Internal
problem
ID
[3970]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
10,
The
Laplace
Transform
and
Some
Elementary
Applications.
Exercises
for
10.7.
page
704
Problem
number
:
Problem
41
Date
solved
:
Sunday, March 30, 2025 at 02:13:17 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)-2*diff(y(t),t)+5*y(t) = 2*sin(t)+Heaviside(t-1/2*Pi)*(1+cos(t)); ic:=y(0) = 0, D(y)(0) = 0; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]-2*D[y[t],t]+5*y[t]==2*Sin[t]+UnitStep[t-Pi/2]*(1-Sin[t-Pi/2]); ic={y[0]==0,Derivative[1][y][0] ==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq((-cos(t) - 1)*Heaviside(t - pi/2) + 5*y(t) - 2*sin(t) - 2*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 0} dsolve(ode,func=y(t),ics=ics)
Timed Out