \right ) y-d^{2}+c d \coth \left (x \mu \right ) \]

12071

\[ {} y^{\prime } = y^{2}-2 \lambda ^{2} \tanh \left (\lambda x \right )^{2}-2 \lambda ^{2} \coth \left (\lambda x \right )^{2} \]

12072

\[ {} y^{\prime } = y^{2}+a \lambda +\lambda b -2 a b -a \left (a +\lambda \right ) \tanh \left (\lambda x \right )^{2}-b \left (b +\lambda \right ) \coth \left (\lambda x \right )^{2} \]

12073

\[ {} y^{\prime } = a \ln \left (x \right )^{n} y^{2}+b m \,x^{m -1}-a \,b^{2} x^{2 m} \ln \left (x \right )^{n} \]

12074

\[ {} x y^{\prime } = a y^{2}+b \ln \left (x \right )+c \]

12075

\[ {} x y^{\prime } = a y^{2}+b \ln \left (x \right )^{k}+c \ln \left (x \right )^{2 k +2} \]

12076

\[ {} x y^{\prime } = x y^{2}-a^{2} x \ln \left (\beta x \right )^{2}+a \]

12077

\[ {} x y^{\prime } = x y^{2}-a^{2} x \ln \left (\beta x \right )^{2 k}+a k \ln \left (\beta x \right )^{k -1} \]

12078

\[ {} x y^{\prime } = a \,x^{n} y^{2}+b -a \,b^{2} x^{n} \ln \left (x \right )^{2} \]

12079

\[ {} y^{\prime } x^{2} = x^{2} y^{2}+a \ln \left (x \right )^{2}+b \ln \left (x \right )+c \]

12080

\[ {} y^{\prime } x^{2} = x^{2} y^{2}+a \left (b \ln \left (x \right )+c \right )^{n}+\frac {1}{4} \]

12081

\[ {} x^{2} \ln \left (a x \right ) \left (y^{\prime }-y^{2}\right ) = 1 \]

12083

\[ {} y^{\prime } = y^{2}+a x \ln \left (b x \right )^{m} y+a \ln \left (b x \right )^{m} \]

12084

\[ {} y^{\prime } = a \,x^{n} y^{2}-a b \,x^{n +1} \ln \left (x \right ) y+b \ln \left (x \right )+b \]

12085

\[ {} y^{\prime } = -\left (n +1\right ) x^{n} y^{2}+a \,x^{n +1} \ln \left (x \right )^{m} y-a \ln \left (x \right )^{m} \]

12086

\[ {} y^{\prime } = a \ln \left (x \right )^{n} y-a b x \ln \left (x \right )^{n +1} y+b \ln \left (x \right )+b \]

12087

\[ {} y^{\prime } = a \ln \left (x \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \]

12088

\[ {} y^{\prime } = a \ln \left (x \right )^{n} y^{2}+b \ln \left (x \right )^{m} y+b c \ln \left (x \right )^{m}-a \,c^{2} \ln \left (x \right )^{n} \]

12090

\[ {} x y^{\prime } = a \ln \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \ln \left (\lambda x \right )^{m} \]

12091

\[ {} x y^{\prime } = a \,x^{n} \left (y+b \ln \left (x \right )\right )^{2}-b \]

12092

\[ {} x y^{\prime } = a \,x^{2 n} \ln \left (x \right ) y^{2}+\left (b \,x^{n} \ln \left (x \right )-n \right ) y+c \ln \left (x \right ) \]

12093

\[ {} y^{\prime } x^{2} = y^{2} a^{2} x^{2}-x y+b^{2} \ln \left (x \right )^{n} \]

12094

\[ {} \left (a \ln \left (x \right )+b \right ) y^{\prime } = y^{2}+c \ln \left (x \right )^{n} y-\lambda ^{2}+\lambda c \ln \left (x \right )^{n} \]

12095

\[ {} \left (a \ln \left (x \right )+b \right ) y^{\prime } = \ln \left (x \right )^{n} y^{2}+c y-\lambda ^{2} \ln \left (x \right )^{n}+\lambda c \]

12096

\[ {} y^{\prime } = \alpha y^{2}+\beta +\gamma \sin \left (\lambda x \right ) \]

