Internal
problem
ID
[3642]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
1,
First-Order
Differential
Equations.
Section
1.8,
Change
of
Variables.
page
79
Problem
number
:
Problem
15
Date
solved
:
Sunday, March 30, 2025 at 01:57:37 AM
CAS
classification
:
[_separable]
ode:=y(x)*(x^2-y(x)^2)-x*(x^2-y(x)^2)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=y[x]*(x^2-y[x]^2)-x*(x^2-y[x]^2)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*(x**2 - y(x)**2)*Derivative(y(x), x) + (x**2 - y(x)**2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)