5.2.2 Problems 101 to 200

Table 5.21: Problems not solved by Maple

#

ODE

Mathematica

Maple

Sympy

5187

\[ {} \left (\operatorname {g0} \left (x \right )+y \operatorname {g1} \left (x \right )\right ) y^{\prime } = \operatorname {f0} \left (x \right )+\operatorname {f1} \left (x \right ) y+\operatorname {f2} \left (x \right ) y^{2}+\operatorname {f3} \left (x \right ) y^{3} \]

5270

\[ {} \left (a^{2} x +y \left (-y^{2}+x^{2}\right )\right ) y^{\prime }+x \left (-y^{2}+x^{2}\right ) = y a^{2} \]

5339

\[ {} {y^{\prime }}^{2}+a \,x^{2}+b y = 0 \]

5355

\[ {} {y^{\prime }}^{2} = f \left (x \right )^{2} \left (y-u \left (x \right )\right )^{2} \left (y-a \right ) \left (y-b \right ) \]

5384

\[ {} {y^{\prime }}^{2}+a x y^{\prime }+b \,x^{2}+c y = 0 \]

5490

\[ {} x^{2} {y^{\prime }}^{2}+x \left (x^{2}+x y-2 y\right ) y^{\prime }+\left (1-x \right ) \left (x^{2}-y\right ) y = 0 \]

5543

\[ {} x y {y^{\prime }}^{2}-\left (a -b \,x^{2}+y^{2}\right ) y^{\prime }-b x y = 0 \]

5560

\[ {} \left (a^{2}-2 a x y+y^{2}\right ) {y^{\prime }}^{2}+2 a y y^{\prime }+y^{2} = 0 \]

5631

\[ {} x {y^{\prime }}^{3}-3 x^{2} y {y^{\prime }}^{2}+x \left (x^{5}+3 y^{2}\right ) y^{\prime }-2 x^{5} y-y^{3} = 0 \]

5642

\[ {} x y^{2} {y^{\prime }}^{3}-y^{3} {y^{\prime }}^{2}+x \left (x^{2}+1\right ) y^{\prime }-x^{2} y = 0 \]

5659

\[ {} x^{2} \left ({y^{\prime }}^{6}+3 y^{4}+3 y^{2}+1\right ) = a^{2} \]

5687

\[ {} y^{\prime } \ln \left (y^{\prime }+\sqrt {a +{y^{\prime }}^{2}}\right )-\sqrt {1+{y^{\prime }}^{2}}-x y^{\prime }+y = 0 \]

5730

\[ {} \frac {x^{n} y^{\prime }}{b y^{2}-c \,x^{2 a}}-\frac {a y x^{a -1}}{b y^{2}-c \,x^{2 a}}+x^{a -1} = 0 \]

6045

\[ {} x^{4} y^{\prime \prime }+x y^{\prime }+y = 0 \]

6058

\[ {} x^{3} y^{\prime \prime }-\left (2 x -1\right ) y = 0 \]

6062

\[ {} y^{\prime \prime }+\frac {a y}{x^{{3}/{2}}} = 0 \]

6066

\[ {} x^{3} y^{\prime \prime }+y = x^{{3}/{2}} \]

6067

\[ {} 2 x^{2} y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }+\frac {\left (2 x -1\right ) y}{x} = \sqrt {x} \]

6258

\[ {} s^{\prime } = t \ln \left (s^{2 t}\right )+8 t^{2} \]

6261

\[ {} s^{2}+s^{\prime } = \frac {s+1}{s t} \]

6295

\[ {} x^{\prime }+t x = {\mathrm e}^{x} \]

6298

\[ {} x x^{\prime }+x t^{2} = \sin \left (t \right ) \]

6346

\[ {} x^{2} y^{\prime \prime }+3 y^{\prime }-x y = 0 \]

6560

\[ {} x^{3} y^{\prime \prime }+y = 0 \]

