Internal
problem
ID
[3235]
Book
:
Differential
Equations
by
Alfred
L.
Nelson,
Karl
W.
Folley,
Max
Coral.
3rd
ed.
DC
heath.
Boston.
1964
Section
:
Exercise
25,
page
112
Problem
number
:
15
Date
solved
:
Sunday, March 30, 2025 at 01:23:27 AM
CAS
classification
:
[[_high_order, _exact, _linear, _nonhomogeneous]]
ode:=x^4*diff(diff(diff(diff(y(x),x),x),x),x)+7*x^3*diff(diff(diff(y(x),x),x),x)+9*x^2*diff(diff(y(x),x),x)-6*x*diff(y(x),x)-6*y(x) = cos(ln(x)); dsolve(ode,y(x), singsol=all);
ode=x^4*D[y[x],{x,4}]+7*x^3*D[y[x],{x,3}]+9*x^2*D[y[x],{x,2}]-6*x*D[y[x],x]-6*y[x]==Cos[Log[x]]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**4*Derivative(y(x), (x, 4)) + 7*x**3*Derivative(y(x), (x, 3)) + 9*x**2*Derivative(y(x), (x, 2)) - 6*x*Derivative(y(x), x) - 6*y(x) - cos(log(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)