5.1.8 Problems 701 to 800

Table 5.15: Problems not solved by Mathematica

#

ODE

Mathematica

Maple

Sympy

14296

\[ {} y^{\prime } = x^{3}+y^{3} \]

14301

\[ {} y^{\prime } = \frac {1}{\sqrt {15-x^{2}-y^{2}}} \]

14413

\[ {} \sqrt {1-x}\, y^{\prime \prime }-4 y = \sin \left (x \right ) \]

14414

\[ {} \left (x^{2}-4\right ) y^{\prime \prime }+y \ln \left (x \right ) = {\mathrm e}^{x} x \]

14492

\[ {} \left [y_{1}^{\prime }\left (x \right ) = \sin \left (x \right ) y_{1} \left (x \right )+\sqrt {x}\, y_{2} \left (x \right )+\ln \left (x \right ), y_{2}^{\prime }\left (x \right ) = \tan \left (x \right ) y_{1} \left (x \right )-{\mathrm e}^{x} y_{2} \left (x \right )+1\right ] \]

14493

\[ {} \left [y_{1}^{\prime }\left (x \right ) = \sin \left (x \right ) y_{1} \left (x \right )+\sqrt {x}\, y_{2} \left (x \right )+\ln \left (x \right ), y_{2}^{\prime }\left (x \right ) = \tan \left (x \right ) y_{1} \left (x \right )-{\mathrm e}^{x} y_{2} \left (x \right )+1\right ] \]

14494

\[ {} \left [y_{1}^{\prime }\left (x \right ) = {\mathrm e}^{-x} y_{1} \left (x \right )-\sqrt {1+x}\, y_{2} \left (x \right )+x^{2}, y_{2}^{\prime }\left (x \right ) = \frac {y_{1} \left (x \right )}{\left (x -2\right )^{2}}\right ] \]

14495

\[ {} \left [y_{1}^{\prime }\left (x \right ) = {\mathrm e}^{-x} y_{1} \left (x \right )-\sqrt {1+x}\, y_{2} \left (x \right )+x^{2}, y_{2}^{\prime }\left (x \right ) = \frac {y_{1} \left (x \right )}{\left (x -2\right )^{2}}\right ] \]

14507

\[ {} [y_{1}^{\prime }\left (x \right ) = 2 y_{1} \left (x \right ) x -x^{2} y_{2} \left (x \right )+4 x, y_{2}^{\prime }\left (x \right ) = {\mathrm e}^{x} y_{1} \left (x \right )+3 \,{\mathrm e}^{-x} y_{2} \left (x \right )-\cos \left (3 x \right )] \]

14575

\[ {} S^{\prime } = S^{3}-2 S^{2}+S \]

14576

\[ {} S^{\prime } = S^{3}-2 S^{2}+S \]

14579

\[ {} S^{\prime } = S^{3}-2 S^{2}+S \]

14600

\[ {} y^{\prime } = {\mathrm e}^{\frac {2}{y}} \]

14601

\[ {} y^{\prime } = {\mathrm e}^{\frac {2}{y}} \]

14603

\[ {} y^{\prime } = 2 y^{3}+t^{2} \]

14627

\[ {} y^{\prime } = \cos \left (y\right ) \]

14630

\[ {} w^{\prime } = w \cos \left (w\right ) \]

14631

\[ {} w^{\prime } = w \cos \left (w\right ) \]

14632

\[ {} w^{\prime } = w \cos \left (w\right ) \]

14699

\[ {} y^{\prime } = \left (y-3\right ) \left (\sin \left (y\right ) \sin \left (t \right )+\cos \left (t \right )+1\right ) \]

14722

\[ {} y^{\prime } = \left (-1+y\right ) \left (-2+y\right ) \left (y-{\mathrm e}^{\frac {t}{2}}\right ) \]

14915

\[ {} y^{2} y^{\prime \prime } = 8 x^{2} \]

14954

\[ {} \sin \left (x +y\right )-y y^{\prime } = 0 \]

15013

\[ {} y^{2} y^{\prime }+3 x^{2} y = \sin \left (x \right ) \]

15188

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

15189

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

15194

\[ {} y^{\prime \prime }+y^{\prime } x^{2}+4 y = y^{3} \]

15200

\[ {} y y^{\prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime } = y \]

15224

\[ {} x^{3} y^{\prime \prime \prime }-4 y^{\prime \prime }+10 y^{\prime }-12 y = 0 \]

15708

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right )-6 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )-5] \]

15711

\[ {} y y^{\prime }+y^{4} = \sin \left (x \right ) \]

15715

\[ {} x {y^{\prime \prime }}^{2}+2 y = 2 x \]

15716

\[ {} x^{\prime \prime }+2 \sin \left (x\right ) = \sin \left (2 t \right ) \]

15766

\[ {} 4 x \left (x^{2}+y^{2}\right )-5 y+4 y \left (x^{2}+y^{2}-5 x \right ) y^{\prime } = 0 \]

15791

\[ {} y^{\prime }+t^{2} = \frac {1}{y^{2}} \]