12097

\[ {} y^{\prime } = y^{2}-a^{2}+a \lambda \sin \left (\lambda x \right )+a^{2} \sin \left (\lambda x \right )^{2} \]

12098

\[ {} y^{\prime } = y^{2}+\lambda ^{2}+c \sin \left (\lambda x +a \right )^{n} \sin \left (\lambda x +b \right )^{-n -4} \]

12099

\[ {} y^{\prime } = y^{2}+a \sin \left (\beta x \right ) y+a b \sin \left (\beta x \right )-b^{2} \]

12100

\[ {} y^{\prime } = y^{2}+a \sin \left (b x \right )^{m} y+a \sin \left (b x \right )^{m} \]

12101

\[ {} y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+\lambda \sin \left (\lambda x \right )^{3} \]

12102

\[ {} 2 y^{\prime } = \left (\lambda +a -\sin \left (\lambda x \right ) a \right ) y^{2}+\lambda -a -\sin \left (\lambda x \right ) a \]

12103

\[ {} y^{\prime } = \left (\lambda +a \sin \left (\lambda x \right )^{2}\right ) y^{2}+\lambda -a +a \sin \left (\lambda x \right )^{2} \]

12104

\[ {} y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+a \,x^{k +1} \sin \left (x \right )^{m} y-a \sin \left (x \right )^{m} \]

12105

\[ {} y^{\prime } = a \sin \left (\lambda x +\mu \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \]

12106

\[ {} x y^{\prime } = a \sin \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \sin \left (\lambda x \right )^{m} \]

12107

\[ {} \left (\sin \left (\lambda x \right ) a +b \right ) y^{\prime } = y^{2}+c \sin \left (x \mu \right ) y-d^{2}+c d \sin \left (x \mu \right ) \]

12108

\[ {} \left (\sin \left (\lambda x \right ) a +b \right ) \left (y^{\prime }-y^{2}\right )-a \,\lambda ^{2} \sin \left (\lambda x \right ) = 0 \]

12109

\[ {} y^{\prime } = \alpha y^{2}+\beta +\gamma \cos \left (\lambda x \right ) \]

12110

\[ {} y^{\prime } = y^{2}-a^{2}+a \lambda \cos \left (\lambda x \right )+a^{2} \cos \left (\lambda x \right )^{2} \]

12111

\[ {} y^{\prime } = y^{2}+\lambda ^{2}+c \cos \left (\lambda x +a \right )^{n} \cos \left (\lambda x +b \right )^{-n -4} \]

12112

\[ {} y^{\prime } = y^{2}+a \cos \left (\beta x \right ) y+a b \cos \left (\beta x \right )-b^{2} \]

12113

\[ {} y^{\prime } = y^{2}+a \cos \left (b x \right )^{m} y+a \cos \left (b x \right )^{m} \]

12114

\[ {} y^{\prime } = \lambda \cos \left (\lambda x \right ) y^{2}+\lambda \cos \left (\lambda x \right )^{3} \]

12115

\[ {} 2 y^{\prime } = \left (\lambda +a -a \cos \left (\lambda x \right )\right ) y^{2}+\lambda -a -a \cos \left (\lambda x \right ) \]

12116

\[ {} y^{\prime } = \left (\lambda +a \cos \left (\lambda x \right )^{2}\right ) y^{2}+\lambda -a +a \cos \left (\lambda x \right )^{2} \]

12117

\[ {} y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+a \,x^{k +1} \cos \left (x \right )^{m} y-a \cos \left (x \right )^{m} \]

12118

\[ {} y^{\prime } = a \cos \left (\lambda x +\mu \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \]

12119

\[ {} x y^{\prime } = a \cos \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \cos \left (\lambda x \right )^{m} \]

12120

\[ {} \left (a \cos \left (\lambda x \right )+b \right ) y^{\prime } = y^{2}+c \cos \left (x \mu \right ) y-d^{2}+c d \cos \left (x \mu \right ) \]

12121

\[ {} \left (a \cos \left (\lambda x \right )+b \right ) \left (y^{\prime }-y^{2}\right )-a \,\lambda ^{2} \cos \left (\lambda x \right ) = 0 \]

12122

\[ {} y^{\prime } = y^{2}+a \lambda +a \left (\lambda -a \right ) \tan \left (\lambda x \right )^{2} \]

