44.6.46 problem 46

Internal problem ID [7190]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 2. First order differential equations. Section 2.3 Linear equations. Exercises 2.3 at page 63
Problem number : 46
Date solved : Sunday, March 30, 2025 at 11:50:43 AM
CAS classification : [_linear]

\begin{align*} x^{2} y^{\prime }-y&=x^{3} \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=0 \end{align*}

Maple. Time used: 0.083 (sec). Leaf size: 46
ode:=x^2*diff(y(x),x)-y(x) = x^3; 
ic:=y(1) = 0; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \frac {x^{2}}{2}+\frac {x}{2}+\frac {{\mathrm e}^{-\frac {1}{x}} \operatorname {Ei}_{1}\left (-\frac {1}{x}\right )}{2}+\frac {{\mathrm e}^{-\frac {1}{x}} \left (-\operatorname {Ei}_{1}\left (-1\right )-2 \,{\mathrm e}\right )}{2} \]
Mathematica. Time used: 0.041 (sec). Leaf size: 38
ode=x^2*D[y[x],x]-y[x]==x^3; 
ic={y[1]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{2} e^{-1/x} \left (-\operatorname {ExpIntegralEi}\left (\frac {1}{x}\right )+\operatorname {ExpIntegralEi}(1)+e^{\frac {1}{x}} x (x+1)-2 e\right ) \]
Sympy. Time used: 1.367 (sec). Leaf size: 22
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**3 + x**2*Derivative(y(x), x) - y(x),0) 
ics = {y(1): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (x^{2} \operatorname {E}_{3}\left (- \frac {1}{x}\right ) - \operatorname {E}_{3}\left (-1\right )\right ) e^{- \frac {1}{x}} \]