15865

\[ {} 1 = \cos \left (y\right ) y^{\prime } \]

15976

\[ {} 1-y^{2} \cos \left (t y\right )+\left (t y \cos \left (t y\right )+\sin \left (t y\right )\right ) y^{\prime } = 0 \]

15986

\[ {} {\mathrm e}^{y}-2 t y+\left (t \,{\mathrm e}^{y}-t^{2}\right ) y^{\prime } = 0 \]

15990

\[ {} \frac {1}{t^{2}+1}-y^{2}-2 t y y^{\prime } = 0 \]

15991

\[ {} \frac {2 t}{t^{2}+1}+y+\left ({\mathrm e}^{y}+t \right ) y^{\prime } = 0 \]

16047

\[ {} y^{4}+\left (t^{4}-t y^{3}\right ) y^{\prime } = 0 \]

16102

\[ {} y^{\prime } = \sqrt {x -y} \]

16133

\[ {} y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0 \]

16177

\[ {} {y^{\prime \prime }}^{2}-5 y^{\prime \prime } y^{\prime }+4 y^{2} = 0 \]

16178

\[ {} {y^{\prime \prime }}^{2}-2 y^{\prime \prime } y^{\prime }+y^{2} = 0 \]

16600

\[ {} y^{\prime } = \sin \left (y\right )-\cos \left (x \right ) \]

16639

\[ {} y \ln \left (y\right )+x y^{\prime } = 1 \]

16658

\[ {} x^{2} \cos \left (y\right ) y^{\prime }+1 = 0 \]

16659

\[ {} y^{\prime } x^{2}+\cos \left (2 y\right ) = 1 \]

16660

\[ {} x^{3} y^{\prime }-\sin \left (y\right ) = 1 \]

16661

\[ {} \left (x^{2}+1\right ) y^{\prime }-\frac {\cos \left (2 y\right )^{2}}{2} = 0 \]

16665

\[ {} y^{\prime } x^{2}+\sin \left (2 y\right ) = 1 \]

16725

\[ {} \frac {x}{\sqrt {x^{2}+y^{2}}}+\frac {1}{x}+\frac {1}{y}+\left (\frac {y}{\sqrt {x^{2}+y^{2}}}+\frac {1}{y}-\frac {x}{y^{2}}\right ) y^{\prime } = 0 \]

16726

\[ {} 3 x^{2} \tan \left (y\right )-\frac {2 y^{3}}{x^{3}}+\left (x^{3} \sec \left (y\right )^{2}+4 y^{3}+\frac {3 y^{2}}{x^{2}}\right ) y^{\prime } = 0 \]

16732

\[ {} \frac {y+\sin \left (x \right ) \cos \left (x y\right )^{2}}{\cos \left (x y\right )^{2}}+\left (\frac {x}{\cos \left (x y\right )^{2}}+\sin \left (y\right )\right ) y^{\prime } = 0 \]

16783

\[ {} {y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \]

16788

\[ {} 8 {y^{\prime }}^{3}-12 {y^{\prime }}^{2} = 27 y-27 x \]

16863

\[ {} y^{\prime \prime } = y^{\prime } \ln \left (y^{\prime }\right ) \]

16869

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

16870

\[ {} 3 y^{\prime \prime } y^{\prime } = 2 y \]

16880

\[ {} y^{\prime \prime \prime } = 3 y y^{\prime } \]

17041

\[ {} y^{\prime \prime }+4 y^{\prime }+3 y = 8 \,{\mathrm e}^{x}+9 \]

17043

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 2 \,{\mathrm e}^{x} \left (\sin \left (x \right )+7 \cos \left (x \right )\right ) \]

17044

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{-2 x} \left (9 \sin \left (2 x \right )+4 \cos \left (2 x \right )\right ) \]

17045

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{-x} \left (9 x^{2}+5 x -12\right ) \]

17095

\[ {} 2 x^{2} \left (2-\ln \left (x \right )\right ) y^{\prime \prime }+x \left (4-\ln \left (x \right )\right ) y^{\prime }-y = \frac {\left (2-\ln \left (x \right )\right )^{2}}{\sqrt {x}} \]

17103

\[ {} x^{\prime \prime }-2 {x^{\prime }}^{2}+x^{\prime }-2 x = 0 \]

17105

\[ {} x^{\prime \prime }+{\mathrm e}^{-x^{\prime }}-x = 0 \]

17108

\[ {} x^{\prime \prime }-x^{\prime }+x-x^{2} = 0 \]

17112

\[ {} y^{\prime \prime }+y = 0 \]

17118

\[ {} y^{\prime \prime }+\alpha ^{2} y = 1 \]

17133

\[ {} \ln \left (x \right ) y^{\prime \prime }-y \sin \left (x \right ) = 0 \]

17165

\[ {} \left [x^{\prime }\left (t \right ) = \frac {t +y \left (t \right )}{x \left (t \right )+y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {t +x \left (t \right )}{x \left (t \right )+y \left (t \right )}\right ] \]