12123

\[ {} y^{\prime } = y^{2}+\lambda ^{2}+3 a \lambda +a \left (\lambda -a \right ) \tan \left (\lambda x \right )^{2} \]

12124

\[ {} y^{\prime } = a y^{2}+b \tan \left (x \right ) y+c \]

12126

\[ {} y^{\prime } = y^{2}+a \tan \left (\beta x \right ) y+a b \tan \left (\beta x \right )-b^{2} \]

12127

\[ {} y^{\prime } = y^{2}+a x \tan \left (b x \right )^{m} y+a \tan \left (b x \right )^{m} \]

12128

\[ {} y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+a \,x^{k +1} \tan \left (x \right )^{m} y-a \tan \left (x \right )^{m} \]

12129

\[ {} y^{\prime } = a \tan \left (\lambda x \right )^{n} y^{2}-a \,b^{2} \tan \left (\lambda x \right )^{n +2}+b \lambda \tan \left (\lambda x \right )^{2}+\lambda b \]

12130

\[ {} y^{\prime } = a \tan \left (\lambda x +\mu \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \]

12131

\[ {} x y^{\prime } = a \tan \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \tan \left (\lambda x \right )^{m} \]

12132

\[ {} \left (a \tan \left (\lambda x \right )+b \right ) y^{\prime } = y^{2}+k \tan \left (x \mu \right ) y-d^{2}+k d \tan \left (x \mu \right ) \]

12133

\[ {} y^{\prime } = y^{2}+a \lambda +a \left (\lambda -a \right ) \cot \left (\lambda x \right )^{2} \]

12134

\[ {} y^{\prime } = y^{2}+\lambda ^{2}+3 a \lambda +a \left (\lambda -a \right ) \cot \left (\lambda x \right )^{2} \]

12135

\[ {} y^{\prime } = y^{2}-2 a b \cot \left (a x \right ) y+b^{2}-a^{2} \]

12136

\[ {} y^{\prime } = y^{2}+a \cot \left (\beta x \right ) y+a b \cot \left (\beta x \right )-b^{2} \]

12137

\[ {} y^{\prime } = y^{2}+a x \cot \left (b x \right )^{m} y+a \cot \left (b x \right )^{m} \]

12138

\[ {} y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+a \,x^{k +1} \cot \left (x \right )^{m} y-a \cot \left (x \right )^{m} \]

12139

\[ {} y^{\prime } = a \cot \left (\lambda x +\mu \right )^{k} \left (y-b \,x^{n}-c \right )^{2}+b n \,x^{n -1} \]

12140

\[ {} x y^{\prime } = a \cot \left (\lambda x \right )^{m} y^{2}+k y+a \,b^{2} x^{2 k} \cot \left (\lambda x \right )^{m} \]

12141

\[ {} \left (a \cot \left (\lambda x \right )+b \right ) y^{\prime } = y^{2}+c \cot \left (x \mu \right ) y-d^{2}+c d \cot \left (x \mu \right ) \]

12142

\[ {} y^{\prime } = y^{2}+\lambda ^{2}+c \sin \left (\lambda x \right )^{n} \cos \left (\lambda x \right )^{-n -4} \]

12143

\[ {} y^{\prime } = a \sin \left (\lambda x \right ) y^{2}+b \sin \left (\lambda x \right ) \cos \left (\lambda x \right )^{n} \]

12144

\[ {} y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+a \cos \left (\lambda x \right )^{n} y-a \cos \left (\lambda x \right )^{n -1} \]

12145

\[ {} y^{\prime } = a \cos \left (\lambda x \right ) y^{2}+b \cos \left (\lambda x \right ) \sin \left (\lambda x \right )^{n} \]

12146

\[ {} y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+a \,x^{n} \cos \left (\lambda x \right ) y-a \,x^{n} \]

12147

\[ {} \sin \left (2 x \right )^{n +1} y^{\prime } = a y^{2} \sin \left (x \right )^{2 n}+b \cos \left (x \right )^{2 n} \]

12148

\[ {} y^{\prime } = y^{2}-y \tan \left (x \right )+a \left (1-a \right ) \cot \left (x \right )^{2} \]

12149

\[ {} y^{\prime } = y^{2}-m y \tan \left (x \right )+b^{2} \cos \left (x \right )^{2 m} \]

