Internal
problem
ID
[3400]
Book
:
Differential
Equations
by
Alfred
L.
Nelson,
Karl
W.
Folley,
Max
Coral.
3rd
ed.
DC
heath.
Boston.
1964
Section
:
Exercise
43,
page
209
Problem
number
:
12
Date
solved
:
Sunday, March 30, 2025 at 01:39:12 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=(x^2+2*x)*diff(diff(y(x),x),x)-(2+2*x)*diff(y(x),x)+2*y(x) = x^2*(x+2)^2; dsolve(ode,y(x),type='series',x=0);
ode=(x^2+2*x)*D[y[x],{x,2}]-(2+2*x)*D[y[x],x]+2*y[x]==x^2*(x+2)^2; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2*(x + 2)**2 - (2*x + 2)*Derivative(y(x), x) + (x**2 + 2*x)*Derivative(y(x), (x, 2)) + 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
ValueError : ODE -x**2*(x + 2)**2 - (2*x + 2)*Derivative(y(x), x) + (x**2 + 2*x)*Derivative(y(x), (x, 2)) + 2*y(x) does not match hint 2nd_power_series_regular