44.6.8 problem 8

Internal problem ID [7152]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 2. First order differential equations. Section 2.3 Linear equations. Exercises 2.3 at page 63
Problem number : 8
Date solved : Sunday, March 30, 2025 at 11:49:07 AM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }&=2 y+x^{2}+5 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 20
ode:=diff(y(x),x) = 2*y(x)+x^2+5; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {x^{2}}{2}-\frac {x}{2}-\frac {11}{4}+{\mathrm e}^{2 x} c_1 \]
Mathematica. Time used: 0.115 (sec). Leaf size: 28
ode=D[y[x],x]==2*y[x]+x^2+5; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{4} \left (-2 x^2-2 x+4 c_1 e^{2 x}-11\right ) \]
Sympy. Time used: 0.172 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2 - 2*y(x) + Derivative(y(x), x) - 5,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{2 x} - \frac {x^{2}}{2} - \frac {x}{2} - \frac {11}{4} \]