15.19.8 problem 8

Internal problem ID [3292]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 37, page 171
Problem number : 8
Date solved : Sunday, March 30, 2025 at 01:32:50 AM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} y^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+2 y^{2}&=x^{2} \end{align*}

Maple. Time used: 0.656 (sec). Leaf size: 107
ode:=y(x)^2*diff(y(x),x)^2-2*x*y(x)*diff(y(x),x)+2*y(x)^2 = x^2; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -x \\ y &= x \\ y &= \sqrt {-2 \sqrt {2}\, c_1 x -c_1^{2}-x^{2}} \\ y &= \sqrt {2 \sqrt {2}\, c_1 x -c_1^{2}-x^{2}} \\ y &= -\sqrt {-2 \sqrt {2}\, c_1 x -c_1^{2}-x^{2}} \\ y &= -\sqrt {2 \sqrt {2}\, c_1 x -c_1^{2}-x^{2}} \\ \end{align*}
Mathematica. Time used: 5.124 (sec). Leaf size: 171
ode=y[x]^2*D[y[x],x]^2-2*x*y[x]*D[y[x],x]+2*y[x]^2==x^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\sqrt {-2 x^2-4 i e^{c_1} x+e^{2 c_1}}}{\sqrt {2}} \\ y(x)\to \frac {\sqrt {-2 x^2-4 i e^{c_1} x+e^{2 c_1}}}{\sqrt {2}} \\ y(x)\to -\frac {\sqrt {-2 x^2+4 i e^{c_1} x+e^{2 c_1}}}{\sqrt {2}} \\ y(x)\to \frac {\sqrt {-2 x^2+4 i e^{c_1} x+e^{2 c_1}}}{\sqrt {2}} \\ y(x)\to -\sqrt {-x^2} \\ y(x)\to \sqrt {-x^2} \\ \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2 - 2*x*y(x)*Derivative(y(x), x) + y(x)**2*Derivative(y(x), x)**2 + 2*y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out