17176

\[ {} [x^{\prime \prime }\left (t \right ) = x \left (t \right )^{2}+y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right ) x^{\prime }\left (t \right )+x \left (t \right )] \]

17183

\[ {} \left [x^{\prime }\left (t \right ) = \cos \left (x \left (t \right )\right )^{2} \cos \left (y \left (t \right )\right )^{2}+\sin \left (x \left (t \right )\right )^{2} \cos \left (y \left (t \right )\right )^{2}, y^{\prime }\left (t \right ) = -\frac {\sin \left (2 x \left (t \right )\right ) \sin \left (2 y \left (t \right )\right )}{2}\right ] \]

17255

\[ {} \sin \left (2 x \right )+\cos \left (3 y\right ) y^{\prime } = 0 \]

17308

\[ {} y^{\prime } = \sqrt {1-t^{2}-y^{2}} \]

17309

\[ {} y^{\prime } = \frac {\ln \left (t y\right )}{1-t^{2}+y^{2}} \]

17310

\[ {} y^{\prime } = \left (t^{2}+y^{2}\right )^{{3}/{2}} \]

17331

\[ {} {\mathrm e}^{x} \sin \left (y\right )+3 y-\left (3 x -{\mathrm e}^{x} \sin \left (y\right )\right ) y^{\prime } = 0 \]

17347

\[ {} \frac {4 x^{3}}{y^{2}}+\frac {12}{y}+3 \left (\frac {x}{y^{2}}+4 y\right ) y^{\prime } = 0 \]

17391

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+4, y^{\prime }\left (t \right ) = -2 x \left (t \right )+\sin \left (t \right ) y \left (t \right )] \]

17465

\[ {} [x^{\prime }\left (t \right ) = 2-y \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right )^{2}] \]

17466

\[ {} \left [x^{\prime }\left (t \right ) = x \left (t \right )-x \left (t \right )^{2}-x \left (t \right ) y \left (t \right ), y^{\prime }\left (t \right ) = \frac {y \left (t \right )}{2}-\frac {y \left (t \right )^{2}}{4}-\frac {3 x \left (t \right ) y \left (t \right )}{4}\right ] \]

17467

\[ {} [x^{\prime }\left (t \right ) = -\left (x \left (t \right )-y \left (t \right )\right ) \left (1-x \left (t \right )-y \left (t \right )\right ), y^{\prime }\left (t \right ) = x \left (t \right ) \left (y \left (t \right )+2\right )] \]

17468

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ) \left (2-x \left (t \right )-y \left (t \right )\right ), y^{\prime }\left (t \right ) = -x \left (t \right )-y \left (t \right )-2 x \left (t \right ) y \left (t \right )] \]

17469

\[ {} [x^{\prime }\left (t \right ) = \left (x \left (t \right )+2\right ) \left (-x \left (t \right )+y \left (t \right )\right ), y^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right )^{2}-y \left (t \right )^{2}] \]

17471

\[ {} \left [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-\frac {x \left (t \right )^{3}}{5}-\frac {y \left (t \right )}{5}\right ] \]

17473

\[ {} \left [x^{\prime }\left (t \right ) = x \left (t \right ) \left (1-x \left (t \right )-y \left (t \right )\right ), y^{\prime }\left (t \right ) = y \left (t \right ) \left (\frac {3}{4}-y \left (t \right )-\frac {x \left (t \right )}{2}\right )\right ] \]

17475

\[ {} y^{\prime \prime }+y^{\prime }+y+y^{3} = 0 \]

17478

\[ {} y^{\prime \prime }+\mu \left (1-y^{2}\right ) y^{\prime }+y = 0 \]

17489

\[ {} y^{\prime \prime }+\cos \left (t \right ) y^{\prime }+3 \ln \left (t \right ) y = 0 \]

17490

\[ {} \left (x +3\right ) y^{\prime \prime }+x y^{\prime }+y \ln \left (x \right ) = 0 \]

17491

\[ {} \left (x -2\right ) y^{\prime \prime }+y^{\prime }+\left (x -2\right ) \tan \left (x \right ) y = 0 \]

17614

\[ {} y^{\prime \prime }+y+\frac {y^{3}}{5} = \cos \left (w t \right ) \]

17615

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{5}+y+\frac {y^{3}}{5} = \cos \left (w t \right ) \]

17724

\[ {} t y^{\prime \prime \prime }+\sin \left (t \right ) y^{\prime \prime }+8 y = \cos \left (t \right ) \]

17725

\[ {} t \left (t -1\right ) y^{\prime \prime \prime \prime }+{\mathrm e}^{t} y^{\prime \prime }+4 t^{2} y = 0 \]

17726

\[ {} y^{\prime \prime \prime }+t y^{\prime \prime }+t^{2} y^{\prime }+t^{2} y = \ln \left (t \right ) \]

17727

\[ {} \left (-4+x \right ) y^{\prime \prime \prime \prime }+\left (1+x \right ) y^{\prime \prime }+y \tan \left (x \right ) = 0 \]