19.3.7 problem 15

Internal problem ID [3550]
Book : Differential equations and linear algebra, Stephen W. Goode, second edition, 2000
Section : 1.8, page 68
Problem number : 15
Date solved : Sunday, March 30, 2025 at 01:49:46 AM
CAS classification : [[_homogeneous, `class A`], _dAlembert]

\begin{align*} x y^{\prime }+y \ln \left (x \right )&=y \ln \left (y\right ) \end{align*}

Maple. Time used: 0.011 (sec). Leaf size: 12
ode:=x*diff(y(x),x)+y(x)*ln(x) = y(x)*ln(y(x)); 
dsolve(ode,y(x), singsol=all);
 
\[ y = x \,{\mathrm e}^{c_1 x +1} \]
Mathematica. Time used: 0.232 (sec). Leaf size: 24
ode=x*D[y[x],x]+y[x]*Log[x]==y[x]*Log[y[x]]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to x e^{1+e^{c_1} x} \\ y(x)\to e x \\ \end{align*}
Sympy. Time used: 0.826 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) + y(x)*log(x) - y(x)*log(y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x e^{C_{1} x + 1} \]