Internal
problem
ID
[4296]
Book
:
An
introduction
to
the
solution
and
applications
of
differential
equations,
J.W.
Searl,
1966
Section
:
Chapter
4,
Ex.
4.1
Problem
number
:
2
Date
solved
:
Sunday, March 30, 2025 at 02:52:42 AM
CAS
classification
:
[[_homogeneous, `class A`], _exact, _rational, [_Abel, `2nd type`, `class A`]]
With initial conditions
ode:=x+y(x)+(x-y(x))*diff(y(x),x) = 0; ic:=y(0) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=(x+y[x])+(x-y[x])*D[y[x],x]==0; ic=y[0]==0; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x + (x - y(x))*Derivative(y(x), x) + y(x),0) ics = {y(0): 0} dsolve(ode,func=y(x),ics=ics)