Internal
problem
ID
[3781]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
8,
Linear
differential
equations
of
order
n.
Section
8.8,
A
Differential
Equation
with
Nonconstant
Coefficients.
page
567
Problem
number
:
Problem
22
Date
solved
:
Sunday, March 30, 2025 at 02:08:24 AM
CAS
classification
:
[[_Emden, _Fowler]]
With initial conditions
ode:=x^2*diff(diff(y(x),x),x)-x*diff(y(x),x)+5*y(x) = 0; ic:=y(1) = 2^(1/2), D(y)(1) = 3*2^(1/2); dsolve([ode,ic],y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-x*D[y[x],x]+5*y[x]==0; ic={y[1]==Sqrt[2],Derivative[1][y][1]==3*Sqrt[2]}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - x*Derivative(y(x), x) + 5*y(x),0) ics = {y(1): sqrt(2), Subs(Derivative(y(x), x), x, 1): 3*sqrt(2)} dsolve(ode,func=y(x),ics=ics)