44.5.26 problem 26

Internal problem ID [7088]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 2. First order differential equations. Section 2.2 Separable equations. Exercises 2.2 at page 53
Problem number : 26
Date solved : Sunday, March 30, 2025 at 11:40:13 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }+2 y&=1 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&={\frac {5}{2}} \end{align*}

Maple. Time used: 0.020 (sec). Leaf size: 12
ode:=diff(y(t),t)+2*y(t) = 1; 
ic:=y(0) = 5/2; 
dsolve([ode,ic],y(t), singsol=all);
 
\[ y = \frac {1}{2}+2 \,{\mathrm e}^{-2 t} \]
Mathematica. Time used: 0.053 (sec). Leaf size: 16
ode=D[y[t],t]+2*y[t]==1; 
ic={y[0]==5/2}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to 2 e^{-2 t}+\frac {1}{2} \]
Sympy. Time used: 0.155 (sec). Leaf size: 12
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(2*y(t) + Derivative(y(t), t) - 1,0) 
ics = {y(0): 5/2} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \frac {1}{2} + 2 e^{- 2 t} \]