12150

\[ {} y^{\prime } = y^{2}+m y \cot \left (x \right )+b^{2} \sin \left (x \right )^{2 m} \]

12151

\[ {} y^{\prime } = y^{2}-2 \lambda ^{2} \tan \left (x \right )^{2}-2 \lambda ^{2} \cot \left (\lambda x \right )^{2} \]

12152

\[ {} y^{\prime } = y^{2}+a \lambda +\lambda b +2 a b +a \left (\lambda -a \right ) \tan \left (\lambda x \right )^{2}+b \left (\lambda -b \right ) \cot \left (\lambda x \right )^{2} \]

12153

\[ {} y^{\prime } = y^{2}-\frac {\lambda ^{2}}{2}-\frac {3 \lambda ^{2} \tan \left (\lambda x \right )^{2}}{4}+a \cos \left (\lambda x \right )^{2} \sin \left (\lambda x \right )^{n} \]

12154

\[ {} y^{\prime } = \lambda \sin \left (\lambda x \right ) y^{2}+a \sin \left (\lambda x \right ) y-a \tan \left (\lambda x \right ) \]

12156

\[ {} y^{\prime } = y^{2}+\lambda x \arcsin \left (x \right )^{n} y+\lambda \arcsin \left (x \right )^{n} \]

12157

\[ {} y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+\lambda \arcsin \left (x \right )^{n} \left (x^{k +1} y-1\right ) \]

12159

\[ {} y^{\prime } = \lambda \arcsin \left (x \right )^{n} y^{2}-b \lambda \,x^{m} \arcsin \left (x \right )^{n} y+b m \,x^{m -1} \]

12160

\[ {} y^{\prime } = \lambda \arcsin \left (x \right )^{n} y^{2}+\beta m \,x^{m -1}-\lambda \,\beta ^{2} x^{2 m} \arcsin \left (x \right )^{n} \]

12161

\[ {} y^{\prime } = \lambda \arcsin \left (x \right )^{n} \left (y-a \,x^{m}-b \right )^{2}+a m \,x^{m -1} \]

12162

\[ {} x y^{\prime } = \lambda \arcsin \left (x \right )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \arcsin \left (x \right )^{n} \]

12163

\[ {} x y^{\prime } = \left (a \,x^{2 m} y^{2}+b \,x^{n} y+c \right ) \arcsin \left (x \right )^{m}-n y \]

12165

\[ {} y^{\prime } = y^{2}+\lambda x \arccos \left (x \right )^{n} y+\lambda \arccos \left (x \right )^{n} \]

12166

\[ {} y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+\lambda \arccos \left (x \right )^{n} \left (x^{k +1} y-1\right ) \]

12168

\[ {} y^{\prime } = \lambda \arccos \left (x \right )^{n} y^{2}-b \lambda \,x^{m} \arccos \left (x \right )^{n} y+b m \,x^{m -1} \]

12169

\[ {} y^{\prime } = \lambda \arccos \left (x \right )^{n} y^{2}+\beta m \,x^{m -1}-\lambda \,\beta ^{2} x^{2 m} \arccos \left (x \right )^{n} \]

12170

\[ {} y^{\prime } = \lambda \arccos \left (x \right )^{n} \left (y-a \,x^{m}-b \right )^{2}+a m \,x^{m -1} \]

12171

\[ {} x y^{\prime } = \lambda \arccos \left (x \right )^{n} y^{2}+k y+\lambda \,b^{2} x^{2 k} \arccos \left (x \right )^{n} \]

12172

\[ {} x y^{\prime } = \left (a \,x^{2 m} y^{2}+b \,x^{n} y+c \right ) \arccos \left (x \right )^{m}-n y \]

12174

\[ {} y^{\prime } = y^{2}+\lambda x \arctan \left (x \right )^{n} y+\lambda \arctan \left (x \right )^{n} \]

12175

\[ {} y^{\prime } = -\left (k +1\right ) x^{k} y^{2}+\lambda \arctan \left (x \right )^{n} \left (x^{k +1} y-1\right ) \]

12176

\[ {} y^{\prime } = \lambda \arctan \left (x \right )^{n} y^{2}+a y+a b -b^{2} \lambda \arctan \left (x \right )^{n} \]