Internal
problem
ID
[3362]
Book
:
Differential
Equations
by
Alfred
L.
Nelson,
Karl
W.
Folley,
Max
Coral.
3rd
ed.
DC
heath.
Boston.
1964
Section
:
Exercise
41,
page
195
Problem
number
:
16
Date
solved
:
Sunday, March 30, 2025 at 01:38:01 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=9*x^2*diff(diff(y(x),x),x)+9*(-x^2+x)*diff(y(x),x)+(x-1)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=9*x^2*D[y[x],{x,2}]+9*(x-x^2)*D[y[x],x]+(x-1)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(9*x**2*Derivative(y(x), (x, 2)) + (x - 1)*y(x) + (-9*x**2 + 9*x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)