29.21.29 problem 605

Internal problem ID [5199]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 21
Problem number : 605
Date solved : Sunday, March 30, 2025 at 06:51:45 AM
CAS classification : [_exact, _rational]

\begin{align*} \left (a^{2}+x^{2}+y^{2}\right ) y^{\prime }+b^{2}+x^{2}+2 x y&=0 \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 565
ode:=(a^2+x^2+y(x)^2)*diff(y(x),x)+b^2+x^2+2*x*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {2 \left (a^{2}+x^{2}-\frac {\left (-12 b^{2} x -4 x^{3}-12 c_1 +4 \sqrt {4 a^{6}+12 a^{4} x^{2}+12 a^{2} x^{4}+9 b^{4} x^{2}+6 b^{2} x^{4}+5 x^{6}+18 c_1 \,b^{2} x +6 c_1 \,x^{3}+9 c_1^{2}}\right )^{{2}/{3}}}{4}\right )}{\left (-12 b^{2} x -4 x^{3}-12 c_1 +4 \sqrt {4 a^{6}+12 a^{4} x^{2}+12 a^{2} x^{4}+9 b^{4} x^{2}+6 b^{2} x^{4}+5 x^{6}+18 c_1 \,b^{2} x +6 c_1 \,x^{3}+9 c_1^{2}}\right )^{{1}/{3}}} \\ y &= -\frac {\left (\frac {i \sqrt {3}}{4}+\frac {1}{4}\right ) \left (-12 b^{2} x -4 x^{3}-12 c_1 +4 \sqrt {4 a^{6}+12 a^{4} x^{2}+12 a^{2} x^{4}+9 b^{4} x^{2}+6 b^{2} x^{4}+5 x^{6}+18 c_1 \,b^{2} x +6 c_1 \,x^{3}+9 c_1^{2}}\right )^{{2}/{3}}+\left (a^{2}+x^{2}\right ) \left (i \sqrt {3}-1\right )}{\left (-12 b^{2} x -4 x^{3}-12 c_1 +4 \sqrt {4 a^{6}+12 a^{4} x^{2}+12 a^{2} x^{4}+9 b^{4} x^{2}+6 b^{2} x^{4}+5 x^{6}+18 c_1 \,b^{2} x +6 c_1 \,x^{3}+9 c_1^{2}}\right )^{{1}/{3}}} \\ y &= \frac {\frac {\left (i \sqrt {3}-1\right ) \left (-12 b^{2} x -4 x^{3}-12 c_1 +4 \sqrt {4 a^{6}+12 a^{4} x^{2}+12 a^{2} x^{4}+9 b^{4} x^{2}+6 b^{2} x^{4}+5 x^{6}+18 c_1 \,b^{2} x +6 c_1 \,x^{3}+9 c_1^{2}}\right )^{{2}/{3}}}{4}+\left (a^{2}+x^{2}\right ) \left (1+i \sqrt {3}\right )}{\left (-12 b^{2} x -4 x^{3}-12 c_1 +4 \sqrt {4 a^{6}+12 a^{4} x^{2}+12 a^{2} x^{4}+9 b^{4} x^{2}+6 b^{2} x^{4}+5 x^{6}+18 c_1 \,b^{2} x +6 c_1 \,x^{3}+9 c_1^{2}}\right )^{{1}/{3}}} \\ \end{align*}
Mathematica. Time used: 7.771 (sec). Leaf size: 438
ode=(a^2+x^2+y[x]^2)D[y[x],x]+b^2+x^2+2 x y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {\sqrt [3]{2} \left (\sqrt {4 \left (a^2+x^2\right )^3+\left (3 b^2 x+x^3-3 c_1\right ){}^2}-3 b^2 x-x^3+3 c_1\right ){}^{2/3}-2 a^2-2 x^2}{2^{2/3} \sqrt [3]{\sqrt {4 \left (a^2+x^2\right )^3+\left (3 b^2 x+x^3-3 c_1\right ){}^2}-3 b^2 x-x^3+3 c_1}} \\ y(x)\to \frac {\left (1+i \sqrt {3}\right ) \left (a^2+x^2\right )}{2^{2/3} \sqrt [3]{\sqrt {4 \left (a^2+x^2\right )^3+\left (3 b^2 x+x^3-3 c_1\right ){}^2}-3 b^2 x-x^3+3 c_1}}+\frac {i \left (\sqrt {3}+i\right ) \sqrt [3]{\sqrt {4 \left (a^2+x^2\right )^3+\left (3 b^2 x+x^3-3 c_1\right ){}^2}-3 b^2 x-x^3+3 c_1}}{2 \sqrt [3]{2}} \\ y(x)\to \frac {\left (1-i \sqrt {3}\right ) \left (a^2+x^2\right )}{2^{2/3} \sqrt [3]{\sqrt {4 \left (a^2+x^2\right )^3+\left (3 b^2 x+x^3-3 c_1\right ){}^2}-3 b^2 x-x^3+3 c_1}}-\frac {i \left (\sqrt {3}-i\right ) \sqrt [3]{\sqrt {4 \left (a^2+x^2\right )^3+\left (3 b^2 x+x^3-3 c_1\right ){}^2}-3 b^2 x-x^3+3 c_1}}{2 \sqrt [3]{2}} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq(b**2 + x**2 + 2*x*y(x) + (a**2 + x**2 + y(x)**2)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out