6843

\[ {} x^{3} y^{\prime \prime }+y = \frac {1}{x^{4}} \]

6844

\[ {} x y^{\prime \prime }-2 y^{\prime }+y = \cos \left (x \right ) \]

6845

\[ {} y^{\prime }-\frac {y}{x} = \cos \left (x \right ) \]

6864

\[ {} x^{2} y^{\prime \prime }+y^{\prime }+y = 0 \]

6869

\[ {} x^{3} y^{\prime \prime }+\left (1+x \right ) y = 0 \]

6877

\[ {} x y^{\prime \prime \prime }-{y^{\prime }}^{4}+y = 0 \]

6878

\[ {} t^{5} y^{\prime \prime \prime \prime }-t^{3} y^{\prime \prime }+6 y = 0 \]

6879

\[ {} u^{\prime \prime }+u^{\prime }+u = \cos \left (r +u\right ) \]

6882

\[ {} x^{\prime \prime }-\left (1-\frac {{x^{\prime }}^{2}}{3}\right ) x^{\prime }+x = 0 \]

6884

\[ {} \sin \left (x^{\prime }\right )+y^{3} x = \sin \left (y \right ) \]

6971

\[ {} y^{\prime \prime }+4 y = 0 \]

6976

\[ {} y^{\prime \prime }+4 y = 0 \]

6995

\[ {} y^{\prime } = 6 \sqrt {y}+5 x^{3} \]

7018

\[ {} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}} \]

7019

\[ {} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}} \]

7020

\[ {} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}} \]

7021

\[ {} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}} \]

7134

\[ {} m^{\prime } = -\frac {k}{m^{2}} \]

7196

\[ {} x y^{\prime }-4 y = x^{6} {\mathrm e}^{x} \]

7224

\[ {} x^{3} y^{\prime \prime }+4 y^{\prime } x^{2}+3 y = 0 \]

7232

\[ {} x^{3} \left (x^{2}-25\right ) \left (x -2\right )^{2} y^{\prime \prime }+3 x \left (x -2\right ) y^{\prime }+7 \left (x +5\right ) y = 0 \]

7256

\[ {} x^{4} y^{\prime \prime }+\lambda y = 0 \]

7257

\[ {} x^{3} y^{\prime \prime }+y = 0 \]

7258

\[ {} x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

7485

\[ {} y^{\prime \prime \prime }-2 x y^{\prime \prime }+4 y^{\prime } x^{2}+8 x^{3} y = 0 \]

7486

\[ {} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+y \,{\mathrm e}^{x} = 0 \]

7501

\[ {} \left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime \prime }-2 \sin \left (x \right ) y^{\prime }+y \left (\cos \left (x \right )+\sin \left (x \right )\right ) = \left (\cos \left (x \right )-\sin \left (x \right )\right )^{2} \]

7710

\[ {} x^{2} y^{\prime \prime }-5 y^{\prime }+3 x^{2} y = 0 \]

7772

\[ {} [y_{1}^{\prime }\left (x \right ) = 3 y_{1} \left (x \right )+x y_{3} \left (x \right ), y_{2}^{\prime }\left (x \right ) = y_{2} \left (x \right )+x^{3} y_{3} \left (x \right ), y_{3}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right ) x -y_{2} \left (x \right )+{\mathrm e}^{x} y_{3} \left (x \right )] \]

7837

\[ {} x \ln \left (x \right ) y^{\prime }+y = 3 x^{3} \]

7851

\[ {} \sin \left (x \right ) \tan \left (y\right )+1+\cos \left (x \right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

7853

\[ {} 2 y^{2}-4 x +5 = \left (4-2 y+4 x y\right ) y^{\prime } \]

7906

\[ {} x y y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

8086

\[ {} y^{\prime } x^{2} = y \]

8109

\[ {} x^{3} \left (x -1\right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+3 x y = 0 \]

8111

\[ {} x^{2} y^{\prime \prime }+\left (2-x \right ) y^{\prime } = 0 \]

