Internal
problem
ID
[3677]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
1,
First-Order
Differential
Equations.
Section
1.8,
Change
of
Variables.
page
79
Problem
number
:
Problem
60
Date
solved
:
Sunday, March 30, 2025 at 02:04:53 AM
CAS
classification
:
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]
ode:=diff(y(x),x) = (x+2*y(x)-1)/(2*x-y(x)+3); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==(x+2*y[x]-1)/(2*x-y[x]+3); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-x - 2*y(x) + 1)/(2*x - y(x) + 3) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)