Internal
problem
ID
[3646]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
1,
First-Order
Differential
Equations.
Section
1.8,
Change
of
Variables.
page
79
Problem
number
:
Problem
19
Date
solved
:
Sunday, March 30, 2025 at 01:57:57 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Riccati]
ode:=x^2*diff(y(x),x) = y(x)^2+3*x*y(x)+x^2; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],x]==y[x]^2+3*x*y[x]+x^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), x) - x**2 - 3*x*y(x) - y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)