8117

\[ {} x^{4} y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

8127

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}} = 0 \]

8128

\[ {} x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

8181

\[ {} i^{\prime \prime }+2 i^{\prime }+3 i = \left \{\begin {array}{cc} 30 & 0<t <2 \pi \\ 0 & 2 \pi \le t \le 5 \pi \\ 10 & 5 \pi <t <\infty \end {array}\right . \]

8210

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right )+1, y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )] \]

8211

\[ {} [x^{\prime }\left (t \right ) = 1+t y \left (t \right ), y^{\prime }\left (t \right ) = -t x \left (t \right )+y \left (t \right )] \]

8217

\[ {} y^{\prime } = y+x \,{\mathrm e}^{y} \]

8249

\[ {} y^{\prime \prime }+5 x y^{\prime }+y \sqrt {x} = 0 \]

8252

\[ {} x^{3} y^{\prime \prime }+4 y^{\prime } x^{2}+3 y = 0 \]

8260

\[ {} x^{3} \left (x^{2}-25\right ) \left (x -2\right )^{2} y^{\prime \prime }+3 x \left (x -2\right ) y^{\prime }+7 \left (x +5\right ) y = 0 \]

8285

\[ {} x^{3} y^{\prime \prime }+y = 0 \]

8286

\[ {} x^{2} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+y = 0 \]

8387

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+2 z \left (t \right )+{\mathrm e}^{-t}-3 t, y^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right )+z \left (t \right )+2 \,{\mathrm e}^{-t}+t, z^{\prime }\left (t \right ) = -2 x \left (t \right )+5 y \left (t \right )+6 z \left (t \right )+2 \,{\mathrm e}^{-t}-t] \]

8507

\[ {} 2 y^{\prime \prime } = \sin \left (2 y\right ) \]

8508

\[ {} 2 y^{\prime \prime } = \sin \left (2 y\right ) \]

8731

\[ {} y^{\prime } = \sqrt {1-x^{2}-y^{2}} \]

8775

\[ {} y y^{\prime \prime } = x \]

8778

\[ {} 3 y y^{\prime \prime } = \sin \left (x \right ) \]

8847

\[ {} y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{3} = 0 \]

8855

\[ {} y^{\prime \prime }-x^{3} y^{\prime }-x y-x^{3}-x^{2} = 0 \]

8857

\[ {} y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{4}-x^{3} = 0 \]

8882

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+y {y^{\prime }}^{2} = 0 \]

8892

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = 1+x \]

8893

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x \]

8894

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2}+x +1 \]

8898

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \sin \left (x \right ) \]

8899

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \sin \left (x \right )+1 \]

8901

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = \cos \left (x \right )+\sin \left (x \right ) \]

8909

\[ {} 2 x^{2} y^{\prime \prime }+2 x y^{\prime }-x y = 1 \]

8921

\[ {} {y^{\prime }}^{2}+y^{2} = \sec \left (x \right )^{4} \]

8956

\[ {} \frac {x y^{\prime \prime }}{-x^{2}+1}+y = 0 \]

8968

\[ {} y^{\prime }+y = \frac {1}{x} \]

8969

\[ {} y^{\prime }+y = \frac {1}{x^{2}} \]

8971

\[ {} y^{\prime } = \frac {1}{x} \]

8972

\[ {} y^{\prime \prime } = \frac {1}{x} \]

8973

\[ {} y^{\prime \prime }+y^{\prime } = \frac {1}{x} \]

8974

\[ {} y^{\prime \prime }+y = \frac {1}{x} \]

8975

\[ {} y^{\prime \prime }+y^{\prime }+y = \frac {1}{x} \]

8984

\[ {} y^{\prime } = \frac {x y+3 x -2 y+6}{x y-3 x -2 y+6} \]

9013

\[ {} y^{\prime } = \cos \left (x \right )+\frac {y^{2}}{x} \]