Internal
problem
ID
[3672]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
1,
First-Order
Differential
Equations.
Section
1.8,
Change
of
Variables.
page
79
Problem
number
:
Problem
54
Date
solved
:
Sunday, March 30, 2025 at 02:04:01 AM
CAS
classification
:
[[_homogeneous, `class C`], _Riccati]
With initial conditions
ode:=diff(y(x),x) = (9*x-y(x))^2; ic:=y(0) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],x]==(9*x-y[x])^2; ic={y[0]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-(9*x - y(x))**2 + Derivative(y(x), x),0) ics = {y(0): 0} dsolve(ode,func=y(x),ics=ics)