Internal
problem
ID
[3667]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
1,
First-Order
Differential
Equations.
Section
1.8,
Change
of
Variables.
page
79
Problem
number
:
Problem
48
Date
solved
:
Sunday, March 30, 2025 at 02:02:55 AM
CAS
classification
:
[[_homogeneous, `class G`], _rational, _Bernoulli]
ode:=diff(y(x),x)-1/(Pi-1)/x*y(x) = 3/(1-Pi)*x*y(x)^Pi; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]-1/( (Pi-1)*x)*y[x]==3/(1-Pi)*x*y[x]^Pi; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-3*x*y(x)**pi/(1 - pi) + Derivative(y(x), x) - y(x)/(x*(-1 + pi)),0) ics = {} dsolve(ode,func=y(x),ics=ics)