29.20.27 problem 574

Internal problem ID [5168]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 20
Problem number : 574
Date solved : Sunday, March 30, 2025 at 06:46:36 AM
CAS classification : [_rational, _Bernoulli]

\begin{align*} \left (-x^{2}+1\right ) y y^{\prime }+2 x^{2}+x y^{2}&=0 \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 87
ode:=(-x^2+1)*y(x)*diff(y(x),x)+2*x^2+x*y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \sqrt {\ln \left (x -1\right ) x^{2}-\ln \left (x +1\right ) x^{2}+c_1 \,x^{2}-\ln \left (x -1\right )+\ln \left (x +1\right )-c_1 -2 x} \\ y &= -\sqrt {\left (x^{2}-1\right ) \ln \left (x -1\right )+c_1 \,x^{2}-\ln \left (x +1\right ) x^{2}-2 x -c_1 +\ln \left (x +1\right )} \\ \end{align*}
Mathematica. Time used: 0.506 (sec). Leaf size: 93
ode=(1-x^2)y[x] D[y[x],x]+2 x^2+x y[x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\sqrt {\left (x^2-1\right ) \log (1-x)-\left (x^2-1\right ) \log (x+1)+c_1 x^2-2 x-c_1} \\ y(x)\to \sqrt {\left (x^2-1\right ) \log (1-x)-\left (x^2-1\right ) \log (x+1)+c_1 x^2-2 x-c_1} \\ \end{align*}
Sympy. Time used: 1.093 (sec). Leaf size: 87
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x**2 + x*y(x)**2 + (1 - x**2)*y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \sqrt {C_{1} x^{2} - C_{1} + x^{2} \log {\left (x - 1 \right )} - x^{2} \log {\left (x + 1 \right )} - 2 x - \log {\left (x - 1 \right )} + \log {\left (x + 1 \right )}}, \ y{\left (x \right )} = \sqrt {C_{1} x^{2} - C_{1} + x^{2} \log {\left (x - 1 \right )} - x^{2} \log {\left (x + 1 \right )} - 2 x - \log {\left (x - 1 \right )} + \log {\left (x + 1 \right )}}\right ] \]