Internal
problem
ID
[3641]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
1,
First-Order
Differential
Equations.
Section
1.8,
Change
of
Variables.
page
79
Problem
number
:
Problem
14
Date
solved
:
Sunday, March 30, 2025 at 01:57:30 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=x*diff(y(x),x)-y(x) = (9*x^2+y(x)^2)^(1/2); dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]-y[x]==Sqrt[9*x^2+y[x]^2]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x) - sqrt(9*x**2 + y(x)**2) - y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)