Internal
problem
ID
[3662]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
1,
First-Order
Differential
Equations.
Section
1.8,
Change
of
Variables.
page
79
Problem
number
:
Problem
43
Date
solved
:
Sunday, March 30, 2025 at 02:02:37 AM
CAS
classification
:
[[_homogeneous, `class G`], _rational, _Bernoulli]
ode:=2*x*(diff(y(x),x)+y(x)^3*x^2)+y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=2*x*(D[y[x],x]+y[x]^3*x^2)+y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*(x**2*y(x)**3 + Derivative(y(x), x)) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)