Internal
problem
ID
[3398]
Book
:
Differential
Equations
by
Alfred
L.
Nelson,
Karl
W.
Folley,
Max
Coral.
3rd
ed.
DC
heath.
Boston.
1964
Section
:
Exercise
43,
page
209
Problem
number
:
10
Date
solved
:
Sunday, March 30, 2025 at 01:39:09 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using series method with expansion around
Order:=6; ode:=2*x^2*diff(diff(y(x),x),x)+(-x^2+x)*diff(y(x),x)-y(x) = x^3+1; dsolve(ode,y(x),type='series',x=0);
ode=2*x^2*D[y[x],{x,2}]+(x-x^2)*D[y[x],x]-y[x]==1+x^3; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**3 + 2*x**2*Derivative(y(x), (x, 2)) + (-x**2 + x)*Derivative(y(x), x) - y(x) - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
ValueError : ODE -x**3 + 2*x**2*Derivative(y(x), (x, 2)) + (-x**2 + x)*Derivative(y(x), x) - y(x) - 1 does not match hint 2nd_power_series_regular