Internal
problem
ID
[5669]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Various
37
Problem
number
:
1129
Date
solved
:
Sunday, March 30, 2025 at 09:55:38 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=((x^2*a+y(x)^2)*(1+diff(y(x),x)^2))^(1/2)-y(x)*diff(y(x),x)-a*x = 0; dsolve(ode,y(x), singsol=all);
ode=((a*x^2+y[x]^2)*(1+(D[y[x],x])^2))^(1/2) -y[x]*D[y[x],x]-a*x==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") y = Function("y") ode = Eq(-a*x + sqrt((a*x**2 + y(x)**2)*(Derivative(y(x), x)**2 + 1)) - y(x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)