20.12.10 problem Problem 29

Internal problem ID [3804]
Book : Differential equations and linear algebra, Stephen W. Goode and Scott A Annin. Fourth edition, 2015
Section : Chapter 8, Linear differential equations of order n. Section 8.10, Chapter review. page 575
Problem number : Problem 29
Date solved : Sunday, March 30, 2025 at 02:08:54 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-y&=4 \,{\mathrm e}^{x} \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 20
ode:=diff(diff(y(x),x),x)-y(x) = 4*exp(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-x} c_1 +2 \left (x +\frac {c_2}{2}\right ) {\mathrm e}^{x} \]
Mathematica. Time used: 0.017 (sec). Leaf size: 25
ode=D[y[x],{x,2}]-y[x]==4*Exp[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^x (2 x-1+c_1)+c_2 e^{-x} \]
Sympy. Time used: 0.079 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x) - 4*exp(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{2} e^{- x} + \left (C_{1} + 2 x\right ) e^{x} \]