29.19.20 problem 533

Internal problem ID [5129]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 19
Problem number : 533
Date solved : Sunday, March 30, 2025 at 06:42:50 AM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} x \left (4 x -y\right ) y^{\prime }+4 x^{2}-6 x y-y^{2}&=0 \end{align*}

Maple. Time used: 0.080 (sec). Leaf size: 69
ode:=x*(4*x-y(x))*diff(y(x),x)+4*x^2-6*x*y(x)-y(x)^2 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {-4 x^{2} c_1^{2}+\sqrt {-12 x^{2} c_1^{2}+1}+1}{2 c_1^{2} x} \\ y &= \frac {-4 x^{2} c_1^{2}-\sqrt {-12 x^{2} c_1^{2}+1}+1}{2 c_1^{2} x} \\ \end{align*}
Mathematica. Time used: 1.638 (sec). Leaf size: 90
ode=x(4 x -y[x])D[y[x],x]+4 x^2-6 x y[x]-y[x]^2==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {4 x^2+e^{\frac {c_1}{2}} \sqrt {12 x^2+e^{c_1}}+e^{c_1}}{2 x} \\ y(x)\to -\frac {4 x^2-e^{\frac {c_1}{2}} \sqrt {12 x^2+e^{c_1}}+e^{c_1}}{2 x} \\ \end{align*}
Sympy. Time used: 2.579 (sec). Leaf size: 53
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**2 + x*(4*x - y(x))*Derivative(y(x), x) - 6*x*y(x) - y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {2 C_{1}}{x} - 2 x - \frac {2 \sqrt {C_{1} \left (C_{1} + 3 x^{2}\right )}}{x}, \ y{\left (x \right )} = - \frac {2 C_{1}}{x} - 2 x + \frac {2 \sqrt {C_{1} \left (C_{1} + 3 x^{2}\right )}}{x}\right ] \]